drm/i915: Restore missing command flush before interrupt on BLT ring
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
88241785 38static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
05394f39 46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
47static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
d9e86c0e
CW
50static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39
CW
55 struct drm_file *file);
56static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 57
17250b71
CW
58static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
21dd3734
CW
78static int
79i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
21dd3734
CW
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
30dbf0c0
CW
104}
105
54cf91dc 106int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 107{
76c1dec1
CW
108 int ret;
109
21dd3734 110 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
23bc5982 118 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
119 return 0;
120}
30dbf0c0 121
7d1c4804 122static inline bool
05394f39 123i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 124{
05394f39 125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
126}
127
2021746e
CW
128void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
673a394b
EA
132{
133 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 134
bee4a186 135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 136
bee4a186
CW
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
73aa808f 140 dev_priv->mm.gtt_total = end - start;
fb7d516a 141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 145}
673a394b 146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945
JB
150{
151 struct drm_i915_gem_init *args = data;
2021746e
CW
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
79e53945
JB
156
157 mutex_lock(&dev->struct_mutex);
2021746e 158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
159 mutex_unlock(&dev->struct_mutex);
160
2021746e 161 return 0;
673a394b
EA
162}
163
5a125c3c
EA
164int
165i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 166 struct drm_file *file)
5a125c3c 167{
73aa808f 168 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 169 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
5a125c3c
EA
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
6299f992 176 pinned = 0;
73aa808f 177 mutex_lock(&dev->struct_mutex);
6299f992
CW
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
73aa808f 180 mutex_unlock(&dev->struct_mutex);
5a125c3c 181
6299f992
CW
182 args->aper_size = dev_priv->mm.gtt_total;
183 args->aper_available_size = args->aper_size -pinned;
184
5a125c3c
EA
185 return 0;
186}
187
ff72145b
DA
188static int
189i915_gem_create(struct drm_file *file,
190 struct drm_device *dev,
191 uint64_t size,
192 uint32_t *handle_p)
673a394b 193{
05394f39 194 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
195 int ret;
196 u32 handle;
673a394b 197
ff72145b 198 size = roundup(size, PAGE_SIZE);
673a394b
EA
199
200 /* Allocate the new object */
ff72145b 201 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
202 if (obj == NULL)
203 return -ENOMEM;
204
05394f39 205 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 206 if (ret) {
05394f39
CW
207 drm_gem_object_release(&obj->base);
208 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 209 kfree(obj);
673a394b 210 return ret;
1dfd9754 211 }
673a394b 212
202f2fef 213 /* drop reference from allocate - handle holds it now */
05394f39 214 drm_gem_object_unreference(&obj->base);
202f2fef
CW
215 trace_i915_gem_object_create(obj);
216
ff72145b 217 *handle_p = handle;
673a394b
EA
218 return 0;
219}
220
ff72145b
DA
221int
222i915_gem_dumb_create(struct drm_file *file,
223 struct drm_device *dev,
224 struct drm_mode_create_dumb *args)
225{
226 /* have to work out size/pitch and return them */
ed0291fd 227 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
228 args->size = args->pitch * args->height;
229 return i915_gem_create(file, dev,
230 args->size, &args->handle);
231}
232
233int i915_gem_dumb_destroy(struct drm_file *file,
234 struct drm_device *dev,
235 uint32_t handle)
236{
237 return drm_gem_handle_delete(file, handle);
238}
239
240/**
241 * Creates a new mm object and returns a handle to it.
242 */
243int
244i915_gem_create_ioctl(struct drm_device *dev, void *data,
245 struct drm_file *file)
246{
247 struct drm_i915_gem_create *args = data;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250}
251
05394f39 252static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 253{
05394f39 254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 257 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
258}
259
99a03df5 260static inline void
40123c1f
EA
261slow_shmem_copy(struct page *dst_page,
262 int dst_offset,
263 struct page *src_page,
264 int src_offset,
265 int length)
266{
267 char *dst_vaddr, *src_vaddr;
268
99a03df5
CW
269 dst_vaddr = kmap(dst_page);
270 src_vaddr = kmap(src_page);
40123c1f
EA
271
272 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
273
99a03df5
CW
274 kunmap(src_page);
275 kunmap(dst_page);
40123c1f
EA
276}
277
99a03df5 278static inline void
280b713b
EA
279slow_shmem_bit17_copy(struct page *gpu_page,
280 int gpu_offset,
281 struct page *cpu_page,
282 int cpu_offset,
283 int length,
284 int is_read)
285{
286 char *gpu_vaddr, *cpu_vaddr;
287
288 /* Use the unswizzled path if this page isn't affected. */
289 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
290 if (is_read)
291 return slow_shmem_copy(cpu_page, cpu_offset,
292 gpu_page, gpu_offset, length);
293 else
294 return slow_shmem_copy(gpu_page, gpu_offset,
295 cpu_page, cpu_offset, length);
296 }
297
99a03df5
CW
298 gpu_vaddr = kmap(gpu_page);
299 cpu_vaddr = kmap(cpu_page);
280b713b
EA
300
301 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
302 * XORing with the other bits (A9 for Y, A9 and A10 for X)
303 */
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 if (is_read) {
310 memcpy(cpu_vaddr + cpu_offset,
311 gpu_vaddr + swizzled_gpu_offset,
312 this_length);
313 } else {
314 memcpy(gpu_vaddr + swizzled_gpu_offset,
315 cpu_vaddr + cpu_offset,
316 this_length);
317 }
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
321 }
322
99a03df5
CW
323 kunmap(cpu_page);
324 kunmap(gpu_page);
280b713b
EA
325}
326
eb01459f
EA
327/**
328 * This is the fast shmem pread path, which attempts to copy_from_user directly
329 * from the backing pages of the object to the user's address space. On a
330 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
331 */
332static int
05394f39
CW
333i915_gem_shmem_pread_fast(struct drm_device *dev,
334 struct drm_i915_gem_object *obj,
eb01459f 335 struct drm_i915_gem_pread *args,
05394f39 336 struct drm_file *file)
eb01459f 337{
05394f39 338 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 339 ssize_t remain;
e5281ccd 340 loff_t offset;
eb01459f
EA
341 char __user *user_data;
342 int page_offset, page_length;
eb01459f
EA
343
344 user_data = (char __user *) (uintptr_t) args->data_ptr;
345 remain = args->size;
346
eb01459f
EA
347 offset = args->offset;
348
349 while (remain > 0) {
e5281ccd
CW
350 struct page *page;
351 char *vaddr;
352 int ret;
353
eb01459f
EA
354 /* Operation in this page
355 *
eb01459f
EA
356 * page_offset = offset within page
357 * page_length = bytes to copy for this page
358 */
eb01459f
EA
359 page_offset = offset & (PAGE_SIZE-1);
360 page_length = remain;
361 if ((page_offset + remain) > PAGE_SIZE)
362 page_length = PAGE_SIZE - page_offset;
363
e5281ccd
CW
364 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
365 GFP_HIGHUSER | __GFP_RECLAIMABLE);
366 if (IS_ERR(page))
367 return PTR_ERR(page);
368
369 vaddr = kmap_atomic(page);
370 ret = __copy_to_user_inatomic(user_data,
371 vaddr + page_offset,
372 page_length);
373 kunmap_atomic(vaddr);
374
375 mark_page_accessed(page);
376 page_cache_release(page);
377 if (ret)
4f27b75d 378 return -EFAULT;
eb01459f
EA
379
380 remain -= page_length;
381 user_data += page_length;
382 offset += page_length;
383 }
384
4f27b75d 385 return 0;
eb01459f
EA
386}
387
388/**
389 * This is the fallback shmem pread path, which allocates temporary storage
390 * in kernel space to copy_to_user into outside of the struct_mutex, so we
391 * can copy out of the object's backing pages while holding the struct mutex
392 * and not take page faults.
393 */
394static int
05394f39
CW
395i915_gem_shmem_pread_slow(struct drm_device *dev,
396 struct drm_i915_gem_object *obj,
eb01459f 397 struct drm_i915_gem_pread *args,
05394f39 398 struct drm_file *file)
eb01459f 399{
05394f39 400 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
401 struct mm_struct *mm = current->mm;
402 struct page **user_pages;
403 ssize_t remain;
404 loff_t offset, pinned_pages, i;
405 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
406 int shmem_page_offset;
407 int data_page_index, data_page_offset;
eb01459f
EA
408 int page_length;
409 int ret;
410 uint64_t data_ptr = args->data_ptr;
280b713b 411 int do_bit17_swizzling;
eb01459f
EA
412
413 remain = args->size;
414
415 /* Pin the user pages containing the data. We can't fault while
416 * holding the struct mutex, yet we want to hold it while
417 * dereferencing the user data.
418 */
419 first_data_page = data_ptr / PAGE_SIZE;
420 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 num_pages = last_data_page - first_data_page + 1;
422
4f27b75d 423 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
424 if (user_pages == NULL)
425 return -ENOMEM;
426
4f27b75d 427 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
428 down_read(&mm->mmap_sem);
429 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 430 num_pages, 1, 0, user_pages, NULL);
eb01459f 431 up_read(&mm->mmap_sem);
4f27b75d 432 mutex_lock(&dev->struct_mutex);
eb01459f
EA
433 if (pinned_pages < num_pages) {
434 ret = -EFAULT;
4f27b75d 435 goto out;
eb01459f
EA
436 }
437
4f27b75d
CW
438 ret = i915_gem_object_set_cpu_read_domain_range(obj,
439 args->offset,
440 args->size);
07f73f69 441 if (ret)
4f27b75d 442 goto out;
eb01459f 443
4f27b75d 444 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 445
eb01459f
EA
446 offset = args->offset;
447
448 while (remain > 0) {
e5281ccd
CW
449 struct page *page;
450
eb01459f
EA
451 /* Operation in this page
452 *
eb01459f
EA
453 * shmem_page_offset = offset within page in shmem file
454 * data_page_index = page number in get_user_pages return
455 * data_page_offset = offset with data_page_index page.
456 * page_length = bytes to copy for this page
457 */
eb01459f
EA
458 shmem_page_offset = offset & ~PAGE_MASK;
459 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460 data_page_offset = data_ptr & ~PAGE_MASK;
461
462 page_length = remain;
463 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - shmem_page_offset;
465 if ((data_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - data_page_offset;
467
e5281ccd
CW
468 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
469 GFP_HIGHUSER | __GFP_RECLAIMABLE);
470 if (IS_ERR(page))
471 return PTR_ERR(page);
472
280b713b 473 if (do_bit17_swizzling) {
e5281ccd 474 slow_shmem_bit17_copy(page,
280b713b 475 shmem_page_offset,
99a03df5
CW
476 user_pages[data_page_index],
477 data_page_offset,
478 page_length,
479 1);
480 } else {
481 slow_shmem_copy(user_pages[data_page_index],
482 data_page_offset,
e5281ccd 483 page,
99a03df5
CW
484 shmem_page_offset,
485 page_length);
280b713b 486 }
eb01459f 487
e5281ccd
CW
488 mark_page_accessed(page);
489 page_cache_release(page);
490
eb01459f
EA
491 remain -= page_length;
492 data_ptr += page_length;
493 offset += page_length;
494 }
495
4f27b75d 496out:
eb01459f
EA
497 for (i = 0; i < pinned_pages; i++) {
498 SetPageDirty(user_pages[i]);
e5281ccd 499 mark_page_accessed(user_pages[i]);
eb01459f
EA
500 page_cache_release(user_pages[i]);
501 }
8e7d2b2c 502 drm_free_large(user_pages);
eb01459f
EA
503
504 return ret;
505}
506
673a394b
EA
507/**
508 * Reads data from the object referenced by handle.
509 *
510 * On error, the contents of *data are undefined.
