drm/i915: Inline check required for object syncing prior to execbuf
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
5a125c3c 154
6299f992 155 pinned = 0;
73aa808f 156 mutex_lock(&dev->struct_mutex);
35c20a60 157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 158 if (i915_gem_obj_is_pinned(obj))
f343c5f6 159 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
853ba5d2 162 args->aper_size = dev_priv->gtt.base.total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
6a2c4232
CW
168static int
169i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 170{
6a2c4232
CW
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
00731155 176
6a2c4232
CW
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
00731155 211
6a2c4232
CW
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232
CW
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
00731155 240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
6a2c4232 260 page_cache_release(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
063e4e6b 353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
00731155 371 i915_gem_chipset_flush(dev);
063e4e6b
PZ
372
373out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 387 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
ff72145b 405 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
406 if (obj == NULL)
407 return -ENOMEM;
408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
433 */
434int
435i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437{
438 struct drm_i915_gem_create *args = data;
63ed2cb2 439
ff72145b 440 return i915_gem_create(file, dev,
da6b51d0 441 args->size, &args->handle);
ff72145b
DA
442}
443
8461d226
DV
444static inline int
445__copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448{
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468}
469
8c59967c 470static inline int
4f0c7cfb
BW
471__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
8c59967c
DV
473 int length)
474{
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494}
495
4c914c0c
BV
496/*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503{
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530}
531
d174bd64
DV
532/* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
eb01459f 535static int
d174bd64
DV
536shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539{
540 char *vaddr;
541 int ret;
542
e7e58eb5 543 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
f60d7f0c 555 return ret ? -EFAULT : 0;
d174bd64
DV
556}
557
23c18c71
DV
558static void
559shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561{
e7e58eb5 562 if (unlikely(swizzled)) {
23c18c71
DV
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578}
579
d174bd64
DV
580/* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582static int
583shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586{
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
23c18c71
DV
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
d174bd64
DV
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
f60d7f0c 606 return ret ? - EFAULT : 0;
d174bd64
DV
607}
608
eb01459f 609static int
dbf7bff0
DV
610i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
eb01459f 614{
8461d226 615 char __user *user_data;
eb01459f 616 ssize_t remain;
8461d226 617 loff_t offset;
eb2c0c81 618 int shmem_page_offset, page_length, ret = 0;
8461d226 619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 620 int prefaulted = 0;
8489731c 621 int needs_clflush = 0;
67d5a50c 622 struct sg_page_iter sg_iter;
eb01459f 623
2bb4629a 624 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
625 remain = args->size;
626
8461d226 627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 628
4c914c0c 629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
630 if (ret)
631 return ret;
632
8461d226 633 offset = args->offset;
eb01459f 634
67d5a50c
ID
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
2db76d7c 637 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
638
639 if (remain <= 0)
640 break;
641
eb01459f
EA
642 /* Operation in this page
643 *
eb01459f 644 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
645 * page_length = bytes to copy for this page
646 */
c8cbbb8b 647 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 651
8461d226
DV
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
d174bd64
DV
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
dbf7bff0 660
dbf7bff0
DV
661 mutex_unlock(&dev->struct_mutex);
662
d330a953 663 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 664 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
eb01459f 672
d174bd64
DV
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
eb01459f 676
dbf7bff0 677 mutex_lock(&dev->struct_mutex);
f60d7f0c 678
f60d7f0c 679 if (ret)
8461d226 680 goto out;
8461d226 681
17793c9a 682next_page:
eb01459f 683 remain -= page_length;
8461d226 684 user_data += page_length;
eb01459f
EA
685 offset += page_length;
686 }
687
4f27b75d 688out:
f60d7f0c
CW
689 i915_gem_object_unpin_pages(obj);
690
eb01459f
EA
691 return ret;
692}
693
673a394b
EA
694/**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699int
700i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 701 struct drm_file *file)
673a394b
EA
702{
703 struct drm_i915_gem_pread *args = data;
05394f39 704 struct drm_i915_gem_object *obj;
35b62a89 705 int ret = 0;
673a394b 706
51311d0a
CW
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
2bb4629a 711 to_user_ptr(args->data_ptr),
51311d0a
CW
712 args->size))
713 return -EFAULT;
714
4f27b75d 715 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 716 if (ret)
4f27b75d 717 return ret;
673a394b 718
05394f39 719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 720 if (&obj->base == NULL) {
1d7cfea1
CW
721 ret = -ENOENT;
722 goto unlock;
4f27b75d 723 }
673a394b 724
7dcd2499 725 /* Bounds check source. */
05394f39
CW
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
ce9d419d 728 ret = -EINVAL;
35b62a89 729 goto out;
ce9d419d
CW
730 }
731
1286ff73
DV
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
db53a302
CW
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
dbf7bff0 742 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 743
35b62a89 744out:
05394f39 745 drm_gem_object_unreference(&obj->base);
1d7cfea1 746unlock:
4f27b75d 747 mutex_unlock(&dev->struct_mutex);
eb01459f 748 return ret;
673a394b
EA
749}
750
0839ccb8
KP
751/* This is the fast write path which cannot handle
752 * page faults in the source data
9b7530cc 753 */
0839ccb8
KP
754
755static inline int
756fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
9b7530cc 760{
4f0c7cfb
BW
761 void __iomem *vaddr_atomic;
762 void *vaddr;
0839ccb8 763 unsigned long unwritten;
9b7530cc 764
3e4d3af5 765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 769 user_data, length);
3e4d3af5 770 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 771 return unwritten;
0839ccb8
KP
772}
773
3de09aa3
EA
774/**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
673a394b 778static int
05394f39
CW
779i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
3de09aa3 781 struct drm_i915_gem_pwrite *args,
05394f39 782 struct drm_file *file)
673a394b 783{
3e31c6c0 784 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 785 ssize_t remain;
0839ccb8 786 loff_t offset, page_base;
673a394b 787 char __user *user_data;
935aaa69
DV
788 int page_offset, page_length, ret;
789
1ec9e26d 790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
673a394b 801
2bb4629a 802 user_data = to_user_ptr(args->data_ptr);
673a394b 803 remain = args->size;
673a394b 804
f343c5f6 805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 806
063e4e6b
PZ
807 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
808
673a394b
EA
809 while (remain > 0) {
810 /* Operation in this page
811 *
0839ccb8
KP
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
673a394b 815 */
c8cbbb8b
CW
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
0839ccb8
KP
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
0839ccb8 822 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
0839ccb8 825 */
5d4545ae 826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
063e4e6b 829 goto out_flush;
935aaa69 830 }
673a394b 831
0839ccb8
KP
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
673a394b 835 }
673a394b 836
063e4e6b
PZ
837out_flush:
838 intel_fb_obj_flush(obj, false);
935aaa69 839out_unpin:
d7f46fc4 840 i915_gem_object_ggtt_unpin(obj);
935aaa69 841out:
3de09aa3 842 return ret;
673a394b
EA
843}
844
d174bd64
DV
845/* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
3043c60c 849static int
d174bd64
DV
850shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
673a394b 855{
d174bd64 856 char *vaddr;
673a394b 857 int ret;
3de09aa3 858
e7e58eb5 859 if (unlikely(page_do_bit17_swizzling))
d174bd64 860 return -EINVAL;
3de09aa3 861
d174bd64
DV
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
c2831a94
CW
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
d174bd64
DV
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
3de09aa3 872
755d2218 873 return ret ? -EFAULT : 0;
3de09aa3
EA
874}
875
d174bd64
DV
876/* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
3043c60c 878static int
d174bd64
DV
879shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
673a394b 884{
d174bd64
DV
885 char *vaddr;
886 int ret;
e5281ccd 887
d174bd64 888 vaddr = kmap(page);
e7e58eb5 889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
d174bd64
DV
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
895 user_data,
896 page_length);
d174bd64
DV
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
23c18c71
DV
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
d174bd64 905 kunmap(page);
40123c1f 906
755d2218 907 return ret ? -EFAULT : 0;
40123c1f
EA
908}
909
40123c1f 910static int
e244a443
DV
911i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
40123c1f 915{
40123c1f 916 ssize_t remain;
8c59967c
DV
917 loff_t offset;
918 char __user *user_data;
eb2c0c81 919 int shmem_page_offset, page_length, ret = 0;
8c59967c 920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 921 int hit_slowpath = 0;
58642885
DV
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
67d5a50c 924 struct sg_page_iter sg_iter;
40123c1f 925
2bb4629a 926 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
927 remain = args->size;
928
8c59967c 929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 930
58642885
DV
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
2c22569b 936 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
58642885 940 }
c76ce038
CW
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 946
755d2218
CW
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
063e4e6b
PZ
951 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
952
755d2218
CW
953 i915_gem_object_pin_pages(obj);
954
673a394b 955 offset = args->offset;
05394f39 956 obj->dirty = 1;
673a394b 957
67d5a50c
ID
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
2db76d7c 960 struct page *page = sg_page_iter_page(&sg_iter);
58642885 961 int partial_cacheline_write;
e5281ccd 962
9da3da66
CW
963 if (remain <= 0)
964 break;
965
40123c1f
EA
966 /* Operation in this page
967 *
40123c1f 968 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
969 * page_length = bytes to copy for this page
970 */
c8cbbb8b 971 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 976
58642885
DV
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
8c59967c
DV
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
d174bd64
DV
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
e244a443
DV
993
994 hit_slowpath = 1;
e244a443 995 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
40123c1f 1000
e244a443 1001 mutex_lock(&dev->struct_mutex);
755d2218 1002
755d2218 1003 if (ret)
8c59967c 1004 goto out;
8c59967c 1005
17793c9a 1006next_page:
40123c1f 1007 remain -= page_length;
8c59967c 1008 user_data += page_length;
40123c1f 1009 offset += page_length;
673a394b
EA
1010 }
1011
fbd5a26d 1012out:
755d2218
CW
1013 i915_gem_object_unpin_pages(obj);
1014
e244a443 1015 if (hit_slowpath) {
8dcf015e
DV
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
e244a443 1025 }
8c59967c 1026 }
673a394b 1027
58642885 1028 if (needs_clflush_after)
e76e9aeb 1029 i915_gem_chipset_flush(dev);
58642885 1030
063e4e6b 1031 intel_fb_obj_flush(obj, false);
40123c1f 1032 return ret;
673a394b
EA
1033}
1034
1035/**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040int
1041i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1042 struct drm_file *file)
673a394b 1043{
5d77d9c5 1044 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1045 struct drm_i915_gem_pwrite *args = data;
05394f39 1046 struct drm_i915_gem_object *obj;
51311d0a
CW
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
2bb4629a 1053 to_user_ptr(args->data_ptr),
51311d0a
CW
1054 args->size))
1055 return -EFAULT;
1056
d330a953 1057 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
673a394b 1063
5d77d9c5
ID
1064 intel_runtime_pm_get(dev_priv);
1065
fbd5a26d 1066 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1067 if (ret)
5d77d9c5 1068 goto put_rpm;
1d7cfea1 1069
05394f39 1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1071 if (&obj->base == NULL) {
1d7cfea1
CW
1072 ret = -ENOENT;
1073 goto unlock;
fbd5a26d 1074 }
673a394b 1075
7dcd2499 1076 /* Bounds check destination. */
05394f39
CW
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
ce9d419d 1079 ret = -EINVAL;
35b62a89 1080 goto out;
ce9d419d
CW
1081 }
1082
1286ff73
DV
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
db53a302
CW
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
935aaa69 1093 ret = -EFAULT;
673a394b
EA
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
2c22569b
CW
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
fbd5a26d 1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1107 }
673a394b 1108
6a2c4232
CW
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
5c0480f2 1115
35b62a89 1116out:
05394f39 1117 drm_gem_object_unreference(&obj->base);
1d7cfea1 1118unlock:
fbd5a26d 1119 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1120put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
673a394b
EA
1123 return ret;
1124}
1125
b361237b 1126int
33196ded 1127i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1128 bool interruptible)
1129{
1f83fee0 1130 if (i915_reset_in_progress(error)) {
b361237b
CW
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1f83fee0
DV
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
b361237b
CW
1138 return -EIO;
1139
6689c167
MA
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
b361237b
CW
1147 }
1148
1149 return 0;
1150}
1151
1152/*
b6660d59 1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1154 */
84c33a64 1155int
b6660d59 1156i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1157{
1158 int ret;
1159
b6660d59 1160 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1161
1162 ret = 0;
b6660d59 1163 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1164 ret = i915_add_request(req->ring);
b361237b
CW
1165
1166 return ret;
1167}
1168
094f9a54
CW
1169static void fake_irq(unsigned long data)
1170{
1171 wake_up_process((struct task_struct *)data);
1172}
1173
1174static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1175 struct intel_engine_cs *ring)
094f9a54
CW
1176{
1177 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1178}
1179
eed29a5b 1180static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1181{
2def4ad9
CW
1182 unsigned long timeout;
1183
eed29a5b 1184 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1185 return -EBUSY;
1186
1187 timeout = jiffies + 1;
1188 while (!need_resched()) {
eed29a5b 1189 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1190 return 0;
1191
1192 if (time_after_eq(jiffies, timeout))
1193 break;
b29c19b6 1194
2def4ad9
CW
1195 cpu_relax_lowlatency();
1196 }
eed29a5b 1197 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1198 return 0;
1199
1200 return -EAGAIN;
b29c19b6
CW
1201}
1202
b361237b 1203/**
9c654818
JH
1204 * __i915_wait_request - wait until execution of request has finished
1205 * @req: duh!
1206 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1207 * @interruptible: do an interruptible wait (normally yes)
1208 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1209 *
f69061be
DV
1210 * Note: It is of utmost importance that the passed in seqno and reset_counter
1211 * values have been read by the caller in an smp safe manner. Where read-side
1212 * locks are involved, it is sufficient to read the reset_counter before
1213 * unlocking the lock that protects the seqno. For lockless tricks, the
1214 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1215 * inserted.
1216 *
9c654818 1217 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1218 * errno with remaining time filled in timeout argument.
1219 */
9c654818 1220int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1221 unsigned reset_counter,
b29c19b6 1222 bool interruptible,
5ed0bdf2 1223 s64 *timeout,
b29c19b6 1224 struct drm_i915_file_private *file_priv)
b361237b 1225{
9c654818 1226 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1227 struct drm_device *dev = ring->dev;
3e31c6c0 1228 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1229 const bool irq_test_in_progress =
1230 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1231 DEFINE_WAIT(wait);
47e9766d 1232 unsigned long timeout_expire;
5ed0bdf2 1233 s64 before, now;
b361237b
CW
1234 int ret;
1235
9df7575f 1236 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1237
b4716185
CW
1238 if (list_empty(&req->list))
1239 return 0;
1240
1b5a433a 1241 if (i915_gem_request_completed(req, true))
b361237b
CW
1242 return 0;
1243
7bd0e226
DV
1244 timeout_expire = timeout ?
1245 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1246
7c27f525 1247 if (INTEL_INFO(dev)->gen >= 6)
1854d5ca 1248 gen6_rps_boost(dev_priv, file_priv);
b361237b 1249
094f9a54 1250 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1251 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1252 before = ktime_get_raw_ns();
2def4ad9
CW
1253
1254 /* Optimistic spin for the next jiffie before touching IRQs */
1255 ret = __i915_spin_request(req);
1256 if (ret == 0)
1257 goto out;
1258
1259 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1260 ret = -ENODEV;
1261 goto out;
1262 }
1263
094f9a54
CW
1264 for (;;) {
1265 struct timer_list timer;
b361237b 1266
094f9a54
CW
1267 prepare_to_wait(&ring->irq_queue, &wait,
1268 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1269
f69061be
DV
1270 /* We need to check whether any gpu reset happened in between
1271 * the caller grabbing the seqno and now ... */
094f9a54
CW
1272 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1273 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1274 * is truely gone. */
1275 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1276 if (ret == 0)
1277 ret = -EAGAIN;
1278 break;
1279 }
f69061be 1280
1b5a433a 1281 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1282 ret = 0;
1283 break;
1284 }
b361237b 1285
094f9a54
CW
1286 if (interruptible && signal_pending(current)) {
1287 ret = -ERESTARTSYS;
1288 break;
1289 }
1290
47e9766d 1291 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1292 ret = -ETIME;
1293 break;
1294 }
1295
1296 timer.function = NULL;
1297 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1298 unsigned long expire;
1299
094f9a54 1300 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1301 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1302 mod_timer(&timer, expire);
1303 }
1304
5035c275 1305 io_schedule();
094f9a54 1306
094f9a54
CW
1307 if (timer.function) {
1308 del_singleshot_timer_sync(&timer);
1309 destroy_timer_on_stack(&timer);
1310 }
1311 }
168c3f21
MK
1312 if (!irq_test_in_progress)
1313 ring->irq_put(ring);
094f9a54
CW
1314
1315 finish_wait(&ring->irq_queue, &wait);
b361237b 1316
2def4ad9
CW
1317out:
1318 now = ktime_get_raw_ns();
1319 trace_i915_gem_request_wait_end(req);
1320
b361237b 1321 if (timeout) {
5ed0bdf2
TG
1322 s64 tres = *timeout - (now - before);
1323
1324 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1325
1326 /*
1327 * Apparently ktime isn't accurate enough and occasionally has a
1328 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1329 * things up to make the test happy. We allow up to 1 jiffy.
1330 *
1331 * This is a regrssion from the timespec->ktime conversion.
1332 */
1333 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1334 *timeout = 0;
b361237b
CW
1335 }
1336
094f9a54 1337 return ret;
b361237b
CW
1338}
1339
b4716185
CW
1340static inline void
1341i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1342{
1343 struct drm_i915_file_private *file_priv = request->file_priv;
1344
1345 if (!file_priv)
1346 return;
1347
1348 spin_lock(&file_priv->mm.lock);
1349 list_del(&request->client_list);
1350 request->file_priv = NULL;
1351 spin_unlock(&file_priv->mm.lock);
1352}
1353
1354static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1355{
1356 trace_i915_gem_request_retire(request);
1357
1358 /* We know the GPU must have read the request to have
1359 * sent us the seqno + interrupt, so use the position
1360 * of tail of the request to update the last known position
1361 * of the GPU head.
1362 *
1363 * Note this requires that we are always called in request
1364 * completion order.
