firewire: Reduce some redundant register definitions.
[deliverable/linux.git] / drivers / firewire / fw-ohci.c
CommitLineData
ed568912
KH
1/* -*- c-basic-offset: 8 -*-
2 *
3 * fw-ohci.c - Driver for OHCI 1394 boards
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/pci.h>
26#include <linux/delay.h>
27#include <linux/poll.h>
cf3e72fd
AM
28#include <linux/dma-mapping.h>
29
ed568912
KH
30#include <asm/uaccess.h>
31#include <asm/semaphore.h>
32
33#include "fw-transaction.h"
34#include "fw-ohci.h"
35
36#define descriptor_output_more 0
37#define descriptor_output_last (1 << 12)
38#define descriptor_input_more (2 << 12)
39#define descriptor_input_last (3 << 12)
40#define descriptor_status (1 << 11)
41#define descriptor_key_immediate (2 << 8)
42#define descriptor_ping (1 << 7)
43#define descriptor_yy (1 << 6)
44#define descriptor_no_irq (0 << 4)
45#define descriptor_irq_error (1 << 4)
46#define descriptor_irq_always (3 << 4)
47#define descriptor_branch_always (3 << 2)
48
49struct descriptor {
50 __le16 req_count;
51 __le16 control;
52 __le32 data_address;
53 __le32 branch_address;
54 __le16 res_count;
55 __le16 transfer_status;
56} __attribute__((aligned(16)));
57
72e318e0
KH
58#define control_set(regs) (regs)
59#define control_clear(regs) ((regs) + 4)
60#define command_ptr(regs) ((regs) + 12)
61#define context_match(regs) ((regs) + 16)
62
32b46093 63struct ar_buffer {
ed568912 64 struct descriptor descriptor;
32b46093
KH
65 struct ar_buffer *next;
66 __le32 data[0];
67};
ed568912 68
32b46093
KH
69struct ar_context {
70 struct fw_ohci *ohci;
71 struct ar_buffer *current_buffer;
72 struct ar_buffer *last_buffer;
73 void *pointer;
72e318e0 74 u32 regs;
ed568912
KH
75 struct tasklet_struct tasklet;
76};
77
78struct at_context {
79 struct fw_ohci *ohci;
80 dma_addr_t descriptor_bus;
81 dma_addr_t buffer_bus;
82
83 struct list_head list;
84
85 struct {
86 struct descriptor more;
87 __le32 header[4];
88 struct descriptor last;
89 } d;
90
72e318e0 91 u32 regs;
ed568912
KH
92
93 struct tasklet_struct tasklet;
94};
95
96#define it_header_sy(v) ((v) << 0)
97#define it_header_tcode(v) ((v) << 4)
98#define it_header_channel(v) ((v) << 8)
99#define it_header_tag(v) ((v) << 14)
100#define it_header_speed(v) ((v) << 16)
101#define it_header_data_length(v) ((v) << 16)
102
103struct iso_context {
104 struct fw_iso_context base;
105 struct tasklet_struct tasklet;
72e318e0 106 u32 regs;
ed568912
KH
107
108 struct descriptor *buffer;
109 dma_addr_t buffer_bus;
110 struct descriptor *head_descriptor;
111 struct descriptor *tail_descriptor;
112 struct descriptor *tail_descriptor_last;
113 struct descriptor *prev_descriptor;
114};
115
116#define CONFIG_ROM_SIZE 1024
117
118struct fw_ohci {
119 struct fw_card card;
120
121 __iomem char *registers;
122 dma_addr_t self_id_bus;
123 __le32 *self_id_cpu;
124 struct tasklet_struct bus_reset_tasklet;
e636fe25 125 int node_id;
ed568912
KH
126 int generation;
127 int request_generation;
128
129 /* Spinlock for accessing fw_ohci data. Never call out of
130 * this driver with this lock held. */
131 spinlock_t lock;
132 u32 self_id_buffer[512];
133
134 /* Config rom buffers */
135 __be32 *config_rom;
136 dma_addr_t config_rom_bus;
137 __be32 *next_config_rom;
138 dma_addr_t next_config_rom_bus;
139 u32 next_header;
140
141 struct ar_context ar_request_ctx;
142 struct ar_context ar_response_ctx;
143 struct at_context at_request_ctx;
144 struct at_context at_response_ctx;
145
146 u32 it_context_mask;
147 struct iso_context *it_context_list;
148 u32 ir_context_mask;
149 struct iso_context *ir_context_list;
150};
151
95688e97 152static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
153{
154 return container_of(card, struct fw_ohci, card);
155}
156
157#define CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
158
159#define CONTEXT_RUN 0x8000
160#define CONTEXT_WAKE 0x1000
161#define CONTEXT_DEAD 0x0800
162#define CONTEXT_ACTIVE 0x0400
163
164#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
165#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
166#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
167
168#define FW_OHCI_MAJOR 240
169#define OHCI1394_REGISTER_SIZE 0x800
170#define OHCI_LOOP_COUNT 500
171#define OHCI1394_PCI_HCI_Control 0x40
172#define SELF_ID_BUF_SIZE 0x800
32b46093 173#define OHCI_TCODE_PHY_PACKET 0x0e
0edeefd9 174
ed568912
KH
175static char ohci_driver_name[] = KBUILD_MODNAME;
176
95688e97 177static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
178{
179 writel(data, ohci->registers + offset);
180}
181
95688e97 182static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
183{
184 return readl(ohci->registers + offset);
185}
186
95688e97 187static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
188{
189 /* Do a dummy read to flush writes. */
190 reg_read(ohci, OHCI1394_Version);
191}
192
193static int
194ohci_update_phy_reg(struct fw_card *card, int addr,
195 int clear_bits, int set_bits)
196{
197 struct fw_ohci *ohci = fw_ohci(card);
198 u32 val, old;
199
200 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
201 msleep(2);
202 val = reg_read(ohci, OHCI1394_PhyControl);
203 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
204 fw_error("failed to set phy reg bits.\n");
205 return -EBUSY;
206 }
207
208 old = OHCI1394_PhyControl_ReadData(val);
209 old = (old & ~clear_bits) | set_bits;
210 reg_write(ohci, OHCI1394_PhyControl,
211 OHCI1394_PhyControl_Write(addr, old));
212
213 return 0;
214}
215
32b46093 216static int ar_context_add_page(struct ar_context *ctx)
ed568912 217{
32b46093
KH
218 struct device *dev = ctx->ohci->card.device;
219 struct ar_buffer *ab;
220 dma_addr_t ab_bus;
221 size_t offset;
222
223 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
224 if (ab == NULL)
225 return -ENOMEM;
226
227 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
228 if (dma_mapping_error(ab_bus)) {
229 free_page((unsigned long) ab);
230 return -ENOMEM;
231 }
232
233 memset(&ab->descriptor, 0, sizeof ab->descriptor);
234 ab->descriptor.control = cpu_to_le16(descriptor_input_more |