511 */
512int
513i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 514 struct drm_file *file)
673a394b
EA
515{
516 struct drm_i915_gem_pread *args = data;
05394f39 517 struct drm_i915_gem_object *obj;
35b62a89 518 int ret = 0;
673a394b 519
51311d0a
CW
520 if (args->size == 0)
521 return 0;
522
523 if (!access_ok(VERIFY_WRITE,
524 (char __user *)(uintptr_t)args->data_ptr,
525 args->size))
526 return -EFAULT;
527
528 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
529 args->size);
530 if (ret)
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
db53a302
CW
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
4f27b75d
CW
552 ret = i915_gem_object_set_cpu_read_domain_range(obj,
553 args->offset,
554 args->size);
555 if (ret)
e5281ccd 556 goto out;
4f27b75d
CW
557
558 ret = -EFAULT;
559 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 560 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 561 if (ret == -EFAULT)
05394f39 562 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 563
35b62a89 564out:
05394f39 565 drm_gem_object_unreference(&obj->base);
1d7cfea1 566unlock:
4f27b75d 567 mutex_unlock(&dev->struct_mutex);
eb01459f 568 return ret;
673a394b
EA
569}
570
0839ccb8
KP
571/* This is the fast write path which cannot handle
572 * page faults in the source data
9b7530cc 573 */
0839ccb8
KP
574
575static inline int
576fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
9b7530cc 580{
9b7530cc 581 char *vaddr_atomic;
0839ccb8 582 unsigned long unwritten;
9b7530cc 583
3e4d3af5 584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
585 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
586 user_data, length);
3e4d3af5 587 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 588 return unwritten;
0839ccb8
KP
589}
590
591/* Here's the write path which can sleep for
592 * page faults
593 */
594
ab34c226 595static inline void
3de09aa3
EA
596slow_kernel_write(struct io_mapping *mapping,
597 loff_t gtt_base, int gtt_offset,
598 struct page *user_page, int user_offset,
599 int length)
0839ccb8 600{
ab34c226
CW
601 char __iomem *dst_vaddr;
602 char *src_vaddr;
0839ccb8 603
ab34c226
CW
604 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
605 src_vaddr = kmap(user_page);
606
607 memcpy_toio(dst_vaddr + gtt_offset,
608 src_vaddr + user_offset,
609 length);
610
611 kunmap(user_page);
612 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
613}
614
3de09aa3
EA
615/**
616 * This is the fast pwrite path, where we copy the data directly from the
617 * user into the GTT, uncached.
618 */
673a394b 619static int
05394f39
CW
620i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621 struct drm_i915_gem_object *obj,
3de09aa3 622 struct drm_i915_gem_pwrite *args,
05394f39 623 struct drm_file *file)
673a394b 624{
0839ccb8 625 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 626 ssize_t remain;
0839ccb8 627 loff_t offset, page_base;
673a394b 628 char __user *user_data;
0839ccb8 629 int page_offset, page_length;
673a394b
EA
630
631 user_data = (char __user *) (uintptr_t) args->data_ptr;
632 remain = args->size;
673a394b 633
05394f39 634 offset = obj->gtt_offset + args->offset;
673a394b
EA
635
636 while (remain > 0) {
637 /* Operation in this page
638 *
0839ccb8
KP
639 * page_base = page offset within aperture
640 * page_offset = offset within page
641 * page_length = bytes to copy for this page
673a394b 642 */
0839ccb8
KP
643 page_base = (offset & ~(PAGE_SIZE-1));
644 page_offset = offset & (PAGE_SIZE-1);
645 page_length = remain;
646 if ((page_offset + remain) > PAGE_SIZE)
647 page_length = PAGE_SIZE - page_offset;
648
0839ccb8 649 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
650 * source page isn't available. Return the error and we'll
651 * retry in the slow path.
0839ccb8 652 */
fbd5a26d
CW
653 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
654 page_offset, user_data, page_length))
655
656 return -EFAULT;
673a394b 657
0839ccb8
KP
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
673a394b 661 }
673a394b 662
fbd5a26d 663 return 0;
673a394b
EA
664}
665
3de09aa3
EA
666/**
667 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668 * the memory and maps it using kmap_atomic for copying.
669 *
670 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
672 */
3043c60c 673static int
05394f39
CW
674i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 struct drm_i915_gem_object *obj,
3de09aa3 676 struct drm_i915_gem_pwrite *args,
05394f39 677 struct drm_file *file)
673a394b 678{
3de09aa3
EA
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t gtt_page_base, offset;
682 loff_t first_data_page, last_data_page, num_pages;
683 loff_t pinned_pages, i;
684 struct page **user_pages;
685 struct mm_struct *mm = current->mm;
686 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 687 int ret;
3de09aa3
EA
688 uint64_t data_ptr = args->data_ptr;
689
690 remain = args->size;
691
692 /* Pin the user pages containing the data. We can't fault while
693 * holding the struct mutex, and all of the pwrite implementations
694 * want to hold it while dereferencing the user data.
695 */
696 first_data_page = data_ptr / PAGE_SIZE;
697 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 num_pages = last_data_page - first_data_page + 1;
699
fbd5a26d 700 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
701 if (user_pages == NULL)
702 return -ENOMEM;
703
fbd5a26d 704 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
705 down_read(&mm->mmap_sem);
706 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 num_pages, 0, 0, user_pages, NULL);
708 up_read(&mm->mmap_sem);
fbd5a26d 709 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
710 if (pinned_pages < num_pages) {
711 ret = -EFAULT;
712 goto out_unpin_pages;
713 }
673a394b 714
d9e86c0e
CW
715 ret = i915_gem_object_set_to_gtt_domain(obj, true);
716 if (ret)
717 goto out_unpin_pages;
718
719 ret = i915_gem_object_put_fence(obj);
3de09aa3 720 if (ret)
fbd5a26d 721 goto out_unpin_pages;
3de09aa3 722
05394f39 723 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * gtt_page_base = page offset within aperture
729 * gtt_page_offset = offset within page in aperture
730 * data_page_index = page number in get_user_pages return
731 * data_page_offset = offset with data_page_index page.
732 * page_length = bytes to copy for this page
733 */
734 gtt_page_base = offset & PAGE_MASK;
735 gtt_page_offset = offset & ~PAGE_MASK;
736 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737 data_page_offset = data_ptr & ~PAGE_MASK;
738
739 page_length = remain;
740 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - gtt_page_offset;
742 if ((data_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - data_page_offset;
744
ab34c226
CW
745 slow_kernel_write(dev_priv->mm.gtt_mapping,
746 gtt_page_base, gtt_page_offset,
747 user_pages[data_page_index],
748 data_page_offset,
749 page_length);
3de09aa3
EA
750
751 remain -= page_length;
752 offset += page_length;
753 data_ptr += page_length;
754 }
755
3de09aa3
EA
756out_unpin_pages:
757 for (i = 0; i < pinned_pages; i++)
758 page_cache_release(user_pages[i]);
8e7d2b2c 759 drm_free_large(user_pages);
3de09aa3
EA
760
761 return ret;
762}
763
40123c1f
EA
764/**
765 * This is the fast shmem pwrite path, which attempts to directly
766 * copy_from_user into the kmapped pages backing the object.
767 */
3043c60c 768static int
05394f39
CW
769i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 struct drm_i915_gem_object *obj,
40123c1f 771 struct drm_i915_gem_pwrite *args,
05394f39 772 struct drm_file *file)
673a394b 773{
05394f39 774 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 775 ssize_t remain;
e5281ccd 776 loff_t offset;
40123c1f
EA
777 char __user *user_data;
778 int page_offset, page_length;
40123c1f
EA
779
780 user_data = (char __user *) (uintptr_t) args->data_ptr;
781 remain = args->size;
673a394b 782
40123c1f 783 offset = args->offset;
05394f39 784 obj->dirty = 1;
40123c1f
EA
785
786 while (remain > 0) {
e5281ccd
CW
787 struct page *page;
788 char *vaddr;
789 int ret;
790
40123c1f
EA
791 /* Operation in this page
792 *
40123c1f
EA
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
40123c1f
EA
796 page_offset = offset & (PAGE_SIZE-1);
797 page_length = remain;
798 if ((page_offset + remain) > PAGE_SIZE)
799 page_length = PAGE_SIZE - page_offset;
800
e5281ccd
CW
801 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
802 GFP_HIGHUSER | __GFP_RECLAIMABLE);
803 if (IS_ERR(page))
804 return PTR_ERR(page);
805
806 vaddr = kmap_atomic(page, KM_USER0);
807 ret = __copy_from_user_inatomic(vaddr + page_offset,
808 user_data,
809 page_length);
810 kunmap_atomic(vaddr, KM_USER0);
811
812 set_page_dirty(page);
813 mark_page_accessed(page);
814 page_cache_release(page);
815
816 /* If we get a fault while copying data, then (presumably) our
817 * source page isn't available. Return the error and we'll
818 * retry in the slow path.
819 */
820 if (ret)
fbd5a26d 821 return -EFAULT;
40123c1f
EA
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
fbd5a26d 828 return 0;
40123c1f
EA
829}
830
831/**
832 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
833 * the memory and maps it using kmap_atomic for copying.
834 *
835 * This avoids taking mmap_sem for faulting on the user's address while the
836 * struct_mutex is held.
837 */
838static int
05394f39
CW
839i915_gem_shmem_pwrite_slow(struct drm_device *dev,
840 struct drm_i915_gem_object *obj,
40123c1f 841 struct drm_i915_gem_pwrite *args,
05394f39 842 struct drm_file *file)
40123c1f 843{
05394f39 844 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
845 struct mm_struct *mm = current->mm;
846 struct page **user_pages;
847 ssize_t remain;
848 loff_t offset, pinned_pages, i;
849 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 850 int shmem_page_offset;
40123c1f
EA
851 int data_page_index, data_page_offset;
852 int page_length;
853 int ret;
854 uint64_t data_ptr = args->data_ptr;
280b713b 855 int do_bit17_swizzling;
40123c1f
EA
856
857 remain = args->size;
858
859 /* Pin the user pages containing the data. We can't fault while
860 * holding the struct mutex, and all of the pwrite implementations
861 * want to hold it while dereferencing the user data.
862 */
863 first_data_page = data_ptr / PAGE_SIZE;
864 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
865 num_pages = last_data_page - first_data_page + 1;
866
4f27b75d 867 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
868 if (user_pages == NULL)
869 return -ENOMEM;
870
fbd5a26d 871 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
872 down_read(&mm->mmap_sem);
873 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
874 num_pages, 0, 0, user_pages, NULL);
875 up_read(&mm->mmap_sem);
fbd5a26d 876 mutex_lock(&dev->struct_mutex);
40123c1f
EA
877 if (pinned_pages < num_pages) {
878 ret = -EFAULT;
fbd5a26d 879 goto out;
673a394b
EA
880 }
881
fbd5a26d 882 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 883 if (ret)
fbd5a26d 884 goto out;
40123c1f 885
fbd5a26d 886 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 887
673a394b 888 offset = args->offset;
05394f39 889 obj->dirty = 1;
673a394b 890
40123c1f 891 while (remain > 0) {
e5281ccd
CW
892 struct page *page;
893
40123c1f
EA
894 /* Operation in this page
895 *
40123c1f
EA
896 * shmem_page_offset = offset within page in shmem file
897 * data_page_index = page number in get_user_pages return
898 * data_page_offset = offset with data_page_index page.
899 * page_length = bytes to copy for this page
900 */
40123c1f
EA
901 shmem_page_offset = offset & ~PAGE_MASK;
902 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
903 data_page_offset = data_ptr & ~PAGE_MASK;
904
905 page_length = remain;
906 if ((shmem_page_offset + page_length) > PAGE_SIZE)
907 page_length = PAGE_SIZE - shmem_page_offset;
908 if ((data_page_offset + page_length) > PAGE_SIZE)
909 page_length = PAGE_SIZE - data_page_offset;
910
e5281ccd
CW
911 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
912 GFP_HIGHUSER | __GFP_RECLAIMABLE);
913 if (IS_ERR(page)) {
914 ret = PTR_ERR(page);
915 goto out;
916 }
917
280b713b 918 if (do_bit17_swizzling) {
e5281ccd 919 slow_shmem_bit17_copy(page,
280b713b
EA
920 shmem_page_offset,
921 user_pages[data_page_index],
922 data_page_offset,
99a03df5
CW
923 page_length,
924 0);
925 } else {
e5281ccd 926 slow_shmem_copy(page,
99a03df5
CW
927 shmem_page_offset,
928 user_pages[data_page_index],
929 data_page_offset,
930 page_length);
280b713b 931 }
40123c1f 932
e5281ccd
CW
933 set_page_dirty(page);
934 mark_page_accessed(page);
935 page_cache_release(page);
936
40123c1f
EA
937 remain -= page_length;
938 data_ptr += page_length;
939 offset += page_length;
673a394b
EA
940 }
941
fbd5a26d 942out:
40123c1f
EA
943 for (i = 0; i < pinned_pages; i++)
944 page_cache_release(user_pages[i]);
8e7d2b2c 945 drm_free_large(user_pages);
673a394b 946
40123c1f 947 return ret;
673a394b
EA
948}
949
950/**
951 * Writes data to the object referenced by handle.
952 *
953 * On error, the contents of the buffer that were to be modified are undefined.
