drm/i915: Update less state during modeset.
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
5a125c3c 154
6299f992 155 pinned = 0;
73aa808f 156 mutex_lock(&dev->struct_mutex);
35c20a60 157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 158 if (i915_gem_obj_is_pinned(obj))
f343c5f6 159 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
853ba5d2 162 args->aper_size = dev_priv->gtt.base.total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
6a2c4232
CW
168static int
169i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 170{
6a2c4232
CW
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
00731155 176
6a2c4232
CW
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
00731155 211
6a2c4232
CW
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232
CW
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
00731155 240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
6a2c4232 260 page_cache_release(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
063e4e6b 353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
00731155 371 i915_gem_chipset_flush(dev);
063e4e6b
PZ
372
373out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 387 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
ff72145b 405 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
406 if (obj == NULL)
407 return -ENOMEM;
408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
433 */
434int
435i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437{
438 struct drm_i915_gem_create *args = data;
63ed2cb2 439
ff72145b 440 return i915_gem_create(file, dev,
da6b51d0 441 args->size, &args->handle);
ff72145b
DA
442}
443
8461d226
DV
444static inline int
445__copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448{
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468}
469
8c59967c 470static inline int
4f0c7cfb
BW
471__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
8c59967c
DV
473 int length)
474{
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494}
495
4c914c0c
BV
496/*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503{
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530}
531
d174bd64
DV
532/* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
eb01459f 535static int
d174bd64
DV
536shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539{
540 char *vaddr;
541 int ret;
542
e7e58eb5 543 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
f60d7f0c 555 return ret ? -EFAULT : 0;
d174bd64
DV
556}
557
23c18c71
DV
558static void
559shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561{
e7e58eb5 562 if (unlikely(swizzled)) {
23c18c71
DV
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578}
579
d174bd64
DV
580/* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582static int
583shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586{
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
23c18c71
DV
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
d174bd64
DV
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
f60d7f0c 606 return ret ? - EFAULT : 0;
d174bd64
DV
607}
608
eb01459f 609static int
dbf7bff0
DV
610i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
eb01459f 614{
8461d226 615 char __user *user_data;
eb01459f 616 ssize_t remain;
8461d226 617 loff_t offset;
eb2c0c81 618 int shmem_page_offset, page_length, ret = 0;
8461d226 619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 620 int prefaulted = 0;
8489731c 621 int needs_clflush = 0;
67d5a50c 622 struct sg_page_iter sg_iter;
eb01459f 623
2bb4629a 624 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
625 remain = args->size;
626
8461d226 627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 628
4c914c0c 629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
630 if (ret)
631 return ret;
632
8461d226 633 offset = args->offset;
eb01459f 634
67d5a50c
ID
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
2db76d7c 637 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
638
639 if (remain <= 0)
640 break;
641
eb01459f
EA
642 /* Operation in this page
643 *
eb01459f 644 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
645 * page_length = bytes to copy for this page
646 */
c8cbbb8b 647 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 651
8461d226
DV
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
d174bd64
DV
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
dbf7bff0 660
dbf7bff0
DV
661 mutex_unlock(&dev->struct_mutex);
662
d330a953 663 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 664 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
eb01459f 672
d174bd64
DV
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
eb01459f 676
dbf7bff0 677 mutex_lock(&dev->struct_mutex);
f60d7f0c 678
f60d7f0c 679 if (ret)
8461d226 680 goto out;
8461d226 681
17793c9a 682next_page:
eb01459f 683 remain -= page_length;
8461d226 684 user_data += page_length;
eb01459f
EA
685 offset += page_length;
686 }
687
4f27b75d 688out:
f60d7f0c
CW
689 i915_gem_object_unpin_pages(obj);
690
eb01459f
EA
691 return ret;
692}
693
673a394b
EA
694/**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699int
700i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 701 struct drm_file *file)
673a394b
EA
702{
703 struct drm_i915_gem_pread *args = data;
05394f39 704 struct drm_i915_gem_object *obj;
35b62a89 705 int ret = 0;
673a394b 706
51311d0a
CW
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
2bb4629a 711 to_user_ptr(args->data_ptr),
51311d0a
CW
712 args->size))
713 return -EFAULT;
714
4f27b75d 715 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 716 if (ret)
4f27b75d 717 return ret;
673a394b 718
05394f39 719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 720 if (&obj->base == NULL) {
1d7cfea1
CW
721 ret = -ENOENT;
722 goto unlock;
4f27b75d 723 }
673a394b 724
7dcd2499 725 /* Bounds check source. */
05394f39
CW
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
ce9d419d 728 ret = -EINVAL;
35b62a89 729 goto out;
ce9d419d
CW
730 }
731
1286ff73
DV
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
db53a302
CW
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
dbf7bff0 742 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 743
35b62a89 744out:
05394f39 745 drm_gem_object_unreference(&obj->base);
1d7cfea1 746unlock:
4f27b75d 747 mutex_unlock(&dev->struct_mutex);
eb01459f 748 return ret;
673a394b
EA
749}
750
0839ccb8
KP
751/* This is the fast write path which cannot handle
752 * page faults in the source data
9b7530cc 753 */
0839ccb8
KP
754
755static inline int
756fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
9b7530cc 760{
4f0c7cfb
BW
761 void __iomem *vaddr_atomic;
762 void *vaddr;
0839ccb8 763 unsigned long unwritten;
9b7530cc 764
3e4d3af5 765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 769 user_data, length);
3e4d3af5 770 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 771 return unwritten;
0839ccb8
KP
772}
773
3de09aa3
EA
774/**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
673a394b 778static int
05394f39
CW
779i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
3de09aa3 781 struct drm_i915_gem_pwrite *args,
05394f39 782 struct drm_file *file)
673a394b 783{
3e31c6c0 784 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 785 ssize_t remain;
0839ccb8 786 loff_t offset, page_base;
673a394b 787 char __user *user_data;
935aaa69
DV
788 int page_offset, page_length, ret;
789
1ec9e26d 790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
673a394b 801
2bb4629a 802 user_data = to_user_ptr(args->data_ptr);
673a394b 803 remain = args->size;
673a394b 804
f343c5f6 805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 806
063e4e6b
PZ
807 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
808
673a394b
EA
809 while (remain > 0) {
810 /* Operation in this page
811 *
0839ccb8
KP
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
673a394b 815 */
c8cbbb8b
CW
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
0839ccb8
KP
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
0839ccb8 822 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
0839ccb8 825 */
5d4545ae 826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
063e4e6b 829 goto out_flush;
935aaa69 830 }
673a394b 831
0839ccb8
KP
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
673a394b 835 }
673a394b 836
063e4e6b
PZ
837out_flush:
838 intel_fb_obj_flush(obj, false);
935aaa69 839out_unpin:
d7f46fc4 840 i915_gem_object_ggtt_unpin(obj);
935aaa69 841out:
3de09aa3 842 return ret;
673a394b
EA
843}
844
d174bd64
DV
845/* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
3043c60c 849static int
d174bd64
DV
850shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
673a394b 855{
d174bd64 856 char *vaddr;
673a394b 857 int ret;
3de09aa3 858
e7e58eb5 859 if (unlikely(page_do_bit17_swizzling))
d174bd64 860 return -EINVAL;
3de09aa3 861
d174bd64
DV
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
c2831a94
CW
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
d174bd64
DV
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
3de09aa3 872
755d2218 873 return ret ? -EFAULT : 0;
3de09aa3
EA
874}
875
d174bd64
DV
876/* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
3043c60c 878static int
d174bd64
DV
879shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
673a394b 884{
d174bd64
DV
885 char *vaddr;
886 int ret;
e5281ccd 887
d174bd64 888 vaddr = kmap(page);
e7e58eb5 889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
d174bd64
DV
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
895 user_data,
896 page_length);
d174bd64
DV
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
23c18c71
DV
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
d174bd64 905 kunmap(page);
40123c1f 906
755d2218 907 return ret ? -EFAULT : 0;
40123c1f
EA
908}
909
40123c1f 910static int
e244a443
DV
911i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
40123c1f 915{
40123c1f 916 ssize_t remain;
8c59967c
DV
917 loff_t offset;
918 char __user *user_data;
eb2c0c81 919 int shmem_page_offset, page_length, ret = 0;
8c59967c 920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 921 int hit_slowpath = 0;
58642885
DV
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
67d5a50c 924 struct sg_page_iter sg_iter;
40123c1f 925
2bb4629a 926 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
927 remain = args->size;
928
8c59967c 929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 930
58642885
DV
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
2c22569b 936 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
58642885 940 }
c76ce038
CW
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 946
755d2218
CW
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
063e4e6b
PZ
951 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
952
755d2218
CW
953 i915_gem_object_pin_pages(obj);
954
673a394b 955 offset = args->offset;
05394f39 956 obj->dirty = 1;
673a394b 957
67d5a50c
ID
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
2db76d7c 960 struct page *page = sg_page_iter_page(&sg_iter);
58642885 961 int partial_cacheline_write;
e5281ccd 962
9da3da66
CW
963 if (remain <= 0)
964 break;
965
40123c1f
EA
966 /* Operation in this page
967 *
40123c1f 968 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
969 * page_length = bytes to copy for this page
970 */
c8cbbb8b 971 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 976
58642885
DV
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
8c59967c
DV
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
d174bd64
DV
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
e244a443
DV
993
994 hit_slowpath = 1;
e244a443 995 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
40123c1f 1000
e244a443 1001 mutex_lock(&dev->struct_mutex);
755d2218 1002
755d2218 1003 if (ret)
8c59967c 1004 goto out;
8c59967c 1005
17793c9a 1006next_page:
40123c1f 1007 remain -= page_length;
8c59967c 1008 user_data += page_length;
40123c1f 1009 offset += page_length;
673a394b
EA
1010 }
1011
fbd5a26d 1012out:
755d2218
CW
1013 i915_gem_object_unpin_pages(obj);
1014
e244a443 1015 if (hit_slowpath) {
8dcf015e
DV
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
e244a443 1025 }
8c59967c 1026 }
673a394b 1027
58642885 1028 if (needs_clflush_after)
e76e9aeb 1029 i915_gem_chipset_flush(dev);
58642885 1030
063e4e6b 1031 intel_fb_obj_flush(obj, false);
40123c1f 1032 return ret;
673a394b
EA
1033}
1034
1035/**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040int
1041i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1042 struct drm_file *file)
673a394b 1043{
5d77d9c5 1044 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1045 struct drm_i915_gem_pwrite *args = data;
05394f39 1046 struct drm_i915_gem_object *obj;
51311d0a
CW
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
2bb4629a 1053 to_user_ptr(args->data_ptr),
51311d0a
CW
1054 args->size))
1055 return -EFAULT;
1056
d330a953 1057 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
673a394b 1063
5d77d9c5
ID
1064 intel_runtime_pm_get(dev_priv);
1065
fbd5a26d 1066 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1067 if (ret)
5d77d9c5 1068 goto put_rpm;
1d7cfea1 1069
05394f39 1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1071 if (&obj->base == NULL) {
1d7cfea1
CW
1072 ret = -ENOENT;
1073 goto unlock;
fbd5a26d 1074 }
673a394b 1075
7dcd2499 1076 /* Bounds check destination. */
05394f39
CW
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
ce9d419d 1079 ret = -EINVAL;
35b62a89 1080 goto out;
ce9d419d
CW
1081 }
1082
1286ff73
DV
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
db53a302
CW
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
935aaa69 1093 ret = -EFAULT;
673a394b
EA
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
2c22569b
CW
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
fbd5a26d 1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1107 }
673a394b 1108
6a2c4232
CW
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
5c0480f2 1115
35b62a89 1116out:
05394f39 1117 drm_gem_object_unreference(&obj->base);
1d7cfea1 1118unlock:
fbd5a26d 1119 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1120put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
673a394b
EA
1123 return ret;
1124}
1125
b361237b 1126int
33196ded 1127i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1128 bool interruptible)
1129{
1f83fee0 1130 if (i915_reset_in_progress(error)) {
b361237b
CW
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1f83fee0
DV
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
b361237b
CW
1138 return -EIO;
1139
6689c167
MA
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
b361237b
CW
1147 }
1148
1149 return 0;
1150}
1151
1152/*
b6660d59 1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1154 */
84c33a64 1155int
b6660d59 1156i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1157{
1158 int ret;
1159
b6660d59 1160 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1161
1162 ret = 0;
b6660d59 1163 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1164 ret = i915_add_request(req->ring);
b361237b
CW
1165
1166 return ret;
1167}
1168
094f9a54
CW
1169static void fake_irq(unsigned long data)
1170{
1171 wake_up_process((struct task_struct *)data);
1172}
1173
1174static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1175 struct intel_engine_cs *ring)
094f9a54
CW
1176{
1177 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1178}
1179
eed29a5b 1180static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1181{
2def4ad9
CW
1182 unsigned long timeout;
1183
eed29a5b 1184 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1185 return -EBUSY;
1186
1187 timeout = jiffies + 1;
1188 while (!need_resched()) {
eed29a5b 1189 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1190 return 0;
1191
1192 if (time_after_eq(jiffies, timeout))
1193 break;
b29c19b6 1194
2def4ad9
CW
1195 cpu_relax_lowlatency();
1196 }
eed29a5b 1197 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1198 return 0;
1199
1200 return -EAGAIN;
b29c19b6
CW
1201}
1202
b361237b 1203/**
9c654818
JH
1204 * __i915_wait_request - wait until execution of request has finished
1205 * @req: duh!
1206 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1207 * @interruptible: do an interruptible wait (normally yes)
1208 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1209 *
f69061be
DV
1210 * Note: It is of utmost importance that the passed in seqno and reset_counter
1211 * values have been read by the caller in an smp safe manner. Where read-side
1212 * locks are involved, it is sufficient to read the reset_counter before
1213 * unlocking the lock that protects the seqno. For lockless tricks, the
1214 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1215 * inserted.
1216 *
9c654818 1217 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1218 * errno with remaining time filled in timeout argument.
1219 */
9c654818 1220int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1221 unsigned reset_counter,
b29c19b6 1222 bool interruptible,
5ed0bdf2 1223 s64 *timeout,
2e1b8730 1224 struct intel_rps_client *rps)
b361237b 1225{
9c654818 1226 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1227 struct drm_device *dev = ring->dev;
3e31c6c0 1228 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1229 const bool irq_test_in_progress =
1230 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1231 DEFINE_WAIT(wait);
47e9766d 1232 unsigned long timeout_expire;
5ed0bdf2 1233 s64 before, now;
b361237b
CW
1234 int ret;
1235
9df7575f 1236 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1237
b4716185
CW
1238 if (list_empty(&req->list))
1239 return 0;
1240
1b5a433a 1241 if (i915_gem_request_completed(req, true))
b361237b
CW
1242 return 0;
1243
7bd0e226
DV
1244 timeout_expire = timeout ?
1245 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1246
2e1b8730 1247 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1248 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1249
094f9a54 1250 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1251 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1252 before = ktime_get_raw_ns();
2def4ad9
CW
1253
1254 /* Optimistic spin for the next jiffie before touching IRQs */
1255 ret = __i915_spin_request(req);
1256 if (ret == 0)
1257 goto out;
1258
1259 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1260 ret = -ENODEV;
1261 goto out;
1262 }
1263
094f9a54
CW
1264 for (;;) {
1265 struct timer_list timer;
b361237b 1266
094f9a54
CW
1267 prepare_to_wait(&ring->irq_queue, &wait,
1268 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1269
f69061be
DV
1270 /* We need to check whether any gpu reset happened in between
1271 * the caller grabbing the seqno and now ... */
094f9a54
CW
1272 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1273 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1274 * is truely gone. */
1275 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1276 if (ret == 0)
1277 ret = -EAGAIN;
1278 break;
1279 }
f69061be 1280
1b5a433a 1281 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1282 ret = 0;
1283 break;
1284 }
b361237b 1285
094f9a54
CW
1286 if (interruptible && signal_pending(current)) {
1287 ret = -ERESTARTSYS;
1288 break;
1289 }
1290
47e9766d 1291 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1292 ret = -ETIME;
1293 break;
1294 }
1295
1296 timer.function = NULL;
1297 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1298 unsigned long expire;
1299
094f9a54 1300 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1301 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1302 mod_timer(&timer, expire);
1303 }
1304
5035c275 1305 io_schedule();
094f9a54 1306
094f9a54
CW
1307 if (timer.function) {
1308 del_singleshot_timer_sync(&timer);
1309 destroy_timer_on_stack(&timer);
1310 }
1311 }
168c3f21
MK
1312 if (!irq_test_in_progress)
1313 ring->irq_put(ring);
094f9a54
CW
1314
1315 finish_wait(&ring->irq_queue, &wait);
b361237b 1316
2def4ad9
CW
1317out:
1318 now = ktime_get_raw_ns();
1319 trace_i915_gem_request_wait_end(req);
1320
b361237b 1321 if (timeout) {
5ed0bdf2
TG
1322 s64 tres = *timeout - (now - before);
1323
1324 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1325
1326 /*
1327 * Apparently ktime isn't accurate enough and occasionally has a
1328 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1329 * things up to make the test happy. We allow up to 1 jiffy.
1330 *
1331 * This is a regrssion from the timespec->ktime conversion.
1332 */
1333 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1334 *timeout = 0;
b361237b
CW
1335 }
1336
094f9a54 1337 return ret;
b361237b
CW
1338}
1339
b4716185
CW
1340static inline void
1341i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1342{
1343 struct drm_i915_file_private *file_priv = request->file_priv;
1344
1345 if (!file_priv)
1346 return;
1347
1348 spin_lock(&file_priv->mm.lock);
1349 list_del(&request->client_list);
1350 request->file_priv = NULL;
1351 spin_unlock(&file_priv->mm.lock);
1352}
1353
1354static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1355{
1356 trace_i915_gem_request_retire(request);
1357
1358 /* We know the GPU must have read the request to have
1359 * sent us the seqno + interrupt, so use the position
1360 * of tail of the request to update the last known position
1361 * of the GPU head.
1362 *
1363 * Note this requires that we are always called in request
1364 * completion order.