235 descriptor_status |
236 descriptor_branch_always);
237 offset = offsetof(struct ar_buffer, data);
238 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
239 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
240 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
241 ab->descriptor.branch_address = 0;
242
243 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
244
245 ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
246 ctx->last_buffer->next = ab;
247 ctx->last_buffer = ab;
248
72e318e0 249 reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
ed568912 250 flush_writes(ctx->ohci);
32b46093
KH
251
252 return 0;
ed568912
KH
253}
254
32b46093 255static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
ed568912 256{
ed568912 257 struct fw_ohci *ohci = ctx->ohci;
2639a6fb
KH
258 struct fw_packet p;
259 u32 status, length, tcode;
2639a6fb 260
32b46093
KH
261 p.header[0] = le32_to_cpu(buffer[0]);
262 p.header[1] = le32_to_cpu(buffer[1]);
263 p.header[2] = le32_to_cpu(buffer[2]);
2639a6fb
KH
264
265 tcode = (p.header[0] >> 4) & 0x0f;
266 switch (tcode) {
267 case TCODE_WRITE_QUADLET_REQUEST:
268 case TCODE_READ_QUADLET_RESPONSE:
32b46093 269 p.header[3] = (__force __u32) buffer[3];
2639a6fb 270 p.header_length = 16;
32b46093 271 p.payload_length = 0;
2639a6fb
KH
272 break;
273
2639a6fb 274 case TCODE_READ_BLOCK_REQUEST :
32b46093
KH
275 p.header[3] = le32_to_cpu(buffer[3]);
276 p.header_length = 16;
277 p.payload_length = 0;
278 break;
279
280 case TCODE_WRITE_BLOCK_REQUEST:
2639a6fb
KH
281 case TCODE_READ_BLOCK_RESPONSE:
282 case TCODE_LOCK_REQUEST:
283 case TCODE_LOCK_RESPONSE:
32b46093 284 p.header[3] = le32_to_cpu(buffer[3]);
2639a6fb 285 p.header_length = 16;
32b46093 286 p.payload_length = p.header[3] >> 16;
2639a6fb
KH
287 break;
288
289 case TCODE_WRITE_RESPONSE:
290 case TCODE_READ_QUADLET_REQUEST:
32b46093 291 case OHCI_TCODE_PHY_PACKET:
2639a6fb 292 p.header_length = 12;
32b46093 293 p.payload_length = 0;
2639a6fb
KH
294 break;
295 }
ed568912 296
32b46093
KH
297 p.payload = (void *) buffer + p.header_length;
298
299 /* FIXME: What to do about evt_* errors? */
300 length = (p.header_length + p.payload_length + 3) / 4;
301 status = le32_to_cpu(buffer[length]);
302
303 p.ack = ((status >> 16) & 0x1f) - 16;
304 p.speed = (status >> 21) & 0x7;
305 p.timestamp = status & 0xffff;
306 p.generation = ohci->request_generation;
ed568912
KH
307
308 /* The OHCI bus reset handler synthesizes a phy packet with
309 * the new generation number when a bus reset happens (see
310 * section 8.4.2.3). This helps us determine when a request
311 * was received and make sure we send the response in the same
312 * generation. We only need this for requests; for responses
313 * we use the unique tlabel for finding the matching
314 * request. */
315
2639a6fb 316 if (p.ack + 16 == 0x09)
32b46093 317 ohci->request_generation = (buffer[2] >> 16) & 0xff;
ed568912 318 else if (ctx == &ohci->ar_request_ctx)
2639a6fb 319 fw_core_handle_request(&ohci->card, &p);
ed568912 320 else
2639a6fb 321 fw_core_handle_response(&ohci->card, &p);
ed568912 322
32b46093
KH
323 return buffer + length + 1;
324}
ed568912 325
32b46093
KH
326static void ar_context_tasklet(unsigned long data)
327{
328 struct ar_context *ctx = (struct ar_context *)data;
329 struct fw_ohci *ohci = ctx->ohci;
330 struct ar_buffer *ab;
331 struct descriptor *d;
332 void *buffer, *end;
333
334 ab = ctx->current_buffer;
335 d = &ab->descriptor;
336
337 if (d->res_count == 0) {
338 size_t size, rest, offset;
339
340 /* This descriptor is finished and we may have a
341 * packet split across this and the next buffer. We
342 * reuse the page for reassembling the split packet. */
343
344 offset = offsetof(struct ar_buffer, data);
345 dma_unmap_single(ohci->card.device,
346 ab->descriptor.data_address - offset,
347 PAGE_SIZE, DMA_BIDIRECTIONAL);
348
349 buffer = ab;
350 ab = ab->next;
351 d = &ab->descriptor;
352 size = buffer + PAGE_SIZE - ctx->pointer;
353 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
354 memmove(buffer, ctx->pointer, size);
355 memcpy(buffer + size, ab->data, rest);
356 ctx->current_buffer = ab;
357 ctx->pointer = (void *) ab->data + rest;
358 end = buffer + size + rest;
359
360 while (buffer < end)
361 buffer = handle_ar_packet(ctx, buffer);
362
363 free_page((unsigned long)buffer);
364 ar_context_add_page(ctx);
365 } else {
366 buffer = ctx->pointer;
367 ctx->pointer = end =
368 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
369
370 while (buffer < end)
371 buffer = handle_ar_packet(ctx, buffer);
372 }
ed568912
KH
373}
374
375static int
72e318e0 376ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
ed568912 377{
32b46093 378 struct ar_buffer ab;
ed568912 379
72e318e0
KH
380 ctx->regs = regs;
381 ctx->ohci = ohci;
382 ctx->last_buffer = &ab;
ed568912
KH
383 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
384
32b46093
KH
385 ar_context_add_page(ctx);
386 ar_context_add_page(ctx);
387 ctx->current_buffer = ab.next;
388 ctx->pointer = ctx->current_buffer->data;
389
72e318e0
KH
390 reg_write(ctx->ohci, command_ptr(ctx->regs), ab.descriptor.branch_address);
391 reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_RUN);
32b46093 392 flush_writes(ctx->ohci);
ed568912
KH
393
394 return 0;
395}
396
397static void
398do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
399{
400 struct fw_packet *p, *next;
401
402 list_for_each_entry_safe(p, next, list, link)
2639a6fb 403 p->callback(p, &ohci->card, p->ack);
ed568912
KH
404}
405
406static void
407complete_transmission(struct fw_packet *packet,
2639a6fb 408 int ack, struct list_head *list)
ed568912
KH
409{
410 list_move_tail(&packet->link, list);
2639a6fb 411 packet->ack = ack;
ed568912
KH
412}
413
414/* This function prepares the first packet in the context queue for
415 * transmission. Must always be called with the ochi->lock held to
416 * ensure proper generation handling and locking around packet queue
417 * manipulation. */
418static void
419at_context_setup_packet(struct at_context *ctx, struct list_head *list)
