drm/i915: Rename ring->outstanding_lazy_request
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12
BW
43static __must_check int
44i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
45 struct i915_address_space *vm,
46 unsigned alignment,
47 bool map_and_fenceable,
48 bool nonblocking);
05394f39
CW
49static int i915_gem_phys_pwrite(struct drm_device *dev,
50 struct drm_i915_gem_object *obj,
71acb5eb 51 struct drm_i915_gem_pwrite *args,
05394f39 52 struct drm_file *file);
673a394b 53
61050808
CW
54static void i915_gem_write_fence(struct drm_device *dev, int reg,
55 struct drm_i915_gem_object *obj);
56static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57 struct drm_i915_fence_reg *fence,
58 bool enable);
59
17250b71 60static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 61 struct shrink_control *sc);
6c085a72
CW
62static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
63static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 64static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 202 if (obj->pin_count)
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
42dcedd4
CW
212void *i915_gem_object_alloc(struct drm_device *dev)
213{
214 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 215 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
216}
217
218void i915_gem_object_free(struct drm_i915_gem_object *obj)
219{
220 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221 kmem_cache_free(dev_priv->slab, obj);
222}
223
ff72145b
DA
224static int
225i915_gem_create(struct drm_file *file,
226 struct drm_device *dev,
227 uint64_t size,
228 uint32_t *handle_p)
673a394b 229{
05394f39 230 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
231 int ret;
232 u32 handle;
673a394b 233
ff72145b 234 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
235 if (size == 0)
236 return -EINVAL;
673a394b
EA
237
238 /* Allocate the new object */
ff72145b 239 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
240 if (obj == NULL)
241 return -ENOMEM;
242
05394f39 243 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 244 /* drop reference from allocate - handle holds it now */
d861e338
DV
245 drm_gem_object_unreference_unlocked(&obj->base);
246 if (ret)
247 return ret;
202f2fef 248
ff72145b 249 *handle_p = handle;
673a394b
EA
250 return 0;
251}
252
ff72145b
DA
253int
254i915_gem_dumb_create(struct drm_file *file,
255 struct drm_device *dev,
256 struct drm_mode_create_dumb *args)
257{
258 /* have to work out size/pitch and return them */
ed0291fd 259 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
260 args->size = args->pitch * args->height;
261 return i915_gem_create(file, dev,
262 args->size, &args->handle);
263}
264
ff72145b
DA
265/**
266 * Creates a new mm object and returns a handle to it.
267 */
268int
269i915_gem_create_ioctl(struct drm_device *dev, void *data,
270 struct drm_file *file)
271{
272 struct drm_i915_gem_create *args = data;
63ed2cb2 273
ff72145b
DA
274 return i915_gem_create(file, dev,
275 args->size, &args->handle);
276}
277
8461d226
DV
278static inline int
279__copy_to_user_swizzled(char __user *cpu_vaddr,
280 const char *gpu_vaddr, int gpu_offset,
281 int length)
282{
283 int ret, cpu_offset = 0;
284
285 while (length > 0) {
286 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287 int this_length = min(cacheline_end - gpu_offset, length);
288 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291 gpu_vaddr + swizzled_gpu_offset,
292 this_length);
293 if (ret)
294 return ret + length;
295
296 cpu_offset += this_length;
297 gpu_offset += this_length;
298 length -= this_length;
299 }
300
301 return 0;
302}
303
8c59967c 304static inline int
4f0c7cfb
BW
305__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306 const char __user *cpu_vaddr,
8c59967c
DV
307 int length)
308{
309 int ret, cpu_offset = 0;
310
311 while (length > 0) {
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 int this_length = min(cacheline_end - gpu_offset, length);
314 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317 cpu_vaddr + cpu_offset,
318 this_length);
319 if (ret)
320 return ret + length;
321
322 cpu_offset += this_length;
323 gpu_offset += this_length;
324 length -= this_length;
325 }
326
327 return 0;
328}
329
d174bd64
DV
330/* Per-page copy function for the shmem pread fastpath.
331 * Flushes invalid cachelines before reading the target if
332 * needs_clflush is set. */
eb01459f 333static int
d174bd64
DV
334shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
335 char __user *user_data,
336 bool page_do_bit17_swizzling, bool needs_clflush)
337{
338 char *vaddr;
339 int ret;
340
e7e58eb5 341 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
342 return -EINVAL;
343
344 vaddr = kmap_atomic(page);
345 if (needs_clflush)
346 drm_clflush_virt_range(vaddr + shmem_page_offset,
347 page_length);
348 ret = __copy_to_user_inatomic(user_data,
349 vaddr + shmem_page_offset,
350 page_length);
351 kunmap_atomic(vaddr);
352
f60d7f0c 353 return ret ? -EFAULT : 0;
d174bd64
DV
354}
355
23c18c71
DV
356static void
357shmem_clflush_swizzled_range(char *addr, unsigned long length,
358 bool swizzled)
359{
e7e58eb5 360 if (unlikely(swizzled)) {
23c18c71
DV
361 unsigned long start = (unsigned long) addr;
362 unsigned long end = (unsigned long) addr + length;
363
364 /* For swizzling simply ensure that we always flush both
365 * channels. Lame, but simple and it works. Swizzled
366 * pwrite/pread is far from a hotpath - current userspace
367 * doesn't use it at all. */
368 start = round_down(start, 128);
369 end = round_up(end, 128);
370
371 drm_clflush_virt_range((void *)start, end - start);
372 } else {
373 drm_clflush_virt_range(addr, length);
374 }
375
376}
377
d174bd64
DV
378/* Only difference to the fast-path function is that this can handle bit17
379 * and uses non-atomic copy and kmap functions. */
380static int
381shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
382 char __user *user_data,
383 bool page_do_bit17_swizzling, bool needs_clflush)
384{
385 char *vaddr;
386 int ret;
387
388 vaddr = kmap(page);
389 if (needs_clflush)
23c18c71
DV
390 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
391 page_length,
392 page_do_bit17_swizzling);
d174bd64
DV
393
394 if (page_do_bit17_swizzling)
395 ret = __copy_to_user_swizzled(user_data,
396 vaddr, shmem_page_offset,
397 page_length);
398 else
399 ret = __copy_to_user(user_data,
400 vaddr + shmem_page_offset,
401 page_length);
402 kunmap(page);
403
f60d7f0c 404 return ret ? - EFAULT : 0;
d174bd64
DV
405}
406
eb01459f 407static int
dbf7bff0
DV
408i915_gem_shmem_pread(struct drm_device *dev,
409 struct drm_i915_gem_object *obj,
410 struct drm_i915_gem_pread *args,
411 struct drm_file *file)
eb01459f 412{
8461d226 413 char __user *user_data;
eb01459f 414 ssize_t remain;
8461d226 415 loff_t offset;
eb2c0c81 416 int shmem_page_offset, page_length, ret = 0;
8461d226 417 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 418 int prefaulted = 0;
8489731c 419 int needs_clflush = 0;
67d5a50c 420 struct sg_page_iter sg_iter;
eb01459f 421
2bb4629a 422 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
423 remain = args->size;
424
8461d226 425 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 426
8489731c
DV
427 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
428 /* If we're not in the cpu read domain, set ourself into the gtt
429 * read domain and manually flush cachelines (if required). This
430 * optimizes for the case when the gpu will dirty the data
431 * anyway again before the next pread happens. */
c76ce038 432 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
9843877d 433 if (i915_gem_obj_bound_any(obj)) {
6c085a72
CW
434 ret = i915_gem_object_set_to_gtt_domain(obj, false);
435 if (ret)
436 return ret;
437 }
8489731c 438 }
eb01459f 439
f60d7f0c
CW
440 ret = i915_gem_object_get_pages(obj);
441 if (ret)
442 return ret;
443
444 i915_gem_object_pin_pages(obj);
445
8461d226 446 offset = args->offset;
eb01459f 447
67d5a50c
ID
448 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
449 offset >> PAGE_SHIFT) {
2db76d7c 450 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
451
452 if (remain <= 0)
453 break;
454
eb01459f
EA
455 /* Operation in this page
456 *
eb01459f 457 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
458 * page_length = bytes to copy for this page
459 */
c8cbbb8b 460 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
461 page_length = remain;
462 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 464
8461d226
DV
465 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
466 (page_to_phys(page) & (1 << 17)) != 0;
467
d174bd64
DV
468 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
469 user_data, page_do_bit17_swizzling,
470 needs_clflush);
471 if (ret == 0)
472 goto next_page;
dbf7bff0 473
dbf7bff0
DV
474 mutex_unlock(&dev->struct_mutex);
475
0b74b508 476 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 477 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
478 /* Userspace is tricking us, but we've already clobbered
479 * its pages with the prefault and promised to write the
480 * data up to the first fault. Hence ignore any errors
481 * and just continue. */
482 (void)ret;
483 prefaulted = 1;
484 }
eb01459f 485
d174bd64
DV
486 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487 user_data, page_do_bit17_swizzling,
488 needs_clflush);
eb01459f 489
dbf7bff0 490 mutex_lock(&dev->struct_mutex);
f60d7f0c 491
dbf7bff0 492next_page:
e5281ccd 493 mark_page_accessed(page);
e5281ccd 494
f60d7f0c 495 if (ret)
8461d226 496 goto out;
8461d226 497
eb01459f 498 remain -= page_length;
8461d226 499 user_data += page_length;
eb01459f
EA
500 offset += page_length;
501 }
502
4f27b75d 503out:
f60d7f0c
CW
504 i915_gem_object_unpin_pages(obj);
505
eb01459f
EA
506 return ret;
507}
508
673a394b
EA
509/**
510 * Reads data from the object referenced by handle.
511 *
512 * On error, the contents of *data are undefined.
513 */
514int
515i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 516 struct drm_file *file)
673a394b
EA
517{
518 struct drm_i915_gem_pread *args = data;
05394f39 519 struct drm_i915_gem_object *obj;
35b62a89 520 int ret = 0;
673a394b 521
51311d0a
CW
522 if (args->size == 0)
523 return 0;
524
525 if (!access_ok(VERIFY_WRITE,
2bb4629a 526 to_user_ptr(args->data_ptr),
51311d0a
CW
527 args->size))
528 return -EFAULT;
529
4f27b75d 530 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 531 if (ret)
4f27b75d 532 return ret;
673a394b 533
05394f39 534 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 535 if (&obj->base == NULL) {
1d7cfea1
CW
536 ret = -ENOENT;
537 goto unlock;
4f27b75d 538 }
673a394b 539
7dcd2499 540 /* Bounds check source. */
05394f39
CW
541 if (args->offset > obj->base.size ||
542 args->size > obj->base.size - args->offset) {
ce9d419d 543 ret = -EINVAL;
35b62a89 544 goto out;
ce9d419d
CW
545 }
546
1286ff73
DV
547 /* prime objects have no backing filp to GEM pread/pwrite
548 * pages from.
549 */
550 if (!obj->base.filp) {
551 ret = -EINVAL;
552 goto out;
553 }
554
db53a302
CW
555 trace_i915_gem_object_pread(obj, args->offset, args->size);
556
dbf7bff0 557 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 558
35b62a89 559out:
05394f39 560 drm_gem_object_unreference(&obj->base);
1d7cfea1 561unlock:
4f27b75d 562 mutex_unlock(&dev->struct_mutex);
eb01459f 563 return ret;
673a394b
EA
564}
565
0839ccb8
KP
566/* This is the fast write path which cannot handle
567 * page faults in the source data
9b7530cc 568 */
0839ccb8
KP
569
570static inline int
571fast_user_write(struct io_mapping *mapping,
572 loff_t page_base, int page_offset,
573 char __user *user_data,
574 int length)
9b7530cc 575{
4f0c7cfb
BW
576 void __iomem *vaddr_atomic;
577 void *vaddr;
0839ccb8 578 unsigned long unwritten;
9b7530cc 579
3e4d3af5 580 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
581 /* We can use the cpu mem copy function because this is X86. */
582 vaddr = (void __force*)vaddr_atomic + page_offset;
583 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 584 user_data, length);
3e4d3af5 585 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 586 return unwritten;
0839ccb8
KP
587}
588
3de09aa3
EA
589/**
590 * This is the fast pwrite path, where we copy the data directly from the
591 * user into the GTT, uncached.
592 */
673a394b 593static int
05394f39
CW
594i915_gem_gtt_pwrite_fast(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
3de09aa3 596 struct drm_i915_gem_pwrite *args,
05394f39 597 struct drm_file *file)
673a394b 598{
0839ccb8 599 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 600 ssize_t remain;
0839ccb8 601 loff_t offset, page_base;
673a394b 602 char __user *user_data;
935aaa69
DV
603 int page_offset, page_length, ret;
604
c37e2204 605 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
606 if (ret)
607 goto out;
608
609 ret = i915_gem_object_set_to_gtt_domain(obj, true);
610 if (ret)
611 goto out_unpin;
612
613 ret = i915_gem_object_put_fence(obj);
614 if (ret)
615 goto out_unpin;
673a394b 616
2bb4629a 617 user_data = to_user_ptr(args->data_ptr);
673a394b 618 remain = args->size;
673a394b 619
f343c5f6 620 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
621
622 while (remain > 0) {
623 /* Operation in this page
624 *
0839ccb8
KP
625 * page_base = page offset within aperture
626 * page_offset = offset within page
627 * page_length = bytes to copy for this page
673a394b 628 */
c8cbbb8b
CW
629 page_base = offset & PAGE_MASK;
630 page_offset = offset_in_page(offset);
0839ccb8
KP
631 page_length = remain;
632 if ((page_offset + remain) > PAGE_SIZE)
633 page_length = PAGE_SIZE - page_offset;
634
0839ccb8 635 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
636 * source page isn't available. Return the error and we'll
637 * retry in the slow path.
0839ccb8 638 */
5d4545ae 639 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
640 page_offset, user_data, page_length)) {
641 ret = -EFAULT;
642 goto out_unpin;
643 }
673a394b 644
0839ccb8
KP
645 remain -= page_length;
646 user_data += page_length;
647 offset += page_length;
673a394b 648 }
673a394b 649
935aaa69
DV
650out_unpin:
651 i915_gem_object_unpin(obj);
652out:
3de09aa3 653 return ret;
673a394b
EA
654}
655
d174bd64
DV
656/* Per-page copy function for the shmem pwrite fastpath.
657 * Flushes invalid cachelines before writing to the target if
658 * needs_clflush_before is set and flushes out any written cachelines after
659 * writing if needs_clflush is set. */
3043c60c 660static int
d174bd64
DV
661shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
662 char __user *user_data,
663 bool page_do_bit17_swizzling,
664 bool needs_clflush_before,
665 bool needs_clflush_after)
673a394b 666{
d174bd64 667 char *vaddr;
673a394b 668 int ret;
3de09aa3 669
e7e58eb5 670 if (unlikely(page_do_bit17_swizzling))
d174bd64 671 return -EINVAL;
3de09aa3 672
d174bd64
DV
673 vaddr = kmap_atomic(page);
674 if (needs_clflush_before)
675 drm_clflush_virt_range(vaddr + shmem_page_offset,
676 page_length);
677 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
678 user_data,
679 page_length);
680 if (needs_clflush_after)
681 drm_clflush_virt_range(vaddr + shmem_page_offset,
682 page_length);
683 kunmap_atomic(vaddr);
3de09aa3 684
755d2218 685 return ret ? -EFAULT : 0;
3de09aa3
EA
686}
687
d174bd64
DV
688/* Only difference to the fast-path function is that this can handle bit17
689 * and uses non-atomic copy and kmap functions. */
3043c60c 690static int
d174bd64
DV
691shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
692 char __user *user_data,
693 bool page_do_bit17_swizzling,
694 bool needs_clflush_before,
695 bool needs_clflush_after)
673a394b 696{
d174bd64
DV
697 char *vaddr;
698 int ret;
e5281ccd 699
d174bd64 700 vaddr = kmap(page);
e7e58eb5 701 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
702 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
703 page_length,
704 page_do_bit17_swizzling);
d174bd64
DV
705 if (page_do_bit17_swizzling)
706 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
707 user_data,
708 page_length);
d174bd64
DV
709 else
710 ret = __copy_from_user(vaddr + shmem_page_offset,
711 user_data,
712 page_length);
713 if (needs_clflush_after)
23c18c71
DV
714 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
715 page_length,
716 page_do_bit17_swizzling);
d174bd64 717 kunmap(page);
40123c1f 718
755d2218 719 return ret ? -EFAULT : 0;
40123c1f
EA
720}
721
40123c1f 722static int
e244a443
DV
723i915_gem_shmem_pwrite(struct drm_device *dev,
724 struct drm_i915_gem_object *obj,
725 struct drm_i915_gem_pwrite *args,
726 struct drm_file *file)
40123c1f 727{
40123c1f 728 ssize_t remain;
8c59967c
DV
729 loff_t offset;
730 char __user *user_data;
eb2c0c81 731 int shmem_page_offset, page_length, ret = 0;
8c59967c 732 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 733 int hit_slowpath = 0;
58642885
DV
734 int needs_clflush_after = 0;
735 int needs_clflush_before = 0;
67d5a50c 736 struct sg_page_iter sg_iter;
40123c1f 737
2bb4629a 738 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
739 remain = args->size;
740
8c59967c 741 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 742
58642885
DV
743 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744 /* If we're not in the cpu write domain, set ourself into the gtt
745 * write domain and manually flush cachelines (if required). This
746 * optimizes for the case when the gpu will use the data
747 * right away and we therefore have to clflush anyway. */
2c22569b 748 needs_clflush_after = cpu_write_needs_clflush(obj);
9843877d 749 if (i915_gem_obj_bound_any(obj)) {
6c085a72
CW
750 ret = i915_gem_object_set_to_gtt_domain(obj, true);
751 if (ret)
752 return ret;
753 }
58642885 754 }
c76ce038
CW
755 /* Same trick applies to invalidate partially written cachelines read
756 * before writing. */
757 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
758 needs_clflush_before =
759 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 760
755d2218
CW
761 ret = i915_gem_object_get_pages(obj);
762 if (ret)
763 return ret;
764
765 i915_gem_object_pin_pages(obj);
766
673a394b 767 offset = args->offset;
05394f39 768 obj->dirty = 1;
673a394b 769
67d5a50c
ID
770 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
771 offset >> PAGE_SHIFT) {
2db76d7c 772 struct page *page = sg_page_iter_page(&sg_iter);
58642885 773 int partial_cacheline_write;
e5281ccd 774
9da3da66
CW
775 if (remain <= 0)
776 break;
777
40123c1f
EA
778 /* Operation in this page
779 *
40123c1f 780 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
781 * page_length = bytes to copy for this page
782 */
c8cbbb8b 783 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
784
785 page_length = remain;
786 if ((shmem_page_offset + page_length) > PAGE_SIZE)
787 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 788
58642885
DV
789 /* If we don't overwrite a cacheline completely we need to be
790 * careful to have up-to-date data by first clflushing. Don't
791 * overcomplicate things and flush the entire patch. */
792 partial_cacheline_write = needs_clflush_before &&
793 ((shmem_page_offset | page_length)
794 & (boot_cpu_data.x86_clflush_size - 1));
795
8c59967c
DV
796 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
797 (page_to_phys(page) & (1 << 17)) != 0;
798
d174bd64
DV
799 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
800 user_data, page_do_bit17_swizzling,
801 partial_cacheline_write,
802 needs_clflush_after);
803 if (ret == 0)
804 goto next_page;
e244a443
DV
805
806 hit_slowpath = 1;
e244a443 807 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
808 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
809 user_data, page_do_bit17_swizzling,
810 partial_cacheline_write,
811 needs_clflush_after);
40123c1f 812
e244a443 813 mutex_lock(&dev->struct_mutex);
755d2218 814
e244a443 815next_page:
e5281ccd
CW
816 set_page_dirty(page);
817 mark_page_accessed(page);
e5281ccd 818
755d2218 819 if (ret)
8c59967c 820 goto out;
8c59967c 821
40123c1f 822 remain -= page_length;
8c59967c 823 user_data += page_length;
40123c1f 824 offset += page_length;
673a394b
EA
825 }
826
fbd5a26d 827out:
755d2218
CW
828 i915_gem_object_unpin_pages(obj);
829
e244a443 830 if (hit_slowpath) {
8dcf015e
DV
831 /*
832 * Fixup: Flush cpu caches in case we didn't flush the dirty
833 * cachelines in-line while writing and the object moved
834 * out of the cpu write domain while we've dropped the lock.