954 */
955int
956i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 957 struct drm_file *file)
673a394b
EA
958{
959 struct drm_i915_gem_pwrite *args = data;
05394f39 960 struct drm_i915_gem_object *obj;
51311d0a
CW
961 int ret;
962
963 if (args->size == 0)
964 return 0;
965
966 if (!access_ok(VERIFY_READ,
967 (char __user *)(uintptr_t)args->data_ptr,
968 args->size))
969 return -EFAULT;
970
971 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
972 args->size);
973 if (ret)
974 return -EFAULT;
673a394b 975
fbd5a26d 976 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 977 if (ret)
fbd5a26d 978 return ret;
1d7cfea1 979
05394f39 980 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 981 if (&obj->base == NULL) {
1d7cfea1
CW
982 ret = -ENOENT;
983 goto unlock;
fbd5a26d 984 }
673a394b 985
7dcd2499 986 /* Bounds check destination. */
05394f39
CW
987 if (args->offset > obj->base.size ||
988 args->size > obj->base.size - args->offset) {
ce9d419d 989 ret = -EINVAL;
35b62a89 990 goto out;
ce9d419d
CW
991 }
992
db53a302
CW
993 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
994
673a394b
EA
995 /* We can only do the GTT pwrite on untiled buffers, as otherwise
996 * it would end up going through the fenced access, and we'll get
997 * different detiling behavior between reading and writing.
998 * pread/pwrite currently are reading and writing from the CPU
999 * perspective, requiring manual detiling by the client.
1000 */
05394f39 1001 if (obj->phys_obj)
fbd5a26d 1002 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 1003 else if (obj->gtt_space &&
05394f39 1004 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1005 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1006 if (ret)
1007 goto out;
1008
d9e86c0e
CW
1009 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1010 if (ret)
1011 goto out_unpin;
1012
1013 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
1014 if (ret)
1015 goto out_unpin;
1016
1017 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1018 if (ret == -EFAULT)
1019 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1020
1021out_unpin:
1022 i915_gem_object_unpin(obj);
40123c1f 1023 } else {
fbd5a26d
CW
1024 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1025 if (ret)
e5281ccd 1026 goto out;
673a394b 1027
fbd5a26d
CW
1028 ret = -EFAULT;
1029 if (!i915_gem_object_needs_bit17_swizzle(obj))
1030 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1031 if (ret == -EFAULT)
1032 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1033 }
673a394b 1034
35b62a89 1035out:
05394f39 1036 drm_gem_object_unreference(&obj->base);
1d7cfea1 1037unlock:
fbd5a26d 1038 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1039 return ret;
1040}
1041
1042/**
2ef7eeaa
EA
1043 * Called when user space prepares to use an object with the CPU, either
1044 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1045 */
1046int
1047i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1048 struct drm_file *file)
673a394b
EA
1049{
1050 struct drm_i915_gem_set_domain *args = data;
05394f39 1051 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1052 uint32_t read_domains = args->read_domains;
1053 uint32_t write_domain = args->write_domain;
673a394b
EA
1054 int ret;
1055
1056 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 return -ENODEV;
1058
2ef7eeaa 1059 /* Only handle setting domains to types used by the CPU. */
21d509e3 1060 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1061 return -EINVAL;
1062
21d509e3 1063 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1064 return -EINVAL;
1065
1066 /* Having something in the write domain implies it's in the read
1067 * domain, and only that read domain. Enforce that in the request.
1068 */
1069 if (write_domain != 0 && read_domains != write_domain)
1070 return -EINVAL;
1071
76c1dec1 1072 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1073 if (ret)
76c1dec1 1074 return ret;
1d7cfea1 1075
05394f39 1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1077 if (&obj->base == NULL) {
1d7cfea1
CW
1078 ret = -ENOENT;
1079 goto unlock;
76c1dec1 1080 }
673a394b 1081
2ef7eeaa
EA
1082 if (read_domains & I915_GEM_DOMAIN_GTT) {
1083 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1084
1085 /* Silently promote "you're not bound, there was nothing to do"
1086 * to success, since the client was just asking us to
1087 * make sure everything was done.
1088 */
1089 if (ret == -EINVAL)
1090 ret = 0;
2ef7eeaa 1091 } else {
e47c68e9 1092 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1093 }
1094
05394f39 1095 drm_gem_object_unreference(&obj->base);
1d7cfea1 1096unlock:
673a394b
EA
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1099}
1100
1101/**
1102 * Called when user space has done writes to this buffer
1103 */
1104int
1105i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1106 struct drm_file *file)
673a394b
EA
1107{
1108 struct drm_i915_gem_sw_finish *args = data;
05394f39 1109 struct drm_i915_gem_object *obj;
673a394b
EA
1110 int ret = 0;
1111
1112 if (!(dev->driver->driver_features & DRIVER_GEM))
1113 return -ENODEV;
1114
76c1dec1 1115 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1116 if (ret)
76c1dec1 1117 return ret;
1d7cfea1 1118
05394f39 1119 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1120 if (&obj->base == NULL) {
1d7cfea1
CW
1121 ret = -ENOENT;
1122 goto unlock;
673a394b
EA
1123 }
1124
673a394b 1125 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1126 if (obj->pin_count)
e47c68e9
EA
1127 i915_gem_object_flush_cpu_write_domain(obj);
1128
05394f39 1129 drm_gem_object_unreference(&obj->base);
1d7cfea1 1130unlock:
673a394b
EA
1131 mutex_unlock(&dev->struct_mutex);
1132 return ret;
1133}
1134
1135/**
1136 * Maps the contents of an object, returning the address it is mapped
1137 * into.
1138 *
1139 * While the mapping holds a reference on the contents of the object, it doesn't
1140 * imply a ref on the object itself.
1141 */
1142int
1143i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1144 struct drm_file *file)
673a394b 1145{
da761a6e 1146 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1147 struct drm_i915_gem_mmap *args = data;
1148 struct drm_gem_object *obj;
673a394b
EA
1149 unsigned long addr;
1150
1151 if (!(dev->driver->driver_features & DRIVER_GEM))
1152 return -ENODEV;
1153
05394f39 1154 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1155 if (obj == NULL)
bf79cb91 1156 return -ENOENT;
673a394b 1157
da761a6e
CW
1158 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1159 drm_gem_object_unreference_unlocked(obj);
1160 return -E2BIG;
1161 }
1162
673a394b
EA
1163 down_write(&current->mm->mmap_sem);
1164 addr = do_mmap(obj->filp, 0, args->size,
1165 PROT_READ | PROT_WRITE, MAP_SHARED,
1166 args->offset);
1167 up_write(&current->mm->mmap_sem);
bc9025bd 1168 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1169 if (IS_ERR((void *)addr))
1170 return addr;
1171
1172 args->addr_ptr = (uint64_t) addr;
1173
1174 return 0;
1175}
1176
de151cf6
JB
1177/**
1178 * i915_gem_fault - fault a page into the GTT
1179 * vma: VMA in question
1180 * vmf: fault info
1181 *
1182 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1183 * from userspace. The fault handler takes care of binding the object to
1184 * the GTT (if needed), allocating and programming a fence register (again,
1185 * only if needed based on whether the old reg is still valid or the object
1186 * is tiled) and inserting a new PTE into the faulting process.
1187 *
1188 * Note that the faulting process may involve evicting existing objects
1189 * from the GTT and/or fence registers to make room. So performance may
1190 * suffer if the GTT working set is large or there are few fence registers
1191 * left.
1192 */
1193int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1194{
05394f39
CW
1195 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1196 struct drm_device *dev = obj->base.dev;
7d1c4804 1197 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1198 pgoff_t page_offset;
1199 unsigned long pfn;
1200 int ret = 0;
0f973f27 1201 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1202
1203 /* We don't use vmf->pgoff since that has the fake offset */
1204 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1205 PAGE_SHIFT;
1206
d9bc7e9f
CW
1207 ret = i915_mutex_lock_interruptible(dev);
1208 if (ret)
1209 goto out;
a00b10c3 1210
db53a302
CW
1211 trace_i915_gem_object_fault(obj, page_offset, true, write);
1212
d9bc7e9f 1213 /* Now bind it into the GTT if needed */
919926ae
CW
1214 if (!obj->map_and_fenceable) {
1215 ret = i915_gem_object_unbind(obj);
1216 if (ret)
1217 goto unlock;
a00b10c3 1218 }
05394f39 1219 if (!obj->gtt_space) {
75e9e915 1220 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1221 if (ret)
1222 goto unlock;
de151cf6
JB
1223 }
1224
4a684a41
CW
1225 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1226 if (ret)
1227 goto unlock;
1228
d9e86c0e
CW
1229 if (obj->tiling_mode == I915_TILING_NONE)
1230 ret = i915_gem_object_put_fence(obj);
1231 else
ce453d81 1232 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1233 if (ret)
1234 goto unlock;
de151cf6 1235
05394f39
CW
1236 if (i915_gem_object_is_inactive(obj))
1237 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1238
6299f992
CW
1239 obj->fault_mappable = true;
1240
05394f39 1241 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1242 page_offset;
1243
1244 /* Finally, remap it using the new GTT offset */
1245 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1246unlock:
de151cf6 1247 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1248out:
de151cf6 1249 switch (ret) {
d9bc7e9f 1250 case -EIO:
045e769a 1251 case -EAGAIN:
d9bc7e9f
CW
1252 /* Give the error handler a chance to run and move the
1253 * objects off the GPU active list. Next time we service the
1254 * fault, we should be able to transition the page into the
1255 * GTT without touching the GPU (and so avoid further
1256 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1257 * with coherency, just lost writes.
1258 */
045e769a 1259 set_need_resched();
c715089f
CW
1260 case 0:
1261 case -ERESTARTSYS:
bed636ab 1262 case -EINTR:
c715089f 1263 return VM_FAULT_NOPAGE;
de151cf6 1264 case -ENOMEM:
de151cf6 1265 return VM_FAULT_OOM;
de151cf6 1266 default:
c715089f 1267 return VM_FAULT_SIGBUS;
de151cf6
JB
1268 }
1269}
1270
1271/**
1272 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1273 * @obj: obj in question
1274 *
1275 * GEM memory mapping works by handing back to userspace a fake mmap offset
1276 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1277 * up the object based on the offset and sets up the various memory mapping
1278 * structures.
1279 *
1280 * This routine allocates and attaches a fake offset for @obj.
1281 */
1282static int
05394f39 1283i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1284{
05394f39 1285 struct drm_device *dev = obj->base.dev;
de151cf6 1286 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1287 struct drm_map_list *list;
f77d390c 1288 struct drm_local_map *map;
de151cf6
JB
1289 int ret = 0;
1290
1291 /* Set the object up for mmap'ing */
05394f39 1292 list = &obj->base.map_list;
9a298b2a 1293 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1294 if (!list->map)
1295 return -ENOMEM;
1296
1297 map = list->map;
1298 map->type = _DRM_GEM;
05394f39 1299 map->size = obj->base.size;
de151cf6
JB
1300 map->handle = obj;
1301
1302 /* Get a DRM GEM mmap offset allocated... */
1303 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1304 obj->base.size / PAGE_SIZE,
1305 0, 0);
de151cf6 1306 if (!list->file_offset_node) {
05394f39
CW
1307 DRM_ERROR("failed to allocate offset for bo %d\n",
1308 obj->base.name);
9e0ae534 1309 ret = -ENOSPC;
de151cf6
JB
1310 goto out_free_list;
1311 }
1312
1313 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1314 obj->base.size / PAGE_SIZE,
1315 0);
de151cf6
JB
1316 if (!list->file_offset_node) {
1317 ret = -ENOMEM;
1318 goto out_free_list;
1319 }
1320
1321 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1322 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1323 if (ret) {
de151cf6
JB
1324 DRM_ERROR("failed to add to map hash\n");
1325 goto out_free_mm;
1326 }
1327
de151cf6
JB
1328 return 0;
1329
1330out_free_mm:
1331 drm_mm_put_block(list->file_offset_node);
1332out_free_list:
9a298b2a 1333 kfree(list->map);
39a01d1f 1334 list->map = NULL;
de151cf6
JB
1335
1336 return ret;
1337}
1338
901782b2
CW
1339/**
1340 * i915_gem_release_mmap - remove physical page mappings
1341 * @obj: obj in question
1342 *
af901ca1 1343 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1344 * relinquish ownership of the pages back to the system.
1345 *
1346 * It is vital that we remove the page mapping if we have mapped a tiled
1347 * object through the GTT and then lose the fence register due to
1348 * resource pressure. Similarly if the object has been moved out of the
1349 * aperture, than pages mapped into userspace must be revoked. Removing the
1350 * mapping will then trigger a page fault on the next user access, allowing
1351 * fixup by i915_gem_fault().