1365 */
1366 request->ringbuf->last_retired_head = request->postfix;
1367
1368 list_del_init(&request->list);
1369 i915_gem_request_remove_from_client(request);
1370
1371 put_pid(request->pid);
1372
1373 i915_gem_request_unreference(request);
1374}
1375
1376static void
1377__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1378{
1379 struct intel_engine_cs *engine = req->ring;
1380 struct drm_i915_gem_request *tmp;
1381
1382 lockdep_assert_held(&engine->dev->struct_mutex);
1383
1384 if (list_empty(&req->list))
1385 return;
1386
1387 do {
1388 tmp = list_first_entry(&engine->request_list,
1389 typeof(*tmp), list);
1390
1391 i915_gem_request_retire(tmp);
1392 } while (tmp != req);
1393
1394 WARN_ON(i915_verify_lists(engine->dev));
1395}
1396
b361237b 1397/**
a4b3a571 1398 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1399 * request and object lists appropriately for that event.
1400 */
1401int
a4b3a571 1402i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1403{
a4b3a571
DV
1404 struct drm_device *dev;
1405 struct drm_i915_private *dev_priv;
1406 bool interruptible;
b361237b
CW
1407 int ret;
1408
a4b3a571
DV
1409 BUG_ON(req == NULL);
1410
1411 dev = req->ring->dev;
1412 dev_priv = dev->dev_private;
1413 interruptible = dev_priv->mm.interruptible;
1414
b361237b 1415 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1416
33196ded 1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1418 if (ret)
1419 return ret;
1420
a4b3a571 1421 ret = i915_gem_check_olr(req);
b361237b
CW
1422 if (ret)
1423 return ret;
1424
b4716185
CW
1425 ret = __i915_wait_request(req,
1426 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1427 interruptible, NULL, NULL);
b4716185
CW
1428 if (ret)
1429 return ret;
d26e3af8 1430
b4716185 1431 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1432 return 0;
1433}
1434
b361237b
CW
1435/**
1436 * Ensures that all rendering to the object has completed and the object is
1437 * safe to unbind from the GTT or access from the CPU.
1438 */
2e2f351d 1439int
b361237b
CW
1440i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1441 bool readonly)
1442{
b4716185 1443 int ret, i;
b361237b 1444
b4716185 1445 if (!obj->active)
b361237b
CW
1446 return 0;
1447
b4716185
CW
1448 if (readonly) {
1449 if (obj->last_write_req != NULL) {
1450 ret = i915_wait_request(obj->last_write_req);
1451 if (ret)
1452 return ret;
b361237b 1453
b4716185
CW
1454 i = obj->last_write_req->ring->id;
1455 if (obj->last_read_req[i] == obj->last_write_req)
1456 i915_gem_object_retire__read(obj, i);
1457 else
1458 i915_gem_object_retire__write(obj);
1459 }
1460 } else {
1461 for (i = 0; i < I915_NUM_RINGS; i++) {
1462 if (obj->last_read_req[i] == NULL)
1463 continue;
1464
1465 ret = i915_wait_request(obj->last_read_req[i]);
1466 if (ret)
1467 return ret;
1468
1469 i915_gem_object_retire__read(obj, i);
1470 }
1471 RQ_BUG_ON(obj->active);
1472 }
1473
1474 return 0;
1475}
1476
1477static void
1478i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1479 struct drm_i915_gem_request *req)
1480{
1481 int ring = req->ring->id;
1482
1483 if (obj->last_read_req[ring] == req)
1484 i915_gem_object_retire__read(obj, ring);
1485 else if (obj->last_write_req == req)
1486 i915_gem_object_retire__write(obj);
1487
1488 __i915_gem_request_retire__upto(req);
b361237b
CW
1489}
1490
3236f57a
CW
1491/* A nonblocking variant of the above wait. This is a highly dangerous routine
1492 * as the object state may change during this call.
1493 */
1494static __must_check int
1495i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1496 struct drm_i915_file_private *file_priv,
3236f57a
CW
1497 bool readonly)
1498{
1499 struct drm_device *dev = obj->base.dev;
1500 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1501 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1502 unsigned reset_counter;
b4716185 1503 int ret, i, n = 0;
3236f57a
CW
1504
1505 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1506 BUG_ON(!dev_priv->mm.interruptible);
1507
b4716185 1508 if (!obj->active)
3236f57a
CW
1509 return 0;
1510
33196ded 1511 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1512 if (ret)
1513 return ret;
1514
f69061be 1515 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1516
1517 if (readonly) {
1518 struct drm_i915_gem_request *req;
1519
1520 req = obj->last_write_req;
1521 if (req == NULL)
1522 return 0;
1523
1524 ret = i915_gem_check_olr(req);
1525 if (ret)
1526 goto err;
1527
1528 requests[n++] = i915_gem_request_reference(req);
1529 } else {
1530 for (i = 0; i < I915_NUM_RINGS; i++) {
1531 struct drm_i915_gem_request *req;
1532
1533 req = obj->last_read_req[i];
1534 if (req == NULL)
1535 continue;
1536
1537 ret = i915_gem_check_olr(req);
1538 if (ret)
1539 goto err;
1540
1541 requests[n++] = i915_gem_request_reference(req);
1542 }
1543 }
1544
3236f57a 1545 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1546 for (i = 0; ret == 0 && i < n; i++)
1547 ret = __i915_wait_request(requests[i], reset_counter, true,
1548 NULL, file_priv);
3236f57a
CW
1549 mutex_lock(&dev->struct_mutex);
1550
b4716185
CW
1551err:
1552 for (i = 0; i < n; i++) {
1553 if (ret == 0)
1554 i915_gem_object_retire_request(obj, requests[i]);
1555 i915_gem_request_unreference(requests[i]);
1556 }
1557
1558 return ret;
3236f57a
CW
1559}
1560
673a394b 1561/**
2ef7eeaa
EA
1562 * Called when user space prepares to use an object with the CPU, either
1563 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1564 */
1565int
1566i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1567 struct drm_file *file)
673a394b
EA
1568{
1569 struct drm_i915_gem_set_domain *args = data;
05394f39 1570 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1571 uint32_t read_domains = args->read_domains;
1572 uint32_t write_domain = args->write_domain;
673a394b
EA
1573 int ret;
1574
2ef7eeaa 1575 /* Only handle setting domains to types used by the CPU. */
21d509e3 1576 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1577 return -EINVAL;
1578
21d509e3 1579 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1580 return -EINVAL;
1581
1582 /* Having something in the write domain implies it's in the read
1583 * domain, and only that read domain. Enforce that in the request.
1584 */
1585 if (write_domain != 0 && read_domains != write_domain)
1586 return -EINVAL;
1587
76c1dec1 1588 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1589 if (ret)
76c1dec1 1590 return ret;
1d7cfea1 1591
05394f39 1592 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1593 if (&obj->base == NULL) {
1d7cfea1
CW
1594 ret = -ENOENT;
1595 goto unlock;
76c1dec1 1596 }
673a394b 1597
3236f57a
CW
1598 /* Try to flush the object off the GPU without holding the lock.
1599 * We will repeat the flush holding the lock in the normal manner
1600 * to catch cases where we are gazumped.
1601 */
6e4930f6
CW
1602 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1603 file->driver_priv,
1604 !write_domain);
3236f57a
CW
1605 if (ret)
1606 goto unref;
1607
43566ded 1608 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1609 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1610 else
e47c68e9 1611 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1612
3236f57a 1613unref:
05394f39 1614 drm_gem_object_unreference(&obj->base);
1d7cfea1 1615unlock:
673a394b
EA
1616 mutex_unlock(&dev->struct_mutex);
1617 return ret;
1618}
1619
1620/**
1621 * Called when user space has done writes to this buffer
1622 */
1623int
1624i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1625 struct drm_file *file)
673a394b
EA
1626{
1627 struct drm_i915_gem_sw_finish *args = data;
05394f39 1628 struct drm_i915_gem_object *obj;
673a394b
EA
1629 int ret = 0;
1630
76c1dec1 1631 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1632 if (ret)
76c1dec1 1633 return ret;
1d7cfea1 1634
05394f39 1635 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1636 if (&obj->base == NULL) {
1d7cfea1
CW
1637 ret = -ENOENT;
1638 goto unlock;
673a394b
EA
1639 }
1640
673a394b 1641 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1642 if (obj->pin_display)
e62b59e4 1643 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1644
05394f39 1645 drm_gem_object_unreference(&obj->base);
1d7cfea1 1646unlock:
673a394b
EA
1647 mutex_unlock(&dev->struct_mutex);
1648 return ret;
1649}
1650
1651/**
1652 * Maps the contents of an object, returning the address it is mapped
1653 * into.
1654 *
1655 * While the mapping holds a reference on the contents of the object, it doesn't
1656 * imply a ref on the object itself.
34367381
DV
1657 *
1658 * IMPORTANT:
1659 *
1660 * DRM driver writers who look a this function as an example for how to do GEM
1661 * mmap support, please don't implement mmap support like here. The modern way
1662 * to implement DRM mmap support is with an mmap offset ioctl (like
1663 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1664 * That way debug tooling like valgrind will understand what's going on, hiding
1665 * the mmap call in a driver private ioctl will break that. The i915 driver only
1666 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1667 */
1668int
1669i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1670 struct drm_file *file)
673a394b
EA
1671{
1672 struct drm_i915_gem_mmap *args = data;
1673 struct drm_gem_object *obj;
673a394b
EA
1674 unsigned long addr;
1675
1816f923
AG
1676 if (args->flags & ~(I915_MMAP_WC))
1677 return -EINVAL;
1678
1679 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1680 return -ENODEV;
1681
05394f39 1682 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1683 if (obj == NULL)
bf79cb91 1684 return -ENOENT;
673a394b 1685
1286ff73
DV
1686 /* prime objects have no backing filp to GEM mmap
1687 * pages from.
1688 */
1689 if (!obj->filp) {
1690 drm_gem_object_unreference_unlocked(obj);
1691 return -EINVAL;
1692 }
1693
6be5ceb0 1694 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1695 PROT_READ | PROT_WRITE, MAP_SHARED,
1696 args->offset);
1816f923
AG
1697 if (args->flags & I915_MMAP_WC) {
1698 struct mm_struct *mm = current->mm;
1699 struct vm_area_struct *vma;
1700
1701 down_write(&mm->mmap_sem);
1702 vma = find_vma(mm, addr);
1703 if (vma)
1704 vma->vm_page_prot =
1705 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1706 else
1707 addr = -ENOMEM;
1708 up_write(&mm->mmap_sem);
1709 }
bc9025bd 1710 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1711 if (IS_ERR((void *)addr))
1712 return addr;
1713
1714 args->addr_ptr = (uint64_t) addr;
1715
1716 return 0;
1717}
1718
de151cf6
JB
1719/**
1720 * i915_gem_fault - fault a page into the GTT
1721 * vma: VMA in question
1722 * vmf: fault info
1723 *
1724 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1725 * from userspace. The fault handler takes care of binding the object to
1726 * the GTT (if needed), allocating and programming a fence register (again,
1727 * only if needed based on whether the old reg is still valid or the object
1728 * is tiled) and inserting a new PTE into the faulting process.
1729 *
1730 * Note that the faulting process may involve evicting existing objects
1731 * from the GTT and/or fence registers to make room. So performance may
1732 * suffer if the GTT working set is large or there are few fence registers
1733 * left.
1734 */
1735int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1736{
05394f39
CW
1737 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1738 struct drm_device *dev = obj->base.dev;
3e31c6c0 1739 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1740 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1741 pgoff_t page_offset;
1742 unsigned long pfn;
1743 int ret = 0;
0f973f27 1744 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1745
f65c9168
PZ
1746 intel_runtime_pm_get(dev_priv);
1747
de151cf6
JB
1748 /* We don't use vmf->pgoff since that has the fake offset */
1749 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1750 PAGE_SHIFT;
1751
d9bc7e9f
CW
1752 ret = i915_mutex_lock_interruptible(dev);
1753 if (ret)
1754 goto out;
a00b10c3 1755
db53a302
CW
1756 trace_i915_gem_object_fault(obj, page_offset, true, write);
1757
6e4930f6
CW
1758 /* Try to flush the object off the GPU first without holding the lock.
1759 * Upon reacquiring the lock, we will perform our sanity checks and then
1760 * repeat the flush holding the lock in the normal manner to catch cases
1761 * where we are gazumped.
1762 */
1763 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1764 if (ret)
1765 goto unlock;
1766
eb119bd6
CW
1767 /* Access to snoopable pages through the GTT is incoherent. */
1768 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1769 ret = -EFAULT;
eb119bd6
CW
1770 goto unlock;
1771 }
1772
c5ad54cf 1773 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1774 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1775 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1776 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1777
c5ad54cf
JL
1778 memset(&view, 0, sizeof(view));
1779 view.type = I915_GGTT_VIEW_PARTIAL;
1780 view.params.partial.offset = rounddown(page_offset, chunk_size);
1781 view.params.partial.size =
1782 min_t(unsigned int,
1783 chunk_size,
1784 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1785 view.params.partial.offset);
1786 }
1787
1788 /* Now pin it into the GTT if needed */
1789 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1790 if (ret)
1791 goto unlock;
4a684a41 1792
c9839303
CW
1793 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1794 if (ret)
1795 goto unpin;
74898d7e 1796
06d98131 1797 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1798 if (ret)
c9839303 1799 goto unpin;
7d1c4804 1800
b90b91d8 1801 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1802 pfn = dev_priv->gtt.mappable_base +
1803 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1804 pfn >>= PAGE_SHIFT;
de151cf6 1805
c5ad54cf
JL
1806 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1807 /* Overriding existing pages in partial view does not cause
1808 * us any trouble as TLBs are still valid because the fault
1809 * is due to userspace losing part of the mapping or never
1810 * having accessed it before (at this partials' range).
1811 */
1812 unsigned long base = vma->vm_start +
1813 (view.params.partial.offset << PAGE_SHIFT);
1814 unsigned int i;
b90b91d8 1815
c5ad54cf
JL
1816 for (i = 0; i < view.params.partial.size; i++) {
1817 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1818 if (ret)
1819 break;
1820 }
1821
1822 obj->fault_mappable = true;
c5ad54cf
JL
1823 } else {
1824 if (!obj->fault_mappable) {
1825 unsigned long size = min_t(unsigned long,
1826 vma->vm_end - vma->vm_start,
1827 obj->base.size);
1828 int i;
1829
1830 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1831 ret = vm_insert_pfn(vma,
1832 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1833 pfn + i);
1834 if (ret)
1835 break;
1836 }
1837
1838 obj->fault_mappable = true;
1839 } else
1840 ret = vm_insert_pfn(vma,
1841 (unsigned long)vmf->virtual_address,
1842 pfn + page_offset);
1843 }
c9839303 1844unpin:
c5ad54cf 1845 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1846unlock:
de151cf6 1847 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1848out:
de151cf6 1849 switch (ret) {
d9bc7e9f 1850 case -EIO:
2232f031
DV
1851 /*
1852 * We eat errors when the gpu is terminally wedged to avoid
1853 * userspace unduly crashing (gl has no provisions for mmaps to
1854 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1855 * and so needs to be reported.
1856 */
1857 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1858 ret = VM_FAULT_SIGBUS;
1859 break;
1860 }
045e769a 1861 case -EAGAIN:
571c608d
DV
1862 /*
1863 * EAGAIN means the gpu is hung and we'll wait for the error
1864 * handler to reset everything when re-faulting in
1865 * i915_mutex_lock_interruptible.
d9bc7e9f 1866 */
c715089f
CW
1867 case 0:
1868 case -ERESTARTSYS:
bed636ab 1869 case -EINTR:
e79e0fe3
DR
1870 case -EBUSY:
1871 /*
1872 * EBUSY is ok: this just means that another thread
1873 * already did the job.
1874 */
f65c9168
PZ
1875 ret = VM_FAULT_NOPAGE;
1876 break;
de151cf6 1877 case -ENOMEM:
f65c9168
PZ
1878 ret = VM_FAULT_OOM;
1879 break;
a7c2e1aa 1880 case -ENOSPC:
45d67817 1881 case -EFAULT:
f65c9168
PZ
1882 ret = VM_FAULT_SIGBUS;
1883 break;
de151cf6 1884 default:
a7c2e1aa 1885 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1886 ret = VM_FAULT_SIGBUS;
1887 break;
de151cf6 1888 }
f65c9168
PZ
1889
1890 intel_runtime_pm_put(dev_priv);
1891 return ret;
de151cf6
JB
1892}
1893
901782b2
CW
1894/**
1895 * i915_gem_release_mmap - remove physical page mappings
1896 * @obj: obj in question
1897 *
af901ca1 1898 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1899 * relinquish ownership of the pages back to the system.
1900 *
1901 * It is vital that we remove the page mapping if we have mapped a tiled
1902 * object through the GTT and then lose the fence register due to
1903 * resource pressure. Similarly if the object has been moved out of the
1904 * aperture, than pages mapped into userspace must be revoked. Removing the
1905 * mapping will then trigger a page fault on the next user access, allowing
1906 * fixup by i915_gem_fault().
1907 */
d05ca301 1908void
05394f39 1909i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1910{
6299f992
CW
1911 if (!obj->fault_mappable)
1912 return;
901782b2 1913
6796cb16
DH
1914 drm_vma_node_unmap(&obj->base.vma_node,
1915 obj->base.dev->anon_inode->i_mapping);
6299f992 1916 obj->fault_mappable = false;
901782b2
CW
1917}
1918
eedd10f4
CW
1919void
1920i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1921{
1922 struct drm_i915_gem_object *obj;
1923
1924 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1925 i915_gem_release_mmap(obj);
1926}
1927
0fa87796 1928uint32_t
e28f8711 1929i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1930{
e28f8711 1931 uint32_t gtt_size;
92b88aeb
CW
1932
1933 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1934 tiling_mode == I915_TILING_NONE)
1935 return size;
92b88aeb
CW
1936
1937 /* Previous chips need a power-of-two fence region when tiling */
1938 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1939 gtt_size = 1024*1024;
92b88aeb 1940 else
e28f8711 1941 gtt_size = 512*1024;
92b88aeb 1942
e28f8711
CW
1943 while (gtt_size < size)
1944 gtt_size <<= 1;
92b88aeb 1945
e28f8711 1946 return gtt_size;
92b88aeb
CW
1947}
1948
de151cf6
JB
1949/**
1950 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1951 * @obj: object to check
1952 *
1953 * Return the required GTT alignment for an object, taking into account
5e783301 1954 * potential fence register mapping.
de151cf6 1955 */
d865110c
ID
1956uint32_t
1957i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1958 int tiling_mode, bool fenced)
de151cf6 1959{
de151cf6
JB
1960 /*
1961 * Minimum alignment is 4k (GTT page size), but might be greater
1962 * if a fence register is needed for the object.