835 */
836 if (!needs_clflush_after &&
837 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
838 if (i915_gem_clflush_object(obj, obj->pin_display))
839 i915_gem_chipset_flush(dev);
e244a443 840 }
8c59967c 841 }
673a394b 842
58642885 843 if (needs_clflush_after)
e76e9aeb 844 i915_gem_chipset_flush(dev);
58642885 845
40123c1f 846 return ret;
673a394b
EA
847}
848
849/**
850 * Writes data to the object referenced by handle.
851 *
852 * On error, the contents of the buffer that were to be modified are undefined.
853 */
854int
855i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 856 struct drm_file *file)
673a394b
EA
857{
858 struct drm_i915_gem_pwrite *args = data;
05394f39 859 struct drm_i915_gem_object *obj;
51311d0a
CW
860 int ret;
861
862 if (args->size == 0)
863 return 0;
864
865 if (!access_ok(VERIFY_READ,
2bb4629a 866 to_user_ptr(args->data_ptr),
51311d0a
CW
867 args->size))
868 return -EFAULT;
869
0b74b508
XZ
870 if (likely(!i915_prefault_disable)) {
871 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
872 args->size);
873 if (ret)
874 return -EFAULT;
875 }
673a394b 876
fbd5a26d 877 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 878 if (ret)
fbd5a26d 879 return ret;
1d7cfea1 880
05394f39 881 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 882 if (&obj->base == NULL) {
1d7cfea1
CW
883 ret = -ENOENT;
884 goto unlock;
fbd5a26d 885 }
673a394b 886
7dcd2499 887 /* Bounds check destination. */
05394f39
CW
888 if (args->offset > obj->base.size ||
889 args->size > obj->base.size - args->offset) {
ce9d419d 890 ret = -EINVAL;
35b62a89 891 goto out;
ce9d419d
CW
892 }
893
1286ff73
DV
894 /* prime objects have no backing filp to GEM pread/pwrite
895 * pages from.
896 */
897 if (!obj->base.filp) {
898 ret = -EINVAL;
899 goto out;
900 }
901
db53a302
CW
902 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
903
935aaa69 904 ret = -EFAULT;
673a394b
EA
905 /* We can only do the GTT pwrite on untiled buffers, as otherwise
906 * it would end up going through the fenced access, and we'll get
907 * different detiling behavior between reading and writing.
908 * pread/pwrite currently are reading and writing from the CPU
909 * perspective, requiring manual detiling by the client.
910 */
5c0480f2 911 if (obj->phys_obj) {
fbd5a26d 912 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
913 goto out;
914 }
915
2c22569b
CW
916 if (obj->tiling_mode == I915_TILING_NONE &&
917 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
918 cpu_write_needs_clflush(obj)) {
fbd5a26d 919 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
920 /* Note that the gtt paths might fail with non-page-backed user
921 * pointers (e.g. gtt mappings when moving data between
922 * textures). Fallback to the shmem path in that case. */
fbd5a26d 923 }
673a394b 924
86a1ee26 925 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 926 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 927
35b62a89 928out:
05394f39 929 drm_gem_object_unreference(&obj->base);
1d7cfea1 930unlock:
fbd5a26d 931 mutex_unlock(&dev->struct_mutex);
673a394b
EA
932 return ret;
933}
934
b361237b 935int
33196ded 936i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
937 bool interruptible)
938{
1f83fee0 939 if (i915_reset_in_progress(error)) {
b361237b
CW
940 /* Non-interruptible callers can't handle -EAGAIN, hence return
941 * -EIO unconditionally for these. */
942 if (!interruptible)
943 return -EIO;
944
1f83fee0
DV
945 /* Recovery complete, but the reset failed ... */
946 if (i915_terminally_wedged(error))
b361237b
CW
947 return -EIO;
948
949 return -EAGAIN;
950 }
951
952 return 0;
953}
954
955/*
956 * Compare seqno against outstanding lazy request. Emit a request if they are
957 * equal.
958 */
959static int
960i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
961{
962 int ret;
963
964 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
965
966 ret = 0;
1823521d 967 if (seqno == ring->outstanding_lazy_seqno)
0025c077 968 ret = i915_add_request(ring, NULL);
b361237b
CW
969
970 return ret;
971}
972
973/**
974 * __wait_seqno - wait until execution of seqno has finished
975 * @ring: the ring expected to report seqno
976 * @seqno: duh!
f69061be 977 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
978 * @interruptible: do an interruptible wait (normally yes)
979 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
980 *
f69061be
DV
981 * Note: It is of utmost importance that the passed in seqno and reset_counter
982 * values have been read by the caller in an smp safe manner. Where read-side
983 * locks are involved, it is sufficient to read the reset_counter before
984 * unlocking the lock that protects the seqno. For lockless tricks, the
985 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
986 * inserted.
987 *
b361237b
CW
988 * Returns 0 if the seqno was found within the alloted time. Else returns the
989 * errno with remaining time filled in timeout argument.
990 */
991static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 992 unsigned reset_counter,
b361237b
CW
993 bool interruptible, struct timespec *timeout)
994{
995 drm_i915_private_t *dev_priv = ring->dev->dev_private;
996 struct timespec before, now, wait_time={1,0};
997 unsigned long timeout_jiffies;
998 long end;
999 bool wait_forever = true;
1000 int ret;
1001
c67a470b
PZ
1002 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1003
b361237b
CW
1004 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005 return 0;
1006
1007 trace_i915_gem_request_wait_begin(ring, seqno);
1008
1009 if (timeout != NULL) {
1010 wait_time = *timeout;
1011 wait_forever = false;
1012 }
1013
e054cc39 1014 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1015
1016 if (WARN_ON(!ring->irq_get(ring)))
1017 return -ENODEV;
1018
1019 /* Record current time in case interrupted by signal, or wedged * */
1020 getrawmonotonic(&before);
1021
1022#define EXIT_COND \
1023 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1024 i915_reset_in_progress(&dev_priv->gpu_error) || \
1025 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1026 do {
1027 if (interruptible)
1028 end = wait_event_interruptible_timeout(ring->irq_queue,
1029 EXIT_COND,
1030 timeout_jiffies);
1031 else
1032 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1033 timeout_jiffies);
1034
f69061be
DV
1035 /* We need to check whether any gpu reset happened in between
1036 * the caller grabbing the seqno and now ... */
1037 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1038 end = -EAGAIN;
1039
1040 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1041 * gone. */
33196ded 1042 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1043 if (ret)
1044 end = ret;
1045 } while (end == 0 && wait_forever);
1046
1047 getrawmonotonic(&now);
1048
1049 ring->irq_put(ring);
1050 trace_i915_gem_request_wait_end(ring, seqno);
1051#undef EXIT_COND
1052
1053 if (timeout) {
1054 struct timespec sleep_time = timespec_sub(now, before);
1055 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1056 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1057 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1058 }
1059
1060 switch (end) {
1061 case -EIO:
1062 case -EAGAIN: /* Wedged */
1063 case -ERESTARTSYS: /* Signal */
1064 return (int)end;
1065 case 0: /* Timeout */
b361237b
CW
1066 return -ETIME;
1067 default: /* Completed */
1068 WARN_ON(end < 0); /* We're not aware of other errors */
1069 return 0;
1070 }
1071}
1072
1073/**
1074 * Waits for a sequence number to be signaled, and cleans up the
1075 * request and object lists appropriately for that event.
1076 */
1077int
1078i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1079{
1080 struct drm_device *dev = ring->dev;
1081 struct drm_i915_private *dev_priv = dev->dev_private;
1082 bool interruptible = dev_priv->mm.interruptible;
1083 int ret;
1084
1085 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1086 BUG_ON(seqno == 0);
1087
33196ded 1088 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1089 if (ret)
1090 return ret;
1091
1092 ret = i915_gem_check_olr(ring, seqno);
1093 if (ret)
1094 return ret;
1095
f69061be
DV
1096 return __wait_seqno(ring, seqno,
1097 atomic_read(&dev_priv->gpu_error.reset_counter),
1098 interruptible, NULL);
b361237b
CW
1099}
1100
d26e3af8
CW
1101static int
1102i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1103 struct intel_ring_buffer *ring)
1104{
1105 i915_gem_retire_requests_ring(ring);
1106
1107 /* Manually manage the write flush as we may have not yet
1108 * retired the buffer.
1109 *
1110 * Note that the last_write_seqno is always the earlier of
1111 * the two (read/write) seqno, so if we haved successfully waited,
1112 * we know we have passed the last write.
1113 */
1114 obj->last_write_seqno = 0;
1115 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1116
1117 return 0;
1118}
1119
b361237b
CW
1120/**
1121 * Ensures that all rendering to the object has completed and the object is
1122 * safe to unbind from the GTT or access from the CPU.
1123 */
1124static __must_check int
1125i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1126 bool readonly)
1127{
1128 struct intel_ring_buffer *ring = obj->ring;
1129 u32 seqno;
1130 int ret;
1131
1132 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1133 if (seqno == 0)
1134 return 0;
1135
1136 ret = i915_wait_seqno(ring, seqno);
1137 if (ret)
1138 return ret;
1139
d26e3af8 1140 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1141}
1142
3236f57a
CW
1143/* A nonblocking variant of the above wait. This is a highly dangerous routine
1144 * as the object state may change during this call.
1145 */
1146static __must_check int
1147i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1148 bool readonly)
1149{
1150 struct drm_device *dev = obj->base.dev;
1151 struct drm_i915_private *dev_priv = dev->dev_private;
1152 struct intel_ring_buffer *ring = obj->ring;
f69061be 1153 unsigned reset_counter;
3236f57a
CW
1154 u32 seqno;
1155 int ret;
1156
1157 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1158 BUG_ON(!dev_priv->mm.interruptible);
1159
1160 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1161 if (seqno == 0)
1162 return 0;
1163
33196ded 1164 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1165 if (ret)
1166 return ret;
1167
1168 ret = i915_gem_check_olr(ring, seqno);
1169 if (ret)
1170 return ret;
1171
f69061be 1172 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1173 mutex_unlock(&dev->struct_mutex);
f69061be 1174 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1175 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1176 if (ret)
1177 return ret;
3236f57a 1178
d26e3af8 1179 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1180}
1181
673a394b 1182/**
2ef7eeaa
EA
1183 * Called when user space prepares to use an object with the CPU, either
1184 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1185 */
1186int
1187i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1188 struct drm_file *file)
673a394b
EA
1189{
1190 struct drm_i915_gem_set_domain *args = data;
05394f39 1191 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1192 uint32_t read_domains = args->read_domains;
1193 uint32_t write_domain = args->write_domain;
673a394b
EA
1194 int ret;
1195
2ef7eeaa 1196 /* Only handle setting domains to types used by the CPU. */
21d509e3 1197 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1198 return -EINVAL;
1199
21d509e3 1200 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1201 return -EINVAL;
1202
1203 /* Having something in the write domain implies it's in the read
1204 * domain, and only that read domain. Enforce that in the request.
1205 */
1206 if (write_domain != 0 && read_domains != write_domain)
1207 return -EINVAL;
1208
76c1dec1 1209 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1210 if (ret)
76c1dec1 1211 return ret;
1d7cfea1 1212
05394f39 1213 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1214 if (&obj->base == NULL) {
1d7cfea1
CW
1215 ret = -ENOENT;
1216 goto unlock;
76c1dec1 1217 }
673a394b 1218
3236f57a
CW
1219 /* Try to flush the object off the GPU without holding the lock.
1220 * We will repeat the flush holding the lock in the normal manner
1221 * to catch cases where we are gazumped.
1222 */
1223 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1224 if (ret)
1225 goto unref;
1226
2ef7eeaa
EA
1227 if (read_domains & I915_GEM_DOMAIN_GTT) {
1228 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1229
1230 /* Silently promote "you're not bound, there was nothing to do"
1231 * to success, since the client was just asking us to
1232 * make sure everything was done.
1233 */
1234 if (ret == -EINVAL)
1235 ret = 0;
2ef7eeaa 1236 } else {
e47c68e9 1237 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1238 }
1239
3236f57a 1240unref:
05394f39 1241 drm_gem_object_unreference(&obj->base);
1d7cfea1 1242unlock:
673a394b
EA
1243 mutex_unlock(&dev->struct_mutex);
1244 return ret;
1245}
1246
1247/**
1248 * Called when user space has done writes to this buffer
1249 */
1250int
1251i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1252 struct drm_file *file)
673a394b
EA
1253{
1254 struct drm_i915_gem_sw_finish *args = data;
05394f39 1255 struct drm_i915_gem_object *obj;
673a394b
EA
1256 int ret = 0;
1257
76c1dec1 1258 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1259 if (ret)
76c1dec1 1260 return ret;
1d7cfea1 1261
05394f39 1262 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1263 if (&obj->base == NULL) {
1d7cfea1
CW
1264 ret = -ENOENT;
1265 goto unlock;
673a394b
EA
1266 }
1267
673a394b 1268 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1269 if (obj->pin_display)
1270 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1271
05394f39 1272 drm_gem_object_unreference(&obj->base);
1d7cfea1 1273unlock:
673a394b
EA
1274 mutex_unlock(&dev->struct_mutex);
1275 return ret;
1276}
1277
1278/**
1279 * Maps the contents of an object, returning the address it is mapped
1280 * into.
1281 *
1282 * While the mapping holds a reference on the contents of the object, it doesn't
1283 * imply a ref on the object itself.
1284 */
1285int
1286i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1287 struct drm_file *file)
673a394b
EA
1288{
1289 struct drm_i915_gem_mmap *args = data;
1290 struct drm_gem_object *obj;
673a394b
EA
1291 unsigned long addr;
1292
05394f39 1293 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1294 if (obj == NULL)
bf79cb91 1295 return -ENOENT;
673a394b 1296
1286ff73
DV
1297 /* prime objects have no backing filp to GEM mmap
1298 * pages from.
1299 */
1300 if (!obj->filp) {
1301 drm_gem_object_unreference_unlocked(obj);
1302 return -EINVAL;
1303 }
1304
6be5ceb0 1305 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1306 PROT_READ | PROT_WRITE, MAP_SHARED,
1307 args->offset);
bc9025bd 1308 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1309 if (IS_ERR((void *)addr))
1310 return addr;
1311
1312 args->addr_ptr = (uint64_t) addr;
1313
1314 return 0;
1315}
1316
de151cf6
JB
1317/**
1318 * i915_gem_fault - fault a page into the GTT
1319 * vma: VMA in question
1320 * vmf: fault info
1321 *
1322 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1323 * from userspace. The fault handler takes care of binding the object to
1324 * the GTT (if needed), allocating and programming a fence register (again,
1325 * only if needed based on whether the old reg is still valid or the object
1326 * is tiled) and inserting a new PTE into the faulting process.
1327 *
1328 * Note that the faulting process may involve evicting existing objects
1329 * from the GTT and/or fence registers to make room. So performance may
1330 * suffer if the GTT working set is large or there are few fence registers
1331 * left.
1332 */
1333int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1334{
05394f39
CW
1335 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1336 struct drm_device *dev = obj->base.dev;
7d1c4804 1337 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1338 pgoff_t page_offset;
1339 unsigned long pfn;
1340 int ret = 0;
0f973f27 1341 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1342
1343 /* We don't use vmf->pgoff since that has the fake offset */
1344 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1345 PAGE_SHIFT;
1346
d9bc7e9f
CW
1347 ret = i915_mutex_lock_interruptible(dev);
1348 if (ret)
1349 goto out;
a00b10c3 1350
db53a302
CW
1351 trace_i915_gem_object_fault(obj, page_offset, true, write);
1352
eb119bd6
CW
1353 /* Access to snoopable pages through the GTT is incoherent. */
1354 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1355 ret = -EINVAL;
1356 goto unlock;
1357 }
1358
d9bc7e9f 1359 /* Now bind it into the GTT if needed */
c37e2204 1360 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1361 if (ret)
1362 goto unlock;
4a684a41 1363
c9839303
CW
1364 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1365 if (ret)
1366 goto unpin;
74898d7e 1367
06d98131 1368 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1369 if (ret)
c9839303 1370 goto unpin;
7d1c4804 1371
6299f992
CW
1372 obj->fault_mappable = true;
1373
f343c5f6
BW
1374 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1375 pfn >>= PAGE_SHIFT;
1376 pfn += page_offset;
de151cf6
JB
1377
1378 /* Finally, remap it using the new GTT offset */
1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1380unpin:
1381 i915_gem_object_unpin(obj);
c715089f 1382unlock:
de151cf6 1383 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1384out:
de151cf6 1385 switch (ret) {
d9bc7e9f 1386 case -EIO:
a9340cca
DV
1387 /* If this -EIO is due to a gpu hang, give the reset code a
1388 * chance to clean up the mess. Otherwise return the proper
1389 * SIGBUS. */
1f83fee0 1390 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1391 return VM_FAULT_SIGBUS;
045e769a 1392 case -EAGAIN:
d9bc7e9f
CW
1393 /* Give the error handler a chance to run and move the
1394 * objects off the GPU active list. Next time we service the
1395 * fault, we should be able to transition the page into the
1396 * GTT without touching the GPU (and so avoid further
1397 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1398 * with coherency, just lost writes.