420{
421 struct fw_packet *packet;
422 struct fw_ohci *ohci = ctx->ohci;
423 int z, tcode;
424
425 packet = fw_packet(ctx->list.next);
426
427 memset(&ctx->d, 0, sizeof ctx->d);
428 if (packet->payload_length > 0) {
429 packet->payload_bus = dma_map_single(ohci->card.device,
430 packet->payload,
431 packet->payload_length,
432 DMA_TO_DEVICE);
433 if (packet->payload_bus == 0) {
e5f49c3b 434 complete_transmission(packet, RCODE_SEND_ERROR, list);
ed568912
KH
435 return;
436 }
437
438 ctx->d.more.control =
439 cpu_to_le16(descriptor_output_more |
440 descriptor_key_immediate);
441 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
442 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
443 ctx->d.last.control =
444 cpu_to_le16(descriptor_output_last |
445 descriptor_irq_always |
446 descriptor_branch_always);
447 ctx->d.last.req_count = cpu_to_le16(packet->payload_length);
448 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
449 z = 3;
450 } else {
451 ctx->d.more.control =
452 cpu_to_le16(descriptor_output_last |
453 descriptor_key_immediate |
454 descriptor_irq_always |
455 descriptor_branch_always);
456 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
457 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
458 z = 2;
459 }
460
461 /* The DMA format for asyncronous link packets is different
462 * from the IEEE1394 layout, so shift the fields around
463 * accordingly. If header_length is 8, it's a PHY packet, to
464 * which we need to prepend an extra quadlet. */
465 if (packet->header_length > 8) {
466 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
467 (packet->speed << 16));
468 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
469 (packet->header[0] & 0xffff0000));
470 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
471
472 tcode = (packet->header[0] >> 4) & 0x0f;
473 if (TCODE_IS_BLOCK_PACKET(tcode))
474 ctx->d.header[3] = cpu_to_le32(packet->header[3]);
475 else
476 ctx->d.header[3] = packet->header[3];
477 } else {
478 ctx->d.header[0] =
479 cpu_to_le32((OHCI1394_phy_tcode << 4) |
480 (packet->speed << 16));
481 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
482 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
483 ctx->d.more.req_count = cpu_to_le16(12);
484 }
485
486 /* FIXME: Document how the locking works. */
487 if (ohci->generation == packet->generation) {
72e318e0 488 reg_write(ctx->ohci, command_ptr(ctx->regs),
ed568912 489 ctx->descriptor_bus | z);
72e318e0 490 reg_write(ctx->ohci, control_set(ctx->regs),
ed568912
KH
491 CONTEXT_RUN | CONTEXT_WAKE);
492 } else {
493 /* We dont return error codes from this function; all
494 * transmission errors are reported through the
495 * callback. */
e5f49c3b 496 complete_transmission(packet, RCODE_GENERATION, list);
ed568912
KH
497 }
498}
499
500static void at_context_stop(struct at_context *ctx)
501{
502 u32 reg;
503
72e318e0 504 reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
ed568912 505
72e318e0 506 reg = reg_read(ctx->ohci, control_set(ctx->regs));
ed568912
KH
507 if (reg & CONTEXT_ACTIVE)
508 fw_notify("Tried to stop context, but it is still active "
509 "(0x%08x).\n", reg);
510}
511
512static void at_context_tasklet(unsigned long data)
513{
514 struct at_context *ctx = (struct at_context *)data;
515 struct fw_ohci *ohci = ctx->ohci;
516 struct fw_packet *packet;
517 LIST_HEAD(list);
518 unsigned long flags;
519 int evt;
520
521 spin_lock_irqsave(&ohci->lock, flags);
522
523 packet = fw_packet(ctx->list.next);
524
525 at_context_stop(ctx);
526
527 if (packet->payload_length > 0) {
528 dma_unmap_single(ohci->card.device, packet->payload_bus,
529 packet->payload_length, DMA_TO_DEVICE);
530 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
531 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
532 }
533 else {
534 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
535 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
536 }
537
538 if (evt < 16) {
539 switch (evt) {
540 case OHCI1394_evt_timeout:
541 /* Async response transmit timed out. */
e5f49c3b 542 complete_transmission(packet, RCODE_CANCELLED, &list);
ed568912
KH
543 break;
544
545 case OHCI1394_evt_flushed:
546 /* The packet was flushed should give same
547 * error as when we try to use a stale
548 * generation count. */
e5f49c3b
KH
549 complete_transmission(packet,
550 RCODE_GENERATION, &list);
ed568912
KH
551 break;
552
553 case OHCI1394_evt_missing_ack:
e5f49c3b
KH
554 /* Using a valid (current) generation count,
555 * but the node is not on the bus or not
556 * sending acks. */
557 complete_transmission(packet, RCODE_NO_ACK, &list);
ed568912
KH
558 break;
559
560 default:
e5f49c3b 561 complete_transmission(packet, RCODE_SEND_ERROR, &list);
ed568912
KH
562 break;
563 }
564 } else
565 complete_transmission(packet, evt - 16, &list);
566
567 /* If more packets are queued, set up the next one. */
568 if (!list_empty(&ctx->list))
569 at_context_setup_packet(ctx, &list);
570
571 spin_unlock_irqrestore(&ohci->lock, flags);
572
573 do_packet_callbacks(ohci, &list);
574}
575
576static int
72e318e0 577at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 regs)
ed568912
KH
578{
579 INIT_LIST_HEAD(&ctx->list);
580
581 ctx->descriptor_bus =
582 dma_map_single(ohci->card.device, &ctx->d,
583 sizeof ctx->d, DMA_TO_DEVICE);
584 if (ctx->descriptor_bus == 0)
585 return -ENOMEM;
586
72e318e0
KH
587 ctx->regs = regs;
588 ctx->ohci = ohci;
ed568912
KH
589
590 tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
591
592 return 0;
593}
594
e636fe25 595#define header_get_destination(q) (((q) >> 16) & 0xffff)
93c4cceb
KH
596#define header_get_tcode(q) (((q) >> 4) & 0x0f)
597#define header_get_offset_high(q) (((q) >> 0) & 0xffff)
598#define header_get_data_length(q) (((q) >> 16) & 0xffff)
599#define header_get_extended_tcode(q) (((q) >> 0) & 0xffff)
600
601static void
602handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
603{
604 struct fw_packet response;
605 int tcode, length, i;
606
607 tcode = header_get_tcode(packet->header[0]);
608 if (TCODE_IS_BLOCK_PACKET(tcode))