1963 */
d865110c 1964 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1965 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1966 return 4096;
1967
a00b10c3
CW
1968 /*
1969 * Previous chips need to be aligned to the size of the smallest
1970 * fence register that can contain the object.
1971 */
e28f8711 1972 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1973}
1974
d8cb5086
CW
1975static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1976{
1977 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1978 int ret;
1979
0de23977 1980 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1981 return 0;
1982
da494d7c
DV
1983 dev_priv->mm.shrinker_no_lock_stealing = true;
1984
d8cb5086
CW
1985 ret = drm_gem_create_mmap_offset(&obj->base);
1986 if (ret != -ENOSPC)
da494d7c 1987 goto out;
d8cb5086
CW
1988
1989 /* Badly fragmented mmap space? The only way we can recover
1990 * space is by destroying unwanted objects. We can't randomly release
1991 * mmap_offsets as userspace expects them to be persistent for the
1992 * lifetime of the objects. The closest we can is to release the
1993 * offsets on purgeable objects by truncating it and marking it purged,
1994 * which prevents userspace from ever using that object again.
1995 */
21ab4e74
CW
1996 i915_gem_shrink(dev_priv,
1997 obj->base.size >> PAGE_SHIFT,
1998 I915_SHRINK_BOUND |
1999 I915_SHRINK_UNBOUND |
2000 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2001 ret = drm_gem_create_mmap_offset(&obj->base);
2002 if (ret != -ENOSPC)
da494d7c 2003 goto out;
d8cb5086
CW
2004
2005 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2006 ret = drm_gem_create_mmap_offset(&obj->base);
2007out:
2008 dev_priv->mm.shrinker_no_lock_stealing = false;
2009
2010 return ret;
d8cb5086
CW
2011}
2012
2013static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2014{
d8cb5086
CW
2015 drm_gem_free_mmap_offset(&obj->base);
2016}
2017
da6b51d0 2018int
ff72145b
DA
2019i915_gem_mmap_gtt(struct drm_file *file,
2020 struct drm_device *dev,
da6b51d0 2021 uint32_t handle,
ff72145b 2022 uint64_t *offset)
de151cf6 2023{
05394f39 2024 struct drm_i915_gem_object *obj;
de151cf6
JB
2025 int ret;
2026
76c1dec1 2027 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2028 if (ret)
76c1dec1 2029 return ret;
de151cf6 2030
ff72145b 2031 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2032 if (&obj->base == NULL) {
1d7cfea1
CW
2033 ret = -ENOENT;
2034 goto unlock;
2035 }
de151cf6 2036
05394f39 2037 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2038 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2039 ret = -EFAULT;
1d7cfea1 2040 goto out;
ab18282d
CW
2041 }
2042
d8cb5086
CW
2043 ret = i915_gem_object_create_mmap_offset(obj);
2044 if (ret)
2045 goto out;
de151cf6 2046
0de23977 2047 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2048
1d7cfea1 2049out:
05394f39 2050 drm_gem_object_unreference(&obj->base);
1d7cfea1 2051unlock:
de151cf6 2052 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2053 return ret;
de151cf6
JB
2054}
2055
ff72145b
DA
2056/**
2057 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2058 * @dev: DRM device
2059 * @data: GTT mapping ioctl data
2060 * @file: GEM object info
2061 *
2062 * Simply returns the fake offset to userspace so it can mmap it.
2063 * The mmap call will end up in drm_gem_mmap(), which will set things
2064 * up so we can get faults in the handler above.
2065 *
2066 * The fault handler will take care of binding the object into the GTT
2067 * (since it may have been evicted to make room for something), allocating
2068 * a fence register, and mapping the appropriate aperture address into
2069 * userspace.
2070 */
2071int
2072i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2073 struct drm_file *file)
2074{
2075 struct drm_i915_gem_mmap_gtt *args = data;
2076
da6b51d0 2077 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2078}
2079
225067ee
DV
2080/* Immediately discard the backing storage */
2081static void
2082i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2083{
4d6294bf 2084 i915_gem_object_free_mmap_offset(obj);
1286ff73 2085
4d6294bf
CW
2086 if (obj->base.filp == NULL)
2087 return;
e5281ccd 2088
225067ee
DV
2089 /* Our goal here is to return as much of the memory as
2090 * is possible back to the system as we are called from OOM.
2091 * To do this we must instruct the shmfs to drop all of its
2092 * backing pages, *now*.
2093 */
5537252b 2094 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2095 obj->madv = __I915_MADV_PURGED;
2096}
e5281ccd 2097
5537252b
CW
2098/* Try to discard unwanted pages */
2099static void
2100i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2101{
5537252b
CW
2102 struct address_space *mapping;
2103
2104 switch (obj->madv) {
2105 case I915_MADV_DONTNEED:
2106 i915_gem_object_truncate(obj);
2107 case __I915_MADV_PURGED:
2108 return;
2109 }
2110
2111 if (obj->base.filp == NULL)
2112 return;
2113
2114 mapping = file_inode(obj->base.filp)->i_mapping,
2115 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2116}
2117
5cdf5881 2118static void
05394f39 2119i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2120{
90797e6d
ID
2121 struct sg_page_iter sg_iter;
2122 int ret;
1286ff73 2123
05394f39 2124 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2125
6c085a72
CW
2126 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2127 if (ret) {
2128 /* In the event of a disaster, abandon all caches and
2129 * hope for the best.
2130 */
2131 WARN_ON(ret != -EIO);
2c22569b 2132 i915_gem_clflush_object(obj, true);
6c085a72
CW
2133 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2134 }
2135
6dacfd2f 2136 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2137 i915_gem_object_save_bit_17_swizzle(obj);
2138
05394f39
CW
2139 if (obj->madv == I915_MADV_DONTNEED)
2140 obj->dirty = 0;
3ef94daa 2141
90797e6d 2142 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2143 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2144
05394f39 2145 if (obj->dirty)
9da3da66 2146 set_page_dirty(page);
3ef94daa 2147
05394f39 2148 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2149 mark_page_accessed(page);
3ef94daa 2150
9da3da66 2151 page_cache_release(page);
3ef94daa 2152 }
05394f39 2153 obj->dirty = 0;
673a394b 2154
9da3da66
CW
2155 sg_free_table(obj->pages);
2156 kfree(obj->pages);
37e680a1 2157}
6c085a72 2158
dd624afd 2159int
37e680a1
CW
2160i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2161{
2162 const struct drm_i915_gem_object_ops *ops = obj->ops;
2163
2f745ad3 2164 if (obj->pages == NULL)
37e680a1
CW
2165 return 0;
2166
a5570178
CW
2167 if (obj->pages_pin_count)
2168 return -EBUSY;
2169
9843877d 2170 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2171
a2165e31
CW
2172 /* ->put_pages might need to allocate memory for the bit17 swizzle
2173 * array, hence protect them from being reaped by removing them from gtt
2174 * lists early. */
35c20a60 2175 list_del(&obj->global_list);
a2165e31 2176
37e680a1 2177 ops->put_pages(obj);
05394f39 2178 obj->pages = NULL;
37e680a1 2179
5537252b 2180 i915_gem_object_invalidate(obj);
6c085a72
CW
2181
2182 return 0;
2183}
2184
37e680a1 2185static int
6c085a72 2186i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2187{
6c085a72 2188 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2189 int page_count, i;
2190 struct address_space *mapping;
9da3da66
CW
2191 struct sg_table *st;
2192 struct scatterlist *sg;
90797e6d 2193 struct sg_page_iter sg_iter;
e5281ccd 2194 struct page *page;
90797e6d 2195 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2196 gfp_t gfp;
e5281ccd 2197
6c085a72
CW
2198 /* Assert that the object is not currently in any GPU domain. As it
2199 * wasn't in the GTT, there shouldn't be any way it could have been in
2200 * a GPU cache
2201 */
2202 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2203 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2204
9da3da66
CW
2205 st = kmalloc(sizeof(*st), GFP_KERNEL);
2206 if (st == NULL)
2207 return -ENOMEM;
2208
05394f39 2209 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2210 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2211 kfree(st);
e5281ccd 2212 return -ENOMEM;
9da3da66 2213 }
e5281ccd 2214
9da3da66
CW
2215 /* Get the list of pages out of our struct file. They'll be pinned
2216 * at this point until we release them.
2217 *
2218 * Fail silently without starting the shrinker
2219 */
496ad9aa 2220 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2221 gfp = mapping_gfp_mask(mapping);
caf49191 2222 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2223 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2224 sg = st->sgl;
2225 st->nents = 0;
2226 for (i = 0; i < page_count; i++) {
6c085a72
CW
2227 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2228 if (IS_ERR(page)) {
21ab4e74
CW
2229 i915_gem_shrink(dev_priv,
2230 page_count,
2231 I915_SHRINK_BOUND |
2232 I915_SHRINK_UNBOUND |
2233 I915_SHRINK_PURGEABLE);
6c085a72
CW
2234 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2235 }
2236 if (IS_ERR(page)) {
2237 /* We've tried hard to allocate the memory by reaping
2238 * our own buffer, now let the real VM do its job and
2239 * go down in flames if truly OOM.
2240 */
6c085a72 2241 i915_gem_shrink_all(dev_priv);
f461d1be 2242 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2243 if (IS_ERR(page))
2244 goto err_pages;
6c085a72 2245 }
426729dc
KRW
2246#ifdef CONFIG_SWIOTLB
2247 if (swiotlb_nr_tbl()) {
2248 st->nents++;
2249 sg_set_page(sg, page, PAGE_SIZE, 0);
2250 sg = sg_next(sg);
2251 continue;
2252 }
2253#endif
90797e6d
ID
2254 if (!i || page_to_pfn(page) != last_pfn + 1) {
2255 if (i)
2256 sg = sg_next(sg);
2257 st->nents++;
2258 sg_set_page(sg, page, PAGE_SIZE, 0);
2259 } else {
2260 sg->length += PAGE_SIZE;
2261 }
2262 last_pfn = page_to_pfn(page);
3bbbe706
DV
2263
2264 /* Check that the i965g/gm workaround works. */
2265 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2266 }
426729dc
KRW
2267#ifdef CONFIG_SWIOTLB
2268 if (!swiotlb_nr_tbl())
2269#endif
2270 sg_mark_end(sg);
74ce6b6c
CW
2271 obj->pages = st;
2272
6dacfd2f 2273 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2274 i915_gem_object_do_bit_17_swizzle(obj);
2275
656bfa3a
DV
2276 if (obj->tiling_mode != I915_TILING_NONE &&
2277 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2278 i915_gem_object_pin_pages(obj);
2279
e5281ccd
CW
2280 return 0;
2281
2282err_pages:
90797e6d
ID
2283 sg_mark_end(sg);
2284 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2285 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2286 sg_free_table(st);
2287 kfree(st);
0820baf3
CW
2288
2289 /* shmemfs first checks if there is enough memory to allocate the page
2290 * and reports ENOSPC should there be insufficient, along with the usual
2291 * ENOMEM for a genuine allocation failure.
2292 *
2293 * We use ENOSPC in our driver to mean that we have run out of aperture
2294 * space and so want to translate the error from shmemfs back to our
2295 * usual understanding of ENOMEM.
2296 */
2297 if (PTR_ERR(page) == -ENOSPC)
2298 return -ENOMEM;
2299 else
2300 return PTR_ERR(page);
673a394b
EA
2301}
2302
37e680a1
CW
2303/* Ensure that the associated pages are gathered from the backing storage
2304 * and pinned into our object. i915_gem_object_get_pages() may be called
2305 * multiple times before they are released by a single call to
2306 * i915_gem_object_put_pages() - once the pages are no longer referenced
2307 * either as a result of memory pressure (reaping pages under the shrinker)
2308 * or as the object is itself released.
2309 */
2310int
2311i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2312{
2313 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2314 const struct drm_i915_gem_object_ops *ops = obj->ops;
2315 int ret;
2316
2f745ad3 2317 if (obj->pages)
37e680a1
CW
2318 return 0;
2319
43e28f09 2320 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2321 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2322 return -EFAULT;
43e28f09
CW
2323 }
2324
a5570178
CW
2325 BUG_ON(obj->pages_pin_count);
2326
37e680a1
CW
2327 ret = ops->get_pages(obj);
2328 if (ret)
2329 return ret;
2330
35c20a60 2331 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2332
2333 obj->get_page.sg = obj->pages->sgl;
2334 obj->get_page.last = 0;
2335
37e680a1 2336 return 0;
673a394b
EA
2337}
2338
b4716185
CW
2339void i915_vma_move_to_active(struct i915_vma *vma,
2340 struct intel_engine_cs *ring)
673a394b 2341{
b4716185 2342 struct drm_i915_gem_object *obj = vma->obj;
673a394b
EA
2343
2344 /* Add a reference if we're newly entering the active list. */
b4716185 2345 if (obj->active == 0)
05394f39 2346 drm_gem_object_reference(&obj->base);
b4716185 2347 obj->active |= intel_ring_flag(ring);
e35a41de 2348
b4716185
CW
2349 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2350 i915_gem_request_assign(&obj->last_read_req[ring->id],
2351 intel_ring_get_request(ring));
caea7476 2352
b4716185 2353 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2354}
2355
b4716185
CW
2356static void
2357i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2358{
b4716185
CW
2359 RQ_BUG_ON(obj->last_write_req == NULL);
2360 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2361
2362 i915_gem_request_assign(&obj->last_write_req, NULL);
2363 intel_fb_obj_flush(obj, true);
e2d05a8b
BW
2364}
2365
caea7476 2366static void
b4716185 2367i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2368{
feb822cf 2369 struct i915_vma *vma;
ce44b0ea 2370
b4716185
CW
2371 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2372 RQ_BUG_ON(!(obj->active & (1 << ring)));
2373
2374 list_del_init(&obj->ring_list[ring]);
2375 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2376
2377 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2378 i915_gem_object_retire__write(obj);
2379
2380 obj->active &= ~(1 << ring);
2381 if (obj->active)
2382 return;
caea7476 2383
fe14d5f4
TU
2384 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2385 if (!list_empty(&vma->mm_list))
2386 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2387 }
caea7476 2388
97b2a6a1 2389 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2390 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2391}
2392
9d773091 2393static int
fca26bb4 2394i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2395{
9d773091 2396 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2397 struct intel_engine_cs *ring;
9d773091 2398 int ret, i, j;
53d227f2 2399
107f27a5 2400 /* Carefully retire all requests without writing to the rings */
9d773091 2401 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2402 ret = intel_ring_idle(ring);
2403 if (ret)
2404 return ret;
9d773091 2405 }
9d773091 2406 i915_gem_retire_requests(dev);
107f27a5
CW
2407
2408 /* Finally reset hw state */
9d773091 2409 for_each_ring(ring, dev_priv, i) {
fca26bb4 2410 intel_ring_init_seqno(ring, seqno);
498d2ac1 2411
ebc348b2
BW
2412 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2413 ring->semaphore.sync_seqno[j] = 0;
9d773091 2414 }
53d227f2 2415
9d773091 2416 return 0;
53d227f2
DV
2417}
2418
fca26bb4
MK
2419int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2420{
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 int ret;
2423
2424 if (seqno == 0)
2425 return -EINVAL;
2426
2427 /* HWS page needs to be set less than what we
2428 * will inject to ring
2429 */
2430 ret = i915_gem_init_seqno(dev, seqno - 1);
2431 if (ret)
2432 return ret;
2433
2434 /* Carefully set the last_seqno value so that wrap
2435 * detection still works
2436 */
2437 dev_priv->next_seqno = seqno;
2438 dev_priv->last_seqno = seqno - 1;
2439 if (dev_priv->last_seqno == 0)
2440 dev_priv->last_seqno--;
2441
2442 return 0;
2443}
2444
9d773091
CW
2445int
2446i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2447{
9d773091
CW
2448 struct drm_i915_private *dev_priv = dev->dev_private;
2449
2450 /* reserve 0 for non-seqno */
2451 if (dev_priv->next_seqno == 0) {
fca26bb4 2452 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2453 if (ret)
2454 return ret;
53d227f2 2455
9d773091
CW
2456 dev_priv->next_seqno = 1;
2457 }
53d227f2 2458
f72b3435 2459 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2460 return 0;
53d227f2
DV
2461}
2462
a4872ba6 2463int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2464 struct drm_file *file,
9400ae5c 2465 struct drm_i915_gem_object *obj)
673a394b 2466{
3e31c6c0 2467 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2468 struct drm_i915_gem_request *request;
48e29f55 2469 struct intel_ringbuffer *ringbuf;
6d3d8274 2470 u32 request_start;
3cce469c
CW
2471 int ret;
2472
6259cead 2473 request = ring->outstanding_lazy_request;
48e29f55
OM
2474 if (WARN_ON(request == NULL))
2475 return -ENOMEM;
2476
2477 if (i915.enable_execlists) {
21076372 2478 ringbuf = request->ctx->engine[ring->id].ringbuf;
48e29f55
OM
2479 } else
2480 ringbuf = ring->buffer;
2481
2482 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2483 /*
2484 * Emit any outstanding flushes - execbuf can fail to emit the flush
2485 * after having emitted the batchbuffer command. Hence we need to fix
2486 * things up similar to emitting the lazy request. The difference here
2487 * is that the flush _must_ happen before the next request, no matter
2488 * what.
2489 */
48e29f55 2490 if (i915.enable_execlists) {
21076372 2491 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
48e29f55
OM
2492 if (ret)
2493 return ret;
2494 } else {
2495 ret = intel_ring_flush_all_caches(ring);
2496 if (ret)
2497 return ret;
2498 }
cc889e0f 2499
a71d8d94
CW
2500 /* Record the position of the start of the request so that
2501 * should we detect the updated seqno part-way through the
2502 * GPU processing the request, we never over-estimate the
2503 * position of the head.
