drm/i915: Clear the pending_gpu_fenced_access flag at the start of execbuffer
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
8c59967c 58static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 59
61050808
CW
60static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61{
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
5d82e3e6 68 obj->fence_dirty = false;
61050808
CW
69 obj->fence_reg = I915_FENCE_REG_NONE;
70}
71
73aa808f
CW
72/* some bookkeeping */
73static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78}
79
80static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82{
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85}
86
21dd3734
CW
87static int
88i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
89{
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
0a6759c6
DV
98 /*
99 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
100 * userspace. If it takes that long something really bad is going on and
101 * we should simply try to bail out and fail as gracefully as possible.
102 */
103 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
104 if (ret == 0) {
105 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
106 return -EIO;
107 } else if (ret < 0) {
30dbf0c0 108 return ret;
0a6759c6 109 }
30dbf0c0 110
21dd3734
CW
111 if (atomic_read(&dev_priv->mm.wedged)) {
112 /* GPU is hung, bump the completion count to account for
113 * the token we just consumed so that we never hit zero and
114 * end up waiting upon a subsequent completion event that
115 * will never happen.
116 */
117 spin_lock_irqsave(&x->wait.lock, flags);
118 x->done++;
119 spin_unlock_irqrestore(&x->wait.lock, flags);
120 }
121 return 0;
30dbf0c0
CW
122}
123
54cf91dc 124int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 125{
76c1dec1
CW
126 int ret;
127
21dd3734 128 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
23bc5982 136 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
137 return 0;
138}
30dbf0c0 139
7d1c4804 140static inline bool
05394f39 141i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 142{
1b50247a 143 return !obj->active;
7d1c4804
CW
144}
145
79e53945
JB
146int
147i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
79e53945
JB
149{
150 struct drm_i915_gem_init *args = data;
2021746e 151
7bb6fb8d
DV
152 if (drm_core_check_feature(dev, DRIVER_MODESET))
153 return -ENODEV;
154
2021746e
CW
155 if (args->gtt_start >= args->gtt_end ||
156 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
157 return -EINVAL;
79e53945 158
f534bc0b
DV
159 /* GEM with user mode setting was never supported on ilk and later. */
160 if (INTEL_INFO(dev)->gen >= 5)
161 return -ENODEV;
162
79e53945 163 mutex_lock(&dev->struct_mutex);
644ec02b
DV
164 i915_gem_init_global_gtt(dev, args->gtt_start,
165 args->gtt_end, args->gtt_end);
673a394b
EA
166 mutex_unlock(&dev->struct_mutex);
167
2021746e 168 return 0;
673a394b
EA
169}
170
5a125c3c
EA
171int
172i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 173 struct drm_file *file)
5a125c3c 174{
73aa808f 175 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 176 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
5a125c3c 179
6299f992 180 pinned = 0;
73aa808f 181 mutex_lock(&dev->struct_mutex);
1b50247a
CW
182 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
73aa808f 185 mutex_unlock(&dev->struct_mutex);
5a125c3c 186
6299f992 187 args->aper_size = dev_priv->mm.gtt_total;
0206e353 188 args->aper_available_size = args->aper_size - pinned;
6299f992 189
5a125c3c
EA
190 return 0;
191}
192
ff72145b
DA
193static int
194i915_gem_create(struct drm_file *file,
195 struct drm_device *dev,
196 uint64_t size,
197 uint32_t *handle_p)
673a394b 198{
05394f39 199 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
200 int ret;
201 u32 handle;
673a394b 202
ff72145b 203 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
204 if (size == 0)
205 return -EINVAL;
673a394b
EA
206
207 /* Allocate the new object */
ff72145b 208 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
209 if (obj == NULL)
210 return -ENOMEM;
211
05394f39 212 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 213 if (ret) {
05394f39
CW
214 drm_gem_object_release(&obj->base);
215 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 216 kfree(obj);
673a394b 217 return ret;
1dfd9754 218 }
673a394b 219
202f2fef 220 /* drop reference from allocate - handle holds it now */
05394f39 221 drm_gem_object_unreference(&obj->base);
202f2fef
CW
222 trace_i915_gem_object_create(obj);
223
ff72145b 224 *handle_p = handle;
673a394b
EA
225 return 0;
226}
227
ff72145b
DA
228int
229i915_gem_dumb_create(struct drm_file *file,
230 struct drm_device *dev,
231 struct drm_mode_create_dumb *args)
232{
233 /* have to work out size/pitch and return them */
ed0291fd 234 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
235 args->size = args->pitch * args->height;
236 return i915_gem_create(file, dev,
237 args->size, &args->handle);
238}
239
240int i915_gem_dumb_destroy(struct drm_file *file,
241 struct drm_device *dev,
242 uint32_t handle)
243{
244 return drm_gem_handle_delete(file, handle);
245}
246
247/**
248 * Creates a new mm object and returns a handle to it.
249 */
250int
251i915_gem_create_ioctl(struct drm_device *dev, void *data,
252 struct drm_file *file)
253{
254 struct drm_i915_gem_create *args = data;
63ed2cb2 255
ff72145b
DA
256 return i915_gem_create(file, dev,
257 args->size, &args->handle);
258}
259
05394f39 260static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 261{
05394f39 262 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
263
264 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 265 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
266}
267
8461d226
DV
268static inline int
269__copy_to_user_swizzled(char __user *cpu_vaddr,
270 const char *gpu_vaddr, int gpu_offset,
271 int length)
272{
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_to_user(cpu_vaddr + cpu_offset,
281 gpu_vaddr + swizzled_gpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292}
293
8c59967c 294static inline int
4f0c7cfb
BW
295__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
296 const char __user *cpu_vaddr,
8c59967c
DV
297 int length)
298{
299 int ret, cpu_offset = 0;
300
301 while (length > 0) {
302 int cacheline_end = ALIGN(gpu_offset + 1, 64);
303 int this_length = min(cacheline_end - gpu_offset, length);
304 int swizzled_gpu_offset = gpu_offset ^ 64;
305
306 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
307 cpu_vaddr + cpu_offset,
308 this_length);
309 if (ret)
310 return ret + length;
311
312 cpu_offset += this_length;
313 gpu_offset += this_length;
314 length -= this_length;
315 }
316
317 return 0;
318}
319
d174bd64
DV
320/* Per-page copy function for the shmem pread fastpath.
321 * Flushes invalid cachelines before reading the target if
322 * needs_clflush is set. */
eb01459f 323static int
d174bd64
DV
324shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
325 char __user *user_data,
326 bool page_do_bit17_swizzling, bool needs_clflush)
327{
328 char *vaddr;
329 int ret;
330
e7e58eb5 331 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
332 return -EINVAL;
333
334 vaddr = kmap_atomic(page);
335 if (needs_clflush)
336 drm_clflush_virt_range(vaddr + shmem_page_offset,
337 page_length);
338 ret = __copy_to_user_inatomic(user_data,
339 vaddr + shmem_page_offset,
340 page_length);
341 kunmap_atomic(vaddr);
342
343 return ret;
344}
345
23c18c71
DV
346static void
347shmem_clflush_swizzled_range(char *addr, unsigned long length,
348 bool swizzled)
349{
e7e58eb5 350 if (unlikely(swizzled)) {
23c18c71
DV
351 unsigned long start = (unsigned long) addr;
352 unsigned long end = (unsigned long) addr + length;
353
354 /* For swizzling simply ensure that we always flush both
355 * channels. Lame, but simple and it works. Swizzled
356 * pwrite/pread is far from a hotpath - current userspace
357 * doesn't use it at all. */
358 start = round_down(start, 128);
359 end = round_up(end, 128);
360
361 drm_clflush_virt_range((void *)start, end - start);
362 } else {
363 drm_clflush_virt_range(addr, length);
364 }
365
366}
367
d174bd64
DV
368/* Only difference to the fast-path function is that this can handle bit17
369 * and uses non-atomic copy and kmap functions. */
370static int
371shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
372 char __user *user_data,
373 bool page_do_bit17_swizzling, bool needs_clflush)
374{
375 char *vaddr;
376 int ret;
377
378 vaddr = kmap(page);
379 if (needs_clflush)
23c18c71
DV
380 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
381 page_length,
382 page_do_bit17_swizzling);
d174bd64
DV
383
384 if (page_do_bit17_swizzling)
385 ret = __copy_to_user_swizzled(user_data,
386 vaddr, shmem_page_offset,
387 page_length);
388 else
389 ret = __copy_to_user(user_data,
390 vaddr + shmem_page_offset,
391 page_length);
392 kunmap(page);
393
394 return ret;
395}
396
eb01459f 397static int
dbf7bff0
DV
398i915_gem_shmem_pread(struct drm_device *dev,
399 struct drm_i915_gem_object *obj,
400 struct drm_i915_gem_pread *args,
401 struct drm_file *file)
eb01459f 402{
05394f39 403 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 404 char __user *user_data;
eb01459f 405 ssize_t remain;
8461d226 406 loff_t offset;
eb2c0c81 407 int shmem_page_offset, page_length, ret = 0;
8461d226 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 409 int hit_slowpath = 0;
96d79b52 410 int prefaulted = 0;
8489731c 411 int needs_clflush = 0;
692a576b 412 int release_page;
eb01459f 413
8461d226 414 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
415 remain = args->size;
416
8461d226 417 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 418
8489731c
DV
419 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
420 /* If we're not in the cpu read domain, set ourself into the gtt
421 * read domain and manually flush cachelines (if required). This
422 * optimizes for the case when the gpu will dirty the data
423 * anyway again before the next pread happens. */
424 if (obj->cache_level == I915_CACHE_NONE)
425 needs_clflush = 1;
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
eb01459f 430
8461d226 431 offset = args->offset;
eb01459f
EA
432
433 while (remain > 0) {
e5281ccd
CW
434 struct page *page;
435
eb01459f
EA
436 /* Operation in this page
437 *
eb01459f 438 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
439 * page_length = bytes to copy for this page
440 */
c8cbbb8b 441 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
442 page_length = remain;
443 if ((shmem_page_offset + page_length) > PAGE_SIZE)
444 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 445
692a576b
DV
446 if (obj->pages) {
447 page = obj->pages[offset >> PAGE_SHIFT];
448 release_page = 0;
449 } else {
450 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
451 if (IS_ERR(page)) {
452 ret = PTR_ERR(page);
453 goto out;
454 }
455 release_page = 1;
b65552f0 456 }
e5281ccd 457
8461d226
DV
458 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
459 (page_to_phys(page) & (1 << 17)) != 0;
460
d174bd64
DV
461 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
462 user_data, page_do_bit17_swizzling,
463 needs_clflush);
464 if (ret == 0)
465 goto next_page;
dbf7bff0
DV
466
467 hit_slowpath = 1;
692a576b 468 page_cache_get(page);
dbf7bff0
DV
469 mutex_unlock(&dev->struct_mutex);
470
96d79b52 471 if (!prefaulted) {
f56f821f 472 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
473 /* Userspace is tricking us, but we've already clobbered
474 * its pages with the prefault and promised to write the
475 * data up to the first fault. Hence ignore any errors
476 * and just continue. */
477 (void)ret;
478 prefaulted = 1;
479 }
eb01459f 480
d174bd64
DV
481 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
482 user_data, page_do_bit17_swizzling,
483 needs_clflush);
eb01459f 484
dbf7bff0 485 mutex_lock(&dev->struct_mutex);
e5281ccd 486 page_cache_release(page);
dbf7bff0 487next_page:
e5281ccd 488 mark_page_accessed(page);
692a576b
DV
489 if (release_page)
490 page_cache_release(page);
e5281ccd 491
8461d226
DV
492 if (ret) {
493 ret = -EFAULT;
494 goto out;
495 }
496
eb01459f 497 remain -= page_length;
8461d226 498 user_data += page_length;
eb01459f
EA
499 offset += page_length;
500 }
501
4f27b75d 502out:
dbf7bff0
DV
503 if (hit_slowpath) {
504 /* Fixup: Kill any reinstated backing storage pages */
505 if (obj->madv == __I915_MADV_PURGED)
506 i915_gem_object_truncate(obj);
507 }
eb01459f
EA
508
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 (char __user *)(uintptr_t)args->data_ptr,
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_object_pin(obj, 0, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b
EA
619
620 user_data = (char __user *) (uintptr_t) args->data_ptr;
621 remain = args->size;
673a394b 622
05394f39 623 offset = obj->gtt_offset + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
fbd5a26d 642 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69
DV
653out_unpin:
654 i915_gem_object_unpin(obj);
655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3
EA
687
688 return ret;
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
d174bd64 722 return ret;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
05394f39 731 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 732 ssize_t remain;
8c59967c
DV
733 loff_t offset;
734 char __user *user_data;
eb2c0c81 735 int shmem_page_offset, page_length, ret = 0;
8c59967c 736 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 737 int hit_slowpath = 0;
58642885
DV
738 int needs_clflush_after = 0;
739 int needs_clflush_before = 0;
692a576b 740 int release_page;
40123c1f 741
8c59967c 742 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
743 remain = args->size;
744
8c59967c 745 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 746
58642885
DV
747 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
748 /* If we're not in the cpu write domain, set ourself into the gtt
749 * write domain and manually flush cachelines (if required). This
750 * optimizes for the case when the gpu will use the data
751 * right away and we therefore have to clflush anyway. */
752 if (obj->cache_level == I915_CACHE_NONE)
753 needs_clflush_after = 1;
754 ret = i915_gem_object_set_to_gtt_domain(obj, true);
755 if (ret)
756 return ret;
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
673a394b 764 offset = args->offset;
05394f39 765 obj->dirty = 1;
673a394b 766
40123c1f 767 while (remain > 0) {
e5281ccd 768 struct page *page;
58642885 769 int partial_cacheline_write;
e5281ccd 770
40123c1f
EA
771 /* Operation in this page
772 *
40123c1f 773 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
774 * page_length = bytes to copy for this page
775 */
c8cbbb8b 776 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 781
58642885
DV
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
692a576b
DV
789 if (obj->pages) {
790 page = obj->pages[offset >> PAGE_SHIFT];
791 release_page = 0;
792 } else {
793 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
794 if (IS_ERR(page)) {
795 ret = PTR_ERR(page);
796 goto out;
797 }
798 release_page = 1;
e5281ccd
CW
799 }
800
8c59967c
DV
801 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
802 (page_to_phys(page) & (1 << 17)) != 0;
803
d174bd64
DV
804 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
805 user_data, page_do_bit17_swizzling,
806 partial_cacheline_write,
807 needs_clflush_after);
808 if (ret == 0)
809 goto next_page;
e244a443
DV
810
811 hit_slowpath = 1;
692a576b 812 page_cache_get(page);
e244a443
DV
813 mutex_unlock(&dev->struct_mutex);
814
d174bd64
DV
815 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 partial_cacheline_write,
818 needs_clflush_after);
40123c1f 819
e244a443 820 mutex_lock(&dev->struct_mutex);
692a576b 821 page_cache_release(page);
e244a443 822next_page:
e5281ccd
CW
823 set_page_dirty(page);
824 mark_page_accessed(page);
692a576b
DV
825 if (release_page)
826 page_cache_release(page);
e5281ccd 827
8c59967c
DV
828 if (ret) {
829 ret = -EFAULT;
830 goto out;
831 }
832
40123c1f 833 remain -= page_length;
8c59967c 834 user_data += page_length;
40123c1f 835 offset += page_length;
673a394b
EA
836 }
837
fbd5a26d 838out:
e244a443
DV
839 if (hit_slowpath) {
840 /* Fixup: Kill any reinstated backing storage pages */
841 if (obj->madv == __I915_MADV_PURGED)
842 i915_gem_object_truncate(obj);
843 /* and flush dirty cachelines in case the object isn't in the cpu write
844 * domain anymore. */
845 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
846 i915_gem_clflush_object(obj);
847 intel_gtt_chipset_flush();
848 }
8c59967c 849 }
673a394b 850
58642885
DV
851 if (needs_clflush_after)
852 intel_gtt_chipset_flush();
853
40123c1f 854 return ret;
673a394b
EA
855}
856
857/**
858 * Writes data to the object referenced by handle.
