smp: Fix SMP function call empty cpu mask race
[deliverable/linux.git] / drivers / firmware / dmi_scan.c
CommitLineData
1da177e4 1#include <linux/types.h>
1da177e4
LT
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
8881cdce 5#include <linux/ctype.h>
1da177e4 6#include <linux/dmi.h>
3ed3bce8 7#include <linux/efi.h>
1da177e4 8#include <linux/bootmem.h>
d114a333 9#include <linux/random.h>
f2d3efed 10#include <asm/dmi.h>
1da177e4 11
cb5dd7c1
PJ
12/*
13 * DMI stands for "Desktop Management Interface". It is part
14 * of and an antecedent to, SMBIOS, which stands for System
15 * Management BIOS. See further: http://www.dmtf.org/standards
16 */
79da4721
PW
17static char dmi_empty_string[] = " ";
18
f1d8e614 19static u16 __initdata dmi_ver;
9a22b6e7
IM
20/*
21 * Catch too early calls to dmi_check_system():
22 */
23static int dmi_initialized;
24
f3069ae9 25static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
1da177e4 26{
1855256c 27 const u8 *bp = ((u8 *) dm) + dm->length;
1249c513 28
c3c7120d 29 if (s) {
1da177e4 30 s--;
c3c7120d
AP
31 while (s > 0 && *bp) {
32 bp += strlen(bp) + 1;
33 s--;
34 }
35
36 if (*bp != 0) {
79da4721
PW
37 size_t len = strlen(bp)+1;
38 size_t cmp_len = len > 8 ? 8 : len;
39
40 if (!memcmp(bp, dmi_empty_string, cmp_len))
41 return dmi_empty_string;
f3069ae9 42 return bp;
c3c7120d 43 }
4f705ae3 44 }
c3c7120d 45
f3069ae9
JD
46 return "";
47}
48
49static char * __init dmi_string(const struct dmi_header *dm, u8 s)
50{
51 const char *bp = dmi_string_nosave(dm, s);
52 char *str;
53 size_t len;
54
55 if (bp == dmi_empty_string)
56 return dmi_empty_string;
57
58 len = strlen(bp) + 1;
59 str = dmi_alloc(len);
60 if (str != NULL)
61 strcpy(str, bp);
62 else
63 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
64
c3c7120d 65 return str;
1da177e4
LT
66}
67
68/*
69 * We have to be cautious here. We have seen BIOSes with DMI pointers
70 * pointing to completely the wrong place for example
71 */
7fce084a 72static void dmi_table(u8 *buf, int len, int num,
e7a19c56
JD
73 void (*decode)(const struct dmi_header *, void *),
74 void *private_data)
1da177e4 75{
7fce084a 76 u8 *data = buf;
1249c513 77 int i = 0;
4f705ae3 78
1da177e4 79 /*
4f705ae3
BH
80 * Stop when we see all the items the table claimed to have
81 * OR we run off the end of the table (also happens)
82 */
1249c513 83 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
1855256c
JG
84 const struct dmi_header *dm = (const struct dmi_header *)data;
85
1da177e4 86 /*
8638545c
AC
87 * We want to know the total length (formatted area and
88 * strings) before decoding to make sure we won't run off the
89 * table in dmi_decode or dmi_string
1da177e4 90 */
1249c513
AP
91 data += dm->length;
92 while ((data - buf < len - 1) && (data[0] || data[1]))
1da177e4 93 data++;
1249c513 94 if (data - buf < len - 1)
e7a19c56 95 decode(dm, private_data);
1249c513 96 data += 2;
1da177e4
LT
97 i++;
98 }
7fce084a
JD
99}
100
101static u32 dmi_base;
102static u16 dmi_len;
103static u16 dmi_num;