1365 */
1366 request->ringbuf->last_retired_head = request->postfix;
1367
1368 list_del_init(&request->list);
1369 i915_gem_request_remove_from_client(request);
1370
1371 put_pid(request->pid);
1372
1373 i915_gem_request_unreference(request);
1374}
1375
1376static void
1377__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1378{
1379 struct intel_engine_cs *engine = req->ring;
1380 struct drm_i915_gem_request *tmp;
1381
1382 lockdep_assert_held(&engine->dev->struct_mutex);
1383
1384 if (list_empty(&req->list))
1385 return;
1386
1387 do {
1388 tmp = list_first_entry(&engine->request_list,
1389 typeof(*tmp), list);
1390
1391 i915_gem_request_retire(tmp);
1392 } while (tmp != req);
1393
1394 WARN_ON(i915_verify_lists(engine->dev));
1395}
1396
b361237b 1397/**
a4b3a571 1398 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1399 * request and object lists appropriately for that event.
1400 */
1401int
a4b3a571 1402i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1403{
a4b3a571
DV
1404 struct drm_device *dev;
1405 struct drm_i915_private *dev_priv;
1406 bool interruptible;
b361237b
CW
1407 int ret;
1408
a4b3a571
DV
1409 BUG_ON(req == NULL);
1410
1411 dev = req->ring->dev;
1412 dev_priv = dev->dev_private;
1413 interruptible = dev_priv->mm.interruptible;
1414
b361237b 1415 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1416
33196ded 1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1418 if (ret)
1419 return ret;
1420
a4b3a571 1421 ret = i915_gem_check_olr(req);
b361237b
CW
1422 if (ret)
1423 return ret;
1424
b4716185
CW
1425 ret = __i915_wait_request(req,
1426 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1427 interruptible, NULL, NULL);
b4716185
CW
1428 if (ret)
1429 return ret;
d26e3af8 1430
b4716185 1431 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1432 return 0;
1433}
1434
b361237b
CW
1435/**
1436 * Ensures that all rendering to the object has completed and the object is
1437 * safe to unbind from the GTT or access from the CPU.
1438 */
2e2f351d 1439int
b361237b
CW
1440i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1441 bool readonly)
1442{
b4716185 1443 int ret, i;
b361237b 1444
b4716185 1445 if (!obj->active)
b361237b
CW
1446 return 0;
1447
b4716185
CW
1448 if (readonly) {
1449 if (obj->last_write_req != NULL) {
1450 ret = i915_wait_request(obj->last_write_req);
1451 if (ret)
1452 return ret;
b361237b 1453
b4716185
CW
1454 i = obj->last_write_req->ring->id;
1455 if (obj->last_read_req[i] == obj->last_write_req)
1456 i915_gem_object_retire__read(obj, i);
1457 else
1458 i915_gem_object_retire__write(obj);
1459 }
1460 } else {
1461 for (i = 0; i < I915_NUM_RINGS; i++) {
1462 if (obj->last_read_req[i] == NULL)
1463 continue;
1464
1465 ret = i915_wait_request(obj->last_read_req[i]);
1466 if (ret)
1467 return ret;
1468
1469 i915_gem_object_retire__read(obj, i);
1470 }
1471 RQ_BUG_ON(obj->active);
1472 }
1473
1474 return 0;
1475}
1476
1477static void
1478i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1479 struct drm_i915_gem_request *req)
1480{
1481 int ring = req->ring->id;
1482
1483 if (obj->last_read_req[ring] == req)
1484 i915_gem_object_retire__read(obj, ring);
1485 else if (obj->last_write_req == req)
1486 i915_gem_object_retire__write(obj);
1487
1488 __i915_gem_request_retire__upto(req);
b361237b
CW
1489}
1490
3236f57a
CW
1491/* A nonblocking variant of the above wait. This is a highly dangerous routine
1492 * as the object state may change during this call.
1493 */
1494static __must_check int
1495i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1496 struct intel_rps_client *rps,
3236f57a
CW
1497 bool readonly)
1498{
1499 struct drm_device *dev = obj->base.dev;
1500 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1501 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1502 unsigned reset_counter;
b4716185 1503 int ret, i, n = 0;
3236f57a
CW
1504
1505 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1506 BUG_ON(!dev_priv->mm.interruptible);
1507
b4716185 1508 if (!obj->active)
3236f57a
CW
1509 return 0;
1510
33196ded 1511 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1512 if (ret)
1513 return ret;
1514
f69061be 1515 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1516
1517 if (readonly) {
1518 struct drm_i915_gem_request *req;
1519
1520 req = obj->last_write_req;
1521 if (req == NULL)
1522 return 0;
1523
1524 ret = i915_gem_check_olr(req);
1525 if (ret)
1526 goto err;
1527
1528 requests[n++] = i915_gem_request_reference(req);
1529 } else {
1530 for (i = 0; i < I915_NUM_RINGS; i++) {
1531 struct drm_i915_gem_request *req;
1532
1533 req = obj->last_read_req[i];
1534 if (req == NULL)
1535 continue;
1536
1537 ret = i915_gem_check_olr(req);
1538 if (ret)
1539 goto err;
1540
1541 requests[n++] = i915_gem_request_reference(req);
1542 }
1543 }
1544
3236f57a 1545 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1546 for (i = 0; ret == 0 && i < n; i++)
1547 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1548 NULL, rps);
3236f57a
CW
1549 mutex_lock(&dev->struct_mutex);
1550
b4716185
CW
1551err:
1552 for (i = 0; i < n; i++) {
1553 if (ret == 0)
1554 i915_gem_object_retire_request(obj, requests[i]);
1555 i915_gem_request_unreference(requests[i]);
1556 }
1557
1558 return ret;
3236f57a
CW
1559}
1560
2e1b8730
CW
1561static struct intel_rps_client *to_rps_client(struct drm_file *file)
1562{
1563 struct drm_i915_file_private *fpriv = file->driver_priv;
1564 return &fpriv->rps;
1565}
1566
673a394b 1567/**
2ef7eeaa
EA
1568 * Called when user space prepares to use an object with the CPU, either
1569 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1570 */
1571int
1572i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1573 struct drm_file *file)
673a394b
EA
1574{
1575 struct drm_i915_gem_set_domain *args = data;
05394f39 1576 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1577 uint32_t read_domains = args->read_domains;
1578 uint32_t write_domain = args->write_domain;
673a394b
EA
1579 int ret;
1580
2ef7eeaa 1581 /* Only handle setting domains to types used by the CPU. */
21d509e3 1582 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1583 return -EINVAL;
1584
21d509e3 1585 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1586 return -EINVAL;
1587
1588 /* Having something in the write domain implies it's in the read
1589 * domain, and only that read domain. Enforce that in the request.
1590 */
1591 if (write_domain != 0 && read_domains != write_domain)
1592 return -EINVAL;
1593
76c1dec1 1594 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1595 if (ret)
76c1dec1 1596 return ret;
1d7cfea1 1597
05394f39 1598 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1599 if (&obj->base == NULL) {
1d7cfea1
CW
1600 ret = -ENOENT;
1601 goto unlock;
76c1dec1 1602 }
673a394b 1603
3236f57a
CW
1604 /* Try to flush the object off the GPU without holding the lock.
1605 * We will repeat the flush holding the lock in the normal manner
1606 * to catch cases where we are gazumped.
1607 */
6e4930f6 1608 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1609 to_rps_client(file),
6e4930f6 1610 !write_domain);
3236f57a
CW
1611 if (ret)
1612 goto unref;
1613
43566ded 1614 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1615 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1616 else
e47c68e9 1617 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1618
3236f57a 1619unref:
05394f39 1620 drm_gem_object_unreference(&obj->base);
1d7cfea1 1621unlock:
673a394b
EA
1622 mutex_unlock(&dev->struct_mutex);
1623 return ret;
1624}
1625
1626/**
1627 * Called when user space has done writes to this buffer
1628 */
1629int
1630i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1631 struct drm_file *file)
673a394b
EA
1632{
1633 struct drm_i915_gem_sw_finish *args = data;
05394f39 1634 struct drm_i915_gem_object *obj;
673a394b
EA
1635 int ret = 0;
1636
76c1dec1 1637 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1638 if (ret)
76c1dec1 1639 return ret;
1d7cfea1 1640
05394f39 1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1642 if (&obj->base == NULL) {
1d7cfea1
CW
1643 ret = -ENOENT;
1644 goto unlock;
673a394b
EA
1645 }
1646
673a394b 1647 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1648 if (obj->pin_display)
e62b59e4 1649 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1650
05394f39 1651 drm_gem_object_unreference(&obj->base);
1d7cfea1 1652unlock:
673a394b
EA
1653 mutex_unlock(&dev->struct_mutex);
1654 return ret;
1655}
1656
1657/**
1658 * Maps the contents of an object, returning the address it is mapped
1659 * into.
1660 *
1661 * While the mapping holds a reference on the contents of the object, it doesn't
1662 * imply a ref on the object itself.
34367381
DV
1663 *
1664 * IMPORTANT:
1665 *
1666 * DRM driver writers who look a this function as an example for how to do GEM
1667 * mmap support, please don't implement mmap support like here. The modern way
1668 * to implement DRM mmap support is with an mmap offset ioctl (like
1669 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1670 * That way debug tooling like valgrind will understand what's going on, hiding
1671 * the mmap call in a driver private ioctl will break that. The i915 driver only
1672 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1673 */
1674int
1675i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1676 struct drm_file *file)
673a394b
EA
1677{
1678 struct drm_i915_gem_mmap *args = data;
1679 struct drm_gem_object *obj;
673a394b
EA
1680 unsigned long addr;
1681
1816f923
AG
1682 if (args->flags & ~(I915_MMAP_WC))
1683 return -EINVAL;
1684
1685 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1686 return -ENODEV;
1687
05394f39 1688 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1689 if (obj == NULL)
bf79cb91 1690 return -ENOENT;
673a394b 1691
1286ff73
DV
1692 /* prime objects have no backing filp to GEM mmap
1693 * pages from.
1694 */
1695 if (!obj->filp) {
1696 drm_gem_object_unreference_unlocked(obj);
1697 return -EINVAL;
1698 }
1699
6be5ceb0 1700 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1701 PROT_READ | PROT_WRITE, MAP_SHARED,
1702 args->offset);
1816f923
AG
1703 if (args->flags & I915_MMAP_WC) {
1704 struct mm_struct *mm = current->mm;
1705 struct vm_area_struct *vma;
1706
1707 down_write(&mm->mmap_sem);
1708 vma = find_vma(mm, addr);
1709 if (vma)
1710 vma->vm_page_prot =
1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712 else
1713 addr = -ENOMEM;
1714 up_write(&mm->mmap_sem);
1715 }
bc9025bd 1716 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1717 if (IS_ERR((void *)addr))
1718 return addr;
1719
1720 args->addr_ptr = (uint64_t) addr;
1721
1722 return 0;
1723}
1724
de151cf6
JB
1725/**
1726 * i915_gem_fault - fault a page into the GTT
1727 * vma: VMA in question
1728 * vmf: fault info
1729 *
1730 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1731 * from userspace. The fault handler takes care of binding the object to
1732 * the GTT (if needed), allocating and programming a fence register (again,
1733 * only if needed based on whether the old reg is still valid or the object
1734 * is tiled) and inserting a new PTE into the faulting process.
1735 *
1736 * Note that the faulting process may involve evicting existing objects
1737 * from the GTT and/or fence registers to make room. So performance may
1738 * suffer if the GTT working set is large or there are few fence registers
1739 * left.
1740 */
1741int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1742{
05394f39
CW
1743 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1744 struct drm_device *dev = obj->base.dev;
3e31c6c0 1745 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1746 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1747 pgoff_t page_offset;
1748 unsigned long pfn;
1749 int ret = 0;
0f973f27 1750 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1751
f65c9168
PZ
1752 intel_runtime_pm_get(dev_priv);
1753
de151cf6
JB
1754 /* We don't use vmf->pgoff since that has the fake offset */
1755 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1756 PAGE_SHIFT;
1757
d9bc7e9f
CW
1758 ret = i915_mutex_lock_interruptible(dev);
1759 if (ret)
1760 goto out;
a00b10c3 1761
db53a302
CW
1762 trace_i915_gem_object_fault(obj, page_offset, true, write);
1763
6e4930f6
CW
1764 /* Try to flush the object off the GPU first without holding the lock.
1765 * Upon reacquiring the lock, we will perform our sanity checks and then
1766 * repeat the flush holding the lock in the normal manner to catch cases
1767 * where we are gazumped.
1768 */
1769 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1770 if (ret)
1771 goto unlock;
1772
eb119bd6
CW
1773 /* Access to snoopable pages through the GTT is incoherent. */
1774 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1775 ret = -EFAULT;
eb119bd6
CW
1776 goto unlock;
1777 }
1778
c5ad54cf 1779 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1780 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1781 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1782 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1783
c5ad54cf
JL
1784 memset(&view, 0, sizeof(view));
1785 view.type = I915_GGTT_VIEW_PARTIAL;
1786 view.params.partial.offset = rounddown(page_offset, chunk_size);
1787 view.params.partial.size =
1788 min_t(unsigned int,
1789 chunk_size,
1790 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1791 view.params.partial.offset);
1792 }
1793
1794 /* Now pin it into the GTT if needed */
1795 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1796 if (ret)
1797 goto unlock;
4a684a41 1798
c9839303
CW
1799 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1800 if (ret)
1801 goto unpin;
74898d7e 1802
06d98131 1803 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1804 if (ret)
c9839303 1805 goto unpin;
7d1c4804 1806
b90b91d8 1807 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1808 pfn = dev_priv->gtt.mappable_base +
1809 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1810 pfn >>= PAGE_SHIFT;
de151cf6 1811
c5ad54cf
JL
1812 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1813 /* Overriding existing pages in partial view does not cause
1814 * us any trouble as TLBs are still valid because the fault
1815 * is due to userspace losing part of the mapping or never
1816 * having accessed it before (at this partials' range).
1817 */
1818 unsigned long base = vma->vm_start +
1819 (view.params.partial.offset << PAGE_SHIFT);
1820 unsigned int i;
b90b91d8 1821
c5ad54cf
JL
1822 for (i = 0; i < view.params.partial.size; i++) {
1823 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1824 if (ret)
1825 break;
1826 }
1827
1828 obj->fault_mappable = true;
c5ad54cf
JL
1829 } else {
1830 if (!obj->fault_mappable) {
1831 unsigned long size = min_t(unsigned long,
1832 vma->vm_end - vma->vm_start,
1833 obj->base.size);
1834 int i;
1835
1836 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1837 ret = vm_insert_pfn(vma,
1838 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1839 pfn + i);
1840 if (ret)
1841 break;
1842 }
1843
1844 obj->fault_mappable = true;
1845 } else
1846 ret = vm_insert_pfn(vma,
1847 (unsigned long)vmf->virtual_address,
1848 pfn + page_offset);
1849 }
c9839303 1850unpin:
c5ad54cf 1851 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1852unlock:
de151cf6 1853 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1854out:
de151cf6 1855 switch (ret) {
d9bc7e9f 1856 case -EIO:
2232f031
DV
1857 /*
1858 * We eat errors when the gpu is terminally wedged to avoid
1859 * userspace unduly crashing (gl has no provisions for mmaps to
1860 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1861 * and so needs to be reported.
1862 */
1863 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1864 ret = VM_FAULT_SIGBUS;
1865 break;
1866 }
045e769a 1867 case -EAGAIN:
571c608d
DV
1868 /*
1869 * EAGAIN means the gpu is hung and we'll wait for the error
1870 * handler to reset everything when re-faulting in
1871 * i915_mutex_lock_interruptible.
d9bc7e9f 1872 */
c715089f
CW
1873 case 0:
1874 case -ERESTARTSYS:
bed636ab 1875 case -EINTR:
e79e0fe3
DR
1876 case -EBUSY:
1877 /*
1878 * EBUSY is ok: this just means that another thread
1879 * already did the job.
1880 */
f65c9168
PZ
1881 ret = VM_FAULT_NOPAGE;
1882 break;
de151cf6 1883 case -ENOMEM:
f65c9168
PZ
1884 ret = VM_FAULT_OOM;
1885 break;
a7c2e1aa 1886 case -ENOSPC:
45d67817 1887 case -EFAULT:
f65c9168
PZ
1888 ret = VM_FAULT_SIGBUS;
1889 break;
de151cf6 1890 default:
a7c2e1aa 1891 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1892 ret = VM_FAULT_SIGBUS;
1893 break;
de151cf6 1894 }
f65c9168
PZ
1895
1896 intel_runtime_pm_put(dev_priv);
1897 return ret;
de151cf6
JB
1898}
1899
901782b2
CW
1900/**
1901 * i915_gem_release_mmap - remove physical page mappings
1902 * @obj: obj in question
1903 *
af901ca1 1904 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1905 * relinquish ownership of the pages back to the system.
1906 *
1907 * It is vital that we remove the page mapping if we have mapped a tiled
1908 * object through the GTT and then lose the fence register due to
1909 * resource pressure. Similarly if the object has been moved out of the
1910 * aperture, than pages mapped into userspace must be revoked. Removing the
1911 * mapping will then trigger a page fault on the next user access, allowing
1912 * fixup by i915_gem_fault().
1913 */
d05ca301 1914void
05394f39 1915i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1916{
6299f992
CW
1917 if (!obj->fault_mappable)
1918 return;
901782b2 1919
6796cb16
DH
1920 drm_vma_node_unmap(&obj->base.vma_node,
1921 obj->base.dev->anon_inode->i_mapping);
6299f992 1922 obj->fault_mappable = false;
901782b2
CW
1923}
1924
eedd10f4
CW
1925void
1926i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1927{
1928 struct drm_i915_gem_object *obj;
1929
1930 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1931 i915_gem_release_mmap(obj);
1932}
1933
0fa87796 1934uint32_t
e28f8711 1935i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1936{
e28f8711 1937 uint32_t gtt_size;
92b88aeb
CW
1938
1939 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1940 tiling_mode == I915_TILING_NONE)
1941 return size;
92b88aeb
CW
1942
1943 /* Previous chips need a power-of-two fence region when tiling */
1944 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1945 gtt_size = 1024*1024;
92b88aeb 1946 else
e28f8711 1947 gtt_size = 512*1024;
92b88aeb 1948
e28f8711
CW
1949 while (gtt_size < size)
1950 gtt_size <<= 1;
92b88aeb 1951
e28f8711 1952 return gtt_size;
92b88aeb
CW
1953}
1954
de151cf6
JB
1955/**
1956 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1957 * @obj: object to check
1958 *
1959 * Return the required GTT alignment for an object, taking into account
5e783301 1960 * potential fence register mapping.
de151cf6 1961 */
d865110c
ID
1962uint32_t
1963i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1964 int tiling_mode, bool fenced)
de151cf6 1965{
de151cf6
JB
1966 /*
1967 * Minimum alignment is 4k (GTT page size), but might be greater
1968 * if a fence register is needed for the object.