859 *
860 * On error, the contents of the buffer that were to be modified are undefined.
861 */
862int
863i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 864 struct drm_file *file)
673a394b
EA
865{
866 struct drm_i915_gem_pwrite *args = data;
05394f39 867 struct drm_i915_gem_object *obj;
51311d0a
CW
868 int ret;
869
870 if (args->size == 0)
871 return 0;
872
873 if (!access_ok(VERIFY_READ,
874 (char __user *)(uintptr_t)args->data_ptr,
875 args->size))
876 return -EFAULT;
877
f56f821f
DV
878 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
879 args->size);
51311d0a
CW
880 if (ret)
881 return -EFAULT;
673a394b 882
fbd5a26d 883 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 884 if (ret)
fbd5a26d 885 return ret;
1d7cfea1 886
05394f39 887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 888 if (&obj->base == NULL) {
1d7cfea1
CW
889 ret = -ENOENT;
890 goto unlock;
fbd5a26d 891 }
673a394b 892
7dcd2499 893 /* Bounds check destination. */
05394f39
CW
894 if (args->offset > obj->base.size ||
895 args->size > obj->base.size - args->offset) {
ce9d419d 896 ret = -EINVAL;
35b62a89 897 goto out;
ce9d419d
CW
898 }
899
1286ff73
DV
900 /* prime objects have no backing filp to GEM pread/pwrite
901 * pages from.
902 */
903 if (!obj->base.filp) {
904 ret = -EINVAL;
905 goto out;
906 }
907
db53a302
CW
908 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
935aaa69 910 ret = -EFAULT;
673a394b
EA
911 /* We can only do the GTT pwrite on untiled buffers, as otherwise
912 * it would end up going through the fenced access, and we'll get
913 * different detiling behavior between reading and writing.
914 * pread/pwrite currently are reading and writing from the CPU
915 * perspective, requiring manual detiling by the client.
916 */
5c0480f2 917 if (obj->phys_obj) {
fbd5a26d 918 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
919 goto out;
920 }
921
922 if (obj->gtt_space &&
3ae53783 923 obj->cache_level == I915_CACHE_NONE &&
c07496fa 924 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 925 obj->map_and_fenceable &&
5c0480f2 926 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 927 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
928 /* Note that the gtt paths might fail with non-page-backed user
929 * pointers (e.g. gtt mappings when moving data between
930 * textures). Fallback to the shmem path in that case. */
fbd5a26d 931 }
673a394b 932
5c0480f2 933 if (ret == -EFAULT)
935aaa69 934 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 935
35b62a89 936out:
05394f39 937 drm_gem_object_unreference(&obj->base);
1d7cfea1 938unlock:
fbd5a26d 939 mutex_unlock(&dev->struct_mutex);
673a394b
EA
940 return ret;
941}
942
943/**
2ef7eeaa
EA
944 * Called when user space prepares to use an object with the CPU, either
945 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
946 */
947int
948i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 949 struct drm_file *file)
673a394b
EA
950{
951 struct drm_i915_gem_set_domain *args = data;
05394f39 952 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
953 uint32_t read_domains = args->read_domains;
954 uint32_t write_domain = args->write_domain;
673a394b
EA
955 int ret;
956
2ef7eeaa 957 /* Only handle setting domains to types used by the CPU. */
21d509e3 958 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
959 return -EINVAL;
960
21d509e3 961 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
962 return -EINVAL;
963
964 /* Having something in the write domain implies it's in the read
965 * domain, and only that read domain. Enforce that in the request.
966 */
967 if (write_domain != 0 && read_domains != write_domain)
968 return -EINVAL;
969
76c1dec1 970 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 971 if (ret)
76c1dec1 972 return ret;
1d7cfea1 973
05394f39 974 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 975 if (&obj->base == NULL) {
1d7cfea1
CW
976 ret = -ENOENT;
977 goto unlock;
76c1dec1 978 }
673a394b 979
2ef7eeaa
EA
980 if (read_domains & I915_GEM_DOMAIN_GTT) {
981 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
982
983 /* Silently promote "you're not bound, there was nothing to do"
984 * to success, since the client was just asking us to
985 * make sure everything was done.
986 */
987 if (ret == -EINVAL)
988 ret = 0;
2ef7eeaa 989 } else {
e47c68e9 990 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
991 }
992
05394f39 993 drm_gem_object_unreference(&obj->base);
1d7cfea1 994unlock:
673a394b
EA
995 mutex_unlock(&dev->struct_mutex);
996 return ret;
997}
998
999/**
1000 * Called when user space has done writes to this buffer
1001 */
1002int
1003i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1004 struct drm_file *file)
673a394b
EA
1005{
1006 struct drm_i915_gem_sw_finish *args = data;
05394f39 1007 struct drm_i915_gem_object *obj;
673a394b
EA
1008 int ret = 0;
1009
76c1dec1 1010 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1011 if (ret)
76c1dec1 1012 return ret;
1d7cfea1 1013
05394f39 1014 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1015 if (&obj->base == NULL) {
1d7cfea1
CW
1016 ret = -ENOENT;
1017 goto unlock;
673a394b
EA
1018 }
1019
673a394b 1020 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1021 if (obj->pin_count)
e47c68e9
EA
1022 i915_gem_object_flush_cpu_write_domain(obj);
1023
05394f39 1024 drm_gem_object_unreference(&obj->base);
1d7cfea1 1025unlock:
673a394b
EA
1026 mutex_unlock(&dev->struct_mutex);
1027 return ret;
1028}
1029
1030/**
1031 * Maps the contents of an object, returning the address it is mapped
1032 * into.
1033 *
1034 * While the mapping holds a reference on the contents of the object, it doesn't
1035 * imply a ref on the object itself.
1036 */
1037int
1038i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1039 struct drm_file *file)
673a394b
EA
1040{
1041 struct drm_i915_gem_mmap *args = data;
1042 struct drm_gem_object *obj;
673a394b
EA
1043 unsigned long addr;
1044
05394f39 1045 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1046 if (obj == NULL)
bf79cb91 1047 return -ENOENT;
673a394b 1048
1286ff73
DV
1049 /* prime objects have no backing filp to GEM mmap
1050 * pages from.
1051 */
1052 if (!obj->filp) {
1053 drm_gem_object_unreference_unlocked(obj);
1054 return -EINVAL;
1055 }
1056
6be5ceb0 1057 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1058 PROT_READ | PROT_WRITE, MAP_SHARED,
1059 args->offset);
bc9025bd 1060 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1061 if (IS_ERR((void *)addr))
1062 return addr;
1063
1064 args->addr_ptr = (uint64_t) addr;
1065
1066 return 0;
1067}
1068
de151cf6
JB
1069/**
1070 * i915_gem_fault - fault a page into the GTT
1071 * vma: VMA in question
1072 * vmf: fault info
1073 *
1074 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1075 * from userspace. The fault handler takes care of binding the object to
1076 * the GTT (if needed), allocating and programming a fence register (again,
1077 * only if needed based on whether the old reg is still valid or the object
1078 * is tiled) and inserting a new PTE into the faulting process.
1079 *
1080 * Note that the faulting process may involve evicting existing objects
1081 * from the GTT and/or fence registers to make room. So performance may
1082 * suffer if the GTT working set is large or there are few fence registers
1083 * left.
1084 */
1085int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1086{
05394f39
CW
1087 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1088 struct drm_device *dev = obj->base.dev;
7d1c4804 1089 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1090 pgoff_t page_offset;
1091 unsigned long pfn;
1092 int ret = 0;
0f973f27 1093 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1094
1095 /* We don't use vmf->pgoff since that has the fake offset */
1096 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1097 PAGE_SHIFT;
1098
d9bc7e9f
CW
1099 ret = i915_mutex_lock_interruptible(dev);
1100 if (ret)
1101 goto out;
a00b10c3 1102
db53a302
CW
1103 trace_i915_gem_object_fault(obj, page_offset, true, write);
1104
d9bc7e9f 1105 /* Now bind it into the GTT if needed */
919926ae
CW
1106 if (!obj->map_and_fenceable) {
1107 ret = i915_gem_object_unbind(obj);
1108 if (ret)
1109 goto unlock;
a00b10c3 1110 }
05394f39 1111 if (!obj->gtt_space) {
75e9e915 1112 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1113 if (ret)
1114 goto unlock;
de151cf6 1115
e92d03bf
EA
1116 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1117 if (ret)
1118 goto unlock;
1119 }
4a684a41 1120
74898d7e
DV
1121 if (!obj->has_global_gtt_mapping)
1122 i915_gem_gtt_bind_object(obj, obj->cache_level);
1123
06d98131 1124 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1125 if (ret)
1126 goto unlock;
de151cf6 1127
05394f39
CW
1128 if (i915_gem_object_is_inactive(obj))
1129 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1130
6299f992
CW
1131 obj->fault_mappable = true;
1132
dd2757f8 1133 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1134 page_offset;
1135
1136 /* Finally, remap it using the new GTT offset */
1137 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1138unlock:
de151cf6 1139 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1140out:
de151cf6 1141 switch (ret) {
d9bc7e9f 1142 case -EIO:
a9340cca
DV
1143 /* If this -EIO is due to a gpu hang, give the reset code a
1144 * chance to clean up the mess. Otherwise return the proper
1145 * SIGBUS. */
1146 if (!atomic_read(&dev_priv->mm.wedged))
1147 return VM_FAULT_SIGBUS;
045e769a 1148 case -EAGAIN:
d9bc7e9f
CW
1149 /* Give the error handler a chance to run and move the
1150 * objects off the GPU active list. Next time we service the
1151 * fault, we should be able to transition the page into the
1152 * GTT without touching the GPU (and so avoid further
1153 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1154 * with coherency, just lost writes.
1155 */
045e769a 1156 set_need_resched();
c715089f
CW
1157 case 0:
1158 case -ERESTARTSYS:
bed636ab 1159 case -EINTR:
c715089f 1160 return VM_FAULT_NOPAGE;
de151cf6 1161 case -ENOMEM:
de151cf6 1162 return VM_FAULT_OOM;
de151cf6 1163 default:
c715089f 1164 return VM_FAULT_SIGBUS;
de151cf6
JB
1165 }
1166}
1167
901782b2
CW
1168/**
1169 * i915_gem_release_mmap - remove physical page mappings
1170 * @obj: obj in question
1171 *
af901ca1 1172 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1173 * relinquish ownership of the pages back to the system.
1174 *
1175 * It is vital that we remove the page mapping if we have mapped a tiled
1176 * object through the GTT and then lose the fence register due to
1177 * resource pressure. Similarly if the object has been moved out of the
1178 * aperture, than pages mapped into userspace must be revoked. Removing the
1179 * mapping will then trigger a page fault on the next user access, allowing
1180 * fixup by i915_gem_fault().
1181 */
d05ca301 1182void
05394f39 1183i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1184{
6299f992
CW
1185 if (!obj->fault_mappable)
1186 return;
901782b2 1187
f6e47884
CW
1188 if (obj->base.dev->dev_mapping)
1189 unmap_mapping_range(obj->base.dev->dev_mapping,
1190 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1191 obj->base.size, 1);
fb7d516a 1192
6299f992 1193 obj->fault_mappable = false;
901782b2
CW
1194}
1195
92b88aeb 1196static uint32_t
e28f8711 1197i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1198{
e28f8711 1199 uint32_t gtt_size;
92b88aeb
CW
1200
1201 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1202 tiling_mode == I915_TILING_NONE)
1203 return size;
92b88aeb
CW
1204
1205 /* Previous chips need a power-of-two fence region when tiling */
1206 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1207 gtt_size = 1024*1024;
92b88aeb 1208 else
e28f8711 1209 gtt_size = 512*1024;
92b88aeb 1210
e28f8711
CW
1211 while (gtt_size < size)
1212 gtt_size <<= 1;
92b88aeb 1213
e28f8711 1214 return gtt_size;
92b88aeb
CW
1215}
1216
de151cf6
JB
1217/**
1218 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1219 * @obj: object to check
1220 *
1221 * Return the required GTT alignment for an object, taking into account
5e783301 1222 * potential fence register mapping.
de151cf6
JB
1223 */
1224static uint32_t
e28f8711
CW
1225i915_gem_get_gtt_alignment(struct drm_device *dev,
1226 uint32_t size,
1227 int tiling_mode)
de151cf6 1228{
de151cf6
JB
1229 /*
1230 * Minimum alignment is 4k (GTT page size), but might be greater
1231 * if a fence register is needed for the object.
1232 */
a00b10c3 1233 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1234 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1235 return 4096;
1236
a00b10c3
CW
1237 /*
1238 * Previous chips need to be aligned to the size of the smallest
1239 * fence register that can contain the object.
1240 */
e28f8711 1241 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1242}
1243
5e783301
DV
1244/**
1245 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1246 * unfenced object
e28f8711
CW
1247 * @dev: the device
1248 * @size: size of the object
1249 * @tiling_mode: tiling mode of the object
5e783301
DV
1250 *
1251 * Return the required GTT alignment for an object, only taking into account
1252 * unfenced tiled surface requirements.
1253 */
467cffba 1254uint32_t
e28f8711
CW
1255i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1256 uint32_t size,
1257 int tiling_mode)
5e783301 1258{
5e783301
DV
1259 /*
1260 * Minimum alignment is 4k (GTT page size) for sane hw.
1261 */
1262 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1263 tiling_mode == I915_TILING_NONE)
5e783301
DV
1264 return 4096;
1265
e28f8711
CW
1266 /* Previous hardware however needs to be aligned to a power-of-two
1267 * tile height. The simplest method for determining this is to reuse
1268 * the power-of-tile object size.