609 length = header_get_data_length(packet->header[3]);
610 else
611 length = 4;
612
613 i = csr - CSR_CONFIG_ROM;
614 if (i + length > CONFIG_ROM_SIZE) {
615 fw_fill_response(&response, packet->header,
616 RCODE_ADDRESS_ERROR, NULL, 0);
617 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
618 fw_fill_response(&response, packet->header,
619 RCODE_TYPE_ERROR, NULL, 0);
620 } else {
621 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
622 (void *) ohci->config_rom + i, length);
623 }
624
625 fw_core_handle_response(&ohci->card, &response);
626}
627
628static void
629handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
630{
631 struct fw_packet response;
632 int tcode, length, ext_tcode, sel;
633 __be32 *payload, lock_old;
634 u32 lock_arg, lock_data;
635
636 tcode = header_get_tcode(packet->header[0]);
637 length = header_get_data_length(packet->header[3]);
638 payload = packet->payload;
639 ext_tcode = header_get_extended_tcode(packet->header[3]);
640
641 if (tcode == TCODE_LOCK_REQUEST &&
642 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
643 lock_arg = be32_to_cpu(payload[0]);
644 lock_data = be32_to_cpu(payload[1]);
645 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
646 lock_arg = 0;
647 lock_data = 0;
648 } else {
649 fw_fill_response(&response, packet->header,
650 RCODE_TYPE_ERROR, NULL, 0);
651 goto out;
652 }
653
654 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
655 reg_write(ohci, OHCI1394_CSRData, lock_data);
656 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
657 reg_write(ohci, OHCI1394_CSRControl, sel);
658
659 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
660 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
661 else
662 fw_notify("swap not done yet\n");
663
664 fw_fill_response(&response, packet->header,
665 RCODE_COMPLETE, &lock_old, sizeof lock_old);
666 out:
667 fw_core_handle_response(&ohci->card, &response);
668}
669
670static void
671handle_local_request(struct at_context *ctx, struct fw_packet *packet)
672{
673 u64 offset;
674 u32 csr;
675
676 packet->ack = ACK_PENDING;
677 packet->callback(packet, &ctx->ohci->card, packet->ack);
678
679 offset =
680 ((unsigned long long)
681 header_get_offset_high(packet->header[1]) << 32) |
682 packet->header[2];
683 csr = offset - CSR_REGISTER_BASE;
684
685 /* Handle config rom reads. */
686 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
687 handle_local_rom(ctx->ohci, packet, csr);
688 else switch (csr) {
689 case CSR_BUS_MANAGER_ID:
690 case CSR_BANDWIDTH_AVAILABLE:
691 case CSR_CHANNELS_AVAILABLE_HI:
692 case CSR_CHANNELS_AVAILABLE_LO:
693 handle_local_lock(ctx->ohci, packet, csr);
694 break;
695 default:
696 if (ctx == &ctx->ohci->at_request_ctx)
697 fw_core_handle_request(&ctx->ohci->card, packet);
698 else
699 fw_core_handle_response(&ctx->ohci->card, packet);
700 break;
701 }
702}
e636fe25 703
ed568912
KH
704static void
705at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
706{
707 LIST_HEAD(list);
708 unsigned long flags;
ed568912
KH
709
710 spin_lock_irqsave(&ctx->ohci->lock, flags);
711
e636fe25
KH
712 if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
713 ctx->ohci->generation == packet->generation) {
93c4cceb
KH
714 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
715 handle_local_request(ctx, packet);
716 return;
e636fe25 717 }
ed568912 718
93c4cceb
KH
719 list_add_tail(&packet->link, &ctx->list);
720 if (ctx->list.next == &packet->link)
721 at_context_setup_packet(ctx, &list);
722
ed568912
KH
723 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
724
725 do_packet_callbacks(ctx->ohci, &list);
726}
727
728static void bus_reset_tasklet(unsigned long data)
729{
730 struct fw_ohci *ohci = (struct fw_ohci *)data;
e636fe25 731 int self_id_count, i, j, reg;
ed568912
KH
732 int generation, new_generation;
733 unsigned long flags;
734
735 reg = reg_read(ohci, OHCI1394_NodeID);
736 if (!(reg & OHCI1394_NodeID_idValid)) {
737 fw_error("node ID not valid, new bus reset in progress\n");
738 return;
739 }
e636fe25 740 ohci->node_id = reg & 0xffff;
ed568912
KH
741
742 /* The count in the SelfIDCount register is the number of
743 * bytes in the self ID receive buffer. Since we also receive
744 * the inverted quadlets and a header quadlet, we shift one
745 * bit extra to get the actual number of self IDs. */
746
747 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
748 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
749
750 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
751 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
752 fw_error("inconsistent self IDs\n");
753 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
754 }
755
756 /* Check the consistency of the self IDs we just read. The
757 * problem we face is that a new bus reset can start while we
758 * read out the self IDs from the DMA buffer. If this happens,
759 * the DMA buffer will be overwritten with new self IDs and we
760 * will read out inconsistent data. The OHCI specification
761 * (section 11.2) recommends a technique similar to
762 * linux/seqlock.h, where we remember the generation of the
763 * self IDs in the buffer before reading them out and compare
764 * it to the current generation after reading them out. If
765 * the two generations match we know we have a consistent set
766 * of self IDs. */
767
768 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
769 if (new_generation != generation) {
770 fw_notify("recursive bus reset detected, "
771 "discarding self ids\n");
772 return;
773 }
774
775 /* FIXME: Document how the locking works. */
776 spin_lock_irqsave(&ohci->lock, flags);
777
778 ohci->generation = generation;
779 at_context_stop(&ohci->at_request_ctx);
780 at_context_stop(&ohci->at_response_ctx);
781 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
782
783 /* This next bit is unrelated to the AT context stuff but we
784 * have to do it under the spinlock also. If a new config rom
785 * was set up before this reset, the old one is now no longer
786 * in use and we can free it. Update the config rom pointers