1969 */
d865110c 1970 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1971 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1972 return 4096;
1973
a00b10c3
CW
1974 /*
1975 * Previous chips need to be aligned to the size of the smallest
1976 * fence register that can contain the object.
1977 */
e28f8711 1978 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1979}
1980
d8cb5086
CW
1981static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1982{
1983 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1984 int ret;
1985
0de23977 1986 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1987 return 0;
1988
da494d7c
DV
1989 dev_priv->mm.shrinker_no_lock_stealing = true;
1990
d8cb5086
CW
1991 ret = drm_gem_create_mmap_offset(&obj->base);
1992 if (ret != -ENOSPC)
da494d7c 1993 goto out;
d8cb5086
CW
1994
1995 /* Badly fragmented mmap space? The only way we can recover
1996 * space is by destroying unwanted objects. We can't randomly release
1997 * mmap_offsets as userspace expects them to be persistent for the
1998 * lifetime of the objects. The closest we can is to release the
1999 * offsets on purgeable objects by truncating it and marking it purged,
2000 * which prevents userspace from ever using that object again.
2001 */
21ab4e74
CW
2002 i915_gem_shrink(dev_priv,
2003 obj->base.size >> PAGE_SHIFT,
2004 I915_SHRINK_BOUND |
2005 I915_SHRINK_UNBOUND |
2006 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2007 ret = drm_gem_create_mmap_offset(&obj->base);
2008 if (ret != -ENOSPC)
da494d7c 2009 goto out;
d8cb5086
CW
2010
2011 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2012 ret = drm_gem_create_mmap_offset(&obj->base);
2013out:
2014 dev_priv->mm.shrinker_no_lock_stealing = false;
2015
2016 return ret;
d8cb5086
CW
2017}
2018
2019static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2020{
d8cb5086
CW
2021 drm_gem_free_mmap_offset(&obj->base);
2022}
2023
da6b51d0 2024int
ff72145b
DA
2025i915_gem_mmap_gtt(struct drm_file *file,
2026 struct drm_device *dev,
da6b51d0 2027 uint32_t handle,
ff72145b 2028 uint64_t *offset)
de151cf6 2029{
05394f39 2030 struct drm_i915_gem_object *obj;
de151cf6
JB
2031 int ret;
2032
76c1dec1 2033 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2034 if (ret)
76c1dec1 2035 return ret;
de151cf6 2036
ff72145b 2037 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2038 if (&obj->base == NULL) {
1d7cfea1
CW
2039 ret = -ENOENT;
2040 goto unlock;
2041 }
de151cf6 2042
05394f39 2043 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2044 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2045 ret = -EFAULT;
1d7cfea1 2046 goto out;
ab18282d
CW
2047 }
2048
d8cb5086
CW
2049 ret = i915_gem_object_create_mmap_offset(obj);
2050 if (ret)
2051 goto out;
de151cf6 2052
0de23977 2053 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2054
1d7cfea1 2055out:
05394f39 2056 drm_gem_object_unreference(&obj->base);
1d7cfea1 2057unlock:
de151cf6 2058 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2059 return ret;
de151cf6
JB
2060}
2061
ff72145b
DA
2062/**
2063 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2064 * @dev: DRM device
2065 * @data: GTT mapping ioctl data
2066 * @file: GEM object info
2067 *
2068 * Simply returns the fake offset to userspace so it can mmap it.
2069 * The mmap call will end up in drm_gem_mmap(), which will set things
2070 * up so we can get faults in the handler above.
2071 *
2072 * The fault handler will take care of binding the object into the GTT
2073 * (since it may have been evicted to make room for something), allocating
2074 * a fence register, and mapping the appropriate aperture address into
2075 * userspace.
2076 */
2077int
2078i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2079 struct drm_file *file)
2080{
2081 struct drm_i915_gem_mmap_gtt *args = data;
2082
da6b51d0 2083 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2084}
2085
225067ee
DV
2086/* Immediately discard the backing storage */
2087static void
2088i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2089{
4d6294bf 2090 i915_gem_object_free_mmap_offset(obj);
1286ff73 2091
4d6294bf
CW
2092 if (obj->base.filp == NULL)
2093 return;
e5281ccd 2094
225067ee
DV
2095 /* Our goal here is to return as much of the memory as
2096 * is possible back to the system as we are called from OOM.
2097 * To do this we must instruct the shmfs to drop all of its
2098 * backing pages, *now*.
2099 */
5537252b 2100 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2101 obj->madv = __I915_MADV_PURGED;
2102}
e5281ccd 2103
5537252b
CW
2104/* Try to discard unwanted pages */
2105static void
2106i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2107{
5537252b
CW
2108 struct address_space *mapping;
2109
2110 switch (obj->madv) {
2111 case I915_MADV_DONTNEED:
2112 i915_gem_object_truncate(obj);
2113 case __I915_MADV_PURGED:
2114 return;
2115 }
2116
2117 if (obj->base.filp == NULL)
2118 return;
2119
2120 mapping = file_inode(obj->base.filp)->i_mapping,
2121 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2122}
2123
5cdf5881 2124static void
05394f39 2125i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2126{
90797e6d
ID
2127 struct sg_page_iter sg_iter;
2128 int ret;
1286ff73 2129
05394f39 2130 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2131
6c085a72
CW
2132 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2133 if (ret) {
2134 /* In the event of a disaster, abandon all caches and
2135 * hope for the best.
2136 */
2137 WARN_ON(ret != -EIO);
2c22569b 2138 i915_gem_clflush_object(obj, true);
6c085a72
CW
2139 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2140 }
2141
6dacfd2f 2142 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2143 i915_gem_object_save_bit_17_swizzle(obj);
2144
05394f39
CW
2145 if (obj->madv == I915_MADV_DONTNEED)
2146 obj->dirty = 0;
3ef94daa 2147
90797e6d 2148 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2149 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2150
05394f39 2151 if (obj->dirty)
9da3da66 2152 set_page_dirty(page);
3ef94daa 2153
05394f39 2154 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2155 mark_page_accessed(page);
3ef94daa 2156
9da3da66 2157 page_cache_release(page);
3ef94daa 2158 }
05394f39 2159 obj->dirty = 0;
673a394b 2160
9da3da66
CW
2161 sg_free_table(obj->pages);
2162 kfree(obj->pages);
37e680a1 2163}
6c085a72 2164
dd624afd 2165int
37e680a1
CW
2166i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2167{
2168 const struct drm_i915_gem_object_ops *ops = obj->ops;
2169
2f745ad3 2170 if (obj->pages == NULL)
37e680a1
CW
2171 return 0;
2172
a5570178
CW
2173 if (obj->pages_pin_count)
2174 return -EBUSY;
2175
9843877d 2176 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2177
a2165e31
CW
2178 /* ->put_pages might need to allocate memory for the bit17 swizzle
2179 * array, hence protect them from being reaped by removing them from gtt
2180 * lists early. */
35c20a60 2181 list_del(&obj->global_list);
a2165e31 2182
37e680a1 2183 ops->put_pages(obj);
05394f39 2184 obj->pages = NULL;
37e680a1 2185
5537252b 2186 i915_gem_object_invalidate(obj);
6c085a72
CW
2187
2188 return 0;
2189}
2190
37e680a1 2191static int
6c085a72 2192i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2193{
6c085a72 2194 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2195 int page_count, i;
2196 struct address_space *mapping;
9da3da66
CW
2197 struct sg_table *st;
2198 struct scatterlist *sg;
90797e6d 2199 struct sg_page_iter sg_iter;
e5281ccd 2200 struct page *page;
90797e6d 2201 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2202 gfp_t gfp;
e5281ccd 2203
6c085a72
CW
2204 /* Assert that the object is not currently in any GPU domain. As it
2205 * wasn't in the GTT, there shouldn't be any way it could have been in
2206 * a GPU cache
2207 */
2208 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2209 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2210
9da3da66
CW
2211 st = kmalloc(sizeof(*st), GFP_KERNEL);
2212 if (st == NULL)
2213 return -ENOMEM;
2214
05394f39 2215 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2216 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2217 kfree(st);
e5281ccd 2218 return -ENOMEM;
9da3da66 2219 }
e5281ccd 2220
9da3da66
CW
2221 /* Get the list of pages out of our struct file. They'll be pinned
2222 * at this point until we release them.
2223 *
2224 * Fail silently without starting the shrinker
2225 */
496ad9aa 2226 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2227 gfp = mapping_gfp_mask(mapping);
caf49191 2228 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2229 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2230 sg = st->sgl;
2231 st->nents = 0;
2232 for (i = 0; i < page_count; i++) {
6c085a72
CW
2233 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2234 if (IS_ERR(page)) {
21ab4e74
CW
2235 i915_gem_shrink(dev_priv,
2236 page_count,
2237 I915_SHRINK_BOUND |
2238 I915_SHRINK_UNBOUND |
2239 I915_SHRINK_PURGEABLE);
6c085a72
CW
2240 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2241 }
2242 if (IS_ERR(page)) {
2243 /* We've tried hard to allocate the memory by reaping
2244 * our own buffer, now let the real VM do its job and
2245 * go down in flames if truly OOM.
2246 */
6c085a72 2247 i915_gem_shrink_all(dev_priv);
f461d1be 2248 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2249 if (IS_ERR(page))
2250 goto err_pages;
6c085a72 2251 }
426729dc
KRW
2252#ifdef CONFIG_SWIOTLB
2253 if (swiotlb_nr_tbl()) {
2254 st->nents++;
2255 sg_set_page(sg, page, PAGE_SIZE, 0);
2256 sg = sg_next(sg);
2257 continue;
2258 }
2259#endif
90797e6d
ID
2260 if (!i || page_to_pfn(page) != last_pfn + 1) {
2261 if (i)
2262 sg = sg_next(sg);
2263 st->nents++;
2264 sg_set_page(sg, page, PAGE_SIZE, 0);
2265 } else {
2266 sg->length += PAGE_SIZE;
2267 }
2268 last_pfn = page_to_pfn(page);
3bbbe706
DV
2269
2270 /* Check that the i965g/gm workaround works. */
2271 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2272 }
426729dc
KRW
2273#ifdef CONFIG_SWIOTLB
2274 if (!swiotlb_nr_tbl())
2275#endif
2276 sg_mark_end(sg);
74ce6b6c
CW
2277 obj->pages = st;
2278
6dacfd2f 2279 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2280 i915_gem_object_do_bit_17_swizzle(obj);
2281
656bfa3a
DV
2282 if (obj->tiling_mode != I915_TILING_NONE &&
2283 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2284 i915_gem_object_pin_pages(obj);
2285
e5281ccd
CW
2286 return 0;
2287
2288err_pages:
90797e6d
ID
2289 sg_mark_end(sg);
2290 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2291 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2292 sg_free_table(st);
2293 kfree(st);
0820baf3
CW
2294
2295 /* shmemfs first checks if there is enough memory to allocate the page
2296 * and reports ENOSPC should there be insufficient, along with the usual
2297 * ENOMEM for a genuine allocation failure.
2298 *
2299 * We use ENOSPC in our driver to mean that we have run out of aperture
2300 * space and so want to translate the error from shmemfs back to our
2301 * usual understanding of ENOMEM.
2302 */
2303 if (PTR_ERR(page) == -ENOSPC)
2304 return -ENOMEM;
2305 else
2306 return PTR_ERR(page);
673a394b
EA
2307}
2308
37e680a1
CW
2309/* Ensure that the associated pages are gathered from the backing storage
2310 * and pinned into our object. i915_gem_object_get_pages() may be called
2311 * multiple times before they are released by a single call to
2312 * i915_gem_object_put_pages() - once the pages are no longer referenced
2313 * either as a result of memory pressure (reaping pages under the shrinker)
2314 * or as the object is itself released.
2315 */
2316int
2317i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2318{
2319 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2320 const struct drm_i915_gem_object_ops *ops = obj->ops;
2321 int ret;
2322
2f745ad3 2323 if (obj->pages)
37e680a1
CW
2324 return 0;
2325
43e28f09 2326 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2327 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2328 return -EFAULT;
43e28f09
CW
2329 }
2330
a5570178
CW
2331 BUG_ON(obj->pages_pin_count);
2332
37e680a1
CW
2333 ret = ops->get_pages(obj);
2334 if (ret)
2335 return ret;
2336
35c20a60 2337 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2338
2339 obj->get_page.sg = obj->pages->sgl;
2340 obj->get_page.last = 0;
2341
37e680a1 2342 return 0;
673a394b
EA
2343}
2344
b4716185
CW
2345void i915_vma_move_to_active(struct i915_vma *vma,
2346 struct intel_engine_cs *ring)
673a394b 2347{
b4716185 2348 struct drm_i915_gem_object *obj = vma->obj;
673a394b
EA
2349
2350 /* Add a reference if we're newly entering the active list. */
b4716185 2351 if (obj->active == 0)
05394f39 2352 drm_gem_object_reference(&obj->base);
b4716185 2353 obj->active |= intel_ring_flag(ring);
e35a41de 2354
b4716185
CW
2355 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2356 i915_gem_request_assign(&obj->last_read_req[ring->id],
2357 intel_ring_get_request(ring));
caea7476 2358
b4716185 2359 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2360}
2361
b4716185
CW
2362static void
2363i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2364{
b4716185
CW
2365 RQ_BUG_ON(obj->last_write_req == NULL);
2366 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2367
2368 i915_gem_request_assign(&obj->last_write_req, NULL);
2369 intel_fb_obj_flush(obj, true);
e2d05a8b
BW
2370}
2371
caea7476 2372static void
b4716185 2373i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2374{
feb822cf 2375 struct i915_vma *vma;
ce44b0ea 2376
b4716185
CW
2377 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2378 RQ_BUG_ON(!(obj->active & (1 << ring)));
2379
2380 list_del_init(&obj->ring_list[ring]);
2381 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2382
2383 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2384 i915_gem_object_retire__write(obj);
2385
2386 obj->active &= ~(1 << ring);
2387 if (obj->active)
2388 return;
caea7476 2389
fe14d5f4
TU
2390 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2391 if (!list_empty(&vma->mm_list))
2392 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2393 }
caea7476 2394
97b2a6a1 2395 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2396 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2397}
2398
9d773091 2399static int
fca26bb4 2400i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2401{
9d773091 2402 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2403 struct intel_engine_cs *ring;
9d773091 2404 int ret, i, j;
53d227f2 2405
107f27a5 2406 /* Carefully retire all requests without writing to the rings */
9d773091 2407 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2408 ret = intel_ring_idle(ring);
2409 if (ret)
2410 return ret;
9d773091 2411 }
9d773091 2412 i915_gem_retire_requests(dev);
107f27a5
CW
2413
2414 /* Finally reset hw state */
9d773091 2415 for_each_ring(ring, dev_priv, i) {
fca26bb4 2416 intel_ring_init_seqno(ring, seqno);
498d2ac1 2417
ebc348b2
BW
2418 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2419 ring->semaphore.sync_seqno[j] = 0;
9d773091 2420 }
53d227f2 2421
9d773091 2422 return 0;
53d227f2
DV
2423}
2424
fca26bb4
MK
2425int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2426{
2427 struct drm_i915_private *dev_priv = dev->dev_private;
2428 int ret;
2429
2430 if (seqno == 0)
2431 return -EINVAL;
2432
2433 /* HWS page needs to be set less than what we
2434 * will inject to ring
2435 */
2436 ret = i915_gem_init_seqno(dev, seqno - 1);
2437 if (ret)
2438 return ret;
2439
2440 /* Carefully set the last_seqno value so that wrap
2441 * detection still works
2442 */
2443 dev_priv->next_seqno = seqno;
2444 dev_priv->last_seqno = seqno - 1;
2445 if (dev_priv->last_seqno == 0)
2446 dev_priv->last_seqno--;
2447
2448 return 0;
2449}
2450
9d773091
CW
2451int
2452i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2453{
9d773091
CW
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455
2456 /* reserve 0 for non-seqno */
2457 if (dev_priv->next_seqno == 0) {
fca26bb4 2458 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2459 if (ret)
2460 return ret;
53d227f2 2461
9d773091
CW
2462 dev_priv->next_seqno = 1;
2463 }
53d227f2 2464
f72b3435 2465 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2466 return 0;
53d227f2
DV
2467}
2468
a4872ba6 2469int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2470 struct drm_file *file,
9400ae5c 2471 struct drm_i915_gem_object *obj)
673a394b 2472{
3e31c6c0 2473 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2474 struct drm_i915_gem_request *request;
48e29f55 2475 struct intel_ringbuffer *ringbuf;
6d3d8274 2476 u32 request_start;
3cce469c
CW
2477 int ret;
2478
6259cead 2479 request = ring->outstanding_lazy_request;
48e29f55
OM
2480 if (WARN_ON(request == NULL))
2481 return -ENOMEM;
2482
2483 if (i915.enable_execlists) {
21076372 2484 ringbuf = request->ctx->engine[ring->id].ringbuf;
48e29f55
OM
2485 } else
2486 ringbuf = ring->buffer;
2487
2488 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2489 /*
2490 * Emit any outstanding flushes - execbuf can fail to emit the flush
2491 * after having emitted the batchbuffer command. Hence we need to fix
2492 * things up similar to emitting the lazy request. The difference here
2493 * is that the flush _must_ happen before the next request, no matter
2494 * what.
2495 */
48e29f55 2496 if (i915.enable_execlists) {
21076372 2497 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
48e29f55
OM
2498 if (ret)
2499 return ret;
2500 } else {
2501 ret = intel_ring_flush_all_caches(ring);
2502 if (ret)
2503 return ret;
2504 }
cc889e0f 2505
a71d8d94
CW
2506 /* Record the position of the start of the request so that
2507 * should we detect the updated seqno part-way through the
2508 * GPU processing the request, we never over-estimate the
2509 * position of the head.