5e783301 1269 */
e28f8711 1270 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1271}
1272
de151cf6 1273int
ff72145b
DA
1274i915_gem_mmap_gtt(struct drm_file *file,
1275 struct drm_device *dev,
1276 uint32_t handle,
1277 uint64_t *offset)
de151cf6 1278{
da761a6e 1279 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1280 struct drm_i915_gem_object *obj;
de151cf6
JB
1281 int ret;
1282
76c1dec1 1283 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1284 if (ret)
76c1dec1 1285 return ret;
de151cf6 1286
ff72145b 1287 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1288 if (&obj->base == NULL) {
1d7cfea1
CW
1289 ret = -ENOENT;
1290 goto unlock;
1291 }
de151cf6 1292
05394f39 1293 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1294 ret = -E2BIG;
ff56b0bc 1295 goto out;
da761a6e
CW
1296 }
1297
05394f39 1298 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1299 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1300 ret = -EINVAL;
1301 goto out;
ab18282d
CW
1302 }
1303
05394f39 1304 if (!obj->base.map_list.map) {
b464e9a2 1305 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1306 if (ret)
1307 goto out;
de151cf6
JB
1308 }
1309
ff72145b 1310 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1311
1d7cfea1 1312out:
05394f39 1313 drm_gem_object_unreference(&obj->base);
1d7cfea1 1314unlock:
de151cf6 1315 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1316 return ret;
de151cf6
JB
1317}
1318
ff72145b
DA
1319/**
1320 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1321 * @dev: DRM device
1322 * @data: GTT mapping ioctl data
1323 * @file: GEM object info
1324 *
1325 * Simply returns the fake offset to userspace so it can mmap it.
1326 * The mmap call will end up in drm_gem_mmap(), which will set things
1327 * up so we can get faults in the handler above.
1328 *
1329 * The fault handler will take care of binding the object into the GTT
1330 * (since it may have been evicted to make room for something), allocating
1331 * a fence register, and mapping the appropriate aperture address into
1332 * userspace.
1333 */
1334int
1335i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1336 struct drm_file *file)
1337{
1338 struct drm_i915_gem_mmap_gtt *args = data;
1339
ff72145b
DA
1340 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1341}
1342
1286ff73 1343int
05394f39 1344i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1345 gfp_t gfpmask)
1346{
e5281ccd
CW
1347 int page_count, i;
1348 struct address_space *mapping;
1349 struct inode *inode;
1350 struct page *page;
1351
1286ff73
DV
1352 if (obj->pages || obj->sg_table)
1353 return 0;
1354
e5281ccd
CW
1355 /* Get the list of pages out of our struct file. They'll be pinned
1356 * at this point until we release them.
1357 */
05394f39
CW
1358 page_count = obj->base.size / PAGE_SIZE;
1359 BUG_ON(obj->pages != NULL);
1360 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1361 if (obj->pages == NULL)
e5281ccd
CW
1362 return -ENOMEM;
1363
05394f39 1364 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1365 mapping = inode->i_mapping;
5949eac4
HD
1366 gfpmask |= mapping_gfp_mask(mapping);
1367
e5281ccd 1368 for (i = 0; i < page_count; i++) {
5949eac4 1369 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1370 if (IS_ERR(page))
1371 goto err_pages;
1372
05394f39 1373 obj->pages[i] = page;
e5281ccd
CW
1374 }
1375
6dacfd2f 1376 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1377 i915_gem_object_do_bit_17_swizzle(obj);
1378
1379 return 0;
1380
1381err_pages:
1382 while (i--)
05394f39 1383 page_cache_release(obj->pages[i]);
e5281ccd 1384
05394f39
CW
1385 drm_free_large(obj->pages);
1386 obj->pages = NULL;
e5281ccd
CW
1387 return PTR_ERR(page);
1388}
1389
5cdf5881 1390static void
05394f39 1391i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1392{
05394f39 1393 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1394 int i;
1395
1286ff73
DV
1396 if (!obj->pages)
1397 return;
1398
05394f39 1399 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1400
6dacfd2f 1401 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1402 i915_gem_object_save_bit_17_swizzle(obj);
1403
05394f39
CW
1404 if (obj->madv == I915_MADV_DONTNEED)
1405 obj->dirty = 0;
3ef94daa
CW
1406
1407 for (i = 0; i < page_count; i++) {
05394f39
CW
1408 if (obj->dirty)
1409 set_page_dirty(obj->pages[i]);
3ef94daa 1410
05394f39
CW
1411 if (obj->madv == I915_MADV_WILLNEED)
1412 mark_page_accessed(obj->pages[i]);
3ef94daa 1413
05394f39 1414 page_cache_release(obj->pages[i]);
3ef94daa 1415 }
05394f39 1416 obj->dirty = 0;
673a394b 1417
05394f39
CW
1418 drm_free_large(obj->pages);
1419 obj->pages = NULL;
673a394b
EA
1420}
1421
54cf91dc 1422void
05394f39 1423i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1424 struct intel_ring_buffer *ring,
1425 u32 seqno)
673a394b 1426{
05394f39 1427 struct drm_device *dev = obj->base.dev;
69dc4987 1428 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1429
852835f3 1430 BUG_ON(ring == NULL);
05394f39 1431 obj->ring = ring;
673a394b
EA
1432
1433 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1434 if (!obj->active) {
1435 drm_gem_object_reference(&obj->base);
1436 obj->active = 1;
673a394b 1437 }
e35a41de 1438
673a394b 1439 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1440 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1441 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1442
0201f1ec 1443 obj->last_read_seqno = seqno;
caea7476 1444
7dd49065 1445 if (obj->fenced_gpu_access) {
caea7476 1446 obj->last_fenced_seqno = seqno;
caea7476 1447
7dd49065
CW
1448 /* Bump MRU to take account of the delayed flush */
1449 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1450 struct drm_i915_fence_reg *reg;
1451
1452 reg = &dev_priv->fence_regs[obj->fence_reg];
1453 list_move_tail(&reg->lru_list,
1454 &dev_priv->mm.fence_list);
1455 }
caea7476
CW
1456 }
1457}
1458
caea7476
CW
1459static void
1460i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1461{
1462 struct drm_device *dev = obj->base.dev;
1463 struct drm_i915_private *dev_priv = dev->dev_private;
1464
1b50247a 1465 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1466
65ce3027 1467 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
caea7476 1468 BUG_ON(!obj->active);
65ce3027
CW
1469
1470 list_del_init(&obj->ring_list);
caea7476
CW
1471 obj->ring = NULL;
1472
65ce3027
CW
1473 obj->last_read_seqno = 0;
1474 obj->last_write_seqno = 0;
1475 obj->base.write_domain = 0;
1476
1477 obj->last_fenced_seqno = 0;
caea7476 1478 obj->fenced_gpu_access = false;
caea7476
CW
1479
1480 obj->active = 0;
1481 drm_gem_object_unreference(&obj->base);
1482
1483 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1484}
673a394b 1485
963b4836
CW
1486/* Immediately discard the backing storage */
1487static void
05394f39 1488i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1489{
bb6baf76 1490 struct inode *inode;
963b4836 1491
ae9fed6b
CW
1492 /* Our goal here is to return as much of the memory as
1493 * is possible back to the system as we are called from OOM.
1494 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1495 * backing pages, *now*.
ae9fed6b 1496 */
05394f39 1497 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1498 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1499
a14917ee
CW
1500 if (obj->base.map_list.map)
1501 drm_gem_free_mmap_offset(&obj->base);
1502
05394f39 1503 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1504}
1505
1506static inline int
05394f39 1507i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1508{
05394f39 1509 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1510}
1511
53d227f2
DV
1512static u32
1513i915_gem_get_seqno(struct drm_device *dev)
1514{
1515 drm_i915_private_t *dev_priv = dev->dev_private;
1516 u32 seqno = dev_priv->next_seqno;
1517
1518 /* reserve 0 for non-seqno */
1519 if (++dev_priv->next_seqno == 0)
1520 dev_priv->next_seqno = 1;
1521
1522 return seqno;
1523}
1524
1525u32
1526i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1527{
1528 if (ring->outstanding_lazy_request == 0)
1529 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1530
1531 return ring->outstanding_lazy_request;
1532}
1533
3cce469c 1534int
db53a302 1535i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1536 struct drm_file *file,
db53a302 1537 struct drm_i915_gem_request *request)
673a394b 1538{
db53a302 1539 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1540 uint32_t seqno;
a71d8d94 1541 u32 request_ring_position;
673a394b 1542 int was_empty;
3cce469c
CW
1543 int ret;
1544
cc889e0f
DV
1545 /*
1546 * Emit any outstanding flushes - execbuf can fail to emit the flush
1547 * after having emitted the batchbuffer command. Hence we need to fix
1548 * things up similar to emitting the lazy request. The difference here
1549 * is that the flush _must_ happen before the next request, no matter
1550 * what.
1551 */
1552 if (ring->gpu_caches_dirty) {
1553 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1554 if (ret)
1555 return ret;
1556
1557 ring->gpu_caches_dirty = false;
1558 }
1559
3bb73aba
CW
1560 if (request == NULL) {
1561 request = kmalloc(sizeof(*request), GFP_KERNEL);
1562 if (request == NULL)
1563 return -ENOMEM;
1564 }
1565
53d227f2 1566 seqno = i915_gem_next_request_seqno(ring);
673a394b 1567
a71d8d94
CW
1568 /* Record the position of the start of the request so that
1569 * should we detect the updated seqno part-way through the
1570 * GPU processing the request, we never over-estimate the
1571 * position of the head.
1572 */
1573 request_ring_position = intel_ring_get_tail(ring);
1574
3cce469c 1575 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1576 if (ret) {
1577 kfree(request);
1578 return ret;
1579 }
673a394b 1580
db53a302 1581 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1582
1583 request->seqno = seqno;
852835f3 1584 request->ring = ring;
a71d8d94 1585 request->tail = request_ring_position;
673a394b 1586 request->emitted_jiffies = jiffies;
852835f3
ZN
1587 was_empty = list_empty(&ring->request_list);
1588 list_add_tail(&request->list, &ring->request_list);
3bb73aba 1589 request->file_priv = NULL;
852835f3 1590
db53a302
CW
1591 if (file) {
1592 struct drm_i915_file_private *file_priv = file->driver_priv;
1593
1c25595f 1594 spin_lock(&file_priv->mm.lock);
f787a5f5 1595 request->file_priv = file_priv;
b962442e 1596 list_add_tail(&request->client_list,
f787a5f5 1597 &file_priv->mm.request_list);
1c25595f 1598 spin_unlock(&file_priv->mm.lock);
b962442e 1599 }
673a394b 1600
5391d0cf 1601 ring->outstanding_lazy_request = 0;
db53a302 1602
f65d9421 1603 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1604 if (i915_enable_hangcheck) {
1605 mod_timer(&dev_priv->hangcheck_timer,
1606 jiffies +
1607 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1608 }
f65d9421 1609 if (was_empty)
b3b079db
CW
1610 queue_delayed_work(dev_priv->wq,
1611 &dev_priv->mm.retire_work, HZ);
f65d9421 1612 }
cc889e0f 1613
3cce469c 1614 return 0;
673a394b
EA
1615}
1616
f787a5f5
CW
1617static inline void
1618i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1619{
1c25595f 1620 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1621
1c25595f
CW
1622 if (!file_priv)
1623 return;
1c5d22f7 1624
1c25595f 1625 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1626 if (request->file_priv) {
1627 list_del(&request->client_list);
1628 request->file_priv = NULL;
1629 }
1c25595f 1630 spin_unlock(&file_priv->mm.lock);
673a394b 1631}
673a394b 1632
dfaae392
CW
1633static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1634 struct intel_ring_buffer *ring)
9375e446 1635{
dfaae392
CW
1636 while (!list_empty(&ring->request_list)) {
1637 struct drm_i915_gem_request *request;
673a394b 1638
dfaae392
CW
1639 request = list_first_entry(&ring->request_list,
1640 struct drm_i915_gem_request,
1641 list);
de151cf6 1642
dfaae392 1643 list_del(&request->list);
f787a5f5 1644 i915_gem_request_remove_from_client(request);
dfaae392
CW
1645 kfree(request);
1646 }
673a394b 1647
dfaae392 1648 while (!list_empty(&ring->active_list)) {
05394f39 1649 struct drm_i915_gem_object *obj;
9375e446 1650
05394f39
CW
1651 obj = list_first_entry(&ring->active_list,
1652 struct drm_i915_gem_object,
1653 ring_list);
9375e446 1654
05394f39 1655 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1656 }
1657}
1658
312817a3
CW
1659static void i915_gem_reset_fences(struct drm_device *dev)
1660{
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 int i;
1663
4b9de737 1664 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1665 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1666
ada726c7 1667 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1668
ada726c7
CW
1669 if (reg->obj)
1670 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1671
ada726c7
CW
1672 reg->pin_count = 0;
1673 reg->obj = NULL;
1674 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1675 }
ada726c7
CW
1676
1677 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1678}
1679
069efc1d 1680void i915_gem_reset(struct drm_device *dev)
673a394b 1681{
77f01230 1682 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1683 struct drm_i915_gem_object *obj;
b4519513 1684 struct intel_ring_buffer *ring;
1ec14ad3 1685 int i;
673a394b 1686
b4519513
CW
1687 for_each_ring(ring, dev_priv, i)
1688 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 1689
dfaae392
CW
1690 /* Move everything out of the GPU domains to ensure we do any
1691 * necessary invalidation upon reuse.
1692 */
05394f39 1693 list_for_each_entry(obj,
77f01230 1694 &dev_priv->mm.inactive_list,
69dc4987 1695 mm_list)
77f01230 1696 {
05394f39 1697 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1698 }
069efc1d
CW
1699
1700 /* The fence registers are invalidated so clear them out */
312817a3 1701 i915_gem_reset_fences(dev);
673a394b
EA
1702}
1703
1704/**
1705 * This function clears the request list as sequence numbers are passed.
1706 */
a71d8d94 1707void
db53a302 1708i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1709{
673a394b 1710 uint32_t seqno;
1ec14ad3 1711 int i;
673a394b 1712
db53a302 1713 if (list_empty(&ring->request_list))
6c0594a3
KW
1714 return;
1715
db53a302 1716 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1717
78501eac 1718 seqno = ring->get_seqno(ring);
1ec14ad3 1719
076e2c0e 1720 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1721 if (seqno >= ring->sync_seqno[i])
1722 ring->sync_seqno[i] = 0;
1723
852835f3 1724 while (!list_empty(&ring->request_list)) {
673a394b 1725 struct drm_i915_gem_request *request;
673a394b 1726
852835f3 1727 request = list_first_entry(&ring->request_list,
673a394b
EA
1728 struct drm_i915_gem_request,
1729 list);
673a394b 1730
dfaae392 1731 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1732 break;
1733
db53a302 1734 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1735 /* We know the GPU must have read the request to have
1736 * sent us the seqno + interrupt, so use the position
1737 * of tail of the request to update the last known position
1738 * of the GPU head.
1739 */
1740 ring->last_retired_head = request->tail;
b84d5f0c
CW
1741
1742 list_del(&request->list);
f787a5f5 1743 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1744 kfree(request);
1745 }
673a394b 1746
b84d5f0c
CW
1747 /* Move any buffers on the active list that are no longer referenced
1748 * by the ringbuffer to the flushing/inactive lists as appropriate.