787 * to point to the current config rom and clear the
788 * next_config_rom pointer so a new udpate can take place. */
789
790 if (ohci->next_config_rom != NULL) {
791 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
792 ohci->config_rom, ohci->config_rom_bus);
793 ohci->config_rom = ohci->next_config_rom;
794 ohci->config_rom_bus = ohci->next_config_rom_bus;
795 ohci->next_config_rom = NULL;
796
797 /* Restore config_rom image and manually update
798 * config_rom registers. Writing the header quadlet
799 * will indicate that the config rom is ready, so we
800 * do that last. */
801 reg_write(ohci, OHCI1394_BusOptions,
802 be32_to_cpu(ohci->config_rom[2]));
803 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
804 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
805 }
806
807 spin_unlock_irqrestore(&ohci->lock, flags);
808
e636fe25 809 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
ed568912
KH
810 self_id_count, ohci->self_id_buffer);
811}
812
813static irqreturn_t irq_handler(int irq, void *data)
814{
815 struct fw_ohci *ohci = data;
816 u32 event, iso_event;
817 int i;
818
819 event = reg_read(ohci, OHCI1394_IntEventClear);
820
821 if (!event)
822 return IRQ_NONE;
823
824 reg_write(ohci, OHCI1394_IntEventClear, event);
825
826 if (event & OHCI1394_selfIDComplete)
827 tasklet_schedule(&ohci->bus_reset_tasklet);
828
829 if (event & OHCI1394_RQPkt)
830 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
831
832 if (event & OHCI1394_RSPkt)
833 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
834
835 if (event & OHCI1394_reqTxComplete)
836 tasklet_schedule(&ohci->at_request_ctx.tasklet);
837
838 if (event & OHCI1394_respTxComplete)
839 tasklet_schedule(&ohci->at_response_ctx.tasklet);
840
841 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
842 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
843
844 while (iso_event) {
845 i = ffs(iso_event) - 1;
846 tasklet_schedule(&ohci->ir_context_list[i].tasklet);
847 iso_event &= ~(1 << i);
848 }
849
850 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
851 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
852
853 while (iso_event) {
854 i = ffs(iso_event) - 1;
855 tasklet_schedule(&ohci->it_context_list[i].tasklet);
856 iso_event &= ~(1 << i);
857 }
858
859 return IRQ_HANDLED;
860}
861
862static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
863{
864 struct fw_ohci *ohci = fw_ohci(card);
865 struct pci_dev *dev = to_pci_dev(card->device);
866
867 /* When the link is not yet enabled, the atomic config rom
868 * update mechanism described below in ohci_set_config_rom()
869 * is not active. We have to update ConfigRomHeader and
870 * BusOptions manually, and the write to ConfigROMmap takes
871 * effect immediately. We tie this to the enabling of the
872 * link, so we have a valid config rom before enabling - the
873 * OHCI requires that ConfigROMhdr and BusOptions have valid
874 * values before enabling.
875 *
876 * However, when the ConfigROMmap is written, some controllers
877 * always read back quadlets 0 and 2 from the config rom to
878 * the ConfigRomHeader and BusOptions registers on bus reset.
879 * They shouldn't do that in this initial case where the link
880 * isn't enabled. This means we have to use the same
881 * workaround here, setting the bus header to 0 and then write
882 * the right values in the bus reset tasklet.
883 */
884
885 ohci->next_config_rom =
886 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
887 &ohci->next_config_rom_bus, GFP_KERNEL);
888 if (ohci->next_config_rom == NULL)
889 return -ENOMEM;
890
891 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
892 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
893
894 ohci->next_header = config_rom[0];
895 ohci->next_config_rom[0] = 0;
896 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
897 reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
898 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
899
900 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
901
902 if (request_irq(dev->irq, irq_handler,
903 SA_SHIRQ, ohci_driver_name, ohci)) {
904 fw_error("Failed to allocate shared interrupt %d.\n",
905 dev->irq);
906 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
907 ohci->config_rom, ohci->config_rom_bus);
908 return -EIO;
909 }
910
911 reg_write(ohci, OHCI1394_HCControlSet,
912 OHCI1394_HCControl_linkEnable |
913 OHCI1394_HCControl_BIBimageValid);
914 flush_writes(ohci);
915
916 /* We are ready to go, initiate bus reset to finish the
917 * initialization. */
918
919 fw_core_initiate_bus_reset(&ohci->card, 1);
920
921 return 0;
922}
923
924static int
925ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
926{
927 struct fw_ohci *ohci;
928 unsigned long flags;
929 int retval = 0;
930 __be32 *next_config_rom;
931 dma_addr_t next_config_rom_bus;
932
933 ohci = fw_ohci(card);
934
935 /* When the OHCI controller is enabled, the config rom update
936 * mechanism is a bit tricky, but easy enough to use. See
937 * section 5.5.6 in the OHCI specification.
938 *
939 * The OHCI controller caches the new config rom address in a
940 * shadow register (ConfigROMmapNext) and needs a bus reset
941 * for the changes to take place. When the bus reset is
942 * detected, the controller loads the new values for the
943 * ConfigRomHeader and BusOptions registers from the specified
944 * config rom and loads ConfigROMmap from the ConfigROMmapNext
945 * shadow register. All automatically and atomically.
946 *
947 * Now, there's a twist to this story. The automatic load of
948 * ConfigRomHeader and BusOptions doesn't honor the
949 * noByteSwapData bit, so with a be32 config rom, the
950 * controller will load be32 values in to these registers
951 * during the atomic update, even on litte endian
952 * architectures. The workaround we use is to put a 0 in the
953 * header quadlet; 0 is endian agnostic and means that the
954 * config rom isn't ready yet. In the bus reset tasklet we
955 * then set up the real values for the two registers.