104
e7a19c56
JD
105static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
106 void *))
7fce084a
JD
107{
108 u8 *buf;
109
110 buf = dmi_ioremap(dmi_base, dmi_len);
111 if (buf == NULL)
112 return -1;
113
e7a19c56 114 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
7fce084a 115
d114a333
TL
116 add_device_randomness(buf, dmi_len);
117
7fce084a 118 dmi_iounmap(buf, dmi_len);
1da177e4
LT
119 return 0;
120}
121
9f9c9cbb 122static int __init dmi_checksum(const u8 *buf, u8 len)
1da177e4 123{
1249c513 124 u8 sum = 0;
1da177e4 125 int a;
4f705ae3 126
9f9c9cbb 127 for (a = 0; a < len; a++)
1249c513
AP
128 sum += buf[a];
129
130 return sum == 0;
1da177e4
LT
131}
132
1da177e4 133static char *dmi_ident[DMI_STRING_MAX];
ebad6a42 134static LIST_HEAD(dmi_devices);
4f5c791a 135int dmi_available;
1da177e4
LT
136
137/*
138 * Save a DMI string
139 */
1855256c 140static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
1da177e4 141{
1855256c
JG
142 const char *d = (const char*) dm;
143 char *p;
1249c513 144
1da177e4
LT
145 if (dmi_ident[slot])
146 return;
1249c513 147
c3c7120d
AP
148 p = dmi_string(dm, d[string]);
149 if (p == NULL)
150 return;
151
152 dmi_ident[slot] = p;
1da177e4
LT
153}
154
1855256c 155static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
4f5c791a 156{
1855256c 157 const u8 *d = (u8*) dm + index;
4f5c791a
LP
158 char *s;
159 int is_ff = 1, is_00 = 1, i;
160
161 if (dmi_ident[slot])
162 return;
163
164 for (i = 0; i < 16 && (is_ff || is_00); i++) {
f1d8e614
ZD
165 if (d[i] != 0x00)
166 is_00 = 0;
167 if (d[i] != 0xFF)
168 is_ff = 0;
4f5c791a
LP
169 }
170
171 if (is_ff || is_00)
172 return;
173
174 s = dmi_alloc(16*2+4+1);
175 if (!s)
176 return;
177
f1d8e614
ZD
178 /*
179 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
180 * the UUID are supposed to be little-endian encoded. The specification
181 * says that this is the defacto standard.
182 */
183 if (dmi_ver >= 0x0206)
184 sprintf(s, "%pUL", d);
185 else
186 sprintf(s, "%pUB", d);
4f5c791a
LP
187
188 dmi_ident[slot] = s;
189}
190
1855256c 191static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
4f5c791a 192{
1855256c 193 const u8 *d = (u8*) dm + index;
4f5c791a
LP
194 char *s;
195
196 if (dmi_ident[slot])
197 return;
198
199 s = dmi_alloc(4);
200 if (!s)
201 return;
202
203 sprintf(s, "%u", *d & 0x7F);
204 dmi_ident[slot] = s;
205}
206
f3069ae9
JD
207static void __init dmi_save_one_device(int type, const char *name)
208{
209 struct dmi_device *dev;
210
211 /* No duplicate device */
212 if (dmi_find_device(type, name, NULL))
213 return;
214
215 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
216 if (!dev) {
217 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
218 return;
219 }
220
221 dev->type = type;
222 strcpy((char *)(dev + 1), name);
223 dev->name = (char *)(dev + 1);
224 dev->device_data = NULL;
225 list_add(&dev->list, &dmi_devices);
226}
227
1855256c 228static void __init dmi_save_devices(const struct dmi_header *dm)
ebad6a42
AP
229{