1399 */
045e769a 1400 set_need_resched();
c715089f
CW
1401 case 0:
1402 case -ERESTARTSYS:
bed636ab 1403 case -EINTR:
e79e0fe3
DR
1404 case -EBUSY:
1405 /*
1406 * EBUSY is ok: this just means that another thread
1407 * already did the job.
1408 */
c715089f 1409 return VM_FAULT_NOPAGE;
de151cf6 1410 case -ENOMEM:
de151cf6 1411 return VM_FAULT_OOM;
a7c2e1aa
DV
1412 case -ENOSPC:
1413 return VM_FAULT_SIGBUS;
de151cf6 1414 default:
a7c2e1aa 1415 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1416 return VM_FAULT_SIGBUS;
de151cf6
JB
1417 }
1418}
1419
901782b2
CW
1420/**
1421 * i915_gem_release_mmap - remove physical page mappings
1422 * @obj: obj in question
1423 *
af901ca1 1424 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1425 * relinquish ownership of the pages back to the system.
1426 *
1427 * It is vital that we remove the page mapping if we have mapped a tiled
1428 * object through the GTT and then lose the fence register due to
1429 * resource pressure. Similarly if the object has been moved out of the
1430 * aperture, than pages mapped into userspace must be revoked. Removing the
1431 * mapping will then trigger a page fault on the next user access, allowing
1432 * fixup by i915_gem_fault().
1433 */
d05ca301 1434void
05394f39 1435i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1436{
6299f992
CW
1437 if (!obj->fault_mappable)
1438 return;
901782b2 1439
51335df9 1440 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1441 obj->fault_mappable = false;
901782b2
CW
1442}
1443
0fa87796 1444uint32_t
e28f8711 1445i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1446{
e28f8711 1447 uint32_t gtt_size;
92b88aeb
CW
1448
1449 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1450 tiling_mode == I915_TILING_NONE)
1451 return size;
92b88aeb
CW
1452
1453 /* Previous chips need a power-of-two fence region when tiling */
1454 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1455 gtt_size = 1024*1024;
92b88aeb 1456 else
e28f8711 1457 gtt_size = 512*1024;
92b88aeb 1458
e28f8711
CW
1459 while (gtt_size < size)
1460 gtt_size <<= 1;
92b88aeb 1461
e28f8711 1462 return gtt_size;
92b88aeb
CW
1463}
1464
de151cf6
JB
1465/**
1466 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467 * @obj: object to check
1468 *
1469 * Return the required GTT alignment for an object, taking into account
5e783301 1470 * potential fence register mapping.
de151cf6 1471 */
d865110c
ID
1472uint32_t
1473i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1474 int tiling_mode, bool fenced)
de151cf6 1475{
de151cf6
JB
1476 /*
1477 * Minimum alignment is 4k (GTT page size), but might be greater
1478 * if a fence register is needed for the object.
1479 */
d865110c 1480 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1481 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1482 return 4096;
1483
a00b10c3
CW
1484 /*
1485 * Previous chips need to be aligned to the size of the smallest
1486 * fence register that can contain the object.
1487 */
e28f8711 1488 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1489}
1490
d8cb5086
CW
1491static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1492{
1493 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1494 int ret;
1495
0de23977 1496 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1497 return 0;
1498
da494d7c
DV
1499 dev_priv->mm.shrinker_no_lock_stealing = true;
1500
d8cb5086
CW
1501 ret = drm_gem_create_mmap_offset(&obj->base);
1502 if (ret != -ENOSPC)
da494d7c 1503 goto out;
d8cb5086
CW
1504
1505 /* Badly fragmented mmap space? The only way we can recover
1506 * space is by destroying unwanted objects. We can't randomly release
1507 * mmap_offsets as userspace expects them to be persistent for the
1508 * lifetime of the objects. The closest we can is to release the
1509 * offsets on purgeable objects by truncating it and marking it purged,
1510 * which prevents userspace from ever using that object again.
1511 */
1512 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1513 ret = drm_gem_create_mmap_offset(&obj->base);
1514 if (ret != -ENOSPC)
da494d7c 1515 goto out;
d8cb5086
CW
1516
1517 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1518 ret = drm_gem_create_mmap_offset(&obj->base);
1519out:
1520 dev_priv->mm.shrinker_no_lock_stealing = false;
1521
1522 return ret;
d8cb5086
CW
1523}
1524
1525static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1526{
d8cb5086
CW
1527 drm_gem_free_mmap_offset(&obj->base);
1528}
1529
de151cf6 1530int
ff72145b
DA
1531i915_gem_mmap_gtt(struct drm_file *file,
1532 struct drm_device *dev,
1533 uint32_t handle,
1534 uint64_t *offset)
de151cf6 1535{
da761a6e 1536 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1537 struct drm_i915_gem_object *obj;
de151cf6
JB
1538 int ret;
1539
76c1dec1 1540 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1541 if (ret)
76c1dec1 1542 return ret;
de151cf6 1543
ff72145b 1544 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1545 if (&obj->base == NULL) {
1d7cfea1
CW
1546 ret = -ENOENT;
1547 goto unlock;
1548 }
de151cf6 1549
5d4545ae 1550 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1551 ret = -E2BIG;
ff56b0bc 1552 goto out;
da761a6e
CW
1553 }
1554
05394f39 1555 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1556 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1557 ret = -EINVAL;
1558 goto out;
ab18282d
CW
1559 }
1560
d8cb5086
CW
1561 ret = i915_gem_object_create_mmap_offset(obj);
1562 if (ret)
1563 goto out;
de151cf6 1564
0de23977 1565 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1566
1d7cfea1 1567out:
05394f39 1568 drm_gem_object_unreference(&obj->base);
1d7cfea1 1569unlock:
de151cf6 1570 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1571 return ret;
de151cf6
JB
1572}
1573
ff72145b
DA
1574/**
1575 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1576 * @dev: DRM device
1577 * @data: GTT mapping ioctl data
1578 * @file: GEM object info
1579 *
1580 * Simply returns the fake offset to userspace so it can mmap it.
1581 * The mmap call will end up in drm_gem_mmap(), which will set things
1582 * up so we can get faults in the handler above.
1583 *
1584 * The fault handler will take care of binding the object into the GTT
1585 * (since it may have been evicted to make room for something), allocating
1586 * a fence register, and mapping the appropriate aperture address into
1587 * userspace.
1588 */
1589int
1590i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1591 struct drm_file *file)
1592{
1593 struct drm_i915_gem_mmap_gtt *args = data;
1594
ff72145b
DA
1595 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1596}
1597
225067ee
DV
1598/* Immediately discard the backing storage */
1599static void
1600i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1601{
e5281ccd 1602 struct inode *inode;
e5281ccd 1603
4d6294bf 1604 i915_gem_object_free_mmap_offset(obj);
1286ff73 1605
4d6294bf
CW
1606 if (obj->base.filp == NULL)
1607 return;
e5281ccd 1608
225067ee
DV
1609 /* Our goal here is to return as much of the memory as
1610 * is possible back to the system as we are called from OOM.
1611 * To do this we must instruct the shmfs to drop all of its
1612 * backing pages, *now*.
1613 */
496ad9aa 1614 inode = file_inode(obj->base.filp);
225067ee 1615 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1616
225067ee
DV
1617 obj->madv = __I915_MADV_PURGED;
1618}
e5281ccd 1619
225067ee
DV
1620static inline int
1621i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1622{
1623 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1624}
1625
5cdf5881 1626static void
05394f39 1627i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1628{
90797e6d
ID
1629 struct sg_page_iter sg_iter;
1630 int ret;
1286ff73 1631
05394f39 1632 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1633
6c085a72
CW
1634 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1635 if (ret) {
1636 /* In the event of a disaster, abandon all caches and
1637 * hope for the best.
1638 */
1639 WARN_ON(ret != -EIO);
2c22569b 1640 i915_gem_clflush_object(obj, true);
6c085a72
CW
1641 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1642 }
1643
6dacfd2f 1644 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1645 i915_gem_object_save_bit_17_swizzle(obj);
1646
05394f39
CW
1647 if (obj->madv == I915_MADV_DONTNEED)
1648 obj->dirty = 0;
3ef94daa 1649
90797e6d 1650 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1651 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1652
05394f39 1653 if (obj->dirty)
9da3da66 1654 set_page_dirty(page);
3ef94daa 1655
05394f39 1656 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1657 mark_page_accessed(page);
3ef94daa 1658
9da3da66 1659 page_cache_release(page);
3ef94daa 1660 }
05394f39 1661 obj->dirty = 0;
673a394b 1662
9da3da66
CW
1663 sg_free_table(obj->pages);
1664 kfree(obj->pages);
37e680a1 1665}
6c085a72 1666
dd624afd 1667int
37e680a1
CW
1668i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1669{
1670 const struct drm_i915_gem_object_ops *ops = obj->ops;
1671
2f745ad3 1672 if (obj->pages == NULL)
37e680a1
CW
1673 return 0;
1674
a5570178
CW
1675 if (obj->pages_pin_count)
1676 return -EBUSY;
1677
9843877d 1678 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1679
a2165e31
CW
1680 /* ->put_pages might need to allocate memory for the bit17 swizzle
1681 * array, hence protect them from being reaped by removing them from gtt
1682 * lists early. */
35c20a60 1683 list_del(&obj->global_list);
a2165e31 1684
37e680a1 1685 ops->put_pages(obj);
05394f39 1686 obj->pages = NULL;
37e680a1 1687
6c085a72
CW
1688 if (i915_gem_object_is_purgeable(obj))
1689 i915_gem_object_truncate(obj);
1690
1691 return 0;
1692}
1693
1694static long
93927ca5
DV
1695__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1696 bool purgeable_only)
6c085a72
CW
1697{
1698 struct drm_i915_gem_object *obj, *next;
1699 long count = 0;
1700
1701 list_for_each_entry_safe(obj, next,
1702 &dev_priv->mm.unbound_list,
35c20a60 1703 global_list) {
93927ca5 1704 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1705 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1706 count += obj->base.size >> PAGE_SHIFT;
1707 if (count >= target)
1708 return count;
1709 }
1710 }
1711
07fe0b12
BW
1712 list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1713 global_list) {
1714 struct i915_vma *vma, *v;
80dcfdbd
BW
1715
1716 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1717 continue;
1718
07fe0b12
BW
1719 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1720 if (i915_vma_unbind(vma))
1721 break;
80dcfdbd
BW
1722
1723 if (!i915_gem_object_put_pages(obj)) {
6c085a72
CW
1724 count += obj->base.size >> PAGE_SHIFT;
1725 if (count >= target)
1726 return count;
1727 }
1728 }
1729
1730 return count;
1731}
1732
93927ca5
DV
1733static long
1734i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1735{
1736 return __i915_gem_shrink(dev_priv, target, true);
1737}
1738
6c085a72
CW
1739static void
1740i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1741{
1742 struct drm_i915_gem_object *obj, *next;
1743
1744 i915_gem_evict_everything(dev_priv->dev);
1745
35c20a60
BW
1746 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1747 global_list)
37e680a1 1748 i915_gem_object_put_pages(obj);
225067ee
DV
1749}
1750
37e680a1 1751static int
6c085a72 1752i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1753{
6c085a72 1754 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1755 int page_count, i;
1756 struct address_space *mapping;
9da3da66
CW
1757 struct sg_table *st;
1758 struct scatterlist *sg;
90797e6d 1759 struct sg_page_iter sg_iter;
e5281ccd 1760 struct page *page;
90797e6d 1761 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1762 gfp_t gfp;
e5281ccd 1763
6c085a72
CW
1764 /* Assert that the object is not currently in any GPU domain. As it
1765 * wasn't in the GTT, there shouldn't be any way it could have been in
1766 * a GPU cache
1767 */
1768 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1769 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1770
9da3da66
CW
1771 st = kmalloc(sizeof(*st), GFP_KERNEL);
1772 if (st == NULL)
1773 return -ENOMEM;
1774
05394f39 1775 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1776 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1777 kfree(st);
e5281ccd 1778 return -ENOMEM;
9da3da66 1779 }
e5281ccd 1780
9da3da66
CW
1781 /* Get the list of pages out of our struct file. They'll be pinned
1782 * at this point until we release them.
1783 *
1784 * Fail silently without starting the shrinker
1785 */
496ad9aa 1786 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1787 gfp = mapping_gfp_mask(mapping);
caf49191 1788 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1789 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1790 sg = st->sgl;
1791 st->nents = 0;
1792 for (i = 0; i < page_count; i++) {
6c085a72
CW
1793 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1794 if (IS_ERR(page)) {
1795 i915_gem_purge(dev_priv, page_count);
1796 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1797 }
1798 if (IS_ERR(page)) {
1799 /* We've tried hard to allocate the memory by reaping
1800 * our own buffer, now let the real VM do its job and
1801 * go down in flames if truly OOM.
1802 */
caf49191 1803 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1804 gfp |= __GFP_IO | __GFP_WAIT;
1805
1806 i915_gem_shrink_all(dev_priv);
1807 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1808 if (IS_ERR(page))
1809 goto err_pages;
1810
caf49191 1811 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1812 gfp &= ~(__GFP_IO | __GFP_WAIT);
1813 }
426729dc
KRW
1814#ifdef CONFIG_SWIOTLB
1815 if (swiotlb_nr_tbl()) {
1816 st->nents++;
1817 sg_set_page(sg, page, PAGE_SIZE, 0);
1818 sg = sg_next(sg);
1819 continue;
1820 }
1821#endif
90797e6d
ID
1822 if (!i || page_to_pfn(page) != last_pfn + 1) {
1823 if (i)
1824 sg = sg_next(sg);
1825 st->nents++;
1826 sg_set_page(sg, page, PAGE_SIZE, 0);
1827 } else {
1828 sg->length += PAGE_SIZE;
1829 }
1830 last_pfn = page_to_pfn(page);
e5281ccd 1831 }
426729dc
KRW
1832#ifdef CONFIG_SWIOTLB
1833 if (!swiotlb_nr_tbl())
1834#endif
1835 sg_mark_end(sg);
74ce6b6c
CW
1836 obj->pages = st;
1837
6dacfd2f 1838 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1839 i915_gem_object_do_bit_17_swizzle(obj);
1840
1841 return 0;
1842
1843err_pages:
90797e6d
ID
1844 sg_mark_end(sg);
1845 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1846 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1847 sg_free_table(st);
1848 kfree(st);
e5281ccd 1849 return PTR_ERR(page);
673a394b
EA
1850}
1851
37e680a1
CW
1852/* Ensure that the associated pages are gathered from the backing storage
1853 * and pinned into our object. i915_gem_object_get_pages() may be called
1854 * multiple times before they are released by a single call to
1855 * i915_gem_object_put_pages() - once the pages are no longer referenced
1856 * either as a result of memory pressure (reaping pages under the shrinker)
1857 * or as the object is itself released.
1858 */
1859int
1860i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1861{
1862 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1863 const struct drm_i915_gem_object_ops *ops = obj->ops;
1864 int ret;
1865
2f745ad3 1866 if (obj->pages)
37e680a1
CW
1867 return 0;
1868
43e28f09
CW
1869 if (obj->madv != I915_MADV_WILLNEED) {
1870 DRM_ERROR("Attempting to obtain a purgeable object\n");
1871 return -EINVAL;
1872 }
1873
a5570178
CW
1874 BUG_ON(obj->pages_pin_count);
1875
37e680a1
CW
1876 ret = ops->get_pages(obj);
1877 if (ret)
1878 return ret;
1879
35c20a60 1880 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1881 return 0;
673a394b
EA
1882}
1883
54cf91dc 1884void
05394f39 1885i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1886 struct intel_ring_buffer *ring)
673a394b 1887{
05394f39 1888 struct drm_device *dev = obj->base.dev;
69dc4987 1889 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1890 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1891
852835f3 1892 BUG_ON(ring == NULL);
02978ff5
CW
1893 if (obj->ring != ring && obj->last_write_seqno) {
1894 /* Keep the seqno relative to the current ring */
1895 obj->last_write_seqno = seqno;
1896 }
05394f39 1897 obj->ring = ring;
673a394b
EA
1898
1899 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1900 if (!obj->active) {
1901 drm_gem_object_reference(&obj->base);
1902 obj->active = 1;
673a394b 1903 }
e35a41de 1904
05394f39 1905 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1906
0201f1ec 1907 obj->last_read_seqno = seqno;
caea7476 1908
7dd49065 1909 if (obj->fenced_gpu_access) {
caea7476 1910 obj->last_fenced_seqno = seqno;
caea7476 1911
7dd49065
CW
1912 /* Bump MRU to take account of the delayed flush */
1913 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1914 struct drm_i915_fence_reg *reg;
1915
1916 reg = &dev_priv->fence_regs[obj->fence_reg];
1917 list_move_tail(&reg->lru_list,
1918 &dev_priv->mm.fence_list);
1919 }
caea7476
CW
1920 }
1921}
1922
1923static void
caea7476 1924i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1925{
ca191b13
BW
1926 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1927 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1928 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
ce44b0ea 1929
65ce3027 1930 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1931 BUG_ON(!obj->active);
caea7476 1932
ca191b13 1933 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
caea7476 1934
65ce3027 1935 list_del_init(&obj->ring_list);
caea7476
CW
1936 obj->ring = NULL;
1937
65ce3027
CW
1938 obj->last_read_seqno = 0;
1939 obj->last_write_seqno = 0;
1940 obj->base.write_domain = 0;
1941
1942 obj->last_fenced_seqno = 0;
caea7476 1943 obj->fenced_gpu_access = false;
caea7476
CW
1944
1945 obj->active = 0;
1946 drm_gem_object_unreference(&obj->base);
1947
1948 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1949}
673a394b 1950
9d773091 1951static int
fca26bb4 1952i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1953{
9d773091
CW
1954 struct drm_i915_private *dev_priv = dev->dev_private;
1955 struct intel_ring_buffer *ring;
1956 int ret, i, j;
53d227f2 1957
107f27a5 1958 /* Carefully retire all requests without writing to the rings */
9d773091 1959 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1960 ret = intel_ring_idle(ring);
1961 if (ret)
1962 return ret;
9d773091 1963 }
9d773091 1964 i915_gem_retire_requests(dev);
107f27a5
CW
1965
1966 /* Finally reset hw state */
9d773091 1967 for_each_ring(ring, dev_priv, i) {
fca26bb4 1968 intel_ring_init_seqno(ring, seqno);
498d2ac1 1969
9d773091
CW
1970 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1971 ring->sync_seqno[j] = 0;
1972 }
53d227f2 1973
9d773091 1974 return 0;
53d227f2
DV
1975}
1976
fca26bb4
MK
1977int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1978{
1979 struct drm_i915_private *dev_priv = dev->dev_private;
1980 int ret;
1981
1982 if (seqno == 0)
1983 return -EINVAL;
1984
1985 /* HWS page needs to be set less than what we
1986 * will inject to ring
1987 */
1988 ret = i915_gem_init_seqno(dev, seqno - 1);
1989 if (ret)
1990 return ret;
1991
1992 /* Carefully set the last_seqno value so that wrap
1993 * detection still works
1994 */
1995 dev_priv->next_seqno = seqno;
1996 dev_priv->last_seqno = seqno - 1;
1997 if (dev_priv->last_seqno == 0)
1998 dev_priv->last_seqno--;
1999
2000 return 0;
2001}
2002
9d773091
CW
2003int
2004i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2005{
9d773091
CW
2006 struct drm_i915_private *dev_priv = dev->dev_private;
2007
2008 /* reserve 0 for non-seqno */
2009 if (dev_priv->next_seqno == 0) {
fca26bb4 2010 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2011 if (ret)
2012 return ret;
53d227f2 2013
9d773091
CW
2014 dev_priv->next_seqno = 1;
2015 }
53d227f2 2016
f72b3435 2017 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2018 return 0;
53d227f2
DV
2019}
2020
0025c077
MK
2021int __i915_add_request(struct intel_ring_buffer *ring,
2022 struct drm_file *file,
7d736f4f 2023 struct drm_i915_gem_object *obj,
0025c077 2024 u32 *out_seqno)
673a394b 2025{
db53a302 2026 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2027 struct drm_i915_gem_request *request;
7d736f4f 2028 u32 request_ring_position, request_start;
673a394b 2029 int was_empty;
3cce469c
CW
2030 int ret;
2031
7d736f4f 2032 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2033 /*
2034 * Emit any outstanding flushes - execbuf can fail to emit the flush
2035 * after having emitted the batchbuffer command. Hence we need to fix
2036 * things up similar to emitting the lazy request. The difference here
2037 * is that the flush _must_ happen before the next request, no matter
2038 * what.