1749 */
1750 while (!list_empty(&ring->active_list)) {
05394f39 1751 struct drm_i915_gem_object *obj;
b84d5f0c 1752
0206e353 1753 obj = list_first_entry(&ring->active_list,
05394f39
CW
1754 struct drm_i915_gem_object,
1755 ring_list);
673a394b 1756
0201f1ec 1757 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 1758 break;
b84d5f0c 1759
65ce3027 1760 i915_gem_object_move_to_inactive(obj);
673a394b 1761 }
9d34e5db 1762
db53a302
CW
1763 if (unlikely(ring->trace_irq_seqno &&
1764 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1765 ring->irq_put(ring);
db53a302 1766 ring->trace_irq_seqno = 0;
9d34e5db 1767 }
23bc5982 1768
db53a302 1769 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1770}
1771
b09a1fec
CW
1772void
1773i915_gem_retire_requests(struct drm_device *dev)
1774{
1775 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 1776 struct intel_ring_buffer *ring;
1ec14ad3 1777 int i;
b09a1fec 1778
b4519513
CW
1779 for_each_ring(ring, dev_priv, i)
1780 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
1781}
1782
75ef9da2 1783static void
673a394b
EA
1784i915_gem_retire_work_handler(struct work_struct *work)
1785{
1786 drm_i915_private_t *dev_priv;
1787 struct drm_device *dev;
b4519513 1788 struct intel_ring_buffer *ring;
0a58705b
CW
1789 bool idle;
1790 int i;
673a394b
EA
1791
1792 dev_priv = container_of(work, drm_i915_private_t,
1793 mm.retire_work.work);
1794 dev = dev_priv->dev;
1795
891b48cf
CW
1796 /* Come back later if the device is busy... */
1797 if (!mutex_trylock(&dev->struct_mutex)) {
1798 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1799 return;
1800 }
1801
b09a1fec 1802 i915_gem_retire_requests(dev);
d1b851fc 1803
0a58705b
CW
1804 /* Send a periodic flush down the ring so we don't hold onto GEM
1805 * objects indefinitely.
1806 */
1807 idle = true;
b4519513 1808 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
1809 if (ring->gpu_caches_dirty)
1810 i915_add_request(ring, NULL, NULL);
0a58705b
CW
1811
1812 idle &= list_empty(&ring->request_list);
1813 }
1814
1815 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1816 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1817
673a394b
EA
1818 mutex_unlock(&dev->struct_mutex);
1819}
1820
d6b2c790
DV
1821int
1822i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1823 bool interruptible)
b4aca010 1824{
b4aca010
BW
1825 if (atomic_read(&dev_priv->mm.wedged)) {
1826 struct completion *x = &dev_priv->error_completion;
1827 bool recovery_complete;
1828 unsigned long flags;
1829
1830 /* Give the error handler a chance to run. */
1831 spin_lock_irqsave(&x->wait.lock, flags);
1832 recovery_complete = x->done > 0;
1833 spin_unlock_irqrestore(&x->wait.lock, flags);
1834
d6b2c790
DV
1835 /* Non-interruptible callers can't handle -EAGAIN, hence return
1836 * -EIO unconditionally for these. */
1837 if (!interruptible)
1838 return -EIO;
1839
1840 /* Recovery complete, but still wedged means reset failure. */
1841 if (recovery_complete)
1842 return -EIO;
1843
1844 return -EAGAIN;
b4aca010
BW
1845 }
1846
1847 return 0;
1848}
1849
1850/*
1851 * Compare seqno against outstanding lazy request. Emit a request if they are
1852 * equal.
1853 */
1854static int
1855i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1856{
3bb73aba 1857 int ret;
b4aca010
BW
1858
1859 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1860
3bb73aba
CW
1861 ret = 0;
1862 if (seqno == ring->outstanding_lazy_request)
1863 ret = i915_add_request(ring, NULL, NULL);
b4aca010
BW
1864
1865 return ret;
1866}
1867
5c81fe85
BW
1868/**
1869 * __wait_seqno - wait until execution of seqno has finished
1870 * @ring: the ring expected to report seqno
1871 * @seqno: duh!
1872 * @interruptible: do an interruptible wait (normally yes)
1873 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1874 *
1875 * Returns 0 if the seqno was found within the alloted time. Else returns the
1876 * errno with remaining time filled in timeout argument.
1877 */
604dd3ec 1878static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
5c81fe85 1879 bool interruptible, struct timespec *timeout)
604dd3ec
BW
1880{
1881 drm_i915_private_t *dev_priv = ring->dev->dev_private;
5c81fe85
BW
1882 struct timespec before, now, wait_time={1,0};
1883 unsigned long timeout_jiffies;
1884 long end;
1885 bool wait_forever = true;
d6b2c790 1886 int ret;
604dd3ec
BW
1887
1888 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1889 return 0;
1890
1891 trace_i915_gem_request_wait_begin(ring, seqno);
5c81fe85
BW
1892
1893 if (timeout != NULL) {
1894 wait_time = *timeout;
1895 wait_forever = false;
1896 }
1897
1898 timeout_jiffies = timespec_to_jiffies(&wait_time);
1899
604dd3ec
BW
1900 if (WARN_ON(!ring->irq_get(ring)))
1901 return -ENODEV;
1902
5c81fe85
BW
1903 /* Record current time in case interrupted by signal, or wedged * */
1904 getrawmonotonic(&before);
1905
604dd3ec
BW
1906#define EXIT_COND \
1907 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1908 atomic_read(&dev_priv->mm.wedged))
5c81fe85
BW
1909 do {
1910 if (interruptible)
1911 end = wait_event_interruptible_timeout(ring->irq_queue,
1912 EXIT_COND,
1913 timeout_jiffies);
1914 else
1915 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1916 timeout_jiffies);
604dd3ec 1917
d6b2c790
DV
1918 ret = i915_gem_check_wedge(dev_priv, interruptible);
1919 if (ret)
1920 end = ret;
5c81fe85
BW
1921 } while (end == 0 && wait_forever);
1922
1923 getrawmonotonic(&now);
604dd3ec
BW
1924
1925 ring->irq_put(ring);
1926 trace_i915_gem_request_wait_end(ring, seqno);
1927#undef EXIT_COND
1928
5c81fe85
BW
1929 if (timeout) {
1930 struct timespec sleep_time = timespec_sub(now, before);
1931 *timeout = timespec_sub(*timeout, sleep_time);
1932 }
1933
1934 switch (end) {
eeef9b38 1935 case -EIO:
5c81fe85
BW
1936 case -EAGAIN: /* Wedged */
1937 case -ERESTARTSYS: /* Signal */
1938 return (int)end;
1939 case 0: /* Timeout */
1940 if (timeout)
1941 set_normalized_timespec(timeout, 0, 0);
1942 return -ETIME;
1943 default: /* Completed */
1944 WARN_ON(end < 0); /* We're not aware of other errors */
1945 return 0;
1946 }
604dd3ec
BW
1947}
1948
db53a302
CW
1949/**
1950 * Waits for a sequence number to be signaled, and cleans up the
1951 * request and object lists appropriately for that event.
1952 */
5a5a0c64 1953int
199b2bc2 1954i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
673a394b 1955{
db53a302 1956 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1957 int ret = 0;
1958
1959 BUG_ON(seqno == 0);
1960
d6b2c790 1961 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
b4aca010
BW
1962 if (ret)
1963 return ret;
3cce469c 1964
b4aca010
BW
1965 ret = i915_gem_check_olr(ring, seqno);
1966 if (ret)
1967 return ret;
ffed1d09 1968
5c81fe85 1969 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
673a394b 1970
673a394b
EA
1971 return ret;
1972}
1973
673a394b
EA
1974/**
1975 * Ensures that all rendering to the object has completed and the object is
1976 * safe to unbind from the GTT or access from the CPU.
1977 */
0201f1ec
CW
1978static __must_check int
1979i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1980 bool readonly)
673a394b 1981{
0201f1ec 1982 u32 seqno;
673a394b
EA
1983 int ret;
1984
673a394b
EA
1985 /* If there is rendering queued on the buffer being evicted, wait for
1986 * it.
1987 */
0201f1ec
CW
1988 if (readonly)
1989 seqno = obj->last_write_seqno;
1990 else
1991 seqno = obj->last_read_seqno;
1992 if (seqno == 0)
1993 return 0;
1994
1995 ret = i915_wait_seqno(obj->ring, seqno);
1996 if (ret)
1997 return ret;
1998
1999 /* Manually manage the write flush as we may have not yet retired
2000 * the buffer.
2001 */
2002 if (obj->last_write_seqno &&
2003 i915_seqno_passed(seqno, obj->last_write_seqno)) {
2004 obj->last_write_seqno = 0;
2005 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
673a394b
EA
2006 }
2007
0201f1ec 2008 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
2009 return 0;
2010}
2011
30dfebf3
DV
2012/**
2013 * Ensures that an object will eventually get non-busy by flushing any required
2014 * write domains, emitting any outstanding lazy request and retiring and
2015 * completed requests.
2016 */
2017static int
2018i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2019{
2020 int ret;
2021
2022 if (obj->active) {
0201f1ec 2023 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2024 if (ret)
2025 return ret;
0201f1ec 2026
30dfebf3
DV
2027 i915_gem_retire_requests_ring(obj->ring);
2028 }
2029
2030 return 0;
2031}
2032
23ba4fd0
BW
2033/**
2034 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2035 * @DRM_IOCTL_ARGS: standard ioctl arguments
2036 *
2037 * Returns 0 if successful, else an error is returned with the remaining time in
2038 * the timeout parameter.
2039 * -ETIME: object is still busy after timeout
2040 * -ERESTARTSYS: signal interrupted the wait
2041 * -ENONENT: object doesn't exist
2042 * Also possible, but rare:
2043 * -EAGAIN: GPU wedged
2044 * -ENOMEM: damn
2045 * -ENODEV: Internal IRQ fail
2046 * -E?: The add request failed
2047 *
2048 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2049 * non-zero timeout parameter the wait ioctl will wait for the given number of
2050 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2051 * without holding struct_mutex the object may become re-busied before this
2052 * function completes. A similar but shorter * race condition exists in the busy
2053 * ioctl
2054 */
2055int
2056i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2057{
2058 struct drm_i915_gem_wait *args = data;
2059 struct drm_i915_gem_object *obj;
2060 struct intel_ring_buffer *ring = NULL;
eac1f14f 2061 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2062 u32 seqno = 0;
2063 int ret = 0;
2064
eac1f14f
BW
2065 if (args->timeout_ns >= 0) {
2066 timeout_stack = ns_to_timespec(args->timeout_ns);
2067 timeout = &timeout_stack;
2068 }
23ba4fd0
BW
2069
2070 ret = i915_mutex_lock_interruptible(dev);
2071 if (ret)
2072 return ret;
2073
2074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2075 if (&obj->base == NULL) {
2076 mutex_unlock(&dev->struct_mutex);
2077 return -ENOENT;
2078 }
2079
30dfebf3
DV
2080 /* Need to make sure the object gets inactive eventually. */
2081 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2082 if (ret)
2083 goto out;
2084
2085 if (obj->active) {
0201f1ec 2086 seqno = obj->last_read_seqno;
23ba4fd0
BW
2087 ring = obj->ring;
2088 }
2089
2090 if (seqno == 0)
2091 goto out;
2092
23ba4fd0
BW
2093 /* Do this after OLR check to make sure we make forward progress polling
2094 * on this IOCTL with a 0 timeout (like busy ioctl)
2095 */
2096 if (!args->timeout_ns) {
2097 ret = -ETIME;
2098 goto out;
2099 }
2100
2101 drm_gem_object_unreference(&obj->base);
2102 mutex_unlock(&dev->struct_mutex);
2103
eac1f14f
BW
2104 ret = __wait_seqno(ring, seqno, true, timeout);
2105 if (timeout) {
2106 WARN_ON(!timespec_valid(timeout));
2107 args->timeout_ns = timespec_to_ns(timeout);
2108 }
23ba4fd0
BW
2109 return ret;
2110
2111out:
2112 drm_gem_object_unreference(&obj->base);
2113 mutex_unlock(&dev->struct_mutex);
2114 return ret;
2115}
2116
5816d648
BW
2117/**
2118 * i915_gem_object_sync - sync an object to a ring.
2119 *
2120 * @obj: object which may be in use on another ring.
2121 * @to: ring we wish to use the object on. May be NULL.
2122 *
2123 * This code is meant to abstract object synchronization with the GPU.
2124 * Calling with NULL implies synchronizing the object with the CPU
2125 * rather than a particular GPU ring.
2126 *
2127 * Returns 0 if successful, else propagates up the lower layer error.
2128 */
2911a35b
BW
2129int
2130i915_gem_object_sync(struct drm_i915_gem_object *obj,
2131 struct intel_ring_buffer *to)
2132{
2133 struct intel_ring_buffer *from = obj->ring;
2134 u32 seqno;
2135 int ret, idx;
2136
2137 if (from == NULL || to == from)
2138 return 0;
2139
5816d648 2140 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2141 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2142
2143 idx = intel_ring_sync_index(from, to);
2144
0201f1ec 2145 seqno = obj->last_read_seqno;
2911a35b
BW
2146 if (seqno <= from->sync_seqno[idx])
2147 return 0;
2148
b4aca010
BW
2149 ret = i915_gem_check_olr(obj->ring, seqno);
2150 if (ret)
2151 return ret;
2911a35b 2152
1500f7ea 2153 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2154 if (!ret)
2155 from->sync_seqno[idx] = seqno;
2911a35b 2156
e3a5a225 2157 return ret;
2911a35b
BW
2158}
2159
b5ffc9bc
CW
2160static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2161{
2162 u32 old_write_domain, old_read_domains;
2163
b5ffc9bc
CW
2164 /* Act a barrier for all accesses through the GTT */
2165 mb();
2166
2167 /* Force a pagefault for domain tracking on next user access */
2168 i915_gem_release_mmap(obj);
2169
b97c3d9c
KP
2170 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2171 return;
2172
b5ffc9bc
CW
2173 old_read_domains = obj->base.read_domains;
2174 old_write_domain = obj->base.write_domain;
2175
2176 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2177 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2178
2179 trace_i915_gem_object_change_domain(obj,
2180 old_read_domains,
2181 old_write_domain);
2182}
2183
673a394b
EA
2184/**
2185 * Unbinds an object from the GTT aperture.
2186 */
0f973f27 2187int
05394f39 2188i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2189{
7bddb01f 2190 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2191 int ret = 0;
2192
05394f39 2193 if (obj->gtt_space == NULL)
673a394b
EA
2194 return 0;
2195
31d8d651
CW
2196 if (obj->pin_count)
2197 return -EBUSY;
673a394b 2198
a8198eea 2199 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2200 if (ret)
a8198eea
CW
2201 return ret;
2202 /* Continue on if we fail due to EIO, the GPU is hung so we
2203 * should be safe and we need to cleanup or else we might
2204 * cause memory corruption through use-after-free.
2205 */
2206
b5ffc9bc 2207 i915_gem_object_finish_gtt(obj);
5323fd04 2208
673a394b
EA
2209 /* Move the object to the CPU domain to ensure that
2210 * any possible CPU writes while it's not in the GTT
a8198eea 2211 * are flushed when we go to remap it.