2504 */
6d3d8274 2505 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2506
48e29f55 2507 if (i915.enable_execlists) {
72f95afa 2508 ret = ring->emit_request(ringbuf, request);
48e29f55
OM
2509 if (ret)
2510 return ret;
2511 } else {
2512 ret = ring->add_request(ring);
2513 if (ret)
2514 return ret;
53292cdb
MT
2515
2516 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2517 }
673a394b 2518
7d736f4f 2519 request->head = request_start;
7d736f4f
MK
2520
2521 /* Whilst this request exists, batch_obj will be on the
2522 * active_list, and so will hold the active reference. Only when this
2523 * request is retired will the the batch_obj be moved onto the
2524 * inactive_list and lose its active reference. Hence we do not need
2525 * to explicitly hold another reference here.
2526 */
9a7e0c2a 2527 request->batch_obj = obj;
0e50e96b 2528
48e29f55
OM
2529 if (!i915.enable_execlists) {
2530 /* Hold a reference to the current context so that we can inspect
2531 * it later in case a hangcheck error event fires.
2532 */
2533 request->ctx = ring->last_context;
2534 if (request->ctx)
2535 i915_gem_context_reference(request->ctx);
2536 }
0e50e96b 2537
673a394b 2538 request->emitted_jiffies = jiffies;
852835f3 2539 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2540 request->file_priv = NULL;
852835f3 2541
db53a302
CW
2542 if (file) {
2543 struct drm_i915_file_private *file_priv = file->driver_priv;
2544
1c25595f 2545 spin_lock(&file_priv->mm.lock);
f787a5f5 2546 request->file_priv = file_priv;
b962442e 2547 list_add_tail(&request->client_list,
f787a5f5 2548 &file_priv->mm.request_list);
1c25595f 2549 spin_unlock(&file_priv->mm.lock);
071c92de
MK
2550
2551 request->pid = get_pid(task_pid(current));
b962442e 2552 }
673a394b 2553
74328ee5 2554 trace_i915_gem_request_add(request);
6259cead 2555 ring->outstanding_lazy_request = NULL;
db53a302 2556
87255483 2557 i915_queue_hangcheck(ring->dev);
10cd45b6 2558
87255483
DV
2559 queue_delayed_work(dev_priv->wq,
2560 &dev_priv->mm.retire_work,
2561 round_jiffies_up_relative(HZ));
2562 intel_mark_busy(dev_priv->dev);
cc889e0f 2563
3cce469c 2564 return 0;
673a394b
EA
2565}
2566
939fd762 2567static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2568 const struct intel_context *ctx)
be62acb4 2569{
44e2c070 2570 unsigned long elapsed;
be62acb4 2571
44e2c070
MK
2572 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2573
2574 if (ctx->hang_stats.banned)
be62acb4
MK
2575 return true;
2576
676fa572
CW
2577 if (ctx->hang_stats.ban_period_seconds &&
2578 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2579 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2580 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2581 return true;
88b4aa87
MK
2582 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2583 if (i915_stop_ring_allow_warn(dev_priv))
2584 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2585 return true;
3fac8978 2586 }
be62acb4
MK
2587 }
2588
2589 return false;
2590}
2591
939fd762 2592static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2593 struct intel_context *ctx,
b6b0fac0 2594 const bool guilty)
aa60c664 2595{
44e2c070
MK
2596 struct i915_ctx_hang_stats *hs;
2597
2598 if (WARN_ON(!ctx))
2599 return;
aa60c664 2600
44e2c070
MK
2601 hs = &ctx->hang_stats;
2602
2603 if (guilty) {
939fd762 2604 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2605 hs->batch_active++;
2606 hs->guilty_ts = get_seconds();
2607 } else {
2608 hs->batch_pending++;
aa60c664
MK
2609 }
2610}
2611
abfe262a
JH
2612void i915_gem_request_free(struct kref *req_ref)
2613{
2614 struct drm_i915_gem_request *req = container_of(req_ref,
2615 typeof(*req), ref);
2616 struct intel_context *ctx = req->ctx;
2617
0794aed3
TD
2618 if (ctx) {
2619 if (i915.enable_execlists) {
abfe262a 2620 struct intel_engine_cs *ring = req->ring;
0e50e96b 2621
0794aed3
TD
2622 if (ctx != ring->default_context)
2623 intel_lr_context_unpin(ring, ctx);
2624 }
abfe262a 2625
dcb4c12a
OM
2626 i915_gem_context_unreference(ctx);
2627 }
abfe262a 2628
efab6d8d 2629 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2630}
2631
6689cb2b
JH
2632int i915_gem_request_alloc(struct intel_engine_cs *ring,
2633 struct intel_context *ctx)
2634{
efab6d8d 2635 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2636 struct drm_i915_gem_request *req;
6689cb2b 2637 int ret;
6689cb2b
JH
2638
2639 if (ring->outstanding_lazy_request)
2640 return 0;
2641
eed29a5b
DV
2642 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2643 if (req == NULL)
6689cb2b
JH
2644 return -ENOMEM;
2645
eed29a5b
DV
2646 kref_init(&req->ref);
2647 req->i915 = dev_priv;
efab6d8d 2648
eed29a5b 2649 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
6689cb2b 2650 if (ret) {
eed29a5b 2651 kfree(req);
6689cb2b
JH
2652 return ret;
2653 }
2654
eed29a5b 2655 req->ring = ring;
6689cb2b
JH
2656
2657 if (i915.enable_execlists)
eed29a5b 2658 ret = intel_logical_ring_alloc_request_extras(req, ctx);
6689cb2b 2659 else
eed29a5b 2660 ret = intel_ring_alloc_request_extras(req);
6689cb2b 2661 if (ret) {
eed29a5b 2662 kfree(req);
6689cb2b
JH
2663 return ret;
2664 }
2665
eed29a5b 2666 ring->outstanding_lazy_request = req;
6689cb2b 2667 return 0;
0e50e96b
MK
2668}
2669
8d9fc7fd 2670struct drm_i915_gem_request *
a4872ba6 2671i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2672{
4db080f9
CW
2673 struct drm_i915_gem_request *request;
2674
2675 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2676 if (i915_gem_request_completed(request, false))
4db080f9 2677 continue;
aa60c664 2678
b6b0fac0 2679 return request;
4db080f9 2680 }
b6b0fac0
MK
2681
2682 return NULL;
2683}
2684
2685static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2686 struct intel_engine_cs *ring)
b6b0fac0
MK
2687{
2688 struct drm_i915_gem_request *request;
2689 bool ring_hung;
2690
8d9fc7fd 2691 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2692
2693 if (request == NULL)
2694 return;
2695
2696 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2697
939fd762 2698 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2699
2700 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2701 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2702}
aa60c664 2703
4db080f9 2704static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2705 struct intel_engine_cs *ring)
4db080f9 2706{
dfaae392 2707 while (!list_empty(&ring->active_list)) {
05394f39 2708 struct drm_i915_gem_object *obj;
9375e446 2709
05394f39
CW
2710 obj = list_first_entry(&ring->active_list,
2711 struct drm_i915_gem_object,
b4716185 2712 ring_list[ring->id]);
9375e446 2713
b4716185 2714 i915_gem_object_retire__read(obj, ring->id);
673a394b 2715 }
1d62beea 2716
dcb4c12a
OM
2717 /*
2718 * Clear the execlists queue up before freeing the requests, as those
2719 * are the ones that keep the context and ringbuffer backing objects
2720 * pinned in place.
2721 */
2722 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2723 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2724
2725 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2726 struct drm_i915_gem_request,
dcb4c12a
OM
2727 execlist_link);
2728 list_del(&submit_req->execlist_link);
1197b4f2
MK
2729
2730 if (submit_req->ctx != ring->default_context)
2731 intel_lr_context_unpin(ring, submit_req->ctx);
2732
b3a38998 2733 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2734 }
2735
1d62beea
BW
2736 /*
2737 * We must free the requests after all the corresponding objects have
2738 * been moved off active lists. Which is the same order as the normal
2739 * retire_requests function does. This is important if object hold
2740 * implicit references on things like e.g. ppgtt address spaces through
2741 * the request.
2742 */
2743 while (!list_empty(&ring->request_list)) {
2744 struct drm_i915_gem_request *request;
2745
2746 request = list_first_entry(&ring->request_list,
2747 struct drm_i915_gem_request,
2748 list);
2749
b4716185 2750 i915_gem_request_retire(request);
1d62beea 2751 }
e3efda49 2752
6259cead
JH
2753 /* This may not have been flushed before the reset, so clean it now */
2754 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2755}
2756
19b2dbde 2757void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2758{
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 int i;
2761
4b9de737 2762 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2763 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2764
94a335db
DV
2765 /*
2766 * Commit delayed tiling changes if we have an object still
2767 * attached to the fence, otherwise just clear the fence.
2768 */
2769 if (reg->obj) {
2770 i915_gem_object_update_fence(reg->obj, reg,
2771 reg->obj->tiling_mode);
2772 } else {
2773 i915_gem_write_fence(dev, i, NULL);
2774 }
312817a3
CW
2775 }
2776}
2777
069efc1d 2778void i915_gem_reset(struct drm_device *dev)
673a394b 2779{
77f01230 2780 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2781 struct intel_engine_cs *ring;
1ec14ad3 2782 int i;
673a394b 2783
4db080f9
CW
2784 /*
2785 * Before we free the objects from the requests, we need to inspect
2786 * them for finding the guilty party. As the requests only borrow
2787 * their reference to the objects, the inspection must be done first.
2788 */
2789 for_each_ring(ring, dev_priv, i)
2790 i915_gem_reset_ring_status(dev_priv, ring);
2791
b4519513 2792 for_each_ring(ring, dev_priv, i)
4db080f9 2793 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2794
acce9ffa
BW
2795 i915_gem_context_reset(dev);
2796
19b2dbde 2797 i915_gem_restore_fences(dev);
b4716185
CW
2798
2799 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2800}
2801
2802/**
2803 * This function clears the request list as sequence numbers are passed.
2804 */
1cf0ba14 2805void
a4872ba6 2806i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2807{
db53a302 2808 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2809
b4716185
CW
2810 if (list_empty(&ring->active_list))
2811 return;
2812
832a3aad
CW
2813 /* Retire requests first as we use it above for the early return.
2814 * If we retire requests last, we may use a later seqno and so clear
2815 * the requests lists without clearing the active list, leading to
2816 * confusion.
e9103038 2817 */
852835f3 2818 while (!list_empty(&ring->request_list)) {
673a394b 2819 struct drm_i915_gem_request *request;
673a394b 2820
852835f3 2821 request = list_first_entry(&ring->request_list,
673a394b
EA
2822 struct drm_i915_gem_request,
2823 list);
673a394b 2824
1b5a433a 2825 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2826 break;
2827
b4716185 2828 i915_gem_request_retire(request);
b84d5f0c 2829 }
673a394b 2830
832a3aad
CW
2831 /* Move any buffers on the active list that are no longer referenced
2832 * by the ringbuffer to the flushing/inactive lists as appropriate,
2833 * before we free the context associated with the requests.
2834 */
2835 while (!list_empty(&ring->active_list)) {
2836 struct drm_i915_gem_object *obj;
2837
2838 obj = list_first_entry(&ring->active_list,
2839 struct drm_i915_gem_object,
b4716185 2840 ring_list[ring->id]);
832a3aad 2841
b4716185 2842 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2843 break;
2844
b4716185 2845 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2846 }
2847
581c26e8
JH
2848 if (unlikely(ring->trace_irq_req &&
2849 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2850 ring->irq_put(ring);
581c26e8 2851 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2852 }
23bc5982 2853
db53a302 2854 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2855}
2856
b29c19b6 2857bool
b09a1fec
CW
2858i915_gem_retire_requests(struct drm_device *dev)
2859{
3e31c6c0 2860 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2861 struct intel_engine_cs *ring;
b29c19b6 2862 bool idle = true;
1ec14ad3 2863 int i;
b09a1fec 2864
b29c19b6 2865 for_each_ring(ring, dev_priv, i) {
b4519513 2866 i915_gem_retire_requests_ring(ring);
b29c19b6 2867 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2868 if (i915.enable_execlists) {
2869 unsigned long flags;
2870
2871 spin_lock_irqsave(&ring->execlist_lock, flags);
2872 idle &= list_empty(&ring->execlist_queue);
2873 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2874
2875 intel_execlists_retire_requests(ring);
2876 }
b29c19b6
CW
2877 }
2878
2879 if (idle)
2880 mod_delayed_work(dev_priv->wq,
2881 &dev_priv->mm.idle_work,
2882 msecs_to_jiffies(100));
2883
2884 return idle;
b09a1fec
CW
2885}
2886
75ef9da2 2887static void
673a394b
EA
2888i915_gem_retire_work_handler(struct work_struct *work)
2889{
b29c19b6
CW
2890 struct drm_i915_private *dev_priv =
2891 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2892 struct drm_device *dev = dev_priv->dev;
0a58705b 2893 bool idle;
673a394b 2894
891b48cf 2895 /* Come back later if the device is busy... */
b29c19b6
CW
2896 idle = false;
2897 if (mutex_trylock(&dev->struct_mutex)) {
2898 idle = i915_gem_retire_requests(dev);
2899 mutex_unlock(&dev->struct_mutex);
673a394b 2900 }
b29c19b6 2901 if (!idle)
bcb45086
CW
2902 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2903 round_jiffies_up_relative(HZ));
b29c19b6 2904}
0a58705b 2905
b29c19b6
CW
2906static void
2907i915_gem_idle_work_handler(struct work_struct *work)
2908{
2909 struct drm_i915_private *dev_priv =
2910 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2911 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2912 struct intel_engine_cs *ring;
2913 int i;
b29c19b6 2914
423795cb
CW
2915 for_each_ring(ring, dev_priv, i)
2916 if (!list_empty(&ring->request_list))
2917 return;
35c94185
CW
2918
2919 intel_mark_idle(dev);
2920
2921 if (mutex_trylock(&dev->struct_mutex)) {
2922 struct intel_engine_cs *ring;
2923 int i;
2924
2925 for_each_ring(ring, dev_priv, i)
2926 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2927
35c94185
CW
2928 mutex_unlock(&dev->struct_mutex);
2929 }
673a394b
EA
2930}
2931
30dfebf3
DV
2932/**
2933 * Ensures that an object will eventually get non-busy by flushing any required
2934 * write domains, emitting any outstanding lazy request and retiring and
2935 * completed requests.
2936 */
2937static int
2938i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2939{
b4716185
CW
2940 int ret, i;
2941
2942 if (!obj->active)
2943 return 0;
30dfebf3 2944
b4716185
CW
2945 for (i = 0; i < I915_NUM_RINGS; i++) {
2946 struct drm_i915_gem_request *req;
41c52415 2947
b4716185
CW
2948 req = obj->last_read_req[i];
2949 if (req == NULL)
2950 continue;
2951
2952 if (list_empty(&req->list))
2953 goto retire;
2954
2955 ret = i915_gem_check_olr(req);
30dfebf3
DV
2956 if (ret)
2957 return ret;
2958
b4716185
CW
2959 if (i915_gem_request_completed(req, true)) {
2960 __i915_gem_request_retire__upto(req);
2961retire:
2962 i915_gem_object_retire__read(obj, i);
2963 }
30dfebf3
DV
2964 }
2965
2966 return 0;
2967}
2968
23ba4fd0
BW
2969/**
2970 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2971 * @DRM_IOCTL_ARGS: standard ioctl arguments
2972 *
2973 * Returns 0 if successful, else an error is returned with the remaining time in
2974 * the timeout parameter.
2975 * -ETIME: object is still busy after timeout
2976 * -ERESTARTSYS: signal interrupted the wait
2977 * -ENONENT: object doesn't exist
2978 * Also possible, but rare:
2979 * -EAGAIN: GPU wedged
2980 * -ENOMEM: damn
2981 * -ENODEV: Internal IRQ fail
2982 * -E?: The add request failed
2983 *
2984 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2985 * non-zero timeout parameter the wait ioctl will wait for the given number of
2986 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2987 * without holding struct_mutex the object may become re-busied before this
2988 * function completes. A similar but shorter * race condition exists in the busy
2989 * ioctl
2990 */
2991int
2992i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2993{
3e31c6c0 2994 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2995 struct drm_i915_gem_wait *args = data;
2996 struct drm_i915_gem_object *obj;
b4716185 2997 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 2998 unsigned reset_counter;
b4716185
CW
2999 int i, n = 0;
3000 int ret;
23ba4fd0 3001
11b5d511
DV
3002 if (args->flags != 0)
3003 return -EINVAL;
3004
23ba4fd0
BW
3005 ret = i915_mutex_lock_interruptible(dev);
3006 if (ret)
3007 return ret;
3008
3009 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3010 if (&obj->base == NULL) {
3011 mutex_unlock(&dev->struct_mutex);
3012 return -ENOENT;
3013 }
3014
30dfebf3
DV
3015 /* Need to make sure the object gets inactive eventually. */
3016 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3017 if (ret)
3018 goto out;
3019
b4716185 3020 if (!obj->active)
97b2a6a1 3021 goto out;
23ba4fd0 3022
23ba4fd0 3023 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3024 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3025 */
762e4583 3026 if (args->timeout_ns == 0) {
23ba4fd0
BW
3027 ret = -ETIME;
3028 goto out;
3029 }
3030
3031 drm_gem_object_unreference(&obj->base);
f69061be 3032 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3033
3034 for (i = 0; i < I915_NUM_RINGS; i++) {
3035 if (obj->last_read_req[i] == NULL)
3036 continue;
3037
3038 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3039 }
3040
23ba4fd0
BW
3041 mutex_unlock(&dev->struct_mutex);
3042
b4716185
CW
3043 for (i = 0; i < n; i++) {
3044 if (ret == 0)
3045 ret = __i915_wait_request(req[i], reset_counter, true,
3046 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3047 file->driver_priv);
3048 i915_gem_request_unreference__unlocked(req[i]);
3049 }
ff865885 3050 return ret;
23ba4fd0
BW
3051
3052out:
3053 drm_gem_object_unreference(&obj->base);
3054 mutex_unlock(&dev->struct_mutex);
3055 return ret;
3056}
3057
b4716185
CW
3058static int
3059__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3060 struct intel_engine_cs *to,
3061 struct drm_i915_gem_request *req)
3062{
3063 struct intel_engine_cs *from;
3064 int ret;
3065
3066 from = i915_gem_request_get_ring(req);
3067 if (to == from)
3068 return 0;
3069
3070 if (i915_gem_request_completed(req, true))
3071 return 0;
3072
3073 ret = i915_gem_check_olr(req);
3074 if (ret)
3075 return ret;
3076
3077 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3078 ret = __i915_wait_request(req,
3079 atomic_read(&to_i915(obj->base.dev)->gpu_error.reset_counter),
3080 to_i915(obj->base.dev)->mm.interruptible, NULL, NULL);
3081 if (ret)
3082 return ret;
3083
3084 i915_gem_object_retire_request(obj, req);
3085 } else {
3086 int idx = intel_ring_sync_index(from, to);
3087 u32 seqno = i915_gem_request_get_seqno(req);
3088
3089 if (seqno <= from->semaphore.sync_seqno[idx])
3090 return 0;
3091
3092 trace_i915_gem_ring_sync_to(from, to, req);
3093 ret = to->semaphore.sync_to(to, from, seqno);
3094 if (ret)
3095 return ret;
3096
3097 /* We use last_read_req because sync_to()
3098 * might have just caused seqno wrap under
3099 * the radar.
