drm/i915/bxt: add support for HPD long/short pulse detection on HPD_PORT_A pin
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
152 struct i915_gtt *ggtt = &dev_priv->gtt;
153 struct i915_vma *vma;
6299f992 154 size_t pinned;
5a125c3c 155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
ca1543be
TU
158 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
159 if (vma->pin_count)
160 pinned += vma->node.size;
161 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
162 if (vma->pin_count)
163 pinned += vma->node.size;
73aa808f 164 mutex_unlock(&dev->struct_mutex);
5a125c3c 165
853ba5d2 166 args->aper_size = dev_priv->gtt.base.total;
0206e353 167 args->aper_available_size = args->aper_size - pinned;
6299f992 168
5a125c3c
EA
169 return 0;
170}
171
6a2c4232
CW
172static int
173i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 174{
6a2c4232
CW
175 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
00731155 180
6a2c4232
CW
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
197 page_cache_release(page);
198 vaddr += PAGE_SIZE;
199 }
200
201 i915_gem_chipset_flush(obj->base.dev);
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
00731155 215
6a2c4232
CW
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
6a2c4232
CW
220 return 0;
221}
222
223static void
224i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225{
226 int ret;
227
228 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 229
6a2c4232
CW
230 ret = i915_gem_object_set_to_cpu_domain(obj, true);
231 if (ret) {
232 /* In the event of a disaster, abandon all caches and
233 * hope for the best.
234 */
235 WARN_ON(ret != -EIO);
236 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
237 }
238
239 if (obj->madv == I915_MADV_DONTNEED)
240 obj->dirty = 0;
241
242 if (obj->dirty) {
00731155 243 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 244 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
245 int i;
246
247 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
248 struct page *page;
249 char *dst;
250
251 page = shmem_read_mapping_page(mapping, i);
252 if (IS_ERR(page))
253 continue;
254
255 dst = kmap_atomic(page);
256 drm_clflush_virt_range(vaddr, PAGE_SIZE);
257 memcpy(dst, vaddr, PAGE_SIZE);
258 kunmap_atomic(dst);
259
260 set_page_dirty(page);
261 if (obj->madv == I915_MADV_WILLNEED)
00731155 262 mark_page_accessed(page);
6a2c4232 263 page_cache_release(page);
00731155
CW
264 vaddr += PAGE_SIZE;
265 }
6a2c4232 266 obj->dirty = 0;
00731155
CW
267 }
268
6a2c4232
CW
269 sg_free_table(obj->pages);
270 kfree(obj->pages);
6a2c4232
CW
271}
272
273static void
274i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
275{
276 drm_pci_free(obj->base.dev, obj->phys_handle);
277}
278
279static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
280 .get_pages = i915_gem_object_get_pages_phys,
281 .put_pages = i915_gem_object_put_pages_phys,
282 .release = i915_gem_object_release_phys,
283};
284
285static int
286drop_pages(struct drm_i915_gem_object *obj)
287{
288 struct i915_vma *vma, *next;
289 int ret;
290
291 drm_gem_object_reference(&obj->base);
292 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
293 if (i915_vma_unbind(vma))
294 break;
295
296 ret = i915_gem_object_put_pages(obj);
297 drm_gem_object_unreference(&obj->base);
298
299 return ret;
00731155
CW
300}
301
302int
303i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
304 int align)
305{
306 drm_dma_handle_t *phys;
6a2c4232 307 int ret;
00731155
CW
308
309 if (obj->phys_handle) {
310 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
311 return -EBUSY;
312
313 return 0;
314 }
315
316 if (obj->madv != I915_MADV_WILLNEED)
317 return -EFAULT;
318
319 if (obj->base.filp == NULL)
320 return -EINVAL;
321
6a2c4232
CW
322 ret = drop_pages(obj);
323 if (ret)
324 return ret;
325
00731155
CW
326 /* create a new object */
327 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
328 if (!phys)
329 return -ENOMEM;
330
00731155 331 obj->phys_handle = phys;
6a2c4232
CW
332 obj->ops = &i915_gem_phys_ops;
333
334 return i915_gem_object_get_pages(obj);
00731155
CW
335}
336
337static int
338i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
339 struct drm_i915_gem_pwrite *args,
340 struct drm_file *file_priv)
341{
342 struct drm_device *dev = obj->base.dev;
343 void *vaddr = obj->phys_handle->vaddr + args->offset;
344 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 345 int ret = 0;
6a2c4232
CW
346
347 /* We manually control the domain here and pretend that it
348 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
349 */
350 ret = i915_gem_object_wait_rendering(obj, false);
351 if (ret)
352 return ret;
00731155 353
77a0d1ca 354 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
355 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
356 unsigned long unwritten;
357
358 /* The physical object once assigned is fixed for the lifetime
359 * of the obj, so we can safely drop the lock and continue
360 * to access vaddr.
361 */
362 mutex_unlock(&dev->struct_mutex);
363 unwritten = copy_from_user(vaddr, user_data, args->size);
364 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
365 if (unwritten) {
366 ret = -EFAULT;
367 goto out;
368 }
00731155
CW
369 }
370
6a2c4232 371 drm_clflush_virt_range(vaddr, args->size);
00731155 372 i915_gem_chipset_flush(dev);
063e4e6b
PZ
373
374out:
de152b62 375 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 376 return ret;
00731155
CW
377}
378
42dcedd4
CW
379void *i915_gem_object_alloc(struct drm_device *dev)
380{
381 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 382 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
383}
384
385void i915_gem_object_free(struct drm_i915_gem_object *obj)
386{
387 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 388 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
389}
390
ff72145b
DA
391static int
392i915_gem_create(struct drm_file *file,
393 struct drm_device *dev,
394 uint64_t size,
395 uint32_t *handle_p)
673a394b 396{
05394f39 397 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
398 int ret;
399 u32 handle;
673a394b 400
ff72145b 401 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
402 if (size == 0)
403 return -EINVAL;
673a394b
EA
404
405 /* Allocate the new object */
ff72145b 406 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
407 if (obj == NULL)
408 return -ENOMEM;
409
05394f39 410 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 411 /* drop reference from allocate - handle holds it now */
d861e338
DV
412 drm_gem_object_unreference_unlocked(&obj->base);
413 if (ret)
414 return ret;
202f2fef 415
ff72145b 416 *handle_p = handle;
673a394b
EA
417 return 0;
418}
419
ff72145b
DA
420int
421i915_gem_dumb_create(struct drm_file *file,
422 struct drm_device *dev,
423 struct drm_mode_create_dumb *args)
424{
425 /* have to work out size/pitch and return them */
de45eaf7 426 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
427 args->size = args->pitch * args->height;
428 return i915_gem_create(file, dev,
da6b51d0 429 args->size, &args->handle);
ff72145b
DA
430}
431
ff72145b
DA
432/**
433 * Creates a new mm object and returns a handle to it.
434 */
435int
436i915_gem_create_ioctl(struct drm_device *dev, void *data,
437 struct drm_file *file)
438{
439 struct drm_i915_gem_create *args = data;
63ed2cb2 440
ff72145b 441 return i915_gem_create(file, dev,
da6b51d0 442 args->size, &args->handle);
ff72145b
DA
443}
444
8461d226
DV
445static inline int
446__copy_to_user_swizzled(char __user *cpu_vaddr,
447 const char *gpu_vaddr, int gpu_offset,
448 int length)
449{
450 int ret, cpu_offset = 0;
451
452 while (length > 0) {
453 int cacheline_end = ALIGN(gpu_offset + 1, 64);
454 int this_length = min(cacheline_end - gpu_offset, length);
455 int swizzled_gpu_offset = gpu_offset ^ 64;
456
457 ret = __copy_to_user(cpu_vaddr + cpu_offset,
458 gpu_vaddr + swizzled_gpu_offset,
459 this_length);
460 if (ret)
461 return ret + length;
462
463 cpu_offset += this_length;
464 gpu_offset += this_length;
465 length -= this_length;
466 }
467
468 return 0;
469}
470
8c59967c 471static inline int
4f0c7cfb
BW
472__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
473 const char __user *cpu_vaddr,
8c59967c
DV
474 int length)
475{
476 int ret, cpu_offset = 0;
477
478 while (length > 0) {
479 int cacheline_end = ALIGN(gpu_offset + 1, 64);
480 int this_length = min(cacheline_end - gpu_offset, length);
481 int swizzled_gpu_offset = gpu_offset ^ 64;
482
483 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
484 cpu_vaddr + cpu_offset,
485 this_length);
486 if (ret)
487 return ret + length;
488
489 cpu_offset += this_length;
490 gpu_offset += this_length;
491 length -= this_length;
492 }
493
494 return 0;
495}
496
4c914c0c
BV
497/*
498 * Pins the specified object's pages and synchronizes the object with
499 * GPU accesses. Sets needs_clflush to non-zero if the caller should
500 * flush the object from the CPU cache.
501 */
502int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
503 int *needs_clflush)
504{
505 int ret;
506
507 *needs_clflush = 0;
508
509 if (!obj->base.filp)
510 return -EINVAL;
511
512 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
513 /* If we're not in the cpu read domain, set ourself into the gtt
514 * read domain and manually flush cachelines (if required). This
515 * optimizes for the case when the gpu will dirty the data
516 * anyway again before the next pread happens. */
517 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
518 obj->cache_level);
519 ret = i915_gem_object_wait_rendering(obj, true);
520 if (ret)
521 return ret;
522 }
523
524 ret = i915_gem_object_get_pages(obj);
525 if (ret)
526 return ret;
527
528 i915_gem_object_pin_pages(obj);
529
530 return ret;
531}
532
d174bd64
DV
533/* Per-page copy function for the shmem pread fastpath.
534 * Flushes invalid cachelines before reading the target if
535 * needs_clflush is set. */
eb01459f 536static int
d174bd64
DV
537shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
538 char __user *user_data,
539 bool page_do_bit17_swizzling, bool needs_clflush)
540{
541 char *vaddr;
542 int ret;
543
e7e58eb5 544 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
545 return -EINVAL;
546
547 vaddr = kmap_atomic(page);
548 if (needs_clflush)
549 drm_clflush_virt_range(vaddr + shmem_page_offset,
550 page_length);
551 ret = __copy_to_user_inatomic(user_data,
552 vaddr + shmem_page_offset,
553 page_length);
554 kunmap_atomic(vaddr);
555
f60d7f0c 556 return ret ? -EFAULT : 0;
d174bd64
DV
557}
558
23c18c71
DV
559static void
560shmem_clflush_swizzled_range(char *addr, unsigned long length,
561 bool swizzled)
562{
e7e58eb5 563 if (unlikely(swizzled)) {
23c18c71
DV
564 unsigned long start = (unsigned long) addr;
565 unsigned long end = (unsigned long) addr + length;
566
567 /* For swizzling simply ensure that we always flush both
568 * channels. Lame, but simple and it works. Swizzled
569 * pwrite/pread is far from a hotpath - current userspace
570 * doesn't use it at all. */
571 start = round_down(start, 128);
572 end = round_up(end, 128);
573
574 drm_clflush_virt_range((void *)start, end - start);
575 } else {
576 drm_clflush_virt_range(addr, length);
577 }
578
579}
580
d174bd64
DV
581/* Only difference to the fast-path function is that this can handle bit17
582 * and uses non-atomic copy and kmap functions. */
583static int
584shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
585 char __user *user_data,
586 bool page_do_bit17_swizzling, bool needs_clflush)
587{
588 char *vaddr;
589 int ret;
590
591 vaddr = kmap(page);
592 if (needs_clflush)
23c18c71
DV
593 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
594 page_length,
595 page_do_bit17_swizzling);
d174bd64
DV
596
597 if (page_do_bit17_swizzling)
598 ret = __copy_to_user_swizzled(user_data,
599 vaddr, shmem_page_offset,
600 page_length);
601 else
602 ret = __copy_to_user(user_data,
603 vaddr + shmem_page_offset,
604 page_length);
605 kunmap(page);
606
f60d7f0c 607 return ret ? - EFAULT : 0;
d174bd64
DV
608}
609
eb01459f 610static int
dbf7bff0
DV
611i915_gem_shmem_pread(struct drm_device *dev,
612 struct drm_i915_gem_object *obj,
613 struct drm_i915_gem_pread *args,
614 struct drm_file *file)
eb01459f 615{
8461d226 616 char __user *user_data;
eb01459f 617 ssize_t remain;
8461d226 618 loff_t offset;
eb2c0c81 619 int shmem_page_offset, page_length, ret = 0;
8461d226 620 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 621 int prefaulted = 0;
8489731c 622 int needs_clflush = 0;
67d5a50c 623 struct sg_page_iter sg_iter;
eb01459f 624
2bb4629a 625 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
626 remain = args->size;
627
8461d226 628 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 629
4c914c0c 630 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
631 if (ret)
632 return ret;
633
8461d226 634 offset = args->offset;
eb01459f 635
67d5a50c
ID
636 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
637 offset >> PAGE_SHIFT) {
2db76d7c 638 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
639
640 if (remain <= 0)
641 break;
642
eb01459f
EA
643 /* Operation in this page
644 *
eb01459f 645 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
646 * page_length = bytes to copy for this page
647 */
c8cbbb8b 648 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
649 page_length = remain;
650 if ((shmem_page_offset + page_length) > PAGE_SIZE)
651 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 652
8461d226
DV
653 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
654 (page_to_phys(page) & (1 << 17)) != 0;
655
d174bd64
DV
656 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
657 user_data, page_do_bit17_swizzling,
658 needs_clflush);
659 if (ret == 0)
660 goto next_page;
dbf7bff0 661
dbf7bff0
DV
662 mutex_unlock(&dev->struct_mutex);
663
d330a953 664 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 665 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
666 /* Userspace is tricking us, but we've already clobbered
667 * its pages with the prefault and promised to write the
668 * data up to the first fault. Hence ignore any errors
669 * and just continue. */
670 (void)ret;
671 prefaulted = 1;
672 }
eb01459f 673
d174bd64
DV
674 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
675 user_data, page_do_bit17_swizzling,
676 needs_clflush);
eb01459f 677
dbf7bff0 678 mutex_lock(&dev->struct_mutex);
f60d7f0c 679
f60d7f0c 680 if (ret)
8461d226 681 goto out;
8461d226 682
17793c9a 683next_page:
eb01459f 684 remain -= page_length;
8461d226 685 user_data += page_length;
eb01459f
EA
686 offset += page_length;
687 }
688
4f27b75d 689out:
f60d7f0c
CW
690 i915_gem_object_unpin_pages(obj);
691
eb01459f
EA
692 return ret;
693}
694
673a394b
EA
695/**
696 * Reads data from the object referenced by handle.
697 *
698 * On error, the contents of *data are undefined.
699 */
700int
701i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 702 struct drm_file *file)
673a394b
EA
703{
704 struct drm_i915_gem_pread *args = data;
05394f39 705 struct drm_i915_gem_object *obj;
35b62a89 706 int ret = 0;
673a394b 707
51311d0a
CW
708 if (args->size == 0)
709 return 0;
710
711 if (!access_ok(VERIFY_WRITE,
2bb4629a 712 to_user_ptr(args->data_ptr),
51311d0a
CW
713 args->size))
714 return -EFAULT;
715
4f27b75d 716 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 717 if (ret)
4f27b75d 718 return ret;
673a394b 719
05394f39 720 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 721 if (&obj->base == NULL) {
1d7cfea1
CW
722 ret = -ENOENT;
723 goto unlock;
4f27b75d 724 }
673a394b 725
7dcd2499 726 /* Bounds check source. */
05394f39
CW
727 if (args->offset > obj->base.size ||
728 args->size > obj->base.size - args->offset) {
ce9d419d 729 ret = -EINVAL;
35b62a89 730 goto out;
ce9d419d
CW
731 }
732
1286ff73
DV
733 /* prime objects have no backing filp to GEM pread/pwrite
734 * pages from.
735 */
736 if (!obj->base.filp) {
737 ret = -EINVAL;
738 goto out;
739 }
740
db53a302
CW
741 trace_i915_gem_object_pread(obj, args->offset, args->size);
742
dbf7bff0 743 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 744
35b62a89 745out:
05394f39 746 drm_gem_object_unreference(&obj->base);
1d7cfea1 747unlock:
4f27b75d 748 mutex_unlock(&dev->struct_mutex);
eb01459f 749 return ret;
673a394b
EA
750}
751
0839ccb8
KP
752/* This is the fast write path which cannot handle
753 * page faults in the source data
9b7530cc 754 */
0839ccb8
KP
755
756static inline int
757fast_user_write(struct io_mapping *mapping,
758 loff_t page_base, int page_offset,
759 char __user *user_data,
760 int length)
9b7530cc 761{
4f0c7cfb
BW
762 void __iomem *vaddr_atomic;
763 void *vaddr;
0839ccb8 764 unsigned long unwritten;
9b7530cc 765
3e4d3af5 766 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
767 /* We can use the cpu mem copy function because this is X86. */
768 vaddr = (void __force*)vaddr_atomic + page_offset;
769 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 770 user_data, length);
3e4d3af5 771 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 772 return unwritten;
0839ccb8
KP
773}
774
3de09aa3
EA
775/**
776 * This is the fast pwrite path, where we copy the data directly from the
777 * user into the GTT, uncached.
778 */
673a394b 779static int
05394f39
CW
780i915_gem_gtt_pwrite_fast(struct drm_device *dev,
781 struct drm_i915_gem_object *obj,
3de09aa3 782 struct drm_i915_gem_pwrite *args,
05394f39 783 struct drm_file *file)
673a394b 784{
3e31c6c0 785 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 786 ssize_t remain;
0839ccb8 787 loff_t offset, page_base;
673a394b 788 char __user *user_data;
935aaa69
DV
789 int page_offset, page_length, ret;
790
1ec9e26d 791 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
792 if (ret)
793 goto out;
794
795 ret = i915_gem_object_set_to_gtt_domain(obj, true);
796 if (ret)
797 goto out_unpin;
798
799 ret = i915_gem_object_put_fence(obj);
800 if (ret)
801 goto out_unpin;
673a394b 802
2bb4629a 803 user_data = to_user_ptr(args->data_ptr);
673a394b 804 remain = args->size;
673a394b 805
f343c5f6 806 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 807
77a0d1ca 808 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 809
673a394b
EA
810 while (remain > 0) {
811 /* Operation in this page
812 *
0839ccb8
KP
813 * page_base = page offset within aperture
814 * page_offset = offset within page
815 * page_length = bytes to copy for this page
673a394b 816 */
c8cbbb8b
CW
817 page_base = offset & PAGE_MASK;
818 page_offset = offset_in_page(offset);
0839ccb8
KP
819 page_length = remain;
820 if ((page_offset + remain) > PAGE_SIZE)
821 page_length = PAGE_SIZE - page_offset;
822
0839ccb8 823 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
824 * source page isn't available. Return the error and we'll
825 * retry in the slow path.
0839ccb8 826 */
5d4545ae 827 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
828 page_offset, user_data, page_length)) {
829 ret = -EFAULT;
063e4e6b 830 goto out_flush;
935aaa69 831 }
673a394b 832
0839ccb8
KP
833 remain -= page_length;
834 user_data += page_length;
835 offset += page_length;
673a394b 836 }
673a394b 837
063e4e6b 838out_flush:
de152b62 839 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 840out_unpin:
d7f46fc4 841 i915_gem_object_ggtt_unpin(obj);
935aaa69 842out:
3de09aa3 843 return ret;
673a394b
EA
844}
845
d174bd64
DV
846/* Per-page copy function for the shmem pwrite fastpath.