2510 */
6d3d8274 2511 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2512
48e29f55 2513 if (i915.enable_execlists) {
72f95afa 2514 ret = ring->emit_request(ringbuf, request);
48e29f55
OM
2515 if (ret)
2516 return ret;
2517 } else {
2518 ret = ring->add_request(ring);
2519 if (ret)
2520 return ret;
53292cdb
MT
2521
2522 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2523 }
673a394b 2524
7d736f4f 2525 request->head = request_start;
7d736f4f
MK
2526
2527 /* Whilst this request exists, batch_obj will be on the
2528 * active_list, and so will hold the active reference. Only when this
2529 * request is retired will the the batch_obj be moved onto the
2530 * inactive_list and lose its active reference. Hence we do not need
2531 * to explicitly hold another reference here.
2532 */
9a7e0c2a 2533 request->batch_obj = obj;
0e50e96b 2534
48e29f55
OM
2535 if (!i915.enable_execlists) {
2536 /* Hold a reference to the current context so that we can inspect
2537 * it later in case a hangcheck error event fires.
2538 */
2539 request->ctx = ring->last_context;
2540 if (request->ctx)
2541 i915_gem_context_reference(request->ctx);
2542 }
0e50e96b 2543
673a394b 2544 request->emitted_jiffies = jiffies;
852835f3 2545 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2546 request->file_priv = NULL;
852835f3 2547
db53a302
CW
2548 if (file) {
2549 struct drm_i915_file_private *file_priv = file->driver_priv;
2550
1c25595f 2551 spin_lock(&file_priv->mm.lock);
f787a5f5 2552 request->file_priv = file_priv;
b962442e 2553 list_add_tail(&request->client_list,
f787a5f5 2554 &file_priv->mm.request_list);
1c25595f 2555 spin_unlock(&file_priv->mm.lock);
071c92de
MK
2556
2557 request->pid = get_pid(task_pid(current));
b962442e 2558 }
673a394b 2559
74328ee5 2560 trace_i915_gem_request_add(request);
6259cead 2561 ring->outstanding_lazy_request = NULL;
db53a302 2562
87255483 2563 i915_queue_hangcheck(ring->dev);
10cd45b6 2564
87255483
DV
2565 queue_delayed_work(dev_priv->wq,
2566 &dev_priv->mm.retire_work,
2567 round_jiffies_up_relative(HZ));
2568 intel_mark_busy(dev_priv->dev);
cc889e0f 2569
3cce469c 2570 return 0;
673a394b
EA
2571}
2572
939fd762 2573static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2574 const struct intel_context *ctx)
be62acb4 2575{
44e2c070 2576 unsigned long elapsed;
be62acb4 2577
44e2c070
MK
2578 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2579
2580 if (ctx->hang_stats.banned)
be62acb4
MK
2581 return true;
2582
676fa572
CW
2583 if (ctx->hang_stats.ban_period_seconds &&
2584 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2585 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2586 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2587 return true;
88b4aa87
MK
2588 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2589 if (i915_stop_ring_allow_warn(dev_priv))
2590 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2591 return true;
3fac8978 2592 }
be62acb4
MK
2593 }
2594
2595 return false;
2596}
2597
939fd762 2598static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2599 struct intel_context *ctx,
b6b0fac0 2600 const bool guilty)
aa60c664 2601{
44e2c070
MK
2602 struct i915_ctx_hang_stats *hs;
2603
2604 if (WARN_ON(!ctx))
2605 return;
aa60c664 2606
44e2c070
MK
2607 hs = &ctx->hang_stats;
2608
2609 if (guilty) {
939fd762 2610 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2611 hs->batch_active++;
2612 hs->guilty_ts = get_seconds();
2613 } else {
2614 hs->batch_pending++;
aa60c664
MK
2615 }
2616}
2617
abfe262a
JH
2618void i915_gem_request_free(struct kref *req_ref)
2619{
2620 struct drm_i915_gem_request *req = container_of(req_ref,
2621 typeof(*req), ref);
2622 struct intel_context *ctx = req->ctx;
2623
0794aed3
TD
2624 if (ctx) {
2625 if (i915.enable_execlists) {
abfe262a 2626 struct intel_engine_cs *ring = req->ring;
0e50e96b 2627
0794aed3
TD
2628 if (ctx != ring->default_context)
2629 intel_lr_context_unpin(ring, ctx);
2630 }
abfe262a 2631
dcb4c12a
OM
2632 i915_gem_context_unreference(ctx);
2633 }
abfe262a 2634
efab6d8d 2635 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2636}
2637
6689cb2b
JH
2638int i915_gem_request_alloc(struct intel_engine_cs *ring,
2639 struct intel_context *ctx)
2640{
efab6d8d 2641 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2642 struct drm_i915_gem_request *req;
6689cb2b 2643 int ret;
6689cb2b
JH
2644
2645 if (ring->outstanding_lazy_request)
2646 return 0;
2647
eed29a5b
DV
2648 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2649 if (req == NULL)
6689cb2b
JH
2650 return -ENOMEM;
2651
eed29a5b
DV
2652 kref_init(&req->ref);
2653 req->i915 = dev_priv;
efab6d8d 2654
eed29a5b 2655 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2656 if (ret)
2657 goto err;
6689cb2b 2658
eed29a5b 2659 req->ring = ring;
6689cb2b
JH
2660
2661 if (i915.enable_execlists)
eed29a5b 2662 ret = intel_logical_ring_alloc_request_extras(req, ctx);
6689cb2b 2663 else
eed29a5b 2664 ret = intel_ring_alloc_request_extras(req);
9a0c1e27
CW
2665 if (ret)
2666 goto err;
6689cb2b 2667
eed29a5b 2668 ring->outstanding_lazy_request = req;
6689cb2b 2669 return 0;
9a0c1e27
CW
2670
2671err:
2672 kmem_cache_free(dev_priv->requests, req);
2673 return ret;
0e50e96b
MK
2674}
2675
8d9fc7fd 2676struct drm_i915_gem_request *
a4872ba6 2677i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2678{
4db080f9
CW
2679 struct drm_i915_gem_request *request;
2680
2681 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2682 if (i915_gem_request_completed(request, false))
4db080f9 2683 continue;
aa60c664 2684
b6b0fac0 2685 return request;
4db080f9 2686 }
b6b0fac0
MK
2687
2688 return NULL;
2689}
2690
2691static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2692 struct intel_engine_cs *ring)
b6b0fac0
MK
2693{
2694 struct drm_i915_gem_request *request;
2695 bool ring_hung;
2696
8d9fc7fd 2697 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2698
2699 if (request == NULL)
2700 return;
2701
2702 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2703
939fd762 2704 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2705
2706 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2707 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2708}
aa60c664 2709
4db080f9 2710static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2711 struct intel_engine_cs *ring)
4db080f9 2712{
dfaae392 2713 while (!list_empty(&ring->active_list)) {
05394f39 2714 struct drm_i915_gem_object *obj;
9375e446 2715
05394f39
CW
2716 obj = list_first_entry(&ring->active_list,
2717 struct drm_i915_gem_object,
b4716185 2718 ring_list[ring->id]);
9375e446 2719
b4716185 2720 i915_gem_object_retire__read(obj, ring->id);
673a394b 2721 }
1d62beea 2722
dcb4c12a
OM
2723 /*
2724 * Clear the execlists queue up before freeing the requests, as those
2725 * are the ones that keep the context and ringbuffer backing objects
2726 * pinned in place.
2727 */
2728 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2729 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2730
2731 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2732 struct drm_i915_gem_request,
dcb4c12a
OM
2733 execlist_link);
2734 list_del(&submit_req->execlist_link);
1197b4f2
MK
2735
2736 if (submit_req->ctx != ring->default_context)
2737 intel_lr_context_unpin(ring, submit_req->ctx);
2738
b3a38998 2739 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2740 }
2741
1d62beea
BW
2742 /*
2743 * We must free the requests after all the corresponding objects have
2744 * been moved off active lists. Which is the same order as the normal
2745 * retire_requests function does. This is important if object hold
2746 * implicit references on things like e.g. ppgtt address spaces through
2747 * the request.
2748 */
2749 while (!list_empty(&ring->request_list)) {
2750 struct drm_i915_gem_request *request;
2751
2752 request = list_first_entry(&ring->request_list,
2753 struct drm_i915_gem_request,
2754 list);
2755
b4716185 2756 i915_gem_request_retire(request);
1d62beea 2757 }
e3efda49 2758
6259cead
JH
2759 /* This may not have been flushed before the reset, so clean it now */
2760 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2761}
2762
19b2dbde 2763void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2764{
2765 struct drm_i915_private *dev_priv = dev->dev_private;
2766 int i;
2767
4b9de737 2768 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2769 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2770
94a335db
DV
2771 /*
2772 * Commit delayed tiling changes if we have an object still
2773 * attached to the fence, otherwise just clear the fence.
2774 */
2775 if (reg->obj) {
2776 i915_gem_object_update_fence(reg->obj, reg,
2777 reg->obj->tiling_mode);
2778 } else {
2779 i915_gem_write_fence(dev, i, NULL);
2780 }
312817a3
CW
2781 }
2782}
2783
069efc1d 2784void i915_gem_reset(struct drm_device *dev)
673a394b 2785{
77f01230 2786 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2787 struct intel_engine_cs *ring;
1ec14ad3 2788 int i;
673a394b 2789
4db080f9
CW
2790 /*
2791 * Before we free the objects from the requests, we need to inspect
2792 * them for finding the guilty party. As the requests only borrow
2793 * their reference to the objects, the inspection must be done first.
2794 */
2795 for_each_ring(ring, dev_priv, i)
2796 i915_gem_reset_ring_status(dev_priv, ring);
2797
b4519513 2798 for_each_ring(ring, dev_priv, i)
4db080f9 2799 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2800
acce9ffa
BW
2801 i915_gem_context_reset(dev);
2802
19b2dbde 2803 i915_gem_restore_fences(dev);
b4716185
CW
2804
2805 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2806}
2807
2808/**
2809 * This function clears the request list as sequence numbers are passed.
2810 */
1cf0ba14 2811void
a4872ba6 2812i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2813{
db53a302 2814 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2815
b4716185
CW
2816 if (list_empty(&ring->active_list))
2817 return;
2818
832a3aad
CW
2819 /* Retire requests first as we use it above for the early return.
2820 * If we retire requests last, we may use a later seqno and so clear
2821 * the requests lists without clearing the active list, leading to
2822 * confusion.
e9103038 2823 */
852835f3 2824 while (!list_empty(&ring->request_list)) {
673a394b 2825 struct drm_i915_gem_request *request;
673a394b 2826
852835f3 2827 request = list_first_entry(&ring->request_list,
673a394b
EA
2828 struct drm_i915_gem_request,
2829 list);
673a394b 2830
1b5a433a 2831 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2832 break;
2833
b4716185 2834 i915_gem_request_retire(request);
b84d5f0c 2835 }
673a394b 2836
832a3aad
CW
2837 /* Move any buffers on the active list that are no longer referenced
2838 * by the ringbuffer to the flushing/inactive lists as appropriate,
2839 * before we free the context associated with the requests.
2840 */
2841 while (!list_empty(&ring->active_list)) {
2842 struct drm_i915_gem_object *obj;
2843
2844 obj = list_first_entry(&ring->active_list,
2845 struct drm_i915_gem_object,
b4716185 2846 ring_list[ring->id]);
832a3aad 2847
b4716185 2848 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2849 break;
2850
b4716185 2851 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2852 }
2853
581c26e8
JH
2854 if (unlikely(ring->trace_irq_req &&
2855 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2856 ring->irq_put(ring);
581c26e8 2857 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2858 }
23bc5982 2859
db53a302 2860 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2861}
2862
b29c19b6 2863bool
b09a1fec
CW
2864i915_gem_retire_requests(struct drm_device *dev)
2865{
3e31c6c0 2866 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2867 struct intel_engine_cs *ring;
b29c19b6 2868 bool idle = true;
1ec14ad3 2869 int i;
b09a1fec 2870
b29c19b6 2871 for_each_ring(ring, dev_priv, i) {
b4519513 2872 i915_gem_retire_requests_ring(ring);
b29c19b6 2873 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2874 if (i915.enable_execlists) {
2875 unsigned long flags;
2876
2877 spin_lock_irqsave(&ring->execlist_lock, flags);
2878 idle &= list_empty(&ring->execlist_queue);
2879 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2880
2881 intel_execlists_retire_requests(ring);
2882 }
b29c19b6
CW
2883 }
2884
2885 if (idle)
2886 mod_delayed_work(dev_priv->wq,
2887 &dev_priv->mm.idle_work,
2888 msecs_to_jiffies(100));
2889
2890 return idle;
b09a1fec
CW
2891}
2892
75ef9da2 2893static void
673a394b
EA
2894i915_gem_retire_work_handler(struct work_struct *work)
2895{
b29c19b6
CW
2896 struct drm_i915_private *dev_priv =
2897 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2898 struct drm_device *dev = dev_priv->dev;
0a58705b 2899 bool idle;
673a394b 2900
891b48cf 2901 /* Come back later if the device is busy... */
b29c19b6
CW
2902 idle = false;
2903 if (mutex_trylock(&dev->struct_mutex)) {
2904 idle = i915_gem_retire_requests(dev);
2905 mutex_unlock(&dev->struct_mutex);
673a394b 2906 }
b29c19b6 2907 if (!idle)
bcb45086
CW
2908 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2909 round_jiffies_up_relative(HZ));
b29c19b6 2910}
0a58705b 2911
b29c19b6
CW
2912static void
2913i915_gem_idle_work_handler(struct work_struct *work)
2914{
2915 struct drm_i915_private *dev_priv =
2916 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2917 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2918 struct intel_engine_cs *ring;
2919 int i;
b29c19b6 2920
423795cb
CW
2921 for_each_ring(ring, dev_priv, i)
2922 if (!list_empty(&ring->request_list))
2923 return;
35c94185
CW
2924
2925 intel_mark_idle(dev);
2926
2927 if (mutex_trylock(&dev->struct_mutex)) {
2928 struct intel_engine_cs *ring;
2929 int i;
2930
2931 for_each_ring(ring, dev_priv, i)
2932 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2933
35c94185
CW
2934 mutex_unlock(&dev->struct_mutex);
2935 }
673a394b
EA
2936}
2937
30dfebf3
DV
2938/**
2939 * Ensures that an object will eventually get non-busy by flushing any required
2940 * write domains, emitting any outstanding lazy request and retiring and
2941 * completed requests.
2942 */
2943static int
2944i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2945{
b4716185
CW
2946 int ret, i;
2947
2948 if (!obj->active)
2949 return 0;
30dfebf3 2950
b4716185
CW
2951 for (i = 0; i < I915_NUM_RINGS; i++) {
2952 struct drm_i915_gem_request *req;
41c52415 2953
b4716185
CW
2954 req = obj->last_read_req[i];
2955 if (req == NULL)
2956 continue;
2957
2958 if (list_empty(&req->list))
2959 goto retire;
2960
2961 ret = i915_gem_check_olr(req);
30dfebf3
DV
2962 if (ret)
2963 return ret;
2964
b4716185
CW
2965 if (i915_gem_request_completed(req, true)) {
2966 __i915_gem_request_retire__upto(req);
2967retire:
2968 i915_gem_object_retire__read(obj, i);
2969 }
30dfebf3
DV
2970 }
2971
2972 return 0;
2973}
2974
23ba4fd0
BW
2975/**
2976 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2977 * @DRM_IOCTL_ARGS: standard ioctl arguments
2978 *
2979 * Returns 0 if successful, else an error is returned with the remaining time in
2980 * the timeout parameter.
2981 * -ETIME: object is still busy after timeout
2982 * -ERESTARTSYS: signal interrupted the wait
2983 * -ENONENT: object doesn't exist
2984 * Also possible, but rare:
2985 * -EAGAIN: GPU wedged
2986 * -ENOMEM: damn
2987 * -ENODEV: Internal IRQ fail
2988 * -E?: The add request failed
2989 *
2990 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2991 * non-zero timeout parameter the wait ioctl will wait for the given number of
2992 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2993 * without holding struct_mutex the object may become re-busied before this
2994 * function completes. A similar but shorter * race condition exists in the busy
2995 * ioctl
2996 */
2997int
2998i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2999{
3e31c6c0 3000 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3001 struct drm_i915_gem_wait *args = data;
3002 struct drm_i915_gem_object *obj;
b4716185 3003 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3004 unsigned reset_counter;
b4716185
CW
3005 int i, n = 0;
3006 int ret;
23ba4fd0 3007
11b5d511
DV
3008 if (args->flags != 0)
3009 return -EINVAL;
3010
23ba4fd0
BW
3011 ret = i915_mutex_lock_interruptible(dev);
3012 if (ret)
3013 return ret;
3014
3015 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3016 if (&obj->base == NULL) {
3017 mutex_unlock(&dev->struct_mutex);
3018 return -ENOENT;
3019 }
3020
30dfebf3
DV
3021 /* Need to make sure the object gets inactive eventually. */
3022 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3023 if (ret)
3024 goto out;
3025
b4716185 3026 if (!obj->active)
97b2a6a1 3027 goto out;
23ba4fd0 3028
23ba4fd0 3029 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3030 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3031 */
762e4583 3032 if (args->timeout_ns == 0) {
23ba4fd0
BW
3033 ret = -ETIME;
3034 goto out;
3035 }
3036
3037 drm_gem_object_unreference(&obj->base);
f69061be 3038 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3039
3040 for (i = 0; i < I915_NUM_RINGS; i++) {
3041 if (obj->last_read_req[i] == NULL)
3042 continue;
3043
3044 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3045 }
3046
23ba4fd0
BW
3047 mutex_unlock(&dev->struct_mutex);
3048
b4716185
CW
3049 for (i = 0; i < n; i++) {
3050 if (ret == 0)
3051 ret = __i915_wait_request(req[i], reset_counter, true,
3052 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3053 file->driver_priv);
3054 i915_gem_request_unreference__unlocked(req[i]);
3055 }
ff865885 3056 return ret;
23ba4fd0
BW
3057
3058out:
3059 drm_gem_object_unreference(&obj->base);
3060 mutex_unlock(&dev->struct_mutex);
3061 return ret;
3062}
3063
b4716185
CW
3064static int
3065__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3066 struct intel_engine_cs *to,
3067 struct drm_i915_gem_request *req)
3068{
3069 struct intel_engine_cs *from;
3070 int ret;
3071
3072 from = i915_gem_request_get_ring(req);
3073 if (to == from)
3074 return 0;
3075
3076 if (i915_gem_request_completed(req, true))
3077 return 0;
3078
3079 ret = i915_gem_check_olr(req);
3080 if (ret)
3081 return ret;
3082
3083 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3084 struct drm_i915_private *i915 = to_i915(obj->base.dev);
b4716185 3085 ret = __i915_wait_request(req,
a6f766f3
CW
3086 atomic_read(&i915->gpu_error.reset_counter),
3087 i915->mm.interruptible,
3088 NULL,
3089 &i915->rps.semaphores);
b4716185
CW
3090 if (ret)
3091 return ret;
3092
3093 i915_gem_object_retire_request(obj, req);
3094 } else {
3095 int idx = intel_ring_sync_index(from, to);
3096 u32 seqno = i915_gem_request_get_seqno(req);
3097
3098 if (seqno <= from->semaphore.sync_seqno[idx])
3099 return 0;
3100
3101 trace_i915_gem_ring_sync_to(from, to, req);
3102 ret = to->semaphore.sync_to(to, from, seqno);
3103 if (ret)
3104 return ret;
3105
3106 /* We use last_read_req because sync_to()
3107 * might have just caused seqno wrap under
3108 * the radar.