1352 */
d05ca301 1353void
05394f39 1354i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1355{
6299f992
CW
1356 if (!obj->fault_mappable)
1357 return;
901782b2 1358
6299f992
CW
1359 unmap_mapping_range(obj->base.dev->dev_mapping,
1360 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1361 obj->base.size, 1);
fb7d516a 1362
6299f992 1363 obj->fault_mappable = false;
901782b2
CW
1364}
1365
ab00b3e5 1366static void
05394f39 1367i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1368{
05394f39 1369 struct drm_device *dev = obj->base.dev;
ab00b3e5 1370 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1371 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1372
ab00b3e5 1373 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1374 drm_mm_put_block(list->file_offset_node);
1375 kfree(list->map);
1376 list->map = NULL;
ab00b3e5
JB
1377}
1378
92b88aeb
CW
1379static uint32_t
1380i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1381{
1382 struct drm_device *dev = obj->base.dev;
1383 uint32_t size;
1384
1385 if (INTEL_INFO(dev)->gen >= 4 ||
1386 obj->tiling_mode == I915_TILING_NONE)
1387 return obj->base.size;
1388
1389 /* Previous chips need a power-of-two fence region when tiling */
1390 if (INTEL_INFO(dev)->gen == 3)
1391 size = 1024*1024;
1392 else
1393 size = 512*1024;
1394
1395 while (size < obj->base.size)
1396 size <<= 1;
1397
1398 return size;
1399}
1400
de151cf6
JB
1401/**
1402 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1403 * @obj: object to check
1404 *
1405 * Return the required GTT alignment for an object, taking into account
5e783301 1406 * potential fence register mapping.
de151cf6
JB
1407 */
1408static uint32_t
05394f39 1409i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1410{
05394f39 1411 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1412
1413 /*
1414 * Minimum alignment is 4k (GTT page size), but might be greater
1415 * if a fence register is needed for the object.
1416 */
a00b10c3 1417 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1418 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1419 return 4096;
1420
a00b10c3
CW
1421 /*
1422 * Previous chips need to be aligned to the size of the smallest
1423 * fence register that can contain the object.
1424 */
05394f39 1425 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1426}
1427
5e783301
DV
1428/**
1429 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1430 * unfenced object
1431 * @obj: object to check
1432 *
1433 * Return the required GTT alignment for an object, only taking into account
1434 * unfenced tiled surface requirements.
1435 */
467cffba 1436uint32_t
05394f39 1437i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1438{
05394f39 1439 struct drm_device *dev = obj->base.dev;
5e783301
DV
1440 int tile_height;
1441
1442 /*
1443 * Minimum alignment is 4k (GTT page size) for sane hw.
1444 */
1445 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1446 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1447 return 4096;
1448
1449 /*
1450 * Older chips need unfenced tiled buffers to be aligned to the left
1451 * edge of an even tile row (where tile rows are counted as if the bo is
1452 * placed in a fenced gtt region).
1453 */
1454 if (IS_GEN2(dev) ||
05394f39 1455 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
5e783301
DV
1456 tile_height = 32;
1457 else
1458 tile_height = 8;
1459
05394f39 1460 return tile_height * obj->stride * 2;
5e783301
DV
1461}
1462
de151cf6 1463int
ff72145b
DA
1464i915_gem_mmap_gtt(struct drm_file *file,
1465 struct drm_device *dev,
1466 uint32_t handle,
1467 uint64_t *offset)
de151cf6 1468{
da761a6e 1469 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1470 struct drm_i915_gem_object *obj;
de151cf6
JB
1471 int ret;
1472
1473 if (!(dev->driver->driver_features & DRIVER_GEM))
1474 return -ENODEV;
1475
76c1dec1 1476 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1477 if (ret)
76c1dec1 1478 return ret;
de151cf6 1479
ff72145b 1480 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1481 if (&obj->base == NULL) {
1d7cfea1
CW
1482 ret = -ENOENT;
1483 goto unlock;
1484 }
de151cf6 1485
05394f39 1486 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1487 ret = -E2BIG;
1488 goto unlock;
1489 }
1490
05394f39 1491 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1492 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1493 ret = -EINVAL;
1494 goto out;
ab18282d
CW
1495 }
1496
05394f39 1497 if (!obj->base.map_list.map) {
de151cf6 1498 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1499 if (ret)
1500 goto out;
de151cf6
JB
1501 }
1502
ff72145b 1503 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1504
1d7cfea1 1505out:
05394f39 1506 drm_gem_object_unreference(&obj->base);
1d7cfea1 1507unlock:
de151cf6 1508 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1509 return ret;
de151cf6
JB
1510}
1511
ff72145b
DA
1512/**
1513 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1514 * @dev: DRM device
1515 * @data: GTT mapping ioctl data
1516 * @file: GEM object info
1517 *
1518 * Simply returns the fake offset to userspace so it can mmap it.
1519 * The mmap call will end up in drm_gem_mmap(), which will set things
1520 * up so we can get faults in the handler above.
1521 *
1522 * The fault handler will take care of binding the object into the GTT
1523 * (since it may have been evicted to make room for something), allocating
1524 * a fence register, and mapping the appropriate aperture address into
1525 * userspace.
1526 */
1527int
1528i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1529 struct drm_file *file)
1530{
1531 struct drm_i915_gem_mmap_gtt *args = data;
1532
1533 if (!(dev->driver->driver_features & DRIVER_GEM))
1534 return -ENODEV;
1535
1536 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1537}
1538
1539
e5281ccd 1540static int
05394f39 1541i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1542 gfp_t gfpmask)
1543{
e5281ccd
CW
1544 int page_count, i;
1545 struct address_space *mapping;
1546 struct inode *inode;
1547 struct page *page;
1548
1549 /* Get the list of pages out of our struct file. They'll be pinned
1550 * at this point until we release them.
1551 */
05394f39
CW
1552 page_count = obj->base.size / PAGE_SIZE;
1553 BUG_ON(obj->pages != NULL);
1554 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1555 if (obj->pages == NULL)
e5281ccd
CW
1556 return -ENOMEM;
1557
05394f39 1558 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1559 mapping = inode->i_mapping;
1560 for (i = 0; i < page_count; i++) {
1561 page = read_cache_page_gfp(mapping, i,
1562 GFP_HIGHUSER |
1563 __GFP_COLD |
1564 __GFP_RECLAIMABLE |
1565 gfpmask);
1566 if (IS_ERR(page))
1567 goto err_pages;
1568
05394f39 1569 obj->pages[i] = page;
e5281ccd
CW
1570 }
1571
05394f39 1572 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1573 i915_gem_object_do_bit_17_swizzle(obj);
1574
1575 return 0;
1576
1577err_pages:
1578 while (i--)
05394f39 1579 page_cache_release(obj->pages[i]);
e5281ccd 1580
05394f39
CW
1581 drm_free_large(obj->pages);
1582 obj->pages = NULL;
e5281ccd
CW
1583 return PTR_ERR(page);
1584}
1585
5cdf5881 1586static void
05394f39 1587i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1588{
05394f39 1589 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1590 int i;
1591
05394f39 1592 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1593
05394f39 1594 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1595 i915_gem_object_save_bit_17_swizzle(obj);
1596
05394f39
CW
1597 if (obj->madv == I915_MADV_DONTNEED)
1598 obj->dirty = 0;
3ef94daa
CW
1599
1600 for (i = 0; i < page_count; i++) {
05394f39
CW
1601 if (obj->dirty)
1602 set_page_dirty(obj->pages[i]);
3ef94daa 1603
05394f39
CW
1604 if (obj->madv == I915_MADV_WILLNEED)
1605 mark_page_accessed(obj->pages[i]);
3ef94daa 1606
05394f39 1607 page_cache_release(obj->pages[i]);
3ef94daa 1608 }
05394f39 1609 obj->dirty = 0;
673a394b 1610
05394f39
CW
1611 drm_free_large(obj->pages);
1612 obj->pages = NULL;
673a394b
EA
1613}
1614
54cf91dc 1615void
05394f39 1616i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1617 struct intel_ring_buffer *ring,
1618 u32 seqno)
673a394b 1619{
05394f39 1620 struct drm_device *dev = obj->base.dev;
69dc4987 1621 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1622
852835f3 1623 BUG_ON(ring == NULL);
05394f39 1624 obj->ring = ring;
673a394b
EA
1625
1626 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1627 if (!obj->active) {
1628 drm_gem_object_reference(&obj->base);
1629 obj->active = 1;
673a394b 1630 }
e35a41de 1631
673a394b 1632 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1633 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1634 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1635
05394f39 1636 obj->last_rendering_seqno = seqno;
caea7476
CW
1637 if (obj->fenced_gpu_access) {
1638 struct drm_i915_fence_reg *reg;
1639
1640 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1641
1642 obj->last_fenced_seqno = seqno;
1643 obj->last_fenced_ring = ring;
1644
1645 reg = &dev_priv->fence_regs[obj->fence_reg];
1646 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1647 }
1648}
1649
1650static void
1651i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1652{
1653 list_del_init(&obj->ring_list);
1654 obj->last_rendering_seqno = 0;
673a394b
EA
1655}
1656
ce44b0ea 1657static void
05394f39 1658i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1659{
05394f39 1660 struct drm_device *dev = obj->base.dev;
ce44b0ea 1661 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1662
05394f39
CW
1663 BUG_ON(!obj->active);
1664 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1665
1666 i915_gem_object_move_off_active(obj);
1667}
1668
1669static void
1670i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1671{
1672 struct drm_device *dev = obj->base.dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674
1675 if (obj->pin_count != 0)
1676 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1677 else
1678 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1679
1680 BUG_ON(!list_empty(&obj->gpu_write_list));
1681 BUG_ON(!obj->active);
1682 obj->ring = NULL;
1683
1684 i915_gem_object_move_off_active(obj);
1685 obj->fenced_gpu_access = false;
caea7476
CW
1686
1687 obj->active = 0;
87ca9c8a 1688 obj->pending_gpu_write = false;
caea7476
CW
1689 drm_gem_object_unreference(&obj->base);
1690
1691 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1692}
673a394b 1693
963b4836
CW
1694/* Immediately discard the backing storage */
1695static void
05394f39 1696i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1697{
bb6baf76 1698 struct inode *inode;
963b4836 1699
ae9fed6b
CW
1700 /* Our goal here is to return as much of the memory as
1701 * is possible back to the system as we are called from OOM.
1702 * To do this we must instruct the shmfs to drop all of its
1703 * backing pages, *now*. Here we mirror the actions taken
1704 * when by shmem_delete_inode() to release the backing store.