847 * Flushes invalid cachelines before writing to the target if
848 * needs_clflush_before is set and flushes out any written cachelines after
849 * writing if needs_clflush is set. */
3043c60c 850static int
d174bd64
DV
851shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
852 char __user *user_data,
853 bool page_do_bit17_swizzling,
854 bool needs_clflush_before,
855 bool needs_clflush_after)
673a394b 856{
d174bd64 857 char *vaddr;
673a394b 858 int ret;
3de09aa3 859
e7e58eb5 860 if (unlikely(page_do_bit17_swizzling))
d174bd64 861 return -EINVAL;
3de09aa3 862
d174bd64
DV
863 vaddr = kmap_atomic(page);
864 if (needs_clflush_before)
865 drm_clflush_virt_range(vaddr + shmem_page_offset,
866 page_length);
c2831a94
CW
867 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
868 user_data, page_length);
d174bd64
DV
869 if (needs_clflush_after)
870 drm_clflush_virt_range(vaddr + shmem_page_offset,
871 page_length);
872 kunmap_atomic(vaddr);
3de09aa3 873
755d2218 874 return ret ? -EFAULT : 0;
3de09aa3
EA
875}
876
d174bd64
DV
877/* Only difference to the fast-path function is that this can handle bit17
878 * and uses non-atomic copy and kmap functions. */
3043c60c 879static int
d174bd64
DV
880shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
881 char __user *user_data,
882 bool page_do_bit17_swizzling,
883 bool needs_clflush_before,
884 bool needs_clflush_after)
673a394b 885{
d174bd64
DV
886 char *vaddr;
887 int ret;
e5281ccd 888
d174bd64 889 vaddr = kmap(page);
e7e58eb5 890 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
891 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
892 page_length,
893 page_do_bit17_swizzling);
d174bd64
DV
894 if (page_do_bit17_swizzling)
895 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
896 user_data,
897 page_length);
d174bd64
DV
898 else
899 ret = __copy_from_user(vaddr + shmem_page_offset,
900 user_data,
901 page_length);
902 if (needs_clflush_after)
23c18c71
DV
903 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
904 page_length,
905 page_do_bit17_swizzling);
d174bd64 906 kunmap(page);
40123c1f 907
755d2218 908 return ret ? -EFAULT : 0;
40123c1f
EA
909}
910
40123c1f 911static int
e244a443
DV
912i915_gem_shmem_pwrite(struct drm_device *dev,
913 struct drm_i915_gem_object *obj,
914 struct drm_i915_gem_pwrite *args,
915 struct drm_file *file)
40123c1f 916{
40123c1f 917 ssize_t remain;
8c59967c
DV
918 loff_t offset;
919 char __user *user_data;
eb2c0c81 920 int shmem_page_offset, page_length, ret = 0;
8c59967c 921 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 922 int hit_slowpath = 0;
58642885
DV
923 int needs_clflush_after = 0;
924 int needs_clflush_before = 0;
67d5a50c 925 struct sg_page_iter sg_iter;
40123c1f 926
2bb4629a 927 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
928 remain = args->size;
929
8c59967c 930 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 931
58642885
DV
932 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
933 /* If we're not in the cpu write domain, set ourself into the gtt
934 * write domain and manually flush cachelines (if required). This
935 * optimizes for the case when the gpu will use the data
936 * right away and we therefore have to clflush anyway. */
2c22569b 937 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
938 ret = i915_gem_object_wait_rendering(obj, false);
939 if (ret)
940 return ret;
58642885 941 }
c76ce038
CW
942 /* Same trick applies to invalidate partially written cachelines read
943 * before writing. */
944 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
945 needs_clflush_before =
946 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 947
755d2218
CW
948 ret = i915_gem_object_get_pages(obj);
949 if (ret)
950 return ret;
951
77a0d1ca 952 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 953
755d2218
CW
954 i915_gem_object_pin_pages(obj);
955
673a394b 956 offset = args->offset;
05394f39 957 obj->dirty = 1;
673a394b 958
67d5a50c
ID
959 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
960 offset >> PAGE_SHIFT) {
2db76d7c 961 struct page *page = sg_page_iter_page(&sg_iter);
58642885 962 int partial_cacheline_write;
e5281ccd 963
9da3da66
CW
964 if (remain <= 0)
965 break;
966
40123c1f
EA
967 /* Operation in this page
968 *
40123c1f 969 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
970 * page_length = bytes to copy for this page
971 */
c8cbbb8b 972 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
973
974 page_length = remain;
975 if ((shmem_page_offset + page_length) > PAGE_SIZE)
976 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 977
58642885
DV
978 /* If we don't overwrite a cacheline completely we need to be
979 * careful to have up-to-date data by first clflushing. Don't
980 * overcomplicate things and flush the entire patch. */
981 partial_cacheline_write = needs_clflush_before &&
982 ((shmem_page_offset | page_length)
983 & (boot_cpu_data.x86_clflush_size - 1));
984
8c59967c
DV
985 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
986 (page_to_phys(page) & (1 << 17)) != 0;
987
d174bd64
DV
988 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
989 user_data, page_do_bit17_swizzling,
990 partial_cacheline_write,
991 needs_clflush_after);
992 if (ret == 0)
993 goto next_page;
e244a443
DV
994
995 hit_slowpath = 1;
e244a443 996 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
997 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
998 user_data, page_do_bit17_swizzling,
999 partial_cacheline_write,
1000 needs_clflush_after);
40123c1f 1001
e244a443 1002 mutex_lock(&dev->struct_mutex);
755d2218 1003
755d2218 1004 if (ret)
8c59967c 1005 goto out;
8c59967c 1006
17793c9a 1007next_page:
40123c1f 1008 remain -= page_length;
8c59967c 1009 user_data += page_length;
40123c1f 1010 offset += page_length;
673a394b
EA
1011 }
1012
fbd5a26d 1013out:
755d2218
CW
1014 i915_gem_object_unpin_pages(obj);
1015
e244a443 1016 if (hit_slowpath) {
8dcf015e
DV
1017 /*
1018 * Fixup: Flush cpu caches in case we didn't flush the dirty
1019 * cachelines in-line while writing and the object moved
1020 * out of the cpu write domain while we've dropped the lock.
1021 */
1022 if (!needs_clflush_after &&
1023 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1024 if (i915_gem_clflush_object(obj, obj->pin_display))
1025 i915_gem_chipset_flush(dev);
e244a443 1026 }
8c59967c 1027 }
673a394b 1028
58642885 1029 if (needs_clflush_after)
e76e9aeb 1030 i915_gem_chipset_flush(dev);
58642885 1031
de152b62 1032 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1033 return ret;
673a394b
EA
1034}
1035
1036/**
1037 * Writes data to the object referenced by handle.
1038 *
1039 * On error, the contents of the buffer that were to be modified are undefined.
1040 */
1041int
1042i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1043 struct drm_file *file)
673a394b 1044{
5d77d9c5 1045 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1046 struct drm_i915_gem_pwrite *args = data;
05394f39 1047 struct drm_i915_gem_object *obj;
51311d0a
CW
1048 int ret;
1049
1050 if (args->size == 0)
1051 return 0;
1052
1053 if (!access_ok(VERIFY_READ,
2bb4629a 1054 to_user_ptr(args->data_ptr),
51311d0a
CW
1055 args->size))
1056 return -EFAULT;
1057
d330a953 1058 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1059 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1060 args->size);
1061 if (ret)
1062 return -EFAULT;
1063 }
673a394b 1064
5d77d9c5
ID
1065 intel_runtime_pm_get(dev_priv);
1066
fbd5a26d 1067 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1068 if (ret)
5d77d9c5 1069 goto put_rpm;
1d7cfea1 1070
05394f39 1071 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1072 if (&obj->base == NULL) {
1d7cfea1
CW
1073 ret = -ENOENT;
1074 goto unlock;
fbd5a26d 1075 }
673a394b 1076
7dcd2499 1077 /* Bounds check destination. */
05394f39
CW
1078 if (args->offset > obj->base.size ||
1079 args->size > obj->base.size - args->offset) {
ce9d419d 1080 ret = -EINVAL;
35b62a89 1081 goto out;
ce9d419d
CW
1082 }
1083
1286ff73
DV
1084 /* prime objects have no backing filp to GEM pread/pwrite
1085 * pages from.
1086 */
1087 if (!obj->base.filp) {
1088 ret = -EINVAL;
1089 goto out;
1090 }
1091
db53a302
CW
1092 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1093
935aaa69 1094 ret = -EFAULT;
673a394b
EA
1095 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1096 * it would end up going through the fenced access, and we'll get
1097 * different detiling behavior between reading and writing.
1098 * pread/pwrite currently are reading and writing from the CPU
1099 * perspective, requiring manual detiling by the client.
1100 */
2c22569b
CW
1101 if (obj->tiling_mode == I915_TILING_NONE &&
1102 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1103 cpu_write_needs_clflush(obj)) {
fbd5a26d 1104 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1105 /* Note that the gtt paths might fail with non-page-backed user
1106 * pointers (e.g. gtt mappings when moving data between
1107 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1108 }
673a394b 1109
6a2c4232
CW
1110 if (ret == -EFAULT || ret == -ENOSPC) {
1111 if (obj->phys_handle)
1112 ret = i915_gem_phys_pwrite(obj, args, file);
1113 else
1114 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1115 }
5c0480f2 1116
35b62a89 1117out:
05394f39 1118 drm_gem_object_unreference(&obj->base);
1d7cfea1 1119unlock:
fbd5a26d 1120 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1121put_rpm:
1122 intel_runtime_pm_put(dev_priv);
1123
673a394b
EA
1124 return ret;
1125}
1126
b361237b 1127int
33196ded 1128i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1129 bool interruptible)
1130{
1f83fee0 1131 if (i915_reset_in_progress(error)) {
b361237b
CW
1132 /* Non-interruptible callers can't handle -EAGAIN, hence return
1133 * -EIO unconditionally for these. */
1134 if (!interruptible)
1135 return -EIO;
1136
1f83fee0
DV
1137 /* Recovery complete, but the reset failed ... */
1138 if (i915_terminally_wedged(error))
b361237b
CW
1139 return -EIO;
1140
6689c167
MA
1141 /*
1142 * Check if GPU Reset is in progress - we need intel_ring_begin
1143 * to work properly to reinit the hw state while the gpu is
1144 * still marked as reset-in-progress. Handle this with a flag.
1145 */
1146 if (!error->reload_in_reset)
1147 return -EAGAIN;
b361237b
CW
1148 }
1149
1150 return 0;
1151}
1152
094f9a54
CW
1153static void fake_irq(unsigned long data)
1154{
1155 wake_up_process((struct task_struct *)data);
1156}
1157
1158static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1159 struct intel_engine_cs *ring)
094f9a54
CW
1160{
1161 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1162}
1163
eed29a5b 1164static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1165{
2def4ad9
CW
1166 unsigned long timeout;
1167
eed29a5b 1168 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1169 return -EBUSY;
1170
1171 timeout = jiffies + 1;
1172 while (!need_resched()) {
eed29a5b 1173 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1174 return 0;
1175
1176 if (time_after_eq(jiffies, timeout))
1177 break;
b29c19b6 1178
2def4ad9
CW
1179 cpu_relax_lowlatency();
1180 }
eed29a5b 1181 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1182 return 0;
1183
1184 return -EAGAIN;
b29c19b6
CW
1185}
1186
b361237b 1187/**
9c654818
JH
1188 * __i915_wait_request - wait until execution of request has finished
1189 * @req: duh!
1190 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1191 * @interruptible: do an interruptible wait (normally yes)
1192 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1193 *
f69061be
DV
1194 * Note: It is of utmost importance that the passed in seqno and reset_counter
1195 * values have been read by the caller in an smp safe manner. Where read-side
1196 * locks are involved, it is sufficient to read the reset_counter before
1197 * unlocking the lock that protects the seqno. For lockless tricks, the
1198 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1199 * inserted.
1200 *
9c654818 1201 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1202 * errno with remaining time filled in timeout argument.
1203 */
9c654818 1204int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1205 unsigned reset_counter,
b29c19b6 1206 bool interruptible,
5ed0bdf2 1207 s64 *timeout,
2e1b8730 1208 struct intel_rps_client *rps)
b361237b 1209{
9c654818 1210 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1211 struct drm_device *dev = ring->dev;
3e31c6c0 1212 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1213 const bool irq_test_in_progress =
1214 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1215 DEFINE_WAIT(wait);
47e9766d 1216 unsigned long timeout_expire;
5ed0bdf2 1217 s64 before, now;
b361237b
CW
1218 int ret;
1219
9df7575f 1220 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1221
b4716185
CW
1222 if (list_empty(&req->list))
1223 return 0;
1224
1b5a433a 1225 if (i915_gem_request_completed(req, true))
b361237b
CW
1226 return 0;
1227
7bd0e226
DV
1228 timeout_expire = timeout ?
1229 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1230
2e1b8730 1231 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1232 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1233
094f9a54 1234 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1235 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1236 before = ktime_get_raw_ns();
2def4ad9
CW
1237
1238 /* Optimistic spin for the next jiffie before touching IRQs */
1239 ret = __i915_spin_request(req);
1240 if (ret == 0)
1241 goto out;
1242
1243 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1244 ret = -ENODEV;
1245 goto out;
1246 }
1247
094f9a54
CW
1248 for (;;) {
1249 struct timer_list timer;
b361237b 1250
094f9a54
CW
1251 prepare_to_wait(&ring->irq_queue, &wait,
1252 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1253
f69061be
DV
1254 /* We need to check whether any gpu reset happened in between
1255 * the caller grabbing the seqno and now ... */
094f9a54
CW
1256 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1257 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1258 * is truely gone. */
1259 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1260 if (ret == 0)
1261 ret = -EAGAIN;
1262 break;
1263 }
f69061be 1264
1b5a433a 1265 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1266 ret = 0;
1267 break;
1268 }
b361237b 1269
094f9a54
CW
1270 if (interruptible && signal_pending(current)) {
1271 ret = -ERESTARTSYS;
1272 break;
1273 }
1274
47e9766d 1275 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1276 ret = -ETIME;
1277 break;
1278 }
1279
1280 timer.function = NULL;
1281 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1282 unsigned long expire;
1283
094f9a54 1284 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1285 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1286 mod_timer(&timer, expire);
1287 }
1288
5035c275 1289 io_schedule();
094f9a54 1290
094f9a54
CW
1291 if (timer.function) {
1292 del_singleshot_timer_sync(&timer);
1293 destroy_timer_on_stack(&timer);
1294 }
1295 }
168c3f21
MK
1296 if (!irq_test_in_progress)
1297 ring->irq_put(ring);
094f9a54
CW
1298
1299 finish_wait(&ring->irq_queue, &wait);
b361237b 1300
2def4ad9
CW
1301out:
1302 now = ktime_get_raw_ns();
1303 trace_i915_gem_request_wait_end(req);
1304
b361237b 1305 if (timeout) {
5ed0bdf2
TG
1306 s64 tres = *timeout - (now - before);
1307
1308 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1309
1310 /*
1311 * Apparently ktime isn't accurate enough and occasionally has a
1312 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1313 * things up to make the test happy. We allow up to 1 jiffy.
1314 *
1315 * This is a regrssion from the timespec->ktime conversion.
1316 */
1317 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1318 *timeout = 0;
b361237b
CW
1319 }
1320
094f9a54 1321 return ret;
b361237b
CW
1322}
1323
fcfa423c
JH
1324int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1325 struct drm_file *file)
1326{
1327 struct drm_i915_private *dev_private;
1328 struct drm_i915_file_private *file_priv;
1329
1330 WARN_ON(!req || !file || req->file_priv);
1331
1332 if (!req || !file)
1333 return -EINVAL;
1334
1335 if (req->file_priv)
1336 return -EINVAL;
1337
1338 dev_private = req->ring->dev->dev_private;
1339 file_priv = file->driver_priv;
1340
1341 spin_lock(&file_priv->mm.lock);
1342 req->file_priv = file_priv;
1343 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1344 spin_unlock(&file_priv->mm.lock);
1345
1346 req->pid = get_pid(task_pid(current));
1347
1348 return 0;
1349}
1350
b4716185
CW
1351static inline void
1352i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1353{
1354 struct drm_i915_file_private *file_priv = request->file_priv;
1355
1356 if (!file_priv)
1357 return;
1358
1359 spin_lock(&file_priv->mm.lock);
1360 list_del(&request->client_list);
1361 request->file_priv = NULL;
1362 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1363
1364 put_pid(request->pid);
1365 request->pid = NULL;
b4716185
CW
1366}
1367
1368static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1369{
1370 trace_i915_gem_request_retire(request);
1371
1372 /* We know the GPU must have read the request to have
1373 * sent us the seqno + interrupt, so use the position
1374 * of tail of the request to update the last known position
1375 * of the GPU head.
1376 *
1377 * Note this requires that we are always called in request
1378 * completion order.
1379 */
1380 request->ringbuf->last_retired_head = request->postfix;
1381
1382 list_del_init(&request->list);
1383 i915_gem_request_remove_from_client(request);
1384
b4716185
CW
1385 i915_gem_request_unreference(request);
1386}
1387
1388static void
1389__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1390{
1391 struct intel_engine_cs *engine = req->ring;
1392 struct drm_i915_gem_request *tmp;
1393
1394 lockdep_assert_held(&engine->dev->struct_mutex);
1395
1396 if (list_empty(&req->list))
1397 return;
1398
1399 do {
1400 tmp = list_first_entry(&engine->request_list,
1401 typeof(*tmp), list);
1402
1403 i915_gem_request_retire(tmp);
1404 } while (tmp != req);
1405
1406 WARN_ON(i915_verify_lists(engine->dev));
1407}
1408
b361237b 1409/**
a4b3a571 1410 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1411 * request and object lists appropriately for that event.
1412 */
1413int
a4b3a571 1414i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1415{
a4b3a571
DV
1416 struct drm_device *dev;
1417 struct drm_i915_private *dev_priv;
1418 bool interruptible;
b361237b
CW
1419 int ret;
1420
a4b3a571
DV
1421 BUG_ON(req == NULL);
1422
1423 dev = req->ring->dev;
1424 dev_priv = dev->dev_private;
1425 interruptible = dev_priv->mm.interruptible;
1426
b361237b 1427 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1428
33196ded 1429 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1430 if (ret)
1431 return ret;
1432
b4716185
CW
1433 ret = __i915_wait_request(req,
1434 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1435 interruptible, NULL, NULL);
b4716185
CW
1436 if (ret)
1437 return ret;
d26e3af8 1438
b4716185 1439 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1440 return 0;
1441}
1442
b361237b
CW
1443/**
1444 * Ensures that all rendering to the object has completed and the object is
1445 * safe to unbind from the GTT or access from the CPU.
1446 */
2e2f351d 1447int
b361237b
CW
1448i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1449 bool readonly)
1450{
b4716185 1451 int ret, i;
b361237b 1452
b4716185 1453 if (!obj->active)
b361237b
CW
1454 return 0;
1455
b4716185
CW
1456 if (readonly) {
1457 if (obj->last_write_req != NULL) {
1458 ret = i915_wait_request(obj->last_write_req);
1459 if (ret)
1460 return ret;
b361237b 1461
b4716185
CW
1462 i = obj->last_write_req->ring->id;
1463 if (obj->last_read_req[i] == obj->last_write_req)
1464 i915_gem_object_retire__read(obj, i);
1465 else
1466 i915_gem_object_retire__write(obj);
1467 }
1468 } else {
1469 for (i = 0; i < I915_NUM_RINGS; i++) {
1470 if (obj->last_read_req[i] == NULL)
1471 continue;
1472
1473 ret = i915_wait_request(obj->last_read_req[i]);
1474 if (ret)
1475 return ret;
1476
1477 i915_gem_object_retire__read(obj, i);
1478 }
1479 RQ_BUG_ON(obj->active);
1480 }
1481
1482 return 0;
1483}
1484
1485static void
1486i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1487 struct drm_i915_gem_request *req)
1488{
1489 int ring = req->ring->id;
1490
1491 if (obj->last_read_req[ring] == req)
1492 i915_gem_object_retire__read(obj, ring);
1493 else if (obj->last_write_req == req)
1494 i915_gem_object_retire__write(obj);
1495
1496 __i915_gem_request_retire__upto(req);
b361237b
CW
1497}
1498
3236f57a
CW
1499/* A nonblocking variant of the above wait. This is a highly dangerous routine
1500 * as the object state may change during this call.
1501 */
1502static __must_check int
1503i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1504 struct intel_rps_client *rps,
3236f57a
CW
1505 bool readonly)
1506{
1507 struct drm_device *dev = obj->base.dev;
1508 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1509 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1510 unsigned reset_counter;
b4716185 1511 int ret, i, n = 0;
3236f57a
CW
1512
1513 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1514 BUG_ON(!dev_priv->mm.interruptible);
1515
b4716185 1516 if (!obj->active)
3236f57a
CW
1517 return 0;
1518
33196ded 1519 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1520 if (ret)
1521 return ret;
1522
f69061be 1523 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1524
1525 if (readonly) {
1526 struct drm_i915_gem_request *req;
1527
1528 req = obj->last_write_req;
1529 if (req == NULL)
1530 return 0;
1531
b4716185
CW
1532 requests[n++] = i915_gem_request_reference(req);
1533 } else {
1534 for (i = 0; i < I915_NUM_RINGS; i++) {
1535 struct drm_i915_gem_request *req;
1536
1537 req = obj->last_read_req[i];
1538 if (req == NULL)
1539 continue;
1540
b4716185
CW
1541 requests[n++] = i915_gem_request_reference(req);
1542 }
1543 }
1544
3236f57a 1545 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1546 for (i = 0; ret == 0 && i < n; i++)
1547 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1548 NULL, rps);
3236f57a
CW
1549 mutex_lock(&dev->struct_mutex);
1550
b4716185
CW
1551 for (i = 0; i < n; i++) {
1552 if (ret == 0)
1553 i915_gem_object_retire_request(obj, requests[i]);
1554 i915_gem_request_unreference(requests[i]);
1555 }
1556
1557 return ret;
3236f57a
CW
1558}
1559
2e1b8730
CW
1560static struct intel_rps_client *to_rps_client(struct drm_file *file)
1561{
1562 struct drm_i915_file_private *fpriv = file->driver_priv;
1563 return &fpriv->rps;
1564}
1565
673a394b 1566/**
2ef7eeaa
EA
1567 * Called when user space prepares to use an object with the CPU, either
1568 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1569 */
1570int
1571i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1572 struct drm_file *file)
673a394b
EA
1573{
1574 struct drm_i915_gem_set_domain *args = data;
05394f39 1575 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1576 uint32_t read_domains = args->read_domains;
1577 uint32_t write_domain = args->write_domain;
673a394b
EA
1578 int ret;
1579
2ef7eeaa 1580 /* Only handle setting domains to types used by the CPU. */
21d509e3 1581 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1582 return -EINVAL;
1583
21d509e3 1584 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1585 return -EINVAL;
1586
1587 /* Having something in the write domain implies it's in the read
1588 * domain, and only that read domain. Enforce that in the request.