230 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
ebad6a42
AP
231
232 for (i = 0; i < count; i++) {
1855256c 233 const char *d = (char *)(dm + 1) + (i * 2);
ebad6a42
AP
234
235 /* Skip disabled device */
236 if ((*d & 0x80) == 0)
237 continue;
238
f3069ae9 239 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
2e0c1f6c
SM
240 }
241}
242
1855256c 243static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
2e0c1f6c
SM
244{
245 int i, count = *(u8 *)(dm + 1);
246 struct dmi_device *dev;
247
248 for (i = 1; i <= count; i++) {
79da4721
PW
249 char *devname = dmi_string(dm, i);
250
43fe105a 251 if (devname == dmi_empty_string)
79da4721 252 continue;
79da4721 253
2e0c1f6c
SM
254 dev = dmi_alloc(sizeof(*dev));
255 if (!dev) {
256 printk(KERN_ERR
257 "dmi_save_oem_strings_devices: out of memory.\n");
258 break;
259 }
260
261 dev->type = DMI_DEV_TYPE_OEM_STRING;
79da4721 262 dev->name = devname;
2e0c1f6c 263 dev->device_data = NULL;
ebad6a42
AP
264
265 list_add(&dev->list, &dmi_devices);
266 }
267}
268
1855256c 269static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
ebad6a42
AP
270{
271 struct dmi_device *dev;
272 void * data;
273
e9928674 274 data = dmi_alloc(dm->length);
ebad6a42
AP
275 if (data == NULL) {
276 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
277 return;
278 }
279
280 memcpy(data, dm, dm->length);
281
e9928674 282 dev = dmi_alloc(sizeof(*dev));
ebad6a42
AP
283 if (!dev) {
284 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
285 return;
286 }
287
288 dev->type = DMI_DEV_TYPE_IPMI;
289 dev->name = "IPMI controller";
290 dev->device_data = data;
291
abd24df8 292 list_add_tail(&dev->list, &dmi_devices);
ebad6a42
AP
293}
294
911e1c9b
N
295static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
296 int devfn, const char *name)
297{
298 struct dmi_dev_onboard *onboard_dev;
299
300 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
301 if (!onboard_dev) {
302 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
303 return;
304 }
305 onboard_dev->instance = instance;
306 onboard_dev->segment = segment;
307 onboard_dev->bus = bus;
308 onboard_dev->devfn = devfn;
309
310 strcpy((char *)&onboard_dev[1], name);
311 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
312 onboard_dev->dev.name = (char *)&onboard_dev[1];
313 onboard_dev->dev.device_data = onboard_dev;
314
315 list_add(&onboard_dev->dev.list, &dmi_devices);
316}
317
b4bd7d59
WVS
318static void __init dmi_save_extended_devices(const struct dmi_header *dm)
319{
320 const u8 *d = (u8*) dm + 5;
b4bd7d59
WVS
321
322 /* Skip disabled device */
323 if ((*d & 0x80) == 0)
324 return;
325
911e1c9b
N
326 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
327 dmi_string_nosave(dm, *(d-1)));
f3069ae9 328 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
b4bd7d59
WVS
329}
330
1da177e4
LT
331/*
332 * Process a DMI table entry. Right now all we care about are the BIOS
333 * and machine entries. For 2.5 we should pull the smbus controller info
334 * out of here.