3100 */
3101 from->semaphore.sync_seqno[idx] =
3102 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3103 }
3104
3105 return 0;
3106}
3107
5816d648
BW
3108/**
3109 * i915_gem_object_sync - sync an object to a ring.
3110 *
3111 * @obj: object which may be in use on another ring.
3112 * @to: ring we wish to use the object on. May be NULL.
3113 *
3114 * This code is meant to abstract object synchronization with the GPU.
3115 * Calling with NULL implies synchronizing the object with the CPU
b4716185
CW
3116 * rather than a particular GPU ring. Conceptually we serialise writes
3117 * between engines inside the GPU. We only allow on engine to write
3118 * into a buffer at any time, but multiple readers. To ensure each has
3119 * a coherent view of memory, we must:
3120 *
3121 * - If there is an outstanding write request to the object, the new
3122 * request must wait for it to complete (either CPU or in hw, requests
3123 * on the same ring will be naturally ordered).
3124 *
3125 * - If we are a write request (pending_write_domain is set), the new
3126 * request must wait for outstanding read requests to complete.
5816d648
BW
3127 *
3128 * Returns 0 if successful, else propagates up the lower layer error.
3129 */
2911a35b
BW
3130int
3131i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 3132 struct intel_engine_cs *to)
2911a35b 3133{
b4716185
CW
3134 const bool readonly = obj->base.pending_write_domain == 0;
3135 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3136 int ret, i, n;
41c52415 3137
b4716185 3138 if (!obj->active)
2911a35b
BW
3139 return 0;
3140
b4716185
CW
3141 if (to == NULL)
3142 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3143
b4716185
CW
3144 n = 0;
3145 if (readonly) {
3146 if (obj->last_write_req)
3147 req[n++] = obj->last_write_req;
3148 } else {
3149 for (i = 0; i < I915_NUM_RINGS; i++)
3150 if (obj->last_read_req[i])
3151 req[n++] = obj->last_read_req[i];
3152 }
3153 for (i = 0; i < n; i++) {
3154 ret = __i915_gem_object_sync(obj, to, req[i]);
3155 if (ret)
3156 return ret;
3157 }
2911a35b 3158
b4716185 3159 return 0;
2911a35b
BW
3160}
3161
b5ffc9bc
CW
3162static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3163{
3164 u32 old_write_domain, old_read_domains;
3165
b5ffc9bc
CW
3166 /* Force a pagefault for domain tracking on next user access */
3167 i915_gem_release_mmap(obj);
3168
b97c3d9c
KP
3169 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3170 return;
3171
97c809fd
CW
3172 /* Wait for any direct GTT access to complete */
3173 mb();
3174
b5ffc9bc
CW
3175 old_read_domains = obj->base.read_domains;
3176 old_write_domain = obj->base.write_domain;
3177
3178 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3179 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3180
3181 trace_i915_gem_object_change_domain(obj,
3182 old_read_domains,
3183 old_write_domain);
3184}
3185
07fe0b12 3186int i915_vma_unbind(struct i915_vma *vma)
673a394b 3187{
07fe0b12 3188 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3189 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3190 int ret;
673a394b 3191
07fe0b12 3192 if (list_empty(&vma->vma_link))
673a394b
EA
3193 return 0;
3194
0ff501cb
DV
3195 if (!drm_mm_node_allocated(&vma->node)) {
3196 i915_gem_vma_destroy(vma);
0ff501cb
DV
3197 return 0;
3198 }
433544bd 3199
d7f46fc4 3200 if (vma->pin_count)
31d8d651 3201 return -EBUSY;
673a394b 3202
c4670ad0
CW
3203 BUG_ON(obj->pages == NULL);
3204
2e2f351d 3205 ret = i915_gem_object_wait_rendering(obj, false);
1488fc08 3206 if (ret)
a8198eea
CW
3207 return ret;
3208 /* Continue on if we fail due to EIO, the GPU is hung so we
3209 * should be safe and we need to cleanup or else we might
3210 * cause memory corruption through use-after-free.
3211 */
3212
fe14d5f4
TU
3213 if (i915_is_ggtt(vma->vm) &&
3214 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3215 i915_gem_object_finish_gtt(obj);
5323fd04 3216
8b1bc9b4
DV
3217 /* release the fence reg _after_ flushing */
3218 ret = i915_gem_object_put_fence(obj);
3219 if (ret)
3220 return ret;
3221 }
96b47b65 3222
07fe0b12 3223 trace_i915_vma_unbind(vma);
db53a302 3224
777dc5bb 3225 vma->vm->unbind_vma(vma);
5e562f1d 3226 vma->bound = 0;
6f65e29a 3227
64bf9303 3228 list_del_init(&vma->mm_list);
fe14d5f4
TU
3229 if (i915_is_ggtt(vma->vm)) {
3230 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3231 obj->map_and_fenceable = false;
3232 } else if (vma->ggtt_view.pages) {
3233 sg_free_table(vma->ggtt_view.pages);
3234 kfree(vma->ggtt_view.pages);
3235 vma->ggtt_view.pages = NULL;
3236 }
3237 }
673a394b 3238
2f633156
BW
3239 drm_mm_remove_node(&vma->node);
3240 i915_gem_vma_destroy(vma);
3241
3242 /* Since the unbound list is global, only move to that list if
b93dab6e 3243 * no more VMAs exist. */
9490edb5
AR
3244 if (list_empty(&obj->vma_list)) {
3245 i915_gem_gtt_finish_object(obj);
2f633156 3246 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3247 }
673a394b 3248
70903c3b
CW
3249 /* And finally now the object is completely decoupled from this vma,
3250 * we can drop its hold on the backing storage and allow it to be
3251 * reaped by the shrinker.
3252 */
3253 i915_gem_object_unpin_pages(obj);
3254
88241785 3255 return 0;
54cf91dc
CW
3256}
3257
b2da9fe5 3258int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3259{
3e31c6c0 3260 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3261 struct intel_engine_cs *ring;
1ec14ad3 3262 int ret, i;
4df2faf4 3263
4df2faf4 3264 /* Flush everything onto the inactive list. */
b4519513 3265 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3266 if (!i915.enable_execlists) {
3267 ret = i915_switch_context(ring, ring->default_context);
3268 if (ret)
3269 return ret;
3270 }
b6c7488d 3271
3e960501 3272 ret = intel_ring_idle(ring);
1ec14ad3
CW
3273 if (ret)
3274 return ret;
3275 }
4df2faf4 3276
b4716185 3277 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3278 return 0;
4df2faf4
DV
3279}
3280
9ce079e4
CW
3281static void i965_write_fence_reg(struct drm_device *dev, int reg,
3282 struct drm_i915_gem_object *obj)
de151cf6 3283{
3e31c6c0 3284 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3285 int fence_reg;
3286 int fence_pitch_shift;
de151cf6 3287
56c844e5
ID
3288 if (INTEL_INFO(dev)->gen >= 6) {
3289 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3290 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3291 } else {
3292 fence_reg = FENCE_REG_965_0;
3293 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3294 }
3295
d18b9619
CW
3296 fence_reg += reg * 8;
3297
3298 /* To w/a incoherency with non-atomic 64-bit register updates,
3299 * we split the 64-bit update into two 32-bit writes. In order
3300 * for a partial fence not to be evaluated between writes, we
3301 * precede the update with write to turn off the fence register,
3302 * and only enable the fence as the last step.
3303 *
3304 * For extra levels of paranoia, we make sure each step lands
3305 * before applying the next step.
3306 */
3307 I915_WRITE(fence_reg, 0);
3308 POSTING_READ(fence_reg);
3309
9ce079e4 3310 if (obj) {
f343c5f6 3311 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3312 uint64_t val;
de151cf6 3313
af1a7301
BP
3314 /* Adjust fence size to match tiled area */
3315 if (obj->tiling_mode != I915_TILING_NONE) {
3316 uint32_t row_size = obj->stride *
3317 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3318 size = (size / row_size) * row_size;
3319 }
3320
f343c5f6 3321 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3322 0xfffff000) << 32;
f343c5f6 3323 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3324 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3325 if (obj->tiling_mode == I915_TILING_Y)
3326 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3327 val |= I965_FENCE_REG_VALID;
c6642782 3328
d18b9619
CW
3329 I915_WRITE(fence_reg + 4, val >> 32);
3330 POSTING_READ(fence_reg + 4);
3331
3332 I915_WRITE(fence_reg + 0, val);
3333 POSTING_READ(fence_reg);
3334 } else {
3335 I915_WRITE(fence_reg + 4, 0);
3336 POSTING_READ(fence_reg + 4);
3337 }
de151cf6
JB
3338}
3339
9ce079e4
CW
3340static void i915_write_fence_reg(struct drm_device *dev, int reg,
3341 struct drm_i915_gem_object *obj)
de151cf6 3342{
3e31c6c0 3343 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3344 u32 val;
de151cf6 3345
9ce079e4 3346 if (obj) {
f343c5f6 3347 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3348 int pitch_val;
3349 int tile_width;
c6642782 3350
f343c5f6 3351 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3352 (size & -size) != size ||
f343c5f6
BW
3353 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3354 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3355 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3356
9ce079e4
CW
3357 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3358 tile_width = 128;
3359 else
3360 tile_width = 512;
3361
3362 /* Note: pitch better be a power of two tile widths */
3363 pitch_val = obj->stride / tile_width;
3364 pitch_val = ffs(pitch_val) - 1;
3365
f343c5f6 3366 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3367 if (obj->tiling_mode == I915_TILING_Y)
3368 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3369 val |= I915_FENCE_SIZE_BITS(size);
3370 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3371 val |= I830_FENCE_REG_VALID;
3372 } else
3373 val = 0;
3374
3375 if (reg < 8)
3376 reg = FENCE_REG_830_0 + reg * 4;
3377 else
3378 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3379
3380 I915_WRITE(reg, val);
3381 POSTING_READ(reg);
de151cf6
JB
3382}
3383
9ce079e4
CW
3384static void i830_write_fence_reg(struct drm_device *dev, int reg,
3385 struct drm_i915_gem_object *obj)
de151cf6 3386{
3e31c6c0 3387 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3388 uint32_t val;
de151cf6 3389
9ce079e4 3390 if (obj) {
f343c5f6 3391 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3392 uint32_t pitch_val;
de151cf6 3393
f343c5f6 3394 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3395 (size & -size) != size ||
f343c5f6
BW
3396 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3397 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3398 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3399
9ce079e4
CW
3400 pitch_val = obj->stride / 128;
3401 pitch_val = ffs(pitch_val) - 1;
de151cf6 3402
f343c5f6 3403 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3404 if (obj->tiling_mode == I915_TILING_Y)
3405 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3406 val |= I830_FENCE_SIZE_BITS(size);
3407 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3408 val |= I830_FENCE_REG_VALID;
3409 } else
3410 val = 0;
c6642782 3411
9ce079e4
CW
3412 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3413 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3414}
3415
d0a57789
CW
3416inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3417{
3418 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3419}
3420
9ce079e4
CW
3421static void i915_gem_write_fence(struct drm_device *dev, int reg,
3422 struct drm_i915_gem_object *obj)
3423{
d0a57789
CW
3424 struct drm_i915_private *dev_priv = dev->dev_private;
3425
3426 /* Ensure that all CPU reads are completed before installing a fence
3427 * and all writes before removing the fence.
3428 */
3429 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3430 mb();
3431
94a335db
DV
3432 WARN(obj && (!obj->stride || !obj->tiling_mode),
3433 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3434 obj->stride, obj->tiling_mode);
3435
ce38ab05
RV
3436 if (IS_GEN2(dev))
3437 i830_write_fence_reg(dev, reg, obj);
3438 else if (IS_GEN3(dev))
3439 i915_write_fence_reg(dev, reg, obj);
3440 else if (INTEL_INFO(dev)->gen >= 4)
3441 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3442
3443 /* And similarly be paranoid that no direct access to this region
3444 * is reordered to before the fence is installed.
3445 */
3446 if (i915_gem_object_needs_mb(obj))
3447 mb();
de151cf6
JB
3448}
3449
61050808
CW
3450static inline int fence_number(struct drm_i915_private *dev_priv,
3451 struct drm_i915_fence_reg *fence)
3452{
3453 return fence - dev_priv->fence_regs;
3454}
3455
3456static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3457 struct drm_i915_fence_reg *fence,
3458 bool enable)
3459{
2dc8aae0 3460 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3461 int reg = fence_number(dev_priv, fence);
3462
3463 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3464
3465 if (enable) {
46a0b638 3466 obj->fence_reg = reg;
61050808
CW
3467 fence->obj = obj;
3468 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3469 } else {
3470 obj->fence_reg = I915_FENCE_REG_NONE;
3471 fence->obj = NULL;
3472 list_del_init(&fence->lru_list);
3473 }
94a335db 3474 obj->fence_dirty = false;
61050808
CW
3475}
3476
d9e86c0e 3477static int
d0a57789 3478i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3479{
97b2a6a1 3480 if (obj->last_fenced_req) {
a4b3a571 3481 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3482 if (ret)
3483 return ret;
d9e86c0e 3484
97b2a6a1 3485 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3486 }
3487
3488 return 0;
3489}
3490
3491int
3492i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3493{
61050808 3494 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3495 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3496 int ret;
3497
d0a57789 3498 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3499 if (ret)
3500 return ret;
3501
61050808
CW
3502 if (obj->fence_reg == I915_FENCE_REG_NONE)
3503 return 0;
d9e86c0e 3504
f9c513e9
CW
3505 fence = &dev_priv->fence_regs[obj->fence_reg];
3506
aff10b30
DV
3507 if (WARN_ON(fence->pin_count))
3508 return -EBUSY;
3509
61050808 3510 i915_gem_object_fence_lost(obj);
f9c513e9 3511 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3512
3513 return 0;
3514}
3515
3516static struct drm_i915_fence_reg *
a360bb1a 3517i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3518{
ae3db24a 3519 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3520 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3521 int i;
ae3db24a
DV
3522
3523 /* First try to find a free reg */
d9e86c0e 3524 avail = NULL;
ae3db24a
DV
3525 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3526 reg = &dev_priv->fence_regs[i];
3527 if (!reg->obj)
d9e86c0e 3528 return reg;
ae3db24a 3529
1690e1eb 3530 if (!reg->pin_count)
d9e86c0e 3531 avail = reg;
ae3db24a
DV
3532 }
3533
d9e86c0e 3534 if (avail == NULL)
5dce5b93 3535 goto deadlock;
ae3db24a
DV
3536
3537 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3538 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3539 if (reg->pin_count)
ae3db24a
DV
3540 continue;
3541
8fe301ad 3542 return reg;
ae3db24a
DV
3543 }
3544
5dce5b93
CW
3545deadlock:
3546 /* Wait for completion of pending flips which consume fences */
3547 if (intel_has_pending_fb_unpin(dev))
3548 return ERR_PTR(-EAGAIN);
3549
3550 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3551}
3552
de151cf6 3553/**
9a5a53b3 3554 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3555 * @obj: object to map through a fence reg
3556 *
3557 * When mapping objects through the GTT, userspace wants to be able to write
3558 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3559 * This function walks the fence regs looking for a free one for @obj,
3560 * stealing one if it can't find any.
3561 *
3562 * It then sets up the reg based on the object's properties: address, pitch
3563 * and tiling format.
9a5a53b3
CW
3564 *
3565 * For an untiled surface, this removes any existing fence.
de151cf6 3566 */
8c4b8c3f 3567int
06d98131 3568i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3569{
05394f39 3570 struct drm_device *dev = obj->base.dev;
79e53945 3571 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3572 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3573 struct drm_i915_fence_reg *reg;
ae3db24a 3574 int ret;
de151cf6 3575
14415745
CW
3576 /* Have we updated the tiling parameters upon the object and so
3577 * will need to serialise the write to the associated fence register?
3578 */
5d82e3e6 3579 if (obj->fence_dirty) {
d0a57789 3580 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3581 if (ret)
3582 return ret;
3583 }
9a5a53b3 3584
d9e86c0e 3585 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3586 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3587 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3588 if (!obj->fence_dirty) {
14415745
CW
3589 list_move_tail(&reg->lru_list,
3590 &dev_priv->mm.fence_list);
3591 return 0;
3592 }
3593 } else if (enable) {
e6a84468
CW
3594 if (WARN_ON(!obj->map_and_fenceable))
3595 return -EINVAL;
3596
14415745 3597 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3598 if (IS_ERR(reg))
3599 return PTR_ERR(reg);
d9e86c0e 3600
14415745
CW
3601 if (reg->obj) {
3602 struct drm_i915_gem_object *old = reg->obj;
3603
d0a57789 3604 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3605 if (ret)
3606 return ret;
3607
14415745 3608 i915_gem_object_fence_lost(old);
29c5a587 3609 }
14415745 3610 } else
a09ba7fa 3611 return 0;
a09ba7fa 3612
14415745 3613 i915_gem_object_update_fence(obj, reg, enable);
14415745 3614
9ce079e4 3615 return 0;
de151cf6
JB
3616}
3617
4144f9b5 3618static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3619 unsigned long cache_level)
3620{
4144f9b5 3621 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3622 struct drm_mm_node *other;
3623
4144f9b5
CW
3624 /*
3625 * On some machines we have to be careful when putting differing types
3626 * of snoopable memory together to avoid the prefetcher crossing memory
3627 * domains and dying. During vm initialisation, we decide whether or not
3628 * these constraints apply and set the drm_mm.color_adjust
3629 * appropriately.