3109 */
3110 from->semaphore.sync_seqno[idx] =
3111 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3112 }
3113
3114 return 0;
3115}
3116
5816d648
BW
3117/**
3118 * i915_gem_object_sync - sync an object to a ring.
3119 *
3120 * @obj: object which may be in use on another ring.
3121 * @to: ring we wish to use the object on. May be NULL.
3122 *
3123 * This code is meant to abstract object synchronization with the GPU.
3124 * Calling with NULL implies synchronizing the object with the CPU
b4716185
CW
3125 * rather than a particular GPU ring. Conceptually we serialise writes
3126 * between engines inside the GPU. We only allow on engine to write
3127 * into a buffer at any time, but multiple readers. To ensure each has
3128 * a coherent view of memory, we must:
3129 *
3130 * - If there is an outstanding write request to the object, the new
3131 * request must wait for it to complete (either CPU or in hw, requests
3132 * on the same ring will be naturally ordered).
3133 *
3134 * - If we are a write request (pending_write_domain is set), the new
3135 * request must wait for outstanding read requests to complete.
5816d648
BW
3136 *
3137 * Returns 0 if successful, else propagates up the lower layer error.
3138 */
2911a35b
BW
3139int
3140i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 3141 struct intel_engine_cs *to)
2911a35b 3142{
b4716185
CW
3143 const bool readonly = obj->base.pending_write_domain == 0;
3144 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3145 int ret, i, n;
41c52415 3146
b4716185 3147 if (!obj->active)
2911a35b
BW
3148 return 0;
3149
b4716185
CW
3150 if (to == NULL)
3151 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3152
b4716185
CW
3153 n = 0;
3154 if (readonly) {
3155 if (obj->last_write_req)
3156 req[n++] = obj->last_write_req;
3157 } else {
3158 for (i = 0; i < I915_NUM_RINGS; i++)
3159 if (obj->last_read_req[i])
3160 req[n++] = obj->last_read_req[i];
3161 }
3162 for (i = 0; i < n; i++) {
3163 ret = __i915_gem_object_sync(obj, to, req[i]);
3164 if (ret)
3165 return ret;
3166 }
2911a35b 3167
b4716185 3168 return 0;
2911a35b
BW
3169}
3170
b5ffc9bc
CW
3171static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3172{
3173 u32 old_write_domain, old_read_domains;
3174
b5ffc9bc
CW
3175 /* Force a pagefault for domain tracking on next user access */
3176 i915_gem_release_mmap(obj);
3177
b97c3d9c
KP
3178 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3179 return;
3180
97c809fd
CW
3181 /* Wait for any direct GTT access to complete */
3182 mb();
3183
b5ffc9bc
CW
3184 old_read_domains = obj->base.read_domains;
3185 old_write_domain = obj->base.write_domain;
3186
3187 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3188 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3189
3190 trace_i915_gem_object_change_domain(obj,
3191 old_read_domains,
3192 old_write_domain);
3193}
3194
07fe0b12 3195int i915_vma_unbind(struct i915_vma *vma)
673a394b 3196{
07fe0b12 3197 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3199 int ret;
673a394b 3200
07fe0b12 3201 if (list_empty(&vma->vma_link))
673a394b
EA
3202 return 0;
3203
0ff501cb
DV
3204 if (!drm_mm_node_allocated(&vma->node)) {
3205 i915_gem_vma_destroy(vma);
0ff501cb
DV
3206 return 0;
3207 }
433544bd 3208
d7f46fc4 3209 if (vma->pin_count)
31d8d651 3210 return -EBUSY;
673a394b 3211
c4670ad0
CW
3212 BUG_ON(obj->pages == NULL);
3213
2e2f351d 3214 ret = i915_gem_object_wait_rendering(obj, false);
1488fc08 3215 if (ret)
a8198eea
CW
3216 return ret;
3217 /* Continue on if we fail due to EIO, the GPU is hung so we
3218 * should be safe and we need to cleanup or else we might
3219 * cause memory corruption through use-after-free.
3220 */
3221
fe14d5f4
TU
3222 if (i915_is_ggtt(vma->vm) &&
3223 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3224 i915_gem_object_finish_gtt(obj);
5323fd04 3225
8b1bc9b4
DV
3226 /* release the fence reg _after_ flushing */
3227 ret = i915_gem_object_put_fence(obj);
3228 if (ret)
3229 return ret;
3230 }
96b47b65 3231
07fe0b12 3232 trace_i915_vma_unbind(vma);
db53a302 3233
777dc5bb 3234 vma->vm->unbind_vma(vma);
5e562f1d 3235 vma->bound = 0;
6f65e29a 3236
64bf9303 3237 list_del_init(&vma->mm_list);
fe14d5f4
TU
3238 if (i915_is_ggtt(vma->vm)) {
3239 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3240 obj->map_and_fenceable = false;
3241 } else if (vma->ggtt_view.pages) {
3242 sg_free_table(vma->ggtt_view.pages);
3243 kfree(vma->ggtt_view.pages);
3244 vma->ggtt_view.pages = NULL;
3245 }
3246 }
673a394b 3247
2f633156
BW
3248 drm_mm_remove_node(&vma->node);
3249 i915_gem_vma_destroy(vma);
3250
3251 /* Since the unbound list is global, only move to that list if
b93dab6e 3252 * no more VMAs exist. */
9490edb5
AR
3253 if (list_empty(&obj->vma_list)) {
3254 i915_gem_gtt_finish_object(obj);
2f633156 3255 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3256 }
673a394b 3257
70903c3b
CW
3258 /* And finally now the object is completely decoupled from this vma,
3259 * we can drop its hold on the backing storage and allow it to be
3260 * reaped by the shrinker.
3261 */
3262 i915_gem_object_unpin_pages(obj);
3263
88241785 3264 return 0;
54cf91dc
CW
3265}
3266
b2da9fe5 3267int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3268{
3e31c6c0 3269 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3270 struct intel_engine_cs *ring;
1ec14ad3 3271 int ret, i;
4df2faf4 3272
4df2faf4 3273 /* Flush everything onto the inactive list. */
b4519513 3274 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3275 if (!i915.enable_execlists) {
3276 ret = i915_switch_context(ring, ring->default_context);
3277 if (ret)
3278 return ret;
3279 }
b6c7488d 3280
3e960501 3281 ret = intel_ring_idle(ring);
1ec14ad3
CW
3282 if (ret)
3283 return ret;
3284 }
4df2faf4 3285
b4716185 3286 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3287 return 0;
4df2faf4
DV
3288}
3289
9ce079e4
CW
3290static void i965_write_fence_reg(struct drm_device *dev, int reg,
3291 struct drm_i915_gem_object *obj)
de151cf6 3292{
3e31c6c0 3293 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3294 int fence_reg;
3295 int fence_pitch_shift;
de151cf6 3296
56c844e5
ID
3297 if (INTEL_INFO(dev)->gen >= 6) {
3298 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3299 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3300 } else {
3301 fence_reg = FENCE_REG_965_0;
3302 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3303 }
3304
d18b9619
CW
3305 fence_reg += reg * 8;
3306
3307 /* To w/a incoherency with non-atomic 64-bit register updates,
3308 * we split the 64-bit update into two 32-bit writes. In order
3309 * for a partial fence not to be evaluated between writes, we
3310 * precede the update with write to turn off the fence register,
3311 * and only enable the fence as the last step.
3312 *
3313 * For extra levels of paranoia, we make sure each step lands
3314 * before applying the next step.
3315 */
3316 I915_WRITE(fence_reg, 0);
3317 POSTING_READ(fence_reg);
3318
9ce079e4 3319 if (obj) {
f343c5f6 3320 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3321 uint64_t val;
de151cf6 3322
af1a7301
BP
3323 /* Adjust fence size to match tiled area */
3324 if (obj->tiling_mode != I915_TILING_NONE) {
3325 uint32_t row_size = obj->stride *
3326 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3327 size = (size / row_size) * row_size;
3328 }
3329
f343c5f6 3330 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3331 0xfffff000) << 32;
f343c5f6 3332 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3333 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3334 if (obj->tiling_mode == I915_TILING_Y)
3335 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3336 val |= I965_FENCE_REG_VALID;
c6642782 3337
d18b9619
CW
3338 I915_WRITE(fence_reg + 4, val >> 32);
3339 POSTING_READ(fence_reg + 4);
3340
3341 I915_WRITE(fence_reg + 0, val);
3342 POSTING_READ(fence_reg);
3343 } else {
3344 I915_WRITE(fence_reg + 4, 0);
3345 POSTING_READ(fence_reg + 4);
3346 }
de151cf6
JB
3347}
3348
9ce079e4
CW
3349static void i915_write_fence_reg(struct drm_device *dev, int reg,
3350 struct drm_i915_gem_object *obj)
de151cf6 3351{
3e31c6c0 3352 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3353 u32 val;
de151cf6 3354
9ce079e4 3355 if (obj) {
f343c5f6 3356 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3357 int pitch_val;
3358 int tile_width;
c6642782 3359
f343c5f6 3360 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3361 (size & -size) != size ||
f343c5f6
BW
3362 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3363 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3364 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3365
9ce079e4
CW
3366 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3367 tile_width = 128;
3368 else
3369 tile_width = 512;
3370
3371 /* Note: pitch better be a power of two tile widths */
3372 pitch_val = obj->stride / tile_width;
3373 pitch_val = ffs(pitch_val) - 1;
3374
f343c5f6 3375 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3376 if (obj->tiling_mode == I915_TILING_Y)
3377 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3378 val |= I915_FENCE_SIZE_BITS(size);
3379 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3380 val |= I830_FENCE_REG_VALID;
3381 } else
3382 val = 0;
3383
3384 if (reg < 8)
3385 reg = FENCE_REG_830_0 + reg * 4;
3386 else
3387 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3388
3389 I915_WRITE(reg, val);
3390 POSTING_READ(reg);
de151cf6
JB
3391}
3392
9ce079e4
CW
3393static void i830_write_fence_reg(struct drm_device *dev, int reg,
3394 struct drm_i915_gem_object *obj)
de151cf6 3395{
3e31c6c0 3396 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3397 uint32_t val;
de151cf6 3398
9ce079e4 3399 if (obj) {
f343c5f6 3400 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3401 uint32_t pitch_val;
de151cf6 3402
f343c5f6 3403 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3404 (size & -size) != size ||
f343c5f6
BW
3405 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3406 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3407 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3408
9ce079e4
CW
3409 pitch_val = obj->stride / 128;
3410 pitch_val = ffs(pitch_val) - 1;
de151cf6 3411
f343c5f6 3412 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3413 if (obj->tiling_mode == I915_TILING_Y)
3414 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3415 val |= I830_FENCE_SIZE_BITS(size);
3416 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3417 val |= I830_FENCE_REG_VALID;
3418 } else
3419 val = 0;
c6642782 3420
9ce079e4
CW
3421 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3422 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3423}
3424
d0a57789
CW
3425inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3426{
3427 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3428}
3429
9ce079e4
CW
3430static void i915_gem_write_fence(struct drm_device *dev, int reg,
3431 struct drm_i915_gem_object *obj)
3432{
d0a57789
CW
3433 struct drm_i915_private *dev_priv = dev->dev_private;
3434
3435 /* Ensure that all CPU reads are completed before installing a fence
3436 * and all writes before removing the fence.
3437 */
3438 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3439 mb();
3440
94a335db
DV
3441 WARN(obj && (!obj->stride || !obj->tiling_mode),
3442 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3443 obj->stride, obj->tiling_mode);
3444
ce38ab05
RV
3445 if (IS_GEN2(dev))
3446 i830_write_fence_reg(dev, reg, obj);
3447 else if (IS_GEN3(dev))
3448 i915_write_fence_reg(dev, reg, obj);
3449 else if (INTEL_INFO(dev)->gen >= 4)
3450 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3451
3452 /* And similarly be paranoid that no direct access to this region
3453 * is reordered to before the fence is installed.
3454 */
3455 if (i915_gem_object_needs_mb(obj))
3456 mb();
de151cf6
JB
3457}
3458
61050808
CW
3459static inline int fence_number(struct drm_i915_private *dev_priv,
3460 struct drm_i915_fence_reg *fence)
3461{
3462 return fence - dev_priv->fence_regs;
3463}
3464
3465static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3466 struct drm_i915_fence_reg *fence,
3467 bool enable)
3468{
2dc8aae0 3469 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3470 int reg = fence_number(dev_priv, fence);
3471
3472 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3473
3474 if (enable) {
46a0b638 3475 obj->fence_reg = reg;
61050808
CW
3476 fence->obj = obj;
3477 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3478 } else {
3479 obj->fence_reg = I915_FENCE_REG_NONE;
3480 fence->obj = NULL;
3481 list_del_init(&fence->lru_list);
3482 }
94a335db 3483 obj->fence_dirty = false;
61050808
CW
3484}
3485
d9e86c0e 3486static int
d0a57789 3487i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3488{
97b2a6a1 3489 if (obj->last_fenced_req) {
a4b3a571 3490 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3491 if (ret)
3492 return ret;
d9e86c0e 3493
97b2a6a1 3494 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3495 }
3496
3497 return 0;
3498}
3499
3500int
3501i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3502{
61050808 3503 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3504 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3505 int ret;
3506
d0a57789 3507 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3508 if (ret)
3509 return ret;
3510
61050808
CW
3511 if (obj->fence_reg == I915_FENCE_REG_NONE)
3512 return 0;
d9e86c0e 3513
f9c513e9
CW
3514 fence = &dev_priv->fence_regs[obj->fence_reg];
3515
aff10b30
DV
3516 if (WARN_ON(fence->pin_count))
3517 return -EBUSY;
3518
61050808 3519 i915_gem_object_fence_lost(obj);
f9c513e9 3520 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3521
3522 return 0;
3523}
3524
3525static struct drm_i915_fence_reg *
a360bb1a 3526i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3527{
ae3db24a 3528 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3529 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3530 int i;
ae3db24a
DV
3531
3532 /* First try to find a free reg */
d9e86c0e 3533 avail = NULL;
ae3db24a
DV
3534 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3535 reg = &dev_priv->fence_regs[i];
3536 if (!reg->obj)
d9e86c0e 3537 return reg;
ae3db24a 3538
1690e1eb 3539 if (!reg->pin_count)
d9e86c0e 3540 avail = reg;
ae3db24a
DV
3541 }
3542
d9e86c0e 3543 if (avail == NULL)
5dce5b93 3544 goto deadlock;
ae3db24a
DV
3545
3546 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3547 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3548 if (reg->pin_count)
ae3db24a
DV
3549 continue;
3550
8fe301ad 3551 return reg;
ae3db24a
DV
3552 }
3553
5dce5b93
CW
3554deadlock:
3555 /* Wait for completion of pending flips which consume fences */
3556 if (intel_has_pending_fb_unpin(dev))
3557 return ERR_PTR(-EAGAIN);
3558
3559 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3560}
3561
de151cf6 3562/**
9a5a53b3 3563 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3564 * @obj: object to map through a fence reg
3565 *
3566 * When mapping objects through the GTT, userspace wants to be able to write
3567 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3568 * This function walks the fence regs looking for a free one for @obj,
3569 * stealing one if it can't find any.
3570 *
3571 * It then sets up the reg based on the object's properties: address, pitch
3572 * and tiling format.
9a5a53b3
CW
3573 *
3574 * For an untiled surface, this removes any existing fence.
de151cf6 3575 */
8c4b8c3f 3576int
06d98131 3577i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3578{
05394f39 3579 struct drm_device *dev = obj->base.dev;
79e53945 3580 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3581 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3582 struct drm_i915_fence_reg *reg;
ae3db24a 3583 int ret;
de151cf6 3584
14415745
CW
3585 /* Have we updated the tiling parameters upon the object and so
3586 * will need to serialise the write to the associated fence register?
3587 */
5d82e3e6 3588 if (obj->fence_dirty) {
d0a57789 3589 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3590 if (ret)
3591 return ret;
3592 }
9a5a53b3 3593
d9e86c0e 3594 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3595 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3596 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3597 if (!obj->fence_dirty) {
14415745
CW
3598 list_move_tail(&reg->lru_list,
3599 &dev_priv->mm.fence_list);
3600 return 0;
3601 }
3602 } else if (enable) {
e6a84468
CW
3603 if (WARN_ON(!obj->map_and_fenceable))
3604 return -EINVAL;
3605
14415745 3606 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3607 if (IS_ERR(reg))
3608 return PTR_ERR(reg);
d9e86c0e 3609
14415745
CW
3610 if (reg->obj) {
3611 struct drm_i915_gem_object *old = reg->obj;
3612
d0a57789 3613 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3614 if (ret)
3615 return ret;
3616
14415745 3617 i915_gem_object_fence_lost(old);
29c5a587 3618 }
14415745 3619 } else
a09ba7fa 3620 return 0;
a09ba7fa 3621
14415745 3622 i915_gem_object_update_fence(obj, reg, enable);
14415745 3623
9ce079e4 3624 return 0;
de151cf6
JB
3625}
3626
4144f9b5 3627static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3628 unsigned long cache_level)
3629{
4144f9b5 3630 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3631 struct drm_mm_node *other;
3632
4144f9b5
CW
3633 /*
3634 * On some machines we have to be careful when putting differing types
3635 * of snoopable memory together to avoid the prefetcher crossing memory
3636 * domains and dying. During vm initialisation, we decide whether or not
3637 * these constraints apply and set the drm_mm.color_adjust
3638 * appropriately.