2039 */
a7b9761d
CW
2040 ret = intel_ring_flush_all_caches(ring);
2041 if (ret)
2042 return ret;
cc889e0f 2043
acb868d3
CW
2044 request = kmalloc(sizeof(*request), GFP_KERNEL);
2045 if (request == NULL)
2046 return -ENOMEM;
cc889e0f 2047
a71d8d94
CW
2048 /* Record the position of the start of the request so that
2049 * should we detect the updated seqno part-way through the
2050 * GPU processing the request, we never over-estimate the
2051 * position of the head.
2052 */
2053 request_ring_position = intel_ring_get_tail(ring);
2054
9d773091 2055 ret = ring->add_request(ring);
3bb73aba
CW
2056 if (ret) {
2057 kfree(request);
2058 return ret;
2059 }
673a394b 2060
9d773091 2061 request->seqno = intel_ring_get_seqno(ring);
852835f3 2062 request->ring = ring;
7d736f4f 2063 request->head = request_start;
a71d8d94 2064 request->tail = request_ring_position;
7d736f4f
MK
2065
2066 /* Whilst this request exists, batch_obj will be on the
2067 * active_list, and so will hold the active reference. Only when this
2068 * request is retired will the the batch_obj be moved onto the
2069 * inactive_list and lose its active reference. Hence we do not need
2070 * to explicitly hold another reference here.
2071 */
9a7e0c2a 2072 request->batch_obj = obj;
0e50e96b 2073
9a7e0c2a
CW
2074 /* Hold a reference to the current context so that we can inspect
2075 * it later in case a hangcheck error event fires.
2076 */
2077 request->ctx = ring->last_context;
0e50e96b
MK
2078 if (request->ctx)
2079 i915_gem_context_reference(request->ctx);
2080
673a394b 2081 request->emitted_jiffies = jiffies;
852835f3
ZN
2082 was_empty = list_empty(&ring->request_list);
2083 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2084 request->file_priv = NULL;
852835f3 2085
db53a302
CW
2086 if (file) {
2087 struct drm_i915_file_private *file_priv = file->driver_priv;
2088
1c25595f 2089 spin_lock(&file_priv->mm.lock);
f787a5f5 2090 request->file_priv = file_priv;
b962442e 2091 list_add_tail(&request->client_list,
f787a5f5 2092 &file_priv->mm.request_list);
1c25595f 2093 spin_unlock(&file_priv->mm.lock);
b962442e 2094 }
673a394b 2095
9d773091 2096 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2097 ring->outstanding_lazy_seqno = 0;
db53a302 2098
db1b76ca 2099 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2100 i915_queue_hangcheck(ring->dev);
2101
f047e395 2102 if (was_empty) {
b3b079db 2103 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2104 &dev_priv->mm.retire_work,
2105 round_jiffies_up_relative(HZ));
f047e395
CW
2106 intel_mark_busy(dev_priv->dev);
2107 }
f65d9421 2108 }
cc889e0f 2109
acb868d3 2110 if (out_seqno)
9d773091 2111 *out_seqno = request->seqno;
3cce469c 2112 return 0;
673a394b
EA
2113}
2114
f787a5f5
CW
2115static inline void
2116i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2117{
1c25595f 2118 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2119
1c25595f
CW
2120 if (!file_priv)
2121 return;
1c5d22f7 2122
1c25595f 2123 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2124 if (request->file_priv) {
2125 list_del(&request->client_list);
2126 request->file_priv = NULL;
2127 }
1c25595f 2128 spin_unlock(&file_priv->mm.lock);
673a394b 2129}
673a394b 2130
d1ccbb5d
BW
2131static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2132 struct i915_address_space *vm)
aa60c664 2133{
d1ccbb5d
BW
2134 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2135 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2136 return true;
2137
2138 return false;
2139}
2140
2141static bool i915_head_inside_request(const u32 acthd_unmasked,
2142 const u32 request_start,
2143 const u32 request_end)
2144{
2145 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2146
2147 if (request_start < request_end) {
2148 if (acthd >= request_start && acthd < request_end)
2149 return true;
2150 } else if (request_start > request_end) {
2151 if (acthd >= request_start || acthd < request_end)
2152 return true;
2153 }
2154
2155 return false;
2156}
2157
d1ccbb5d
BW
2158static struct i915_address_space *
2159request_to_vm(struct drm_i915_gem_request *request)
2160{
2161 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2162 struct i915_address_space *vm;
2163
2164 vm = &dev_priv->gtt.base;
2165
2166 return vm;
2167}
2168
aa60c664
MK
2169static bool i915_request_guilty(struct drm_i915_gem_request *request,
2170 const u32 acthd, bool *inside)
2171{
2172 /* There is a possibility that unmasked head address
2173 * pointing inside the ring, matches the batch_obj address range.
2174 * However this is extremely unlikely.
2175 */
aa60c664 2176 if (request->batch_obj) {
d1ccbb5d
BW
2177 if (i915_head_inside_object(acthd, request->batch_obj,
2178 request_to_vm(request))) {
aa60c664
MK
2179 *inside = true;
2180 return true;
2181 }
2182 }
2183
2184 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2185 *inside = false;
2186 return true;
2187 }
2188
2189 return false;
2190}
2191
2192static void i915_set_reset_status(struct intel_ring_buffer *ring,
2193 struct drm_i915_gem_request *request,
2194 u32 acthd)
2195{
2196 struct i915_ctx_hang_stats *hs = NULL;
2197 bool inside, guilty;
d1ccbb5d 2198 unsigned long offset = 0;
aa60c664
MK
2199
2200 /* Innocent until proven guilty */
2201 guilty = false;
2202
d1ccbb5d
BW
2203 if (request->batch_obj)
2204 offset = i915_gem_obj_offset(request->batch_obj,
2205 request_to_vm(request));
2206
f2f4d82f 2207 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2208 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2209 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2210 ring->name,
2211 inside ? "inside" : "flushing",
d1ccbb5d 2212 offset,
aa60c664
MK
2213 request->ctx ? request->ctx->id : 0,
2214 acthd);
2215
2216 guilty = true;
2217 }
2218
2219 /* If contexts are disabled or this is the default context, use
2220 * file_priv->reset_state
2221 */
2222 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2223 hs = &request->ctx->hang_stats;
2224 else if (request->file_priv)
2225 hs = &request->file_priv->hang_stats;
2226
2227 if (hs) {
2228 if (guilty)
2229 hs->batch_active++;
2230 else
2231 hs->batch_pending++;
2232 }
2233}
2234
0e50e96b
MK
2235static void i915_gem_free_request(struct drm_i915_gem_request *request)
2236{
2237 list_del(&request->list);
2238 i915_gem_request_remove_from_client(request);
2239
2240 if (request->ctx)
2241 i915_gem_context_unreference(request->ctx);
2242
2243 kfree(request);
2244}
2245
dfaae392
CW
2246static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2247 struct intel_ring_buffer *ring)
9375e446 2248{
aa60c664
MK
2249 u32 completed_seqno;
2250 u32 acthd;
2251
2252 acthd = intel_ring_get_active_head(ring);
2253 completed_seqno = ring->get_seqno(ring, false);
2254
dfaae392
CW
2255 while (!list_empty(&ring->request_list)) {
2256 struct drm_i915_gem_request *request;
673a394b 2257
dfaae392
CW
2258 request = list_first_entry(&ring->request_list,
2259 struct drm_i915_gem_request,
2260 list);
de151cf6 2261
aa60c664
MK
2262 if (request->seqno > completed_seqno)
2263 i915_set_reset_status(ring, request, acthd);
2264
0e50e96b 2265 i915_gem_free_request(request);
dfaae392 2266 }
673a394b 2267
dfaae392 2268 while (!list_empty(&ring->active_list)) {
05394f39 2269 struct drm_i915_gem_object *obj;
9375e446 2270
05394f39
CW
2271 obj = list_first_entry(&ring->active_list,
2272 struct drm_i915_gem_object,
2273 ring_list);
9375e446 2274
05394f39 2275 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2276 }
2277}
2278
19b2dbde 2279void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2280{
2281 struct drm_i915_private *dev_priv = dev->dev_private;
2282 int i;
2283
4b9de737 2284 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2285 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2286
94a335db
DV
2287 /*
2288 * Commit delayed tiling changes if we have an object still
2289 * attached to the fence, otherwise just clear the fence.
2290 */
2291 if (reg->obj) {
2292 i915_gem_object_update_fence(reg->obj, reg,
2293 reg->obj->tiling_mode);
2294 } else {
2295 i915_gem_write_fence(dev, i, NULL);
2296 }
312817a3
CW
2297 }
2298}
2299
069efc1d 2300void i915_gem_reset(struct drm_device *dev)
673a394b 2301{
77f01230 2302 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2303 struct intel_ring_buffer *ring;
1ec14ad3 2304 int i;
673a394b 2305
b4519513
CW
2306 for_each_ring(ring, dev_priv, i)
2307 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2308
19b2dbde 2309 i915_gem_restore_fences(dev);
673a394b
EA
2310}
2311
2312/**
2313 * This function clears the request list as sequence numbers are passed.
2314 */
a71d8d94 2315void
db53a302 2316i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2317{
673a394b
EA
2318 uint32_t seqno;
2319
db53a302 2320 if (list_empty(&ring->request_list))
6c0594a3
KW
2321 return;
2322
db53a302 2323 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2324
b2eadbc8 2325 seqno = ring->get_seqno(ring, true);
1ec14ad3 2326
852835f3 2327 while (!list_empty(&ring->request_list)) {
673a394b 2328 struct drm_i915_gem_request *request;
673a394b 2329
852835f3 2330 request = list_first_entry(&ring->request_list,
673a394b
EA
2331 struct drm_i915_gem_request,
2332 list);
673a394b 2333
dfaae392 2334 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2335 break;
2336
db53a302 2337 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2338 /* We know the GPU must have read the request to have
2339 * sent us the seqno + interrupt, so use the position
2340 * of tail of the request to update the last known position
2341 * of the GPU head.
2342 */
2343 ring->last_retired_head = request->tail;
b84d5f0c 2344
0e50e96b 2345 i915_gem_free_request(request);
b84d5f0c 2346 }
673a394b 2347
b84d5f0c
CW
2348 /* Move any buffers on the active list that are no longer referenced
2349 * by the ringbuffer to the flushing/inactive lists as appropriate.
2350 */
2351 while (!list_empty(&ring->active_list)) {
05394f39 2352 struct drm_i915_gem_object *obj;
b84d5f0c 2353
0206e353 2354 obj = list_first_entry(&ring->active_list,
05394f39
CW
2355 struct drm_i915_gem_object,
2356 ring_list);
673a394b 2357
0201f1ec 2358 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2359 break;
b84d5f0c 2360
65ce3027 2361 i915_gem_object_move_to_inactive(obj);
673a394b 2362 }
9d34e5db 2363
db53a302
CW
2364 if (unlikely(ring->trace_irq_seqno &&
2365 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2366 ring->irq_put(ring);
db53a302 2367 ring->trace_irq_seqno = 0;
9d34e5db 2368 }
23bc5982 2369
db53a302 2370 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2371}
2372
b09a1fec
CW
2373void
2374i915_gem_retire_requests(struct drm_device *dev)
2375{
2376 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2377 struct intel_ring_buffer *ring;
1ec14ad3 2378 int i;
b09a1fec 2379
b4519513
CW
2380 for_each_ring(ring, dev_priv, i)
2381 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2382}
2383
75ef9da2 2384static void
673a394b
EA
2385i915_gem_retire_work_handler(struct work_struct *work)
2386{
2387 drm_i915_private_t *dev_priv;
2388 struct drm_device *dev;
b4519513 2389 struct intel_ring_buffer *ring;
0a58705b
CW
2390 bool idle;
2391 int i;
673a394b
EA
2392
2393 dev_priv = container_of(work, drm_i915_private_t,
2394 mm.retire_work.work);
2395 dev = dev_priv->dev;
2396
891b48cf
CW
2397 /* Come back later if the device is busy... */
2398 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2399 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2400 round_jiffies_up_relative(HZ));
891b48cf
CW
2401 return;
2402 }
673a394b 2403
b09a1fec 2404 i915_gem_retire_requests(dev);
673a394b 2405
0a58705b
CW
2406 /* Send a periodic flush down the ring so we don't hold onto GEM
2407 * objects indefinitely.
673a394b 2408 */
0a58705b 2409 idle = true;
b4519513 2410 for_each_ring(ring, dev_priv, i) {
3bb73aba 2411 if (ring->gpu_caches_dirty)
0025c077 2412 i915_add_request(ring, NULL);
0a58705b
CW
2413
2414 idle &= list_empty(&ring->request_list);
673a394b
EA
2415 }
2416
db1b76ca 2417 if (!dev_priv->ums.mm_suspended && !idle)
bcb45086
CW
2418 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2419 round_jiffies_up_relative(HZ));
f047e395
CW
2420 if (idle)
2421 intel_mark_idle(dev);
0a58705b 2422
673a394b 2423 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2424}
2425
30dfebf3
DV
2426/**
2427 * Ensures that an object will eventually get non-busy by flushing any required
2428 * write domains, emitting any outstanding lazy request and retiring and
2429 * completed requests.
2430 */
2431static int
2432i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2433{
2434 int ret;
2435
2436 if (obj->active) {
0201f1ec 2437 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2438 if (ret)
2439 return ret;
2440
30dfebf3
DV
2441 i915_gem_retire_requests_ring(obj->ring);
2442 }
2443
2444 return 0;
2445}
2446
23ba4fd0
BW
2447/**
2448 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2449 * @DRM_IOCTL_ARGS: standard ioctl arguments
2450 *
2451 * Returns 0 if successful, else an error is returned with the remaining time in
2452 * the timeout parameter.
2453 * -ETIME: object is still busy after timeout
2454 * -ERESTARTSYS: signal interrupted the wait
2455 * -ENONENT: object doesn't exist
2456 * Also possible, but rare:
2457 * -EAGAIN: GPU wedged
2458 * -ENOMEM: damn
2459 * -ENODEV: Internal IRQ fail
2460 * -E?: The add request failed
2461 *
2462 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2463 * non-zero timeout parameter the wait ioctl will wait for the given number of
2464 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2465 * without holding struct_mutex the object may become re-busied before this
2466 * function completes. A similar but shorter * race condition exists in the busy
2467 * ioctl
2468 */
2469int
2470i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2471{
f69061be 2472 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2473 struct drm_i915_gem_wait *args = data;
2474 struct drm_i915_gem_object *obj;
2475 struct intel_ring_buffer *ring = NULL;
eac1f14f 2476 struct timespec timeout_stack, *timeout = NULL;
f69061be 2477 unsigned reset_counter;
23ba4fd0
BW
2478 u32 seqno = 0;
2479 int ret = 0;
2480
eac1f14f
BW
2481 if (args->timeout_ns >= 0) {
2482 timeout_stack = ns_to_timespec(args->timeout_ns);
2483 timeout = &timeout_stack;
2484 }
23ba4fd0
BW
2485
2486 ret = i915_mutex_lock_interruptible(dev);
2487 if (ret)
2488 return ret;
2489
2490 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2491 if (&obj->base == NULL) {
2492 mutex_unlock(&dev->struct_mutex);
2493 return -ENOENT;
2494 }
2495
30dfebf3
DV
2496 /* Need to make sure the object gets inactive eventually. */
2497 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2498 if (ret)
2499 goto out;
2500
2501 if (obj->active) {
0201f1ec 2502 seqno = obj->last_read_seqno;
23ba4fd0
BW
2503 ring = obj->ring;
2504 }
2505
2506 if (seqno == 0)
2507 goto out;
2508
23ba4fd0
BW
2509 /* Do this after OLR check to make sure we make forward progress polling
2510 * on this IOCTL with a 0 timeout (like busy ioctl)
2511 */
2512 if (!args->timeout_ns) {
2513 ret = -ETIME;
2514 goto out;
2515 }
2516
2517 drm_gem_object_unreference(&obj->base);
f69061be 2518 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2519 mutex_unlock(&dev->struct_mutex);
2520
f69061be 2521 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2522 if (timeout)
eac1f14f 2523 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2524 return ret;
2525
2526out:
2527 drm_gem_object_unreference(&obj->base);
2528 mutex_unlock(&dev->struct_mutex);
2529 return ret;
2530}
2531
5816d648
BW
2532/**
2533 * i915_gem_object_sync - sync an object to a ring.