42d6ab48 3630 */
4144f9b5 3631 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3632 return true;
3633
c6cfb325 3634 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3635 return true;
3636
3637 if (list_empty(&gtt_space->node_list))
3638 return true;
3639
3640 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3641 if (other->allocated && !other->hole_follows && other->color != cache_level)
3642 return false;
3643
3644 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3645 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3646 return false;
3647
3648 return true;
3649}
3650
673a394b 3651/**
91e6711e
JL
3652 * Finds free space in the GTT aperture and binds the object or a view of it
3653 * there.
673a394b 3654 */
262de145 3655static struct i915_vma *
07fe0b12
BW
3656i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3657 struct i915_address_space *vm,
ec7adb6e 3658 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3659 unsigned alignment,
ec7adb6e 3660 uint64_t flags)
673a394b 3661{
05394f39 3662 struct drm_device *dev = obj->base.dev;
3e31c6c0 3663 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3664 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3665 unsigned long start =
3666 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3667 unsigned long end =
1ec9e26d 3668 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3669 struct i915_vma *vma;
07f73f69 3670 int ret;
673a394b 3671
91e6711e
JL
3672 if (i915_is_ggtt(vm)) {
3673 u32 view_size;
3674
3675 if (WARN_ON(!ggtt_view))
3676 return ERR_PTR(-EINVAL);
ec7adb6e 3677
91e6711e
JL
3678 view_size = i915_ggtt_view_size(obj, ggtt_view);
3679
3680 fence_size = i915_gem_get_gtt_size(dev,
3681 view_size,
3682 obj->tiling_mode);
3683 fence_alignment = i915_gem_get_gtt_alignment(dev,
3684 view_size,
3685 obj->tiling_mode,
3686 true);
3687 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3688 view_size,
3689 obj->tiling_mode,
3690 false);
3691 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3692 } else {
3693 fence_size = i915_gem_get_gtt_size(dev,
3694 obj->base.size,
3695 obj->tiling_mode);
3696 fence_alignment = i915_gem_get_gtt_alignment(dev,
3697 obj->base.size,
3698 obj->tiling_mode,
3699 true);
3700 unfenced_alignment =
3701 i915_gem_get_gtt_alignment(dev,
3702 obj->base.size,
3703 obj->tiling_mode,
3704 false);
3705 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3706 }
a00b10c3 3707
673a394b 3708 if (alignment == 0)
1ec9e26d 3709 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3710 unfenced_alignment;
1ec9e26d 3711 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3712 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3713 ggtt_view ? ggtt_view->type : 0,
3714 alignment);
262de145 3715 return ERR_PTR(-EINVAL);
673a394b
EA
3716 }
3717
91e6711e
JL
3718 /* If binding the object/GGTT view requires more space than the entire
3719 * aperture has, reject it early before evicting everything in a vain
3720 * attempt to find space.
654fc607 3721 */
91e6711e
JL
3722 if (size > end) {
3723 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3724 ggtt_view ? ggtt_view->type : 0,
3725 size,
1ec9e26d 3726 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3727 end);
262de145 3728 return ERR_PTR(-E2BIG);
654fc607
CW
3729 }
3730
37e680a1 3731 ret = i915_gem_object_get_pages(obj);
6c085a72 3732 if (ret)
262de145 3733 return ERR_PTR(ret);
6c085a72 3734
fbdda6fb
CW
3735 i915_gem_object_pin_pages(obj);
3736
ec7adb6e
JL
3737 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3738 i915_gem_obj_lookup_or_create_vma(obj, vm);
3739
262de145 3740 if (IS_ERR(vma))
bc6bc15b 3741 goto err_unpin;
2f633156 3742
0a9ae0d7 3743search_free:
07fe0b12 3744 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3745 size, alignment,
d23db88c
CW
3746 obj->cache_level,
3747 start, end,
62347f9e
LK
3748 DRM_MM_SEARCH_DEFAULT,
3749 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3750 if (ret) {
f6cd1f15 3751 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3752 obj->cache_level,
3753 start, end,
3754 flags);
dc9dd7a2
CW
3755 if (ret == 0)
3756 goto search_free;
9731129c 3757
bc6bc15b 3758 goto err_free_vma;
673a394b 3759 }
4144f9b5 3760 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3761 ret = -EINVAL;
bc6bc15b 3762 goto err_remove_node;
673a394b
EA
3763 }
3764
74163907 3765 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3766 if (ret)
bc6bc15b 3767 goto err_remove_node;
673a394b 3768
fe14d5f4 3769 trace_i915_vma_bind(vma, flags);
0875546c 3770 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
3771 if (ret)
3772 goto err_finish_gtt;
3773
35c20a60 3774 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3775 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3776
262de145 3777 return vma;
2f633156 3778
fe14d5f4
TU
3779err_finish_gtt:
3780 i915_gem_gtt_finish_object(obj);
bc6bc15b 3781err_remove_node:
6286ef9b 3782 drm_mm_remove_node(&vma->node);
bc6bc15b 3783err_free_vma:
2f633156 3784 i915_gem_vma_destroy(vma);
262de145 3785 vma = ERR_PTR(ret);
bc6bc15b 3786err_unpin:
2f633156 3787 i915_gem_object_unpin_pages(obj);
262de145 3788 return vma;
673a394b
EA
3789}
3790
000433b6 3791bool
2c22569b
CW
3792i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3793 bool force)
673a394b 3794{
673a394b
EA
3795 /* If we don't have a page list set up, then we're not pinned
3796 * to GPU, and we can ignore the cache flush because it'll happen
3797 * again at bind time.
3798 */
05394f39 3799 if (obj->pages == NULL)
000433b6 3800 return false;
673a394b 3801
769ce464
ID
3802 /*
3803 * Stolen memory is always coherent with the GPU as it is explicitly
3804 * marked as wc by the system, or the system is cache-coherent.
3805 */
6a2c4232 3806 if (obj->stolen || obj->phys_handle)
000433b6 3807 return false;
769ce464 3808
9c23f7fc
CW
3809 /* If the GPU is snooping the contents of the CPU cache,
3810 * we do not need to manually clear the CPU cache lines. However,
3811 * the caches are only snooped when the render cache is
3812 * flushed/invalidated. As we always have to emit invalidations
3813 * and flushes when moving into and out of the RENDER domain, correct
3814 * snooping behaviour occurs naturally as the result of our domain
3815 * tracking.
3816 */
0f71979a
CW
3817 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3818 obj->cache_dirty = true;
000433b6 3819 return false;
0f71979a 3820 }
9c23f7fc 3821
1c5d22f7 3822 trace_i915_gem_object_clflush(obj);
9da3da66 3823 drm_clflush_sg(obj->pages);
0f71979a 3824 obj->cache_dirty = false;
000433b6
CW
3825
3826 return true;
e47c68e9
EA
3827}
3828
3829/** Flushes the GTT write domain for the object if it's dirty. */
3830static void
05394f39 3831i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3832{
1c5d22f7
CW
3833 uint32_t old_write_domain;
3834
05394f39 3835 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3836 return;
3837
63256ec5 3838 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3839 * to it immediately go to main memory as far as we know, so there's
3840 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3841 *
3842 * However, we do have to enforce the order so that all writes through
3843 * the GTT land before any writes to the device, such as updates to
3844 * the GATT itself.
e47c68e9 3845 */
63256ec5
CW
3846 wmb();
3847
05394f39
CW
3848 old_write_domain = obj->base.write_domain;
3849 obj->base.write_domain = 0;
1c5d22f7 3850
f99d7069
DV
3851 intel_fb_obj_flush(obj, false);
3852
1c5d22f7 3853 trace_i915_gem_object_change_domain(obj,
05394f39 3854 obj->base.read_domains,
1c5d22f7 3855 old_write_domain);
e47c68e9
EA
3856}
3857
3858/** Flushes the CPU write domain for the object if it's dirty. */
3859static void
e62b59e4 3860i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3861{
1c5d22f7 3862 uint32_t old_write_domain;
e47c68e9 3863
05394f39 3864 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3865 return;
3866
e62b59e4 3867 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3868 i915_gem_chipset_flush(obj->base.dev);
3869
05394f39
CW
3870 old_write_domain = obj->base.write_domain;
3871 obj->base.write_domain = 0;
1c5d22f7 3872
f99d7069
DV
3873 intel_fb_obj_flush(obj, false);
3874
1c5d22f7 3875 trace_i915_gem_object_change_domain(obj,
05394f39 3876 obj->base.read_domains,
1c5d22f7 3877 old_write_domain);
e47c68e9
EA
3878}
3879
2ef7eeaa
EA
3880/**
3881 * Moves a single object to the GTT read, and possibly write domain.
3882 *
3883 * This function returns when the move is complete, including waiting on
3884 * flushes to occur.
3885 */
79e53945 3886int
2021746e 3887i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3888{
1c5d22f7 3889 uint32_t old_write_domain, old_read_domains;
43566ded 3890 struct i915_vma *vma;
e47c68e9 3891 int ret;
2ef7eeaa 3892
8d7e3de1
CW
3893 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3894 return 0;
3895
0201f1ec 3896 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3897 if (ret)
3898 return ret;
3899
43566ded
CW
3900 /* Flush and acquire obj->pages so that we are coherent through
3901 * direct access in memory with previous cached writes through
3902 * shmemfs and that our cache domain tracking remains valid.
3903 * For example, if the obj->filp was moved to swap without us
3904 * being notified and releasing the pages, we would mistakenly
3905 * continue to assume that the obj remained out of the CPU cached
3906 * domain.
3907 */
3908 ret = i915_gem_object_get_pages(obj);
3909 if (ret)
3910 return ret;
3911
e62b59e4 3912 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3913
d0a57789
CW
3914 /* Serialise direct access to this object with the barriers for
3915 * coherent writes from the GPU, by effectively invalidating the
3916 * GTT domain upon first access.
3917 */
3918 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3919 mb();
3920
05394f39
CW
3921 old_write_domain = obj->base.write_domain;
3922 old_read_domains = obj->base.read_domains;
1c5d22f7 3923
e47c68e9
EA
3924 /* It should now be out of any other write domains, and we can update
3925 * the domain values for our changes.
3926 */
05394f39
CW
3927 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3928 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3929 if (write) {
05394f39
CW
3930 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3931 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3932 obj->dirty = 1;
2ef7eeaa
EA
3933 }
3934
f99d7069 3935 if (write)
a4001f1b 3936 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
f99d7069 3937
1c5d22f7
CW
3938 trace_i915_gem_object_change_domain(obj,
3939 old_read_domains,
3940 old_write_domain);
3941
8325a09d 3942 /* And bump the LRU for this access */
43566ded
CW
3943 vma = i915_gem_obj_to_ggtt(obj);
3944 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3945 list_move_tail(&vma->mm_list,
43566ded 3946 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3947
e47c68e9
EA
3948 return 0;
3949}
3950
e4ffd173
CW
3951int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3952 enum i915_cache_level cache_level)
3953{
7bddb01f 3954 struct drm_device *dev = obj->base.dev;
df6f783a 3955 struct i915_vma *vma, *next;
e4ffd173
CW
3956 int ret;
3957
3958 if (obj->cache_level == cache_level)
3959 return 0;
3960
d7f46fc4 3961 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3962 DRM_DEBUG("can not change the cache level of pinned objects\n");
3963 return -EBUSY;
3964 }
3965
df6f783a 3966 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3967 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3968 ret = i915_vma_unbind(vma);
3089c6f2
BW
3969 if (ret)
3970 return ret;
3089c6f2 3971 }
42d6ab48
CW
3972 }
3973
3089c6f2 3974 if (i915_gem_obj_bound_any(obj)) {
2e2f351d 3975 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3976 if (ret)
3977 return ret;
3978
3979 i915_gem_object_finish_gtt(obj);
3980
3981 /* Before SandyBridge, you could not use tiling or fence
3982 * registers with snooped memory, so relinquish any fences
3983 * currently pointing to our region in the aperture.
3984 */
42d6ab48 3985 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3986 ret = i915_gem_object_put_fence(obj);
3987 if (ret)
3988 return ret;
3989 }
3990
6f65e29a 3991 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3992 if (drm_mm_node_allocated(&vma->node)) {
3993 ret = i915_vma_bind(vma, cache_level,
0875546c 3994 PIN_UPDATE);
fe14d5f4
TU
3995 if (ret)
3996 return ret;
3997 }
e4ffd173
CW
3998 }
3999
2c22569b
CW
4000 list_for_each_entry(vma, &obj->vma_list, vma_link)
4001 vma->node.color = cache_level;
4002 obj->cache_level = cache_level;
4003
0f71979a
CW
4004 if (obj->cache_dirty &&
4005 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4006 cpu_write_needs_clflush(obj)) {
4007 if (i915_gem_clflush_object(obj, true))
4008 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
4009 }
4010
e4ffd173
CW
4011 return 0;
4012}
4013
199adf40
BW
4014int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4015 struct drm_file *file)
e6994aee 4016{
199adf40 4017 struct drm_i915_gem_caching *args = data;
e6994aee 4018 struct drm_i915_gem_object *obj;
e6994aee
CW
4019
4020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
4021 if (&obj->base == NULL)
4022 return -ENOENT;
e6994aee 4023
651d794f
CW
4024 switch (obj->cache_level) {
4025 case I915_CACHE_LLC:
4026 case I915_CACHE_L3_LLC:
4027 args->caching = I915_CACHING_CACHED;
4028 break;
4029
4257d3ba
CW
4030 case I915_CACHE_WT:
4031 args->caching = I915_CACHING_DISPLAY;
4032 break;
4033
651d794f
CW
4034 default:
4035 args->caching = I915_CACHING_NONE;
4036 break;
4037 }
e6994aee 4038
432be69d
CW
4039 drm_gem_object_unreference_unlocked(&obj->base);
4040 return 0;
e6994aee
CW
4041}
4042
199adf40
BW
4043int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4044 struct drm_file *file)
e6994aee 4045{
199adf40 4046 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4047 struct drm_i915_gem_object *obj;
4048 enum i915_cache_level level;
4049 int ret;
4050
199adf40
BW
4051 switch (args->caching) {
4052 case I915_CACHING_NONE:
e6994aee
CW
4053 level = I915_CACHE_NONE;
4054 break;
199adf40 4055 case I915_CACHING_CACHED:
e6994aee
CW
4056 level = I915_CACHE_LLC;
4057 break;
4257d3ba
CW
4058 case I915_CACHING_DISPLAY:
4059 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4060 break;
e6994aee
CW
4061 default:
4062 return -EINVAL;
4063 }
4064
3bc2913e
BW
4065 ret = i915_mutex_lock_interruptible(dev);
4066 if (ret)
4067 return ret;
4068
e6994aee
CW
4069 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4070 if (&obj->base == NULL) {
4071 ret = -ENOENT;
4072 goto unlock;
4073 }
4074
4075 ret = i915_gem_object_set_cache_level(obj, level);
4076
4077 drm_gem_object_unreference(&obj->base);
4078unlock:
4079 mutex_unlock(&dev->struct_mutex);
4080 return ret;
4081}
4082
b9241ea3 4083/*
2da3b9b9
CW
4084 * Prepare buffer for display plane (scanout, cursors, etc).
4085 * Can be called from an uninterruptible phase (modesetting) and allows
4086 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4087 */
4088int
2da3b9b9
CW
4089i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4090 u32 alignment,
e6617330
TU
4091 struct intel_engine_cs *pipelined,
4092 const struct i915_ggtt_view *view)
b9241ea3 4093{
2da3b9b9 4094 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4095 int ret;
4096
b4716185
CW
4097 ret = i915_gem_object_sync(obj, pipelined);
4098 if (ret)
4099 return ret;
b9241ea3 4100
cc98b413
CW
4101 /* Mark the pin_display early so that we account for the
4102 * display coherency whilst setting up the cache domains.
4103 */
8a0c39b1 4104 obj->pin_display++;
cc98b413 4105
a7ef0640
EA
4106 /* The display engine is not coherent with the LLC cache on gen6. As
4107 * a result, we make sure that the pinning that is about to occur is
4108 * done with uncached PTEs. This is lowest common denominator for all
4109 * chipsets.
4110 *
4111 * However for gen6+, we could do better by using the GFDT bit instead
4112 * of uncaching, which would allow us to flush all the LLC-cached data
4113 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4114 */
651d794f
CW
4115 ret = i915_gem_object_set_cache_level(obj,
4116 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4117 if (ret)
cc98b413 4118 goto err_unpin_display;
a7ef0640 4119
2da3b9b9
CW
4120 /* As the user may map the buffer once pinned in the display plane
4121 * (e.g. libkms for the bootup splash), we have to ensure that we
4122 * always use map_and_fenceable for all scanout buffers.
4123 */
50470bb0
TU
4124 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4125 view->type == I915_GGTT_VIEW_NORMAL ?
4126 PIN_MAPPABLE : 0);
2da3b9b9 4127 if (ret)
cc98b413 4128 goto err_unpin_display;
2da3b9b9 4129
e62b59e4 4130 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4131
2da3b9b9 4132 old_write_domain = obj->base.write_domain;
05394f39 4133 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4134
4135 /* It should now be out of any other write domains, and we can update
4136 * the domain values for our changes.
4137 */
e5f1d962 4138 obj->base.write_domain = 0;
05394f39 4139 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4140
4141 trace_i915_gem_object_change_domain(obj,
4142 old_read_domains,
2da3b9b9 4143 old_write_domain);
b9241ea3
ZW
4144
4145 return 0;
cc98b413
CW
4146
4147err_unpin_display:
8a0c39b1 4148 obj->pin_display--;
cc98b413
CW
4149 return ret;
4150}
4151
4152void
e6617330
TU
4153i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4154 const struct i915_ggtt_view *view)
cc98b413 4155{
8a0c39b1
TU
4156 if (WARN_ON(obj->pin_display == 0))
4157 return;
4158
e6617330
TU
4159 i915_gem_object_ggtt_unpin_view(obj, view);
4160
8a0c39b1 4161 obj->pin_display--;
b9241ea3
ZW
4162}
4163
e47c68e9
EA
4164/**
4165 * Moves a single object to the CPU read, and possibly write domain.
4166 *
4167 * This function returns when the move is complete, including waiting on
4168 * flushes to occur.
4169 */
dabdfe02 4170int
919926ae 4171i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4172{
1c5d22f7 4173 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4174 int ret;
4175
8d7e3de1
CW
4176 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4177 return 0;
4178
0201f1ec 4179 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4180 if (ret)
4181 return ret;
4182
e47c68e9 4183 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4184
05394f39
CW
4185 old_write_domain = obj->base.write_domain;
4186 old_read_domains = obj->base.read_domains;
1c5d22f7 4187
e47c68e9 4188 /* Flush the CPU cache if it's still invalid. */
05394f39 4189 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4190 i915_gem_clflush_object(obj, false);
2ef7eeaa 4191
05394f39 4192 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4193 }
4194
4195 /* It should now be out of any other write domains, and we can update
4196 * the domain values for our changes.