42d6ab48 3639 */
4144f9b5 3640 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3641 return true;
3642
c6cfb325 3643 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3644 return true;
3645
3646 if (list_empty(&gtt_space->node_list))
3647 return true;
3648
3649 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3650 if (other->allocated && !other->hole_follows && other->color != cache_level)
3651 return false;
3652
3653 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3654 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3655 return false;
3656
3657 return true;
3658}
3659
673a394b 3660/**
91e6711e
JL
3661 * Finds free space in the GTT aperture and binds the object or a view of it
3662 * there.
673a394b 3663 */
262de145 3664static struct i915_vma *
07fe0b12
BW
3665i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3666 struct i915_address_space *vm,
ec7adb6e 3667 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3668 unsigned alignment,
ec7adb6e 3669 uint64_t flags)
673a394b 3670{
05394f39 3671 struct drm_device *dev = obj->base.dev;
3e31c6c0 3672 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3673 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3674 unsigned long start =
3675 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3676 unsigned long end =
1ec9e26d 3677 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3678 struct i915_vma *vma;
07f73f69 3679 int ret;
673a394b 3680
91e6711e
JL
3681 if (i915_is_ggtt(vm)) {
3682 u32 view_size;
3683
3684 if (WARN_ON(!ggtt_view))
3685 return ERR_PTR(-EINVAL);
ec7adb6e 3686
91e6711e
JL
3687 view_size = i915_ggtt_view_size(obj, ggtt_view);
3688
3689 fence_size = i915_gem_get_gtt_size(dev,
3690 view_size,
3691 obj->tiling_mode);
3692 fence_alignment = i915_gem_get_gtt_alignment(dev,
3693 view_size,
3694 obj->tiling_mode,
3695 true);
3696 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3697 view_size,
3698 obj->tiling_mode,
3699 false);
3700 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3701 } else {
3702 fence_size = i915_gem_get_gtt_size(dev,
3703 obj->base.size,
3704 obj->tiling_mode);
3705 fence_alignment = i915_gem_get_gtt_alignment(dev,
3706 obj->base.size,
3707 obj->tiling_mode,
3708 true);
3709 unfenced_alignment =
3710 i915_gem_get_gtt_alignment(dev,
3711 obj->base.size,
3712 obj->tiling_mode,
3713 false);
3714 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3715 }
a00b10c3 3716
673a394b 3717 if (alignment == 0)
1ec9e26d 3718 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3719 unfenced_alignment;
1ec9e26d 3720 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3721 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3722 ggtt_view ? ggtt_view->type : 0,
3723 alignment);
262de145 3724 return ERR_PTR(-EINVAL);
673a394b
EA
3725 }
3726
91e6711e
JL
3727 /* If binding the object/GGTT view requires more space than the entire
3728 * aperture has, reject it early before evicting everything in a vain
3729 * attempt to find space.
654fc607 3730 */
91e6711e
JL
3731 if (size > end) {
3732 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3733 ggtt_view ? ggtt_view->type : 0,
3734 size,
1ec9e26d 3735 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3736 end);
262de145 3737 return ERR_PTR(-E2BIG);
654fc607
CW
3738 }
3739
37e680a1 3740 ret = i915_gem_object_get_pages(obj);
6c085a72 3741 if (ret)
262de145 3742 return ERR_PTR(ret);
6c085a72 3743
fbdda6fb
CW
3744 i915_gem_object_pin_pages(obj);
3745
ec7adb6e
JL
3746 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3747 i915_gem_obj_lookup_or_create_vma(obj, vm);
3748
262de145 3749 if (IS_ERR(vma))
bc6bc15b 3750 goto err_unpin;
2f633156 3751
0a9ae0d7 3752search_free:
07fe0b12 3753 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3754 size, alignment,
d23db88c
CW
3755 obj->cache_level,
3756 start, end,
62347f9e
LK
3757 DRM_MM_SEARCH_DEFAULT,
3758 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3759 if (ret) {
f6cd1f15 3760 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3761 obj->cache_level,
3762 start, end,
3763 flags);
dc9dd7a2
CW
3764 if (ret == 0)
3765 goto search_free;
9731129c 3766
bc6bc15b 3767 goto err_free_vma;
673a394b 3768 }
4144f9b5 3769 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3770 ret = -EINVAL;
bc6bc15b 3771 goto err_remove_node;
673a394b
EA
3772 }
3773
74163907 3774 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3775 if (ret)
bc6bc15b 3776 goto err_remove_node;
673a394b 3777
fe14d5f4 3778 trace_i915_vma_bind(vma, flags);
0875546c 3779 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
3780 if (ret)
3781 goto err_finish_gtt;
3782
35c20a60 3783 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3784 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3785
262de145 3786 return vma;
2f633156 3787
fe14d5f4
TU
3788err_finish_gtt:
3789 i915_gem_gtt_finish_object(obj);
bc6bc15b 3790err_remove_node:
6286ef9b 3791 drm_mm_remove_node(&vma->node);
bc6bc15b 3792err_free_vma:
2f633156 3793 i915_gem_vma_destroy(vma);
262de145 3794 vma = ERR_PTR(ret);
bc6bc15b 3795err_unpin:
2f633156 3796 i915_gem_object_unpin_pages(obj);
262de145 3797 return vma;
673a394b
EA
3798}
3799
000433b6 3800bool
2c22569b
CW
3801i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3802 bool force)
673a394b 3803{
673a394b
EA
3804 /* If we don't have a page list set up, then we're not pinned
3805 * to GPU, and we can ignore the cache flush because it'll happen
3806 * again at bind time.
3807 */
05394f39 3808 if (obj->pages == NULL)
000433b6 3809 return false;
673a394b 3810
769ce464
ID
3811 /*
3812 * Stolen memory is always coherent with the GPU as it is explicitly
3813 * marked as wc by the system, or the system is cache-coherent.
3814 */
6a2c4232 3815 if (obj->stolen || obj->phys_handle)
000433b6 3816 return false;
769ce464 3817
9c23f7fc
CW
3818 /* If the GPU is snooping the contents of the CPU cache,
3819 * we do not need to manually clear the CPU cache lines. However,
3820 * the caches are only snooped when the render cache is
3821 * flushed/invalidated. As we always have to emit invalidations
3822 * and flushes when moving into and out of the RENDER domain, correct
3823 * snooping behaviour occurs naturally as the result of our domain
3824 * tracking.
3825 */
0f71979a
CW
3826 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3827 obj->cache_dirty = true;
000433b6 3828 return false;
0f71979a 3829 }
9c23f7fc 3830
1c5d22f7 3831 trace_i915_gem_object_clflush(obj);
9da3da66 3832 drm_clflush_sg(obj->pages);
0f71979a 3833 obj->cache_dirty = false;
000433b6
CW
3834
3835 return true;
e47c68e9
EA
3836}
3837
3838/** Flushes the GTT write domain for the object if it's dirty. */
3839static void
05394f39 3840i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3841{
1c5d22f7
CW
3842 uint32_t old_write_domain;
3843
05394f39 3844 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3845 return;
3846
63256ec5 3847 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3848 * to it immediately go to main memory as far as we know, so there's
3849 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3850 *
3851 * However, we do have to enforce the order so that all writes through
3852 * the GTT land before any writes to the device, such as updates to
3853 * the GATT itself.
e47c68e9 3854 */
63256ec5
CW
3855 wmb();
3856
05394f39
CW
3857 old_write_domain = obj->base.write_domain;
3858 obj->base.write_domain = 0;
1c5d22f7 3859
f99d7069
DV
3860 intel_fb_obj_flush(obj, false);
3861
1c5d22f7 3862 trace_i915_gem_object_change_domain(obj,
05394f39 3863 obj->base.read_domains,
1c5d22f7 3864 old_write_domain);
e47c68e9
EA
3865}
3866
3867/** Flushes the CPU write domain for the object if it's dirty. */
3868static void
e62b59e4 3869i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3870{
1c5d22f7 3871 uint32_t old_write_domain;
e47c68e9 3872
05394f39 3873 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3874 return;
3875
e62b59e4 3876 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3877 i915_gem_chipset_flush(obj->base.dev);
3878
05394f39
CW
3879 old_write_domain = obj->base.write_domain;
3880 obj->base.write_domain = 0;
1c5d22f7 3881
f99d7069
DV
3882 intel_fb_obj_flush(obj, false);
3883
1c5d22f7 3884 trace_i915_gem_object_change_domain(obj,
05394f39 3885 obj->base.read_domains,
1c5d22f7 3886 old_write_domain);
e47c68e9
EA
3887}
3888
2ef7eeaa
EA
3889/**
3890 * Moves a single object to the GTT read, and possibly write domain.
3891 *
3892 * This function returns when the move is complete, including waiting on
3893 * flushes to occur.
3894 */
79e53945 3895int
2021746e 3896i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3897{
1c5d22f7 3898 uint32_t old_write_domain, old_read_domains;
43566ded 3899 struct i915_vma *vma;
e47c68e9 3900 int ret;
2ef7eeaa 3901
8d7e3de1
CW
3902 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3903 return 0;
3904
0201f1ec 3905 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3906 if (ret)
3907 return ret;
3908
43566ded
CW
3909 /* Flush and acquire obj->pages so that we are coherent through
3910 * direct access in memory with previous cached writes through
3911 * shmemfs and that our cache domain tracking remains valid.
3912 * For example, if the obj->filp was moved to swap without us
3913 * being notified and releasing the pages, we would mistakenly
3914 * continue to assume that the obj remained out of the CPU cached
3915 * domain.
3916 */
3917 ret = i915_gem_object_get_pages(obj);
3918 if (ret)
3919 return ret;
3920
e62b59e4 3921 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3922
d0a57789
CW
3923 /* Serialise direct access to this object with the barriers for
3924 * coherent writes from the GPU, by effectively invalidating the
3925 * GTT domain upon first access.
3926 */
3927 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3928 mb();
3929
05394f39
CW
3930 old_write_domain = obj->base.write_domain;
3931 old_read_domains = obj->base.read_domains;
1c5d22f7 3932
e47c68e9
EA
3933 /* It should now be out of any other write domains, and we can update
3934 * the domain values for our changes.
3935 */
05394f39
CW
3936 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3937 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3938 if (write) {
05394f39
CW
3939 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3940 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3941 obj->dirty = 1;
2ef7eeaa
EA
3942 }
3943
f99d7069 3944 if (write)
a4001f1b 3945 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
f99d7069 3946
1c5d22f7
CW
3947 trace_i915_gem_object_change_domain(obj,
3948 old_read_domains,
3949 old_write_domain);
3950
8325a09d 3951 /* And bump the LRU for this access */
43566ded
CW
3952 vma = i915_gem_obj_to_ggtt(obj);
3953 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3954 list_move_tail(&vma->mm_list,
43566ded 3955 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3956
e47c68e9
EA
3957 return 0;
3958}
3959
e4ffd173
CW
3960int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3961 enum i915_cache_level cache_level)
3962{
7bddb01f 3963 struct drm_device *dev = obj->base.dev;
df6f783a 3964 struct i915_vma *vma, *next;
e4ffd173
CW
3965 int ret;
3966
3967 if (obj->cache_level == cache_level)
3968 return 0;
3969
d7f46fc4 3970 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3971 DRM_DEBUG("can not change the cache level of pinned objects\n");
3972 return -EBUSY;
3973 }
3974
df6f783a 3975 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3976 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3977 ret = i915_vma_unbind(vma);
3089c6f2
BW
3978 if (ret)
3979 return ret;
3089c6f2 3980 }
42d6ab48
CW
3981 }
3982
3089c6f2 3983 if (i915_gem_obj_bound_any(obj)) {
2e2f351d 3984 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3985 if (ret)
3986 return ret;
3987
3988 i915_gem_object_finish_gtt(obj);
3989
3990 /* Before SandyBridge, you could not use tiling or fence
3991 * registers with snooped memory, so relinquish any fences
3992 * currently pointing to our region in the aperture.
3993 */
42d6ab48 3994 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3995 ret = i915_gem_object_put_fence(obj);
3996 if (ret)
3997 return ret;
3998 }
3999
6f65e29a 4000 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
4001 if (drm_mm_node_allocated(&vma->node)) {
4002 ret = i915_vma_bind(vma, cache_level,
0875546c 4003 PIN_UPDATE);
fe14d5f4
TU
4004 if (ret)
4005 return ret;
4006 }
e4ffd173
CW
4007 }
4008
2c22569b
CW
4009 list_for_each_entry(vma, &obj->vma_list, vma_link)
4010 vma->node.color = cache_level;
4011 obj->cache_level = cache_level;
4012
0f71979a
CW
4013 if (obj->cache_dirty &&
4014 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4015 cpu_write_needs_clflush(obj)) {
4016 if (i915_gem_clflush_object(obj, true))
4017 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
4018 }
4019
e4ffd173
CW
4020 return 0;
4021}
4022
199adf40
BW
4023int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4024 struct drm_file *file)
e6994aee 4025{
199adf40 4026 struct drm_i915_gem_caching *args = data;
e6994aee 4027 struct drm_i915_gem_object *obj;
e6994aee
CW
4028
4029 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
4030 if (&obj->base == NULL)
4031 return -ENOENT;
e6994aee 4032
651d794f
CW
4033 switch (obj->cache_level) {
4034 case I915_CACHE_LLC:
4035 case I915_CACHE_L3_LLC:
4036 args->caching = I915_CACHING_CACHED;
4037 break;
4038
4257d3ba
CW
4039 case I915_CACHE_WT:
4040 args->caching = I915_CACHING_DISPLAY;
4041 break;
4042
651d794f
CW
4043 default:
4044 args->caching = I915_CACHING_NONE;
4045 break;
4046 }
e6994aee 4047
432be69d
CW
4048 drm_gem_object_unreference_unlocked(&obj->base);
4049 return 0;
e6994aee
CW
4050}
4051
199adf40
BW
4052int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4053 struct drm_file *file)
e6994aee 4054{
199adf40 4055 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4056 struct drm_i915_gem_object *obj;
4057 enum i915_cache_level level;
4058 int ret;
4059
199adf40
BW
4060 switch (args->caching) {
4061 case I915_CACHING_NONE:
e6994aee
CW
4062 level = I915_CACHE_NONE;
4063 break;
199adf40 4064 case I915_CACHING_CACHED:
e6994aee
CW
4065 level = I915_CACHE_LLC;
4066 break;
4257d3ba
CW
4067 case I915_CACHING_DISPLAY:
4068 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4069 break;
e6994aee
CW
4070 default:
4071 return -EINVAL;
4072 }
4073
3bc2913e
BW
4074 ret = i915_mutex_lock_interruptible(dev);
4075 if (ret)
4076 return ret;
4077
e6994aee
CW
4078 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4079 if (&obj->base == NULL) {
4080 ret = -ENOENT;
4081 goto unlock;
4082 }
4083
4084 ret = i915_gem_object_set_cache_level(obj, level);
4085
4086 drm_gem_object_unreference(&obj->base);
4087unlock:
4088 mutex_unlock(&dev->struct_mutex);
4089 return ret;
4090}
4091
b9241ea3 4092/*
2da3b9b9
CW
4093 * Prepare buffer for display plane (scanout, cursors, etc).
4094 * Can be called from an uninterruptible phase (modesetting) and allows
4095 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4096 */
4097int
2da3b9b9
CW
4098i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4099 u32 alignment,
e6617330
TU
4100 struct intel_engine_cs *pipelined,
4101 const struct i915_ggtt_view *view)
b9241ea3 4102{
2da3b9b9 4103 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4104 int ret;
4105
b4716185
CW
4106 ret = i915_gem_object_sync(obj, pipelined);
4107 if (ret)
4108 return ret;
b9241ea3 4109
cc98b413
CW
4110 /* Mark the pin_display early so that we account for the
4111 * display coherency whilst setting up the cache domains.
4112 */
8a0c39b1 4113 obj->pin_display++;
cc98b413 4114
a7ef0640
EA
4115 /* The display engine is not coherent with the LLC cache on gen6. As
4116 * a result, we make sure that the pinning that is about to occur is
4117 * done with uncached PTEs. This is lowest common denominator for all
4118 * chipsets.
4119 *
4120 * However for gen6+, we could do better by using the GFDT bit instead
4121 * of uncaching, which would allow us to flush all the LLC-cached data
4122 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4123 */
651d794f
CW
4124 ret = i915_gem_object_set_cache_level(obj,
4125 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4126 if (ret)
cc98b413 4127 goto err_unpin_display;
a7ef0640 4128
2da3b9b9
CW
4129 /* As the user may map the buffer once pinned in the display plane
4130 * (e.g. libkms for the bootup splash), we have to ensure that we
4131 * always use map_and_fenceable for all scanout buffers.
4132 */
50470bb0
TU
4133 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4134 view->type == I915_GGTT_VIEW_NORMAL ?
4135 PIN_MAPPABLE : 0);
2da3b9b9 4136 if (ret)
cc98b413 4137 goto err_unpin_display;
2da3b9b9 4138
e62b59e4 4139 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4140
2da3b9b9 4141 old_write_domain = obj->base.write_domain;
05394f39 4142 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4143
4144 /* It should now be out of any other write domains, and we can update
4145 * the domain values for our changes.
4146 */
e5f1d962 4147 obj->base.write_domain = 0;
05394f39 4148 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4149
4150 trace_i915_gem_object_change_domain(obj,
4151 old_read_domains,
2da3b9b9 4152 old_write_domain);
b9241ea3
ZW
4153
4154 return 0;
cc98b413
CW
4155
4156err_unpin_display:
8a0c39b1 4157 obj->pin_display--;
cc98b413
CW
4158 return ret;
4159}
4160
4161void
e6617330
TU
4162i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4163 const struct i915_ggtt_view *view)
cc98b413 4164{
8a0c39b1
TU
4165 if (WARN_ON(obj->pin_display == 0))
4166 return;
4167
e6617330
TU
4168 i915_gem_object_ggtt_unpin_view(obj, view);
4169
8a0c39b1 4170 obj->pin_display--;
b9241ea3
ZW
4171}
4172
e47c68e9
EA
4173/**
4174 * Moves a single object to the CPU read, and possibly write domain.
4175 *
4176 * This function returns when the move is complete, including waiting on
4177 * flushes to occur.