673a394b 2212 */
a8198eea
CW
2213 if (ret == 0)
2214 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2215 if (ret == -ERESTARTSYS)
673a394b 2216 return ret;
812ed492 2217 if (ret) {
a8198eea
CW
2218 /* In the event of a disaster, abandon all caches and
2219 * hope for the best.
2220 */
812ed492 2221 i915_gem_clflush_object(obj);
05394f39 2222 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2223 }
673a394b 2224
96b47b65 2225 /* release the fence reg _after_ flushing */
d9e86c0e 2226 ret = i915_gem_object_put_fence(obj);
1488fc08 2227 if (ret)
d9e86c0e 2228 return ret;
96b47b65 2229
db53a302
CW
2230 trace_i915_gem_object_unbind(obj);
2231
74898d7e
DV
2232 if (obj->has_global_gtt_mapping)
2233 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2234 if (obj->has_aliasing_ppgtt_mapping) {
2235 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2236 obj->has_aliasing_ppgtt_mapping = 0;
2237 }
74163907 2238 i915_gem_gtt_finish_object(obj);
7bddb01f 2239
e5281ccd 2240 i915_gem_object_put_pages_gtt(obj);
673a394b 2241
6299f992 2242 list_del_init(&obj->gtt_list);
05394f39 2243 list_del_init(&obj->mm_list);
75e9e915 2244 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2245 obj->map_and_fenceable = true;
673a394b 2246
05394f39
CW
2247 drm_mm_put_block(obj->gtt_space);
2248 obj->gtt_space = NULL;
2249 obj->gtt_offset = 0;
673a394b 2250
05394f39 2251 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2252 i915_gem_object_truncate(obj);
2253
8dc1775d 2254 return ret;
673a394b
EA
2255}
2256
88241785 2257int
db53a302 2258i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2259 uint32_t invalidate_domains,
2260 uint32_t flush_domains)
2261{
88241785
CW
2262 int ret;
2263
36d527de
CW
2264 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2265 return 0;
2266
db53a302
CW
2267 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2268
88241785
CW
2269 ret = ring->flush(ring, invalidate_domains, flush_domains);
2270 if (ret)
2271 return ret;
2272
88241785 2273 return 0;
54cf91dc
CW
2274}
2275
b2da9fe5 2276static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2277{
69c2fc89 2278 if (list_empty(&ring->active_list))
64193406
CW
2279 return 0;
2280
199b2bc2 2281 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2282}
2283
b2da9fe5 2284int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2285{
2286 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2287 struct intel_ring_buffer *ring;
1ec14ad3 2288 int ret, i;
4df2faf4 2289
4df2faf4 2290 /* Flush everything onto the inactive list. */
b4519513
CW
2291 for_each_ring(ring, dev_priv, i) {
2292 ret = i915_ring_idle(ring);
1ec14ad3
CW
2293 if (ret)
2294 return ret;
b4519513 2295
f2ef6eb1
BW
2296 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2297 if (ret)
2298 return ret;
1ec14ad3 2299 }
4df2faf4 2300
8a1a49f9 2301 return 0;
4df2faf4
DV
2302}
2303
9ce079e4
CW
2304static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2305 struct drm_i915_gem_object *obj)
4e901fdc 2306{
4e901fdc 2307 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2308 uint64_t val;
2309
9ce079e4
CW
2310 if (obj) {
2311 u32 size = obj->gtt_space->size;
4e901fdc 2312
9ce079e4
CW
2313 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2314 0xfffff000) << 32;
2315 val |= obj->gtt_offset & 0xfffff000;
2316 val |= (uint64_t)((obj->stride / 128) - 1) <<
2317 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2318
9ce079e4
CW
2319 if (obj->tiling_mode == I915_TILING_Y)
2320 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2321 val |= I965_FENCE_REG_VALID;
2322 } else
2323 val = 0;
c6642782 2324
9ce079e4
CW
2325 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2326 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2327}
2328
9ce079e4
CW
2329static void i965_write_fence_reg(struct drm_device *dev, int reg,
2330 struct drm_i915_gem_object *obj)
de151cf6 2331{
de151cf6 2332 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2333 uint64_t val;
2334
9ce079e4
CW
2335 if (obj) {
2336 u32 size = obj->gtt_space->size;
de151cf6 2337
9ce079e4
CW
2338 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2339 0xfffff000) << 32;
2340 val |= obj->gtt_offset & 0xfffff000;
2341 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2342 if (obj->tiling_mode == I915_TILING_Y)
2343 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2344 val |= I965_FENCE_REG_VALID;
2345 } else
2346 val = 0;
c6642782 2347
9ce079e4
CW
2348 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2349 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2350}
2351
9ce079e4
CW
2352static void i915_write_fence_reg(struct drm_device *dev, int reg,
2353 struct drm_i915_gem_object *obj)
de151cf6 2354{
de151cf6 2355 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2356 u32 val;
de151cf6 2357
9ce079e4
CW
2358 if (obj) {
2359 u32 size = obj->gtt_space->size;
2360 int pitch_val;
2361 int tile_width;
c6642782 2362
9ce079e4
CW
2363 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2364 (size & -size) != size ||
2365 (obj->gtt_offset & (size - 1)),
2366 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2367 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2368
9ce079e4
CW
2369 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2370 tile_width = 128;
2371 else
2372 tile_width = 512;
2373
2374 /* Note: pitch better be a power of two tile widths */
2375 pitch_val = obj->stride / tile_width;
2376 pitch_val = ffs(pitch_val) - 1;
2377
2378 val = obj->gtt_offset;
2379 if (obj->tiling_mode == I915_TILING_Y)
2380 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2381 val |= I915_FENCE_SIZE_BITS(size);
2382 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2383 val |= I830_FENCE_REG_VALID;
2384 } else
2385 val = 0;
2386
2387 if (reg < 8)
2388 reg = FENCE_REG_830_0 + reg * 4;
2389 else
2390 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2391
2392 I915_WRITE(reg, val);
2393 POSTING_READ(reg);
de151cf6
JB
2394}
2395
9ce079e4
CW
2396static void i830_write_fence_reg(struct drm_device *dev, int reg,
2397 struct drm_i915_gem_object *obj)
de151cf6 2398{
de151cf6 2399 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2400 uint32_t val;
de151cf6 2401
9ce079e4
CW
2402 if (obj) {
2403 u32 size = obj->gtt_space->size;
2404 uint32_t pitch_val;
de151cf6 2405
9ce079e4
CW
2406 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2407 (size & -size) != size ||
2408 (obj->gtt_offset & (size - 1)),
2409 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2410 obj->gtt_offset, size);
e76a16de 2411
9ce079e4
CW
2412 pitch_val = obj->stride / 128;
2413 pitch_val = ffs(pitch_val) - 1;
de151cf6 2414
9ce079e4
CW
2415 val = obj->gtt_offset;
2416 if (obj->tiling_mode == I915_TILING_Y)
2417 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2418 val |= I830_FENCE_SIZE_BITS(size);
2419 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2420 val |= I830_FENCE_REG_VALID;
2421 } else
2422 val = 0;
c6642782 2423
9ce079e4
CW
2424 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2425 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2426}
2427
2428static void i915_gem_write_fence(struct drm_device *dev, int reg,
2429 struct drm_i915_gem_object *obj)
2430{
2431 switch (INTEL_INFO(dev)->gen) {
2432 case 7:
2433 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2434 case 5:
2435 case 4: i965_write_fence_reg(dev, reg, obj); break;
2436 case 3: i915_write_fence_reg(dev, reg, obj); break;
2437 case 2: i830_write_fence_reg(dev, reg, obj); break;
2438 default: break;
2439 }
de151cf6
JB
2440}
2441
61050808
CW
2442static inline int fence_number(struct drm_i915_private *dev_priv,
2443 struct drm_i915_fence_reg *fence)
2444{
2445 return fence - dev_priv->fence_regs;
2446}
2447
2448static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2449 struct drm_i915_fence_reg *fence,
2450 bool enable)
2451{
2452 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2453 int reg = fence_number(dev_priv, fence);
2454
2455 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2456
2457 if (enable) {
2458 obj->fence_reg = reg;
2459 fence->obj = obj;
2460 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2461 } else {
2462 obj->fence_reg = I915_FENCE_REG_NONE;
2463 fence->obj = NULL;
2464 list_del_init(&fence->lru_list);
2465 }
2466}
2467
d9e86c0e 2468static int
a360bb1a 2469i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2470{
1c293ea3 2471 if (obj->last_fenced_seqno) {
86d5bc37 2472 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2473 if (ret)
2474 return ret;
d9e86c0e
CW
2475
2476 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2477 }
2478
63256ec5
CW
2479 /* Ensure that all CPU reads are completed before installing a fence
2480 * and all writes before removing the fence.
2481 */
2482 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2483 mb();
2484
86d5bc37 2485 obj->fenced_gpu_access = false;
d9e86c0e
CW
2486 return 0;
2487}
2488
2489int
2490i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2491{
61050808 2492 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2493 int ret;
2494
a360bb1a 2495 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2496 if (ret)
2497 return ret;
2498
61050808
CW
2499 if (obj->fence_reg == I915_FENCE_REG_NONE)
2500 return 0;
d9e86c0e 2501
61050808
CW
2502 i915_gem_object_update_fence(obj,
2503 &dev_priv->fence_regs[obj->fence_reg],
2504 false);
2505 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2506
2507 return 0;
2508}
2509
2510static struct drm_i915_fence_reg *
a360bb1a 2511i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2512{
ae3db24a 2513 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2514 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2515 int i;
ae3db24a
DV
2516
2517 /* First try to find a free reg */
d9e86c0e 2518 avail = NULL;
ae3db24a
DV
2519 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2520 reg = &dev_priv->fence_regs[i];
2521 if (!reg->obj)
d9e86c0e 2522 return reg;
ae3db24a 2523
1690e1eb 2524 if (!reg->pin_count)
d9e86c0e 2525 avail = reg;
ae3db24a
DV
2526 }
2527
d9e86c0e
CW
2528 if (avail == NULL)
2529 return NULL;
ae3db24a
DV
2530
2531 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2532 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2533 if (reg->pin_count)
ae3db24a
DV
2534 continue;
2535
8fe301ad 2536 return reg;
ae3db24a
DV
2537 }
2538
8fe301ad 2539 return NULL;
ae3db24a
DV
2540}
2541
de151cf6 2542/**
9a5a53b3 2543 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2544 * @obj: object to map through a fence reg
2545 *
2546 * When mapping objects through the GTT, userspace wants to be able to write
2547 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2548 * This function walks the fence regs looking for a free one for @obj,
2549 * stealing one if it can't find any.
2550 *
2551 * It then sets up the reg based on the object's properties: address, pitch
2552 * and tiling format.
9a5a53b3
CW
2553 *
2554 * For an untiled surface, this removes any existing fence.
de151cf6 2555 */
8c4b8c3f 2556int
06d98131 2557i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2558{
05394f39 2559 struct drm_device *dev = obj->base.dev;
79e53945 2560 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2561 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2562 struct drm_i915_fence_reg *reg;
ae3db24a 2563 int ret;
de151cf6 2564
14415745
CW
2565 /* Have we updated the tiling parameters upon the object and so
2566 * will need to serialise the write to the associated fence register?
2567 */
5d82e3e6 2568 if (obj->fence_dirty) {
14415745
CW
2569 ret = i915_gem_object_flush_fence(obj);
2570 if (ret)
2571 return ret;
2572 }
9a5a53b3 2573
d9e86c0e 2574 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2575 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2576 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2577 if (!obj->fence_dirty) {
14415745
CW
2578 list_move_tail(&reg->lru_list,
2579 &dev_priv->mm.fence_list);
2580 return 0;
2581 }
2582 } else if (enable) {
2583 reg = i915_find_fence_reg(dev);
2584 if (reg == NULL)
2585 return -EDEADLK;
d9e86c0e 2586
14415745
CW
2587 if (reg->obj) {
2588 struct drm_i915_gem_object *old = reg->obj;
2589
2590 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2591 if (ret)
2592 return ret;
2593
14415745 2594 i915_gem_object_fence_lost(old);
29c5a587 2595 }
14415745 2596 } else
a09ba7fa 2597 return 0;
a09ba7fa 2598
14415745 2599 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2600 obj->fence_dirty = false;
14415745 2601
9ce079e4 2602 return 0;
de151cf6
JB
2603}
2604
673a394b
EA
2605/**
2606 * Finds free space in the GTT aperture and binds the object there.
2607 */
2608static int
05394f39 2609i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2610 unsigned alignment,
75e9e915 2611 bool map_and_fenceable)
673a394b 2612{
05394f39 2613 struct drm_device *dev = obj->base.dev;
673a394b 2614 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2615 struct drm_mm_node *free_space;
a00b10c3 2616 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2617 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2618 bool mappable, fenceable;
07f73f69 2619 int ret;
673a394b 2620
05394f39 2621 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2622 DRM_ERROR("Attempting to bind a purgeable object\n");
2623 return -EINVAL;
2624 }
2625
e28f8711
CW
2626 fence_size = i915_gem_get_gtt_size(dev,
2627 obj->base.size,
2628 obj->tiling_mode);
2629 fence_alignment = i915_gem_get_gtt_alignment(dev,
2630 obj->base.size,
2631 obj->tiling_mode);
2632 unfenced_alignment =
2633 i915_gem_get_unfenced_gtt_alignment(dev,
2634 obj->base.size,
2635 obj->tiling_mode);
a00b10c3 2636
673a394b 2637 if (alignment == 0)
5e783301
DV
2638 alignment = map_and_fenceable ? fence_alignment :
2639 unfenced_alignment;
75e9e915 2640 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2641 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2642 return -EINVAL;
2643 }
2644
05394f39 2645 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2646
654fc607
CW
2647 /* If the object is bigger than the entire aperture, reject it early
2648 * before evicting everything in a vain attempt to find space.
2649 */
05394f39 2650 if (obj->base.size >
75e9e915 2651 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2652 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2653 return -E2BIG;
2654 }
2655
673a394b 2656 search_free:
75e9e915 2657 if (map_and_fenceable)
920afa77
DV
2658 free_space =
2659 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
6b9d89b4
CW
2660 size, alignment,
2661 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2662 0);
2663 else
2664 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2665 size, alignment, 0);
920afa77
DV
2666
2667 if (free_space != NULL) {
75e9e915 2668 if (map_and_fenceable)
05394f39 2669 obj->gtt_space =
920afa77 2670 drm_mm_get_block_range_generic(free_space,
a00b10c3 2671 size, alignment, 0,
6b9d89b4 2672 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2673 0);
2674 else
05394f39 2675 obj->gtt_space =
a00b10c3 2676 drm_mm_get_block(free_space, size, alignment);
920afa77 2677 }
05394f39 2678 if (obj->gtt_space == NULL) {
673a394b
EA
2679 /* If the gtt is empty and we're still having trouble
2680 * fitting our object in, we're out of memory.