1589 */
1590 if (write_domain != 0 && read_domains != write_domain)
1591 return -EINVAL;
1592
76c1dec1 1593 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1594 if (ret)
76c1dec1 1595 return ret;
1d7cfea1 1596
05394f39 1597 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1598 if (&obj->base == NULL) {
1d7cfea1
CW
1599 ret = -ENOENT;
1600 goto unlock;
76c1dec1 1601 }
673a394b 1602
3236f57a
CW
1603 /* Try to flush the object off the GPU without holding the lock.
1604 * We will repeat the flush holding the lock in the normal manner
1605 * to catch cases where we are gazumped.
1606 */
6e4930f6 1607 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1608 to_rps_client(file),
6e4930f6 1609 !write_domain);
3236f57a
CW
1610 if (ret)
1611 goto unref;
1612
43566ded 1613 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1614 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1615 else
e47c68e9 1616 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1617
031b698a
DV
1618 if (write_domain != 0)
1619 intel_fb_obj_invalidate(obj,
1620 write_domain == I915_GEM_DOMAIN_GTT ?
1621 ORIGIN_GTT : ORIGIN_CPU);
1622
3236f57a 1623unref:
05394f39 1624 drm_gem_object_unreference(&obj->base);
1d7cfea1 1625unlock:
673a394b
EA
1626 mutex_unlock(&dev->struct_mutex);
1627 return ret;
1628}
1629
1630/**
1631 * Called when user space has done writes to this buffer
1632 */
1633int
1634i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1635 struct drm_file *file)
673a394b
EA
1636{
1637 struct drm_i915_gem_sw_finish *args = data;
05394f39 1638 struct drm_i915_gem_object *obj;
673a394b
EA
1639 int ret = 0;
1640
76c1dec1 1641 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1642 if (ret)
76c1dec1 1643 return ret;
1d7cfea1 1644
05394f39 1645 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1646 if (&obj->base == NULL) {
1d7cfea1
CW
1647 ret = -ENOENT;
1648 goto unlock;
673a394b
EA
1649 }
1650
673a394b 1651 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1652 if (obj->pin_display)
e62b59e4 1653 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1654
05394f39 1655 drm_gem_object_unreference(&obj->base);
1d7cfea1 1656unlock:
673a394b
EA
1657 mutex_unlock(&dev->struct_mutex);
1658 return ret;
1659}
1660
1661/**
1662 * Maps the contents of an object, returning the address it is mapped
1663 * into.
1664 *
1665 * While the mapping holds a reference on the contents of the object, it doesn't
1666 * imply a ref on the object itself.
34367381
DV
1667 *
1668 * IMPORTANT:
1669 *
1670 * DRM driver writers who look a this function as an example for how to do GEM
1671 * mmap support, please don't implement mmap support like here. The modern way
1672 * to implement DRM mmap support is with an mmap offset ioctl (like
1673 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1674 * That way debug tooling like valgrind will understand what's going on, hiding
1675 * the mmap call in a driver private ioctl will break that. The i915 driver only
1676 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1677 */
1678int
1679i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1680 struct drm_file *file)
673a394b
EA
1681{
1682 struct drm_i915_gem_mmap *args = data;
1683 struct drm_gem_object *obj;
673a394b
EA
1684 unsigned long addr;
1685
1816f923
AG
1686 if (args->flags & ~(I915_MMAP_WC))
1687 return -EINVAL;
1688
1689 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1690 return -ENODEV;
1691
05394f39 1692 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1693 if (obj == NULL)
bf79cb91 1694 return -ENOENT;
673a394b 1695
1286ff73
DV
1696 /* prime objects have no backing filp to GEM mmap
1697 * pages from.
1698 */
1699 if (!obj->filp) {
1700 drm_gem_object_unreference_unlocked(obj);
1701 return -EINVAL;
1702 }
1703
6be5ceb0 1704 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1705 PROT_READ | PROT_WRITE, MAP_SHARED,
1706 args->offset);
1816f923
AG
1707 if (args->flags & I915_MMAP_WC) {
1708 struct mm_struct *mm = current->mm;
1709 struct vm_area_struct *vma;
1710
1711 down_write(&mm->mmap_sem);
1712 vma = find_vma(mm, addr);
1713 if (vma)
1714 vma->vm_page_prot =
1715 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1716 else
1717 addr = -ENOMEM;
1718 up_write(&mm->mmap_sem);
1719 }
bc9025bd 1720 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1721 if (IS_ERR((void *)addr))
1722 return addr;
1723
1724 args->addr_ptr = (uint64_t) addr;
1725
1726 return 0;
1727}
1728
de151cf6
JB
1729/**
1730 * i915_gem_fault - fault a page into the GTT
1731 * vma: VMA in question
1732 * vmf: fault info
1733 *
1734 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1735 * from userspace. The fault handler takes care of binding the object to
1736 * the GTT (if needed), allocating and programming a fence register (again,
1737 * only if needed based on whether the old reg is still valid or the object
1738 * is tiled) and inserting a new PTE into the faulting process.
1739 *
1740 * Note that the faulting process may involve evicting existing objects
1741 * from the GTT and/or fence registers to make room. So performance may
1742 * suffer if the GTT working set is large or there are few fence registers
1743 * left.
1744 */
1745int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1746{
05394f39
CW
1747 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1748 struct drm_device *dev = obj->base.dev;
3e31c6c0 1749 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1750 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1751 pgoff_t page_offset;
1752 unsigned long pfn;
1753 int ret = 0;
0f973f27 1754 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1755
f65c9168
PZ
1756 intel_runtime_pm_get(dev_priv);
1757
de151cf6
JB
1758 /* We don't use vmf->pgoff since that has the fake offset */
1759 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1760 PAGE_SHIFT;
1761
d9bc7e9f
CW
1762 ret = i915_mutex_lock_interruptible(dev);
1763 if (ret)
1764 goto out;
a00b10c3 1765
db53a302
CW
1766 trace_i915_gem_object_fault(obj, page_offset, true, write);
1767
6e4930f6
CW
1768 /* Try to flush the object off the GPU first without holding the lock.
1769 * Upon reacquiring the lock, we will perform our sanity checks and then
1770 * repeat the flush holding the lock in the normal manner to catch cases
1771 * where we are gazumped.
1772 */
1773 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1774 if (ret)
1775 goto unlock;
1776
eb119bd6
CW
1777 /* Access to snoopable pages through the GTT is incoherent. */
1778 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1779 ret = -EFAULT;
eb119bd6
CW
1780 goto unlock;
1781 }
1782
c5ad54cf 1783 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1784 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1785 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1786 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1787
c5ad54cf
JL
1788 memset(&view, 0, sizeof(view));
1789 view.type = I915_GGTT_VIEW_PARTIAL;
1790 view.params.partial.offset = rounddown(page_offset, chunk_size);
1791 view.params.partial.size =
1792 min_t(unsigned int,
1793 chunk_size,
1794 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1795 view.params.partial.offset);
1796 }
1797
1798 /* Now pin it into the GTT if needed */
1799 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1800 if (ret)
1801 goto unlock;
4a684a41 1802
c9839303
CW
1803 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1804 if (ret)
1805 goto unpin;
74898d7e 1806
06d98131 1807 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1808 if (ret)
c9839303 1809 goto unpin;
7d1c4804 1810
b90b91d8 1811 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1812 pfn = dev_priv->gtt.mappable_base +
1813 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1814 pfn >>= PAGE_SHIFT;
de151cf6 1815
c5ad54cf
JL
1816 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1817 /* Overriding existing pages in partial view does not cause
1818 * us any trouble as TLBs are still valid because the fault
1819 * is due to userspace losing part of the mapping or never
1820 * having accessed it before (at this partials' range).
1821 */
1822 unsigned long base = vma->vm_start +
1823 (view.params.partial.offset << PAGE_SHIFT);
1824 unsigned int i;
b90b91d8 1825
c5ad54cf
JL
1826 for (i = 0; i < view.params.partial.size; i++) {
1827 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1828 if (ret)
1829 break;
1830 }
1831
1832 obj->fault_mappable = true;
c5ad54cf
JL
1833 } else {
1834 if (!obj->fault_mappable) {
1835 unsigned long size = min_t(unsigned long,
1836 vma->vm_end - vma->vm_start,
1837 obj->base.size);
1838 int i;
1839
1840 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1841 ret = vm_insert_pfn(vma,
1842 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1843 pfn + i);
1844 if (ret)
1845 break;
1846 }
1847
1848 obj->fault_mappable = true;
1849 } else
1850 ret = vm_insert_pfn(vma,
1851 (unsigned long)vmf->virtual_address,
1852 pfn + page_offset);
1853 }
c9839303 1854unpin:
c5ad54cf 1855 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1856unlock:
de151cf6 1857 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1858out:
de151cf6 1859 switch (ret) {
d9bc7e9f 1860 case -EIO:
2232f031
DV
1861 /*
1862 * We eat errors when the gpu is terminally wedged to avoid
1863 * userspace unduly crashing (gl has no provisions for mmaps to
1864 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1865 * and so needs to be reported.
1866 */
1867 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1868 ret = VM_FAULT_SIGBUS;
1869 break;
1870 }
045e769a 1871 case -EAGAIN:
571c608d
DV
1872 /*
1873 * EAGAIN means the gpu is hung and we'll wait for the error
1874 * handler to reset everything when re-faulting in
1875 * i915_mutex_lock_interruptible.
d9bc7e9f 1876 */
c715089f
CW
1877 case 0:
1878 case -ERESTARTSYS:
bed636ab 1879 case -EINTR:
e79e0fe3
DR
1880 case -EBUSY:
1881 /*
1882 * EBUSY is ok: this just means that another thread
1883 * already did the job.
1884 */
f65c9168
PZ
1885 ret = VM_FAULT_NOPAGE;
1886 break;
de151cf6 1887 case -ENOMEM:
f65c9168
PZ
1888 ret = VM_FAULT_OOM;
1889 break;
a7c2e1aa 1890 case -ENOSPC:
45d67817 1891 case -EFAULT:
f65c9168
PZ
1892 ret = VM_FAULT_SIGBUS;
1893 break;
de151cf6 1894 default:
a7c2e1aa 1895 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1896 ret = VM_FAULT_SIGBUS;
1897 break;
de151cf6 1898 }
f65c9168
PZ
1899
1900 intel_runtime_pm_put(dev_priv);
1901 return ret;
de151cf6
JB
1902}
1903
901782b2
CW
1904/**
1905 * i915_gem_release_mmap - remove physical page mappings
1906 * @obj: obj in question
1907 *
af901ca1 1908 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1909 * relinquish ownership of the pages back to the system.
1910 *
1911 * It is vital that we remove the page mapping if we have mapped a tiled
1912 * object through the GTT and then lose the fence register due to
1913 * resource pressure. Similarly if the object has been moved out of the
1914 * aperture, than pages mapped into userspace must be revoked. Removing the
1915 * mapping will then trigger a page fault on the next user access, allowing
1916 * fixup by i915_gem_fault().
1917 */
d05ca301 1918void
05394f39 1919i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1920{
6299f992
CW
1921 if (!obj->fault_mappable)
1922 return;
901782b2 1923
6796cb16
DH
1924 drm_vma_node_unmap(&obj->base.vma_node,
1925 obj->base.dev->anon_inode->i_mapping);
6299f992 1926 obj->fault_mappable = false;
901782b2
CW
1927}
1928
eedd10f4
CW
1929void
1930i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1931{
1932 struct drm_i915_gem_object *obj;
1933
1934 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1935 i915_gem_release_mmap(obj);
1936}
1937
0fa87796 1938uint32_t
e28f8711 1939i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1940{
e28f8711 1941 uint32_t gtt_size;
92b88aeb
CW
1942
1943 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1944 tiling_mode == I915_TILING_NONE)
1945 return size;
92b88aeb
CW
1946
1947 /* Previous chips need a power-of-two fence region when tiling */
1948 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1949 gtt_size = 1024*1024;
92b88aeb 1950 else
e28f8711 1951 gtt_size = 512*1024;
92b88aeb 1952
e28f8711
CW
1953 while (gtt_size < size)
1954 gtt_size <<= 1;
92b88aeb 1955
e28f8711 1956 return gtt_size;
92b88aeb
CW
1957}
1958
de151cf6
JB
1959/**
1960 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1961 * @obj: object to check
1962 *
1963 * Return the required GTT alignment for an object, taking into account
5e783301 1964 * potential fence register mapping.
de151cf6 1965 */
d865110c
ID
1966uint32_t
1967i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1968 int tiling_mode, bool fenced)
de151cf6 1969{
de151cf6
JB
1970 /*
1971 * Minimum alignment is 4k (GTT page size), but might be greater
1972 * if a fence register is needed for the object.
1973 */
d865110c 1974 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1975 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1976 return 4096;
1977
a00b10c3
CW
1978 /*
1979 * Previous chips need to be aligned to the size of the smallest
1980 * fence register that can contain the object.
1981 */
e28f8711 1982 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1983}
1984
d8cb5086
CW
1985static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1986{
1987 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1988 int ret;
1989
0de23977 1990 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1991 return 0;
1992
da494d7c
DV
1993 dev_priv->mm.shrinker_no_lock_stealing = true;
1994
d8cb5086
CW
1995 ret = drm_gem_create_mmap_offset(&obj->base);
1996 if (ret != -ENOSPC)
da494d7c 1997 goto out;
d8cb5086
CW
1998
1999 /* Badly fragmented mmap space? The only way we can recover
2000 * space is by destroying unwanted objects. We can't randomly release
2001 * mmap_offsets as userspace expects them to be persistent for the
2002 * lifetime of the objects. The closest we can is to release the
2003 * offsets on purgeable objects by truncating it and marking it purged,
2004 * which prevents userspace from ever using that object again.
2005 */
21ab4e74
CW
2006 i915_gem_shrink(dev_priv,
2007 obj->base.size >> PAGE_SHIFT,
2008 I915_SHRINK_BOUND |
2009 I915_SHRINK_UNBOUND |
2010 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2011 ret = drm_gem_create_mmap_offset(&obj->base);
2012 if (ret != -ENOSPC)
da494d7c 2013 goto out;
d8cb5086
CW
2014
2015 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2016 ret = drm_gem_create_mmap_offset(&obj->base);
2017out:
2018 dev_priv->mm.shrinker_no_lock_stealing = false;
2019
2020 return ret;
d8cb5086
CW
2021}
2022
2023static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2024{
d8cb5086
CW
2025 drm_gem_free_mmap_offset(&obj->base);
2026}
2027
da6b51d0 2028int
ff72145b
DA
2029i915_gem_mmap_gtt(struct drm_file *file,
2030 struct drm_device *dev,
da6b51d0 2031 uint32_t handle,
ff72145b 2032 uint64_t *offset)
de151cf6 2033{
05394f39 2034 struct drm_i915_gem_object *obj;
de151cf6
JB
2035 int ret;
2036
76c1dec1 2037 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2038 if (ret)
76c1dec1 2039 return ret;
de151cf6 2040
ff72145b 2041 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2042 if (&obj->base == NULL) {
1d7cfea1
CW
2043 ret = -ENOENT;
2044 goto unlock;
2045 }
de151cf6 2046
05394f39 2047 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2048 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2049 ret = -EFAULT;
1d7cfea1 2050 goto out;
ab18282d
CW
2051 }
2052
d8cb5086
CW
2053 ret = i915_gem_object_create_mmap_offset(obj);
2054 if (ret)
2055 goto out;
de151cf6 2056
0de23977 2057 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2058
1d7cfea1 2059out:
05394f39 2060 drm_gem_object_unreference(&obj->base);
1d7cfea1 2061unlock:
de151cf6 2062 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2063 return ret;
de151cf6
JB
2064}
2065
ff72145b
DA
2066/**
2067 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2068 * @dev: DRM device
2069 * @data: GTT mapping ioctl data
2070 * @file: GEM object info
2071 *
2072 * Simply returns the fake offset to userspace so it can mmap it.
2073 * The mmap call will end up in drm_gem_mmap(), which will set things
2074 * up so we can get faults in the handler above.
2075 *
2076 * The fault handler will take care of binding the object into the GTT
2077 * (since it may have been evicted to make room for something), allocating
2078 * a fence register, and mapping the appropriate aperture address into
2079 * userspace.
2080 */
2081int
2082i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2083 struct drm_file *file)
2084{
2085 struct drm_i915_gem_mmap_gtt *args = data;
2086
da6b51d0 2087 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2088}
2089
225067ee
DV
2090/* Immediately discard the backing storage */
2091static void
2092i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2093{
4d6294bf 2094 i915_gem_object_free_mmap_offset(obj);
1286ff73 2095
4d6294bf
CW
2096 if (obj->base.filp == NULL)
2097 return;
e5281ccd 2098
225067ee
DV
2099 /* Our goal here is to return as much of the memory as
2100 * is possible back to the system as we are called from OOM.
2101 * To do this we must instruct the shmfs to drop all of its
2102 * backing pages, *now*.
2103 */
5537252b 2104 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2105 obj->madv = __I915_MADV_PURGED;
2106}
e5281ccd 2107
5537252b
CW
2108/* Try to discard unwanted pages */
2109static void
2110i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2111{
5537252b
CW
2112 struct address_space *mapping;
2113
2114 switch (obj->madv) {
2115 case I915_MADV_DONTNEED:
2116 i915_gem_object_truncate(obj);
2117 case __I915_MADV_PURGED:
2118 return;
2119 }
2120
2121 if (obj->base.filp == NULL)
2122 return;
2123
2124 mapping = file_inode(obj->base.filp)->i_mapping,
2125 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2126}
2127
5cdf5881 2128static void
05394f39 2129i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2130{
90797e6d
ID
2131 struct sg_page_iter sg_iter;
2132 int ret;
1286ff73 2133
05394f39 2134 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2135
6c085a72
CW
2136 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2137 if (ret) {
2138 /* In the event of a disaster, abandon all caches and
2139 * hope for the best.
2140 */
2141 WARN_ON(ret != -EIO);
2c22569b 2142 i915_gem_clflush_object(obj, true);
6c085a72
CW
2143 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2144 }
2145
e2273302
ID
2146 i915_gem_gtt_finish_object(obj);
2147
6dacfd2f 2148 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2149 i915_gem_object_save_bit_17_swizzle(obj);
2150
05394f39
CW
2151 if (obj->madv == I915_MADV_DONTNEED)
2152 obj->dirty = 0;
3ef94daa 2153
90797e6d 2154 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2155 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2156
05394f39 2157 if (obj->dirty)
9da3da66 2158 set_page_dirty(page);
3ef94daa 2159
05394f39 2160 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2161 mark_page_accessed(page);
3ef94daa 2162
9da3da66 2163 page_cache_release(page);
3ef94daa 2164 }
05394f39 2165 obj->dirty = 0;
673a394b 2166
9da3da66
CW
2167 sg_free_table(obj->pages);
2168 kfree(obj->pages);
37e680a1 2169}
6c085a72 2170
dd624afd 2171int
37e680a1
CW
2172i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2173{
2174 const struct drm_i915_gem_object_ops *ops = obj->ops;
2175
2f745ad3 2176 if (obj->pages == NULL)
37e680a1
CW
2177 return 0;
2178
a5570178
CW
2179 if (obj->pages_pin_count)
2180 return -EBUSY;
2181
9843877d 2182 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2183
a2165e31
CW
2184 /* ->put_pages might need to allocate memory for the bit17 swizzle
2185 * array, hence protect them from being reaped by removing them from gtt
2186 * lists early. */
35c20a60 2187 list_del(&obj->global_list);
a2165e31 2188
37e680a1 2189 ops->put_pages(obj);
05394f39 2190 obj->pages = NULL;
37e680a1 2191
5537252b 2192 i915_gem_object_invalidate(obj);
6c085a72
CW
2193
2194 return 0;
2195}
2196
37e680a1 2197static int
6c085a72 2198i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2199{
6c085a72 2200 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2201 int page_count, i;
2202 struct address_space *mapping;
9da3da66
CW
2203 struct sg_table *st;
2204 struct scatterlist *sg;
90797e6d 2205 struct sg_page_iter sg_iter;
e5281ccd 2206 struct page *page;
90797e6d 2207 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2208 int ret;
6c085a72 2209 gfp_t gfp;
e5281ccd 2210
6c085a72
CW
2211 /* Assert that the object is not currently in any GPU domain. As it
2212 * wasn't in the GTT, there shouldn't be any way it could have been in
2213 * a GPU cache
2214 */
2215 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2216 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2217
9da3da66
CW
2218 st = kmalloc(sizeof(*st), GFP_KERNEL);
2219 if (st == NULL)
2220 return -ENOMEM;
2221
05394f39 2222 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2223 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2224 kfree(st);
e5281ccd 2225 return -ENOMEM;
9da3da66 2226 }
e5281ccd 2227
9da3da66
CW
2228 /* Get the list of pages out of our struct file. They'll be pinned
2229 * at this point until we release them.