1705 */
05394f39 1706 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1707 truncate_inode_pages(inode->i_mapping, 0);
1708 if (inode->i_op->truncate_range)
1709 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1710
05394f39 1711 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1712}
1713
1714static inline int
05394f39 1715i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1716{
05394f39 1717 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1718}
1719
63560396 1720static void
db53a302
CW
1721i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1722 uint32_t flush_domains)
63560396 1723{
05394f39 1724 struct drm_i915_gem_object *obj, *next;
63560396 1725
05394f39 1726 list_for_each_entry_safe(obj, next,
64193406 1727 &ring->gpu_write_list,
63560396 1728 gpu_write_list) {
05394f39
CW
1729 if (obj->base.write_domain & flush_domains) {
1730 uint32_t old_write_domain = obj->base.write_domain;
63560396 1731
05394f39
CW
1732 obj->base.write_domain = 0;
1733 list_del_init(&obj->gpu_write_list);
1ec14ad3 1734 i915_gem_object_move_to_active(obj, ring,
db53a302 1735 i915_gem_next_request_seqno(ring));
63560396 1736
63560396 1737 trace_i915_gem_object_change_domain(obj,
05394f39 1738 obj->base.read_domains,
63560396
DV
1739 old_write_domain);
1740 }
1741 }
1742}
8187a2b7 1743
3cce469c 1744int
db53a302 1745i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1746 struct drm_file *file,
db53a302 1747 struct drm_i915_gem_request *request)
673a394b 1748{
db53a302 1749 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1750 uint32_t seqno;
1751 int was_empty;
3cce469c
CW
1752 int ret;
1753
1754 BUG_ON(request == NULL);
673a394b 1755
3cce469c
CW
1756 ret = ring->add_request(ring, &seqno);
1757 if (ret)
1758 return ret;
673a394b 1759
db53a302 1760 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1761
1762 request->seqno = seqno;
852835f3 1763 request->ring = ring;
673a394b 1764 request->emitted_jiffies = jiffies;
852835f3
ZN
1765 was_empty = list_empty(&ring->request_list);
1766 list_add_tail(&request->list, &ring->request_list);
1767
db53a302
CW
1768 if (file) {
1769 struct drm_i915_file_private *file_priv = file->driver_priv;
1770
1c25595f 1771 spin_lock(&file_priv->mm.lock);
f787a5f5 1772 request->file_priv = file_priv;
b962442e 1773 list_add_tail(&request->client_list,
f787a5f5 1774 &file_priv->mm.request_list);
1c25595f 1775 spin_unlock(&file_priv->mm.lock);
b962442e 1776 }
673a394b 1777
db53a302
CW
1778 ring->outstanding_lazy_request = false;
1779
f65d9421 1780 if (!dev_priv->mm.suspended) {
b3b079db
CW
1781 mod_timer(&dev_priv->hangcheck_timer,
1782 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1783 if (was_empty)
b3b079db
CW
1784 queue_delayed_work(dev_priv->wq,
1785 &dev_priv->mm.retire_work, HZ);
f65d9421 1786 }
3cce469c 1787 return 0;
673a394b
EA
1788}
1789
f787a5f5
CW
1790static inline void
1791i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1792{
1c25595f 1793 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1794
1c25595f
CW
1795 if (!file_priv)
1796 return;
1c5d22f7 1797
1c25595f 1798 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1799 if (request->file_priv) {
1800 list_del(&request->client_list);
1801 request->file_priv = NULL;
1802 }
1c25595f 1803 spin_unlock(&file_priv->mm.lock);
673a394b 1804}
673a394b 1805
dfaae392
CW
1806static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1807 struct intel_ring_buffer *ring)
9375e446 1808{
dfaae392
CW
1809 while (!list_empty(&ring->request_list)) {
1810 struct drm_i915_gem_request *request;
673a394b 1811
dfaae392
CW
1812 request = list_first_entry(&ring->request_list,
1813 struct drm_i915_gem_request,
1814 list);
de151cf6 1815
dfaae392 1816 list_del(&request->list);
f787a5f5 1817 i915_gem_request_remove_from_client(request);
dfaae392
CW
1818 kfree(request);
1819 }
673a394b 1820
dfaae392 1821 while (!list_empty(&ring->active_list)) {
05394f39 1822 struct drm_i915_gem_object *obj;
9375e446 1823
05394f39
CW
1824 obj = list_first_entry(&ring->active_list,
1825 struct drm_i915_gem_object,
1826 ring_list);
9375e446 1827
05394f39
CW
1828 obj->base.write_domain = 0;
1829 list_del_init(&obj->gpu_write_list);
1830 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1831 }
1832}
1833
312817a3
CW
1834static void i915_gem_reset_fences(struct drm_device *dev)
1835{
1836 struct drm_i915_private *dev_priv = dev->dev_private;
1837 int i;
1838
1839 for (i = 0; i < 16; i++) {
1840 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1841 struct drm_i915_gem_object *obj = reg->obj;
1842
1843 if (!obj)
1844 continue;
1845
1846 if (obj->tiling_mode)
1847 i915_gem_release_mmap(obj);
1848
d9e86c0e
CW
1849 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1850 reg->obj->fenced_gpu_access = false;
1851 reg->obj->last_fenced_seqno = 0;
1852 reg->obj->last_fenced_ring = NULL;
1853 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1854 }
1855}
1856
069efc1d 1857void i915_gem_reset(struct drm_device *dev)
673a394b 1858{
77f01230 1859 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1860 struct drm_i915_gem_object *obj;
1ec14ad3 1861 int i;
673a394b 1862
1ec14ad3
CW
1863 for (i = 0; i < I915_NUM_RINGS; i++)
1864 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1865
1866 /* Remove anything from the flushing lists. The GPU cache is likely
1867 * to be lost on reset along with the data, so simply move the
1868 * lost bo to the inactive list.
1869 */
1870 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1871 obj= list_first_entry(&dev_priv->mm.flushing_list,
1872 struct drm_i915_gem_object,
1873 mm_list);
dfaae392 1874
05394f39
CW
1875 obj->base.write_domain = 0;
1876 list_del_init(&obj->gpu_write_list);
1877 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1878 }
1879
1880 /* Move everything out of the GPU domains to ensure we do any
1881 * necessary invalidation upon reuse.
1882 */
05394f39 1883 list_for_each_entry(obj,
77f01230 1884 &dev_priv->mm.inactive_list,
69dc4987 1885 mm_list)
77f01230 1886 {
05394f39 1887 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1888 }
069efc1d
CW
1889
1890 /* The fence registers are invalidated so clear them out */
312817a3 1891 i915_gem_reset_fences(dev);
673a394b
EA
1892}
1893
1894/**
1895 * This function clears the request list as sequence numbers are passed.
1896 */
b09a1fec 1897static void
db53a302 1898i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1899{
673a394b 1900 uint32_t seqno;
1ec14ad3 1901 int i;
673a394b 1902
db53a302 1903 if (list_empty(&ring->request_list))
6c0594a3
KW
1904 return;
1905
db53a302 1906 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1907
78501eac 1908 seqno = ring->get_seqno(ring);
1ec14ad3 1909
076e2c0e 1910 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1911 if (seqno >= ring->sync_seqno[i])
1912 ring->sync_seqno[i] = 0;
1913
852835f3 1914 while (!list_empty(&ring->request_list)) {
673a394b 1915 struct drm_i915_gem_request *request;
673a394b 1916
852835f3 1917 request = list_first_entry(&ring->request_list,
673a394b
EA
1918 struct drm_i915_gem_request,
1919 list);
673a394b 1920
dfaae392 1921 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1922 break;
1923
db53a302 1924 trace_i915_gem_request_retire(ring, request->seqno);
b84d5f0c
CW
1925
1926 list_del(&request->list);
f787a5f5 1927 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1928 kfree(request);
1929 }
673a394b 1930
b84d5f0c
CW
1931 /* Move any buffers on the active list that are no longer referenced
1932 * by the ringbuffer to the flushing/inactive lists as appropriate.
1933 */
1934 while (!list_empty(&ring->active_list)) {
05394f39 1935 struct drm_i915_gem_object *obj;
b84d5f0c 1936
05394f39
CW
1937 obj= list_first_entry(&ring->active_list,
1938 struct drm_i915_gem_object,
1939 ring_list);
673a394b 1940
05394f39 1941 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1942 break;
b84d5f0c 1943
05394f39 1944 if (obj->base.write_domain != 0)
b84d5f0c
CW
1945 i915_gem_object_move_to_flushing(obj);
1946 else
1947 i915_gem_object_move_to_inactive(obj);
673a394b 1948 }
9d34e5db 1949
db53a302
CW
1950 if (unlikely(ring->trace_irq_seqno &&
1951 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1952 ring->irq_put(ring);
db53a302 1953 ring->trace_irq_seqno = 0;
9d34e5db 1954 }
23bc5982 1955
db53a302 1956 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1957}
1958
b09a1fec
CW
1959void
1960i915_gem_retire_requests(struct drm_device *dev)
1961{
1962 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1963 int i;
b09a1fec 1964
be72615b 1965 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1966 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1967
1968 /* We must be careful that during unbind() we do not
1969 * accidentally infinitely recurse into retire requests.
1970 * Currently:
1971 * retire -> free -> unbind -> wait -> retire_ring
1972 */
05394f39 1973 list_for_each_entry_safe(obj, next,
be72615b 1974 &dev_priv->mm.deferred_free_list,
69dc4987 1975 mm_list)
05394f39 1976 i915_gem_free_object_tail(obj);
be72615b
CW
1977 }
1978
1ec14ad3 1979 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1980 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1981}
1982
75ef9da2 1983static void
673a394b
EA
1984i915_gem_retire_work_handler(struct work_struct *work)
1985{
1986 drm_i915_private_t *dev_priv;
1987 struct drm_device *dev;
0a58705b
CW
1988 bool idle;
1989 int i;
673a394b
EA
1990
1991 dev_priv = container_of(work, drm_i915_private_t,
1992 mm.retire_work.work);
1993 dev = dev_priv->dev;
1994
891b48cf
CW
1995 /* Come back later if the device is busy... */
1996 if (!mutex_trylock(&dev->struct_mutex)) {
1997 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1998 return;
1999 }
2000
b09a1fec 2001 i915_gem_retire_requests(dev);
d1b851fc 2002
0a58705b
CW
2003 /* Send a periodic flush down the ring so we don't hold onto GEM
2004 * objects indefinitely.
2005 */
2006 idle = true;
2007 for (i = 0; i < I915_NUM_RINGS; i++) {
2008 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2009
2010 if (!list_empty(&ring->gpu_write_list)) {
2011 struct drm_i915_gem_request *request;
2012 int ret;
2013
db53a302
CW
2014 ret = i915_gem_flush_ring(ring,
2015 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
2016 request = kzalloc(sizeof(*request), GFP_KERNEL);
2017 if (ret || request == NULL ||
db53a302 2018 i915_add_request(ring, NULL, request))
0a58705b
CW
2019 kfree(request);
2020 }
2021
2022 idle &= list_empty(&ring->request_list);
2023 }
2024
2025 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 2026 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 2027
673a394b
EA
2028 mutex_unlock(&dev->struct_mutex);
2029}
2030
db53a302
CW
2031/**
2032 * Waits for a sequence number to be signaled, and cleans up the
2033 * request and object lists appropriately for that event.
2034 */
5a5a0c64 2035int
db53a302 2036i915_wait_request(struct intel_ring_buffer *ring,
ce453d81 2037 uint32_t seqno)
673a394b 2038{
db53a302 2039 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 2040 u32 ier;
673a394b
EA
2041 int ret = 0;
2042
2043 BUG_ON(seqno == 0);
2044
d9bc7e9f
CW
2045 if (atomic_read(&dev_priv->mm.wedged)) {
2046 struct completion *x = &dev_priv->error_completion;
2047 bool recovery_complete;
2048 unsigned long flags;
2049
2050 /* Give the error handler a chance to run. */
2051 spin_lock_irqsave(&x->wait.lock, flags);
2052 recovery_complete = x->done > 0;
2053 spin_unlock_irqrestore(&x->wait.lock, flags);
2054
2055 return recovery_complete ? -EIO : -EAGAIN;
2056 }
30dbf0c0 2057
5d97eb69 2058 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2059 struct drm_i915_gem_request *request;
2060
2061 request = kzalloc(sizeof(*request), GFP_KERNEL);
2062 if (request == NULL)
e35a41de 2063 return -ENOMEM;
3cce469c 2064
db53a302 2065 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
2066 if (ret) {
2067 kfree(request);
2068 return ret;
2069 }
2070
2071 seqno = request->seqno;
e35a41de 2072 }
ffed1d09 2073
78501eac 2074 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 2075 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
2076 ier = I915_READ(DEIER) | I915_READ(GTIER);
2077 else
2078 ier = I915_READ(IER);
802c7eb6
JB
2079 if (!ier) {
2080 DRM_ERROR("something (likely vbetool) disabled "
2081 "interrupts, re-enabling\n");
db53a302
CW
2082 i915_driver_irq_preinstall(ring->dev);
2083 i915_driver_irq_postinstall(ring->dev);
802c7eb6
JB
2084 }
2085
db53a302 2086 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 2087
b2223497 2088 ring->waiting_seqno = seqno;
b13c2b96 2089 if (ring->irq_get(ring)) {
ce453d81 2090 if (dev_priv->mm.interruptible)
b13c2b96
CW
2091 ret = wait_event_interruptible(ring->irq_queue,
2092 i915_seqno_passed(ring->get_seqno(ring), seqno)
2093 || atomic_read(&dev_priv->mm.wedged));
2094 else
2095 wait_event(ring->irq_queue,
2096 i915_seqno_passed(ring->get_seqno(ring), seqno)
2097 || atomic_read(&dev_priv->mm.wedged));
2098
2099 ring->irq_put(ring);
b5ba177d
CW
2100 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2101 seqno) ||
2102 atomic_read(&dev_priv->mm.wedged), 3000))
2103 ret = -EBUSY;
b2223497 2104 ring->waiting_seqno = 0;
1c5d22f7 2105
db53a302 2106 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 2107 }
ba1234d1 2108 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2109 ret = -EAGAIN;
673a394b
EA
2110
2111 if (ret && ret != -ERESTARTSYS)
8bff917c 2112 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2113 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2114 dev_priv->next_seqno);
673a394b
EA
2115
2116 /* Directly dispatch request retiring. While we have the work queue
2117 * to handle this, the waiter on a request often wants an associated
2118 * buffer to have made it to the inactive list, and we would need
2119 * a separate wait queue to handle that.
2120 */
2121 if (ret == 0)
db53a302 2122 i915_gem_retire_requests_ring(ring);
673a394b
EA
2123
2124 return ret;
2125}
2126
673a394b
EA
2127/**
2128 * Ensures that all rendering to the object has completed and the object is
2129 * safe to unbind from the GTT or access from the CPU.
2130 */
54cf91dc 2131int
ce453d81 2132i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2133{
673a394b
EA
2134 int ret;
2135
e47c68e9
EA
2136 /* This function only exists to support waiting for existing rendering,
2137 * not for emitting required flushes.
673a394b 2138 */
05394f39 2139 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2140
2141 /* If there is rendering queued on the buffer being evicted, wait for
2142 * it.