2681 */
75e9e915
DV
2682 ret = i915_gem_evict_something(dev, size, alignment,
2683 map_and_fenceable);
9731129c 2684 if (ret)
673a394b 2685 return ret;
9731129c 2686
673a394b
EA
2687 goto search_free;
2688 }
2689
e5281ccd 2690 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2691 if (ret) {
05394f39
CW
2692 drm_mm_put_block(obj->gtt_space);
2693 obj->gtt_space = NULL;
07f73f69
CW
2694
2695 if (ret == -ENOMEM) {
809b6334
CW
2696 /* first try to reclaim some memory by clearing the GTT */
2697 ret = i915_gem_evict_everything(dev, false);
07f73f69 2698 if (ret) {
07f73f69 2699 /* now try to shrink everyone else */
4bdadb97
CW
2700 if (gfpmask) {
2701 gfpmask = 0;
2702 goto search_free;
07f73f69
CW
2703 }
2704
809b6334 2705 return -ENOMEM;
07f73f69
CW
2706 }
2707
2708 goto search_free;
2709 }
2710
673a394b
EA
2711 return ret;
2712 }
2713
74163907 2714 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2715 if (ret) {
e5281ccd 2716 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2717 drm_mm_put_block(obj->gtt_space);
2718 obj->gtt_space = NULL;
07f73f69 2719
809b6334 2720 if (i915_gem_evict_everything(dev, false))
07f73f69 2721 return ret;
07f73f69
CW
2722
2723 goto search_free;
673a394b 2724 }
673a394b 2725
0ebb9829
DV
2726 if (!dev_priv->mm.aliasing_ppgtt)
2727 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2728
6299f992 2729 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2730 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2731
673a394b
EA
2732 /* Assert that the object is not currently in any GPU domain. As it
2733 * wasn't in the GTT, there shouldn't be any way it could have been in
2734 * a GPU cache
2735 */
05394f39
CW
2736 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2737 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2738
6299f992 2739 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2740
75e9e915 2741 fenceable =
05394f39 2742 obj->gtt_space->size == fence_size &&
0206e353 2743 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2744
75e9e915 2745 mappable =
05394f39 2746 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2747
05394f39 2748 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2749
db53a302 2750 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2751 return 0;
2752}
2753
2754void
05394f39 2755i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2756{
673a394b
EA
2757 /* If we don't have a page list set up, then we're not pinned
2758 * to GPU, and we can ignore the cache flush because it'll happen
2759 * again at bind time.
2760 */
05394f39 2761 if (obj->pages == NULL)
673a394b
EA
2762 return;
2763
9c23f7fc
CW
2764 /* If the GPU is snooping the contents of the CPU cache,
2765 * we do not need to manually clear the CPU cache lines. However,
2766 * the caches are only snooped when the render cache is
2767 * flushed/invalidated. As we always have to emit invalidations
2768 * and flushes when moving into and out of the RENDER domain, correct
2769 * snooping behaviour occurs naturally as the result of our domain
2770 * tracking.
2771 */
2772 if (obj->cache_level != I915_CACHE_NONE)
2773 return;
2774
1c5d22f7 2775 trace_i915_gem_object_clflush(obj);
cfa16a0d 2776
05394f39 2777 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2778}
2779
e47c68e9
EA
2780/** Flushes the GTT write domain for the object if it's dirty. */
2781static void
05394f39 2782i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2783{
1c5d22f7
CW
2784 uint32_t old_write_domain;
2785
05394f39 2786 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2787 return;
2788
63256ec5 2789 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2790 * to it immediately go to main memory as far as we know, so there's
2791 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2792 *
2793 * However, we do have to enforce the order so that all writes through
2794 * the GTT land before any writes to the device, such as updates to
2795 * the GATT itself.
e47c68e9 2796 */
63256ec5
CW
2797 wmb();
2798
05394f39
CW
2799 old_write_domain = obj->base.write_domain;
2800 obj->base.write_domain = 0;
1c5d22f7
CW
2801
2802 trace_i915_gem_object_change_domain(obj,
05394f39 2803 obj->base.read_domains,
1c5d22f7 2804 old_write_domain);
e47c68e9
EA
2805}
2806
2807/** Flushes the CPU write domain for the object if it's dirty. */
2808static void
05394f39 2809i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2810{
1c5d22f7 2811 uint32_t old_write_domain;
e47c68e9 2812
05394f39 2813 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2814 return;
2815
2816 i915_gem_clflush_object(obj);
40ce6575 2817 intel_gtt_chipset_flush();
05394f39
CW
2818 old_write_domain = obj->base.write_domain;
2819 obj->base.write_domain = 0;
1c5d22f7
CW
2820
2821 trace_i915_gem_object_change_domain(obj,
05394f39 2822 obj->base.read_domains,
1c5d22f7 2823 old_write_domain);
e47c68e9
EA
2824}
2825
2ef7eeaa
EA
2826/**
2827 * Moves a single object to the GTT read, and possibly write domain.
2828 *
2829 * This function returns when the move is complete, including waiting on
2830 * flushes to occur.
2831 */
79e53945 2832int
2021746e 2833i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2834{
8325a09d 2835 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2836 uint32_t old_write_domain, old_read_domains;
e47c68e9 2837 int ret;
2ef7eeaa 2838
02354392 2839 /* Not valid to be called on unbound objects. */
05394f39 2840 if (obj->gtt_space == NULL)
02354392
EA
2841 return -EINVAL;
2842
8d7e3de1
CW
2843 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2844 return 0;
2845
0201f1ec
CW
2846 ret = i915_gem_object_wait_rendering(obj, !write);
2847 if (ret)
2848 return ret;
2dafb1e0 2849
7213342d 2850 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2851
05394f39
CW
2852 old_write_domain = obj->base.write_domain;
2853 old_read_domains = obj->base.read_domains;
1c5d22f7 2854
e47c68e9
EA
2855 /* It should now be out of any other write domains, and we can update
2856 * the domain values for our changes.
2857 */
05394f39
CW
2858 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2859 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2860 if (write) {
05394f39
CW
2861 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2862 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2863 obj->dirty = 1;
2ef7eeaa
EA
2864 }
2865
1c5d22f7
CW
2866 trace_i915_gem_object_change_domain(obj,
2867 old_read_domains,
2868 old_write_domain);
2869
8325a09d
CW
2870 /* And bump the LRU for this access */
2871 if (i915_gem_object_is_inactive(obj))
2872 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2873
e47c68e9
EA
2874 return 0;
2875}
2876
e4ffd173
CW
2877int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2878 enum i915_cache_level cache_level)
2879{
7bddb01f
DV
2880 struct drm_device *dev = obj->base.dev;
2881 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2882 int ret;
2883
2884 if (obj->cache_level == cache_level)
2885 return 0;
2886
2887 if (obj->pin_count) {
2888 DRM_DEBUG("can not change the cache level of pinned objects\n");
2889 return -EBUSY;
2890 }
2891
2892 if (obj->gtt_space) {
2893 ret = i915_gem_object_finish_gpu(obj);
2894 if (ret)
2895 return ret;
2896
2897 i915_gem_object_finish_gtt(obj);
2898
2899 /* Before SandyBridge, you could not use tiling or fence
2900 * registers with snooped memory, so relinquish any fences
2901 * currently pointing to our region in the aperture.
2902 */
2903 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2904 ret = i915_gem_object_put_fence(obj);
2905 if (ret)
2906 return ret;
2907 }
2908
74898d7e
DV
2909 if (obj->has_global_gtt_mapping)
2910 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2911 if (obj->has_aliasing_ppgtt_mapping)
2912 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2913 obj, cache_level);
e4ffd173
CW
2914 }
2915
2916 if (cache_level == I915_CACHE_NONE) {
2917 u32 old_read_domains, old_write_domain;
2918
2919 /* If we're coming from LLC cached, then we haven't
2920 * actually been tracking whether the data is in the
2921 * CPU cache or not, since we only allow one bit set
2922 * in obj->write_domain and have been skipping the clflushes.
2923 * Just set it to the CPU cache for now.
2924 */
2925 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2926 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2927
2928 old_read_domains = obj->base.read_domains;
2929 old_write_domain = obj->base.write_domain;
2930
2931 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2932 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2933
2934 trace_i915_gem_object_change_domain(obj,
2935 old_read_domains,
2936 old_write_domain);
2937 }
2938
2939 obj->cache_level = cache_level;
2940 return 0;
2941}
2942
b9241ea3 2943/*
2da3b9b9
CW
2944 * Prepare buffer for display plane (scanout, cursors, etc).
2945 * Can be called from an uninterruptible phase (modesetting) and allows
2946 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2947 */
2948int
2da3b9b9
CW
2949i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2950 u32 alignment,
919926ae 2951 struct intel_ring_buffer *pipelined)
b9241ea3 2952{
2da3b9b9 2953 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2954 int ret;
2955
0be73284 2956 if (pipelined != obj->ring) {
2911a35b
BW
2957 ret = i915_gem_object_sync(obj, pipelined);
2958 if (ret)
b9241ea3
ZW
2959 return ret;
2960 }
2961
a7ef0640
EA
2962 /* The display engine is not coherent with the LLC cache on gen6. As
2963 * a result, we make sure that the pinning that is about to occur is
2964 * done with uncached PTEs. This is lowest common denominator for all
2965 * chipsets.
2966 *
2967 * However for gen6+, we could do better by using the GFDT bit instead
2968 * of uncaching, which would allow us to flush all the LLC-cached data
2969 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2970 */
2971 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2972 if (ret)
2973 return ret;
2974
2da3b9b9
CW
2975 /* As the user may map the buffer once pinned in the display plane
2976 * (e.g. libkms for the bootup splash), we have to ensure that we
2977 * always use map_and_fenceable for all scanout buffers.
2978 */
2979 ret = i915_gem_object_pin(obj, alignment, true);
2980 if (ret)
2981 return ret;
2982
b118c1e3
CW
2983 i915_gem_object_flush_cpu_write_domain(obj);
2984
2da3b9b9 2985 old_write_domain = obj->base.write_domain;
05394f39 2986 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2987
2988 /* It should now be out of any other write domains, and we can update
2989 * the domain values for our changes.
2990 */
e5f1d962 2991 obj->base.write_domain = 0;
05394f39 2992 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2993
2994 trace_i915_gem_object_change_domain(obj,
2995 old_read_domains,
2da3b9b9 2996 old_write_domain);
b9241ea3
ZW
2997
2998 return 0;
2999}
3000
85345517 3001int
a8198eea 3002i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3003{
88241785
CW
3004 int ret;
3005
a8198eea 3006 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3007 return 0;
3008
0201f1ec 3009 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3010 if (ret)
3011 return ret;
3012
a8198eea
CW
3013 /* Ensure that we invalidate the GPU's caches and TLBs. */
3014 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3015 return 0;
85345517
CW
3016}
3017
e47c68e9
EA
3018/**
3019 * Moves a single object to the CPU read, and possibly write domain.
3020 *
3021 * This function returns when the move is complete, including waiting on
3022 * flushes to occur.
3023 */
dabdfe02 3024int
919926ae 3025i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3026{
1c5d22f7 3027 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3028 int ret;
3029
8d7e3de1
CW
3030 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3031 return 0;
3032
0201f1ec
CW
3033 ret = i915_gem_object_wait_rendering(obj, !write);
3034 if (ret)
3035 return ret;
2ef7eeaa 3036
e47c68e9 3037 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3038
05394f39
CW
3039 old_write_domain = obj->base.write_domain;
3040 old_read_domains = obj->base.read_domains;
1c5d22f7 3041
e47c68e9 3042 /* Flush the CPU cache if it's still invalid. */
05394f39 3043 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3044 i915_gem_clflush_object(obj);
2ef7eeaa 3045
05394f39 3046 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3047 }
3048
3049 /* It should now be out of any other write domains, and we can update
3050 * the domain values for our changes.
3051 */
05394f39 3052 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3053
3054 /* If we're writing through the CPU, then the GPU read domains will
3055 * need to be invalidated at next use.
3056 */
3057 if (write) {
05394f39
CW
3058 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3059 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3060 }
2ef7eeaa 3061
1c5d22f7
CW
3062 trace_i915_gem_object_change_domain(obj,
3063 old_read_domains,
3064 old_write_domain);
3065
2ef7eeaa
EA
3066 return 0;
3067}
3068
673a394b
EA
3069/* Throttle our rendering by waiting until the ring has completed our requests
3070 * emitted over 20 msec ago.
3071 *
b962442e
EA
3072 * Note that if we were to use the current jiffies each time around the loop,
3073 * we wouldn't escape the function with any frames outstanding if the time to
3074 * render a frame was over 20ms.
3075 *
673a394b
EA
3076 * This should get us reasonable parallelism between CPU and GPU but also
3077 * relatively low latency when blocking on a particular request to finish.