2534 *
2535 * @obj: object which may be in use on another ring.
2536 * @to: ring we wish to use the object on. May be NULL.
2537 *
2538 * This code is meant to abstract object synchronization with the GPU.
2539 * Calling with NULL implies synchronizing the object with the CPU
2540 * rather than a particular GPU ring.
2541 *
2542 * Returns 0 if successful, else propagates up the lower layer error.
2543 */
2911a35b
BW
2544int
2545i915_gem_object_sync(struct drm_i915_gem_object *obj,
2546 struct intel_ring_buffer *to)
2547{
2548 struct intel_ring_buffer *from = obj->ring;
2549 u32 seqno;
2550 int ret, idx;
2551
2552 if (from == NULL || to == from)
2553 return 0;
2554
5816d648 2555 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2556 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2557
2558 idx = intel_ring_sync_index(from, to);
2559
0201f1ec 2560 seqno = obj->last_read_seqno;
2911a35b
BW
2561 if (seqno <= from->sync_seqno[idx])
2562 return 0;
2563
b4aca010
BW
2564 ret = i915_gem_check_olr(obj->ring, seqno);
2565 if (ret)
2566 return ret;
2911a35b 2567
1500f7ea 2568 ret = to->sync_to(to, from, seqno);
e3a5a225 2569 if (!ret)
7b01e260
MK
2570 /* We use last_read_seqno because sync_to()
2571 * might have just caused seqno wrap under
2572 * the radar.
2573 */
2574 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2575
e3a5a225 2576 return ret;
2911a35b
BW
2577}
2578
b5ffc9bc
CW
2579static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2580{
2581 u32 old_write_domain, old_read_domains;
2582
b5ffc9bc
CW
2583 /* Force a pagefault for domain tracking on next user access */
2584 i915_gem_release_mmap(obj);
2585
b97c3d9c
KP
2586 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2587 return;
2588
97c809fd
CW
2589 /* Wait for any direct GTT access to complete */
2590 mb();
2591
b5ffc9bc
CW
2592 old_read_domains = obj->base.read_domains;
2593 old_write_domain = obj->base.write_domain;
2594
2595 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2596 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2597
2598 trace_i915_gem_object_change_domain(obj,
2599 old_read_domains,
2600 old_write_domain);
2601}
2602
07fe0b12 2603int i915_vma_unbind(struct i915_vma *vma)
673a394b 2604{
07fe0b12 2605 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2606 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2607 int ret;
673a394b 2608
b93dab6e
DV
2609 /* For now we only ever use 1 vma per object */
2610 WARN_ON(!list_is_singular(&obj->vma_list));
2611
07fe0b12 2612 if (list_empty(&vma->vma_link))
673a394b
EA
2613 return 0;
2614
0ff501cb
DV
2615 if (!drm_mm_node_allocated(&vma->node)) {
2616 i915_gem_vma_destroy(vma);
2617
2618 return 0;
2619 }
433544bd 2620
31d8d651
CW
2621 if (obj->pin_count)
2622 return -EBUSY;
673a394b 2623
c4670ad0
CW
2624 BUG_ON(obj->pages == NULL);
2625
a8198eea 2626 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2627 if (ret)
a8198eea
CW
2628 return ret;
2629 /* Continue on if we fail due to EIO, the GPU is hung so we
2630 * should be safe and we need to cleanup or else we might
2631 * cause memory corruption through use-after-free.
2632 */
2633
b5ffc9bc 2634 i915_gem_object_finish_gtt(obj);
5323fd04 2635
96b47b65 2636 /* release the fence reg _after_ flushing */
d9e86c0e 2637 ret = i915_gem_object_put_fence(obj);
1488fc08 2638 if (ret)
d9e86c0e 2639 return ret;
96b47b65 2640
07fe0b12 2641 trace_i915_vma_unbind(vma);
db53a302 2642
74898d7e
DV
2643 if (obj->has_global_gtt_mapping)
2644 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2645 if (obj->has_aliasing_ppgtt_mapping) {
2646 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2647 obj->has_aliasing_ppgtt_mapping = 0;
2648 }
74163907 2649 i915_gem_gtt_finish_object(obj);
401c29f6 2650 i915_gem_object_unpin_pages(obj);
7bddb01f 2651
ca191b13 2652 list_del(&vma->mm_list);
75e9e915 2653 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2654 if (i915_is_ggtt(vma->vm))
2655 obj->map_and_fenceable = true;
673a394b 2656
2f633156 2657 drm_mm_remove_node(&vma->node);
433544bd 2658
2f633156
BW
2659 i915_gem_vma_destroy(vma);
2660
2661 /* Since the unbound list is global, only move to that list if
b93dab6e 2662 * no more VMAs exist. */
2f633156
BW
2663 if (list_empty(&obj->vma_list))
2664 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2665
88241785 2666 return 0;
54cf91dc
CW
2667}
2668
07fe0b12
BW
2669/**
2670 * Unbinds an object from the global GTT aperture.
2671 */
2672int
2673i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2674{
2675 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2676 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2677
58e73e15 2678 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2679 return 0;
2680
2681 if (obj->pin_count)
2682 return -EBUSY;
2683
2684 BUG_ON(obj->pages == NULL);
2685
2686 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2687}
2688
b2da9fe5 2689int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2690{
2691 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2692 struct intel_ring_buffer *ring;
1ec14ad3 2693 int ret, i;
4df2faf4 2694
4df2faf4 2695 /* Flush everything onto the inactive list. */
b4519513 2696 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2697 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2698 if (ret)
2699 return ret;
2700
3e960501 2701 ret = intel_ring_idle(ring);
1ec14ad3
CW
2702 if (ret)
2703 return ret;
2704 }
4df2faf4 2705
8a1a49f9 2706 return 0;
4df2faf4
DV
2707}
2708
9ce079e4
CW
2709static void i965_write_fence_reg(struct drm_device *dev, int reg,
2710 struct drm_i915_gem_object *obj)
de151cf6 2711{
de151cf6 2712 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2713 int fence_reg;
2714 int fence_pitch_shift;
de151cf6 2715
56c844e5
ID
2716 if (INTEL_INFO(dev)->gen >= 6) {
2717 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2718 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2719 } else {
2720 fence_reg = FENCE_REG_965_0;
2721 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2722 }
2723
d18b9619
CW
2724 fence_reg += reg * 8;
2725
2726 /* To w/a incoherency with non-atomic 64-bit register updates,
2727 * we split the 64-bit update into two 32-bit writes. In order
2728 * for a partial fence not to be evaluated between writes, we
2729 * precede the update with write to turn off the fence register,
2730 * and only enable the fence as the last step.
2731 *
2732 * For extra levels of paranoia, we make sure each step lands
2733 * before applying the next step.
2734 */
2735 I915_WRITE(fence_reg, 0);
2736 POSTING_READ(fence_reg);
2737
9ce079e4 2738 if (obj) {
f343c5f6 2739 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2740 uint64_t val;
de151cf6 2741
f343c5f6 2742 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2743 0xfffff000) << 32;
f343c5f6 2744 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2745 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2746 if (obj->tiling_mode == I915_TILING_Y)
2747 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2748 val |= I965_FENCE_REG_VALID;
c6642782 2749
d18b9619
CW
2750 I915_WRITE(fence_reg + 4, val >> 32);
2751 POSTING_READ(fence_reg + 4);
2752
2753 I915_WRITE(fence_reg + 0, val);
2754 POSTING_READ(fence_reg);
2755 } else {
2756 I915_WRITE(fence_reg + 4, 0);
2757 POSTING_READ(fence_reg + 4);
2758 }
de151cf6
JB
2759}
2760
9ce079e4
CW
2761static void i915_write_fence_reg(struct drm_device *dev, int reg,
2762 struct drm_i915_gem_object *obj)
de151cf6 2763{
de151cf6 2764 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2765 u32 val;
de151cf6 2766
9ce079e4 2767 if (obj) {
f343c5f6 2768 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2769 int pitch_val;
2770 int tile_width;
c6642782 2771
f343c5f6 2772 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2773 (size & -size) != size ||
f343c5f6
BW
2774 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2775 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2776 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2777
9ce079e4
CW
2778 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2779 tile_width = 128;
2780 else
2781 tile_width = 512;
2782
2783 /* Note: pitch better be a power of two tile widths */
2784 pitch_val = obj->stride / tile_width;
2785 pitch_val = ffs(pitch_val) - 1;
2786
f343c5f6 2787 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2788 if (obj->tiling_mode == I915_TILING_Y)
2789 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2790 val |= I915_FENCE_SIZE_BITS(size);
2791 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2792 val |= I830_FENCE_REG_VALID;
2793 } else
2794 val = 0;
2795
2796 if (reg < 8)
2797 reg = FENCE_REG_830_0 + reg * 4;
2798 else
2799 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2800
2801 I915_WRITE(reg, val);
2802 POSTING_READ(reg);
de151cf6
JB
2803}
2804
9ce079e4
CW
2805static void i830_write_fence_reg(struct drm_device *dev, int reg,
2806 struct drm_i915_gem_object *obj)
de151cf6 2807{
de151cf6 2808 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2809 uint32_t val;
de151cf6 2810
9ce079e4 2811 if (obj) {
f343c5f6 2812 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2813 uint32_t pitch_val;
de151cf6 2814
f343c5f6 2815 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2816 (size & -size) != size ||
f343c5f6
BW
2817 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2818 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2819 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2820
9ce079e4
CW
2821 pitch_val = obj->stride / 128;
2822 pitch_val = ffs(pitch_val) - 1;
de151cf6 2823
f343c5f6 2824 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2825 if (obj->tiling_mode == I915_TILING_Y)
2826 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2827 val |= I830_FENCE_SIZE_BITS(size);
2828 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2829 val |= I830_FENCE_REG_VALID;
2830 } else
2831 val = 0;
c6642782 2832
9ce079e4
CW
2833 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2834 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2835}
2836
d0a57789
CW
2837inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2838{
2839 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2840}
2841
9ce079e4
CW
2842static void i915_gem_write_fence(struct drm_device *dev, int reg,
2843 struct drm_i915_gem_object *obj)
2844{
d0a57789
CW
2845 struct drm_i915_private *dev_priv = dev->dev_private;
2846
2847 /* Ensure that all CPU reads are completed before installing a fence
2848 * and all writes before removing the fence.
2849 */
2850 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2851 mb();
2852
94a335db
DV
2853 WARN(obj && (!obj->stride || !obj->tiling_mode),
2854 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2855 obj->stride, obj->tiling_mode);
2856
9ce079e4
CW
2857 switch (INTEL_INFO(dev)->gen) {
2858 case 7:
56c844e5 2859 case 6:
9ce079e4
CW
2860 case 5:
2861 case 4: i965_write_fence_reg(dev, reg, obj); break;
2862 case 3: i915_write_fence_reg(dev, reg, obj); break;
2863 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2864 default: BUG();
9ce079e4 2865 }
d0a57789
CW
2866
2867 /* And similarly be paranoid that no direct access to this region
2868 * is reordered to before the fence is installed.
2869 */
2870 if (i915_gem_object_needs_mb(obj))
2871 mb();
de151cf6
JB
2872}
2873
61050808
CW
2874static inline int fence_number(struct drm_i915_private *dev_priv,
2875 struct drm_i915_fence_reg *fence)
2876{
2877 return fence - dev_priv->fence_regs;
2878}
2879
2880static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2881 struct drm_i915_fence_reg *fence,
2882 bool enable)
2883{
2dc8aae0 2884 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2885 int reg = fence_number(dev_priv, fence);
2886
2887 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2888
2889 if (enable) {
46a0b638 2890 obj->fence_reg = reg;
61050808
CW
2891 fence->obj = obj;
2892 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2893 } else {
2894 obj->fence_reg = I915_FENCE_REG_NONE;
2895 fence->obj = NULL;
2896 list_del_init(&fence->lru_list);
2897 }
94a335db 2898 obj->fence_dirty = false;
61050808
CW
2899}
2900
d9e86c0e 2901static int
d0a57789 2902i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2903{
1c293ea3 2904 if (obj->last_fenced_seqno) {
86d5bc37 2905 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2906 if (ret)
2907 return ret;
d9e86c0e
CW
2908
2909 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2910 }
2911
86d5bc37 2912 obj->fenced_gpu_access = false;
d9e86c0e
CW
2913 return 0;
2914}
2915
2916int
2917i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2918{
61050808 2919 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2920 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2921 int ret;
2922
d0a57789 2923 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2924 if (ret)
2925 return ret;
2926
61050808
CW
2927 if (obj->fence_reg == I915_FENCE_REG_NONE)
2928 return 0;
d9e86c0e 2929
f9c513e9
CW
2930 fence = &dev_priv->fence_regs[obj->fence_reg];
2931
61050808 2932 i915_gem_object_fence_lost(obj);
f9c513e9 2933 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2934
2935 return 0;
2936}
2937
2938static struct drm_i915_fence_reg *
a360bb1a 2939i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2940{
ae3db24a 2941 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2942 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2943 int i;
ae3db24a
DV
2944
2945 /* First try to find a free reg */
d9e86c0e 2946 avail = NULL;
ae3db24a
DV
2947 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2948 reg = &dev_priv->fence_regs[i];
2949 if (!reg->obj)
d9e86c0e 2950 return reg;
ae3db24a 2951
1690e1eb 2952 if (!reg->pin_count)
d9e86c0e 2953 avail = reg;
ae3db24a
DV
2954 }
2955
d9e86c0e
CW
2956 if (avail == NULL)
2957 return NULL;
ae3db24a
DV
2958
2959 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2960 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2961 if (reg->pin_count)
ae3db24a
DV
2962 continue;
2963
8fe301ad 2964 return reg;
ae3db24a
DV
2965 }
2966
8fe301ad 2967 return NULL;
ae3db24a
DV
2968}
2969
de151cf6 2970/**
9a5a53b3 2971 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2972 * @obj: object to map through a fence reg
2973 *
2974 * When mapping objects through the GTT, userspace wants to be able to write
2975 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2976 * This function walks the fence regs looking for a free one for @obj,
2977 * stealing one if it can't find any.
2978 *
2979 * It then sets up the reg based on the object's properties: address, pitch
2980 * and tiling format.
9a5a53b3
CW
2981 *
2982 * For an untiled surface, this removes any existing fence.
de151cf6 2983 */
8c4b8c3f 2984int
06d98131 2985i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2986{
05394f39 2987 struct drm_device *dev = obj->base.dev;
79e53945 2988 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2989 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2990 struct drm_i915_fence_reg *reg;
ae3db24a 2991 int ret;
de151cf6 2992
14415745
CW
2993 /* Have we updated the tiling parameters upon the object and so
2994 * will need to serialise the write to the associated fence register?
2995 */
5d82e3e6 2996 if (obj->fence_dirty) {
d0a57789 2997 ret = i915_gem_object_wait_fence(obj);
14415745
CW
2998 if (ret)
2999 return ret;
3000 }
9a5a53b3 3001
d9e86c0e 3002 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3003 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3004 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3005 if (!obj->fence_dirty) {
14415745
CW
3006 list_move_tail(&reg->lru_list,
3007 &dev_priv->mm.fence_list);
3008 return 0;
3009 }
3010 } else if (enable) {
3011 reg = i915_find_fence_reg(dev);
3012 if (reg == NULL)
3013 return -EDEADLK;
d9e86c0e 3014
14415745
CW
3015 if (reg->obj) {
3016 struct drm_i915_gem_object *old = reg->obj;
3017
d0a57789 3018 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3019 if (ret)
3020 return ret;
3021
14415745 3022 i915_gem_object_fence_lost(old);
29c5a587 3023 }
14415745 3024 } else
a09ba7fa 3025 return 0;
a09ba7fa 3026
14415745 3027 i915_gem_object_update_fence(obj, reg, enable);
14415745 3028
9ce079e4 3029 return 0;
de151cf6
JB
3030}
3031
42d6ab48
CW
3032static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3033 struct drm_mm_node *gtt_space,
3034 unsigned long cache_level)
3035{
3036 struct drm_mm_node *other;
3037
3038 /* On non-LLC machines we have to be careful when putting differing
3039 * types of snoopable memory together to avoid the prefetcher
4239ca77 3040 * crossing memory domains and dying.
42d6ab48
CW
3041 */
3042 if (HAS_LLC(dev))
3043 return true;
3044
c6cfb325 3045 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3046 return true;
3047
3048 if (list_empty(&gtt_space->node_list))
3049 return true;
3050
3051 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3052 if (other->allocated && !other->hole_follows && other->color != cache_level)
3053 return false;
3054
3055 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3056 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3057 return false;
3058
3059 return true;
3060}
3061
3062static void i915_gem_verify_gtt(struct drm_device *dev)
3063{
3064#if WATCH_GTT
3065 struct drm_i915_private *dev_priv = dev->dev_private;
3066 struct drm_i915_gem_object *obj;
3067 int err = 0;
3068
35c20a60 3069 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3070 if (obj->gtt_space == NULL) {
3071 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3072 err++;
3073 continue;
3074 }
3075
3076 if (obj->cache_level != obj->gtt_space->color) {
3077 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3078 i915_gem_obj_ggtt_offset(obj),
3079 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3080 obj->cache_level,
3081 obj->gtt_space->color);
3082 err++;
3083 continue;
3084 }
3085
3086 if (!i915_gem_valid_gtt_space(dev,
3087 obj->gtt_space,
3088 obj->cache_level)) {
3089 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3090 i915_gem_obj_ggtt_offset(obj),
3091 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3092 obj->cache_level);
3093 err++;
3094 continue;
3095 }
3096 }
3097
3098 WARN_ON(err);
3099#endif
3100}
3101
673a394b
EA
3102/**
3103 * Finds free space in the GTT aperture and binds the object there.