2230 *
2231 * Fail silently without starting the shrinker
2232 */
496ad9aa 2233 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2234 gfp = mapping_gfp_mask(mapping);
caf49191 2235 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2236 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2237 sg = st->sgl;
2238 st->nents = 0;
2239 for (i = 0; i < page_count; i++) {
6c085a72
CW
2240 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2241 if (IS_ERR(page)) {
21ab4e74
CW
2242 i915_gem_shrink(dev_priv,
2243 page_count,
2244 I915_SHRINK_BOUND |
2245 I915_SHRINK_UNBOUND |
2246 I915_SHRINK_PURGEABLE);
6c085a72
CW
2247 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2248 }
2249 if (IS_ERR(page)) {
2250 /* We've tried hard to allocate the memory by reaping
2251 * our own buffer, now let the real VM do its job and
2252 * go down in flames if truly OOM.
2253 */
6c085a72 2254 i915_gem_shrink_all(dev_priv);
f461d1be 2255 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2256 if (IS_ERR(page)) {
2257 ret = PTR_ERR(page);
6c085a72 2258 goto err_pages;
e2273302 2259 }
6c085a72 2260 }
426729dc
KRW
2261#ifdef CONFIG_SWIOTLB
2262 if (swiotlb_nr_tbl()) {
2263 st->nents++;
2264 sg_set_page(sg, page, PAGE_SIZE, 0);
2265 sg = sg_next(sg);
2266 continue;
2267 }
2268#endif
90797e6d
ID
2269 if (!i || page_to_pfn(page) != last_pfn + 1) {
2270 if (i)
2271 sg = sg_next(sg);
2272 st->nents++;
2273 sg_set_page(sg, page, PAGE_SIZE, 0);
2274 } else {
2275 sg->length += PAGE_SIZE;
2276 }
2277 last_pfn = page_to_pfn(page);
3bbbe706
DV
2278
2279 /* Check that the i965g/gm workaround works. */
2280 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2281 }
426729dc
KRW
2282#ifdef CONFIG_SWIOTLB
2283 if (!swiotlb_nr_tbl())
2284#endif
2285 sg_mark_end(sg);
74ce6b6c
CW
2286 obj->pages = st;
2287
e2273302
ID
2288 ret = i915_gem_gtt_prepare_object(obj);
2289 if (ret)
2290 goto err_pages;
2291
6dacfd2f 2292 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2293 i915_gem_object_do_bit_17_swizzle(obj);
2294
656bfa3a
DV
2295 if (obj->tiling_mode != I915_TILING_NONE &&
2296 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2297 i915_gem_object_pin_pages(obj);
2298
e5281ccd
CW
2299 return 0;
2300
2301err_pages:
90797e6d
ID
2302 sg_mark_end(sg);
2303 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2304 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2305 sg_free_table(st);
2306 kfree(st);
0820baf3
CW
2307
2308 /* shmemfs first checks if there is enough memory to allocate the page
2309 * and reports ENOSPC should there be insufficient, along with the usual
2310 * ENOMEM for a genuine allocation failure.
2311 *
2312 * We use ENOSPC in our driver to mean that we have run out of aperture
2313 * space and so want to translate the error from shmemfs back to our
2314 * usual understanding of ENOMEM.
2315 */
e2273302
ID
2316 if (ret == -ENOSPC)
2317 ret = -ENOMEM;
2318
2319 return ret;
673a394b
EA
2320}
2321
37e680a1
CW
2322/* Ensure that the associated pages are gathered from the backing storage
2323 * and pinned into our object. i915_gem_object_get_pages() may be called
2324 * multiple times before they are released by a single call to
2325 * i915_gem_object_put_pages() - once the pages are no longer referenced
2326 * either as a result of memory pressure (reaping pages under the shrinker)
2327 * or as the object is itself released.
2328 */
2329int
2330i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2331{
2332 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2333 const struct drm_i915_gem_object_ops *ops = obj->ops;
2334 int ret;
2335
2f745ad3 2336 if (obj->pages)
37e680a1
CW
2337 return 0;
2338
43e28f09 2339 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2340 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2341 return -EFAULT;
43e28f09
CW
2342 }
2343
a5570178
CW
2344 BUG_ON(obj->pages_pin_count);
2345
37e680a1
CW
2346 ret = ops->get_pages(obj);
2347 if (ret)
2348 return ret;
2349
35c20a60 2350 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2351
2352 obj->get_page.sg = obj->pages->sgl;
2353 obj->get_page.last = 0;
2354
37e680a1 2355 return 0;
673a394b
EA
2356}
2357
b4716185 2358void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2359 struct drm_i915_gem_request *req)
673a394b 2360{
b4716185 2361 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2362 struct intel_engine_cs *ring;
2363
2364 ring = i915_gem_request_get_ring(req);
673a394b
EA
2365
2366 /* Add a reference if we're newly entering the active list. */
b4716185 2367 if (obj->active == 0)
05394f39 2368 drm_gem_object_reference(&obj->base);
b4716185 2369 obj->active |= intel_ring_flag(ring);
e35a41de 2370
b4716185 2371 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2372 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2373
b4716185 2374 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2375}
2376
b4716185
CW
2377static void
2378i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2379{
b4716185
CW
2380 RQ_BUG_ON(obj->last_write_req == NULL);
2381 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2382
2383 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2384 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2385}
2386
caea7476 2387static void
b4716185 2388i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2389{
feb822cf 2390 struct i915_vma *vma;
ce44b0ea 2391
b4716185
CW
2392 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2393 RQ_BUG_ON(!(obj->active & (1 << ring)));
2394
2395 list_del_init(&obj->ring_list[ring]);
2396 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2397
2398 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2399 i915_gem_object_retire__write(obj);
2400
2401 obj->active &= ~(1 << ring);
2402 if (obj->active)
2403 return;
caea7476 2404
fe14d5f4
TU
2405 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2406 if (!list_empty(&vma->mm_list))
2407 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2408 }
caea7476 2409
97b2a6a1 2410 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2411 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2412}
2413
9d773091 2414static int
fca26bb4 2415i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2416{
9d773091 2417 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2418 struct intel_engine_cs *ring;
9d773091 2419 int ret, i, j;
53d227f2 2420
107f27a5 2421 /* Carefully retire all requests without writing to the rings */
9d773091 2422 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2423 ret = intel_ring_idle(ring);
2424 if (ret)
2425 return ret;
9d773091 2426 }
9d773091 2427 i915_gem_retire_requests(dev);
107f27a5
CW
2428
2429 /* Finally reset hw state */
9d773091 2430 for_each_ring(ring, dev_priv, i) {
fca26bb4 2431 intel_ring_init_seqno(ring, seqno);
498d2ac1 2432
ebc348b2
BW
2433 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2434 ring->semaphore.sync_seqno[j] = 0;
9d773091 2435 }
53d227f2 2436
9d773091 2437 return 0;
53d227f2
DV
2438}
2439
fca26bb4
MK
2440int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2441{
2442 struct drm_i915_private *dev_priv = dev->dev_private;
2443 int ret;
2444
2445 if (seqno == 0)
2446 return -EINVAL;
2447
2448 /* HWS page needs to be set less than what we
2449 * will inject to ring
2450 */
2451 ret = i915_gem_init_seqno(dev, seqno - 1);
2452 if (ret)
2453 return ret;
2454
2455 /* Carefully set the last_seqno value so that wrap
2456 * detection still works
2457 */
2458 dev_priv->next_seqno = seqno;
2459 dev_priv->last_seqno = seqno - 1;
2460 if (dev_priv->last_seqno == 0)
2461 dev_priv->last_seqno--;
2462
2463 return 0;
2464}
2465
9d773091
CW
2466int
2467i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2468{
9d773091
CW
2469 struct drm_i915_private *dev_priv = dev->dev_private;
2470
2471 /* reserve 0 for non-seqno */
2472 if (dev_priv->next_seqno == 0) {
fca26bb4 2473 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2474 if (ret)
2475 return ret;
53d227f2 2476
9d773091
CW
2477 dev_priv->next_seqno = 1;
2478 }
53d227f2 2479
f72b3435 2480 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2481 return 0;
53d227f2
DV
2482}
2483
bf7dc5b7
JH
2484/*
2485 * NB: This function is not allowed to fail. Doing so would mean the the
2486 * request is not being tracked for completion but the work itself is
2487 * going to happen on the hardware. This would be a Bad Thing(tm).
2488 */
75289874 2489void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2490 struct drm_i915_gem_object *obj,
2491 bool flush_caches)
673a394b 2492{
75289874
JH
2493 struct intel_engine_cs *ring;
2494 struct drm_i915_private *dev_priv;
48e29f55 2495 struct intel_ringbuffer *ringbuf;
6d3d8274 2496 u32 request_start;
3cce469c
CW
2497 int ret;
2498
48e29f55 2499 if (WARN_ON(request == NULL))
bf7dc5b7 2500 return;
48e29f55 2501
75289874
JH
2502 ring = request->ring;
2503 dev_priv = ring->dev->dev_private;
2504 ringbuf = request->ringbuf;
2505
29b1b415
JH
2506 /*
2507 * To ensure that this call will not fail, space for its emissions
2508 * should already have been reserved in the ring buffer. Let the ring
2509 * know that it is time to use that space up.
2510 */
2511 intel_ring_reserved_space_use(ringbuf);
2512
48e29f55 2513 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2514 /*
2515 * Emit any outstanding flushes - execbuf can fail to emit the flush
2516 * after having emitted the batchbuffer command. Hence we need to fix
2517 * things up similar to emitting the lazy request. The difference here
2518 * is that the flush _must_ happen before the next request, no matter
2519 * what.
2520 */
5b4a60c2
JH
2521 if (flush_caches) {
2522 if (i915.enable_execlists)
4866d729 2523 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2524 else
4866d729 2525 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2526 /* Not allowed to fail! */
2527 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2528 }
cc889e0f 2529
a71d8d94
CW
2530 /* Record the position of the start of the request so that
2531 * should we detect the updated seqno part-way through the
2532 * GPU processing the request, we never over-estimate the
2533 * position of the head.
2534 */
6d3d8274 2535 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2536
bf7dc5b7 2537 if (i915.enable_execlists)
c4e76638 2538 ret = ring->emit_request(request);
bf7dc5b7 2539 else {
ee044a88 2540 ret = ring->add_request(request);
53292cdb
MT
2541
2542 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2543 }
bf7dc5b7
JH
2544 /* Not allowed to fail! */
2545 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2546
7d736f4f 2547 request->head = request_start;
7d736f4f
MK
2548
2549 /* Whilst this request exists, batch_obj will be on the
2550 * active_list, and so will hold the active reference. Only when this
2551 * request is retired will the the batch_obj be moved onto the
2552 * inactive_list and lose its active reference. Hence we do not need
2553 * to explicitly hold another reference here.
2554 */
9a7e0c2a 2555 request->batch_obj = obj;
0e50e96b 2556
673a394b 2557 request->emitted_jiffies = jiffies;
94f7bbe1 2558 ring->last_submitted_seqno = request->seqno;
852835f3 2559 list_add_tail(&request->list, &ring->request_list);
673a394b 2560
74328ee5 2561 trace_i915_gem_request_add(request);
db53a302 2562
87255483 2563 i915_queue_hangcheck(ring->dev);
10cd45b6 2564
87255483
DV
2565 queue_delayed_work(dev_priv->wq,
2566 &dev_priv->mm.retire_work,
2567 round_jiffies_up_relative(HZ));
2568 intel_mark_busy(dev_priv->dev);
cc889e0f 2569
29b1b415
JH
2570 /* Sanity check that the reserved size was large enough. */
2571 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2572}
2573
939fd762 2574static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2575 const struct intel_context *ctx)
be62acb4 2576{
44e2c070 2577 unsigned long elapsed;
be62acb4 2578
44e2c070
MK
2579 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2580
2581 if (ctx->hang_stats.banned)
be62acb4
MK
2582 return true;
2583
676fa572
CW
2584 if (ctx->hang_stats.ban_period_seconds &&
2585 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2586 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2587 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2588 return true;
88b4aa87
MK
2589 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2590 if (i915_stop_ring_allow_warn(dev_priv))
2591 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2592 return true;
3fac8978 2593 }
be62acb4
MK
2594 }
2595
2596 return false;
2597}
2598
939fd762 2599static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2600 struct intel_context *ctx,
b6b0fac0 2601 const bool guilty)
aa60c664 2602{
44e2c070
MK
2603 struct i915_ctx_hang_stats *hs;
2604
2605 if (WARN_ON(!ctx))
2606 return;
aa60c664 2607
44e2c070
MK
2608 hs = &ctx->hang_stats;
2609
2610 if (guilty) {
939fd762 2611 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2612 hs->batch_active++;
2613 hs->guilty_ts = get_seconds();
2614 } else {
2615 hs->batch_pending++;
aa60c664
MK
2616 }
2617}
2618
abfe262a
JH
2619void i915_gem_request_free(struct kref *req_ref)
2620{
2621 struct drm_i915_gem_request *req = container_of(req_ref,
2622 typeof(*req), ref);
2623 struct intel_context *ctx = req->ctx;
2624
fcfa423c
JH
2625 if (req->file_priv)
2626 i915_gem_request_remove_from_client(req);
2627
0794aed3
TD
2628 if (ctx) {
2629 if (i915.enable_execlists) {
8ba319da
MK
2630 if (ctx != req->ring->default_context)
2631 intel_lr_context_unpin(req);
0794aed3 2632 }
abfe262a 2633
dcb4c12a
OM
2634 i915_gem_context_unreference(ctx);
2635 }
abfe262a 2636
efab6d8d 2637 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2638}
2639
6689cb2b 2640int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2641 struct intel_context *ctx,
2642 struct drm_i915_gem_request **req_out)
6689cb2b 2643{
efab6d8d 2644 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2645 struct drm_i915_gem_request *req;
6689cb2b 2646 int ret;
6689cb2b 2647
217e46b5
JH
2648 if (!req_out)
2649 return -EINVAL;
2650
bccca494 2651 *req_out = NULL;
6689cb2b 2652
eed29a5b
DV
2653 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2654 if (req == NULL)
6689cb2b
JH
2655 return -ENOMEM;
2656
eed29a5b 2657 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2658 if (ret)
2659 goto err;
6689cb2b 2660
40e895ce
JH
2661 kref_init(&req->ref);
2662 req->i915 = dev_priv;
eed29a5b 2663 req->ring = ring;
40e895ce
JH
2664 req->ctx = ctx;
2665 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2666
2667 if (i915.enable_execlists)
40e895ce 2668 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2669 else
eed29a5b 2670 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2671 if (ret) {
2672 i915_gem_context_unreference(req->ctx);
9a0c1e27 2673 goto err;
40e895ce 2674 }
6689cb2b 2675
29b1b415
JH
2676 /*
2677 * Reserve space in the ring buffer for all the commands required to
2678 * eventually emit this request. This is to guarantee that the
2679 * i915_add_request() call can't fail. Note that the reserve may need
2680 * to be redone if the request is not actually submitted straight
2681 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2682 */
ccd98fe4
JH
2683 if (i915.enable_execlists)
2684 ret = intel_logical_ring_reserve_space(req);
2685 else
2686 ret = intel_ring_reserve_space(req);
2687 if (ret) {
2688 /*
2689 * At this point, the request is fully allocated even if not
2690 * fully prepared. Thus it can be cleaned up using the proper
2691 * free code.
2692 */
2693 i915_gem_request_cancel(req);
2694 return ret;
2695 }
29b1b415 2696
bccca494 2697 *req_out = req;
6689cb2b 2698 return 0;
9a0c1e27
CW
2699
2700err:
2701 kmem_cache_free(dev_priv->requests, req);
2702 return ret;
0e50e96b
MK
2703}
2704
29b1b415
JH
2705void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2706{
2707 intel_ring_reserved_space_cancel(req->ringbuf);
2708
2709 i915_gem_request_unreference(req);
2710}
2711
8d9fc7fd 2712struct drm_i915_gem_request *
a4872ba6 2713i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2714{
4db080f9
CW
2715 struct drm_i915_gem_request *request;
2716
2717 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2718 if (i915_gem_request_completed(request, false))
4db080f9 2719 continue;
aa60c664 2720
b6b0fac0 2721 return request;
4db080f9 2722 }
b6b0fac0
MK
2723
2724 return NULL;
2725}
2726
2727static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2728 struct intel_engine_cs *ring)
b6b0fac0
MK
2729{
2730 struct drm_i915_gem_request *request;
2731 bool ring_hung;
2732
8d9fc7fd 2733 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2734
2735 if (request == NULL)
2736 return;
2737
2738 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2739
939fd762 2740 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2741
2742 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2743 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2744}
aa60c664 2745
4db080f9 2746static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2747 struct intel_engine_cs *ring)
4db080f9 2748{
dfaae392 2749 while (!list_empty(&ring->active_list)) {
05394f39 2750 struct drm_i915_gem_object *obj;
9375e446 2751
05394f39
CW
2752 obj = list_first_entry(&ring->active_list,
2753 struct drm_i915_gem_object,
b4716185 2754 ring_list[ring->id]);
9375e446 2755
b4716185 2756 i915_gem_object_retire__read(obj, ring->id);
673a394b 2757 }
1d62beea 2758
dcb4c12a
OM
2759 /*
2760 * Clear the execlists queue up before freeing the requests, as those
2761 * are the ones that keep the context and ringbuffer backing objects
2762 * pinned in place.
2763 */
2764 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2765 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2766
2767 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2768 struct drm_i915_gem_request,
dcb4c12a
OM
2769 execlist_link);
2770 list_del(&submit_req->execlist_link);
1197b4f2
MK
2771
2772 if (submit_req->ctx != ring->default_context)
8ba319da 2773 intel_lr_context_unpin(submit_req);
1197b4f2 2774
b3a38998 2775 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2776 }
2777
1d62beea
BW
2778 /*
2779 * We must free the requests after all the corresponding objects have
2780 * been moved off active lists. Which is the same order as the normal
2781 * retire_requests function does. This is important if object hold
2782 * implicit references on things like e.g. ppgtt address spaces through
2783 * the request.
2784 */
2785 while (!list_empty(&ring->request_list)) {
2786 struct drm_i915_gem_request *request;
2787
2788 request = list_first_entry(&ring->request_list,
2789 struct drm_i915_gem_request,
2790 list);
2791
b4716185 2792 i915_gem_request_retire(request);
1d62beea 2793 }
673a394b
EA
2794}
2795
19b2dbde 2796void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2797{
2798 struct drm_i915_private *dev_priv = dev->dev_private;
2799 int i;
2800
4b9de737 2801 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2802 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2803
94a335db
DV
2804 /*
2805 * Commit delayed tiling changes if we have an object still
2806 * attached to the fence, otherwise just clear the fence.
2807 */
2808 if (reg->obj) {
2809 i915_gem_object_update_fence(reg->obj, reg,
2810 reg->obj->tiling_mode);
2811 } else {
2812 i915_gem_write_fence(dev, i, NULL);
2813 }
312817a3
CW
2814 }
2815}
2816
069efc1d 2817void i915_gem_reset(struct drm_device *dev)
673a394b 2818{
77f01230 2819 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2820 struct intel_engine_cs *ring;
1ec14ad3 2821 int i;
673a394b 2822
4db080f9
CW
2823 /*
2824 * Before we free the objects from the requests, we need to inspect
2825 * them for finding the guilty party. As the requests only borrow
2826 * their reference to the objects, the inspection must be done first.
2827 */
2828 for_each_ring(ring, dev_priv, i)
2829 i915_gem_reset_ring_status(dev_priv, ring);
2830
b4519513 2831 for_each_ring(ring, dev_priv, i)
4db080f9 2832 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2833
acce9ffa
BW
2834 i915_gem_context_reset(dev);
2835
19b2dbde 2836 i915_gem_restore_fences(dev);
b4716185
CW
2837
2838 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2839}
2840
2841/**
2842 * This function clears the request list as sequence numbers are passed.
2843 */
1cf0ba14 2844void
a4872ba6 2845i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2846{
db53a302 2847 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2848
832a3aad
CW
2849 /* Retire requests first as we use it above for the early return.
2850 * If we retire requests last, we may use a later seqno and so clear
2851 * the requests lists without clearing the active list, leading to
2852 * confusion.
e9103038 2853 */
852835f3 2854 while (!list_empty(&ring->request_list)) {
673a394b 2855 struct drm_i915_gem_request *request;
673a394b 2856
852835f3 2857 request = list_first_entry(&ring->request_list,
673a394b
EA
2858 struct drm_i915_gem_request,
2859 list);
673a394b 2860
1b5a433a 2861 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2862 break;
2863
b4716185 2864 i915_gem_request_retire(request);
b84d5f0c 2865 }
673a394b 2866
832a3aad
CW
2867 /* Move any buffers on the active list that are no longer referenced
2868 * by the ringbuffer to the flushing/inactive lists as appropriate,
2869 * before we free the context associated with the requests.