335 */
e7a19c56 336static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
1da177e4 337{
1249c513 338 switch(dm->type) {
ebad6a42 339 case 0: /* BIOS Information */
1249c513 340 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
1249c513 341 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
1249c513
AP
342 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
343 break;
ebad6a42 344 case 1: /* System Information */
1249c513 345 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
1249c513 346 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
1249c513 347 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
1249c513 348 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
4f5c791a 349 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
1249c513 350 break;
ebad6a42 351 case 2: /* Base Board Information */
1249c513 352 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
1249c513 353 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
1249c513 354 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
4f5c791a
LP
355 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
356 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
357 break;
358 case 3: /* Chassis Information */
359 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
360 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
361 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
362 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
363 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
1249c513 364 break;
ebad6a42
AP
365 case 10: /* Onboard Devices Information */
366 dmi_save_devices(dm);
367 break;
2e0c1f6c
SM
368 case 11: /* OEM Strings */
369 dmi_save_oem_strings_devices(dm);
370 break;
ebad6a42
AP
371 case 38: /* IPMI Device Information */
372 dmi_save_ipmi_device(dm);
b4bd7d59
WVS
373 break;
374 case 41: /* Onboard Devices Extended Information */
375 dmi_save_extended_devices(dm);
1da177e4
LT
376 }
377}
378
8881cdce
BH
379static void __init print_filtered(const char *info)
380{
381 const char *p;
382
383 if (!info)
384 return;
385
386 for (p = info; *p; p++)
387 if (isprint(*p))
388 printk(KERN_CONT "%c", *p);
389 else
390 printk(KERN_CONT "\\x%02x", *p & 0xff);
391}
392
393static void __init dmi_dump_ids(void)
394{
84e383b3
NC
395 const char *board; /* Board Name is optional */
396
8881cdce 397 printk(KERN_DEBUG "DMI: ");
84e383b3
NC
398 print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
399 printk(KERN_CONT " ");
8881cdce 400 print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
84e383b3
NC
401 board = dmi_get_system_info(DMI_BOARD_NAME);
402 if (board) {
403 printk(KERN_CONT "/");
404 print_filtered(board);
405 }
8881cdce
BH
406 printk(KERN_CONT ", BIOS ");
407 print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
408 printk(KERN_CONT " ");
409 print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
410 printk(KERN_CONT "\n");
411}
412
1855256c 413static int __init dmi_present(const char __iomem *p)
1da177e4 414{
61e032fa 415 u8 buf[15];
1855256c 416
3ed3bce8 417 memcpy_fromio(buf, p, 15);
9f9c9cbb 418 if (dmi_checksum(buf, 15)) {
7fce084a
JD
419 dmi_num = (buf[13] << 8) | buf[12];
420 dmi_len = (buf[7] << 8) | buf[6];
421 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
3ed3bce8 422 (buf[9] << 8) | buf[8];
61e032fa 423
8881cdce 424 if (dmi_walk_early(dmi_decode) == 0) {
9f9c9cbb
ZD
425 if (dmi_ver)
426 pr_info("SMBIOS %d.%d present.\n",
427 dmi_ver >> 8, dmi_ver & 0xFF);
428 else {
429 dmi_ver = (buf[14] & 0xF0) << 4 |
430 (buf[14] & 0x0F);
431 pr_info("Legacy DMI %d.%d present.\n",
432 dmi_ver >> 8, dmi_ver & 0xFF);
433 }
8881cdce 434 dmi_dump_ids();
3ed3bce8 435 return 0;
8881cdce 436 }
3ed3bce8 437 }
9f9c9cbb 438 dmi_ver = 0;
3ed3bce8
MD
439 return 1;
440}
61e032fa 441
9f9c9cbb
ZD
442static int __init smbios_present(const char __iomem *p)
443{
444 u8 buf[32];
445 int offset = 0;
446
447 memcpy_fromio(buf, p, 32);
448 if ((buf[5] < 32) && dmi_checksum(buf, buf[5])) {
449 dmi_ver = (buf[6] << 8) + buf[7];
450
451 /* Some BIOS report weird SMBIOS version, fix that up */
452 switch (dmi_ver) {
453 case 0x021F:
454 case 0x0221:
455 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
456 dmi_ver & 0xFF, 3);
457 dmi_ver = 0x0203;
458 break;
459 case 0x0233:
460 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
461 dmi_ver = 0x0206;
462 break;
463 }
464 offset = 16;
465 }
466 return dmi_present(buf + offset);
467}
468
3ed3bce8
MD
469void __init dmi_scan_machine(void)
470{
471 char __iomem *p, *q;
472 int rc;
473
474 if (efi_enabled) {
b2c99e3c 475 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
9a22b6e7 476 goto error;
3ed3bce8 477
4f5c791a
LP
478 /* This is called as a core_initcall() because it isn't
479 * needed during early boot. This also means we can
480 * iounmap the space when we're done with it.