3104 */
3105static int
07fe0b12
BW
3106i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3107 struct i915_address_space *vm,
3108 unsigned alignment,
3109 bool map_and_fenceable,
3110 bool nonblocking)
673a394b 3111{
05394f39 3112 struct drm_device *dev = obj->base.dev;
673a394b 3113 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3114 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3115 size_t gtt_max =
3116 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3117 struct i915_vma *vma;
07f73f69 3118 int ret;
673a394b 3119
e28f8711
CW
3120 fence_size = i915_gem_get_gtt_size(dev,
3121 obj->base.size,
3122 obj->tiling_mode);
3123 fence_alignment = i915_gem_get_gtt_alignment(dev,
3124 obj->base.size,
d865110c 3125 obj->tiling_mode, true);
e28f8711 3126 unfenced_alignment =
d865110c 3127 i915_gem_get_gtt_alignment(dev,
e28f8711 3128 obj->base.size,
d865110c 3129 obj->tiling_mode, false);
a00b10c3 3130
673a394b 3131 if (alignment == 0)
5e783301
DV
3132 alignment = map_and_fenceable ? fence_alignment :
3133 unfenced_alignment;
75e9e915 3134 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3135 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3136 return -EINVAL;
3137 }
3138
05394f39 3139 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3140
654fc607
CW
3141 /* If the object is bigger than the entire aperture, reject it early
3142 * before evicting everything in a vain attempt to find space.
3143 */
0a9ae0d7 3144 if (obj->base.size > gtt_max) {
3765f304 3145 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3146 obj->base.size,
3147 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3148 gtt_max);
654fc607
CW
3149 return -E2BIG;
3150 }
3151
37e680a1 3152 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3153 if (ret)
3154 return ret;
3155
fbdda6fb
CW
3156 i915_gem_object_pin_pages(obj);
3157
07fe0b12 3158 BUG_ON(!i915_is_ggtt(vm));
07fe0b12 3159
accfef2e 3160 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3161 if (IS_ERR(vma)) {
bc6bc15b
DV
3162 ret = PTR_ERR(vma);
3163 goto err_unpin;
2f633156
BW
3164 }
3165
accfef2e
BW
3166 /* For now we only ever use 1 vma per object */
3167 WARN_ON(!list_is_singular(&obj->vma_list));
3168
0a9ae0d7 3169search_free:
07fe0b12 3170 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3171 size, alignment,
31e5d7c6
DH
3172 obj->cache_level, 0, gtt_max,
3173 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3174 if (ret) {
f6cd1f15 3175 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3176 obj->cache_level,
86a1ee26
CW
3177 map_and_fenceable,
3178 nonblocking);
dc9dd7a2
CW
3179 if (ret == 0)
3180 goto search_free;
9731129c 3181
bc6bc15b 3182 goto err_free_vma;
673a394b 3183 }
2f633156 3184 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3185 obj->cache_level))) {
2f633156 3186 ret = -EINVAL;
bc6bc15b 3187 goto err_remove_node;
673a394b
EA
3188 }
3189
74163907 3190 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3191 if (ret)
bc6bc15b 3192 goto err_remove_node;
673a394b 3193
35c20a60 3194 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3195 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3196
4bd561b3
BW
3197 if (i915_is_ggtt(vm)) {
3198 bool mappable, fenceable;
a00b10c3 3199
49987099
DV
3200 fenceable = (vma->node.size == fence_size &&
3201 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3202
49987099
DV
3203 mappable = (vma->node.start + obj->base.size <=
3204 dev_priv->gtt.mappable_end);
a00b10c3 3205
5cacaac7 3206 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3207 }
75e9e915 3208
7ace7ef2 3209 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3210
07fe0b12 3211 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3212 i915_gem_verify_gtt(dev);
673a394b 3213 return 0;
2f633156 3214
bc6bc15b 3215err_remove_node:
6286ef9b 3216 drm_mm_remove_node(&vma->node);
bc6bc15b 3217err_free_vma:
2f633156 3218 i915_gem_vma_destroy(vma);
bc6bc15b 3219err_unpin:
2f633156 3220 i915_gem_object_unpin_pages(obj);
2f633156 3221 return ret;
673a394b
EA
3222}
3223
000433b6 3224bool
2c22569b
CW
3225i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3226 bool force)
673a394b 3227{
673a394b
EA
3228 /* If we don't have a page list set up, then we're not pinned
3229 * to GPU, and we can ignore the cache flush because it'll happen
3230 * again at bind time.
3231 */
05394f39 3232 if (obj->pages == NULL)
000433b6 3233 return false;
673a394b 3234
769ce464
ID
3235 /*
3236 * Stolen memory is always coherent with the GPU as it is explicitly
3237 * marked as wc by the system, or the system is cache-coherent.
3238 */
3239 if (obj->stolen)
000433b6 3240 return false;
769ce464 3241
9c23f7fc
CW
3242 /* If the GPU is snooping the contents of the CPU cache,
3243 * we do not need to manually clear the CPU cache lines. However,
3244 * the caches are only snooped when the render cache is
3245 * flushed/invalidated. As we always have to emit invalidations
3246 * and flushes when moving into and out of the RENDER domain, correct
3247 * snooping behaviour occurs naturally as the result of our domain
3248 * tracking.
3249 */
2c22569b 3250 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3251 return false;
9c23f7fc 3252
1c5d22f7 3253 trace_i915_gem_object_clflush(obj);
9da3da66 3254 drm_clflush_sg(obj->pages);
000433b6
CW
3255
3256 return true;
e47c68e9
EA
3257}
3258
3259/** Flushes the GTT write domain for the object if it's dirty. */
3260static void
05394f39 3261i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3262{
1c5d22f7
CW
3263 uint32_t old_write_domain;
3264
05394f39 3265 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3266 return;
3267
63256ec5 3268 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3269 * to it immediately go to main memory as far as we know, so there's
3270 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3271 *
3272 * However, we do have to enforce the order so that all writes through
3273 * the GTT land before any writes to the device, such as updates to
3274 * the GATT itself.
e47c68e9 3275 */
63256ec5
CW
3276 wmb();
3277
05394f39
CW
3278 old_write_domain = obj->base.write_domain;
3279 obj->base.write_domain = 0;
1c5d22f7
CW
3280
3281 trace_i915_gem_object_change_domain(obj,
05394f39 3282 obj->base.read_domains,
1c5d22f7 3283 old_write_domain);
e47c68e9
EA
3284}
3285
3286/** Flushes the CPU write domain for the object if it's dirty. */
3287static void
2c22569b
CW
3288i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3289 bool force)
e47c68e9 3290{
1c5d22f7 3291 uint32_t old_write_domain;
e47c68e9 3292
05394f39 3293 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3294 return;
3295
000433b6
CW
3296 if (i915_gem_clflush_object(obj, force))
3297 i915_gem_chipset_flush(obj->base.dev);
3298
05394f39
CW
3299 old_write_domain = obj->base.write_domain;
3300 obj->base.write_domain = 0;
1c5d22f7
CW
3301
3302 trace_i915_gem_object_change_domain(obj,
05394f39 3303 obj->base.read_domains,
1c5d22f7 3304 old_write_domain);
e47c68e9
EA
3305}
3306
2ef7eeaa
EA
3307/**
3308 * Moves a single object to the GTT read, and possibly write domain.
3309 *
3310 * This function returns when the move is complete, including waiting on
3311 * flushes to occur.
3312 */
79e53945 3313int
2021746e 3314i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3315{
8325a09d 3316 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3317 uint32_t old_write_domain, old_read_domains;
e47c68e9 3318 int ret;
2ef7eeaa 3319
02354392 3320 /* Not valid to be called on unbound objects. */
9843877d 3321 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3322 return -EINVAL;
3323
8d7e3de1
CW
3324 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3325 return 0;
3326
0201f1ec 3327 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3328 if (ret)
3329 return ret;
3330
2c22569b 3331 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3332
d0a57789
CW
3333 /* Serialise direct access to this object with the barriers for
3334 * coherent writes from the GPU, by effectively invalidating the
3335 * GTT domain upon first access.
3336 */
3337 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3338 mb();
3339
05394f39
CW
3340 old_write_domain = obj->base.write_domain;
3341 old_read_domains = obj->base.read_domains;
1c5d22f7 3342
e47c68e9
EA
3343 /* It should now be out of any other write domains, and we can update
3344 * the domain values for our changes.
3345 */
05394f39
CW
3346 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3347 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3348 if (write) {
05394f39
CW
3349 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3350 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3351 obj->dirty = 1;
2ef7eeaa
EA
3352 }
3353
1c5d22f7
CW
3354 trace_i915_gem_object_change_domain(obj,
3355 old_read_domains,
3356 old_write_domain);
3357
8325a09d 3358 /* And bump the LRU for this access */
ca191b13
BW
3359 if (i915_gem_object_is_inactive(obj)) {
3360 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3361 &dev_priv->gtt.base);
3362 if (vma)
3363 list_move_tail(&vma->mm_list,
3364 &dev_priv->gtt.base.inactive_list);
3365
3366 }
8325a09d 3367
e47c68e9
EA
3368 return 0;
3369}
3370
e4ffd173
CW
3371int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3372 enum i915_cache_level cache_level)
3373{
7bddb01f
DV
3374 struct drm_device *dev = obj->base.dev;
3375 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3376 struct i915_vma *vma;
e4ffd173
CW
3377 int ret;
3378
3379 if (obj->cache_level == cache_level)
3380 return 0;
3381
3382 if (obj->pin_count) {
3383 DRM_DEBUG("can not change the cache level of pinned objects\n");
3384 return -EBUSY;
3385 }
3386
3089c6f2
BW
3387 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3388 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3389 ret = i915_vma_unbind(vma);
3089c6f2
BW
3390 if (ret)
3391 return ret;
3392
3393 break;
3394 }
42d6ab48
CW
3395 }
3396
3089c6f2 3397 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3398 ret = i915_gem_object_finish_gpu(obj);
3399 if (ret)
3400 return ret;
3401
3402 i915_gem_object_finish_gtt(obj);
3403
3404 /* Before SandyBridge, you could not use tiling or fence
3405 * registers with snooped memory, so relinquish any fences
3406 * currently pointing to our region in the aperture.
3407 */
42d6ab48 3408 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3409 ret = i915_gem_object_put_fence(obj);
3410 if (ret)
3411 return ret;
3412 }
3413
74898d7e
DV
3414 if (obj->has_global_gtt_mapping)
3415 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3416 if (obj->has_aliasing_ppgtt_mapping)
3417 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3418 obj, cache_level);
e4ffd173
CW
3419 }
3420
2c22569b
CW
3421 list_for_each_entry(vma, &obj->vma_list, vma_link)
3422 vma->node.color = cache_level;
3423 obj->cache_level = cache_level;
3424
3425 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3426 u32 old_read_domains, old_write_domain;
3427
3428 /* If we're coming from LLC cached, then we haven't
3429 * actually been tracking whether the data is in the
3430 * CPU cache or not, since we only allow one bit set
3431 * in obj->write_domain and have been skipping the clflushes.
3432 * Just set it to the CPU cache for now.
3433 */
3434 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3435
3436 old_read_domains = obj->base.read_domains;
3437 old_write_domain = obj->base.write_domain;
3438
3439 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3440 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3441
3442 trace_i915_gem_object_change_domain(obj,
3443 old_read_domains,
3444 old_write_domain);
3445 }
3446
42d6ab48 3447 i915_gem_verify_gtt(dev);
e4ffd173
CW
3448 return 0;
3449}
3450
199adf40
BW
3451int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3452 struct drm_file *file)
e6994aee 3453{
199adf40 3454 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3455 struct drm_i915_gem_object *obj;
3456 int ret;
3457
3458 ret = i915_mutex_lock_interruptible(dev);
3459 if (ret)
3460 return ret;
3461
3462 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3463 if (&obj->base == NULL) {
3464 ret = -ENOENT;
3465 goto unlock;
3466 }
3467
651d794f
CW
3468 switch (obj->cache_level) {
3469 case I915_CACHE_LLC:
3470 case I915_CACHE_L3_LLC:
3471 args->caching = I915_CACHING_CACHED;
3472 break;
3473
4257d3ba
CW
3474 case I915_CACHE_WT:
3475 args->caching = I915_CACHING_DISPLAY;
3476 break;
3477
651d794f
CW
3478 default:
3479 args->caching = I915_CACHING_NONE;
3480 break;
3481 }
e6994aee
CW
3482
3483 drm_gem_object_unreference(&obj->base);
3484unlock:
3485 mutex_unlock(&dev->struct_mutex);
3486 return ret;
3487}
3488
199adf40
BW
3489int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3490 struct drm_file *file)
e6994aee 3491{
199adf40 3492 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3493 struct drm_i915_gem_object *obj;
3494 enum i915_cache_level level;
3495 int ret;
3496
199adf40
BW
3497 switch (args->caching) {
3498 case I915_CACHING_NONE:
e6994aee
CW
3499 level = I915_CACHE_NONE;
3500 break;
199adf40 3501 case I915_CACHING_CACHED:
e6994aee
CW
3502 level = I915_CACHE_LLC;
3503 break;
4257d3ba
CW
3504 case I915_CACHING_DISPLAY:
3505 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3506 break;
e6994aee
CW
3507 default:
3508 return -EINVAL;
3509 }
3510
3bc2913e
BW
3511 ret = i915_mutex_lock_interruptible(dev);
3512 if (ret)
3513 return ret;
3514
e6994aee
CW
3515 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3516 if (&obj->base == NULL) {
3517 ret = -ENOENT;
3518 goto unlock;
3519 }
3520
3521 ret = i915_gem_object_set_cache_level(obj, level);
3522
3523 drm_gem_object_unreference(&obj->base);
3524unlock:
3525 mutex_unlock(&dev->struct_mutex);
3526 return ret;
3527}
3528
cc98b413
CW
3529static bool is_pin_display(struct drm_i915_gem_object *obj)
3530{
3531 /* There are 3 sources that pin objects:
3532 * 1. The display engine (scanouts, sprites, cursors);
3533 * 2. Reservations for execbuffer;
3534 * 3. The user.
3535 *
3536 * We can ignore reservations as we hold the struct_mutex and
3537 * are only called outside of the reservation path. The user
3538 * can only increment pin_count once, and so if after
3539 * subtracting the potential reference by the user, any pin_count
3540 * remains, it must be due to another use by the display engine.
3541 */
3542 return obj->pin_count - !!obj->user_pin_count;
3543}
3544
b9241ea3 3545/*
2da3b9b9
CW
3546 * Prepare buffer for display plane (scanout, cursors, etc).
3547 * Can be called from an uninterruptible phase (modesetting) and allows
3548 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3549 */
3550int
2da3b9b9
CW
3551i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3552 u32 alignment,
919926ae 3553 struct intel_ring_buffer *pipelined)
b9241ea3 3554{
2da3b9b9 3555 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3556 int ret;
3557
0be73284 3558 if (pipelined != obj->ring) {
2911a35b
BW
3559 ret = i915_gem_object_sync(obj, pipelined);
3560 if (ret)
b9241ea3
ZW
3561 return ret;
3562 }
3563
cc98b413
CW
3564 /* Mark the pin_display early so that we account for the
3565 * display coherency whilst setting up the cache domains.
3566 */
3567 obj->pin_display = true;
3568
a7ef0640
EA
3569 /* The display engine is not coherent with the LLC cache on gen6. As
3570 * a result, we make sure that the pinning that is about to occur is
3571 * done with uncached PTEs. This is lowest common denominator for all
3572 * chipsets.
3573 *
3574 * However for gen6+, we could do better by using the GFDT bit instead
3575 * of uncaching, which would allow us to flush all the LLC-cached data
3576 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3577 */
651d794f
CW
3578 ret = i915_gem_object_set_cache_level(obj,
3579 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3580 if (ret)
cc98b413 3581 goto err_unpin_display;
a7ef0640 3582
2da3b9b9
CW
3583 /* As the user may map the buffer once pinned in the display plane
3584 * (e.g. libkms for the bootup splash), we have to ensure that we
3585 * always use map_and_fenceable for all scanout buffers.
3586 */
c37e2204 3587 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3588 if (ret)
cc98b413 3589 goto err_unpin_display;
2da3b9b9 3590
2c22569b 3591 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3592
2da3b9b9 3593 old_write_domain = obj->base.write_domain;
05394f39 3594 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3595
3596 /* It should now be out of any other write domains, and we can update
3597 * the domain values for our changes.
3598 */
e5f1d962 3599 obj->base.write_domain = 0;
05394f39 3600 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3601
3602 trace_i915_gem_object_change_domain(obj,
3603 old_read_domains,
2da3b9b9 3604 old_write_domain);
b9241ea3
ZW
3605
3606 return 0;
cc98b413
CW
3607
3608err_unpin_display:
3609 obj->pin_display = is_pin_display(obj);
3610 return ret;
3611}
3612
3613void
3614i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3615{
3616 i915_gem_object_unpin(obj);
3617 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3618}
3619
85345517 3620int
a8198eea 3621i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3622{
88241785
CW
3623 int ret;
3624
a8198eea 3625 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3626 return 0;
3627
0201f1ec 3628 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3629 if (ret)
3630 return ret;
3631
a8198eea
CW
3632 /* Ensure that we invalidate the GPU's caches and TLBs. */
3633 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3634 return 0;
85345517
CW
3635}
3636
e47c68e9
EA
3637/**
3638 * Moves a single object to the CPU read, and possibly write domain.
3639 *
3640 * This function returns when the move is complete, including waiting on
3641 * flushes to occur.
3642 */
dabdfe02 3643int
919926ae 3644i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3645{
1c5d22f7 3646 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3647 int ret;
3648
8d7e3de1
CW
3649 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3650 return 0;
3651
0201f1ec 3652 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3653 if (ret)
3654 return ret;
3655
e47c68e9 3656 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3657
05394f39
CW
3658 old_write_domain = obj->base.write_domain;
3659 old_read_domains = obj->base.read_domains;
1c5d22f7 3660
e47c68e9 3661 /* Flush the CPU cache if it's still invalid. */
05394f39 3662 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3663 i915_gem_clflush_object(obj, false);
2ef7eeaa 3664
05394f39 3665 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3666 }
3667
3668 /* It should now be out of any other write domains, and we can update
3669 * the domain values for our changes.
3670 */
05394f39 3671 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3672
3673 /* If we're writing through the CPU, then the GPU read domains will
3674 * need to be invalidated at next use.