4178 */
dabdfe02 4179int
919926ae 4180i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4181{
1c5d22f7 4182 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4183 int ret;
4184
8d7e3de1
CW
4185 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4186 return 0;
4187
0201f1ec 4188 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4189 if (ret)
4190 return ret;
4191
e47c68e9 4192 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4193
05394f39
CW
4194 old_write_domain = obj->base.write_domain;
4195 old_read_domains = obj->base.read_domains;
1c5d22f7 4196
e47c68e9 4197 /* Flush the CPU cache if it's still invalid. */
05394f39 4198 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4199 i915_gem_clflush_object(obj, false);
2ef7eeaa 4200
05394f39 4201 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4202 }
4203
4204 /* It should now be out of any other write domains, and we can update
4205 * the domain values for our changes.
4206 */
05394f39 4207 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4208
4209 /* If we're writing through the CPU, then the GPU read domains will
4210 * need to be invalidated at next use.
4211 */
4212 if (write) {
05394f39
CW
4213 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4214 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4215 }
2ef7eeaa 4216
f99d7069 4217 if (write)
a4001f1b 4218 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
f99d7069 4219
1c5d22f7
CW
4220 trace_i915_gem_object_change_domain(obj,
4221 old_read_domains,
4222 old_write_domain);
4223
2ef7eeaa
EA
4224 return 0;
4225}
4226
673a394b
EA
4227/* Throttle our rendering by waiting until the ring has completed our requests
4228 * emitted over 20 msec ago.
4229 *
b962442e
EA
4230 * Note that if we were to use the current jiffies each time around the loop,
4231 * we wouldn't escape the function with any frames outstanding if the time to
4232 * render a frame was over 20ms.
4233 *
673a394b
EA
4234 * This should get us reasonable parallelism between CPU and GPU but also
4235 * relatively low latency when blocking on a particular request to finish.
4236 */
40a5f0de 4237static int
f787a5f5 4238i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4239{
f787a5f5
CW
4240 struct drm_i915_private *dev_priv = dev->dev_private;
4241 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4242 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4243 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4244 unsigned reset_counter;
f787a5f5 4245 int ret;
93533c29 4246
308887aa
DV
4247 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4248 if (ret)
4249 return ret;
4250
4251 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4252 if (ret)
4253 return ret;
e110e8d6 4254
1c25595f 4255 spin_lock(&file_priv->mm.lock);
f787a5f5 4256 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4257 if (time_after_eq(request->emitted_jiffies, recent_enough))
4258 break;
40a5f0de 4259
54fb2411 4260 target = request;
b962442e 4261 }
f69061be 4262 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4263 if (target)
4264 i915_gem_request_reference(target);
1c25595f 4265 spin_unlock(&file_priv->mm.lock);
40a5f0de 4266
54fb2411 4267 if (target == NULL)
f787a5f5 4268 return 0;
2bc43b5c 4269
9c654818 4270 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4271 if (ret == 0)
4272 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4273
41037f9f 4274 i915_gem_request_unreference__unlocked(target);
ff865885 4275
40a5f0de
EA
4276 return ret;
4277}
4278
d23db88c
CW
4279static bool
4280i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4281{
4282 struct drm_i915_gem_object *obj = vma->obj;
4283
4284 if (alignment &&
4285 vma->node.start & (alignment - 1))
4286 return true;
4287
4288 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4289 return true;
4290
4291 if (flags & PIN_OFFSET_BIAS &&
4292 vma->node.start < (flags & PIN_OFFSET_MASK))
4293 return true;
4294
4295 return false;
4296}
4297
ec7adb6e
JL
4298static int
4299i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4300 struct i915_address_space *vm,
4301 const struct i915_ggtt_view *ggtt_view,
4302 uint32_t alignment,
4303 uint64_t flags)
673a394b 4304{
6e7186af 4305 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4306 struct i915_vma *vma;
ef79e17c 4307 unsigned bound;
673a394b
EA
4308 int ret;
4309
6e7186af
BW
4310 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4311 return -ENODEV;
4312
bf3d149b 4313 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4314 return -EINVAL;
07fe0b12 4315
c826c449
CW
4316 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4317 return -EINVAL;
4318
ec7adb6e
JL
4319 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4320 return -EINVAL;
4321
4322 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4323 i915_gem_obj_to_vma(obj, vm);
4324
4325 if (IS_ERR(vma))
4326 return PTR_ERR(vma);
4327
07fe0b12 4328 if (vma) {
d7f46fc4
BW
4329 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4330 return -EBUSY;
4331
d23db88c 4332 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4333 unsigned long offset;
9abc4648 4334 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4335 i915_gem_obj_offset(obj, vm);
d7f46fc4 4336 WARN(vma->pin_count,
ec7adb6e 4337 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4338 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4339 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4340 ggtt_view ? "ggtt" : "ppgtt",
4341 offset,
fe14d5f4 4342 alignment,
d23db88c 4343 !!(flags & PIN_MAPPABLE),
05394f39 4344 obj->map_and_fenceable);
07fe0b12 4345 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4346 if (ret)
4347 return ret;
8ea99c92
DV
4348
4349 vma = NULL;
ac0c6b5a
CW
4350 }
4351 }
4352
ef79e17c 4353 bound = vma ? vma->bound : 0;
8ea99c92 4354 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4355 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4356 flags);
262de145
DV
4357 if (IS_ERR(vma))
4358 return PTR_ERR(vma);
0875546c
DV
4359 } else {
4360 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4361 if (ret)
4362 return ret;
4363 }
74898d7e 4364
91e6711e
JL
4365 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4366 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4367 bool mappable, fenceable;
4368 u32 fence_size, fence_alignment;
4369
4370 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4371 obj->base.size,
4372 obj->tiling_mode);
4373 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4374 obj->base.size,
4375 obj->tiling_mode,
4376 true);
4377
4378 fenceable = (vma->node.size == fence_size &&
4379 (vma->node.start & (fence_alignment - 1)) == 0);
4380
e8dec1dd 4381 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4382 dev_priv->gtt.mappable_end);
4383
4384 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4385
91e6711e
JL
4386 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4387 }
ef79e17c 4388
8ea99c92 4389 vma->pin_count++;
673a394b
EA
4390 return 0;
4391}
4392
ec7adb6e
JL
4393int
4394i915_gem_object_pin(struct drm_i915_gem_object *obj,
4395 struct i915_address_space *vm,
4396 uint32_t alignment,
4397 uint64_t flags)
4398{
4399 return i915_gem_object_do_pin(obj, vm,
4400 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4401 alignment, flags);
4402}
4403
4404int
4405i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4406 const struct i915_ggtt_view *view,
4407 uint32_t alignment,
4408 uint64_t flags)
4409{
4410 if (WARN_ONCE(!view, "no view specified"))
4411 return -EINVAL;
4412
4413 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4414 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4415}
4416
673a394b 4417void
e6617330
TU
4418i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4419 const struct i915_ggtt_view *view)
673a394b 4420{
e6617330 4421 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4422
d7f46fc4 4423 BUG_ON(!vma);
e6617330 4424 WARN_ON(vma->pin_count == 0);
9abc4648 4425 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4426
30154650 4427 --vma->pin_count;
673a394b
EA
4428}
4429
d8ffa60b
DV
4430bool
4431i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4432{
4433 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4434 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4435 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4436
4437 WARN_ON(!ggtt_vma ||
4438 dev_priv->fence_regs[obj->fence_reg].pin_count >
4439 ggtt_vma->pin_count);
4440 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4441 return true;
4442 } else
4443 return false;
4444}
4445
4446void
4447i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4448{
4449 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4450 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4451 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4452 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4453 }
4454}
4455
673a394b
EA
4456int
4457i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4458 struct drm_file *file)
673a394b
EA
4459{
4460 struct drm_i915_gem_busy *args = data;
05394f39 4461 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4462 int ret;
4463
76c1dec1 4464 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4465 if (ret)
76c1dec1 4466 return ret;
673a394b 4467
05394f39 4468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4469 if (&obj->base == NULL) {
1d7cfea1
CW
4470 ret = -ENOENT;
4471 goto unlock;
673a394b 4472 }
d1b851fc 4473
0be555b6
CW
4474 /* Count all active objects as busy, even if they are currently not used
4475 * by the gpu. Users of this interface expect objects to eventually
4476 * become non-busy without any further actions, therefore emit any
4477 * necessary flushes here.
c4de0a5d 4478 */
30dfebf3 4479 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4480 if (ret)
4481 goto unref;
0be555b6 4482
b4716185
CW
4483 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4484 args->busy = obj->active << 16;
4485 if (obj->last_write_req)
4486 args->busy |= obj->last_write_req->ring->id;
673a394b 4487
b4716185 4488unref:
05394f39 4489 drm_gem_object_unreference(&obj->base);
1d7cfea1 4490unlock:
673a394b 4491 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4492 return ret;
673a394b
EA
4493}
4494
4495int
4496i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4497 struct drm_file *file_priv)
4498{
0206e353 4499 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4500}
4501
3ef94daa
CW
4502int
4503i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4504 struct drm_file *file_priv)
4505{
656bfa3a 4506 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4507 struct drm_i915_gem_madvise *args = data;
05394f39 4508 struct drm_i915_gem_object *obj;
76c1dec1 4509 int ret;
3ef94daa
CW
4510
4511 switch (args->madv) {
4512 case I915_MADV_DONTNEED:
4513 case I915_MADV_WILLNEED:
4514 break;
4515 default:
4516 return -EINVAL;
4517 }
4518
1d7cfea1
CW
4519 ret = i915_mutex_lock_interruptible(dev);
4520 if (ret)
4521 return ret;
4522
05394f39 4523 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4524 if (&obj->base == NULL) {
1d7cfea1
CW
4525 ret = -ENOENT;
4526 goto unlock;
3ef94daa 4527 }
3ef94daa 4528
d7f46fc4 4529 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4530 ret = -EINVAL;
4531 goto out;
3ef94daa
CW
4532 }
4533
656bfa3a
DV
4534 if (obj->pages &&
4535 obj->tiling_mode != I915_TILING_NONE &&
4536 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4537 if (obj->madv == I915_MADV_WILLNEED)
4538 i915_gem_object_unpin_pages(obj);
4539 if (args->madv == I915_MADV_WILLNEED)
4540 i915_gem_object_pin_pages(obj);
4541 }
4542
05394f39
CW
4543 if (obj->madv != __I915_MADV_PURGED)
4544 obj->madv = args->madv;
3ef94daa 4545
6c085a72 4546 /* if the object is no longer attached, discard its backing storage */
be6a0376 4547 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4548 i915_gem_object_truncate(obj);
4549
05394f39 4550 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4551
1d7cfea1 4552out:
05394f39 4553 drm_gem_object_unreference(&obj->base);
1d7cfea1 4554unlock:
3ef94daa 4555 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4556 return ret;
3ef94daa
CW
4557}
4558
37e680a1
CW
4559void i915_gem_object_init(struct drm_i915_gem_object *obj,
4560 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4561{
b4716185
CW
4562 int i;
4563
35c20a60 4564 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4565 for (i = 0; i < I915_NUM_RINGS; i++)
4566 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4567 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4568 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4569 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4570
37e680a1
CW
4571 obj->ops = ops;
4572
0327d6ba
CW
4573 obj->fence_reg = I915_FENCE_REG_NONE;
4574 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4575
4576 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4577}
4578
37e680a1
CW
4579static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4580 .get_pages = i915_gem_object_get_pages_gtt,
4581 .put_pages = i915_gem_object_put_pages_gtt,
4582};
4583
05394f39
CW
4584struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4585 size_t size)
ac52bc56 4586{
c397b908 4587 struct drm_i915_gem_object *obj;
5949eac4 4588 struct address_space *mapping;
1a240d4d 4589 gfp_t mask;
ac52bc56 4590
42dcedd4 4591 obj = i915_gem_object_alloc(dev);
c397b908
DV
4592 if (obj == NULL)
4593 return NULL;
673a394b 4594
c397b908 4595 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4596 i915_gem_object_free(obj);
c397b908
DV
4597 return NULL;
4598 }
673a394b 4599
bed1ea95
CW
4600 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4601 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4602 /* 965gm cannot relocate objects above 4GiB. */
4603 mask &= ~__GFP_HIGHMEM;
4604 mask |= __GFP_DMA32;
4605 }
4606
496ad9aa 4607 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4608 mapping_set_gfp_mask(mapping, mask);
5949eac4 4609
37e680a1 4610 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4611
c397b908
DV
4612 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4613 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4614
3d29b842
ED
4615 if (HAS_LLC(dev)) {
4616 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4617 * cache) for about a 10% performance improvement
4618 * compared to uncached. Graphics requests other than
4619 * display scanout are coherent with the CPU in
4620 * accessing this cache. This means in this mode we
4621 * don't need to clflush on the CPU side, and on the
4622 * GPU side we only need to flush internal caches to
4623 * get data visible to the CPU.
4624 *
4625 * However, we maintain the display planes as UC, and so
4626 * need to rebind when first used as such.
4627 */
4628 obj->cache_level = I915_CACHE_LLC;
4629 } else
4630 obj->cache_level = I915_CACHE_NONE;
4631
d861e338
DV
4632 trace_i915_gem_object_create(obj);
4633
05394f39 4634 return obj;
c397b908
DV
4635}
4636
340fbd8c
CW
4637static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4638{
4639 /* If we are the last user of the backing storage (be it shmemfs
4640 * pages or stolen etc), we know that the pages are going to be
4641 * immediately released. In this case, we can then skip copying
4642 * back the contents from the GPU.
4643 */
4644
4645 if (obj->madv != I915_MADV_WILLNEED)
4646 return false;
4647
4648 if (obj->base.filp == NULL)
4649 return true;
4650
4651 /* At first glance, this looks racy, but then again so would be
4652 * userspace racing mmap against close. However, the first external
4653 * reference to the filp can only be obtained through the
4654 * i915_gem_mmap_ioctl() which safeguards us against the user
4655 * acquiring such a reference whilst we are in the middle of
4656 * freeing the object.
4657 */
4658 return atomic_long_read(&obj->base.filp->f_count) == 1;
4659}
4660
1488fc08 4661void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4662{
1488fc08 4663 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4664 struct drm_device *dev = obj->base.dev;
3e31c6c0 4665 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4666 struct i915_vma *vma, *next;
673a394b 4667
f65c9168
PZ
4668 intel_runtime_pm_get(dev_priv);
4669
26e12f89
CW
4670 trace_i915_gem_object_destroy(obj);
4671
07fe0b12 4672 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4673 int ret;
4674
4675 vma->pin_count = 0;
4676 ret = i915_vma_unbind(vma);
07fe0b12
BW
4677 if (WARN_ON(ret == -ERESTARTSYS)) {
4678 bool was_interruptible;
1488fc08 4679
07fe0b12
BW
4680 was_interruptible = dev_priv->mm.interruptible;
4681 dev_priv->mm.interruptible = false;
1488fc08 4682
07fe0b12 4683 WARN_ON(i915_vma_unbind(vma));
1488fc08 4684
07fe0b12
BW
4685 dev_priv->mm.interruptible = was_interruptible;
4686 }
1488fc08
CW
4687 }
4688
1d64ae71
BW
4689 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4690 * before progressing. */
4691 if (obj->stolen)
4692 i915_gem_object_unpin_pages(obj);
4693
a071fa00
DV
4694 WARN_ON(obj->frontbuffer_bits);
4695
656bfa3a
DV
4696 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4697 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4698 obj->tiling_mode != I915_TILING_NONE)
4699 i915_gem_object_unpin_pages(obj);
4700
401c29f6
BW
4701 if (WARN_ON(obj->pages_pin_count))
4702 obj->pages_pin_count = 0;
340fbd8c 4703 if (discard_backing_storage(obj))
5537252b 4704 obj->madv = I915_MADV_DONTNEED;
37e680a1 4705 i915_gem_object_put_pages(obj);
d8cb5086 4706 i915_gem_object_free_mmap_offset(obj);
de151cf6 4707
9da3da66
CW
4708 BUG_ON(obj->pages);
4709
2f745ad3
CW
4710 if (obj->base.import_attach)
4711 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4712
5cc9ed4b
CW
4713 if (obj->ops->release)
4714 obj->ops->release(obj);
4715
05394f39
CW
4716 drm_gem_object_release(&obj->base);
4717 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4718
05394f39 4719 kfree(obj->bit_17);
42dcedd4 4720 i915_gem_object_free(obj);
f65c9168
PZ
4721
4722 intel_runtime_pm_put(dev_priv);
673a394b
EA
4723}
4724
ec7adb6e
JL
4725struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4726 struct i915_address_space *vm)
e656a6cb
DV
4727{
4728 struct i915_vma *vma;
ec7adb6e
JL
4729 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4730 if (i915_is_ggtt(vma->vm) &&
4731 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4732 continue;
4733 if (vma->vm == vm)
e656a6cb 4734 return vma;
ec7adb6e
JL
4735 }
4736 return NULL;
4737}
4738
4739struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4740 const struct i915_ggtt_view *view)
4741{
4742 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4743 struct i915_vma *vma;
e656a6cb 4744
ec7adb6e
JL
4745 if (WARN_ONCE(!view, "no view specified"))
4746 return ERR_PTR(-EINVAL);
4747
4748 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4749 if (vma->vm == ggtt &&
4750 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4751 return vma;
e656a6cb
DV
4752 return NULL;
4753}
4754
2f633156
BW
4755void i915_gem_vma_destroy(struct i915_vma *vma)
4756{
b9d06dd9 4757 struct i915_address_space *vm = NULL;
2f633156 4758 WARN_ON(vma->node.allocated);
aaa05667
CW
4759
4760 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4761 if (!list_empty(&vma->exec_list))
4762 return;
4763
b9d06dd9 4764 vm = vma->vm;
b9d06dd9 4765
841cd773
DV
4766 if (!i915_is_ggtt(vm))
4767 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4768
8b9c2b94 4769 list_del(&vma->vma_link);
b93dab6e 4770
e20d2ab7 4771 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4772}
4773
e3efda49
CW
4774static void
4775i915_gem_stop_ringbuffers(struct drm_device *dev)
4776{
4777 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4778 struct intel_engine_cs *ring;
e3efda49
CW
4779 int i;
4780
4781 for_each_ring(ring, dev_priv, i)
a83014d3 4782 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4783}
4784
29105ccc 4785int
45c5f202 4786i915_gem_suspend(struct drm_device *dev)
29105ccc 4787{
3e31c6c0 4788 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4789 int ret = 0;
28dfe52a 4790
45c5f202 4791 mutex_lock(&dev->struct_mutex);
b2da9fe5 4792 ret = i915_gpu_idle(dev);
f7403347 4793 if (ret)
45c5f202 4794 goto err;
f7403347 4795
b2da9fe5 4796 i915_gem_retire_requests(dev);
673a394b 4797
e3efda49 4798 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4799 mutex_unlock(&dev->struct_mutex);
4800
737b1506 4801 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4802 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4803 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4804
bdcf120b
CW
4805 /* Assert that we sucessfully flushed all the work and
4806 * reset the GPU back to its idle, low power state.