481 */
b2c99e3c 482 p = dmi_ioremap(efi.smbios, 32);
3ed3bce8 483 if (p == NULL)
9a22b6e7 484 goto error;
3ed3bce8 485
9f9c9cbb 486 rc = smbios_present(p);
23dd842c 487 dmi_iounmap(p, 32);
4f5c791a
LP
488 if (!rc) {
489 dmi_available = 1;
9a22b6e7 490 goto out;
4f5c791a 491 }
3ed3bce8
MD
492 }
493 else {
494 /*
495 * no iounmap() for that ioremap(); it would be a no-op, but
496 * it's so early in setup that sucker gets confused into doing
497 * what it shouldn't if we actually call it.
498 */
499 p = dmi_ioremap(0xF0000, 0x10000);
500 if (p == NULL)
9a22b6e7 501 goto error;
3ed3bce8
MD
502
503 for (q = p; q < p + 0x10000; q += 16) {
9f9c9cbb
ZD
504 if (memcmp(q, "_SM_", 4) == 0 && q - p <= 0xFFE0)
505 rc = smbios_present(q);
506 else if (memcmp(q, "_DMI_", 5) == 0)
507 rc = dmi_present(q);
508 else
509 continue;
4f5c791a
LP
510 if (!rc) {
511 dmi_available = 1;
0d64484f 512 dmi_iounmap(p, 0x10000);
9a22b6e7 513 goto out;
4f5c791a 514 }
61e032fa 515 }
3212bff3 516 dmi_iounmap(p, 0x10000);
61e032fa 517 }
9a22b6e7
IM
518 error:
519 printk(KERN_INFO "DMI not present or invalid.\n");
520 out:
521 dmi_initialized = 1;
1da177e4
LT
522}
523
d7b1956f
RW
524/**
525 * dmi_matches - check if dmi_system_id structure matches system DMI data
526 * @dmi: pointer to the dmi_system_id structure to check
527 */
528static bool dmi_matches(const struct dmi_system_id *dmi)
529{
530 int i;
531
532 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
533
534 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
535 int s = dmi->matches[i].slot;
536 if (s == DMI_NONE)
75757507 537 break;
d7b1956f
RW
538 if (dmi_ident[s]
539 && strstr(dmi_ident[s], dmi->matches[i].substr))
540 continue;
541 /* No match */
542 return false;
543 }
544 return true;
545}
546
75757507
DT
547/**
548 * dmi_is_end_of_table - check for end-of-table marker
549 * @dmi: pointer to the dmi_system_id structure to check
550 */
551static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
552{
553 return dmi->matches[0].slot == DMI_NONE;
554}
555
1da177e4
LT
556/**
557 * dmi_check_system - check system DMI data
558 * @list: array of dmi_system_id structures to match against
b0ef371e
RD
559 * All non-null elements of the list must match
560 * their slot's (field index's) data (i.e., each
561 * list string must be a substring of the specified
562 * DMI slot's string data) to be considered a
563 * successful match.
1da177e4
LT
564 *
565 * Walk the blacklist table running matching functions until someone
566 * returns non zero or we hit the end. Callback function is called for
b0ef371e 567 * each successful match. Returns the number of matches.
1da177e4 568 */
1855256c 569int dmi_check_system(const struct dmi_system_id *list)
1da177e4 570{
d7b1956f
RW
571 int count = 0;
572 const struct dmi_system_id *d;
573
75757507 574 for (d = list; !dmi_is_end_of_table(d); d++)
d7b1956f
RW
575 if (dmi_matches(d)) {
576 count++;
577 if (d->callback && d->callback(d))
578 break;
1da177e4 579 }
1da177e4
LT
580
581 return count;
582}
1da177e4
LT
583EXPORT_SYMBOL(dmi_check_system);
584
d7b1956f
RW
585/**
586 * dmi_first_match - find dmi_system_id structure matching system DMI data
587 * @list: array of dmi_system_id structures to match against
588 * All non-null elements of the list must match
589 * their slot's (field index's) data (i.e., each
590 * list string must be a substring of the specified
591 * DMI slot's string data) to be considered a
592 * successful match.