3675 */
3676 if (write) {
05394f39
CW
3677 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3678 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3679 }
2ef7eeaa 3680
1c5d22f7
CW
3681 trace_i915_gem_object_change_domain(obj,
3682 old_read_domains,
3683 old_write_domain);
3684
2ef7eeaa
EA
3685 return 0;
3686}
3687
673a394b
EA
3688/* Throttle our rendering by waiting until the ring has completed our requests
3689 * emitted over 20 msec ago.
3690 *
b962442e
EA
3691 * Note that if we were to use the current jiffies each time around the loop,
3692 * we wouldn't escape the function with any frames outstanding if the time to
3693 * render a frame was over 20ms.
3694 *
673a394b
EA
3695 * This should get us reasonable parallelism between CPU and GPU but also
3696 * relatively low latency when blocking on a particular request to finish.
3697 */
40a5f0de 3698static int
f787a5f5 3699i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3700{
f787a5f5
CW
3701 struct drm_i915_private *dev_priv = dev->dev_private;
3702 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3703 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3704 struct drm_i915_gem_request *request;
3705 struct intel_ring_buffer *ring = NULL;
f69061be 3706 unsigned reset_counter;
f787a5f5
CW
3707 u32 seqno = 0;
3708 int ret;
93533c29 3709
308887aa
DV
3710 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3711 if (ret)
3712 return ret;
3713
3714 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3715 if (ret)
3716 return ret;
e110e8d6 3717
1c25595f 3718 spin_lock(&file_priv->mm.lock);
f787a5f5 3719 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3720 if (time_after_eq(request->emitted_jiffies, recent_enough))
3721 break;
40a5f0de 3722
f787a5f5
CW
3723 ring = request->ring;
3724 seqno = request->seqno;
b962442e 3725 }
f69061be 3726 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3727 spin_unlock(&file_priv->mm.lock);
40a5f0de 3728
f787a5f5
CW
3729 if (seqno == 0)
3730 return 0;
2bc43b5c 3731
f69061be 3732 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3733 if (ret == 0)
3734 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3735
3736 return ret;
3737}
3738
673a394b 3739int
05394f39 3740i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3741 struct i915_address_space *vm,
05394f39 3742 uint32_t alignment,
86a1ee26
CW
3743 bool map_and_fenceable,
3744 bool nonblocking)
673a394b 3745{
07fe0b12 3746 struct i915_vma *vma;
673a394b
EA
3747 int ret;
3748
7e81a42e
CW
3749 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3750 return -EBUSY;
ac0c6b5a 3751
07fe0b12
BW
3752 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3753
3754 vma = i915_gem_obj_to_vma(obj, vm);
3755
3756 if (vma) {
3757 if ((alignment &&
3758 vma->node.start & (alignment - 1)) ||
05394f39
CW
3759 (map_and_fenceable && !obj->map_and_fenceable)) {
3760 WARN(obj->pin_count,
ae7d49d8 3761 "bo is already pinned with incorrect alignment:"
f343c5f6 3762 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3763 " obj->map_and_fenceable=%d\n",
07fe0b12 3764 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3765 map_and_fenceable,
05394f39 3766 obj->map_and_fenceable);
07fe0b12 3767 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3768 if (ret)
3769 return ret;
3770 }
3771 }
3772
07fe0b12 3773 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3774 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3775
07fe0b12
BW
3776 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3777 map_and_fenceable,
3778 nonblocking);
9731129c 3779 if (ret)
673a394b 3780 return ret;
8742267a
CW
3781
3782 if (!dev_priv->mm.aliasing_ppgtt)
3783 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3784 }
76446cac 3785
74898d7e
DV
3786 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3787 i915_gem_gtt_bind_object(obj, obj->cache_level);
3788
1b50247a 3789 obj->pin_count++;
6299f992 3790 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3791
3792 return 0;
3793}
3794
3795void
05394f39 3796i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3797{
05394f39 3798 BUG_ON(obj->pin_count == 0);
9843877d 3799 BUG_ON(!i915_gem_obj_bound_any(obj));
673a394b 3800
1b50247a 3801 if (--obj->pin_count == 0)
6299f992 3802 obj->pin_mappable = false;
673a394b
EA
3803}
3804
3805int
3806i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3807 struct drm_file *file)
673a394b
EA
3808{
3809 struct drm_i915_gem_pin *args = data;
05394f39 3810 struct drm_i915_gem_object *obj;
673a394b
EA
3811 int ret;
3812
1d7cfea1
CW
3813 ret = i915_mutex_lock_interruptible(dev);
3814 if (ret)
3815 return ret;
673a394b 3816
05394f39 3817 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3818 if (&obj->base == NULL) {
1d7cfea1
CW
3819 ret = -ENOENT;
3820 goto unlock;
673a394b 3821 }
673a394b 3822
05394f39 3823 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3824 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3825 ret = -EINVAL;
3826 goto out;
3ef94daa
CW
3827 }
3828
05394f39 3829 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3830 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3831 args->handle);
1d7cfea1
CW
3832 ret = -EINVAL;
3833 goto out;
79e53945
JB
3834 }
3835
93be8788 3836 if (obj->user_pin_count == 0) {
c37e2204 3837 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3838 if (ret)
3839 goto out;
673a394b
EA
3840 }
3841
93be8788
CW
3842 obj->user_pin_count++;
3843 obj->pin_filp = file;
3844
f343c5f6 3845 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3846out:
05394f39 3847 drm_gem_object_unreference(&obj->base);
1d7cfea1 3848unlock:
673a394b 3849 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3850 return ret;
673a394b
EA
3851}
3852
3853int
3854i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3855 struct drm_file *file)
673a394b
EA
3856{
3857 struct drm_i915_gem_pin *args = data;
05394f39 3858 struct drm_i915_gem_object *obj;
76c1dec1 3859 int ret;
673a394b 3860
1d7cfea1
CW
3861 ret = i915_mutex_lock_interruptible(dev);
3862 if (ret)
3863 return ret;
673a394b 3864
05394f39 3865 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3866 if (&obj->base == NULL) {
1d7cfea1
CW
3867 ret = -ENOENT;
3868 goto unlock;
673a394b 3869 }
76c1dec1 3870
05394f39 3871 if (obj->pin_filp != file) {
79e53945
JB
3872 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3873 args->handle);
1d7cfea1
CW
3874 ret = -EINVAL;
3875 goto out;
79e53945 3876 }
05394f39
CW
3877 obj->user_pin_count--;
3878 if (obj->user_pin_count == 0) {
3879 obj->pin_filp = NULL;
79e53945
JB
3880 i915_gem_object_unpin(obj);
3881 }
673a394b 3882
1d7cfea1 3883out:
05394f39 3884 drm_gem_object_unreference(&obj->base);
1d7cfea1 3885unlock:
673a394b 3886 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3887 return ret;
673a394b
EA
3888}
3889
3890int
3891i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3892 struct drm_file *file)
673a394b
EA
3893{
3894 struct drm_i915_gem_busy *args = data;
05394f39 3895 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3896 int ret;
3897
76c1dec1 3898 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3899 if (ret)
76c1dec1 3900 return ret;
673a394b 3901
05394f39 3902 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3903 if (&obj->base == NULL) {
1d7cfea1
CW
3904 ret = -ENOENT;
3905 goto unlock;
673a394b 3906 }
d1b851fc 3907
0be555b6
CW
3908 /* Count all active objects as busy, even if they are currently not used
3909 * by the gpu. Users of this interface expect objects to eventually
3910 * become non-busy without any further actions, therefore emit any
3911 * necessary flushes here.
c4de0a5d 3912 */
30dfebf3 3913 ret = i915_gem_object_flush_active(obj);
0be555b6 3914
30dfebf3 3915 args->busy = obj->active;
e9808edd
CW
3916 if (obj->ring) {
3917 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3918 args->busy |= intel_ring_flag(obj->ring) << 16;
3919 }
673a394b 3920
05394f39 3921 drm_gem_object_unreference(&obj->base);
1d7cfea1 3922unlock:
673a394b 3923 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3924 return ret;
673a394b
EA
3925}
3926
3927int
3928i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3929 struct drm_file *file_priv)
3930{
0206e353 3931 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3932}
3933
3ef94daa
CW
3934int
3935i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3936 struct drm_file *file_priv)
3937{
3938 struct drm_i915_gem_madvise *args = data;
05394f39 3939 struct drm_i915_gem_object *obj;
76c1dec1 3940 int ret;
3ef94daa
CW
3941
3942 switch (args->madv) {
3943 case I915_MADV_DONTNEED:
3944 case I915_MADV_WILLNEED:
3945 break;
3946 default:
3947 return -EINVAL;
3948 }
3949
1d7cfea1
CW
3950 ret = i915_mutex_lock_interruptible(dev);
3951 if (ret)
3952 return ret;
3953
05394f39 3954 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3955 if (&obj->base == NULL) {
1d7cfea1
CW
3956 ret = -ENOENT;
3957 goto unlock;
3ef94daa 3958 }
3ef94daa 3959
05394f39 3960 if (obj->pin_count) {
1d7cfea1
CW
3961 ret = -EINVAL;
3962 goto out;
3ef94daa
CW
3963 }
3964
05394f39
CW
3965 if (obj->madv != __I915_MADV_PURGED)
3966 obj->madv = args->madv;
3ef94daa 3967
6c085a72
CW
3968 /* if the object is no longer attached, discard its backing storage */
3969 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3970 i915_gem_object_truncate(obj);
3971
05394f39 3972 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3973
1d7cfea1 3974out:
05394f39 3975 drm_gem_object_unreference(&obj->base);
1d7cfea1 3976unlock:
3ef94daa 3977 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3978 return ret;
3ef94daa
CW
3979}
3980
37e680a1
CW
3981void i915_gem_object_init(struct drm_i915_gem_object *obj,
3982 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3983{
35c20a60 3984 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 3985 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 3986 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3987 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 3988
37e680a1
CW
3989 obj->ops = ops;
3990
0327d6ba
CW
3991 obj->fence_reg = I915_FENCE_REG_NONE;
3992 obj->madv = I915_MADV_WILLNEED;
3993 /* Avoid an unnecessary call to unbind on the first bind. */
3994 obj->map_and_fenceable = true;
3995
3996 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3997}
3998
37e680a1
CW
3999static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4000 .get_pages = i915_gem_object_get_pages_gtt,
4001 .put_pages = i915_gem_object_put_pages_gtt,
4002};
4003
05394f39
CW
4004struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4005 size_t size)
ac52bc56 4006{
c397b908 4007 struct drm_i915_gem_object *obj;
5949eac4 4008 struct address_space *mapping;
1a240d4d 4009 gfp_t mask;
ac52bc56 4010
42dcedd4 4011 obj = i915_gem_object_alloc(dev);
c397b908
DV
4012 if (obj == NULL)
4013 return NULL;
673a394b 4014
c397b908 4015 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4016 i915_gem_object_free(obj);
c397b908
DV
4017 return NULL;
4018 }
673a394b 4019
bed1ea95
CW
4020 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4021 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4022 /* 965gm cannot relocate objects above 4GiB. */
4023 mask &= ~__GFP_HIGHMEM;
4024 mask |= __GFP_DMA32;
4025 }
4026
496ad9aa 4027 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4028 mapping_set_gfp_mask(mapping, mask);
5949eac4 4029
37e680a1 4030 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4031
c397b908
DV
4032 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4033 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4034
3d29b842
ED
4035 if (HAS_LLC(dev)) {
4036 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4037 * cache) for about a 10% performance improvement
4038 * compared to uncached. Graphics requests other than
4039 * display scanout are coherent with the CPU in
4040 * accessing this cache. This means in this mode we
4041 * don't need to clflush on the CPU side, and on the
4042 * GPU side we only need to flush internal caches to
4043 * get data visible to the CPU.
4044 *
4045 * However, we maintain the display planes as UC, and so
4046 * need to rebind when first used as such.
4047 */
4048 obj->cache_level = I915_CACHE_LLC;
4049 } else
4050 obj->cache_level = I915_CACHE_NONE;
4051
d861e338
DV
4052 trace_i915_gem_object_create(obj);
4053
05394f39 4054 return obj;
c397b908
DV
4055}
4056
4057int i915_gem_init_object(struct drm_gem_object *obj)
4058{
4059 BUG();
de151cf6 4060
673a394b
EA
4061 return 0;
4062}
4063
1488fc08 4064void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4065{
1488fc08 4066 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4067 struct drm_device *dev = obj->base.dev;
be72615b 4068 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4069 struct i915_vma *vma, *next;
673a394b 4070
26e12f89
CW
4071 trace_i915_gem_object_destroy(obj);
4072
1488fc08
CW
4073 if (obj->phys_obj)
4074 i915_gem_detach_phys_object(dev, obj);
4075
4076 obj->pin_count = 0;
07fe0b12
BW
4077 /* NB: 0 or 1 elements */
4078 WARN_ON(!list_empty(&obj->vma_list) &&
4079 !list_is_singular(&obj->vma_list));
4080 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4081 int ret = i915_vma_unbind(vma);
4082 if (WARN_ON(ret == -ERESTARTSYS)) {
4083 bool was_interruptible;
1488fc08 4084
07fe0b12
BW
4085 was_interruptible = dev_priv->mm.interruptible;
4086 dev_priv->mm.interruptible = false;
1488fc08 4087
07fe0b12 4088 WARN_ON(i915_vma_unbind(vma));
1488fc08 4089
07fe0b12
BW
4090 dev_priv->mm.interruptible = was_interruptible;
4091 }
1488fc08
CW
4092 }
4093
1d64ae71
BW
4094 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4095 * before progressing. */
4096 if (obj->stolen)
4097 i915_gem_object_unpin_pages(obj);
4098
401c29f6
BW
4099 if (WARN_ON(obj->pages_pin_count))
4100 obj->pages_pin_count = 0;
37e680a1 4101 i915_gem_object_put_pages(obj);
d8cb5086 4102 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4103 i915_gem_object_release_stolen(obj);
de151cf6 4104
9da3da66
CW
4105 BUG_ON(obj->pages);
4106
2f745ad3
CW
4107 if (obj->base.import_attach)
4108 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4109
05394f39
CW
4110 drm_gem_object_release(&obj->base);
4111 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4112
05394f39 4113 kfree(obj->bit_17);
42dcedd4 4114 i915_gem_object_free(obj);
673a394b
EA
4115}
4116
e656a6cb 4117struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4118 struct i915_address_space *vm)
e656a6cb
DV
4119{
4120 struct i915_vma *vma;
4121 list_for_each_entry(vma, &obj->vma_list, vma_link)
4122 if (vma->vm == vm)
4123 return vma;
4124
4125 return NULL;
4126}
4127
4128static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4129 struct i915_address_space *vm)
2f633156
BW
4130{
4131 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4132 if (vma == NULL)
4133 return ERR_PTR(-ENOMEM);
4134
4135 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4136 INIT_LIST_HEAD(&vma->mm_list);
82a55ad1 4137 INIT_LIST_HEAD(&vma->exec_list);
2f633156
BW
4138 vma->vm = vm;
4139 vma->obj = obj;
4140
8b9c2b94
BW
4141 /* Keep GGTT vmas first to make debug easier */
4142 if (i915_is_ggtt(vm))
4143 list_add(&vma->vma_link, &obj->vma_list);
4144 else
4145 list_add_tail(&vma->vma_link, &obj->vma_list);
4146
2f633156
BW
4147 return vma;
4148}
4149
e656a6cb
DV
4150struct i915_vma *
4151i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4152 struct i915_address_space *vm)
4153{
4154 struct i915_vma *vma;
4155
4156 vma = i915_gem_obj_to_vma(obj, vm);
4157 if (!vma)
4158 vma = __i915_gem_vma_create(obj, vm);
4159
4160 return vma;
4161}
4162
2f633156
BW
4163void i915_gem_vma_destroy(struct i915_vma *vma)
4164{
4165 WARN_ON(vma->node.allocated);
aaa05667
CW
4166
4167 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4168 if (!list_empty(&vma->exec_list))
4169 return;
4170
b93dab6e
DV
4171 list_del(&vma->vma_link);
4172
2f633156
BW
4173 kfree(vma);
4174}
4175
29105ccc
CW
4176int
4177i915_gem_idle(struct drm_device *dev)
4178{
4179 drm_i915_private_t *dev_priv = dev->dev_private;
4180 int ret;
28dfe52a 4181
db1b76ca 4182 if (dev_priv->ums.mm_suspended) {
29105ccc
CW
4183 mutex_unlock(&dev->struct_mutex);
4184 return 0;
28dfe52a
EA
4185 }
4186
b2da9fe5 4187 ret = i915_gpu_idle(dev);
6dbe2772
KP
4188 if (ret) {
4189 mutex_unlock(&dev->struct_mutex);
673a394b 4190 return ret;
6dbe2772 4191 }
b2da9fe5 4192 i915_gem_retire_requests(dev);
673a394b 4193
29105ccc 4194 /* Under UMS, be paranoid and evict. */
a39d7efc 4195 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4196 i915_gem_evict_everything(dev);
29105ccc 4197
99584db3 4198 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4199
4200 i915_kernel_lost_context(dev);
6dbe2772 4201 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4202
29105ccc
CW
4203 /* Cancel the retire work handler, which should be idle now. */
4204 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4205
673a394b
EA
4206 return 0;
4207}
4208
b9524a1e
BW
4209void i915_gem_l3_remap(struct drm_device *dev)
4210{
4211 drm_i915_private_t *dev_priv = dev->dev_private;
4212 u32 misccpctl;
4213 int i;
4214
eb32e458 4215 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
4216 return;
4217
a4da4fa4 4218 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
4219 return;
4220
4221 misccpctl = I915_READ(GEN7_MISCCPCTL);
4222 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4223 POSTING_READ(GEN7_MISCCPCTL);
4224
4225 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4226 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 4227 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4228 DRM_DEBUG("0x%x was already programmed to %x\n",
4229 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4230 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4231 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4232 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4233 }
4234
4235 /* Make sure all the writes land before disabling dop clock gating */
4236 POSTING_READ(GEN7_L3LOG_BASE);
4237
4238 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4239}
4240
f691e2f4
DV
4241void i915_gem_init_swizzling(struct drm_device *dev)
4242{
4243 drm_i915_private_t *dev_priv = dev->dev_private;
4244
11782b02 4245 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4246 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4247 return;
4248
4249 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4250 DISP_TILE_SURFACE_SWIZZLING);
4251
11782b02
DV
4252 if (IS_GEN5(dev))
4253 return;
4254
f691e2f4
DV
4255 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4256 if (IS_GEN6(dev))
6b26c86d 4257 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4258 else if (IS_GEN7(dev))
6b26c86d 4259 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4260 else
4261 BUG();
f691e2f4 4262}
e21af88d 4263
67b1b571
CW
4264static bool
4265intel_enable_blt(struct drm_device *dev)
4266{
4267 if (!HAS_BLT(dev))
4268 return false;
4269
4270 /* The blitter was dysfunctional on early prototypes */
4271 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4272 DRM_INFO("BLT not supported on this pre-production hardware;"
4273 " graphics performance will be degraded.\n");
4274 return false;
4275 }
4276
4277 return true;
4278}
4279
4fc7c971 4280static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4281{
4fc7c971 4282 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4283 int ret;
68f95ba9 4284
5c1143bb 4285 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4286 if (ret)
b6913e4b 4287 return ret;
68f95ba9
CW
4288
4289 if (HAS_BSD(dev)) {
5c1143bb 4290 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4291 if (ret)
4292 goto cleanup_render_ring;
d1b851fc 4293 }
68f95ba9 4294
67b1b571 4295 if (intel_enable_blt(dev)) {
549f7365
CW
4296 ret = intel_init_blt_ring_buffer(dev);
4297 if (ret)
4298 goto cleanup_bsd_ring;
4299 }
4300
9a8a2213
BW
4301 if (HAS_VEBOX(dev)) {
4302 ret = intel_init_vebox_ring_buffer(dev);
4303 if (ret)
4304 goto cleanup_blt_ring;
4305 }
4306
4307
99433931 4308 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4309 if (ret)
9a8a2213 4310 goto cleanup_vebox_ring;
4fc7c971
BW
4311
4312 return 0;
4313
9a8a2213
BW
4314cleanup_vebox_ring:
4315 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4316cleanup_blt_ring:
4317 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4318cleanup_bsd_ring:
4319 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4320cleanup_render_ring:
4321 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4322
4323 return ret;
4324}
4325
4326int
4327i915_gem_init_hw(struct drm_device *dev)
4328{
4329 drm_i915_private_t *dev_priv = dev->dev_private;
4330 int ret;
4331
4332 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4333 return -EIO;
4334
59124506 4335 if (dev_priv->ellc_size)
05e21cc4 4336 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4337
9435373e
RV
4338 if (IS_HSW_GT3(dev))
4339 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4340 else
4341 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4342
88a2b2a3
BW
4343 if (HAS_PCH_NOP(dev)) {
4344 u32 temp = I915_READ(GEN7_MSG_CTL);
4345 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4346 I915_WRITE(GEN7_MSG_CTL, temp);
4347 }
4348
4fc7c971
BW
4349 i915_gem_l3_remap(dev);
4350
4351 i915_gem_init_swizzling(dev);
4352
4353 ret = i915_gem_init_rings(dev);
99433931
MK
4354 if (ret)
4355 return ret;
4356
254f965c
BW
4357 /*
4358 * XXX: There was some w/a described somewhere suggesting loading
4359 * contexts before PPGTT.