2870 */
2871 while (!list_empty(&ring->active_list)) {
2872 struct drm_i915_gem_object *obj;
2873
2874 obj = list_first_entry(&ring->active_list,
2875 struct drm_i915_gem_object,
b4716185 2876 ring_list[ring->id]);
832a3aad 2877
b4716185 2878 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2879 break;
2880
b4716185 2881 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2882 }
2883
581c26e8
JH
2884 if (unlikely(ring->trace_irq_req &&
2885 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2886 ring->irq_put(ring);
581c26e8 2887 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2888 }
23bc5982 2889
db53a302 2890 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2891}
2892
b29c19b6 2893bool
b09a1fec
CW
2894i915_gem_retire_requests(struct drm_device *dev)
2895{
3e31c6c0 2896 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2897 struct intel_engine_cs *ring;
b29c19b6 2898 bool idle = true;
1ec14ad3 2899 int i;
b09a1fec 2900
b29c19b6 2901 for_each_ring(ring, dev_priv, i) {
b4519513 2902 i915_gem_retire_requests_ring(ring);
b29c19b6 2903 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2904 if (i915.enable_execlists) {
2905 unsigned long flags;
2906
2907 spin_lock_irqsave(&ring->execlist_lock, flags);
2908 idle &= list_empty(&ring->execlist_queue);
2909 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2910
2911 intel_execlists_retire_requests(ring);
2912 }
b29c19b6
CW
2913 }
2914
2915 if (idle)
2916 mod_delayed_work(dev_priv->wq,
2917 &dev_priv->mm.idle_work,
2918 msecs_to_jiffies(100));
2919
2920 return idle;
b09a1fec
CW
2921}
2922
75ef9da2 2923static void
673a394b
EA
2924i915_gem_retire_work_handler(struct work_struct *work)
2925{
b29c19b6
CW
2926 struct drm_i915_private *dev_priv =
2927 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2928 struct drm_device *dev = dev_priv->dev;
0a58705b 2929 bool idle;
673a394b 2930
891b48cf 2931 /* Come back later if the device is busy... */
b29c19b6
CW
2932 idle = false;
2933 if (mutex_trylock(&dev->struct_mutex)) {
2934 idle = i915_gem_retire_requests(dev);
2935 mutex_unlock(&dev->struct_mutex);
673a394b 2936 }
b29c19b6 2937 if (!idle)
bcb45086
CW
2938 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2939 round_jiffies_up_relative(HZ));
b29c19b6 2940}
0a58705b 2941
b29c19b6
CW
2942static void
2943i915_gem_idle_work_handler(struct work_struct *work)
2944{
2945 struct drm_i915_private *dev_priv =
2946 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2947 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2948 struct intel_engine_cs *ring;
2949 int i;
b29c19b6 2950
423795cb
CW
2951 for_each_ring(ring, dev_priv, i)
2952 if (!list_empty(&ring->request_list))
2953 return;
35c94185
CW
2954
2955 intel_mark_idle(dev);
2956
2957 if (mutex_trylock(&dev->struct_mutex)) {
2958 struct intel_engine_cs *ring;
2959 int i;
2960
2961 for_each_ring(ring, dev_priv, i)
2962 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2963
35c94185
CW
2964 mutex_unlock(&dev->struct_mutex);
2965 }
673a394b
EA
2966}
2967
30dfebf3
DV
2968/**
2969 * Ensures that an object will eventually get non-busy by flushing any required
2970 * write domains, emitting any outstanding lazy request and retiring and
2971 * completed requests.
2972 */
2973static int
2974i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2975{
a5ac0f90 2976 int i;
b4716185
CW
2977
2978 if (!obj->active)
2979 return 0;
30dfebf3 2980
b4716185
CW
2981 for (i = 0; i < I915_NUM_RINGS; i++) {
2982 struct drm_i915_gem_request *req;
41c52415 2983
b4716185
CW
2984 req = obj->last_read_req[i];
2985 if (req == NULL)
2986 continue;
2987
2988 if (list_empty(&req->list))
2989 goto retire;
2990
b4716185
CW
2991 if (i915_gem_request_completed(req, true)) {
2992 __i915_gem_request_retire__upto(req);
2993retire:
2994 i915_gem_object_retire__read(obj, i);
2995 }
30dfebf3
DV
2996 }
2997
2998 return 0;
2999}
3000
23ba4fd0
BW
3001/**
3002 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3003 * @DRM_IOCTL_ARGS: standard ioctl arguments
3004 *
3005 * Returns 0 if successful, else an error is returned with the remaining time in
3006 * the timeout parameter.
3007 * -ETIME: object is still busy after timeout
3008 * -ERESTARTSYS: signal interrupted the wait
3009 * -ENONENT: object doesn't exist
3010 * Also possible, but rare:
3011 * -EAGAIN: GPU wedged
3012 * -ENOMEM: damn
3013 * -ENODEV: Internal IRQ fail
3014 * -E?: The add request failed
3015 *
3016 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3017 * non-zero timeout parameter the wait ioctl will wait for the given number of
3018 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3019 * without holding struct_mutex the object may become re-busied before this
3020 * function completes. A similar but shorter * race condition exists in the busy
3021 * ioctl
3022 */
3023int
3024i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3025{
3e31c6c0 3026 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3027 struct drm_i915_gem_wait *args = data;
3028 struct drm_i915_gem_object *obj;
b4716185 3029 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3030 unsigned reset_counter;
b4716185
CW
3031 int i, n = 0;
3032 int ret;
23ba4fd0 3033
11b5d511
DV
3034 if (args->flags != 0)
3035 return -EINVAL;
3036
23ba4fd0
BW
3037 ret = i915_mutex_lock_interruptible(dev);
3038 if (ret)
3039 return ret;
3040
3041 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3042 if (&obj->base == NULL) {
3043 mutex_unlock(&dev->struct_mutex);
3044 return -ENOENT;
3045 }
3046
30dfebf3
DV
3047 /* Need to make sure the object gets inactive eventually. */
3048 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3049 if (ret)
3050 goto out;
3051
b4716185 3052 if (!obj->active)
97b2a6a1 3053 goto out;
23ba4fd0 3054
23ba4fd0 3055 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3056 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3057 */
762e4583 3058 if (args->timeout_ns == 0) {
23ba4fd0
BW
3059 ret = -ETIME;
3060 goto out;
3061 }
3062
3063 drm_gem_object_unreference(&obj->base);
f69061be 3064 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3065
3066 for (i = 0; i < I915_NUM_RINGS; i++) {
3067 if (obj->last_read_req[i] == NULL)
3068 continue;
3069
3070 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3071 }
3072
23ba4fd0
BW
3073 mutex_unlock(&dev->struct_mutex);
3074
b4716185
CW
3075 for (i = 0; i < n; i++) {
3076 if (ret == 0)
3077 ret = __i915_wait_request(req[i], reset_counter, true,
3078 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3079 file->driver_priv);
3080 i915_gem_request_unreference__unlocked(req[i]);
3081 }
ff865885 3082 return ret;
23ba4fd0
BW
3083
3084out:
3085 drm_gem_object_unreference(&obj->base);
3086 mutex_unlock(&dev->struct_mutex);
3087 return ret;
3088}
3089
b4716185
CW
3090static int
3091__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3092 struct intel_engine_cs *to,
91af127f
JH
3093 struct drm_i915_gem_request *from_req,
3094 struct drm_i915_gem_request **to_req)
b4716185
CW
3095{
3096 struct intel_engine_cs *from;
3097 int ret;
3098
91af127f 3099 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3100 if (to == from)
3101 return 0;
3102
91af127f 3103 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3104 return 0;
3105
b4716185 3106 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3107 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3108 ret = __i915_wait_request(from_req,
a6f766f3
CW
3109 atomic_read(&i915->gpu_error.reset_counter),
3110 i915->mm.interruptible,
3111 NULL,
3112 &i915->rps.semaphores);
b4716185
CW
3113 if (ret)
3114 return ret;
3115
91af127f 3116 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3117 } else {
3118 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3119 u32 seqno = i915_gem_request_get_seqno(from_req);
3120
3121 WARN_ON(!to_req);
b4716185
CW
3122
3123 if (seqno <= from->semaphore.sync_seqno[idx])
3124 return 0;
3125
91af127f
JH
3126 if (*to_req == NULL) {
3127 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3128 if (ret)
3129 return ret;
3130 }
3131
599d924c
JH
3132 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3133 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3134 if (ret)
3135 return ret;
3136
3137 /* We use last_read_req because sync_to()
3138 * might have just caused seqno wrap under
3139 * the radar.
3140 */
3141 from->semaphore.sync_seqno[idx] =
3142 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3143 }
3144
3145 return 0;
3146}
3147
5816d648
BW
3148/**
3149 * i915_gem_object_sync - sync an object to a ring.
3150 *
3151 * @obj: object which may be in use on another ring.
3152 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3153 * @to_req: request we wish to use the object for. See below.
3154 * This will be allocated and returned if a request is
3155 * required but not passed in.
5816d648
BW
3156 *
3157 * This code is meant to abstract object synchronization with the GPU.
3158 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3159 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3160 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3161 * into a buffer at any time, but multiple readers. To ensure each has
3162 * a coherent view of memory, we must:
3163 *
3164 * - If there is an outstanding write request to the object, the new
3165 * request must wait for it to complete (either CPU or in hw, requests
3166 * on the same ring will be naturally ordered).
3167 *
3168 * - If we are a write request (pending_write_domain is set), the new
3169 * request must wait for outstanding read requests to complete.
5816d648 3170 *
91af127f
JH
3171 * For CPU synchronisation (NULL to) no request is required. For syncing with
3172 * rings to_req must be non-NULL. However, a request does not have to be
3173 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3174 * request will be allocated automatically and returned through *to_req. Note
3175 * that it is not guaranteed that commands will be emitted (because the system
3176 * might already be idle). Hence there is no need to create a request that
3177 * might never have any work submitted. Note further that if a request is
3178 * returned in *to_req, it is the responsibility of the caller to submit
3179 * that request (after potentially adding more work to it).
3180 *
5816d648
BW
3181 * Returns 0 if successful, else propagates up the lower layer error.
3182 */
2911a35b
BW
3183int
3184i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3185 struct intel_engine_cs *to,
3186 struct drm_i915_gem_request **to_req)
2911a35b 3187{
b4716185
CW
3188 const bool readonly = obj->base.pending_write_domain == 0;
3189 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3190 int ret, i, n;
41c52415 3191
b4716185 3192 if (!obj->active)
2911a35b
BW
3193 return 0;
3194
b4716185
CW
3195 if (to == NULL)
3196 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3197
b4716185
CW
3198 n = 0;
3199 if (readonly) {
3200 if (obj->last_write_req)
3201 req[n++] = obj->last_write_req;
3202 } else {
3203 for (i = 0; i < I915_NUM_RINGS; i++)
3204 if (obj->last_read_req[i])
3205 req[n++] = obj->last_read_req[i];
3206 }
3207 for (i = 0; i < n; i++) {
91af127f 3208 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3209 if (ret)
3210 return ret;
3211 }
2911a35b 3212
b4716185 3213 return 0;
2911a35b
BW
3214}
3215
b5ffc9bc
CW
3216static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3217{
3218 u32 old_write_domain, old_read_domains;
3219
b5ffc9bc
CW
3220 /* Force a pagefault for domain tracking on next user access */
3221 i915_gem_release_mmap(obj);
3222
b97c3d9c
KP
3223 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3224 return;
3225
97c809fd
CW
3226 /* Wait for any direct GTT access to complete */
3227 mb();
3228
b5ffc9bc
CW
3229 old_read_domains = obj->base.read_domains;
3230 old_write_domain = obj->base.write_domain;
3231
3232 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3233 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3234
3235 trace_i915_gem_object_change_domain(obj,
3236 old_read_domains,
3237 old_write_domain);
3238}
3239
07fe0b12 3240int i915_vma_unbind(struct i915_vma *vma)
673a394b 3241{
07fe0b12 3242 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3244 int ret;
673a394b 3245
07fe0b12 3246 if (list_empty(&vma->vma_link))
673a394b
EA
3247 return 0;
3248
0ff501cb
DV
3249 if (!drm_mm_node_allocated(&vma->node)) {
3250 i915_gem_vma_destroy(vma);
0ff501cb
DV
3251 return 0;
3252 }
433544bd 3253
d7f46fc4 3254 if (vma->pin_count)
31d8d651 3255 return -EBUSY;
673a394b 3256
c4670ad0
CW
3257 BUG_ON(obj->pages == NULL);
3258
2e2f351d 3259 ret = i915_gem_object_wait_rendering(obj, false);
1488fc08 3260 if (ret)
a8198eea
CW
3261 return ret;
3262 /* Continue on if we fail due to EIO, the GPU is hung so we
3263 * should be safe and we need to cleanup or else we might
3264 * cause memory corruption through use-after-free.
3265 */
3266
fe14d5f4
TU
3267 if (i915_is_ggtt(vma->vm) &&
3268 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3269 i915_gem_object_finish_gtt(obj);
5323fd04 3270
8b1bc9b4
DV
3271 /* release the fence reg _after_ flushing */
3272 ret = i915_gem_object_put_fence(obj);
3273 if (ret)
3274 return ret;
3275 }
96b47b65 3276
07fe0b12 3277 trace_i915_vma_unbind(vma);
db53a302 3278
777dc5bb 3279 vma->vm->unbind_vma(vma);
5e562f1d 3280 vma->bound = 0;
6f65e29a 3281
64bf9303 3282 list_del_init(&vma->mm_list);
fe14d5f4
TU
3283 if (i915_is_ggtt(vma->vm)) {
3284 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3285 obj->map_and_fenceable = false;
3286 } else if (vma->ggtt_view.pages) {
3287 sg_free_table(vma->ggtt_view.pages);
3288 kfree(vma->ggtt_view.pages);
fe14d5f4 3289 }
016a65a3 3290 vma->ggtt_view.pages = NULL;
fe14d5f4 3291 }
673a394b 3292
2f633156
BW
3293 drm_mm_remove_node(&vma->node);
3294 i915_gem_vma_destroy(vma);
3295
3296 /* Since the unbound list is global, only move to that list if
b93dab6e 3297 * no more VMAs exist. */
e2273302 3298 if (list_empty(&obj->vma_list))
2f633156 3299 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3300
70903c3b
CW
3301 /* And finally now the object is completely decoupled from this vma,
3302 * we can drop its hold on the backing storage and allow it to be
3303 * reaped by the shrinker.
3304 */
3305 i915_gem_object_unpin_pages(obj);
3306
88241785 3307 return 0;
54cf91dc
CW
3308}
3309
b2da9fe5 3310int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3311{
3e31c6c0 3312 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3313 struct intel_engine_cs *ring;
1ec14ad3 3314 int ret, i;
4df2faf4 3315
4df2faf4 3316 /* Flush everything onto the inactive list. */
b4519513 3317 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3318 if (!i915.enable_execlists) {
73cfa865
JH
3319 struct drm_i915_gem_request *req;
3320
3321 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3322 if (ret)
3323 return ret;
73cfa865 3324
ba01cc93 3325 ret = i915_switch_context(req);
73cfa865
JH
3326 if (ret) {
3327 i915_gem_request_cancel(req);
3328 return ret;
3329 }
3330
75289874 3331 i915_add_request_no_flush(req);
ecdb5fd8 3332 }
b6c7488d 3333
3e960501 3334 ret = intel_ring_idle(ring);
1ec14ad3
CW
3335 if (ret)
3336 return ret;
3337 }
4df2faf4 3338
b4716185 3339 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3340 return 0;
4df2faf4
DV
3341}
3342
9ce079e4
CW
3343static void i965_write_fence_reg(struct drm_device *dev, int reg,
3344 struct drm_i915_gem_object *obj)
de151cf6 3345{
3e31c6c0 3346 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3347 int fence_reg;
3348 int fence_pitch_shift;
de151cf6 3349
56c844e5
ID
3350 if (INTEL_INFO(dev)->gen >= 6) {
3351 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3352 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3353 } else {
3354 fence_reg = FENCE_REG_965_0;
3355 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3356 }
3357
d18b9619
CW
3358 fence_reg += reg * 8;
3359
3360 /* To w/a incoherency with non-atomic 64-bit register updates,
3361 * we split the 64-bit update into two 32-bit writes. In order
3362 * for a partial fence not to be evaluated between writes, we
3363 * precede the update with write to turn off the fence register,
3364 * and only enable the fence as the last step.
3365 *
3366 * For extra levels of paranoia, we make sure each step lands
3367 * before applying the next step.
3368 */
3369 I915_WRITE(fence_reg, 0);
3370 POSTING_READ(fence_reg);
3371
9ce079e4 3372 if (obj) {
f343c5f6 3373 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3374 uint64_t val;
de151cf6 3375
af1a7301
BP
3376 /* Adjust fence size to match tiled area */
3377 if (obj->tiling_mode != I915_TILING_NONE) {
3378 uint32_t row_size = obj->stride *
3379 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3380 size = (size / row_size) * row_size;
3381 }
3382
f343c5f6 3383 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3384 0xfffff000) << 32;
f343c5f6 3385 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3386 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3387 if (obj->tiling_mode == I915_TILING_Y)
3388 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3389 val |= I965_FENCE_REG_VALID;
c6642782 3390
d18b9619
CW
3391 I915_WRITE(fence_reg + 4, val >> 32);
3392 POSTING_READ(fence_reg + 4);
3393
3394 I915_WRITE(fence_reg + 0, val);
3395 POSTING_READ(fence_reg);
3396 } else {
3397 I915_WRITE(fence_reg + 4, 0);
3398 POSTING_READ(fence_reg + 4);
3399 }
de151cf6
JB
3400}
3401
9ce079e4
CW
3402static void i915_write_fence_reg(struct drm_device *dev, int reg,
3403 struct drm_i915_gem_object *obj)
de151cf6 3404{
3e31c6c0 3405 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3406 u32 val;
de151cf6 3407
9ce079e4 3408 if (obj) {
f343c5f6 3409 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3410 int pitch_val;
3411 int tile_width;
c6642782 3412
f343c5f6 3413 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3414 (size & -size) != size ||
f343c5f6
BW
3415 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3416 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3417 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3418
9ce079e4
CW
3419 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3420 tile_width = 128;
3421 else
3422 tile_width = 512;
3423
3424 /* Note: pitch better be a power of two tile widths */
3425 pitch_val = obj->stride / tile_width;
3426 pitch_val = ffs(pitch_val) - 1;
3427
f343c5f6 3428 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3429 if (obj->tiling_mode == I915_TILING_Y)
3430 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3431 val |= I915_FENCE_SIZE_BITS(size);
3432 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3433 val |= I830_FENCE_REG_VALID;
3434 } else
3435 val = 0;
3436
3437 if (reg < 8)
3438 reg = FENCE_REG_830_0 + reg * 4;
3439 else
3440 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3441
3442 I915_WRITE(reg, val);
3443 POSTING_READ(reg);
de151cf6
JB
3444}
3445
9ce079e4
CW
3446static void i830_write_fence_reg(struct drm_device *dev, int reg,
3447 struct drm_i915_gem_object *obj)
de151cf6 3448{
3e31c6c0 3449 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3450 uint32_t val;
de151cf6 3451
9ce079e4 3452 if (obj) {
f343c5f6 3453 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3454 uint32_t pitch_val;
de151cf6 3455
f343c5f6 3456 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3457 (size & -size) != size ||
f343c5f6
BW
3458 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3459 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3460 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3461
9ce079e4
CW
3462 pitch_val = obj->stride / 128;
3463 pitch_val = ffs(pitch_val) - 1;
de151cf6 3464
f343c5f6 3465 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3466 if (obj->tiling_mode == I915_TILING_Y)
3467 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3468 val |= I830_FENCE_SIZE_BITS(size);
3469 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3470 val |= I830_FENCE_REG_VALID;
3471 } else
3472 val = 0;
c6642782 3473
9ce079e4
CW
3474 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3475 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3476}
3477
d0a57789
CW
3478inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3479{
3480 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3481}
3482
9ce079e4
CW
3483static void i915_gem_write_fence(struct drm_device *dev, int reg,
3484 struct drm_i915_gem_object *obj)
3485{
d0a57789
CW
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487
3488 /* Ensure that all CPU reads are completed before installing a fence
3489 * and all writes before removing the fence.
3490 */
3491 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3492 mb();
3493
94a335db
DV
3494 WARN(obj && (!obj->stride || !obj->tiling_mode),
3495 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3496 obj->stride, obj->tiling_mode);
3497
ce38ab05
RV
3498 if (IS_GEN2(dev))
3499 i830_write_fence_reg(dev, reg, obj);
3500 else if (IS_GEN3(dev))
3501 i915_write_fence_reg(dev, reg, obj);
3502 else if (INTEL_INFO(dev)->gen >= 4)
3503 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3504
3505 /* And similarly be paranoid that no direct access to this region
3506 * is reordered to before the fence is installed.