4197 */
05394f39 4198 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4199
4200 /* If we're writing through the CPU, then the GPU read domains will
4201 * need to be invalidated at next use.
4202 */
4203 if (write) {
05394f39
CW
4204 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4205 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4206 }
2ef7eeaa 4207
f99d7069 4208 if (write)
a4001f1b 4209 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
f99d7069 4210
1c5d22f7
CW
4211 trace_i915_gem_object_change_domain(obj,
4212 old_read_domains,
4213 old_write_domain);
4214
2ef7eeaa
EA
4215 return 0;
4216}
4217
673a394b
EA
4218/* Throttle our rendering by waiting until the ring has completed our requests
4219 * emitted over 20 msec ago.
4220 *
b962442e
EA
4221 * Note that if we were to use the current jiffies each time around the loop,
4222 * we wouldn't escape the function with any frames outstanding if the time to
4223 * render a frame was over 20ms.
4224 *
673a394b
EA
4225 * This should get us reasonable parallelism between CPU and GPU but also
4226 * relatively low latency when blocking on a particular request to finish.
4227 */
40a5f0de 4228static int
f787a5f5 4229i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4230{
f787a5f5
CW
4231 struct drm_i915_private *dev_priv = dev->dev_private;
4232 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4233 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4234 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4235 unsigned reset_counter;
f787a5f5 4236 int ret;
93533c29 4237
308887aa
DV
4238 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4239 if (ret)
4240 return ret;
4241
4242 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4243 if (ret)
4244 return ret;
e110e8d6 4245
1c25595f 4246 spin_lock(&file_priv->mm.lock);
f787a5f5 4247 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4248 if (time_after_eq(request->emitted_jiffies, recent_enough))
4249 break;
40a5f0de 4250
54fb2411 4251 target = request;
b962442e 4252 }
f69061be 4253 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4254 if (target)
4255 i915_gem_request_reference(target);
1c25595f 4256 spin_unlock(&file_priv->mm.lock);
40a5f0de 4257
54fb2411 4258 if (target == NULL)
f787a5f5 4259 return 0;
2bc43b5c 4260
9c654818 4261 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4262 if (ret == 0)
4263 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4264
41037f9f 4265 i915_gem_request_unreference__unlocked(target);
ff865885 4266
40a5f0de
EA
4267 return ret;
4268}
4269
d23db88c
CW
4270static bool
4271i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4272{
4273 struct drm_i915_gem_object *obj = vma->obj;
4274
4275 if (alignment &&
4276 vma->node.start & (alignment - 1))
4277 return true;
4278
4279 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4280 return true;
4281
4282 if (flags & PIN_OFFSET_BIAS &&
4283 vma->node.start < (flags & PIN_OFFSET_MASK))
4284 return true;
4285
4286 return false;
4287}
4288
ec7adb6e
JL
4289static int
4290i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4291 struct i915_address_space *vm,
4292 const struct i915_ggtt_view *ggtt_view,
4293 uint32_t alignment,
4294 uint64_t flags)
673a394b 4295{
6e7186af 4296 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4297 struct i915_vma *vma;
ef79e17c 4298 unsigned bound;
673a394b
EA
4299 int ret;
4300
6e7186af
BW
4301 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4302 return -ENODEV;
4303
bf3d149b 4304 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4305 return -EINVAL;
07fe0b12 4306
c826c449
CW
4307 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4308 return -EINVAL;
4309
ec7adb6e
JL
4310 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4311 return -EINVAL;
4312
4313 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4314 i915_gem_obj_to_vma(obj, vm);
4315
4316 if (IS_ERR(vma))
4317 return PTR_ERR(vma);
4318
07fe0b12 4319 if (vma) {
d7f46fc4
BW
4320 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4321 return -EBUSY;
4322
d23db88c 4323 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4324 unsigned long offset;
9abc4648 4325 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4326 i915_gem_obj_offset(obj, vm);
d7f46fc4 4327 WARN(vma->pin_count,
ec7adb6e 4328 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4329 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4330 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4331 ggtt_view ? "ggtt" : "ppgtt",
4332 offset,
fe14d5f4 4333 alignment,
d23db88c 4334 !!(flags & PIN_MAPPABLE),
05394f39 4335 obj->map_and_fenceable);
07fe0b12 4336 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4337 if (ret)
4338 return ret;
8ea99c92
DV
4339
4340 vma = NULL;
ac0c6b5a
CW
4341 }
4342 }
4343
ef79e17c 4344 bound = vma ? vma->bound : 0;
8ea99c92 4345 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4346 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4347 flags);
262de145
DV
4348 if (IS_ERR(vma))
4349 return PTR_ERR(vma);
0875546c
DV
4350 } else {
4351 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4352 if (ret)
4353 return ret;
4354 }
74898d7e 4355
91e6711e
JL
4356 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4357 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4358 bool mappable, fenceable;
4359 u32 fence_size, fence_alignment;
4360
4361 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4362 obj->base.size,
4363 obj->tiling_mode);
4364 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4365 obj->base.size,
4366 obj->tiling_mode,
4367 true);
4368
4369 fenceable = (vma->node.size == fence_size &&
4370 (vma->node.start & (fence_alignment - 1)) == 0);
4371
e8dec1dd 4372 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4373 dev_priv->gtt.mappable_end);
4374
4375 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4376
91e6711e
JL
4377 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4378 }
ef79e17c 4379
8ea99c92 4380 vma->pin_count++;
673a394b
EA
4381 return 0;
4382}
4383
ec7adb6e
JL
4384int
4385i915_gem_object_pin(struct drm_i915_gem_object *obj,
4386 struct i915_address_space *vm,
4387 uint32_t alignment,
4388 uint64_t flags)
4389{
4390 return i915_gem_object_do_pin(obj, vm,
4391 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4392 alignment, flags);
4393}
4394
4395int
4396i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4397 const struct i915_ggtt_view *view,
4398 uint32_t alignment,
4399 uint64_t flags)
4400{
4401 if (WARN_ONCE(!view, "no view specified"))
4402 return -EINVAL;
4403
4404 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4405 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4406}
4407
673a394b 4408void
e6617330
TU
4409i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4410 const struct i915_ggtt_view *view)
673a394b 4411{
e6617330 4412 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4413
d7f46fc4 4414 BUG_ON(!vma);
e6617330 4415 WARN_ON(vma->pin_count == 0);
9abc4648 4416 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4417
30154650 4418 --vma->pin_count;
673a394b
EA
4419}
4420
d8ffa60b
DV
4421bool
4422i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4423{
4424 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4425 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4426 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4427
4428 WARN_ON(!ggtt_vma ||
4429 dev_priv->fence_regs[obj->fence_reg].pin_count >
4430 ggtt_vma->pin_count);
4431 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4432 return true;
4433 } else
4434 return false;
4435}
4436
4437void
4438i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4439{
4440 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4441 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4442 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4443 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4444 }
4445}
4446
673a394b
EA
4447int
4448i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4449 struct drm_file *file)
673a394b
EA
4450{
4451 struct drm_i915_gem_busy *args = data;
05394f39 4452 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4453 int ret;
4454
76c1dec1 4455 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4456 if (ret)
76c1dec1 4457 return ret;
673a394b 4458
05394f39 4459 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4460 if (&obj->base == NULL) {
1d7cfea1
CW
4461 ret = -ENOENT;
4462 goto unlock;
673a394b 4463 }
d1b851fc 4464
0be555b6
CW
4465 /* Count all active objects as busy, even if they are currently not used
4466 * by the gpu. Users of this interface expect objects to eventually
4467 * become non-busy without any further actions, therefore emit any
4468 * necessary flushes here.
c4de0a5d 4469 */
30dfebf3 4470 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4471 if (ret)
4472 goto unref;
0be555b6 4473
b4716185
CW
4474 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4475 args->busy = obj->active << 16;
4476 if (obj->last_write_req)
4477 args->busy |= obj->last_write_req->ring->id;
673a394b 4478
b4716185 4479unref:
05394f39 4480 drm_gem_object_unreference(&obj->base);
1d7cfea1 4481unlock:
673a394b 4482 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4483 return ret;
673a394b
EA
4484}
4485
4486int
4487i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4488 struct drm_file *file_priv)
4489{
0206e353 4490 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4491}
4492
3ef94daa
CW
4493int
4494i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4495 struct drm_file *file_priv)
4496{
656bfa3a 4497 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4498 struct drm_i915_gem_madvise *args = data;
05394f39 4499 struct drm_i915_gem_object *obj;
76c1dec1 4500 int ret;
3ef94daa
CW
4501
4502 switch (args->madv) {
4503 case I915_MADV_DONTNEED:
4504 case I915_MADV_WILLNEED:
4505 break;
4506 default:
4507 return -EINVAL;
4508 }
4509
1d7cfea1
CW
4510 ret = i915_mutex_lock_interruptible(dev);
4511 if (ret)
4512 return ret;
4513
05394f39 4514 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4515 if (&obj->base == NULL) {
1d7cfea1
CW
4516 ret = -ENOENT;
4517 goto unlock;
3ef94daa 4518 }
3ef94daa 4519
d7f46fc4 4520 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4521 ret = -EINVAL;
4522 goto out;
3ef94daa
CW
4523 }
4524
656bfa3a
DV
4525 if (obj->pages &&
4526 obj->tiling_mode != I915_TILING_NONE &&
4527 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4528 if (obj->madv == I915_MADV_WILLNEED)
4529 i915_gem_object_unpin_pages(obj);
4530 if (args->madv == I915_MADV_WILLNEED)
4531 i915_gem_object_pin_pages(obj);
4532 }
4533
05394f39
CW
4534 if (obj->madv != __I915_MADV_PURGED)
4535 obj->madv = args->madv;
3ef94daa 4536
6c085a72 4537 /* if the object is no longer attached, discard its backing storage */
be6a0376 4538 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4539 i915_gem_object_truncate(obj);
4540
05394f39 4541 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4542
1d7cfea1 4543out:
05394f39 4544 drm_gem_object_unreference(&obj->base);
1d7cfea1 4545unlock:
3ef94daa 4546 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4547 return ret;
3ef94daa
CW
4548}
4549
37e680a1
CW
4550void i915_gem_object_init(struct drm_i915_gem_object *obj,
4551 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4552{
b4716185
CW
4553 int i;
4554
35c20a60 4555 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4556 for (i = 0; i < I915_NUM_RINGS; i++)
4557 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4558 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4559 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4560 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4561
37e680a1
CW
4562 obj->ops = ops;
4563
0327d6ba
CW
4564 obj->fence_reg = I915_FENCE_REG_NONE;
4565 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4566
4567 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4568}
4569
37e680a1
CW
4570static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4571 .get_pages = i915_gem_object_get_pages_gtt,
4572 .put_pages = i915_gem_object_put_pages_gtt,
4573};
4574
05394f39
CW
4575struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4576 size_t size)
ac52bc56 4577{
c397b908 4578 struct drm_i915_gem_object *obj;
5949eac4 4579 struct address_space *mapping;
1a240d4d 4580 gfp_t mask;
ac52bc56 4581
42dcedd4 4582 obj = i915_gem_object_alloc(dev);
c397b908
DV
4583 if (obj == NULL)
4584 return NULL;
673a394b 4585
c397b908 4586 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4587 i915_gem_object_free(obj);
c397b908
DV
4588 return NULL;
4589 }
673a394b 4590
bed1ea95
CW
4591 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4592 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4593 /* 965gm cannot relocate objects above 4GiB. */
4594 mask &= ~__GFP_HIGHMEM;
4595 mask |= __GFP_DMA32;
4596 }
4597
496ad9aa 4598 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4599 mapping_set_gfp_mask(mapping, mask);
5949eac4 4600
37e680a1 4601 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4602
c397b908
DV
4603 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4604 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4605
3d29b842
ED
4606 if (HAS_LLC(dev)) {
4607 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4608 * cache) for about a 10% performance improvement
4609 * compared to uncached. Graphics requests other than
4610 * display scanout are coherent with the CPU in
4611 * accessing this cache. This means in this mode we
4612 * don't need to clflush on the CPU side, and on the
4613 * GPU side we only need to flush internal caches to
4614 * get data visible to the CPU.
4615 *
4616 * However, we maintain the display planes as UC, and so
4617 * need to rebind when first used as such.
4618 */
4619 obj->cache_level = I915_CACHE_LLC;
4620 } else
4621 obj->cache_level = I915_CACHE_NONE;
4622
d861e338
DV
4623 trace_i915_gem_object_create(obj);
4624
05394f39 4625 return obj;
c397b908
DV
4626}
4627
340fbd8c
CW
4628static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4629{
4630 /* If we are the last user of the backing storage (be it shmemfs
4631 * pages or stolen etc), we know that the pages are going to be
4632 * immediately released. In this case, we can then skip copying
4633 * back the contents from the GPU.
4634 */
4635
4636 if (obj->madv != I915_MADV_WILLNEED)
4637 return false;
4638
4639 if (obj->base.filp == NULL)
4640 return true;
4641
4642 /* At first glance, this looks racy, but then again so would be
4643 * userspace racing mmap against close. However, the first external
4644 * reference to the filp can only be obtained through the
4645 * i915_gem_mmap_ioctl() which safeguards us against the user
4646 * acquiring such a reference whilst we are in the middle of
4647 * freeing the object.
4648 */
4649 return atomic_long_read(&obj->base.filp->f_count) == 1;
4650}
4651
1488fc08 4652void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4653{
1488fc08 4654 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4655 struct drm_device *dev = obj->base.dev;
3e31c6c0 4656 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4657 struct i915_vma *vma, *next;
673a394b 4658
f65c9168
PZ
4659 intel_runtime_pm_get(dev_priv);
4660
26e12f89
CW
4661 trace_i915_gem_object_destroy(obj);
4662
07fe0b12 4663 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4664 int ret;
4665
4666 vma->pin_count = 0;
4667 ret = i915_vma_unbind(vma);
07fe0b12
BW
4668 if (WARN_ON(ret == -ERESTARTSYS)) {
4669 bool was_interruptible;
1488fc08 4670
07fe0b12
BW
4671 was_interruptible = dev_priv->mm.interruptible;
4672 dev_priv->mm.interruptible = false;
1488fc08 4673
07fe0b12 4674 WARN_ON(i915_vma_unbind(vma));
1488fc08 4675
07fe0b12
BW
4676 dev_priv->mm.interruptible = was_interruptible;
4677 }
1488fc08
CW
4678 }
4679
1d64ae71
BW
4680 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4681 * before progressing. */
4682 if (obj->stolen)
4683 i915_gem_object_unpin_pages(obj);
4684
a071fa00
DV
4685 WARN_ON(obj->frontbuffer_bits);
4686
656bfa3a
DV
4687 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4688 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4689 obj->tiling_mode != I915_TILING_NONE)
4690 i915_gem_object_unpin_pages(obj);
4691
401c29f6
BW
4692 if (WARN_ON(obj->pages_pin_count))
4693 obj->pages_pin_count = 0;
340fbd8c 4694 if (discard_backing_storage(obj))
5537252b 4695 obj->madv = I915_MADV_DONTNEED;
37e680a1 4696 i915_gem_object_put_pages(obj);
d8cb5086 4697 i915_gem_object_free_mmap_offset(obj);
de151cf6 4698
9da3da66
CW
4699 BUG_ON(obj->pages);
4700
2f745ad3
CW
4701 if (obj->base.import_attach)
4702 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4703
5cc9ed4b
CW
4704 if (obj->ops->release)
4705 obj->ops->release(obj);
4706
05394f39
CW
4707 drm_gem_object_release(&obj->base);
4708 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4709
05394f39 4710 kfree(obj->bit_17);
42dcedd4 4711 i915_gem_object_free(obj);
f65c9168
PZ
4712
4713 intel_runtime_pm_put(dev_priv);
673a394b
EA
4714}
4715
ec7adb6e
JL
4716struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4717 struct i915_address_space *vm)
e656a6cb
DV
4718{
4719 struct i915_vma *vma;
ec7adb6e
JL
4720 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4721 if (i915_is_ggtt(vma->vm) &&
4722 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4723 continue;
4724 if (vma->vm == vm)
e656a6cb 4725 return vma;
ec7adb6e
JL
4726 }
4727 return NULL;
4728}
4729
4730struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4731 const struct i915_ggtt_view *view)
4732{
4733 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4734 struct i915_vma *vma;
e656a6cb 4735
ec7adb6e
JL
4736 if (WARN_ONCE(!view, "no view specified"))
4737 return ERR_PTR(-EINVAL);
4738
4739 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4740 if (vma->vm == ggtt &&
4741 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4742 return vma;
e656a6cb
DV
4743 return NULL;
4744}
4745
2f633156
BW
4746void i915_gem_vma_destroy(struct i915_vma *vma)
4747{
b9d06dd9 4748 struct i915_address_space *vm = NULL;
2f633156 4749 WARN_ON(vma->node.allocated);
aaa05667
CW
4750
4751 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4752 if (!list_empty(&vma->exec_list))
4753 return;
4754
b9d06dd9 4755 vm = vma->vm;
b9d06dd9 4756
841cd773
DV
4757 if (!i915_is_ggtt(vm))
4758 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4759
8b9c2b94 4760 list_del(&vma->vma_link);
b93dab6e 4761
e20d2ab7 4762 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4763}
4764
e3efda49
CW
4765static void
4766i915_gem_stop_ringbuffers(struct drm_device *dev)
4767{
4768 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4769 struct intel_engine_cs *ring;
e3efda49
CW
4770 int i;
4771
4772 for_each_ring(ring, dev_priv, i)
a83014d3 4773 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4774}
4775
29105ccc 4776int
45c5f202 4777i915_gem_suspend(struct drm_device *dev)
29105ccc 4778{
3e31c6c0 4779 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4780 int ret = 0;
28dfe52a 4781
45c5f202 4782 mutex_lock(&dev->struct_mutex);
b2da9fe5 4783 ret = i915_gpu_idle(dev);
f7403347 4784 if (ret)
45c5f202 4785 goto err;
f7403347 4786
b2da9fe5 4787 i915_gem_retire_requests(dev);
673a394b 4788
e3efda49 4789 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4790 mutex_unlock(&dev->struct_mutex);
4791
737b1506 4792 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4793 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4794 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4795
bdcf120b
CW
4796 /* Assert that we sucessfully flushed all the work and
4797 * reset the GPU back to its idle, low power state.