593 *
594 * Walk the blacklist table until the first match is found. Return the
595 * pointer to the matching entry or NULL if there's no match.
596 */
597const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
598{
599 const struct dmi_system_id *d;
600
75757507 601 for (d = list; !dmi_is_end_of_table(d); d++)
d7b1956f
RW
602 if (dmi_matches(d))
603 return d;
604
605 return NULL;
606}
607EXPORT_SYMBOL(dmi_first_match);
608
1da177e4
LT
609/**
610 * dmi_get_system_info - return DMI data value
b0ef371e 611 * @field: data index (see enum dmi_field)
1da177e4
LT
612 *
613 * Returns one DMI data value, can be used to perform
614 * complex DMI data checks.
615 */
1855256c 616const char *dmi_get_system_info(int field)
1da177e4
LT
617{
618 return dmi_ident[field];
619}
e70c9d5e 620EXPORT_SYMBOL(dmi_get_system_info);
ebad6a42 621
fd8cd7e1 622/**
c2bacfc4
RD
623 * dmi_name_in_serial - Check if string is in the DMI product serial information
624 * @str: string to check for
fd8cd7e1
AK
625 */
626int dmi_name_in_serial(const char *str)
627{
628 int f = DMI_PRODUCT_SERIAL;
629 if (dmi_ident[f] && strstr(dmi_ident[f], str))
630 return 1;
631 return 0;
632}
a1bae672
AK
633
634/**
66e13e66 635 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
a1bae672
AK
636 * @str: Case sensitive Name
637 */
1855256c 638int dmi_name_in_vendors(const char *str)
a1bae672 639{
66e13e66 640 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
a1bae672
AK
641 int i;
642 for (i = 0; fields[i] != DMI_NONE; i++) {
643 int f = fields[i];
644 if (dmi_ident[f] && strstr(dmi_ident[f], str))
645 return 1;
646 }
647 return 0;
648}
649EXPORT_SYMBOL(dmi_name_in_vendors);
650
ebad6a42
AP
651/**
652 * dmi_find_device - find onboard device by type/name
653 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
b0ef371e 654 * @name: device name string or %NULL to match all
ebad6a42
AP
655 * @from: previous device found in search, or %NULL for new search.
656 *
657 * Iterates through the list of known onboard devices. If a device is
658 * found with a matching @vendor and @device, a pointer to its device
659 * structure is returned. Otherwise, %NULL is returned.
b0ef371e 660 * A new search is initiated by passing %NULL as the @from argument.
ebad6a42
AP
661 * If @from is not %NULL, searches continue from next device.
662 */
1855256c
JG
663const struct dmi_device * dmi_find_device(int type, const char *name,
664 const struct dmi_device *from)
ebad6a42 665{
1855256c
JG
666 const struct list_head *head = from ? &from->list : &dmi_devices;
667 struct list_head *d;
ebad6a42
AP
668
669 for(d = head->next; d != &dmi_devices; d = d->next) {
1855256c
JG
670 const struct dmi_device *dev =
671 list_entry(d, struct dmi_device, list);
ebad6a42
AP
672
673 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
674 ((name == NULL) || (strcmp(dev->name, name) == 0)))
675 return dev;
676 }
677
678 return NULL;
679}
680EXPORT_SYMBOL(dmi_find_device);
f083a329
AK
681
682/**
3e5cd1f2
TH
683 * dmi_get_date - parse a DMI date
684 * @field: data index (see enum dmi_field)
685 * @yearp: optional out parameter for the year
686 * @monthp: optional out parameter for the month
687 * @dayp: optional out parameter for the day
f083a329 688 *
3e5cd1f2
TH
689 * The date field is assumed to be in the form resembling
690 * [mm[/dd]]/yy[yy] and the result is stored in the out
691 * parameters any or all of which can be omitted.