3507 */
3508 if (i915_gem_object_needs_mb(obj))
3509 mb();
de151cf6
JB
3510}
3511
61050808
CW
3512static inline int fence_number(struct drm_i915_private *dev_priv,
3513 struct drm_i915_fence_reg *fence)
3514{
3515 return fence - dev_priv->fence_regs;
3516}
3517
3518static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3519 struct drm_i915_fence_reg *fence,
3520 bool enable)
3521{
2dc8aae0 3522 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3523 int reg = fence_number(dev_priv, fence);
3524
3525 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3526
3527 if (enable) {
46a0b638 3528 obj->fence_reg = reg;
61050808
CW
3529 fence->obj = obj;
3530 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3531 } else {
3532 obj->fence_reg = I915_FENCE_REG_NONE;
3533 fence->obj = NULL;
3534 list_del_init(&fence->lru_list);
3535 }
94a335db 3536 obj->fence_dirty = false;
61050808
CW
3537}
3538
d9e86c0e 3539static int
d0a57789 3540i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3541{
97b2a6a1 3542 if (obj->last_fenced_req) {
a4b3a571 3543 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3544 if (ret)
3545 return ret;
d9e86c0e 3546
97b2a6a1 3547 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3548 }
3549
3550 return 0;
3551}
3552
3553int
3554i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3555{
61050808 3556 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3557 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3558 int ret;
3559
d0a57789 3560 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3561 if (ret)
3562 return ret;
3563
61050808
CW
3564 if (obj->fence_reg == I915_FENCE_REG_NONE)
3565 return 0;
d9e86c0e 3566
f9c513e9
CW
3567 fence = &dev_priv->fence_regs[obj->fence_reg];
3568
aff10b30
DV
3569 if (WARN_ON(fence->pin_count))
3570 return -EBUSY;
3571
61050808 3572 i915_gem_object_fence_lost(obj);
f9c513e9 3573 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3574
3575 return 0;
3576}
3577
3578static struct drm_i915_fence_reg *
a360bb1a 3579i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3580{
ae3db24a 3581 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3582 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3583 int i;
ae3db24a
DV
3584
3585 /* First try to find a free reg */
d9e86c0e 3586 avail = NULL;
ae3db24a
DV
3587 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3588 reg = &dev_priv->fence_regs[i];
3589 if (!reg->obj)
d9e86c0e 3590 return reg;
ae3db24a 3591
1690e1eb 3592 if (!reg->pin_count)
d9e86c0e 3593 avail = reg;
ae3db24a
DV
3594 }
3595
d9e86c0e 3596 if (avail == NULL)
5dce5b93 3597 goto deadlock;
ae3db24a
DV
3598
3599 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3600 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3601 if (reg->pin_count)
ae3db24a
DV
3602 continue;
3603
8fe301ad 3604 return reg;
ae3db24a
DV
3605 }
3606
5dce5b93
CW
3607deadlock:
3608 /* Wait for completion of pending flips which consume fences */
3609 if (intel_has_pending_fb_unpin(dev))
3610 return ERR_PTR(-EAGAIN);
3611
3612 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3613}
3614
de151cf6 3615/**
9a5a53b3 3616 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3617 * @obj: object to map through a fence reg
3618 *
3619 * When mapping objects through the GTT, userspace wants to be able to write
3620 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3621 * This function walks the fence regs looking for a free one for @obj,
3622 * stealing one if it can't find any.
3623 *
3624 * It then sets up the reg based on the object's properties: address, pitch
3625 * and tiling format.
9a5a53b3
CW
3626 *
3627 * For an untiled surface, this removes any existing fence.
de151cf6 3628 */
8c4b8c3f 3629int
06d98131 3630i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3631{
05394f39 3632 struct drm_device *dev = obj->base.dev;
79e53945 3633 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3634 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3635 struct drm_i915_fence_reg *reg;
ae3db24a 3636 int ret;
de151cf6 3637
14415745
CW
3638 /* Have we updated the tiling parameters upon the object and so
3639 * will need to serialise the write to the associated fence register?
3640 */
5d82e3e6 3641 if (obj->fence_dirty) {
d0a57789 3642 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3643 if (ret)
3644 return ret;
3645 }
9a5a53b3 3646
d9e86c0e 3647 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3648 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3649 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3650 if (!obj->fence_dirty) {
14415745
CW
3651 list_move_tail(&reg->lru_list,
3652 &dev_priv->mm.fence_list);
3653 return 0;
3654 }
3655 } else if (enable) {
e6a84468
CW
3656 if (WARN_ON(!obj->map_and_fenceable))
3657 return -EINVAL;
3658
14415745 3659 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3660 if (IS_ERR(reg))
3661 return PTR_ERR(reg);
d9e86c0e 3662
14415745
CW
3663 if (reg->obj) {
3664 struct drm_i915_gem_object *old = reg->obj;
3665
d0a57789 3666 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3667 if (ret)
3668 return ret;
3669
14415745 3670 i915_gem_object_fence_lost(old);
29c5a587 3671 }
14415745 3672 } else
a09ba7fa 3673 return 0;
a09ba7fa 3674
14415745 3675 i915_gem_object_update_fence(obj, reg, enable);
14415745 3676
9ce079e4 3677 return 0;
de151cf6
JB
3678}
3679
4144f9b5 3680static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3681 unsigned long cache_level)
3682{
4144f9b5 3683 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3684 struct drm_mm_node *other;
3685
4144f9b5
CW
3686 /*
3687 * On some machines we have to be careful when putting differing types
3688 * of snoopable memory together to avoid the prefetcher crossing memory
3689 * domains and dying. During vm initialisation, we decide whether or not
3690 * these constraints apply and set the drm_mm.color_adjust
3691 * appropriately.
42d6ab48 3692 */
4144f9b5 3693 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3694 return true;
3695
c6cfb325 3696 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3697 return true;
3698
3699 if (list_empty(&gtt_space->node_list))
3700 return true;
3701
3702 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3703 if (other->allocated && !other->hole_follows && other->color != cache_level)
3704 return false;
3705
3706 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3707 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3708 return false;
3709
3710 return true;
3711}
3712
673a394b 3713/**
91e6711e
JL
3714 * Finds free space in the GTT aperture and binds the object or a view of it
3715 * there.
673a394b 3716 */
262de145 3717static struct i915_vma *
07fe0b12
BW
3718i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3719 struct i915_address_space *vm,
ec7adb6e 3720 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3721 unsigned alignment,
ec7adb6e 3722 uint64_t flags)
673a394b 3723{
05394f39 3724 struct drm_device *dev = obj->base.dev;
3e31c6c0 3725 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3726 u32 size, fence_size, fence_alignment, unfenced_alignment;
c44ef60e 3727 u64 start =
d23db88c 3728 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
c44ef60e 3729 u64 end =
1ec9e26d 3730 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3731 struct i915_vma *vma;
07f73f69 3732 int ret;
673a394b 3733
91e6711e
JL
3734 if (i915_is_ggtt(vm)) {
3735 u32 view_size;
3736
3737 if (WARN_ON(!ggtt_view))
3738 return ERR_PTR(-EINVAL);
ec7adb6e 3739
91e6711e
JL
3740 view_size = i915_ggtt_view_size(obj, ggtt_view);
3741
3742 fence_size = i915_gem_get_gtt_size(dev,
3743 view_size,
3744 obj->tiling_mode);
3745 fence_alignment = i915_gem_get_gtt_alignment(dev,
3746 view_size,
3747 obj->tiling_mode,
3748 true);
3749 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3750 view_size,
3751 obj->tiling_mode,
3752 false);
3753 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3754 } else {
3755 fence_size = i915_gem_get_gtt_size(dev,
3756 obj->base.size,
3757 obj->tiling_mode);
3758 fence_alignment = i915_gem_get_gtt_alignment(dev,
3759 obj->base.size,
3760 obj->tiling_mode,
3761 true);
3762 unfenced_alignment =
3763 i915_gem_get_gtt_alignment(dev,
3764 obj->base.size,
3765 obj->tiling_mode,
3766 false);
3767 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3768 }
a00b10c3 3769
673a394b 3770 if (alignment == 0)
1ec9e26d 3771 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3772 unfenced_alignment;
1ec9e26d 3773 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3774 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3775 ggtt_view ? ggtt_view->type : 0,
3776 alignment);
262de145 3777 return ERR_PTR(-EINVAL);
673a394b
EA
3778 }
3779
91e6711e
JL
3780 /* If binding the object/GGTT view requires more space than the entire
3781 * aperture has, reject it early before evicting everything in a vain
3782 * attempt to find space.
654fc607 3783 */
91e6711e 3784 if (size > end) {
c44ef60e 3785 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
91e6711e
JL
3786 ggtt_view ? ggtt_view->type : 0,
3787 size,
1ec9e26d 3788 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3789 end);
262de145 3790 return ERR_PTR(-E2BIG);
654fc607
CW
3791 }
3792
37e680a1 3793 ret = i915_gem_object_get_pages(obj);
6c085a72 3794 if (ret)
262de145 3795 return ERR_PTR(ret);
6c085a72 3796
fbdda6fb
CW
3797 i915_gem_object_pin_pages(obj);
3798
ec7adb6e
JL
3799 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3800 i915_gem_obj_lookup_or_create_vma(obj, vm);
3801
262de145 3802 if (IS_ERR(vma))
bc6bc15b 3803 goto err_unpin;
2f633156 3804
0a9ae0d7 3805search_free:
07fe0b12 3806 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3807 size, alignment,
d23db88c
CW
3808 obj->cache_level,
3809 start, end,
62347f9e
LK
3810 DRM_MM_SEARCH_DEFAULT,
3811 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3812 if (ret) {
f6cd1f15 3813 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3814 obj->cache_level,
3815 start, end,
3816 flags);
dc9dd7a2
CW
3817 if (ret == 0)
3818 goto search_free;
9731129c 3819
bc6bc15b 3820 goto err_free_vma;
673a394b 3821 }
4144f9b5 3822 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3823 ret = -EINVAL;
bc6bc15b 3824 goto err_remove_node;
673a394b
EA
3825 }
3826
fe14d5f4 3827 trace_i915_vma_bind(vma, flags);
0875546c 3828 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3829 if (ret)
e2273302 3830 goto err_remove_node;
fe14d5f4 3831
35c20a60 3832 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3833 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3834
262de145 3835 return vma;
2f633156 3836
bc6bc15b 3837err_remove_node:
6286ef9b 3838 drm_mm_remove_node(&vma->node);
bc6bc15b 3839err_free_vma:
2f633156 3840 i915_gem_vma_destroy(vma);
262de145 3841 vma = ERR_PTR(ret);
bc6bc15b 3842err_unpin:
2f633156 3843 i915_gem_object_unpin_pages(obj);
262de145 3844 return vma;
673a394b
EA
3845}
3846
000433b6 3847bool
2c22569b
CW
3848i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3849 bool force)
673a394b 3850{
673a394b
EA
3851 /* If we don't have a page list set up, then we're not pinned
3852 * to GPU, and we can ignore the cache flush because it'll happen
3853 * again at bind time.
3854 */
05394f39 3855 if (obj->pages == NULL)
000433b6 3856 return false;
673a394b 3857
769ce464
ID
3858 /*
3859 * Stolen memory is always coherent with the GPU as it is explicitly
3860 * marked as wc by the system, or the system is cache-coherent.
3861 */
6a2c4232 3862 if (obj->stolen || obj->phys_handle)
000433b6 3863 return false;
769ce464 3864
9c23f7fc
CW
3865 /* If the GPU is snooping the contents of the CPU cache,
3866 * we do not need to manually clear the CPU cache lines. However,
3867 * the caches are only snooped when the render cache is
3868 * flushed/invalidated. As we always have to emit invalidations
3869 * and flushes when moving into and out of the RENDER domain, correct
3870 * snooping behaviour occurs naturally as the result of our domain
3871 * tracking.
3872 */
0f71979a
CW
3873 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3874 obj->cache_dirty = true;
000433b6 3875 return false;
0f71979a 3876 }
9c23f7fc 3877
1c5d22f7 3878 trace_i915_gem_object_clflush(obj);
9da3da66 3879 drm_clflush_sg(obj->pages);
0f71979a 3880 obj->cache_dirty = false;
000433b6
CW
3881
3882 return true;
e47c68e9
EA
3883}
3884
3885/** Flushes the GTT write domain for the object if it's dirty. */
3886static void
05394f39 3887i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3888{
1c5d22f7
CW
3889 uint32_t old_write_domain;
3890
05394f39 3891 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3892 return;
3893
63256ec5 3894 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3895 * to it immediately go to main memory as far as we know, so there's
3896 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3897 *
3898 * However, we do have to enforce the order so that all writes through
3899 * the GTT land before any writes to the device, such as updates to
3900 * the GATT itself.
e47c68e9 3901 */
63256ec5
CW
3902 wmb();
3903
05394f39
CW
3904 old_write_domain = obj->base.write_domain;
3905 obj->base.write_domain = 0;
1c5d22f7 3906
de152b62 3907 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3908
1c5d22f7 3909 trace_i915_gem_object_change_domain(obj,
05394f39 3910 obj->base.read_domains,
1c5d22f7 3911 old_write_domain);
e47c68e9
EA
3912}
3913
3914/** Flushes the CPU write domain for the object if it's dirty. */
3915static void
e62b59e4 3916i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3917{
1c5d22f7 3918 uint32_t old_write_domain;
e47c68e9 3919
05394f39 3920 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3921 return;
3922
e62b59e4 3923 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3924 i915_gem_chipset_flush(obj->base.dev);
3925
05394f39
CW
3926 old_write_domain = obj->base.write_domain;
3927 obj->base.write_domain = 0;
1c5d22f7 3928
de152b62 3929 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3930
1c5d22f7 3931 trace_i915_gem_object_change_domain(obj,
05394f39 3932 obj->base.read_domains,
1c5d22f7 3933 old_write_domain);
e47c68e9
EA
3934}
3935
2ef7eeaa
EA
3936/**
3937 * Moves a single object to the GTT read, and possibly write domain.
3938 *
3939 * This function returns when the move is complete, including waiting on
3940 * flushes to occur.
3941 */
79e53945 3942int
2021746e 3943i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3944{
1c5d22f7 3945 uint32_t old_write_domain, old_read_domains;
43566ded 3946 struct i915_vma *vma;
e47c68e9 3947 int ret;
2ef7eeaa 3948
8d7e3de1
CW
3949 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3950 return 0;
3951
0201f1ec 3952 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3953 if (ret)
3954 return ret;
3955
43566ded
CW
3956 /* Flush and acquire obj->pages so that we are coherent through
3957 * direct access in memory with previous cached writes through
3958 * shmemfs and that our cache domain tracking remains valid.
3959 * For example, if the obj->filp was moved to swap without us
3960 * being notified and releasing the pages, we would mistakenly
3961 * continue to assume that the obj remained out of the CPU cached
3962 * domain.
3963 */
3964 ret = i915_gem_object_get_pages(obj);
3965 if (ret)
3966 return ret;
3967
e62b59e4 3968 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3969
d0a57789
CW
3970 /* Serialise direct access to this object with the barriers for
3971 * coherent writes from the GPU, by effectively invalidating the
3972 * GTT domain upon first access.
3973 */
3974 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3975 mb();
3976
05394f39
CW
3977 old_write_domain = obj->base.write_domain;
3978 old_read_domains = obj->base.read_domains;
1c5d22f7 3979
e47c68e9
EA
3980 /* It should now be out of any other write domains, and we can update
3981 * the domain values for our changes.
3982 */
05394f39
CW
3983 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3984 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3985 if (write) {
05394f39
CW
3986 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3987 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3988 obj->dirty = 1;
2ef7eeaa
EA
3989 }
3990
1c5d22f7
CW
3991 trace_i915_gem_object_change_domain(obj,
3992 old_read_domains,
3993 old_write_domain);
3994
8325a09d 3995 /* And bump the LRU for this access */
43566ded
CW
3996 vma = i915_gem_obj_to_ggtt(obj);
3997 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3998 list_move_tail(&vma->mm_list,
43566ded 3999 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 4000
e47c68e9
EA
4001 return 0;
4002}
4003
e4ffd173
CW
4004int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4005 enum i915_cache_level cache_level)
4006{
7bddb01f 4007 struct drm_device *dev = obj->base.dev;
df6f783a 4008 struct i915_vma *vma, *next;
e4ffd173
CW
4009 int ret;
4010
4011 if (obj->cache_level == cache_level)
4012 return 0;
4013
d7f46fc4 4014 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
4015 DRM_DEBUG("can not change the cache level of pinned objects\n");
4016 return -EBUSY;
4017 }
4018
df6f783a 4019 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 4020 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 4021 ret = i915_vma_unbind(vma);
3089c6f2
BW
4022 if (ret)
4023 return ret;
3089c6f2 4024 }
42d6ab48
CW
4025 }
4026
3089c6f2 4027 if (i915_gem_obj_bound_any(obj)) {
2e2f351d 4028 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
4029 if (ret)
4030 return ret;
4031
4032 i915_gem_object_finish_gtt(obj);
4033
4034 /* Before SandyBridge, you could not use tiling or fence
4035 * registers with snooped memory, so relinquish any fences
4036 * currently pointing to our region in the aperture.
4037 */
42d6ab48 4038 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
4039 ret = i915_gem_object_put_fence(obj);
4040 if (ret)
4041 return ret;
4042 }
4043
6f65e29a 4044 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
4045 if (drm_mm_node_allocated(&vma->node)) {
4046 ret = i915_vma_bind(vma, cache_level,
0875546c 4047 PIN_UPDATE);
fe14d5f4
TU
4048 if (ret)
4049 return ret;
4050 }
e4ffd173
CW
4051 }
4052
2c22569b
CW
4053 list_for_each_entry(vma, &obj->vma_list, vma_link)
4054 vma->node.color = cache_level;
4055 obj->cache_level = cache_level;
4056
0f71979a
CW
4057 if (obj->cache_dirty &&
4058 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4059 cpu_write_needs_clflush(obj)) {
4060 if (i915_gem_clflush_object(obj, true))
4061 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
4062 }
4063
e4ffd173
CW
4064 return 0;
4065}
4066
199adf40
BW
4067int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4068 struct drm_file *file)
e6994aee 4069{
199adf40 4070 struct drm_i915_gem_caching *args = data;
e6994aee 4071 struct drm_i915_gem_object *obj;
e6994aee
CW
4072
4073 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
4074 if (&obj->base == NULL)
4075 return -ENOENT;
e6994aee 4076
651d794f
CW
4077 switch (obj->cache_level) {
4078 case I915_CACHE_LLC:
4079 case I915_CACHE_L3_LLC:
4080 args->caching = I915_CACHING_CACHED;
4081 break;
4082
4257d3ba
CW
4083 case I915_CACHE_WT:
4084 args->caching = I915_CACHING_DISPLAY;
4085 break;
4086
651d794f
CW
4087 default:
4088 args->caching = I915_CACHING_NONE;
4089 break;
4090 }
e6994aee 4091
432be69d
CW
4092 drm_gem_object_unreference_unlocked(&obj->base);
4093 return 0;
e6994aee
CW
4094}
4095
199adf40
BW
4096int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4097 struct drm_file *file)
e6994aee 4098{
199adf40 4099 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4100 struct drm_i915_gem_object *obj;
4101 enum i915_cache_level level;
4102 int ret;
4103
199adf40
BW
4104 switch (args->caching) {
4105 case I915_CACHING_NONE:
e6994aee
CW
4106 level = I915_CACHE_NONE;
4107 break;
199adf40 4108 case I915_CACHING_CACHED:
e6994aee
CW
4109 level = I915_CACHE_LLC;
4110 break;
4257d3ba
CW
4111 case I915_CACHING_DISPLAY:
4112 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4113 break;
e6994aee
CW
4114 default:
4115 return -EINVAL;
4116 }
4117
3bc2913e
BW
4118 ret = i915_mutex_lock_interruptible(dev);
4119 if (ret)
4120 return ret;
4121
e6994aee
CW
4122 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4123 if (&obj->base == NULL) {
4124 ret = -ENOENT;
4125 goto unlock;
4126 }
4127
4128 ret = i915_gem_object_set_cache_level(obj, level);
4129
4130 drm_gem_object_unreference(&obj->base);
4131unlock:
4132 mutex_unlock(&dev->struct_mutex);
4133 return ret;
4134}
4135
b9241ea3 4136/*
2da3b9b9
CW
4137 * Prepare buffer for display plane (scanout, cursors, etc).
4138 * Can be called from an uninterruptible phase (modesetting) and allows
4139 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4140 */
4141int
2da3b9b9
CW
4142i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4143 u32 alignment,
e6617330 4144 struct intel_engine_cs *pipelined,
91af127f 4145 struct drm_i915_gem_request **pipelined_request,
e6617330 4146 const struct i915_ggtt_view *view)
b9241ea3 4147{
2da3b9b9 4148 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4149 int ret;
4150
91af127f 4151 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
b4716185
CW
4152 if (ret)
4153 return ret;
b9241ea3 4154
cc98b413
CW
4155 /* Mark the pin_display early so that we account for the
4156 * display coherency whilst setting up the cache domains.