956 *
957 * We use ohci->lock to avoid racing with the code that sets
958 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
959 */
960
961 next_config_rom =
962 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
963 &next_config_rom_bus, GFP_KERNEL);
964 if (next_config_rom == NULL)
965 return -ENOMEM;
966
967 spin_lock_irqsave(&ohci->lock, flags);
968
969 if (ohci->next_config_rom == NULL) {
970 ohci->next_config_rom = next_config_rom;
971 ohci->next_config_rom_bus = next_config_rom_bus;
972
973 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
974 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
975 length * 4);
976
977 ohci->next_header = config_rom[0];
978 ohci->next_config_rom[0] = 0;
979
980 reg_write(ohci, OHCI1394_ConfigROMmap,
981 ohci->next_config_rom_bus);
982 } else {
983 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
984 next_config_rom, next_config_rom_bus);
985 retval = -EBUSY;
986 }
987
988 spin_unlock_irqrestore(&ohci->lock, flags);
989
990 /* Now initiate a bus reset to have the changes take
991 * effect. We clean up the old config rom memory and DMA
992 * mappings in the bus reset tasklet, since the OHCI
993 * controller could need to access it before the bus reset
994 * takes effect. */
995 if (retval == 0)
996 fw_core_initiate_bus_reset(&ohci->card, 1);
997
998 return retval;
999}
1000
1001static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1002{
1003 struct fw_ohci *ohci = fw_ohci(card);
1004
1005 at_context_transmit(&ohci->at_request_ctx, packet);
1006}
1007
1008static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1009{
1010 struct fw_ohci *ohci = fw_ohci(card);
1011
1012 at_context_transmit(&ohci->at_response_ctx, packet);
1013}
1014
1015static int
1016ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1017{
1018 struct fw_ohci *ohci = fw_ohci(card);
1019 unsigned long flags;
907293d7 1020 int n, retval = 0;
ed568912 1021
907293d7
SR
1022 /* FIXME: Make sure this bitmask is cleared when we clear the busReset
1023 * interrupt bit. Clear physReqResourceAllBuses on bus reset. */
ed568912
KH
1024
1025 spin_lock_irqsave(&ohci->lock, flags);
1026
1027 if (ohci->generation != generation) {
1028 retval = -ESTALE;
1029 goto out;
1030 }
1031
907293d7
SR
1032 /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
1033 * enabled for _all_ nodes on remote buses. */
1034
1035 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1036 if (n < 32)
1037 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1038 else
1039 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1040
ed568912 1041 flush_writes(ohci);
ed568912 1042 out:
6cad95fe 1043 spin_unlock_irqrestore(&ohci->lock, flags);
ed568912
KH
1044 return retval;
1045}
1046
1047static void ir_context_tasklet(unsigned long data)
1048{
1049 struct iso_context *ctx = (struct iso_context *)data;
1050
1051 (void)ctx;
1052}
1053
1054#define ISO_BUFFER_SIZE (64 * 1024)
1055
1056static void flush_iso_context(struct iso_context *ctx)
1057{
1058 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1059 struct descriptor *d, *last;
1060 u32 address;
1061 int z;
1062
1063 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
1064 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1065
1066 d = ctx->tail_descriptor;
1067 last = ctx->tail_descriptor_last;
1068
1069 while (last->branch_address != 0 && last->transfer_status != 0) {
1070 address = le32_to_cpu(last->branch_address);
1071 z = address & 0xf;
1072 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
1073
1074 if (z == 2)
1075 last = d;
1076 else
1077 last = d + z - 1;
1078
1079 if (le16_to_cpu(last->control) & descriptor_irq_always)
1080 ctx->base.callback(&ctx->base,
1081 0, le16_to_cpu(last->res_count),
1082 ctx->base.callback_data);
1083 }
1084
1085 ctx->tail_descriptor = d;
1086 ctx->tail_descriptor_last = last;
1087}
1088
1089static void it_context_tasklet(unsigned long data)
1090{
1091 struct iso_context *ctx = (struct iso_context *)data;
1092
1093 flush_iso_context(ctx);
1094}
1095
1096static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1097 int type)
1098{
1099 struct fw_ohci *ohci = fw_ohci(card);
1100 struct iso_context *ctx, *list;
1101 void (*tasklet) (unsigned long data);
1102 u32 *mask;
1103 unsigned long flags;
1104 int index;
1105
1106 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1107 mask = &ohci->it_context_mask;
1108 list = ohci->it_context_list;
1109 tasklet = it_context_tasklet;
1110 } else {
1111 mask = &ohci->ir_context_mask;
1112 list = ohci->ir_context_list;
1113 tasklet = ir_context_tasklet;
1114 }
1115
1116 spin_lock_irqsave(&ohci->lock, flags);
1117 index = ffs(*mask) - 1;
1118 if (index >= 0)
1119 *mask &= ~(1 << index);
1120 spin_unlock_irqrestore(&ohci->lock, flags);
1121
1122 if (index < 0)
1123 return ERR_PTR(-EBUSY);
1124
1125 ctx = &list[index];
1126 memset(ctx, 0, sizeof *ctx);
1127 tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
1128
1129 ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
1130 if (ctx->buffer == NULL) {
1131 spin_lock_irqsave(&ohci->lock, flags);
1132 *mask |= 1 << index;
1133 spin_unlock_irqrestore(&ohci->lock, flags);
1134 return ERR_PTR(-ENOMEM);
1135 }
1136
1137 ctx->buffer_bus =
1138 dma_map_single(card->device, ctx->buffer,
1139 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1140
1141 ctx->head_descriptor = ctx->buffer;
1142 ctx->prev_descriptor = ctx->buffer;
1143 ctx->tail_descriptor = ctx->buffer;
1144 ctx->tail_descriptor_last = ctx->buffer;
1145
1146 /* We put a dummy descriptor in the buffer that has a NULL
1147 * branch address and looks like it's been sent. That way we
1148 * have a descriptor to append DMA programs to. Also, the
1149 * ring buffer invariant is that it always has at least one
1150 * element so that head == tail means buffer full. */
1151
1152 memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
5e20c282
SR
1153 ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
1154 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
ed568912
KH
1155 ctx->head_descriptor++;
1156
1157 return &ctx->base;
1158}
1159
1160static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
1161{
1162 struct iso_context *ctx = (struct iso_context *)base;
1163 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1164 u32 cycle_match = 0;
1165 int index;
1166
1167 index = ctx - ohci->it_context_list;
1168 if (cycle > 0)
1169 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
1170 (cycle & 0x7fff) << 16;