4798 */
4799 WARN_ON(dev_priv->mm.busy);
4800
673a394b 4801 return 0;
45c5f202
CW
4802
4803err:
4804 mutex_unlock(&dev->struct_mutex);
4805 return ret;
673a394b
EA
4806}
4807
a4872ba6 4808int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4809{
c3787e2e 4810 struct drm_device *dev = ring->dev;
3e31c6c0 4811 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4812 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4813 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4814 int i, ret;
b9524a1e 4815
040d2baa 4816 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4817 return 0;
b9524a1e 4818
c3787e2e
BW
4819 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4820 if (ret)
4821 return ret;
b9524a1e 4822
c3787e2e
BW
4823 /*
4824 * Note: We do not worry about the concurrent register cacheline hang
4825 * here because no other code should access these registers other than
4826 * at initialization time.
4827 */
b9524a1e 4828 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4829 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4830 intel_ring_emit(ring, reg_base + i);
4831 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4832 }
4833
c3787e2e 4834 intel_ring_advance(ring);
b9524a1e 4835
c3787e2e 4836 return ret;
b9524a1e
BW
4837}
4838
f691e2f4
DV
4839void i915_gem_init_swizzling(struct drm_device *dev)
4840{
3e31c6c0 4841 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4842
11782b02 4843 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4844 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4845 return;
4846
4847 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4848 DISP_TILE_SURFACE_SWIZZLING);
4849
11782b02
DV
4850 if (IS_GEN5(dev))
4851 return;
4852
f691e2f4
DV
4853 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4854 if (IS_GEN6(dev))
6b26c86d 4855 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4856 else if (IS_GEN7(dev))
6b26c86d 4857 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4858 else if (IS_GEN8(dev))
4859 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4860 else
4861 BUG();
f691e2f4 4862}
e21af88d 4863
67b1b571
CW
4864static bool
4865intel_enable_blt(struct drm_device *dev)
4866{
4867 if (!HAS_BLT(dev))
4868 return false;
4869
4870 /* The blitter was dysfunctional on early prototypes */
4871 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4872 DRM_INFO("BLT not supported on this pre-production hardware;"
4873 " graphics performance will be degraded.\n");
4874 return false;
4875 }
4876
4877 return true;
4878}
4879
81e7f200
VS
4880static void init_unused_ring(struct drm_device *dev, u32 base)
4881{
4882 struct drm_i915_private *dev_priv = dev->dev_private;
4883
4884 I915_WRITE(RING_CTL(base), 0);
4885 I915_WRITE(RING_HEAD(base), 0);
4886 I915_WRITE(RING_TAIL(base), 0);
4887 I915_WRITE(RING_START(base), 0);
4888}
4889
4890static void init_unused_rings(struct drm_device *dev)
4891{
4892 if (IS_I830(dev)) {
4893 init_unused_ring(dev, PRB1_BASE);
4894 init_unused_ring(dev, SRB0_BASE);
4895 init_unused_ring(dev, SRB1_BASE);
4896 init_unused_ring(dev, SRB2_BASE);
4897 init_unused_ring(dev, SRB3_BASE);
4898 } else if (IS_GEN2(dev)) {
4899 init_unused_ring(dev, SRB0_BASE);
4900 init_unused_ring(dev, SRB1_BASE);
4901 } else if (IS_GEN3(dev)) {
4902 init_unused_ring(dev, PRB1_BASE);
4903 init_unused_ring(dev, PRB2_BASE);
4904 }
4905}
4906
a83014d3 4907int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4908{
4fc7c971 4909 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4910 int ret;
68f95ba9 4911
5c1143bb 4912 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4913 if (ret)
b6913e4b 4914 return ret;
68f95ba9
CW
4915
4916 if (HAS_BSD(dev)) {
5c1143bb 4917 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4918 if (ret)
4919 goto cleanup_render_ring;
d1b851fc 4920 }
68f95ba9 4921
67b1b571 4922 if (intel_enable_blt(dev)) {
549f7365
CW
4923 ret = intel_init_blt_ring_buffer(dev);
4924 if (ret)
4925 goto cleanup_bsd_ring;
4926 }
4927
9a8a2213
BW
4928 if (HAS_VEBOX(dev)) {
4929 ret = intel_init_vebox_ring_buffer(dev);
4930 if (ret)
4931 goto cleanup_blt_ring;
4932 }
4933
845f74a7
ZY
4934 if (HAS_BSD2(dev)) {
4935 ret = intel_init_bsd2_ring_buffer(dev);
4936 if (ret)
4937 goto cleanup_vebox_ring;
4938 }
9a8a2213 4939
99433931 4940 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4941 if (ret)
845f74a7 4942 goto cleanup_bsd2_ring;
4fc7c971
BW
4943
4944 return 0;
4945
845f74a7
ZY
4946cleanup_bsd2_ring:
4947 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4948cleanup_vebox_ring:
4949 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4950cleanup_blt_ring:
4951 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4952cleanup_bsd_ring:
4953 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4954cleanup_render_ring:
4955 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4956
4957 return ret;
4958}
4959
4960int
4961i915_gem_init_hw(struct drm_device *dev)
4962{
3e31c6c0 4963 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4964 struct intel_engine_cs *ring;
35a85ac6 4965 int ret, i;
4fc7c971
BW
4966
4967 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4968 return -EIO;
4969
5e4f5189
CW
4970 /* Double layer security blanket, see i915_gem_init() */
4971 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4972
59124506 4973 if (dev_priv->ellc_size)
05e21cc4 4974 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4975
0bf21347
VS
4976 if (IS_HASWELL(dev))
4977 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4978 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4979
88a2b2a3 4980 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4981 if (IS_IVYBRIDGE(dev)) {
4982 u32 temp = I915_READ(GEN7_MSG_CTL);
4983 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4984 I915_WRITE(GEN7_MSG_CTL, temp);
4985 } else if (INTEL_INFO(dev)->gen >= 7) {
4986 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4987 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4988 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4989 }
88a2b2a3
BW
4990 }
4991
4fc7c971
BW
4992 i915_gem_init_swizzling(dev);
4993
d5abdfda
DV
4994 /*
4995 * At least 830 can leave some of the unused rings
4996 * "active" (ie. head != tail) after resume which
4997 * will prevent c3 entry. Makes sure all unused rings
4998 * are totally idle.
4999 */
5000 init_unused_rings(dev);
5001
35a57ffb
DV
5002 for_each_ring(ring, dev_priv, i) {
5003 ret = ring->init_hw(ring);
5004 if (ret)
5e4f5189 5005 goto out;
35a57ffb 5006 }
99433931 5007
c3787e2e
BW
5008 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5009 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5010
f48a0165 5011 ret = i915_ppgtt_init_hw(dev);
60990320 5012 if (ret && ret != -EIO) {
f48a0165 5013 DRM_ERROR("PPGTT enable failed %d\n", ret);
60990320 5014 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
5015 }
5016
f48a0165 5017 ret = i915_gem_context_enable(dev_priv);
82460d97 5018 if (ret && ret != -EIO) {
f48a0165 5019 DRM_ERROR("Context enable failed %d\n", ret);
82460d97 5020 i915_gem_cleanup_ringbuffer(dev);
f48a0165 5021
5e4f5189 5022 goto out;
b7c36d25 5023 }
e21af88d 5024
5e4f5189
CW
5025out:
5026 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5027 return ret;
8187a2b7
ZN
5028}
5029
1070a42b
CW
5030int i915_gem_init(struct drm_device *dev)
5031{
5032 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
5033 int ret;
5034
127f1003
OM
5035 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5036 i915.enable_execlists);
5037
1070a42b 5038 mutex_lock(&dev->struct_mutex);
d62b4892
JB
5039
5040 if (IS_VALLEYVIEW(dev)) {
5041 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
5042 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5043 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5044 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
5045 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5046 }
5047
a83014d3 5048 if (!i915.enable_execlists) {
f3dc74c0 5049 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
5050 dev_priv->gt.init_rings = i915_gem_init_rings;
5051 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5052 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 5053 } else {
f3dc74c0 5054 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
5055 dev_priv->gt.init_rings = intel_logical_rings_init;
5056 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5057 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
5058 }
5059
5e4f5189
CW
5060 /* This is just a security blanket to placate dragons.
5061 * On some systems, we very sporadically observe that the first TLBs
5062 * used by the CS may be stale, despite us poking the TLB reset. If
5063 * we hold the forcewake during initialisation these problems
5064 * just magically go away.
5065 */
5066 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5067
6c5566a8 5068 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
5069 if (ret)
5070 goto out_unlock;
6c5566a8 5071
d7e5008f 5072 i915_gem_init_global_gtt(dev);
d62b4892 5073
2fa48d8d 5074 ret = i915_gem_context_init(dev);
7bcc3777
JN
5075 if (ret)
5076 goto out_unlock;
2fa48d8d 5077
35a57ffb
DV
5078 ret = dev_priv->gt.init_rings(dev);
5079 if (ret)
7bcc3777 5080 goto out_unlock;
2fa48d8d 5081
1070a42b 5082 ret = i915_gem_init_hw(dev);
60990320
CW
5083 if (ret == -EIO) {
5084 /* Allow ring initialisation to fail by marking the GPU as
5085 * wedged. But we only want to do this where the GPU is angry,
5086 * for all other failure, such as an allocation failure, bail.
5087 */
5088 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5089 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5090 ret = 0;
1070a42b 5091 }
7bcc3777
JN
5092
5093out_unlock:
5e4f5189 5094 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5095 mutex_unlock(&dev->struct_mutex);
1070a42b 5096
60990320 5097 return ret;
1070a42b
CW
5098}
5099
8187a2b7
ZN
5100void
5101i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5102{
3e31c6c0 5103 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 5104 struct intel_engine_cs *ring;
1ec14ad3 5105 int i;
8187a2b7 5106
b4519513 5107 for_each_ring(ring, dev_priv, i)
a83014d3 5108 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
5109}
5110
64193406 5111static void
a4872ba6 5112init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5113{
5114 INIT_LIST_HEAD(&ring->active_list);
5115 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5116}
5117
7e0d96bc
BW
5118void i915_init_vm(struct drm_i915_private *dev_priv,
5119 struct i915_address_space *vm)
fc8c067e 5120{
7e0d96bc
BW
5121 if (!i915_is_ggtt(vm))
5122 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
5123 vm->dev = dev_priv->dev;
5124 INIT_LIST_HEAD(&vm->active_list);
5125 INIT_LIST_HEAD(&vm->inactive_list);
5126 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 5127 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
5128}
5129
673a394b
EA
5130void
5131i915_gem_load(struct drm_device *dev)
5132{
3e31c6c0 5133 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5134 int i;
5135
efab6d8d 5136 dev_priv->objects =
42dcedd4
CW
5137 kmem_cache_create("i915_gem_object",
5138 sizeof(struct drm_i915_gem_object), 0,
5139 SLAB_HWCACHE_ALIGN,
5140 NULL);
e20d2ab7
CW
5141 dev_priv->vmas =
5142 kmem_cache_create("i915_gem_vma",
5143 sizeof(struct i915_vma), 0,
5144 SLAB_HWCACHE_ALIGN,
5145 NULL);
efab6d8d
CW
5146 dev_priv->requests =
5147 kmem_cache_create("i915_gem_request",
5148 sizeof(struct drm_i915_gem_request), 0,
5149 SLAB_HWCACHE_ALIGN,
5150 NULL);
673a394b 5151
fc8c067e
BW
5152 INIT_LIST_HEAD(&dev_priv->vm_list);
5153 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5154
a33afea5 5155 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5156 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5157 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5158 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5159 for (i = 0; i < I915_NUM_RINGS; i++)
5160 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5161 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5162 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5163 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5164 i915_gem_retire_work_handler);
b29c19b6
CW
5165 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5166 i915_gem_idle_work_handler);
1f83fee0 5167 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5168
72bfa19c
CW
5169 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5170
42b5aeab
VS
5171 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5172 dev_priv->num_fence_regs = 32;
5173 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5174 dev_priv->num_fence_regs = 16;
5175 else
5176 dev_priv->num_fence_regs = 8;
5177
eb82289a
YZ
5178 if (intel_vgpu_active(dev))
5179 dev_priv->num_fence_regs =
5180 I915_READ(vgtif_reg(avail_rs.fence_num));
5181
b5aa8a0f 5182 /* Initialize fence registers to zero */
19b2dbde
CW
5183 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5184 i915_gem_restore_fences(dev);
10ed13e4 5185
673a394b 5186 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5187 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5188
ce453d81
CW
5189 dev_priv->mm.interruptible = true;
5190
be6a0376 5191 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5192
5193 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5194}
71acb5eb 5195
f787a5f5 5196void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5197{
f787a5f5 5198 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5199
5200 /* Clean up our request list when the client is going away, so that
5201 * later retire_requests won't dereference our soon-to-be-gone
5202 * file_priv.
5203 */
1c25595f 5204 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5205 while (!list_empty(&file_priv->mm.request_list)) {
5206 struct drm_i915_gem_request *request;
5207
5208 request = list_first_entry(&file_priv->mm.request_list,
5209 struct drm_i915_gem_request,
5210 client_list);
5211 list_del(&request->client_list);
5212 request->file_priv = NULL;
5213 }
1c25595f 5214 spin_unlock(&file_priv->mm.lock);
b29c19b6 5215
1854d5ca
CW
5216 if (!list_empty(&file_priv->rps_boost)) {
5217 mutex_lock(&to_i915(dev)->rps.hw_lock);
5218 list_del(&file_priv->rps_boost);
5219 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5220 }
b29c19b6
CW
5221}
5222
5223int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5224{
5225 struct drm_i915_file_private *file_priv;
e422b888 5226 int ret;
b29c19b6
CW
5227
5228 DRM_DEBUG_DRIVER("\n");
5229
5230 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5231 if (!file_priv)
5232 return -ENOMEM;
5233
5234 file->driver_priv = file_priv;
5235 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5236 file_priv->file = file;
1854d5ca 5237 INIT_LIST_HEAD(&file_priv->rps_boost);
b29c19b6
CW
5238
5239 spin_lock_init(&file_priv->mm.lock);
5240 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5241
e422b888
BW
5242 ret = i915_gem_context_open(dev, file);
5243 if (ret)
5244 kfree(file_priv);
b29c19b6 5245
e422b888 5246 return ret;
b29c19b6
CW
5247}
5248
b680c37a
DV
5249/**
5250 * i915_gem_track_fb - update frontbuffer tracking
5251 * old: current GEM buffer for the frontbuffer slots
5252 * new: new GEM buffer for the frontbuffer slots
5253 * frontbuffer_bits: bitmask of frontbuffer slots
5254 *
5255 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5256 * from @old and setting them in @new. Both @old and @new can be NULL.
5257 */
a071fa00
DV
5258void i915_gem_track_fb(struct drm_i915_gem_object *old,
5259 struct drm_i915_gem_object *new,
5260 unsigned frontbuffer_bits)
5261{
5262 if (old) {
5263 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5264 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5265 old->frontbuffer_bits &= ~frontbuffer_bits;
5266 }
5267
5268 if (new) {
5269 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5270 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5271 new->frontbuffer_bits |= frontbuffer_bits;
5272 }
5273}
5274
a70a3148 5275/* All the new VM stuff */
ec7adb6e
JL
5276unsigned long
5277i915_gem_obj_offset(struct drm_i915_gem_object *o,
5278 struct i915_address_space *vm)
a70a3148
BW
5279{
5280 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5281 struct i915_vma *vma;
5282
896ab1a5 5283 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5284
a70a3148 5285 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5286 if (i915_is_ggtt(vma->vm) &&
5287 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5288 continue;
5289 if (vma->vm == vm)
a70a3148 5290 return vma->node.start;
a70a3148 5291 }
ec7adb6e 5292
f25748ea
DV
5293 WARN(1, "%s vma for this object not found.\n",
5294 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5295 return -1;
5296}
5297
ec7adb6e
JL
5298unsigned long
5299i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5300 const struct i915_ggtt_view *view)
a70a3148 5301{
ec7adb6e 5302 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5303 struct i915_vma *vma;
5304
5305 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5306 if (vma->vm == ggtt &&
5307 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5308 return vma->node.start;
5309
5678ad73 5310 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5311 return -1;
5312}
5313
5314bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5315 struct i915_address_space *vm)
5316{
5317 struct i915_vma *vma;
5318
5319 list_for_each_entry(vma, &o->vma_list, vma_link) {
5320 if (i915_is_ggtt(vma->vm) &&
5321 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5322 continue;
5323 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5324 return true;
5325 }
5326
5327 return false;
5328}
5329
5330bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5331 const struct i915_ggtt_view *view)
ec7adb6e
JL
5332{
5333 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5334 struct i915_vma *vma;
5335
5336 list_for_each_entry(vma, &o->vma_list, vma_link)
5337 if (vma->vm == ggtt &&
9abc4648 5338 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5339 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5340 return true;
5341
5342 return false;
5343}
5344
5345bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5346{
5a1d5eb0 5347 struct i915_vma *vma;
a70a3148 5348
5a1d5eb0
CW
5349 list_for_each_entry(vma, &o->vma_list, vma_link)
5350 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5351 return true;
5352
5353 return false;
5354}
5355
5356unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5357 struct i915_address_space *vm)
5358{
5359 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5360 struct i915_vma *vma;
5361
896ab1a5 5362 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5363
5364 BUG_ON(list_empty(&o->vma_list));
5365
ec7adb6e
JL
5366 list_for_each_entry(vma, &o->vma_list, vma_link) {
5367 if (i915_is_ggtt(vma->vm) &&
5368 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5369 continue;
a70a3148
BW
5370 if (vma->vm == vm)
5371 return vma->node.size;
ec7adb6e 5372 }
a70a3148
BW
5373 return 0;
5374}
5375
ec7adb6e 5376bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5377{
5378 struct i915_vma *vma;
a6631ae1 5379 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5380 if (vma->pin_count > 0)
5381 return true;
a6631ae1 5382
ec7adb6e 5383 return false;
5c2abbea 5384}
ec7adb6e 5385
This page took 1.173291 seconds and 5 git commands to generate.