4157 */
8a0c39b1 4158 obj->pin_display++;
cc98b413 4159
a7ef0640
EA
4160 /* The display engine is not coherent with the LLC cache on gen6. As
4161 * a result, we make sure that the pinning that is about to occur is
4162 * done with uncached PTEs. This is lowest common denominator for all
4163 * chipsets.
4164 *
4165 * However for gen6+, we could do better by using the GFDT bit instead
4166 * of uncaching, which would allow us to flush all the LLC-cached data
4167 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4168 */
651d794f
CW
4169 ret = i915_gem_object_set_cache_level(obj,
4170 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4171 if (ret)
cc98b413 4172 goto err_unpin_display;
a7ef0640 4173
2da3b9b9
CW
4174 /* As the user may map the buffer once pinned in the display plane
4175 * (e.g. libkms for the bootup splash), we have to ensure that we
4176 * always use map_and_fenceable for all scanout buffers.
4177 */
50470bb0
TU
4178 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4179 view->type == I915_GGTT_VIEW_NORMAL ?
4180 PIN_MAPPABLE : 0);
2da3b9b9 4181 if (ret)
cc98b413 4182 goto err_unpin_display;
2da3b9b9 4183
e62b59e4 4184 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4185
2da3b9b9 4186 old_write_domain = obj->base.write_domain;
05394f39 4187 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4188
4189 /* It should now be out of any other write domains, and we can update
4190 * the domain values for our changes.
4191 */
e5f1d962 4192 obj->base.write_domain = 0;
05394f39 4193 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4194
4195 trace_i915_gem_object_change_domain(obj,
4196 old_read_domains,
2da3b9b9 4197 old_write_domain);
b9241ea3
ZW
4198
4199 return 0;
cc98b413
CW
4200
4201err_unpin_display:
8a0c39b1 4202 obj->pin_display--;
cc98b413
CW
4203 return ret;
4204}
4205
4206void
e6617330
TU
4207i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4208 const struct i915_ggtt_view *view)
cc98b413 4209{
8a0c39b1
TU
4210 if (WARN_ON(obj->pin_display == 0))
4211 return;
4212
e6617330
TU
4213 i915_gem_object_ggtt_unpin_view(obj, view);
4214
8a0c39b1 4215 obj->pin_display--;
b9241ea3
ZW
4216}
4217
e47c68e9
EA
4218/**
4219 * Moves a single object to the CPU read, and possibly write domain.
4220 *
4221 * This function returns when the move is complete, including waiting on
4222 * flushes to occur.
4223 */
dabdfe02 4224int
919926ae 4225i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4226{
1c5d22f7 4227 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4228 int ret;
4229
8d7e3de1
CW
4230 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4231 return 0;
4232
0201f1ec 4233 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4234 if (ret)
4235 return ret;
4236
e47c68e9 4237 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4238
05394f39
CW
4239 old_write_domain = obj->base.write_domain;
4240 old_read_domains = obj->base.read_domains;
1c5d22f7 4241
e47c68e9 4242 /* Flush the CPU cache if it's still invalid. */
05394f39 4243 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4244 i915_gem_clflush_object(obj, false);
2ef7eeaa 4245
05394f39 4246 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4247 }
4248
4249 /* It should now be out of any other write domains, and we can update
4250 * the domain values for our changes.
4251 */
05394f39 4252 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4253
4254 /* If we're writing through the CPU, then the GPU read domains will
4255 * need to be invalidated at next use.
4256 */
4257 if (write) {
05394f39
CW
4258 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4259 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4260 }
2ef7eeaa 4261
1c5d22f7
CW
4262 trace_i915_gem_object_change_domain(obj,
4263 old_read_domains,
4264 old_write_domain);
4265
2ef7eeaa
EA
4266 return 0;
4267}
4268
673a394b
EA
4269/* Throttle our rendering by waiting until the ring has completed our requests
4270 * emitted over 20 msec ago.
4271 *
b962442e
EA
4272 * Note that if we were to use the current jiffies each time around the loop,
4273 * we wouldn't escape the function with any frames outstanding if the time to
4274 * render a frame was over 20ms.
4275 *
673a394b
EA
4276 * This should get us reasonable parallelism between CPU and GPU but also
4277 * relatively low latency when blocking on a particular request to finish.
4278 */
40a5f0de 4279static int
f787a5f5 4280i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4281{
f787a5f5
CW
4282 struct drm_i915_private *dev_priv = dev->dev_private;
4283 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4284 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4285 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4286 unsigned reset_counter;
f787a5f5 4287 int ret;
93533c29 4288
308887aa
DV
4289 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4290 if (ret)
4291 return ret;
4292
4293 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4294 if (ret)
4295 return ret;
e110e8d6 4296
1c25595f 4297 spin_lock(&file_priv->mm.lock);
f787a5f5 4298 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4299 if (time_after_eq(request->emitted_jiffies, recent_enough))
4300 break;
40a5f0de 4301
fcfa423c
JH
4302 /*
4303 * Note that the request might not have been submitted yet.
4304 * In which case emitted_jiffies will be zero.
4305 */
4306 if (!request->emitted_jiffies)
4307 continue;
4308
54fb2411 4309 target = request;
b962442e 4310 }
f69061be 4311 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4312 if (target)
4313 i915_gem_request_reference(target);
1c25595f 4314 spin_unlock(&file_priv->mm.lock);
40a5f0de 4315
54fb2411 4316 if (target == NULL)
f787a5f5 4317 return 0;
2bc43b5c 4318
9c654818 4319 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4320 if (ret == 0)
4321 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4322
41037f9f 4323 i915_gem_request_unreference__unlocked(target);
ff865885 4324
40a5f0de
EA
4325 return ret;
4326}
4327
d23db88c
CW
4328static bool
4329i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4330{
4331 struct drm_i915_gem_object *obj = vma->obj;
4332
4333 if (alignment &&
4334 vma->node.start & (alignment - 1))
4335 return true;
4336
4337 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4338 return true;
4339
4340 if (flags & PIN_OFFSET_BIAS &&
4341 vma->node.start < (flags & PIN_OFFSET_MASK))
4342 return true;
4343
4344 return false;
4345}
4346
ec7adb6e
JL
4347static int
4348i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4349 struct i915_address_space *vm,
4350 const struct i915_ggtt_view *ggtt_view,
4351 uint32_t alignment,
4352 uint64_t flags)
673a394b 4353{
6e7186af 4354 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4355 struct i915_vma *vma;
ef79e17c 4356 unsigned bound;
673a394b
EA
4357 int ret;
4358
6e7186af
BW
4359 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4360 return -ENODEV;
4361
bf3d149b 4362 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4363 return -EINVAL;
07fe0b12 4364
c826c449
CW
4365 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4366 return -EINVAL;
4367
ec7adb6e
JL
4368 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4369 return -EINVAL;
4370
4371 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4372 i915_gem_obj_to_vma(obj, vm);
4373
4374 if (IS_ERR(vma))
4375 return PTR_ERR(vma);
4376
07fe0b12 4377 if (vma) {
d7f46fc4
BW
4378 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4379 return -EBUSY;
4380
d23db88c 4381 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4382 unsigned long offset;
9abc4648 4383 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4384 i915_gem_obj_offset(obj, vm);
d7f46fc4 4385 WARN(vma->pin_count,
ec7adb6e 4386 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4387 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4388 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4389 ggtt_view ? "ggtt" : "ppgtt",
4390 offset,
fe14d5f4 4391 alignment,
d23db88c 4392 !!(flags & PIN_MAPPABLE),
05394f39 4393 obj->map_and_fenceable);
07fe0b12 4394 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4395 if (ret)
4396 return ret;
8ea99c92
DV
4397
4398 vma = NULL;
ac0c6b5a
CW
4399 }
4400 }
4401
ef79e17c 4402 bound = vma ? vma->bound : 0;
8ea99c92 4403 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4404 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4405 flags);
262de145
DV
4406 if (IS_ERR(vma))
4407 return PTR_ERR(vma);
0875546c
DV
4408 } else {
4409 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4410 if (ret)
4411 return ret;
4412 }
74898d7e 4413
91e6711e
JL
4414 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4415 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4416 bool mappable, fenceable;
4417 u32 fence_size, fence_alignment;
4418
4419 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4420 obj->base.size,
4421 obj->tiling_mode);
4422 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4423 obj->base.size,
4424 obj->tiling_mode,
4425 true);
4426
4427 fenceable = (vma->node.size == fence_size &&
4428 (vma->node.start & (fence_alignment - 1)) == 0);
4429
e8dec1dd 4430 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4431 dev_priv->gtt.mappable_end);
4432
4433 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4434
91e6711e
JL
4435 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4436 }
ef79e17c 4437
8ea99c92 4438 vma->pin_count++;
673a394b
EA
4439 return 0;
4440}
4441
ec7adb6e
JL
4442int
4443i915_gem_object_pin(struct drm_i915_gem_object *obj,
4444 struct i915_address_space *vm,
4445 uint32_t alignment,
4446 uint64_t flags)
4447{
4448 return i915_gem_object_do_pin(obj, vm,
4449 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4450 alignment, flags);
4451}
4452
4453int
4454i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4455 const struct i915_ggtt_view *view,
4456 uint32_t alignment,
4457 uint64_t flags)
4458{
4459 if (WARN_ONCE(!view, "no view specified"))
4460 return -EINVAL;
4461
4462 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4463 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4464}
4465
673a394b 4466void
e6617330
TU
4467i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4468 const struct i915_ggtt_view *view)
673a394b 4469{
e6617330 4470 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4471
d7f46fc4 4472 BUG_ON(!vma);
e6617330 4473 WARN_ON(vma->pin_count == 0);
9abc4648 4474 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4475
30154650 4476 --vma->pin_count;
673a394b
EA
4477}
4478
d8ffa60b
DV
4479bool
4480i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4481{
4482 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4483 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4484 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4485
4486 WARN_ON(!ggtt_vma ||
4487 dev_priv->fence_regs[obj->fence_reg].pin_count >
4488 ggtt_vma->pin_count);
4489 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4490 return true;
4491 } else
4492 return false;
4493}
4494
4495void
4496i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4497{
4498 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4499 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4500 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4501 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4502 }
4503}
4504
673a394b
EA
4505int
4506i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4507 struct drm_file *file)
673a394b
EA
4508{
4509 struct drm_i915_gem_busy *args = data;
05394f39 4510 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4511 int ret;
4512
76c1dec1 4513 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4514 if (ret)
76c1dec1 4515 return ret;
673a394b 4516
05394f39 4517 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4518 if (&obj->base == NULL) {
1d7cfea1
CW
4519 ret = -ENOENT;
4520 goto unlock;
673a394b 4521 }
d1b851fc 4522
0be555b6
CW
4523 /* Count all active objects as busy, even if they are currently not used
4524 * by the gpu. Users of this interface expect objects to eventually
4525 * become non-busy without any further actions, therefore emit any
4526 * necessary flushes here.
c4de0a5d 4527 */
30dfebf3 4528 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4529 if (ret)
4530 goto unref;
0be555b6 4531
b4716185
CW
4532 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4533 args->busy = obj->active << 16;
4534 if (obj->last_write_req)
4535 args->busy |= obj->last_write_req->ring->id;
673a394b 4536
b4716185 4537unref:
05394f39 4538 drm_gem_object_unreference(&obj->base);
1d7cfea1 4539unlock:
673a394b 4540 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4541 return ret;
673a394b
EA
4542}
4543
4544int
4545i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4546 struct drm_file *file_priv)
4547{
0206e353 4548 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4549}
4550
3ef94daa
CW
4551int
4552i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4553 struct drm_file *file_priv)
4554{
656bfa3a 4555 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4556 struct drm_i915_gem_madvise *args = data;
05394f39 4557 struct drm_i915_gem_object *obj;
76c1dec1 4558 int ret;
3ef94daa
CW
4559
4560 switch (args->madv) {
4561 case I915_MADV_DONTNEED:
4562 case I915_MADV_WILLNEED:
4563 break;
4564 default:
4565 return -EINVAL;
4566 }
4567
1d7cfea1
CW
4568 ret = i915_mutex_lock_interruptible(dev);
4569 if (ret)
4570 return ret;
4571
05394f39 4572 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4573 if (&obj->base == NULL) {
1d7cfea1
CW
4574 ret = -ENOENT;
4575 goto unlock;
3ef94daa 4576 }
3ef94daa 4577
d7f46fc4 4578 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4579 ret = -EINVAL;
4580 goto out;
3ef94daa
CW
4581 }
4582
656bfa3a
DV
4583 if (obj->pages &&
4584 obj->tiling_mode != I915_TILING_NONE &&
4585 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4586 if (obj->madv == I915_MADV_WILLNEED)
4587 i915_gem_object_unpin_pages(obj);
4588 if (args->madv == I915_MADV_WILLNEED)
4589 i915_gem_object_pin_pages(obj);
4590 }
4591
05394f39
CW
4592 if (obj->madv != __I915_MADV_PURGED)
4593 obj->madv = args->madv;
3ef94daa 4594
6c085a72 4595 /* if the object is no longer attached, discard its backing storage */
be6a0376 4596 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4597 i915_gem_object_truncate(obj);
4598
05394f39 4599 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4600
1d7cfea1 4601out:
05394f39 4602 drm_gem_object_unreference(&obj->base);
1d7cfea1 4603unlock:
3ef94daa 4604 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4605 return ret;
3ef94daa
CW
4606}
4607
37e680a1
CW
4608void i915_gem_object_init(struct drm_i915_gem_object *obj,
4609 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4610{
b4716185
CW
4611 int i;
4612
35c20a60 4613 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4614 for (i = 0; i < I915_NUM_RINGS; i++)
4615 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4616 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4617 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4618 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4619
37e680a1
CW
4620 obj->ops = ops;
4621
0327d6ba
CW
4622 obj->fence_reg = I915_FENCE_REG_NONE;
4623 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4624
4625 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4626}
4627
37e680a1
CW
4628static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4629 .get_pages = i915_gem_object_get_pages_gtt,
4630 .put_pages = i915_gem_object_put_pages_gtt,
4631};
4632
05394f39
CW
4633struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4634 size_t size)
ac52bc56 4635{
c397b908 4636 struct drm_i915_gem_object *obj;
5949eac4 4637 struct address_space *mapping;
1a240d4d 4638 gfp_t mask;
ac52bc56 4639
42dcedd4 4640 obj = i915_gem_object_alloc(dev);
c397b908
DV
4641 if (obj == NULL)
4642 return NULL;
673a394b 4643
c397b908 4644 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4645 i915_gem_object_free(obj);
c397b908
DV
4646 return NULL;
4647 }
673a394b 4648
bed1ea95
CW
4649 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4650 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4651 /* 965gm cannot relocate objects above 4GiB. */
4652 mask &= ~__GFP_HIGHMEM;
4653 mask |= __GFP_DMA32;
4654 }
4655
496ad9aa 4656 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4657 mapping_set_gfp_mask(mapping, mask);
5949eac4 4658
37e680a1 4659 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4660
c397b908
DV
4661 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4662 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4663
3d29b842
ED
4664 if (HAS_LLC(dev)) {
4665 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4666 * cache) for about a 10% performance improvement
4667 * compared to uncached. Graphics requests other than
4668 * display scanout are coherent with the CPU in
4669 * accessing this cache. This means in this mode we
4670 * don't need to clflush on the CPU side, and on the
4671 * GPU side we only need to flush internal caches to
4672 * get data visible to the CPU.
4673 *
4674 * However, we maintain the display planes as UC, and so
4675 * need to rebind when first used as such.
4676 */
4677 obj->cache_level = I915_CACHE_LLC;
4678 } else
4679 obj->cache_level = I915_CACHE_NONE;
4680
d861e338
DV
4681 trace_i915_gem_object_create(obj);
4682
05394f39 4683 return obj;
c397b908
DV
4684}
4685
340fbd8c
CW
4686static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4687{
4688 /* If we are the last user of the backing storage (be it shmemfs
4689 * pages or stolen etc), we know that the pages are going to be
4690 * immediately released. In this case, we can then skip copying
4691 * back the contents from the GPU.
4692 */
4693
4694 if (obj->madv != I915_MADV_WILLNEED)
4695 return false;
4696
4697 if (obj->base.filp == NULL)
4698 return true;
4699
4700 /* At first glance, this looks racy, but then again so would be
4701 * userspace racing mmap against close. However, the first external
4702 * reference to the filp can only be obtained through the
4703 * i915_gem_mmap_ioctl() which safeguards us against the user
4704 * acquiring such a reference whilst we are in the middle of
4705 * freeing the object.
4706 */
4707 return atomic_long_read(&obj->base.filp->f_count) == 1;
4708}
4709
1488fc08 4710void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4711{
1488fc08 4712 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4713 struct drm_device *dev = obj->base.dev;
3e31c6c0 4714 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4715 struct i915_vma *vma, *next;
673a394b 4716
f65c9168
PZ
4717 intel_runtime_pm_get(dev_priv);
4718
26e12f89
CW
4719 trace_i915_gem_object_destroy(obj);
4720
07fe0b12 4721 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4722 int ret;
4723
4724 vma->pin_count = 0;
4725 ret = i915_vma_unbind(vma);
07fe0b12
BW
4726 if (WARN_ON(ret == -ERESTARTSYS)) {
4727 bool was_interruptible;
1488fc08 4728
07fe0b12
BW
4729 was_interruptible = dev_priv->mm.interruptible;
4730 dev_priv->mm.interruptible = false;
1488fc08 4731
07fe0b12 4732 WARN_ON(i915_vma_unbind(vma));
1488fc08 4733
07fe0b12
BW
4734 dev_priv->mm.interruptible = was_interruptible;
4735 }
1488fc08
CW
4736 }
4737
1d64ae71
BW
4738 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4739 * before progressing. */
4740 if (obj->stolen)
4741 i915_gem_object_unpin_pages(obj);
4742
a071fa00
DV
4743 WARN_ON(obj->frontbuffer_bits);
4744
656bfa3a
DV
4745 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4746 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4747 obj->tiling_mode != I915_TILING_NONE)
4748 i915_gem_object_unpin_pages(obj);
4749
401c29f6
BW
4750 if (WARN_ON(obj->pages_pin_count))
4751 obj->pages_pin_count = 0;
340fbd8c 4752 if (discard_backing_storage(obj))
5537252b 4753 obj->madv = I915_MADV_DONTNEED;
37e680a1 4754 i915_gem_object_put_pages(obj);
d8cb5086 4755 i915_gem_object_free_mmap_offset(obj);
de151cf6 4756
9da3da66
CW
4757 BUG_ON(obj->pages);
4758
2f745ad3
CW
4759 if (obj->base.import_attach)
4760 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4761
5cc9ed4b
CW
4762 if (obj->ops->release)
4763 obj->ops->release(obj);
4764
05394f39
CW
4765 drm_gem_object_release(&obj->base);
4766 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4767
05394f39 4768 kfree(obj->bit_17);
42dcedd4 4769 i915_gem_object_free(obj);
f65c9168
PZ
4770
4771 intel_runtime_pm_put(dev_priv);
673a394b
EA
4772}
4773
ec7adb6e
JL
4774struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4775 struct i915_address_space *vm)
e656a6cb
DV
4776{
4777 struct i915_vma *vma;
ec7adb6e
JL
4778 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4779 if (i915_is_ggtt(vma->vm) &&
4780 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4781 continue;
4782 if (vma->vm == vm)
e656a6cb 4783 return vma;
ec7adb6e
JL
4784 }
4785 return NULL;
4786}
4787
4788struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4789 const struct i915_ggtt_view *view)
4790{
4791 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4792 struct i915_vma *vma;
e656a6cb 4793
ec7adb6e
JL
4794 if (WARN_ONCE(!view, "no view specified"))
4795 return ERR_PTR(-EINVAL);
4796
4797 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4798 if (vma->vm == ggtt &&
4799 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4800 return vma;
e656a6cb
DV
4801 return NULL;
4802}
4803
2f633156
BW
4804void i915_gem_vma_destroy(struct i915_vma *vma)
4805{
b9d06dd9 4806 struct i915_address_space *vm = NULL;
2f633156 4807 WARN_ON(vma->node.allocated);
aaa05667
CW
4808
4809 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4810 if (!list_empty(&vma->exec_list))
4811 return;
4812
b9d06dd9 4813 vm = vma->vm;
b9d06dd9 4814
841cd773
DV
4815 if (!i915_is_ggtt(vm))
4816 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4817
8b9c2b94 4818 list_del(&vma->vma_link);
b93dab6e 4819
e20d2ab7 4820 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4821}
4822
e3efda49
CW
4823static void
4824i915_gem_stop_ringbuffers(struct drm_device *dev)
4825{
4826 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4827 struct intel_engine_cs *ring;
e3efda49
CW
4828 int i;
4829
4830 for_each_ring(ring, dev_priv, i)
a83014d3 4831 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4832}
4833
29105ccc 4834int
45c5f202 4835i915_gem_suspend(struct drm_device *dev)
29105ccc 4836{
3e31c6c0 4837 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4838 int ret = 0;
28dfe52a 4839
45c5f202 4840 mutex_lock(&dev->struct_mutex);
b2da9fe5 4841 ret = i915_gpu_idle(dev);
f7403347 4842 if (ret)
45c5f202 4843 goto err;
f7403347 4844
b2da9fe5 4845 i915_gem_retire_requests(dev);
673a394b 4846
e3efda49 4847 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4848 mutex_unlock(&dev->struct_mutex);
4849
737b1506 4850 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4851 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4852 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4853
bdcf120b
CW
4854 /* Assert that we sucessfully flushed all the work and
4855 * reset the GPU back to its idle, low power state.