3078 */
40a5f0de 3079static int
f787a5f5 3080i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3081{
f787a5f5
CW
3082 struct drm_i915_private *dev_priv = dev->dev_private;
3083 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3084 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3085 struct drm_i915_gem_request *request;
3086 struct intel_ring_buffer *ring = NULL;
3087 u32 seqno = 0;
3088 int ret;
93533c29 3089
e110e8d6
CW
3090 if (atomic_read(&dev_priv->mm.wedged))
3091 return -EIO;
3092
1c25595f 3093 spin_lock(&file_priv->mm.lock);
f787a5f5 3094 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3095 if (time_after_eq(request->emitted_jiffies, recent_enough))
3096 break;
40a5f0de 3097
f787a5f5
CW
3098 ring = request->ring;
3099 seqno = request->seqno;
b962442e 3100 }
1c25595f 3101 spin_unlock(&file_priv->mm.lock);
40a5f0de 3102
f787a5f5
CW
3103 if (seqno == 0)
3104 return 0;
2bc43b5c 3105
5c81fe85 3106 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3107 if (ret == 0)
3108 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3109
3110 return ret;
3111}
3112
673a394b 3113int
05394f39
CW
3114i915_gem_object_pin(struct drm_i915_gem_object *obj,
3115 uint32_t alignment,
75e9e915 3116 bool map_and_fenceable)
673a394b 3117{
673a394b
EA
3118 int ret;
3119
05394f39 3120 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3121
05394f39
CW
3122 if (obj->gtt_space != NULL) {
3123 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3124 (map_and_fenceable && !obj->map_and_fenceable)) {
3125 WARN(obj->pin_count,
ae7d49d8 3126 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3127 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3128 " obj->map_and_fenceable=%d\n",
05394f39 3129 obj->gtt_offset, alignment,
75e9e915 3130 map_and_fenceable,
05394f39 3131 obj->map_and_fenceable);
ac0c6b5a
CW
3132 ret = i915_gem_object_unbind(obj);
3133 if (ret)
3134 return ret;
3135 }
3136 }
3137
05394f39 3138 if (obj->gtt_space == NULL) {
a00b10c3 3139 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3140 map_and_fenceable);
9731129c 3141 if (ret)
673a394b 3142 return ret;
22c344e9 3143 }
76446cac 3144
74898d7e
DV
3145 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3146 i915_gem_gtt_bind_object(obj, obj->cache_level);
3147
1b50247a 3148 obj->pin_count++;
6299f992 3149 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3150
3151 return 0;
3152}
3153
3154void
05394f39 3155i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3156{
05394f39
CW
3157 BUG_ON(obj->pin_count == 0);
3158 BUG_ON(obj->gtt_space == NULL);
673a394b 3159
1b50247a 3160 if (--obj->pin_count == 0)
6299f992 3161 obj->pin_mappable = false;
673a394b
EA
3162}
3163
3164int
3165i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3166 struct drm_file *file)
673a394b
EA
3167{
3168 struct drm_i915_gem_pin *args = data;
05394f39 3169 struct drm_i915_gem_object *obj;
673a394b
EA
3170 int ret;
3171
1d7cfea1
CW
3172 ret = i915_mutex_lock_interruptible(dev);
3173 if (ret)
3174 return ret;
673a394b 3175
05394f39 3176 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3177 if (&obj->base == NULL) {
1d7cfea1
CW
3178 ret = -ENOENT;
3179 goto unlock;
673a394b 3180 }
673a394b 3181
05394f39 3182 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3183 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3184 ret = -EINVAL;
3185 goto out;
3ef94daa
CW
3186 }
3187
05394f39 3188 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3189 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3190 args->handle);
1d7cfea1
CW
3191 ret = -EINVAL;
3192 goto out;
79e53945
JB
3193 }
3194
05394f39
CW
3195 obj->user_pin_count++;
3196 obj->pin_filp = file;
3197 if (obj->user_pin_count == 1) {
75e9e915 3198 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3199 if (ret)
3200 goto out;
673a394b
EA
3201 }
3202
3203 /* XXX - flush the CPU caches for pinned objects
3204 * as the X server doesn't manage domains yet
3205 */
e47c68e9 3206 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3207 args->offset = obj->gtt_offset;
1d7cfea1 3208out:
05394f39 3209 drm_gem_object_unreference(&obj->base);
1d7cfea1 3210unlock:
673a394b 3211 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3212 return ret;
673a394b
EA
3213}
3214
3215int
3216i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3217 struct drm_file *file)
673a394b
EA
3218{
3219 struct drm_i915_gem_pin *args = data;
05394f39 3220 struct drm_i915_gem_object *obj;
76c1dec1 3221 int ret;
673a394b 3222
1d7cfea1
CW
3223 ret = i915_mutex_lock_interruptible(dev);
3224 if (ret)
3225 return ret;
673a394b 3226
05394f39 3227 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3228 if (&obj->base == NULL) {
1d7cfea1
CW
3229 ret = -ENOENT;
3230 goto unlock;
673a394b 3231 }
76c1dec1 3232
05394f39 3233 if (obj->pin_filp != file) {
79e53945
JB
3234 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3235 args->handle);
1d7cfea1
CW
3236 ret = -EINVAL;
3237 goto out;
79e53945 3238 }
05394f39
CW
3239 obj->user_pin_count--;
3240 if (obj->user_pin_count == 0) {
3241 obj->pin_filp = NULL;
79e53945
JB
3242 i915_gem_object_unpin(obj);
3243 }
673a394b 3244
1d7cfea1 3245out:
05394f39 3246 drm_gem_object_unreference(&obj->base);
1d7cfea1 3247unlock:
673a394b 3248 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3249 return ret;
673a394b
EA
3250}
3251
3252int
3253i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3254 struct drm_file *file)
673a394b
EA
3255{
3256 struct drm_i915_gem_busy *args = data;
05394f39 3257 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3258 int ret;
3259
76c1dec1 3260 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3261 if (ret)
76c1dec1 3262 return ret;
673a394b 3263
05394f39 3264 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3265 if (&obj->base == NULL) {
1d7cfea1
CW
3266 ret = -ENOENT;
3267 goto unlock;
673a394b 3268 }
d1b851fc 3269
0be555b6
CW
3270 /* Count all active objects as busy, even if they are currently not used
3271 * by the gpu. Users of this interface expect objects to eventually
3272 * become non-busy without any further actions, therefore emit any
3273 * necessary flushes here.
c4de0a5d 3274 */
30dfebf3 3275 ret = i915_gem_object_flush_active(obj);
0be555b6 3276
30dfebf3 3277 args->busy = obj->active;
e9808edd
CW
3278 if (obj->ring) {
3279 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3280 args->busy |= intel_ring_flag(obj->ring) << 16;
3281 }
673a394b 3282
05394f39 3283 drm_gem_object_unreference(&obj->base);
1d7cfea1 3284unlock:
673a394b 3285 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3286 return ret;
673a394b
EA
3287}
3288
3289int
3290i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3291 struct drm_file *file_priv)
3292{
0206e353 3293 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3294}
3295
3ef94daa
CW
3296int
3297i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3298 struct drm_file *file_priv)
3299{
3300 struct drm_i915_gem_madvise *args = data;
05394f39 3301 struct drm_i915_gem_object *obj;
76c1dec1 3302 int ret;
3ef94daa
CW
3303
3304 switch (args->madv) {
3305 case I915_MADV_DONTNEED:
3306 case I915_MADV_WILLNEED:
3307 break;
3308 default:
3309 return -EINVAL;
3310 }
3311
1d7cfea1
CW
3312 ret = i915_mutex_lock_interruptible(dev);
3313 if (ret)
3314 return ret;
3315
05394f39 3316 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3317 if (&obj->base == NULL) {
1d7cfea1
CW
3318 ret = -ENOENT;
3319 goto unlock;
3ef94daa 3320 }
3ef94daa 3321
05394f39 3322 if (obj->pin_count) {
1d7cfea1
CW
3323 ret = -EINVAL;
3324 goto out;
3ef94daa
CW
3325 }
3326
05394f39
CW
3327 if (obj->madv != __I915_MADV_PURGED)
3328 obj->madv = args->madv;
3ef94daa 3329
2d7ef395 3330 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3331 if (i915_gem_object_is_purgeable(obj) &&
3332 obj->gtt_space == NULL)
2d7ef395
CW
3333 i915_gem_object_truncate(obj);
3334
05394f39 3335 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3336
1d7cfea1 3337out:
05394f39 3338 drm_gem_object_unreference(&obj->base);
1d7cfea1 3339unlock:
3ef94daa 3340 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3341 return ret;
3ef94daa
CW
3342}
3343
05394f39
CW
3344struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3345 size_t size)
ac52bc56 3346{
73aa808f 3347 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3348 struct drm_i915_gem_object *obj;
5949eac4 3349 struct address_space *mapping;
bed1ea95 3350 u32 mask;
ac52bc56 3351
c397b908
DV
3352 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3353 if (obj == NULL)
3354 return NULL;
673a394b 3355
c397b908
DV
3356 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3357 kfree(obj);
3358 return NULL;
3359 }
673a394b 3360
bed1ea95
CW
3361 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3362 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3363 /* 965gm cannot relocate objects above 4GiB. */
3364 mask &= ~__GFP_HIGHMEM;
3365 mask |= __GFP_DMA32;
3366 }
3367
5949eac4 3368 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3369 mapping_set_gfp_mask(mapping, mask);
5949eac4 3370
73aa808f
CW
3371 i915_gem_info_add_obj(dev_priv, size);
3372
c397b908
DV
3373 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3374 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3375
3d29b842
ED
3376 if (HAS_LLC(dev)) {
3377 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3378 * cache) for about a 10% performance improvement
3379 * compared to uncached. Graphics requests other than
3380 * display scanout are coherent with the CPU in
3381 * accessing this cache. This means in this mode we
3382 * don't need to clflush on the CPU side, and on the
3383 * GPU side we only need to flush internal caches to
3384 * get data visible to the CPU.
3385 *
3386 * However, we maintain the display planes as UC, and so
3387 * need to rebind when first used as such.
3388 */
3389 obj->cache_level = I915_CACHE_LLC;
3390 } else
3391 obj->cache_level = I915_CACHE_NONE;
3392
62b8b215 3393 obj->base.driver_private = NULL;
c397b908 3394 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3395 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3396 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3397 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3398 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3399 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3400 /* Avoid an unnecessary call to unbind on the first bind. */
3401 obj->map_and_fenceable = true;
de151cf6 3402
05394f39 3403 return obj;
c397b908
DV
3404}
3405
3406int i915_gem_init_object(struct drm_gem_object *obj)
3407{
3408 BUG();
de151cf6 3409
673a394b
EA
3410 return 0;
3411}
3412
1488fc08 3413void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3414{
1488fc08 3415 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3416 struct drm_device *dev = obj->base.dev;
be72615b 3417 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3418
26e12f89
CW
3419 trace_i915_gem_object_destroy(obj);
3420
1286ff73
DV
3421 if (gem_obj->import_attach)
3422 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3423
1488fc08
CW
3424 if (obj->phys_obj)
3425 i915_gem_detach_phys_object(dev, obj);
3426
3427 obj->pin_count = 0;
3428 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3429 bool was_interruptible;
3430
3431 was_interruptible = dev_priv->mm.interruptible;
3432 dev_priv->mm.interruptible = false;
3433
3434 WARN_ON(i915_gem_object_unbind(obj));
3435
3436 dev_priv->mm.interruptible = was_interruptible;
3437 }
3438
05394f39 3439 if (obj->base.map_list.map)
b464e9a2 3440 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3441
05394f39
CW
3442 drm_gem_object_release(&obj->base);
3443 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3444
05394f39
CW
3445 kfree(obj->bit_17);
3446 kfree(obj);
673a394b
EA
3447}
3448
29105ccc
CW
3449int
3450i915_gem_idle(struct drm_device *dev)
3451{
3452 drm_i915_private_t *dev_priv = dev->dev_private;
3453 int ret;
28dfe52a 3454
29105ccc 3455 mutex_lock(&dev->struct_mutex);
1c5d22f7 3456
87acb0a5 3457 if (dev_priv->mm.suspended) {
29105ccc
CW
3458 mutex_unlock(&dev->struct_mutex);
3459 return 0;
28dfe52a
EA
3460 }
3461
b2da9fe5 3462 ret = i915_gpu_idle(dev);
6dbe2772
KP
3463 if (ret) {
3464 mutex_unlock(&dev->struct_mutex);
673a394b 3465 return ret;
6dbe2772 3466 }
b2da9fe5 3467 i915_gem_retire_requests(dev);
673a394b 3468
29105ccc 3469 /* Under UMS, be paranoid and evict. */
a39d7efc
CW
3470 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3471 i915_gem_evict_everything(dev, false);
29105ccc 3472
312817a3
CW
3473 i915_gem_reset_fences(dev);
3474
29105ccc
CW
3475 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3476 * We need to replace this with a semaphore, or something.
3477 * And not confound mm.suspended!
3478 */
3479 dev_priv->mm.suspended = 1;
bc0c7f14 3480 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3481
3482 i915_kernel_lost_context(dev);
6dbe2772 3483 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3484
6dbe2772
KP
3485 mutex_unlock(&dev->struct_mutex);
3486
29105ccc
CW
3487 /* Cancel the retire work handler, which should be idle now. */
3488 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3489
673a394b
EA
3490 return 0;
3491}
3492
b9524a1e
BW
3493void i915_gem_l3_remap(struct drm_device *dev)
3494{
3495 drm_i915_private_t *dev_priv = dev->dev_private;
3496 u32 misccpctl;
3497 int i;
3498
3499 if (!IS_IVYBRIDGE(dev))
3500 return;
3501
3502 if (!dev_priv->mm.l3_remap_info)
3503 return;
3504
3505 misccpctl = I915_READ(GEN7_MISCCPCTL);
3506 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3507 POSTING_READ(GEN7_MISCCPCTL);
3508
3509 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3510 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3511 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3512 DRM_DEBUG("0x%x was already programmed to %x\n",
3513 GEN7_L3LOG_BASE + i, remap);
3514 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3515 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3516 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3517 }
3518
3519 /* Make sure all the writes land before disabling dop clock gating */
3520 POSTING_READ(GEN7_L3LOG_BASE);
3521
3522 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3523}
3524
f691e2f4
DV
3525void i915_gem_init_swizzling(struct drm_device *dev)
3526{
3527 drm_i915_private_t *dev_priv = dev->dev_private;
3528
11782b02 3529 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3530 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3531 return;
3532
3533 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3534 DISP_TILE_SURFACE_SWIZZLING);
3535
11782b02
DV
3536 if (IS_GEN5(dev))
3537 return;
3538
f691e2f4
DV
3539 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3540 if (IS_GEN6(dev))
6b26c86d 3541 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3542 else
6b26c86d 3543 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3544}
e21af88d
DV
3545
3546void i915_gem_init_ppgtt(struct drm_device *dev)
3547{
3548 drm_i915_private_t *dev_priv = dev->dev_private;
3549 uint32_t pd_offset;
3550 struct intel_ring_buffer *ring;
55a254ac
DV
3551 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3552 uint32_t __iomem *pd_addr;
3553 uint32_t pd_entry;
e21af88d
DV
3554 int i;
3555
3556 if (!dev_priv->mm.aliasing_ppgtt)
3557 return;
3558
55a254ac
DV
3559
3560 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3561 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3562 dma_addr_t pt_addr;
3563
3564 if (dev_priv->mm.gtt->needs_dmar)
3565 pt_addr = ppgtt->pt_dma_addr[i];
3566 else
3567 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3568
3569 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3570 pd_entry |= GEN6_PDE_VALID;
3571
3572 writel(pd_entry, pd_addr + i);
3573 }
3574 readl(pd_addr);
3575
3576 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3577 pd_offset /= 64; /* in cachelines, */
3578 pd_offset <<= 16;
3579
3580 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3581 uint32_t ecochk, gab_ctl, ecobits;
3582
3583 ecobits = I915_READ(GAC_ECO_BITS);
3584 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3585
3586 gab_ctl = I915_READ(GAB_CTL);
3587 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3588
3589 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3590 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3591 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3592 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3593 } else if (INTEL_INFO(dev)->gen >= 7) {
3594 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3595 /* GFX_MODE is per-ring on gen7+ */
3596 }
3597
b4519513 3598 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3599 if (INTEL_INFO(dev)->gen >= 7)
3600 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3601 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3602
3603 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3604 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3605 }
3606}
3607
67b1b571
CW
3608static bool
3609intel_enable_blt(struct drm_device *dev)
3610{
3611 if (!HAS_BLT(dev))
3612 return false;
3613
3614 /* The blitter was dysfunctional on early prototypes */
3615 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3616 DRM_INFO("BLT not supported on this pre-production hardware;"
3617 " graphics performance will be degraded.\n");
3618 return false;
3619 }
3620
3621 return true;
3622}
3623
8187a2b7 3624int
f691e2f4 3625i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3626{
3627 drm_i915_private_t *dev_priv = dev->dev_private;
3628 int ret;
68f95ba9 3629
8ecd1a66
DV
3630 if (!intel_enable_gtt())
3631 return -EIO;
3632
b9524a1e
BW
3633 i915_gem_l3_remap(dev);
3634
f691e2f4
DV
3635 i915_gem_init_swizzling(dev);
3636
5c1143bb 3637 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3638 if (ret)
b6913e4b 3639 return ret;
68f95ba9
CW
3640
3641 if (HAS_BSD(dev)) {
5c1143bb 3642 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3643 if (ret)
3644 goto cleanup_render_ring;
d1b851fc 3645 }
68f95ba9 3646
67b1b571 3647 if (intel_enable_blt(dev)) {
549f7365
CW
3648 ret = intel_init_blt_ring_buffer(dev);
3649 if (ret)
3650 goto cleanup_bsd_ring;
3651 }
3652
6f392d54
CW
3653 dev_priv->next_seqno = 1;
3654
254f965c
BW
3655 /*
3656 * XXX: There was some w/a described somewhere suggesting loading
3657 * contexts before PPGTT.