1171
1172 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1173 reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
1174 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
1175 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1176 reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
1177 CONTEXT_RUN | cycle_match);
1178 flush_writes(ohci);
1179
1180 return 0;
1181}
1182
1183static void ohci_free_iso_context(struct fw_iso_context *base)
1184{
1185 struct fw_ohci *ohci = fw_ohci(base->card);
1186 struct iso_context *ctx = (struct iso_context *)base;
1187 unsigned long flags;
1188 int index;
1189
1190 flush_iso_context(ctx);
1191
1192 spin_lock_irqsave(&ohci->lock, flags);
1193
1194 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1195 index = ctx - ohci->it_context_list;
1196 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1197 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1198 ohci->it_context_mask |= 1 << index;
1199 } else {
1200 index = ctx - ohci->ir_context_list;
1201 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1202 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1203 ohci->ir_context_mask |= 1 << index;
1204 }
1205 flush_writes(ohci);
1206
1207 dma_unmap_single(ohci->card.device, ctx->buffer_bus,
1208 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1209
1210 spin_unlock_irqrestore(&ohci->lock, flags);
1211}
1212
1213static int
1214ohci_queue_iso(struct fw_iso_context *base,
1215 struct fw_iso_packet *packet, void *payload)
1216{
1217 struct iso_context *ctx = (struct iso_context *)base;
1218 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1219 struct descriptor *d, *end, *last, *tail, *pd;
1220 struct fw_iso_packet *p;
1221 __le32 *header;
1222 dma_addr_t d_bus;
1223 u32 z, header_z, payload_z, irq;
1224 u32 payload_index, payload_end_index, next_page_index;
1225 int index, page, end_page, i, length, offset;
1226
1227 /* FIXME: Cycle lost behavior should be configurable: lose
1228 * packet, retransmit or terminate.. */
1229
1230 p = packet;
1231 payload_index = payload - ctx->base.buffer;
1232 d = ctx->head_descriptor;
1233 tail = ctx->tail_descriptor;
1234 end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
1235
1236 if (p->skip)
1237 z = 1;
1238 else
1239 z = 2;
1240 if (p->header_length > 0)
1241 z++;
1242
1243 /* Determine the first page the payload isn't contained in. */
1244 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1245 if (p->payload_length > 0)
1246 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1247 else
1248 payload_z = 0;
1249
1250 z += payload_z;
1251
1252 /* Get header size in number of descriptors. */
1253 header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1254
1255 if (d + z + header_z <= tail) {
1256 goto has_space;
1257 } else if (d > tail && d + z + header_z <= end) {
1258 goto has_space;
1259 } else if (d > tail && ctx->buffer + z + header_z <= tail) {
1260 d = ctx->buffer;
1261 goto has_space;
1262 }
1263
1264 /* No space in buffer */
1265 return -1;
1266
1267 has_space:
1268 memset(d, 0, (z + header_z) * sizeof *d);
1269 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
1270
1271 if (!p->skip) {
1272 d[0].control = cpu_to_le16(descriptor_key_immediate);
1273 d[0].req_count = cpu_to_le16(8);
1274
1275 header = (__le32 *) &d[1];
1276 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1277 it_header_tag(p->tag) |
1278 it_header_tcode(TCODE_STREAM_DATA) |
1279 it_header_channel(ctx->base.channel) |
1280 it_header_speed(ctx->base.speed));
1281 header[1] =
1282 cpu_to_le32(it_header_data_length(p->header_length +
1283 p->payload_length));
1284 }
1285
1286 if (p->header_length > 0) {
1287 d[2].req_count = cpu_to_le16(p->header_length);
1288 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1289 memcpy(&d[z], p->header, p->header_length);
1290 }
1291
1292 pd = d + z - payload_z;
1293 payload_end_index = payload_index + p->payload_length;
1294 for (i = 0; i < payload_z; i++) {
1295 page = payload_index >> PAGE_SHIFT;
1296 offset = payload_index & ~PAGE_MASK;
1297 next_page_index = (page + 1) << PAGE_SHIFT;
1298 length =
1299 min(next_page_index, payload_end_index) - payload_index;
1300 pd[i].req_count = cpu_to_le16(length);
1301 pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
1302
1303 payload_index += length;
1304 }
1305
1306 if (z == 2)
1307 last = d;
1308 else
1309 last = d + z - 1;
1310
1311 if (p->interrupt)
1312 irq = descriptor_irq_always;
1313 else
1314 irq = descriptor_no_irq;
1315
1316 last->control = cpu_to_le16(descriptor_output_last |
1317 descriptor_status |
1318 descriptor_branch_always |
1319 irq);
1320
1321 dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
1322 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1323
1324 ctx->head_descriptor = d + z + header_z;
1325 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
1326 ctx->prev_descriptor = last;
1327
1328 index = ctx - ohci->it_context_list;
1329 reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
1330 flush_writes(ohci);
1331
1332 return 0;
1333}
1334
21ebcd12 1335static const struct fw_card_driver ohci_driver = {
ed568912
KH
1336 .name = ohci_driver_name,
1337 .enable = ohci_enable,
1338 .update_phy_reg = ohci_update_phy_reg,
1339 .set_config_rom = ohci_set_config_rom,
1340 .send_request = ohci_send_request,
1341 .send_response = ohci_send_response,
1342 .enable_phys_dma = ohci_enable_phys_dma,
1343
1344 .allocate_iso_context = ohci_allocate_iso_context,
1345 .free_iso_context = ohci_free_iso_context,
1346 .queue_iso = ohci_queue_iso,
5af4e5ea 1347 .send_iso = ohci_send_iso,
ed568912
KH
1348};
1349
1350static int software_reset(struct fw_ohci *ohci)
1351{
1352 int i;
1353
1354 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1355
1356 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1357 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1358 OHCI1394_HCControl_softReset) == 0)
1359 return 0;
1360 msleep(1);
1361 }
1362
1363 return -EBUSY;
1364}
1365
1366/* ---------- pci subsystem interface ---------- */
1367
1368enum {
1369 CLEANUP_SELF_ID,
1370 CLEANUP_REGISTERS,
1371 CLEANUP_IOMEM,
1372 CLEANUP_DISABLE,
1373 CLEANUP_PUT_CARD,
1374};
1375
1376static int cleanup(struct fw_ohci *ohci, int stage, int code)
1377{
1378 struct pci_dev *dev = to_pci_dev(ohci->card.device);
1379
1380 switch (stage) {
1381 case CLEANUP_SELF_ID:
1382 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1383 ohci->self_id_cpu, ohci->self_id_bus);