2143 */
05394f39 2144 if (obj->active) {
ce453d81 2145 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2cf34d7b 2146 if (ret)
673a394b
EA
2147 return ret;
2148 }
2149
2150 return 0;
2151}
2152
2153/**
2154 * Unbinds an object from the GTT aperture.
2155 */
0f973f27 2156int
05394f39 2157i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2158{
673a394b
EA
2159 int ret = 0;
2160
05394f39 2161 if (obj->gtt_space == NULL)
673a394b
EA
2162 return 0;
2163
05394f39 2164 if (obj->pin_count != 0) {
673a394b
EA
2165 DRM_ERROR("Attempting to unbind pinned buffer\n");
2166 return -EINVAL;
2167 }
2168
5323fd04
EA
2169 /* blow away mappings if mapped through GTT */
2170 i915_gem_release_mmap(obj);
2171
673a394b
EA
2172 /* Move the object to the CPU domain to ensure that
2173 * any possible CPU writes while it's not in the GTT
2174 * are flushed when we go to remap it. This will
2175 * also ensure that all pending GPU writes are finished
2176 * before we unbind.
2177 */
e47c68e9 2178 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2179 if (ret == -ERESTARTSYS)
673a394b 2180 return ret;
8dc1775d
CW
2181 /* Continue on if we fail due to EIO, the GPU is hung so we
2182 * should be safe and we need to cleanup or else we might
2183 * cause memory corruption through use-after-free.
2184 */
812ed492
CW
2185 if (ret) {
2186 i915_gem_clflush_object(obj);
05394f39 2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2188 }
673a394b 2189
96b47b65 2190 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2191 ret = i915_gem_object_put_fence(obj);
2192 if (ret == -ERESTARTSYS)
2193 return ret;
96b47b65 2194
db53a302
CW
2195 trace_i915_gem_object_unbind(obj);
2196
7c2e6fdf 2197 i915_gem_gtt_unbind_object(obj);
e5281ccd 2198 i915_gem_object_put_pages_gtt(obj);
673a394b 2199
6299f992 2200 list_del_init(&obj->gtt_list);
05394f39 2201 list_del_init(&obj->mm_list);
75e9e915 2202 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2203 obj->map_and_fenceable = true;
673a394b 2204
05394f39
CW
2205 drm_mm_put_block(obj->gtt_space);
2206 obj->gtt_space = NULL;
2207 obj->gtt_offset = 0;
673a394b 2208
05394f39 2209 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2210 i915_gem_object_truncate(obj);
2211
8dc1775d 2212 return ret;
673a394b
EA
2213}
2214
88241785 2215int
db53a302 2216i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2217 uint32_t invalidate_domains,
2218 uint32_t flush_domains)
2219{
88241785
CW
2220 int ret;
2221
36d527de
CW
2222 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2223 return 0;
2224
db53a302
CW
2225 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2226
88241785
CW
2227 ret = ring->flush(ring, invalidate_domains, flush_domains);
2228 if (ret)
2229 return ret;
2230
36d527de
CW
2231 if (flush_domains & I915_GEM_GPU_DOMAINS)
2232 i915_gem_process_flushing_list(ring, flush_domains);
2233
88241785 2234 return 0;
54cf91dc
CW
2235}
2236
db53a302 2237static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2238{
88241785
CW
2239 int ret;
2240
395b70be 2241 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2242 return 0;
2243
88241785 2244 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2245 ret = i915_gem_flush_ring(ring,
0ac74c6b 2246 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2247 if (ret)
2248 return ret;
2249 }
2250
ce453d81 2251 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2252}
2253
b47eb4a2 2254int
4df2faf4
DV
2255i915_gpu_idle(struct drm_device *dev)
2256{
2257 drm_i915_private_t *dev_priv = dev->dev_private;
2258 bool lists_empty;
1ec14ad3 2259 int ret, i;
4df2faf4 2260
d1b851fc 2261 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2262 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2263 if (lists_empty)
2264 return 0;
2265
2266 /* Flush everything onto the inactive list. */
1ec14ad3 2267 for (i = 0; i < I915_NUM_RINGS; i++) {
db53a302 2268 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2269 if (ret)
2270 return ret;
2271 }
4df2faf4 2272
8a1a49f9 2273 return 0;
4df2faf4
DV
2274}
2275
c6642782
DV
2276static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2277 struct intel_ring_buffer *pipelined)
4e901fdc 2278{
05394f39 2279 struct drm_device *dev = obj->base.dev;
4e901fdc 2280 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2281 u32 size = obj->gtt_space->size;
2282 int regnum = obj->fence_reg;
4e901fdc
EA
2283 uint64_t val;
2284
05394f39 2285 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2286 0xfffff000) << 32;
05394f39
CW
2287 val |= obj->gtt_offset & 0xfffff000;
2288 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2289 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2290
05394f39 2291 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2292 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2293 val |= I965_FENCE_REG_VALID;
2294
c6642782
DV
2295 if (pipelined) {
2296 int ret = intel_ring_begin(pipelined, 6);
2297 if (ret)
2298 return ret;
2299
2300 intel_ring_emit(pipelined, MI_NOOP);
2301 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2302 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2303 intel_ring_emit(pipelined, (u32)val);
2304 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2305 intel_ring_emit(pipelined, (u32)(val >> 32));
2306 intel_ring_advance(pipelined);
2307 } else
2308 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2309
2310 return 0;
4e901fdc
EA
2311}
2312
c6642782
DV
2313static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2314 struct intel_ring_buffer *pipelined)
de151cf6 2315{
05394f39 2316 struct drm_device *dev = obj->base.dev;
de151cf6 2317 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2318 u32 size = obj->gtt_space->size;
2319 int regnum = obj->fence_reg;
de151cf6
JB
2320 uint64_t val;
2321
05394f39 2322 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2323 0xfffff000) << 32;
05394f39
CW
2324 val |= obj->gtt_offset & 0xfffff000;
2325 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2326 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2327 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2328 val |= I965_FENCE_REG_VALID;
2329
c6642782
DV
2330 if (pipelined) {
2331 int ret = intel_ring_begin(pipelined, 6);
2332 if (ret)
2333 return ret;
2334
2335 intel_ring_emit(pipelined, MI_NOOP);
2336 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2337 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2338 intel_ring_emit(pipelined, (u32)val);
2339 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2340 intel_ring_emit(pipelined, (u32)(val >> 32));
2341 intel_ring_advance(pipelined);
2342 } else
2343 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2344
2345 return 0;
de151cf6
JB
2346}
2347
c6642782
DV
2348static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2349 struct intel_ring_buffer *pipelined)
de151cf6 2350{
05394f39 2351 struct drm_device *dev = obj->base.dev;
de151cf6 2352 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2353 u32 size = obj->gtt_space->size;
c6642782 2354 u32 fence_reg, val, pitch_val;
0f973f27 2355 int tile_width;
de151cf6 2356
c6642782
DV
2357 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2358 (size & -size) != size ||
2359 (obj->gtt_offset & (size - 1)),
2360 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2361 obj->gtt_offset, obj->map_and_fenceable, size))
2362 return -EINVAL;
de151cf6 2363
c6642782 2364 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2365 tile_width = 128;
de151cf6 2366 else
0f973f27
JB
2367 tile_width = 512;
2368
2369 /* Note: pitch better be a power of two tile widths */
05394f39 2370 pitch_val = obj->stride / tile_width;
0f973f27 2371 pitch_val = ffs(pitch_val) - 1;
de151cf6 2372
05394f39
CW
2373 val = obj->gtt_offset;
2374 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2375 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2376 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2377 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2378 val |= I830_FENCE_REG_VALID;
2379
05394f39 2380 fence_reg = obj->fence_reg;
a00b10c3
CW
2381 if (fence_reg < 8)
2382 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2383 else
a00b10c3 2384 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2385
2386 if (pipelined) {
2387 int ret = intel_ring_begin(pipelined, 4);
2388 if (ret)
2389 return ret;
2390
2391 intel_ring_emit(pipelined, MI_NOOP);
2392 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2393 intel_ring_emit(pipelined, fence_reg);
2394 intel_ring_emit(pipelined, val);
2395 intel_ring_advance(pipelined);
2396 } else
2397 I915_WRITE(fence_reg, val);
2398
2399 return 0;
de151cf6
JB
2400}
2401
c6642782
DV
2402static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2403 struct intel_ring_buffer *pipelined)
de151cf6 2404{
05394f39 2405 struct drm_device *dev = obj->base.dev;
de151cf6 2406 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2407 u32 size = obj->gtt_space->size;
2408 int regnum = obj->fence_reg;
de151cf6
JB
2409 uint32_t val;
2410 uint32_t pitch_val;
2411
c6642782
DV
2412 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2413 (size & -size) != size ||
2414 (obj->gtt_offset & (size - 1)),
2415 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2416 obj->gtt_offset, size))
2417 return -EINVAL;
de151cf6 2418
05394f39 2419 pitch_val = obj->stride / 128;
e76a16de 2420 pitch_val = ffs(pitch_val) - 1;
e76a16de 2421
05394f39
CW
2422 val = obj->gtt_offset;
2423 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2424 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2425 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2426 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2427 val |= I830_FENCE_REG_VALID;
2428
c6642782
DV
2429 if (pipelined) {
2430 int ret = intel_ring_begin(pipelined, 4);
2431 if (ret)
2432 return ret;
2433
2434 intel_ring_emit(pipelined, MI_NOOP);
2435 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2436 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2437 intel_ring_emit(pipelined, val);
2438 intel_ring_advance(pipelined);
2439 } else
2440 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2441
2442 return 0;
de151cf6
JB
2443}
2444
d9e86c0e
CW
2445static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2446{
2447 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2448}
2449
2450static int
2451i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2452 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2453{
2454 int ret;
2455
2456 if (obj->fenced_gpu_access) {
88241785 2457 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2458 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2459 0, obj->base.write_domain);
2460 if (ret)
2461 return ret;
2462 }
d9e86c0e
CW
2463
2464 obj->fenced_gpu_access = false;
2465 }
2466
2467 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2468 if (!ring_passed_seqno(obj->last_fenced_ring,
2469 obj->last_fenced_seqno)) {
db53a302 2470 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2471 obj->last_fenced_seqno);
d9e86c0e
CW
2472 if (ret)
2473 return ret;
2474 }
2475
2476 obj->last_fenced_seqno = 0;
2477 obj->last_fenced_ring = NULL;
2478 }
2479
63256ec5
CW
2480 /* Ensure that all CPU reads are completed before installing a fence
2481 * and all writes before removing the fence.
2482 */
2483 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2484 mb();
2485
d9e86c0e
CW
2486 return 0;
2487}
2488
2489int
2490i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2491{
2492 int ret;
2493
2494 if (obj->tiling_mode)
2495 i915_gem_release_mmap(obj);
2496
ce453d81 2497 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2498 if (ret)
2499 return ret;
2500
2501 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2502 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2503 i915_gem_clear_fence_reg(obj->base.dev,
2504 &dev_priv->fence_regs[obj->fence_reg]);
2505
2506 obj->fence_reg = I915_FENCE_REG_NONE;
2507 }
2508
2509 return 0;
2510}
2511
2512static struct drm_i915_fence_reg *
2513i915_find_fence_reg(struct drm_device *dev,
2514 struct intel_ring_buffer *pipelined)
ae3db24a 2515{
ae3db24a 2516 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2517 struct drm_i915_fence_reg *reg, *first, *avail;
2518 int i;
ae3db24a
DV
2519
2520 /* First try to find a free reg */
d9e86c0e 2521 avail = NULL;
ae3db24a
DV
2522 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2523 reg = &dev_priv->fence_regs[i];
2524 if (!reg->obj)
d9e86c0e 2525 return reg;
ae3db24a 2526
05394f39 2527 if (!reg->obj->pin_count)
d9e86c0e 2528 avail = reg;
ae3db24a
DV
2529 }
2530
d9e86c0e
CW
2531 if (avail == NULL)
2532 return NULL;
ae3db24a
DV
2533
2534 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2535 avail = first = NULL;
2536 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2537 if (reg->obj->pin_count)
ae3db24a
DV
2538 continue;
2539
d9e86c0e
CW
2540 if (first == NULL)
2541 first = reg;
2542
2543 if (!pipelined ||
2544 !reg->obj->last_fenced_ring ||
2545 reg->obj->last_fenced_ring == pipelined) {
2546 avail = reg;
2547 break;
2548 }
ae3db24a
DV
2549 }
2550
d9e86c0e
CW
2551 if (avail == NULL)
2552 avail = first;
ae3db24a 2553
a00b10c3 2554 return avail;
ae3db24a
DV
2555}
2556
de151cf6 2557/**
d9e86c0e 2558 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2559 * @obj: object to map through a fence reg
d9e86c0e
CW
2560 * @pipelined: ring on which to queue the change, or NULL for CPU access
2561 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2562 *
2563 * When mapping objects through the GTT, userspace wants to be able to write
2564 * to them without having to worry about swizzling if the object is tiled.