3658 */
3659 i915_gem_context_init(dev);
e21af88d
DV
3660 i915_gem_init_ppgtt(dev);
3661
68f95ba9
CW
3662 return 0;
3663
549f7365 3664cleanup_bsd_ring:
1ec14ad3 3665 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3666cleanup_render_ring:
1ec14ad3 3667 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3668 return ret;
3669}
3670
1070a42b
CW
3671static bool
3672intel_enable_ppgtt(struct drm_device *dev)
3673{
3674 if (i915_enable_ppgtt >= 0)
3675 return i915_enable_ppgtt;
3676
3677#ifdef CONFIG_INTEL_IOMMU
3678 /* Disable ppgtt on SNB if VT-d is on. */
3679 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3680 return false;
3681#endif
3682
3683 return true;
3684}
3685
3686int i915_gem_init(struct drm_device *dev)
3687{
3688 struct drm_i915_private *dev_priv = dev->dev_private;
3689 unsigned long gtt_size, mappable_size;
3690 int ret;
3691
3692 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3693 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3694
3695 mutex_lock(&dev->struct_mutex);
3696 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3697 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3698 * aperture accordingly when using aliasing ppgtt. */
3699 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3700
3701 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3702
3703 ret = i915_gem_init_aliasing_ppgtt(dev);
3704 if (ret) {
3705 mutex_unlock(&dev->struct_mutex);
3706 return ret;
3707 }
3708 } else {
3709 /* Let GEM Manage all of the aperture.
3710 *
3711 * However, leave one page at the end still bound to the scratch
3712 * page. There are a number of places where the hardware
3713 * apparently prefetches past the end of the object, and we've
3714 * seen multiple hangs with the GPU head pointer stuck in a
3715 * batchbuffer bound at the last page of the aperture. One page
3716 * should be enough to keep any prefetching inside of the
3717 * aperture.
3718 */
3719 i915_gem_init_global_gtt(dev, 0, mappable_size,
3720 gtt_size);
3721 }
3722
3723 ret = i915_gem_init_hw(dev);
3724 mutex_unlock(&dev->struct_mutex);
3725 if (ret) {
3726 i915_gem_cleanup_aliasing_ppgtt(dev);
3727 return ret;
3728 }
3729
53ca26ca
DV
3730 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3731 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3732 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3733 return 0;
3734}
3735
8187a2b7
ZN
3736void
3737i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3738{
3739 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3740 struct intel_ring_buffer *ring;
1ec14ad3 3741 int i;
8187a2b7 3742
b4519513
CW
3743 for_each_ring(ring, dev_priv, i)
3744 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3745}
3746
673a394b
EA
3747int
3748i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3749 struct drm_file *file_priv)
3750{
3751 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3752 int ret;
673a394b 3753
79e53945
JB
3754 if (drm_core_check_feature(dev, DRIVER_MODESET))
3755 return 0;
3756
ba1234d1 3757 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3758 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3759 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3760 }
3761
673a394b 3762 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3763 dev_priv->mm.suspended = 0;
3764
f691e2f4 3765 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3766 if (ret != 0) {
3767 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3768 return ret;
d816f6ac 3769 }
9bb2d6f9 3770
69dc4987 3771 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 3772 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 3773 mutex_unlock(&dev->struct_mutex);
dbb19d30 3774
5f35308b
CW
3775 ret = drm_irq_install(dev);
3776 if (ret)
3777 goto cleanup_ringbuffer;
dbb19d30 3778
673a394b 3779 return 0;
5f35308b
CW
3780
3781cleanup_ringbuffer:
3782 mutex_lock(&dev->struct_mutex);
3783 i915_gem_cleanup_ringbuffer(dev);
3784 dev_priv->mm.suspended = 1;
3785 mutex_unlock(&dev->struct_mutex);
3786
3787 return ret;
673a394b
EA
3788}
3789
3790int
3791i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3792 struct drm_file *file_priv)
3793{
79e53945
JB
3794 if (drm_core_check_feature(dev, DRIVER_MODESET))
3795 return 0;
3796
dbb19d30 3797 drm_irq_uninstall(dev);
e6890f6f 3798 return i915_gem_idle(dev);
673a394b
EA
3799}
3800
3801void
3802i915_gem_lastclose(struct drm_device *dev)
3803{
3804 int ret;
673a394b 3805
e806b495
EA
3806 if (drm_core_check_feature(dev, DRIVER_MODESET))
3807 return;
3808
6dbe2772
KP
3809 ret = i915_gem_idle(dev);
3810 if (ret)
3811 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3812}
3813
64193406
CW
3814static void
3815init_ring_lists(struct intel_ring_buffer *ring)
3816{
3817 INIT_LIST_HEAD(&ring->active_list);
3818 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
3819}
3820
673a394b
EA
3821void
3822i915_gem_load(struct drm_device *dev)
3823{
b5aa8a0f 3824 int i;
673a394b
EA
3825 drm_i915_private_t *dev_priv = dev->dev_private;
3826
69dc4987 3827 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 3828 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 3829 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
93a37f20 3830 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3831 for (i = 0; i < I915_NUM_RINGS; i++)
3832 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3833 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3834 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3835 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3836 i915_gem_retire_work_handler);
30dbf0c0 3837 init_completion(&dev_priv->error_completion);
31169714 3838
94400120
DA
3839 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3840 if (IS_GEN3(dev)) {
50743298
DV
3841 I915_WRITE(MI_ARB_STATE,
3842 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
3843 }
3844
72bfa19c
CW
3845 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3846
de151cf6 3847 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3848 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3849 dev_priv->fence_reg_start = 3;
de151cf6 3850
a6c45cf0 3851 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3852 dev_priv->num_fence_regs = 16;
3853 else
3854 dev_priv->num_fence_regs = 8;
3855
b5aa8a0f 3856 /* Initialize fence registers to zero */
ada726c7 3857 i915_gem_reset_fences(dev);
10ed13e4 3858
673a394b 3859 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3860 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3861
ce453d81
CW
3862 dev_priv->mm.interruptible = true;
3863
17250b71
CW
3864 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3865 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3866 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3867}
71acb5eb
DA
3868
3869/*
3870 * Create a physically contiguous memory object for this object
3871 * e.g. for cursor + overlay regs
3872 */
995b6762
CW
3873static int i915_gem_init_phys_object(struct drm_device *dev,
3874 int id, int size, int align)
71acb5eb
DA
3875{
3876 drm_i915_private_t *dev_priv = dev->dev_private;
3877 struct drm_i915_gem_phys_object *phys_obj;
3878 int ret;
3879
3880 if (dev_priv->mm.phys_objs[id - 1] || !size)
3881 return 0;
3882
9a298b2a 3883 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3884 if (!phys_obj)
3885 return -ENOMEM;
3886
3887 phys_obj->id = id;
3888
6eeefaf3 3889 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3890 if (!phys_obj->handle) {
3891 ret = -ENOMEM;
3892 goto kfree_obj;
3893 }
3894#ifdef CONFIG_X86
3895 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3896#endif
3897
3898 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3899
3900 return 0;
3901kfree_obj:
9a298b2a 3902 kfree(phys_obj);
71acb5eb
DA
3903 return ret;
3904}
3905
995b6762 3906static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3907{
3908 drm_i915_private_t *dev_priv = dev->dev_private;
3909 struct drm_i915_gem_phys_object *phys_obj;
3910
3911 if (!dev_priv->mm.phys_objs[id - 1])
3912 return;
3913
3914 phys_obj = dev_priv->mm.phys_objs[id - 1];
3915 if (phys_obj->cur_obj) {
3916 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3917 }
3918
3919#ifdef CONFIG_X86
3920 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3921#endif
3922 drm_pci_free(dev, phys_obj->handle);
3923 kfree(phys_obj);
3924 dev_priv->mm.phys_objs[id - 1] = NULL;
3925}
3926
3927void i915_gem_free_all_phys_object(struct drm_device *dev)
3928{
3929 int i;
3930
260883c8 3931 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3932 i915_gem_free_phys_object(dev, i);
3933}
3934
3935void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3936 struct drm_i915_gem_object *obj)
71acb5eb 3937{
05394f39 3938 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3939 char *vaddr;
71acb5eb 3940 int i;
71acb5eb
DA
3941 int page_count;
3942
05394f39 3943 if (!obj->phys_obj)
71acb5eb 3944 return;
05394f39 3945 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3946
05394f39 3947 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3948 for (i = 0; i < page_count; i++) {
5949eac4 3949 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3950 if (!IS_ERR(page)) {
3951 char *dst = kmap_atomic(page);
3952 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3953 kunmap_atomic(dst);
3954
3955 drm_clflush_pages(&page, 1);
3956
3957 set_page_dirty(page);
3958 mark_page_accessed(page);
3959 page_cache_release(page);
3960 }
71acb5eb 3961 }
40ce6575 3962 intel_gtt_chipset_flush();
d78b47b9 3963
05394f39
CW
3964 obj->phys_obj->cur_obj = NULL;
3965 obj->phys_obj = NULL;
71acb5eb
DA
3966}
3967
3968int
3969i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3970 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3971 int id,
3972 int align)
71acb5eb 3973{
05394f39 3974 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3975 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3976 int ret = 0;
3977 int page_count;
3978 int i;
3979
3980 if (id > I915_MAX_PHYS_OBJECT)
3981 return -EINVAL;
3982
05394f39
CW
3983 if (obj->phys_obj) {
3984 if (obj->phys_obj->id == id)
71acb5eb
DA
3985 return 0;
3986 i915_gem_detach_phys_object(dev, obj);
3987 }
3988
71acb5eb
DA
3989 /* create a new object */
3990 if (!dev_priv->mm.phys_objs[id - 1]) {
3991 ret = i915_gem_init_phys_object(dev, id,
05394f39 3992 obj->base.size, align);
71acb5eb 3993 if (ret) {
05394f39
CW
3994 DRM_ERROR("failed to init phys object %d size: %zu\n",
3995 id, obj->base.size);
e5281ccd 3996 return ret;
71acb5eb
DA
3997 }
3998 }
3999
4000 /* bind to the object */
05394f39
CW
4001 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4002 obj->phys_obj->cur_obj = obj;
71acb5eb 4003
05394f39 4004 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4005
4006 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4007 struct page *page;
4008 char *dst, *src;
4009
5949eac4 4010 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4011 if (IS_ERR(page))
4012 return PTR_ERR(page);
71acb5eb 4013
ff75b9bc 4014 src = kmap_atomic(page);
05394f39 4015 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4016 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4017 kunmap_atomic(src);
71acb5eb 4018
e5281ccd
CW
4019 mark_page_accessed(page);
4020 page_cache_release(page);
4021 }
d78b47b9 4022
71acb5eb 4023 return 0;
71acb5eb
DA
4024}
4025
4026static int
05394f39
CW
4027i915_gem_phys_pwrite(struct drm_device *dev,
4028 struct drm_i915_gem_object *obj,
71acb5eb
DA
4029 struct drm_i915_gem_pwrite *args,
4030 struct drm_file *file_priv)
4031{
05394f39 4032 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4033 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4034
b47b30cc
CW
4035 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4036 unsigned long unwritten;
4037
4038 /* The physical object once assigned is fixed for the lifetime
4039 * of the obj, so we can safely drop the lock and continue
4040 * to access vaddr.
4041 */
4042 mutex_unlock(&dev->struct_mutex);
4043 unwritten = copy_from_user(vaddr, user_data, args->size);
4044 mutex_lock(&dev->struct_mutex);
4045 if (unwritten)
4046 return -EFAULT;
4047 }
71acb5eb 4048
40ce6575 4049 intel_gtt_chipset_flush();
71acb5eb
DA
4050 return 0;
4051}
b962442e 4052
f787a5f5 4053void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4054{
f787a5f5 4055 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4056
4057 /* Clean up our request list when the client is going away, so that
4058 * later retire_requests won't dereference our soon-to-be-gone
4059 * file_priv.
4060 */
1c25595f 4061 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4062 while (!list_empty(&file_priv->mm.request_list)) {
4063 struct drm_i915_gem_request *request;
4064
4065 request = list_first_entry(&file_priv->mm.request_list,
4066 struct drm_i915_gem_request,
4067 client_list);
4068 list_del(&request->client_list);
4069 request->file_priv = NULL;
4070 }
1c25595f 4071 spin_unlock(&file_priv->mm.lock);
b962442e 4072}
31169714 4073
1637ef41
CW
4074static int
4075i915_gpu_is_active(struct drm_device *dev)
4076{
4077 drm_i915_private_t *dev_priv = dev->dev_private;
65ce3027 4078 return !list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4079}
4080
31169714 4081static int
1495f230 4082i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4083{
17250b71
CW
4084 struct drm_i915_private *dev_priv =
4085 container_of(shrinker,
4086 struct drm_i915_private,
4087 mm.inactive_shrinker);
4088 struct drm_device *dev = dev_priv->dev;
4089 struct drm_i915_gem_object *obj, *next;
1495f230 4090 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4091 int cnt;
4092
4093 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4094 return 0;
31169714
CW
4095
4096 /* "fast-path" to count number of available objects */
4097 if (nr_to_scan == 0) {
17250b71
CW
4098 cnt = 0;
4099 list_for_each_entry(obj,
4100 &dev_priv->mm.inactive_list,
4101 mm_list)
4102 cnt++;
4103 mutex_unlock(&dev->struct_mutex);
4104 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4105 }
4106
1637ef41 4107rescan:
31169714 4108 /* first scan for clean buffers */
17250b71 4109 i915_gem_retire_requests(dev);
31169714 4110
17250b71
CW
4111 list_for_each_entry_safe(obj, next,
4112 &dev_priv->mm.inactive_list,
4113 mm_list) {
4114 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4115 if (i915_gem_object_unbind(obj) == 0 &&
4116 --nr_to_scan == 0)
17250b71 4117 break;
31169714 4118 }
31169714
CW
4119 }
4120
4121 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4122 cnt = 0;
4123 list_for_each_entry_safe(obj, next,
4124 &dev_priv->mm.inactive_list,
4125 mm_list) {
2021746e
CW
4126 if (nr_to_scan &&
4127 i915_gem_object_unbind(obj) == 0)
17250b71 4128 nr_to_scan--;
2021746e 4129 else
17250b71
CW
4130 cnt++;
4131 }
4132
4133 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4134 /*
4135 * We are desperate for pages, so as a last resort, wait
4136 * for the GPU to finish and discard whatever we can.
4137 * This has a dramatic impact to reduce the number of
4138 * OOM-killer events whilst running the GPU aggressively.
4139 */
b2da9fe5 4140 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4141 goto rescan;
4142 }
17250b71
CW
4143 mutex_unlock(&dev->struct_mutex);
4144 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4145}
This page took 0.739052 seconds and 5 git commands to generate.