4807 */
4808 WARN_ON(dev_priv->mm.busy);
4809
673a394b 4810 return 0;
45c5f202
CW
4811
4812err:
4813 mutex_unlock(&dev->struct_mutex);
4814 return ret;
673a394b
EA
4815}
4816
a4872ba6 4817int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4818{
c3787e2e 4819 struct drm_device *dev = ring->dev;
3e31c6c0 4820 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4821 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4822 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4823 int i, ret;
b9524a1e 4824
040d2baa 4825 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4826 return 0;
b9524a1e 4827
c3787e2e
BW
4828 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4829 if (ret)
4830 return ret;
b9524a1e 4831
c3787e2e
BW
4832 /*
4833 * Note: We do not worry about the concurrent register cacheline hang
4834 * here because no other code should access these registers other than
4835 * at initialization time.
4836 */
b9524a1e 4837 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4838 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4839 intel_ring_emit(ring, reg_base + i);
4840 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4841 }
4842
c3787e2e 4843 intel_ring_advance(ring);
b9524a1e 4844
c3787e2e 4845 return ret;
b9524a1e
BW
4846}
4847
f691e2f4
DV
4848void i915_gem_init_swizzling(struct drm_device *dev)
4849{
3e31c6c0 4850 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4851
11782b02 4852 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4853 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4854 return;
4855
4856 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4857 DISP_TILE_SURFACE_SWIZZLING);
4858
11782b02
DV
4859 if (IS_GEN5(dev))
4860 return;
4861
f691e2f4
DV
4862 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4863 if (IS_GEN6(dev))
6b26c86d 4864 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4865 else if (IS_GEN7(dev))
6b26c86d 4866 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4867 else if (IS_GEN8(dev))
4868 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4869 else
4870 BUG();
f691e2f4 4871}
e21af88d 4872
67b1b571
CW
4873static bool
4874intel_enable_blt(struct drm_device *dev)
4875{
4876 if (!HAS_BLT(dev))
4877 return false;
4878
4879 /* The blitter was dysfunctional on early prototypes */
4880 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4881 DRM_INFO("BLT not supported on this pre-production hardware;"
4882 " graphics performance will be degraded.\n");
4883 return false;
4884 }
4885
4886 return true;
4887}
4888
81e7f200
VS
4889static void init_unused_ring(struct drm_device *dev, u32 base)
4890{
4891 struct drm_i915_private *dev_priv = dev->dev_private;
4892
4893 I915_WRITE(RING_CTL(base), 0);
4894 I915_WRITE(RING_HEAD(base), 0);
4895 I915_WRITE(RING_TAIL(base), 0);
4896 I915_WRITE(RING_START(base), 0);
4897}
4898
4899static void init_unused_rings(struct drm_device *dev)
4900{
4901 if (IS_I830(dev)) {
4902 init_unused_ring(dev, PRB1_BASE);
4903 init_unused_ring(dev, SRB0_BASE);
4904 init_unused_ring(dev, SRB1_BASE);
4905 init_unused_ring(dev, SRB2_BASE);
4906 init_unused_ring(dev, SRB3_BASE);
4907 } else if (IS_GEN2(dev)) {
4908 init_unused_ring(dev, SRB0_BASE);
4909 init_unused_ring(dev, SRB1_BASE);
4910 } else if (IS_GEN3(dev)) {
4911 init_unused_ring(dev, PRB1_BASE);
4912 init_unused_ring(dev, PRB2_BASE);
4913 }
4914}
4915
a83014d3 4916int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4917{
4fc7c971 4918 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4919 int ret;
68f95ba9 4920
5c1143bb 4921 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4922 if (ret)
b6913e4b 4923 return ret;
68f95ba9
CW
4924
4925 if (HAS_BSD(dev)) {
5c1143bb 4926 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4927 if (ret)
4928 goto cleanup_render_ring;
d1b851fc 4929 }
68f95ba9 4930
67b1b571 4931 if (intel_enable_blt(dev)) {
549f7365
CW
4932 ret = intel_init_blt_ring_buffer(dev);
4933 if (ret)
4934 goto cleanup_bsd_ring;
4935 }
4936
9a8a2213
BW
4937 if (HAS_VEBOX(dev)) {
4938 ret = intel_init_vebox_ring_buffer(dev);
4939 if (ret)
4940 goto cleanup_blt_ring;
4941 }
4942
845f74a7
ZY
4943 if (HAS_BSD2(dev)) {
4944 ret = intel_init_bsd2_ring_buffer(dev);
4945 if (ret)
4946 goto cleanup_vebox_ring;
4947 }
9a8a2213 4948
99433931 4949 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4950 if (ret)
845f74a7 4951 goto cleanup_bsd2_ring;
4fc7c971
BW
4952
4953 return 0;
4954
845f74a7
ZY
4955cleanup_bsd2_ring:
4956 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4957cleanup_vebox_ring:
4958 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4959cleanup_blt_ring:
4960 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4961cleanup_bsd_ring:
4962 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4963cleanup_render_ring:
4964 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4965
4966 return ret;
4967}
4968
4969int
4970i915_gem_init_hw(struct drm_device *dev)
4971{
3e31c6c0 4972 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4973 struct intel_engine_cs *ring;
35a85ac6 4974 int ret, i;
4fc7c971
BW
4975
4976 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4977 return -EIO;
4978
5e4f5189
CW
4979 /* Double layer security blanket, see i915_gem_init() */
4980 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4981
59124506 4982 if (dev_priv->ellc_size)
05e21cc4 4983 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4984
0bf21347
VS
4985 if (IS_HASWELL(dev))
4986 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4987 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4988
88a2b2a3 4989 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4990 if (IS_IVYBRIDGE(dev)) {
4991 u32 temp = I915_READ(GEN7_MSG_CTL);
4992 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4993 I915_WRITE(GEN7_MSG_CTL, temp);
4994 } else if (INTEL_INFO(dev)->gen >= 7) {
4995 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4996 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4997 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4998 }
88a2b2a3
BW
4999 }
5000
4fc7c971
BW
5001 i915_gem_init_swizzling(dev);
5002
d5abdfda
DV
5003 /*
5004 * At least 830 can leave some of the unused rings
5005 * "active" (ie. head != tail) after resume which
5006 * will prevent c3 entry. Makes sure all unused rings
5007 * are totally idle.
5008 */
5009 init_unused_rings(dev);
5010
35a57ffb
DV
5011 for_each_ring(ring, dev_priv, i) {
5012 ret = ring->init_hw(ring);
5013 if (ret)
5e4f5189 5014 goto out;
35a57ffb 5015 }
99433931 5016
c3787e2e
BW
5017 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5018 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5019
f48a0165 5020 ret = i915_ppgtt_init_hw(dev);
60990320 5021 if (ret && ret != -EIO) {
f48a0165 5022 DRM_ERROR("PPGTT enable failed %d\n", ret);
60990320 5023 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
5024 }
5025
f48a0165 5026 ret = i915_gem_context_enable(dev_priv);
82460d97 5027 if (ret && ret != -EIO) {
f48a0165 5028 DRM_ERROR("Context enable failed %d\n", ret);
82460d97 5029 i915_gem_cleanup_ringbuffer(dev);
f48a0165 5030
5e4f5189 5031 goto out;
b7c36d25 5032 }
e21af88d 5033
5e4f5189
CW
5034out:
5035 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5036 return ret;
8187a2b7
ZN
5037}
5038
1070a42b
CW
5039int i915_gem_init(struct drm_device *dev)
5040{
5041 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
5042 int ret;
5043
127f1003
OM
5044 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5045 i915.enable_execlists);
5046
1070a42b 5047 mutex_lock(&dev->struct_mutex);
d62b4892
JB
5048
5049 if (IS_VALLEYVIEW(dev)) {
5050 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
5051 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5052 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5053 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
5054 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5055 }
5056
a83014d3 5057 if (!i915.enable_execlists) {
f3dc74c0 5058 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
5059 dev_priv->gt.init_rings = i915_gem_init_rings;
5060 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5061 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 5062 } else {
f3dc74c0 5063 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
5064 dev_priv->gt.init_rings = intel_logical_rings_init;
5065 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5066 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
5067 }
5068
5e4f5189
CW
5069 /* This is just a security blanket to placate dragons.
5070 * On some systems, we very sporadically observe that the first TLBs
5071 * used by the CS may be stale, despite us poking the TLB reset. If
5072 * we hold the forcewake during initialisation these problems
5073 * just magically go away.
5074 */
5075 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5076
6c5566a8 5077 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
5078 if (ret)
5079 goto out_unlock;
6c5566a8 5080
d7e5008f 5081 i915_gem_init_global_gtt(dev);
d62b4892 5082
2fa48d8d 5083 ret = i915_gem_context_init(dev);
7bcc3777
JN
5084 if (ret)
5085 goto out_unlock;
2fa48d8d 5086
35a57ffb
DV
5087 ret = dev_priv->gt.init_rings(dev);
5088 if (ret)
7bcc3777 5089 goto out_unlock;
2fa48d8d 5090
1070a42b 5091 ret = i915_gem_init_hw(dev);
60990320
CW
5092 if (ret == -EIO) {
5093 /* Allow ring initialisation to fail by marking the GPU as
5094 * wedged. But we only want to do this where the GPU is angry,
5095 * for all other failure, such as an allocation failure, bail.
5096 */
5097 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5098 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5099 ret = 0;
1070a42b 5100 }
7bcc3777
JN
5101
5102out_unlock:
5e4f5189 5103 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5104 mutex_unlock(&dev->struct_mutex);
1070a42b 5105
60990320 5106 return ret;
1070a42b
CW
5107}
5108
8187a2b7
ZN
5109void
5110i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5111{
3e31c6c0 5112 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 5113 struct intel_engine_cs *ring;
1ec14ad3 5114 int i;
8187a2b7 5115
b4519513 5116 for_each_ring(ring, dev_priv, i)
a83014d3 5117 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
5118}
5119
64193406 5120static void
a4872ba6 5121init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5122{
5123 INIT_LIST_HEAD(&ring->active_list);
5124 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5125}
5126
7e0d96bc
BW
5127void i915_init_vm(struct drm_i915_private *dev_priv,
5128 struct i915_address_space *vm)
fc8c067e 5129{
7e0d96bc
BW
5130 if (!i915_is_ggtt(vm))
5131 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
5132 vm->dev = dev_priv->dev;
5133 INIT_LIST_HEAD(&vm->active_list);
5134 INIT_LIST_HEAD(&vm->inactive_list);
5135 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 5136 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
5137}
5138
673a394b
EA
5139void
5140i915_gem_load(struct drm_device *dev)
5141{
3e31c6c0 5142 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5143 int i;
5144
efab6d8d 5145 dev_priv->objects =
42dcedd4
CW
5146 kmem_cache_create("i915_gem_object",
5147 sizeof(struct drm_i915_gem_object), 0,
5148 SLAB_HWCACHE_ALIGN,
5149 NULL);
e20d2ab7
CW
5150 dev_priv->vmas =
5151 kmem_cache_create("i915_gem_vma",
5152 sizeof(struct i915_vma), 0,
5153 SLAB_HWCACHE_ALIGN,
5154 NULL);
efab6d8d
CW
5155 dev_priv->requests =
5156 kmem_cache_create("i915_gem_request",
5157 sizeof(struct drm_i915_gem_request), 0,
5158 SLAB_HWCACHE_ALIGN,
5159 NULL);
673a394b 5160
fc8c067e
BW
5161 INIT_LIST_HEAD(&dev_priv->vm_list);
5162 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5163
a33afea5 5164 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5165 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5166 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5167 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5168 for (i = 0; i < I915_NUM_RINGS; i++)
5169 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5170 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5171 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5172 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5173 i915_gem_retire_work_handler);
b29c19b6
CW
5174 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5175 i915_gem_idle_work_handler);
1f83fee0 5176 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5177
72bfa19c
CW
5178 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5179
42b5aeab
VS
5180 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5181 dev_priv->num_fence_regs = 32;
5182 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5183 dev_priv->num_fence_regs = 16;
5184 else
5185 dev_priv->num_fence_regs = 8;
5186
eb82289a
YZ
5187 if (intel_vgpu_active(dev))
5188 dev_priv->num_fence_regs =
5189 I915_READ(vgtif_reg(avail_rs.fence_num));
5190
b5aa8a0f 5191 /* Initialize fence registers to zero */
19b2dbde
CW
5192 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5193 i915_gem_restore_fences(dev);
10ed13e4 5194
673a394b 5195 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5196 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5197
ce453d81
CW
5198 dev_priv->mm.interruptible = true;
5199
be6a0376 5200 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5201
5202 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5203}
71acb5eb 5204
f787a5f5 5205void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5206{
f787a5f5 5207 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5208
5209 /* Clean up our request list when the client is going away, so that
5210 * later retire_requests won't dereference our soon-to-be-gone
5211 * file_priv.
5212 */
1c25595f 5213 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5214 while (!list_empty(&file_priv->mm.request_list)) {
5215 struct drm_i915_gem_request *request;
5216
5217 request = list_first_entry(&file_priv->mm.request_list,
5218 struct drm_i915_gem_request,
5219 client_list);
5220 list_del(&request->client_list);
5221 request->file_priv = NULL;
5222 }
1c25595f 5223 spin_unlock(&file_priv->mm.lock);
b29c19b6 5224
2e1b8730 5225 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5226 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5227 list_del(&file_priv->rps.link);
8d3afd7d 5228 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5229 }
b29c19b6
CW
5230}
5231
5232int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5233{
5234 struct drm_i915_file_private *file_priv;
e422b888 5235 int ret;
b29c19b6
CW
5236
5237 DRM_DEBUG_DRIVER("\n");
5238
5239 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5240 if (!file_priv)
5241 return -ENOMEM;
5242
5243 file->driver_priv = file_priv;
5244 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5245 file_priv->file = file;
2e1b8730 5246 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5247
5248 spin_lock_init(&file_priv->mm.lock);
5249 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5250
e422b888
BW
5251 ret = i915_gem_context_open(dev, file);
5252 if (ret)
5253 kfree(file_priv);
b29c19b6 5254
e422b888 5255 return ret;
b29c19b6
CW
5256}
5257
b680c37a
DV
5258/**
5259 * i915_gem_track_fb - update frontbuffer tracking
5260 * old: current GEM buffer for the frontbuffer slots
5261 * new: new GEM buffer for the frontbuffer slots
5262 * frontbuffer_bits: bitmask of frontbuffer slots
5263 *
5264 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5265 * from @old and setting them in @new. Both @old and @new can be NULL.
5266 */
a071fa00
DV
5267void i915_gem_track_fb(struct drm_i915_gem_object *old,
5268 struct drm_i915_gem_object *new,
5269 unsigned frontbuffer_bits)
5270{
5271 if (old) {
5272 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5273 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5274 old->frontbuffer_bits &= ~frontbuffer_bits;
5275 }
5276
5277 if (new) {
5278 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5279 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5280 new->frontbuffer_bits |= frontbuffer_bits;
5281 }
5282}
5283
a70a3148 5284/* All the new VM stuff */
ec7adb6e
JL
5285unsigned long
5286i915_gem_obj_offset(struct drm_i915_gem_object *o,
5287 struct i915_address_space *vm)
a70a3148
BW
5288{
5289 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5290 struct i915_vma *vma;
5291
896ab1a5 5292 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5293
a70a3148 5294 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5295 if (i915_is_ggtt(vma->vm) &&
5296 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5297 continue;
5298 if (vma->vm == vm)
a70a3148 5299 return vma->node.start;
a70a3148 5300 }
ec7adb6e 5301
f25748ea
DV
5302 WARN(1, "%s vma for this object not found.\n",
5303 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5304 return -1;
5305}
5306
ec7adb6e
JL
5307unsigned long
5308i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5309 const struct i915_ggtt_view *view)
a70a3148 5310{
ec7adb6e 5311 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5312 struct i915_vma *vma;
5313
5314 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5315 if (vma->vm == ggtt &&
5316 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5317 return vma->node.start;
5318
5678ad73 5319 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5320 return -1;
5321}
5322
5323bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5324 struct i915_address_space *vm)
5325{
5326 struct i915_vma *vma;
5327
5328 list_for_each_entry(vma, &o->vma_list, vma_link) {
5329 if (i915_is_ggtt(vma->vm) &&
5330 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5331 continue;
5332 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5333 return true;
5334 }
5335
5336 return false;
5337}
5338
5339bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5340 const struct i915_ggtt_view *view)
ec7adb6e
JL
5341{
5342 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5343 struct i915_vma *vma;
5344
5345 list_for_each_entry(vma, &o->vma_list, vma_link)
5346 if (vma->vm == ggtt &&
9abc4648 5347 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5348 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5349 return true;
5350
5351 return false;
5352}
5353
5354bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5355{
5a1d5eb0 5356 struct i915_vma *vma;
a70a3148 5357
5a1d5eb0
CW
5358 list_for_each_entry(vma, &o->vma_list, vma_link)
5359 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5360 return true;
5361
5362 return false;
5363}
5364
5365unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5366 struct i915_address_space *vm)
5367{
5368 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5369 struct i915_vma *vma;
5370
896ab1a5 5371 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5372
5373 BUG_ON(list_empty(&o->vma_list));
5374
ec7adb6e
JL
5375 list_for_each_entry(vma, &o->vma_list, vma_link) {
5376 if (i915_is_ggtt(vma->vm) &&
5377 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5378 continue;
a70a3148
BW
5379 if (vma->vm == vm)
5380 return vma->node.size;
ec7adb6e 5381 }
a70a3148
BW
5382 return 0;
5383}
5384
ec7adb6e 5385bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5386{
5387 struct i915_vma *vma;
a6631ae1 5388 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5389 if (vma->pin_count > 0)
5390 return true;
a6631ae1 5391
ec7adb6e 5392 return false;
5c2abbea 5393}
ec7adb6e 5394
This page took 2.139399 seconds and 5 git commands to generate.