2565 *
2566 * This function walks the fence regs looking for a free one for @obj,
2567 * stealing one if it can't find any.
2568 *
2569 * It then sets up the reg based on the object's properties: address, pitch
2570 * and tiling format.
2571 */
8c4b8c3f 2572int
d9e86c0e 2573i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2574 struct intel_ring_buffer *pipelined)
de151cf6 2575{
05394f39 2576 struct drm_device *dev = obj->base.dev;
79e53945 2577 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2578 struct drm_i915_fence_reg *reg;
ae3db24a 2579 int ret;
de151cf6 2580
6bda10d1
CW
2581 /* XXX disable pipelining. There are bugs. Shocking. */
2582 pipelined = NULL;
2583
d9e86c0e 2584 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2585 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2586 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2587 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2588
29c5a587
CW
2589 if (obj->tiling_changed) {
2590 ret = i915_gem_object_flush_fence(obj, pipelined);
2591 if (ret)
2592 return ret;
2593
2594 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2595 pipelined = NULL;
2596
2597 if (pipelined) {
2598 reg->setup_seqno =
2599 i915_gem_next_request_seqno(pipelined);
2600 obj->last_fenced_seqno = reg->setup_seqno;
2601 obj->last_fenced_ring = pipelined;
2602 }
2603
2604 goto update;
2605 }
d9e86c0e
CW
2606
2607 if (!pipelined) {
2608 if (reg->setup_seqno) {
2609 if (!ring_passed_seqno(obj->last_fenced_ring,
2610 reg->setup_seqno)) {
db53a302 2611 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2612 reg->setup_seqno);
d9e86c0e
CW
2613 if (ret)
2614 return ret;
2615 }
2616
2617 reg->setup_seqno = 0;
2618 }
2619 } else if (obj->last_fenced_ring &&
2620 obj->last_fenced_ring != pipelined) {
ce453d81 2621 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2622 if (ret)
2623 return ret;
d9e86c0e
CW
2624 }
2625
a09ba7fa
EA
2626 return 0;
2627 }
2628
d9e86c0e
CW
2629 reg = i915_find_fence_reg(dev, pipelined);
2630 if (reg == NULL)
2631 return -ENOSPC;
de151cf6 2632
ce453d81 2633 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2634 if (ret)
ae3db24a 2635 return ret;
de151cf6 2636
d9e86c0e
CW
2637 if (reg->obj) {
2638 struct drm_i915_gem_object *old = reg->obj;
2639
2640 drm_gem_object_reference(&old->base);
2641
2642 if (old->tiling_mode)
2643 i915_gem_release_mmap(old);
2644
ce453d81 2645 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2646 if (ret) {
2647 drm_gem_object_unreference(&old->base);
2648 return ret;
2649 }
2650
2651 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2652 pipelined = NULL;
2653
2654 old->fence_reg = I915_FENCE_REG_NONE;
2655 old->last_fenced_ring = pipelined;
2656 old->last_fenced_seqno =
db53a302 2657 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2658
2659 drm_gem_object_unreference(&old->base);
2660 } else if (obj->last_fenced_seqno == 0)
2661 pipelined = NULL;
a09ba7fa 2662
de151cf6 2663 reg->obj = obj;
d9e86c0e
CW
2664 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2665 obj->fence_reg = reg - dev_priv->fence_regs;
2666 obj->last_fenced_ring = pipelined;
de151cf6 2667
d9e86c0e 2668 reg->setup_seqno =
db53a302 2669 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2670 obj->last_fenced_seqno = reg->setup_seqno;
2671
2672update:
2673 obj->tiling_changed = false;
e259befd
CW
2674 switch (INTEL_INFO(dev)->gen) {
2675 case 6:
c6642782 2676 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2677 break;
2678 case 5:
2679 case 4:
c6642782 2680 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2681 break;
2682 case 3:
c6642782 2683 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2684 break;
2685 case 2:
c6642782 2686 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2687 break;
2688 }
d9ddcb96 2689
c6642782 2690 return ret;
de151cf6
JB
2691}
2692
2693/**
2694 * i915_gem_clear_fence_reg - clear out fence register info
2695 * @obj: object to clear
2696 *
2697 * Zeroes out the fence register itself and clears out the associated
05394f39 2698 * data structures in dev_priv and obj.
de151cf6
JB
2699 */
2700static void
d9e86c0e
CW
2701i915_gem_clear_fence_reg(struct drm_device *dev,
2702 struct drm_i915_fence_reg *reg)
de151cf6 2703{
79e53945 2704 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2705 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2706
e259befd
CW
2707 switch (INTEL_INFO(dev)->gen) {
2708 case 6:
d9e86c0e 2709 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2710 break;
2711 case 5:
2712 case 4:
d9e86c0e 2713 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2714 break;
2715 case 3:
d9e86c0e
CW
2716 if (fence_reg >= 8)
2717 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2718 else
e259befd 2719 case 2:
d9e86c0e 2720 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2721
2722 I915_WRITE(fence_reg, 0);
e259befd 2723 break;
dc529a4f 2724 }
de151cf6 2725
007cc8ac 2726 list_del_init(&reg->lru_list);
d9e86c0e
CW
2727 reg->obj = NULL;
2728 reg->setup_seqno = 0;
52dc7d32
CW
2729}
2730
673a394b
EA
2731/**
2732 * Finds free space in the GTT aperture and binds the object there.
2733 */
2734static int
05394f39 2735i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2736 unsigned alignment,
75e9e915 2737 bool map_and_fenceable)
673a394b 2738{
05394f39 2739 struct drm_device *dev = obj->base.dev;
673a394b 2740 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2741 struct drm_mm_node *free_space;
a00b10c3 2742 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2743 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2744 bool mappable, fenceable;
07f73f69 2745 int ret;
673a394b 2746
05394f39 2747 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2748 DRM_ERROR("Attempting to bind a purgeable object\n");
2749 return -EINVAL;
2750 }
2751
05394f39
CW
2752 fence_size = i915_gem_get_gtt_size(obj);
2753 fence_alignment = i915_gem_get_gtt_alignment(obj);
2754 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2755
673a394b 2756 if (alignment == 0)
5e783301
DV
2757 alignment = map_and_fenceable ? fence_alignment :
2758 unfenced_alignment;
75e9e915 2759 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2760 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2761 return -EINVAL;
2762 }
2763
05394f39 2764 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2765
654fc607
CW
2766 /* If the object is bigger than the entire aperture, reject it early
2767 * before evicting everything in a vain attempt to find space.
2768 */
05394f39 2769 if (obj->base.size >
75e9e915 2770 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2771 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2772 return -E2BIG;
2773 }
2774
673a394b 2775 search_free:
75e9e915 2776 if (map_and_fenceable)
920afa77
DV
2777 free_space =
2778 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2779 size, alignment, 0,
920afa77
DV
2780 dev_priv->mm.gtt_mappable_end,
2781 0);
2782 else
2783 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2784 size, alignment, 0);
920afa77
DV
2785
2786 if (free_space != NULL) {
75e9e915 2787 if (map_and_fenceable)
05394f39 2788 obj->gtt_space =
920afa77 2789 drm_mm_get_block_range_generic(free_space,
a00b10c3 2790 size, alignment, 0,
920afa77
DV
2791 dev_priv->mm.gtt_mappable_end,
2792 0);
2793 else
05394f39 2794 obj->gtt_space =
a00b10c3 2795 drm_mm_get_block(free_space, size, alignment);
920afa77 2796 }
05394f39 2797 if (obj->gtt_space == NULL) {
673a394b
EA
2798 /* If the gtt is empty and we're still having trouble
2799 * fitting our object in, we're out of memory.
2800 */
75e9e915
DV
2801 ret = i915_gem_evict_something(dev, size, alignment,
2802 map_and_fenceable);
9731129c 2803 if (ret)
673a394b 2804 return ret;
9731129c 2805
673a394b
EA
2806 goto search_free;
2807 }
2808
e5281ccd 2809 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2810 if (ret) {
05394f39
CW
2811 drm_mm_put_block(obj->gtt_space);
2812 obj->gtt_space = NULL;
07f73f69
CW
2813
2814 if (ret == -ENOMEM) {
809b6334
CW
2815 /* first try to reclaim some memory by clearing the GTT */
2816 ret = i915_gem_evict_everything(dev, false);
07f73f69 2817 if (ret) {
07f73f69 2818 /* now try to shrink everyone else */
4bdadb97
CW
2819 if (gfpmask) {
2820 gfpmask = 0;
2821 goto search_free;
07f73f69
CW
2822 }
2823
809b6334 2824 return -ENOMEM;
07f73f69
CW
2825 }
2826
2827 goto search_free;
2828 }
2829
673a394b
EA
2830 return ret;
2831 }
2832
7c2e6fdf
DV
2833 ret = i915_gem_gtt_bind_object(obj);
2834 if (ret) {
e5281ccd 2835 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2836 drm_mm_put_block(obj->gtt_space);
2837 obj->gtt_space = NULL;
07f73f69 2838
809b6334 2839 if (i915_gem_evict_everything(dev, false))
07f73f69 2840 return ret;
07f73f69
CW
2841
2842 goto search_free;
673a394b 2843 }
673a394b 2844
6299f992 2845 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2846 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2847
673a394b
EA
2848 /* Assert that the object is not currently in any GPU domain. As it
2849 * wasn't in the GTT, there shouldn't be any way it could have been in
2850 * a GPU cache
2851 */
05394f39
CW
2852 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2853 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2854
6299f992 2855 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2856
75e9e915 2857 fenceable =
05394f39
CW
2858 obj->gtt_space->size == fence_size &&
2859 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2860
75e9e915 2861 mappable =
05394f39 2862 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2863
05394f39 2864 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2865
db53a302 2866 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2867 return 0;
2868}
2869
2870void
05394f39 2871i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2872{
673a394b
EA
2873 /* If we don't have a page list set up, then we're not pinned
2874 * to GPU, and we can ignore the cache flush because it'll happen
2875 * again at bind time.
2876 */
05394f39 2877 if (obj->pages == NULL)
673a394b
EA
2878 return;
2879
1c5d22f7 2880 trace_i915_gem_object_clflush(obj);
cfa16a0d 2881
05394f39 2882 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2883}
2884
e47c68e9 2885/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2886static int
3619df03 2887i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2888{
05394f39 2889 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2890 return 0;
e47c68e9
EA
2891
2892 /* Queue the GPU write cache flushing we need. */
db53a302 2893 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2894}
2895
2896/** Flushes the GTT write domain for the object if it's dirty. */
2897static void
05394f39 2898i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2899{
1c5d22f7
CW
2900 uint32_t old_write_domain;
2901
05394f39 2902 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2903 return;
2904
63256ec5 2905 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2906 * to it immediately go to main memory as far as we know, so there's
2907 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2908 *
2909 * However, we do have to enforce the order so that all writes through
2910 * the GTT land before any writes to the device, such as updates to
2911 * the GATT itself.
e47c68e9 2912 */
63256ec5
CW
2913 wmb();
2914
4a684a41
CW
2915 i915_gem_release_mmap(obj);
2916
05394f39
CW
2917 old_write_domain = obj->base.write_domain;
2918 obj->base.write_domain = 0;
1c5d22f7
CW
2919
2920 trace_i915_gem_object_change_domain(obj,
05394f39 2921 obj->base.read_domains,
1c5d22f7 2922 old_write_domain);
e47c68e9
EA
2923}
2924
2925/** Flushes the CPU write domain for the object if it's dirty. */
2926static void
05394f39 2927i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2928{
1c5d22f7 2929 uint32_t old_write_domain;
e47c68e9 2930
05394f39 2931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2932 return;
2933
2934 i915_gem_clflush_object(obj);
40ce6575 2935 intel_gtt_chipset_flush();
05394f39
CW
2936 old_write_domain = obj->base.write_domain;
2937 obj->base.write_domain = 0;
1c5d22f7
CW
2938
2939 trace_i915_gem_object_change_domain(obj,
05394f39 2940 obj->base.read_domains,
1c5d22f7 2941 old_write_domain);
e47c68e9
EA
2942}
2943
2ef7eeaa
EA
2944/**
2945 * Moves a single object to the GTT read, and possibly write domain.
2946 *
2947 * This function returns when the move is complete, including waiting on
2948 * flushes to occur.