692 *
693 * If the field doesn't exist, all out parameters are set to zero
694 * and false is returned. Otherwise, true is returned with any
695 * invalid part of date set to zero.
696 *
697 * On return, year, month and day are guaranteed to be in the
698 * range of [0,9999], [0,12] and [0,31] respectively.
f083a329 699 */
3e5cd1f2 700bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
f083a329 701{
3e5cd1f2
TH
702 int year = 0, month = 0, day = 0;
703 bool exists;
704 const char *s, *y;
02c24fa8 705 char *e;
f083a329 706
3e5cd1f2
TH
707 s = dmi_get_system_info(field);
708 exists = s;
709 if (!exists)
710 goto out;
f083a329 711
3e5cd1f2
TH
712 /*
713 * Determine year first. We assume the date string resembles
714 * mm/dd/yy[yy] but the original code extracted only the year
715 * from the end. Keep the behavior in the spirit of no
716 * surprises.
717 */
718 y = strrchr(s, '/');
719 if (!y)
720 goto out;
721
722 y++;
723 year = simple_strtoul(y, &e, 10);
724 if (y != e && year < 100) { /* 2-digit year */
f083a329
AK
725 year += 1900;
726 if (year < 1996) /* no dates < spec 1.0 */
727 year += 100;
728 }
3e5cd1f2
TH
729 if (year > 9999) /* year should fit in %04d */
730 year = 0;
731
732 /* parse the mm and dd */
733 month = simple_strtoul(s, &e, 10);
734 if (s == e || *e != '/' || !month || month > 12) {
735 month = 0;
736 goto out;
737 }
f083a329 738
3e5cd1f2
TH
739 s = e + 1;
740 day = simple_strtoul(s, &e, 10);
741 if (s == y || s == e || *e != '/' || day > 31)
742 day = 0;
743out:
744 if (yearp)
745 *yearp = year;
746 if (monthp)
747 *monthp = month;
748 if (dayp)
749 *dayp = day;
750 return exists;
f083a329 751}
3e5cd1f2 752EXPORT_SYMBOL(dmi_get_date);
7fce084a
JD
753
754/**
755 * dmi_walk - Walk the DMI table and get called back for every record
756 * @decode: Callback function
e7a19c56 757 * @private_data: Private data to be passed to the callback function
7fce084a
JD
758 *
759 * Returns -1 when the DMI table can't be reached, 0 on success.
760 */
e7a19c56
JD
761int dmi_walk(void (*decode)(const struct dmi_header *, void *),
762 void *private_data)
7fce084a
JD
763{
764 u8 *buf;
765
766 if (!dmi_available)
767 return -1;
768
769 buf = ioremap(dmi_base, dmi_len);
770 if (buf == NULL)
771 return -1;
772
e7a19c56 773 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
7fce084a
JD
774
775 iounmap(buf);
776 return 0;
777}
778EXPORT_SYMBOL_GPL(dmi_walk);
d61c72e5
JS
779
780/**
781 * dmi_match - compare a string to the dmi field (if exists)
c2bacfc4
RD
782 * @f: DMI field identifier
783 * @str: string to compare the DMI field to
d61c72e5
JS
784 *
785 * Returns true if the requested field equals to the str (including NULL).
786 */
787bool dmi_match(enum dmi_field f, const char *str)
788{
789 const char *info = dmi_get_system_info(f);
790
791 if (info == NULL || str == NULL)
792 return info == str;
793
794 return !strcmp(info, str);
795}
796EXPORT_SYMBOL_GPL(dmi_match);
This page took 0.91015 seconds and 5 git commands to generate.