1384 case CLEANUP_REGISTERS:
1385 kfree(ohci->it_context_list);
1386 kfree(ohci->ir_context_list);
1387 pci_iounmap(dev, ohci->registers);
1388 case CLEANUP_IOMEM:
1389 pci_release_region(dev, 0);
1390 case CLEANUP_DISABLE:
1391 pci_disable_device(dev);
1392 case CLEANUP_PUT_CARD:
1393 fw_card_put(&ohci->card);
1394 }
1395
1396 return code;
1397}
1398
1399static int __devinit
1400pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1401{
1402 struct fw_ohci *ohci;
1403 u32 bus_options, max_receive, link_speed;
1404 u64 guid;
1405 int error_code;
1406 size_t size;
1407
1408 ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1409 if (ohci == NULL) {
1410 fw_error("Could not malloc fw_ohci data.\n");
1411 return -ENOMEM;
1412 }
1413
1414 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1415
1416 if (pci_enable_device(dev)) {
1417 fw_error("Failed to enable OHCI hardware.\n");
1418 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1419 }
1420
1421 pci_set_master(dev);
1422 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1423 pci_set_drvdata(dev, ohci);
1424
1425 spin_lock_init(&ohci->lock);
1426
1427 tasklet_init(&ohci->bus_reset_tasklet,
1428 bus_reset_tasklet, (unsigned long)ohci);
1429
1430 if (pci_request_region(dev, 0, ohci_driver_name)) {
1431 fw_error("MMIO resource unavailable\n");
1432 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1433 }
1434
1435 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1436 if (ohci->registers == NULL) {
1437 fw_error("Failed to remap registers\n");
1438 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1439 }
1440
1441 if (software_reset(ohci)) {
1442 fw_error("Failed to reset ohci card.\n");
1443 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1444 }
1445
1446 /* Now enable LPS, which we need in order to start accessing
1447 * most of the registers. In fact, on some cards (ALI M5251),
1448 * accessing registers in the SClk domain without LPS enabled
1449 * will lock up the machine. Wait 50msec to make sure we have
1450 * full link enabled. */
1451 reg_write(ohci, OHCI1394_HCControlSet,
1452 OHCI1394_HCControl_LPS |
1453 OHCI1394_HCControl_postedWriteEnable);
1454 flush_writes(ohci);
1455 msleep(50);
1456
1457 reg_write(ohci, OHCI1394_HCControlClear,
1458 OHCI1394_HCControl_noByteSwapData);
1459
1460 reg_write(ohci, OHCI1394_LinkControlSet,
1461 OHCI1394_LinkControl_rcvSelfID |
1462 OHCI1394_LinkControl_cycleTimerEnable |
1463 OHCI1394_LinkControl_cycleMaster);
1464
1465 ar_context_init(&ohci->ar_request_ctx, ohci,
1466 OHCI1394_AsReqRcvContextControlSet);
1467
1468 ar_context_init(&ohci->ar_response_ctx, ohci,
1469 OHCI1394_AsRspRcvContextControlSet);
1470
1471 at_context_init(&ohci->at_request_ctx, ohci,
1472 OHCI1394_AsReqTrContextControlSet);
1473
1474 at_context_init(&ohci->at_response_ctx, ohci,
1475 OHCI1394_AsRspTrContextControlSet);
1476
1477 reg_write(ohci, OHCI1394_ATRetries,
1478 OHCI1394_MAX_AT_REQ_RETRIES |
1479 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1480 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1481
1482 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1483 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1484 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1485 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1486 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1487
1488 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1489 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1490 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1491 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1492 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1493
1494 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1495 fw_error("Out of memory for it/ir contexts.\n");
1496 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1497 }
1498
1499 /* self-id dma buffer allocation */
1500 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1501 SELF_ID_BUF_SIZE,
1502 &ohci->self_id_bus,
1503 GFP_KERNEL);
1504 if (ohci->self_id_cpu == NULL) {
1505 fw_error("Out of memory for self ID buffer.\n");
1506 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1507 }
1508
1509 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1510 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1511 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1512 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1513 reg_write(ohci, OHCI1394_IntMaskSet,
1514 OHCI1394_selfIDComplete |
1515 OHCI1394_RQPkt | OHCI1394_RSPkt |
1516 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1517 OHCI1394_isochRx | OHCI1394_isochTx |
1518 OHCI1394_masterIntEnable);
1519
1520 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1521 max_receive = (bus_options >> 12) & 0xf;
1522 link_speed = bus_options & 0x7;
1523 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1524 reg_read(ohci, OHCI1394_GUIDLo);
1525
1526 error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1527 if (error_code < 0)
1528 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1529
1530 fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1531
1532 return 0;
1533}
1534
1535static void pci_remove(struct pci_dev *dev)
1536{
1537 struct fw_ohci *ohci;
1538
1539 ohci = pci_get_drvdata(dev);
1540 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1541 fw_core_remove_card(&ohci->card);
1542
1543 /* FIXME: Fail all pending packets here, now that the upper
1544 * layers can't queue any more. */
1545
1546 software_reset(ohci);
1547 free_irq(dev->irq, ohci);
1548 cleanup(ohci, CLEANUP_SELF_ID, 0);
1549
1550 fw_notify("Removed fw-ohci device.\n");
1551}
1552
1553static struct pci_device_id pci_table[] = {
1554 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1555 { }
1556};
1557
1558MODULE_DEVICE_TABLE(pci, pci_table);
1559
1560static struct pci_driver fw_ohci_pci_driver = {
1561 .name = ohci_driver_name,
1562 .id_table = pci_table,
1563 .probe = pci_probe,
1564 .remove = pci_remove,
1565};
1566
1567MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1568MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1569MODULE_LICENSE("GPL");
1570
1571static int __init fw_ohci_init(void)
1572{
1573 return pci_register_driver(&fw_ohci_pci_driver);
1574}
1575
1576static void __exit fw_ohci_cleanup(void)
1577{
1578 pci_unregister_driver(&fw_ohci_pci_driver);
1579}
1580
1581module_init(fw_ohci_init);
1582module_exit(fw_ohci_cleanup);
This page took 0.133048 seconds and 5 git commands to generate.