4856 */
4857 WARN_ON(dev_priv->mm.busy);
4858
673a394b 4859 return 0;
45c5f202
CW
4860
4861err:
4862 mutex_unlock(&dev->struct_mutex);
4863 return ret;
673a394b
EA
4864}
4865
6909a666 4866int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4867{
6909a666 4868 struct intel_engine_cs *ring = req->ring;
c3787e2e 4869 struct drm_device *dev = ring->dev;
3e31c6c0 4870 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4871 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4872 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4873 int i, ret;
b9524a1e 4874
040d2baa 4875 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4876 return 0;
b9524a1e 4877
5fb9de1a 4878 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4879 if (ret)
4880 return ret;
b9524a1e 4881
c3787e2e
BW
4882 /*
4883 * Note: We do not worry about the concurrent register cacheline hang
4884 * here because no other code should access these registers other than
4885 * at initialization time.
4886 */
b9524a1e 4887 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4888 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4889 intel_ring_emit(ring, reg_base + i);
4890 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4891 }
4892
c3787e2e 4893 intel_ring_advance(ring);
b9524a1e 4894
c3787e2e 4895 return ret;
b9524a1e
BW
4896}
4897
f691e2f4
DV
4898void i915_gem_init_swizzling(struct drm_device *dev)
4899{
3e31c6c0 4900 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4901
11782b02 4902 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4903 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4904 return;
4905
4906 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4907 DISP_TILE_SURFACE_SWIZZLING);
4908
11782b02
DV
4909 if (IS_GEN5(dev))
4910 return;
4911
f691e2f4
DV
4912 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4913 if (IS_GEN6(dev))
6b26c86d 4914 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4915 else if (IS_GEN7(dev))
6b26c86d 4916 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4917 else if (IS_GEN8(dev))
4918 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4919 else
4920 BUG();
f691e2f4 4921}
e21af88d 4922
67b1b571
CW
4923static bool
4924intel_enable_blt(struct drm_device *dev)
4925{
4926 if (!HAS_BLT(dev))
4927 return false;
4928
4929 /* The blitter was dysfunctional on early prototypes */
4930 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4931 DRM_INFO("BLT not supported on this pre-production hardware;"
4932 " graphics performance will be degraded.\n");
4933 return false;
4934 }
4935
4936 return true;
4937}
4938
81e7f200
VS
4939static void init_unused_ring(struct drm_device *dev, u32 base)
4940{
4941 struct drm_i915_private *dev_priv = dev->dev_private;
4942
4943 I915_WRITE(RING_CTL(base), 0);
4944 I915_WRITE(RING_HEAD(base), 0);
4945 I915_WRITE(RING_TAIL(base), 0);
4946 I915_WRITE(RING_START(base), 0);
4947}
4948
4949static void init_unused_rings(struct drm_device *dev)
4950{
4951 if (IS_I830(dev)) {
4952 init_unused_ring(dev, PRB1_BASE);
4953 init_unused_ring(dev, SRB0_BASE);
4954 init_unused_ring(dev, SRB1_BASE);
4955 init_unused_ring(dev, SRB2_BASE);
4956 init_unused_ring(dev, SRB3_BASE);
4957 } else if (IS_GEN2(dev)) {
4958 init_unused_ring(dev, SRB0_BASE);
4959 init_unused_ring(dev, SRB1_BASE);
4960 } else if (IS_GEN3(dev)) {
4961 init_unused_ring(dev, PRB1_BASE);
4962 init_unused_ring(dev, PRB2_BASE);
4963 }
4964}
4965
a83014d3 4966int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4967{
4fc7c971 4968 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4969 int ret;
68f95ba9 4970
5c1143bb 4971 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4972 if (ret)
b6913e4b 4973 return ret;
68f95ba9
CW
4974
4975 if (HAS_BSD(dev)) {
5c1143bb 4976 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4977 if (ret)
4978 goto cleanup_render_ring;
d1b851fc 4979 }
68f95ba9 4980
67b1b571 4981 if (intel_enable_blt(dev)) {
549f7365
CW
4982 ret = intel_init_blt_ring_buffer(dev);
4983 if (ret)
4984 goto cleanup_bsd_ring;
4985 }
4986
9a8a2213
BW
4987 if (HAS_VEBOX(dev)) {
4988 ret = intel_init_vebox_ring_buffer(dev);
4989 if (ret)
4990 goto cleanup_blt_ring;
4991 }
4992
845f74a7
ZY
4993 if (HAS_BSD2(dev)) {
4994 ret = intel_init_bsd2_ring_buffer(dev);
4995 if (ret)
4996 goto cleanup_vebox_ring;
4997 }
9a8a2213 4998
99433931 4999 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 5000 if (ret)
845f74a7 5001 goto cleanup_bsd2_ring;
4fc7c971
BW
5002
5003 return 0;
5004
845f74a7
ZY
5005cleanup_bsd2_ring:
5006 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
5007cleanup_vebox_ring:
5008 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
5009cleanup_blt_ring:
5010 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5011cleanup_bsd_ring:
5012 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5013cleanup_render_ring:
5014 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5015
5016 return ret;
5017}
5018
5019int
5020i915_gem_init_hw(struct drm_device *dev)
5021{
3e31c6c0 5022 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 5023 struct intel_engine_cs *ring;
4ad2fd88 5024 int ret, i, j;
4fc7c971
BW
5025
5026 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5027 return -EIO;
5028
5e4f5189
CW
5029 /* Double layer security blanket, see i915_gem_init() */
5030 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5031
59124506 5032 if (dev_priv->ellc_size)
05e21cc4 5033 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5034
0bf21347
VS
5035 if (IS_HASWELL(dev))
5036 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5037 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5038
88a2b2a3 5039 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
5040 if (IS_IVYBRIDGE(dev)) {
5041 u32 temp = I915_READ(GEN7_MSG_CTL);
5042 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5043 I915_WRITE(GEN7_MSG_CTL, temp);
5044 } else if (INTEL_INFO(dev)->gen >= 7) {
5045 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5046 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5047 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5048 }
88a2b2a3
BW
5049 }
5050
4fc7c971
BW
5051 i915_gem_init_swizzling(dev);
5052
d5abdfda
DV
5053 /*
5054 * At least 830 can leave some of the unused rings
5055 * "active" (ie. head != tail) after resume which
5056 * will prevent c3 entry. Makes sure all unused rings
5057 * are totally idle.
5058 */
5059 init_unused_rings(dev);
5060
90638cc1
JH
5061 BUG_ON(!dev_priv->ring[RCS].default_context);
5062
4ad2fd88
JH
5063 ret = i915_ppgtt_init_hw(dev);
5064 if (ret) {
5065 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5066 goto out;
5067 }
5068
5069 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
5070 for_each_ring(ring, dev_priv, i) {
5071 ret = ring->init_hw(ring);
5072 if (ret)
5e4f5189 5073 goto out;
35a57ffb 5074 }
99433931 5075
4ad2fd88
JH
5076 /* Now it is safe to go back round and do everything else: */
5077 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
5078 struct drm_i915_gem_request *req;
5079
90638cc1
JH
5080 WARN_ON(!ring->default_context);
5081
dc4be607
JH
5082 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5083 if (ret) {
5084 i915_gem_cleanup_ringbuffer(dev);
5085 goto out;
5086 }
5087
4ad2fd88
JH
5088 if (ring->id == RCS) {
5089 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 5090 i915_gem_l3_remap(req, j);
4ad2fd88 5091 }
c3787e2e 5092
b3dd6b96 5093 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
5094 if (ret && ret != -EIO) {
5095 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 5096 i915_gem_request_cancel(req);
4ad2fd88
JH
5097 i915_gem_cleanup_ringbuffer(dev);
5098 goto out;
5099 }
82460d97 5100
b3dd6b96 5101 ret = i915_gem_context_enable(req);
90638cc1
JH
5102 if (ret && ret != -EIO) {
5103 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 5104 i915_gem_request_cancel(req);
90638cc1
JH
5105 i915_gem_cleanup_ringbuffer(dev);
5106 goto out;
5107 }
dc4be607 5108
75289874 5109 i915_add_request_no_flush(req);
b7c36d25 5110 }
e21af88d 5111
5e4f5189
CW
5112out:
5113 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5114 return ret;
8187a2b7
ZN
5115}
5116
1070a42b
CW
5117int i915_gem_init(struct drm_device *dev)
5118{
5119 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
5120 int ret;
5121
127f1003
OM
5122 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5123 i915.enable_execlists);
5124
1070a42b 5125 mutex_lock(&dev->struct_mutex);
d62b4892
JB
5126
5127 if (IS_VALLEYVIEW(dev)) {
5128 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
5129 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5130 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5131 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
5132 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5133 }
5134
a83014d3 5135 if (!i915.enable_execlists) {
f3dc74c0 5136 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
5137 dev_priv->gt.init_rings = i915_gem_init_rings;
5138 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5139 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 5140 } else {
f3dc74c0 5141 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
5142 dev_priv->gt.init_rings = intel_logical_rings_init;
5143 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5144 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
5145 }
5146
5e4f5189
CW
5147 /* This is just a security blanket to placate dragons.
5148 * On some systems, we very sporadically observe that the first TLBs
5149 * used by the CS may be stale, despite us poking the TLB reset. If
5150 * we hold the forcewake during initialisation these problems
5151 * just magically go away.
5152 */
5153 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5154
6c5566a8 5155 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
5156 if (ret)
5157 goto out_unlock;
6c5566a8 5158
d7e5008f 5159 i915_gem_init_global_gtt(dev);
d62b4892 5160
2fa48d8d 5161 ret = i915_gem_context_init(dev);
7bcc3777
JN
5162 if (ret)
5163 goto out_unlock;
2fa48d8d 5164
35a57ffb
DV
5165 ret = dev_priv->gt.init_rings(dev);
5166 if (ret)
7bcc3777 5167 goto out_unlock;
2fa48d8d 5168
1070a42b 5169 ret = i915_gem_init_hw(dev);
60990320
CW
5170 if (ret == -EIO) {
5171 /* Allow ring initialisation to fail by marking the GPU as
5172 * wedged. But we only want to do this where the GPU is angry,
5173 * for all other failure, such as an allocation failure, bail.
5174 */
5175 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5176 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5177 ret = 0;
1070a42b 5178 }
7bcc3777
JN
5179
5180out_unlock:
5e4f5189 5181 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5182 mutex_unlock(&dev->struct_mutex);
1070a42b 5183
60990320 5184 return ret;
1070a42b
CW
5185}
5186
8187a2b7
ZN
5187void
5188i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5189{
3e31c6c0 5190 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 5191 struct intel_engine_cs *ring;
1ec14ad3 5192 int i;
8187a2b7 5193
b4519513 5194 for_each_ring(ring, dev_priv, i)
a83014d3 5195 dev_priv->gt.cleanup_ring(ring);
a647828a
NB
5196
5197 if (i915.enable_execlists)
5198 /*
5199 * Neither the BIOS, ourselves or any other kernel
5200 * expects the system to be in execlists mode on startup,
5201 * so we need to reset the GPU back to legacy mode.
5202 */
5203 intel_gpu_reset(dev);
8187a2b7
ZN
5204}
5205
64193406 5206static void
a4872ba6 5207init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5208{
5209 INIT_LIST_HEAD(&ring->active_list);
5210 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5211}
5212
7e0d96bc
BW
5213void i915_init_vm(struct drm_i915_private *dev_priv,
5214 struct i915_address_space *vm)
fc8c067e 5215{
7e0d96bc
BW
5216 if (!i915_is_ggtt(vm))
5217 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
5218 vm->dev = dev_priv->dev;
5219 INIT_LIST_HEAD(&vm->active_list);
5220 INIT_LIST_HEAD(&vm->inactive_list);
5221 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 5222 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
5223}
5224
673a394b
EA
5225void
5226i915_gem_load(struct drm_device *dev)
5227{
3e31c6c0 5228 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5229 int i;
5230
efab6d8d 5231 dev_priv->objects =
42dcedd4
CW
5232 kmem_cache_create("i915_gem_object",
5233 sizeof(struct drm_i915_gem_object), 0,
5234 SLAB_HWCACHE_ALIGN,
5235 NULL);
e20d2ab7
CW
5236 dev_priv->vmas =
5237 kmem_cache_create("i915_gem_vma",
5238 sizeof(struct i915_vma), 0,
5239 SLAB_HWCACHE_ALIGN,
5240 NULL);
efab6d8d
CW
5241 dev_priv->requests =
5242 kmem_cache_create("i915_gem_request",
5243 sizeof(struct drm_i915_gem_request), 0,
5244 SLAB_HWCACHE_ALIGN,
5245 NULL);
673a394b 5246
fc8c067e
BW
5247 INIT_LIST_HEAD(&dev_priv->vm_list);
5248 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5249
a33afea5 5250 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5251 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5252 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5253 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5254 for (i = 0; i < I915_NUM_RINGS; i++)
5255 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5256 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5257 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5258 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5259 i915_gem_retire_work_handler);
b29c19b6
CW
5260 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5261 i915_gem_idle_work_handler);
1f83fee0 5262 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5263
72bfa19c
CW
5264 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5265
42b5aeab
VS
5266 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5267 dev_priv->num_fence_regs = 32;
5268 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5269 dev_priv->num_fence_regs = 16;
5270 else
5271 dev_priv->num_fence_regs = 8;
5272
eb82289a
YZ
5273 if (intel_vgpu_active(dev))
5274 dev_priv->num_fence_regs =
5275 I915_READ(vgtif_reg(avail_rs.fence_num));
5276
b5aa8a0f 5277 /* Initialize fence registers to zero */
19b2dbde
CW
5278 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5279 i915_gem_restore_fences(dev);
10ed13e4 5280
673a394b 5281 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5282 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5283
ce453d81
CW
5284 dev_priv->mm.interruptible = true;
5285
be6a0376 5286 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5287
5288 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5289}
71acb5eb 5290
f787a5f5 5291void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5292{
f787a5f5 5293 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5294
5295 /* Clean up our request list when the client is going away, so that
5296 * later retire_requests won't dereference our soon-to-be-gone
5297 * file_priv.
5298 */
1c25595f 5299 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5300 while (!list_empty(&file_priv->mm.request_list)) {
5301 struct drm_i915_gem_request *request;
5302
5303 request = list_first_entry(&file_priv->mm.request_list,
5304 struct drm_i915_gem_request,
5305 client_list);
5306 list_del(&request->client_list);
5307 request->file_priv = NULL;
5308 }
1c25595f 5309 spin_unlock(&file_priv->mm.lock);
b29c19b6 5310
2e1b8730 5311 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5312 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5313 list_del(&file_priv->rps.link);
8d3afd7d 5314 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5315 }
b29c19b6
CW
5316}
5317
5318int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5319{
5320 struct drm_i915_file_private *file_priv;
e422b888 5321 int ret;
b29c19b6
CW
5322
5323 DRM_DEBUG_DRIVER("\n");
5324
5325 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5326 if (!file_priv)
5327 return -ENOMEM;
5328
5329 file->driver_priv = file_priv;
5330 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5331 file_priv->file = file;
2e1b8730 5332 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5333
5334 spin_lock_init(&file_priv->mm.lock);
5335 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5336
e422b888
BW
5337 ret = i915_gem_context_open(dev, file);
5338 if (ret)
5339 kfree(file_priv);
b29c19b6 5340
e422b888 5341 return ret;
b29c19b6
CW
5342}
5343
b680c37a
DV
5344/**
5345 * i915_gem_track_fb - update frontbuffer tracking
5346 * old: current GEM buffer for the frontbuffer slots
5347 * new: new GEM buffer for the frontbuffer slots
5348 * frontbuffer_bits: bitmask of frontbuffer slots
5349 *
5350 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5351 * from @old and setting them in @new. Both @old and @new can be NULL.
5352 */
a071fa00
DV
5353void i915_gem_track_fb(struct drm_i915_gem_object *old,
5354 struct drm_i915_gem_object *new,
5355 unsigned frontbuffer_bits)
5356{
5357 if (old) {
5358 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5359 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5360 old->frontbuffer_bits &= ~frontbuffer_bits;
5361 }
5362
5363 if (new) {
5364 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5365 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5366 new->frontbuffer_bits |= frontbuffer_bits;
5367 }
5368}
5369
a70a3148 5370/* All the new VM stuff */
ec7adb6e
JL
5371unsigned long
5372i915_gem_obj_offset(struct drm_i915_gem_object *o,
5373 struct i915_address_space *vm)
a70a3148
BW
5374{
5375 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5376 struct i915_vma *vma;
5377
896ab1a5 5378 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5379
a70a3148 5380 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5381 if (i915_is_ggtt(vma->vm) &&
5382 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5383 continue;
5384 if (vma->vm == vm)
a70a3148 5385 return vma->node.start;
a70a3148 5386 }
ec7adb6e 5387
f25748ea
DV
5388 WARN(1, "%s vma for this object not found.\n",
5389 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5390 return -1;
5391}
5392
ec7adb6e
JL
5393unsigned long
5394i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5395 const struct i915_ggtt_view *view)
a70a3148 5396{
ec7adb6e 5397 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5398 struct i915_vma *vma;
5399
5400 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5401 if (vma->vm == ggtt &&
5402 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5403 return vma->node.start;
5404
5678ad73 5405 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5406 return -1;
5407}
5408
5409bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5410 struct i915_address_space *vm)
5411{
5412 struct i915_vma *vma;
5413
5414 list_for_each_entry(vma, &o->vma_list, vma_link) {
5415 if (i915_is_ggtt(vma->vm) &&
5416 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5417 continue;
5418 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5419 return true;
5420 }
5421
5422 return false;
5423}
5424
5425bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5426 const struct i915_ggtt_view *view)
ec7adb6e
JL
5427{
5428 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5429 struct i915_vma *vma;
5430
5431 list_for_each_entry(vma, &o->vma_list, vma_link)
5432 if (vma->vm == ggtt &&
9abc4648 5433 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5434 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5435 return true;
5436
5437 return false;
5438}
5439
5440bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5441{
5a1d5eb0 5442 struct i915_vma *vma;
a70a3148 5443
5a1d5eb0
CW
5444 list_for_each_entry(vma, &o->vma_list, vma_link)
5445 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5446 return true;
5447
5448 return false;
5449}
5450
5451unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5452 struct i915_address_space *vm)
5453{
5454 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5455 struct i915_vma *vma;
5456
896ab1a5 5457 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5458
5459 BUG_ON(list_empty(&o->vma_list));
5460
ec7adb6e
JL
5461 list_for_each_entry(vma, &o->vma_list, vma_link) {
5462 if (i915_is_ggtt(vma->vm) &&
5463 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5464 continue;
a70a3148
BW
5465 if (vma->vm == vm)
5466 return vma->node.size;
ec7adb6e 5467 }
a70a3148
BW
5468 return 0;
5469}
5470
ec7adb6e 5471bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5472{
5473 struct i915_vma *vma;
a6631ae1 5474 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5475 if (vma->pin_count > 0)
5476 return true;
a6631ae1 5477
ec7adb6e 5478 return false;
5c2abbea 5479}
ea70299d
DG
5480
5481/* Allocate a new GEM object and fill it with the supplied data */
5482struct drm_i915_gem_object *
5483i915_gem_object_create_from_data(struct drm_device *dev,
5484 const void *data, size_t size)
5485{
5486 struct drm_i915_gem_object *obj;
5487 struct sg_table *sg;
5488 size_t bytes;
5489 int ret;
5490
5491 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5492 if (IS_ERR_OR_NULL(obj))
5493 return obj;
5494
5495 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5496 if (ret)
5497 goto fail;
5498
5499 ret = i915_gem_object_get_pages(obj);
5500 if (ret)
5501 goto fail;
5502
5503 i915_gem_object_pin_pages(obj);
5504 sg = obj->pages;
5505 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5506 i915_gem_object_unpin_pages(obj);
5507
5508 if (WARN_ON(bytes != size)) {
5509 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5510 ret = -EFAULT;
5511 goto fail;
5512 }
5513
5514 return obj;
5515
5516fail:
5517 drm_gem_object_unreference(&obj->base);
5518 return ERR_PTR(ret);
5519}
This page took 1.798251 seconds and 5 git commands to generate.