4360 */
4361 i915_gem_context_init(dev);
b7c36d25
BW
4362 if (dev_priv->mm.aliasing_ppgtt) {
4363 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4364 if (ret) {
4365 i915_gem_cleanup_aliasing_ppgtt(dev);
4366 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4367 }
4368 }
e21af88d 4369
68f95ba9 4370 return 0;
8187a2b7
ZN
4371}
4372
1070a42b
CW
4373int i915_gem_init(struct drm_device *dev)
4374{
4375 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4376 int ret;
4377
1070a42b 4378 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4379
4380 if (IS_VALLEYVIEW(dev)) {
4381 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4382 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4383 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4384 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4385 }
4386
d7e5008f 4387 i915_gem_init_global_gtt(dev);
d62b4892 4388
1070a42b
CW
4389 ret = i915_gem_init_hw(dev);
4390 mutex_unlock(&dev->struct_mutex);
4391 if (ret) {
4392 i915_gem_cleanup_aliasing_ppgtt(dev);
4393 return ret;
4394 }
4395
53ca26ca
DV
4396 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4397 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4398 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4399 return 0;
4400}
4401
8187a2b7
ZN
4402void
4403i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4404{
4405 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4406 struct intel_ring_buffer *ring;
1ec14ad3 4407 int i;
8187a2b7 4408
b4519513
CW
4409 for_each_ring(ring, dev_priv, i)
4410 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4411}
4412
673a394b
EA
4413int
4414i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4415 struct drm_file *file_priv)
4416{
db1b76ca 4417 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4418 int ret;
673a394b 4419
79e53945
JB
4420 if (drm_core_check_feature(dev, DRIVER_MODESET))
4421 return 0;
4422
1f83fee0 4423 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4424 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4425 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4426 }
4427
673a394b 4428 mutex_lock(&dev->struct_mutex);
db1b76ca 4429 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4430
f691e2f4 4431 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4432 if (ret != 0) {
4433 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4434 return ret;
d816f6ac 4435 }
9bb2d6f9 4436
5cef07e1 4437 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4438 mutex_unlock(&dev->struct_mutex);
dbb19d30 4439
5f35308b
CW
4440 ret = drm_irq_install(dev);
4441 if (ret)
4442 goto cleanup_ringbuffer;
dbb19d30 4443
673a394b 4444 return 0;
5f35308b
CW
4445
4446cleanup_ringbuffer:
4447 mutex_lock(&dev->struct_mutex);
4448 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4449 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4450 mutex_unlock(&dev->struct_mutex);
4451
4452 return ret;
673a394b
EA
4453}
4454
4455int
4456i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4457 struct drm_file *file_priv)
4458{
db1b76ca
DV
4459 struct drm_i915_private *dev_priv = dev->dev_private;
4460 int ret;
4461
79e53945
JB
4462 if (drm_core_check_feature(dev, DRIVER_MODESET))
4463 return 0;
4464
dbb19d30 4465 drm_irq_uninstall(dev);
db1b76ca
DV
4466
4467 mutex_lock(&dev->struct_mutex);
4468 ret = i915_gem_idle(dev);
4469
4470 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4471 * We need to replace this with a semaphore, or something.
4472 * And not confound ums.mm_suspended!
4473 */
4474 if (ret != 0)
4475 dev_priv->ums.mm_suspended = 1;
4476 mutex_unlock(&dev->struct_mutex);
4477
4478 return ret;
673a394b
EA
4479}
4480
4481void
4482i915_gem_lastclose(struct drm_device *dev)
4483{
4484 int ret;
673a394b 4485
e806b495
EA
4486 if (drm_core_check_feature(dev, DRIVER_MODESET))
4487 return;
4488
db1b76ca 4489 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4490 ret = i915_gem_idle(dev);
4491 if (ret)
4492 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4493 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4494}
4495
64193406
CW
4496static void
4497init_ring_lists(struct intel_ring_buffer *ring)
4498{
4499 INIT_LIST_HEAD(&ring->active_list);
4500 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4501}
4502
fc8c067e
BW
4503static void i915_init_vm(struct drm_i915_private *dev_priv,
4504 struct i915_address_space *vm)
4505{
4506 vm->dev = dev_priv->dev;
4507 INIT_LIST_HEAD(&vm->active_list);
4508 INIT_LIST_HEAD(&vm->inactive_list);
4509 INIT_LIST_HEAD(&vm->global_link);
4510 list_add(&vm->global_link, &dev_priv->vm_list);
4511}
4512
673a394b
EA
4513void
4514i915_gem_load(struct drm_device *dev)
4515{
4516 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4517 int i;
4518
4519 dev_priv->slab =
4520 kmem_cache_create("i915_gem_object",
4521 sizeof(struct drm_i915_gem_object), 0,
4522 SLAB_HWCACHE_ALIGN,
4523 NULL);
673a394b 4524
fc8c067e
BW
4525 INIT_LIST_HEAD(&dev_priv->vm_list);
4526 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4527
6c085a72
CW
4528 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4529 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4530 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4531 for (i = 0; i < I915_NUM_RINGS; i++)
4532 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4533 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4534 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4535 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4536 i915_gem_retire_work_handler);
1f83fee0 4537 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4538
94400120
DA
4539 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4540 if (IS_GEN3(dev)) {
50743298
DV
4541 I915_WRITE(MI_ARB_STATE,
4542 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4543 }
4544
72bfa19c
CW
4545 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4546
de151cf6 4547 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4548 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4549 dev_priv->fence_reg_start = 3;
de151cf6 4550
42b5aeab
VS
4551 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4552 dev_priv->num_fence_regs = 32;
4553 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4554 dev_priv->num_fence_regs = 16;
4555 else
4556 dev_priv->num_fence_regs = 8;
4557
b5aa8a0f 4558 /* Initialize fence registers to zero */
19b2dbde
CW
4559 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4560 i915_gem_restore_fences(dev);
10ed13e4 4561
673a394b 4562 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4563 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4564
ce453d81
CW
4565 dev_priv->mm.interruptible = true;
4566
17250b71
CW
4567 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4568 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4569 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4570}
71acb5eb
DA
4571
4572/*
4573 * Create a physically contiguous memory object for this object
4574 * e.g. for cursor + overlay regs
4575 */
995b6762
CW
4576static int i915_gem_init_phys_object(struct drm_device *dev,
4577 int id, int size, int align)
71acb5eb
DA
4578{
4579 drm_i915_private_t *dev_priv = dev->dev_private;
4580 struct drm_i915_gem_phys_object *phys_obj;
4581 int ret;
4582
4583 if (dev_priv->mm.phys_objs[id - 1] || !size)
4584 return 0;
4585
9a298b2a 4586 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4587 if (!phys_obj)
4588 return -ENOMEM;
4589
4590 phys_obj->id = id;
4591
6eeefaf3 4592 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4593 if (!phys_obj->handle) {
4594 ret = -ENOMEM;
4595 goto kfree_obj;
4596 }
4597#ifdef CONFIG_X86
4598 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4599#endif
4600
4601 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4602
4603 return 0;
4604kfree_obj:
9a298b2a 4605 kfree(phys_obj);
71acb5eb
DA
4606 return ret;
4607}
4608
995b6762 4609static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4610{
4611 drm_i915_private_t *dev_priv = dev->dev_private;
4612 struct drm_i915_gem_phys_object *phys_obj;
4613
4614 if (!dev_priv->mm.phys_objs[id - 1])
4615 return;
4616
4617 phys_obj = dev_priv->mm.phys_objs[id - 1];
4618 if (phys_obj->cur_obj) {
4619 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4620 }
4621
4622#ifdef CONFIG_X86
4623 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4624#endif
4625 drm_pci_free(dev, phys_obj->handle);
4626 kfree(phys_obj);
4627 dev_priv->mm.phys_objs[id - 1] = NULL;
4628}
4629
4630void i915_gem_free_all_phys_object(struct drm_device *dev)
4631{
4632 int i;
4633
260883c8 4634 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4635 i915_gem_free_phys_object(dev, i);
4636}
4637
4638void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4639 struct drm_i915_gem_object *obj)
71acb5eb 4640{
496ad9aa 4641 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4642 char *vaddr;
71acb5eb 4643 int i;
71acb5eb
DA
4644 int page_count;
4645
05394f39 4646 if (!obj->phys_obj)
71acb5eb 4647 return;
05394f39 4648 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4649
05394f39 4650 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4651 for (i = 0; i < page_count; i++) {
5949eac4 4652 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4653 if (!IS_ERR(page)) {
4654 char *dst = kmap_atomic(page);
4655 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4656 kunmap_atomic(dst);
4657
4658 drm_clflush_pages(&page, 1);
4659
4660 set_page_dirty(page);
4661 mark_page_accessed(page);
4662 page_cache_release(page);
4663 }
71acb5eb 4664 }
e76e9aeb 4665 i915_gem_chipset_flush(dev);
d78b47b9 4666
05394f39
CW
4667 obj->phys_obj->cur_obj = NULL;
4668 obj->phys_obj = NULL;
71acb5eb
DA
4669}
4670
4671int
4672i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4673 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4674 int id,
4675 int align)
71acb5eb 4676{
496ad9aa 4677 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4678 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4679 int ret = 0;
4680 int page_count;
4681 int i;
4682
4683 if (id > I915_MAX_PHYS_OBJECT)
4684 return -EINVAL;
4685
05394f39
CW
4686 if (obj->phys_obj) {
4687 if (obj->phys_obj->id == id)
71acb5eb
DA
4688 return 0;
4689 i915_gem_detach_phys_object(dev, obj);
4690 }
4691
71acb5eb
DA
4692 /* create a new object */
4693 if (!dev_priv->mm.phys_objs[id - 1]) {
4694 ret = i915_gem_init_phys_object(dev, id,
05394f39 4695 obj->base.size, align);
71acb5eb 4696 if (ret) {
05394f39
CW
4697 DRM_ERROR("failed to init phys object %d size: %zu\n",
4698 id, obj->base.size);
e5281ccd 4699 return ret;
71acb5eb
DA
4700 }
4701 }
4702
4703 /* bind to the object */
05394f39
CW
4704 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4705 obj->phys_obj->cur_obj = obj;
71acb5eb 4706
05394f39 4707 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4708
4709 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4710 struct page *page;
4711 char *dst, *src;
4712
5949eac4 4713 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4714 if (IS_ERR(page))
4715 return PTR_ERR(page);
71acb5eb 4716
ff75b9bc 4717 src = kmap_atomic(page);
05394f39 4718 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4719 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4720 kunmap_atomic(src);
71acb5eb 4721
e5281ccd
CW
4722 mark_page_accessed(page);
4723 page_cache_release(page);
4724 }
d78b47b9 4725
71acb5eb 4726 return 0;
71acb5eb
DA
4727}
4728
4729static int
05394f39
CW
4730i915_gem_phys_pwrite(struct drm_device *dev,
4731 struct drm_i915_gem_object *obj,
71acb5eb
DA
4732 struct drm_i915_gem_pwrite *args,
4733 struct drm_file *file_priv)
4734{
05394f39 4735 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4736 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4737
b47b30cc
CW
4738 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4739 unsigned long unwritten;
4740
4741 /* The physical object once assigned is fixed for the lifetime
4742 * of the obj, so we can safely drop the lock and continue
4743 * to access vaddr.
4744 */
4745 mutex_unlock(&dev->struct_mutex);
4746 unwritten = copy_from_user(vaddr, user_data, args->size);
4747 mutex_lock(&dev->struct_mutex);
4748 if (unwritten)
4749 return -EFAULT;
4750 }
71acb5eb 4751
e76e9aeb 4752 i915_gem_chipset_flush(dev);
71acb5eb
DA
4753 return 0;
4754}
b962442e 4755
f787a5f5 4756void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4757{
f787a5f5 4758 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4759
4760 /* Clean up our request list when the client is going away, so that
4761 * later retire_requests won't dereference our soon-to-be-gone
4762 * file_priv.
4763 */
1c25595f 4764 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4765 while (!list_empty(&file_priv->mm.request_list)) {
4766 struct drm_i915_gem_request *request;
4767
4768 request = list_first_entry(&file_priv->mm.request_list,
4769 struct drm_i915_gem_request,
4770 client_list);
4771 list_del(&request->client_list);
4772 request->file_priv = NULL;
4773 }
1c25595f 4774 spin_unlock(&file_priv->mm.lock);
b962442e 4775}
31169714 4776
5774506f
CW
4777static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4778{
4779 if (!mutex_is_locked(mutex))
4780 return false;
4781
4782#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4783 return mutex->owner == task;
4784#else
4785 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4786 return false;
4787#endif
4788}
4789
31169714 4790static int
1495f230 4791i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4792{
17250b71
CW
4793 struct drm_i915_private *dev_priv =
4794 container_of(shrinker,
4795 struct drm_i915_private,
4796 mm.inactive_shrinker);
4797 struct drm_device *dev = dev_priv->dev;
6c085a72 4798 struct drm_i915_gem_object *obj;
1495f230 4799 int nr_to_scan = sc->nr_to_scan;
5774506f 4800 bool unlock = true;
17250b71
CW
4801 int cnt;
4802
5774506f
CW
4803 if (!mutex_trylock(&dev->struct_mutex)) {
4804 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4805 return 0;
4806
677feac2
DV
4807 if (dev_priv->mm.shrinker_no_lock_stealing)
4808 return 0;
4809
5774506f
CW
4810 unlock = false;
4811 }
31169714 4812
6c085a72
CW
4813 if (nr_to_scan) {
4814 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4815 if (nr_to_scan > 0)
4816 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4817 false);
6c085a72
CW
4818 if (nr_to_scan > 0)
4819 i915_gem_shrink_all(dev_priv);
31169714
CW
4820 }
4821
17250b71 4822 cnt = 0;
35c20a60 4823 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178
CW
4824 if (obj->pages_pin_count == 0)
4825 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4826
4827 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4828 if (obj->active)
4829 continue;
4830
a5570178 4831 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4832 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578 4833 }
17250b71 4834
5774506f
CW
4835 if (unlock)
4836 mutex_unlock(&dev->struct_mutex);
6c085a72 4837 return cnt;
31169714 4838}
a70a3148
BW
4839
4840/* All the new VM stuff */
4841unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4842 struct i915_address_space *vm)
4843{
4844 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4845 struct i915_vma *vma;
4846
4847 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4848 vm = &dev_priv->gtt.base;
4849
4850 BUG_ON(list_empty(&o->vma_list));
4851 list_for_each_entry(vma, &o->vma_list, vma_link) {
4852 if (vma->vm == vm)
4853 return vma->node.start;
4854
4855 }
4856 return -1;
4857}
4858
4859bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4860 struct i915_address_space *vm)
4861{
4862 struct i915_vma *vma;
4863
4864 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4865 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4866 return true;
4867
4868 return false;
4869}
4870
4871bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4872{
4873 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4874 struct i915_address_space *vm;
4875
4876 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4877 if (i915_gem_obj_bound(o, vm))
4878 return true;
4879
4880 return false;
4881}
4882
4883unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4884 struct i915_address_space *vm)
4885{
4886 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4887 struct i915_vma *vma;
4888
4889 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4890 vm = &dev_priv->gtt.base;
4891
4892 BUG_ON(list_empty(&o->vma_list));
4893
4894 list_for_each_entry(vma, &o->vma_list, vma_link)
4895 if (vma->vm == vm)
4896 return vma->node.size;
4897
4898 return 0;
4899}
This page took 0.966374 seconds and 5 git commands to generate.