2949 */
79e53945 2950int
2021746e 2951i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2952{
1c5d22f7 2953 uint32_t old_write_domain, old_read_domains;
e47c68e9 2954 int ret;
2ef7eeaa 2955
02354392 2956 /* Not valid to be called on unbound objects. */
05394f39 2957 if (obj->gtt_space == NULL)
02354392
EA
2958 return -EINVAL;
2959
8d7e3de1
CW
2960 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2961 return 0;
2962
88241785
CW
2963 ret = i915_gem_object_flush_gpu_write_domain(obj);
2964 if (ret)
2965 return ret;
2966
87ca9c8a 2967 if (obj->pending_gpu_write || write) {
ce453d81 2968 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2969 if (ret)
2970 return ret;
2971 }
2dafb1e0 2972
7213342d 2973 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2974
05394f39
CW
2975 old_write_domain = obj->base.write_domain;
2976 old_read_domains = obj->base.read_domains;
1c5d22f7 2977
e47c68e9
EA
2978 /* It should now be out of any other write domains, and we can update
2979 * the domain values for our changes.
2980 */
05394f39
CW
2981 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2982 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2983 if (write) {
05394f39
CW
2984 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2985 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2986 obj->dirty = 1;
2ef7eeaa
EA
2987 }
2988
1c5d22f7
CW
2989 trace_i915_gem_object_change_domain(obj,
2990 old_read_domains,
2991 old_write_domain);
2992
e47c68e9
EA
2993 return 0;
2994}
2995
b9241ea3
ZW
2996/*
2997 * Prepare buffer for display plane. Use uninterruptible for possible flush
2998 * wait, as in modesetting process we're not supposed to be interrupted.
2999 */
3000int
05394f39 3001i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 3002 struct intel_ring_buffer *pipelined)
b9241ea3 3003{
ba3d8d74 3004 uint32_t old_read_domains;
b9241ea3
ZW
3005 int ret;
3006
3007 /* Not valid to be called on unbound objects. */
05394f39 3008 if (obj->gtt_space == NULL)
b9241ea3
ZW
3009 return -EINVAL;
3010
88241785
CW
3011 ret = i915_gem_object_flush_gpu_write_domain(obj);
3012 if (ret)
3013 return ret;
3014
b9241ea3 3015
ced270fa 3016 /* Currently, we are always called from an non-interruptible context. */
0be73284 3017 if (pipelined != obj->ring) {
ce453d81 3018 ret = i915_gem_object_wait_rendering(obj);
ced270fa 3019 if (ret)
b9241ea3
ZW
3020 return ret;
3021 }
3022
b118c1e3
CW
3023 i915_gem_object_flush_cpu_write_domain(obj);
3024
05394f39
CW
3025 old_read_domains = obj->base.read_domains;
3026 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3027
3028 trace_i915_gem_object_change_domain(obj,
3029 old_read_domains,
05394f39 3030 obj->base.write_domain);
b9241ea3
ZW
3031
3032 return 0;
3033}
3034
85345517 3035int
ce453d81 3036i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
85345517 3037{
88241785
CW
3038 int ret;
3039
85345517
CW
3040 if (!obj->active)
3041 return 0;
3042
88241785 3043 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3044 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3045 if (ret)
3046 return ret;
3047 }
85345517 3048
ce453d81 3049 return i915_gem_object_wait_rendering(obj);
85345517
CW
3050}
3051
e47c68e9
EA
3052/**
3053 * Moves a single object to the CPU read, and possibly write domain.
3054 *
3055 * This function returns when the move is complete, including waiting on
3056 * flushes to occur.
3057 */
3058static int
919926ae 3059i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3060{
1c5d22f7 3061 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3062 int ret;
3063
8d7e3de1
CW
3064 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3065 return 0;
3066
88241785
CW
3067 ret = i915_gem_object_flush_gpu_write_domain(obj);
3068 if (ret)
3069 return ret;
3070
ce453d81 3071 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3072 if (ret)
e47c68e9 3073 return ret;
2ef7eeaa 3074
e47c68e9 3075 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3076
e47c68e9
EA
3077 /* If we have a partially-valid cache of the object in the CPU,
3078 * finish invalidating it and free the per-page flags.
2ef7eeaa 3079 */
e47c68e9 3080 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3081
05394f39
CW
3082 old_write_domain = obj->base.write_domain;
3083 old_read_domains = obj->base.read_domains;
1c5d22f7 3084
e47c68e9 3085 /* Flush the CPU cache if it's still invalid. */
05394f39 3086 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3087 i915_gem_clflush_object(obj);
2ef7eeaa 3088
05394f39 3089 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3090 }
3091
3092 /* It should now be out of any other write domains, and we can update
3093 * the domain values for our changes.
3094 */
05394f39 3095 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3096
3097 /* If we're writing through the CPU, then the GPU read domains will
3098 * need to be invalidated at next use.
3099 */
3100 if (write) {
05394f39
CW
3101 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3102 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3103 }
2ef7eeaa 3104
1c5d22f7
CW
3105 trace_i915_gem_object_change_domain(obj,
3106 old_read_domains,
3107 old_write_domain);
3108
2ef7eeaa
EA
3109 return 0;
3110}
3111
673a394b 3112/**
e47c68e9 3113 * Moves the object from a partially CPU read to a full one.
673a394b 3114 *
e47c68e9
EA
3115 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3116 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3117 */
e47c68e9 3118static void
05394f39 3119i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3120{
05394f39 3121 if (!obj->page_cpu_valid)
e47c68e9
EA
3122 return;
3123
3124 /* If we're partially in the CPU read domain, finish moving it in.
3125 */
05394f39 3126 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3127 int i;
3128
05394f39
CW
3129 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3130 if (obj->page_cpu_valid[i])
e47c68e9 3131 continue;
05394f39 3132 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3133 }
e47c68e9
EA
3134 }
3135
3136 /* Free the page_cpu_valid mappings which are now stale, whether
3137 * or not we've got I915_GEM_DOMAIN_CPU.
3138 */
05394f39
CW
3139 kfree(obj->page_cpu_valid);
3140 obj->page_cpu_valid = NULL;
e47c68e9
EA
3141}
3142
3143/**
3144 * Set the CPU read domain on a range of the object.
3145 *
3146 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3147 * not entirely valid. The page_cpu_valid member of the object flags which
3148 * pages have been flushed, and will be respected by
3149 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3150 * of the whole object.
3151 *
3152 * This function returns when the move is complete, including waiting on
3153 * flushes to occur.
3154 */
3155static int
05394f39 3156i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3157 uint64_t offset, uint64_t size)
3158{
1c5d22f7 3159 uint32_t old_read_domains;
e47c68e9 3160 int i, ret;
673a394b 3161
05394f39 3162 if (offset == 0 && size == obj->base.size)
e47c68e9 3163 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3164
88241785
CW
3165 ret = i915_gem_object_flush_gpu_write_domain(obj);
3166 if (ret)
3167 return ret;
3168
ce453d81 3169 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3170 if (ret)
6a47baa6 3171 return ret;
de18a29e 3172
e47c68e9
EA
3173 i915_gem_object_flush_gtt_write_domain(obj);
3174
3175 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3176 if (obj->page_cpu_valid == NULL &&
3177 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3178 return 0;
673a394b 3179
e47c68e9
EA
3180 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3181 * newly adding I915_GEM_DOMAIN_CPU
3182 */
05394f39
CW
3183 if (obj->page_cpu_valid == NULL) {
3184 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3185 GFP_KERNEL);
3186 if (obj->page_cpu_valid == NULL)
e47c68e9 3187 return -ENOMEM;
05394f39
CW
3188 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3189 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3190
3191 /* Flush the cache on any pages that are still invalid from the CPU's
3192 * perspective.
3193 */
e47c68e9
EA
3194 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3195 i++) {
05394f39 3196 if (obj->page_cpu_valid[i])
673a394b
EA
3197 continue;
3198
05394f39 3199 drm_clflush_pages(obj->pages + i, 1);
673a394b 3200
05394f39 3201 obj->page_cpu_valid[i] = 1;
673a394b
EA
3202 }
3203
e47c68e9
EA
3204 /* It should now be out of any other write domains, and we can update
3205 * the domain values for our changes.
3206 */
05394f39 3207 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3208
05394f39
CW
3209 old_read_domains = obj->base.read_domains;
3210 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3211
1c5d22f7
CW
3212 trace_i915_gem_object_change_domain(obj,
3213 old_read_domains,
05394f39 3214 obj->base.write_domain);
1c5d22f7 3215
673a394b
EA
3216 return 0;
3217}
3218
673a394b
EA
3219/* Throttle our rendering by waiting until the ring has completed our requests
3220 * emitted over 20 msec ago.
3221 *
b962442e
EA
3222 * Note that if we were to use the current jiffies each time around the loop,
3223 * we wouldn't escape the function with any frames outstanding if the time to
3224 * render a frame was over 20ms.
3225 *
673a394b
EA
3226 * This should get us reasonable parallelism between CPU and GPU but also
3227 * relatively low latency when blocking on a particular request to finish.
3228 */
40a5f0de 3229static int
f787a5f5 3230i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3231{
f787a5f5
CW
3232 struct drm_i915_private *dev_priv = dev->dev_private;
3233 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3234 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3235 struct drm_i915_gem_request *request;
3236 struct intel_ring_buffer *ring = NULL;
3237 u32 seqno = 0;
3238 int ret;
93533c29 3239
e110e8d6
CW
3240 if (atomic_read(&dev_priv->mm.wedged))
3241 return -EIO;
3242
1c25595f 3243 spin_lock(&file_priv->mm.lock);
f787a5f5 3244 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3245 if (time_after_eq(request->emitted_jiffies, recent_enough))
3246 break;
40a5f0de 3247
f787a5f5
CW
3248 ring = request->ring;
3249 seqno = request->seqno;
b962442e 3250 }
1c25595f 3251 spin_unlock(&file_priv->mm.lock);
40a5f0de 3252
f787a5f5
CW
3253 if (seqno == 0)
3254 return 0;
2bc43b5c 3255
f787a5f5 3256 ret = 0;
78501eac 3257 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3258 /* And wait for the seqno passing without holding any locks and
3259 * causing extra latency for others. This is safe as the irq
3260 * generation is designed to be run atomically and so is
3261 * lockless.
3262 */
b13c2b96
CW
3263 if (ring->irq_get(ring)) {
3264 ret = wait_event_interruptible(ring->irq_queue,
3265 i915_seqno_passed(ring->get_seqno(ring), seqno)
3266 || atomic_read(&dev_priv->mm.wedged));
3267 ring->irq_put(ring);
40a5f0de 3268
b13c2b96
CW
3269 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3270 ret = -EIO;
3271 }
40a5f0de
EA
3272 }
3273
f787a5f5
CW
3274 if (ret == 0)
3275 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3276
3277 return ret;
3278}
3279
673a394b 3280int
05394f39
CW
3281i915_gem_object_pin(struct drm_i915_gem_object *obj,
3282 uint32_t alignment,
75e9e915 3283 bool map_and_fenceable)
673a394b 3284{
05394f39 3285 struct drm_device *dev = obj->base.dev;
f13d3f73 3286 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3287 int ret;
3288
05394f39 3289 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3290 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3291
05394f39
CW
3292 if (obj->gtt_space != NULL) {
3293 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3294 (map_and_fenceable && !obj->map_and_fenceable)) {
3295 WARN(obj->pin_count,
ae7d49d8 3296 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3297 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3298 " obj->map_and_fenceable=%d\n",
05394f39 3299 obj->gtt_offset, alignment,
75e9e915 3300 map_and_fenceable,
05394f39 3301 obj->map_and_fenceable);
ac0c6b5a
CW
3302 ret = i915_gem_object_unbind(obj);
3303 if (ret)
3304 return ret;
3305 }
3306 }
3307
05394f39 3308 if (obj->gtt_space == NULL) {
a00b10c3 3309 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3310 map_and_fenceable);
9731129c 3311 if (ret)
673a394b 3312 return ret;
22c344e9 3313 }
76446cac 3314
05394f39 3315 if (obj->pin_count++ == 0) {
05394f39
CW
3316 if (!obj->active)
3317 list_move_tail(&obj->mm_list,
f13d3f73 3318 &dev_priv->mm.pinned_list);
673a394b 3319 }
6299f992 3320 obj->pin_mappable |= map_and_fenceable;
673a394b 3321
23bc5982 3322 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3323 return 0;
3324}
3325
3326void
05394f39 3327i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3328{
05394f39 3329 struct drm_device *dev = obj->base.dev;
673a394b 3330 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3331
23bc5982 3332 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3333 BUG_ON(obj->pin_count == 0);
3334 BUG_ON(obj->gtt_space == NULL);
673a394b 3335
05394f39
CW
3336 if (--obj->pin_count == 0) {
3337 if (!obj->active)
3338 list_move_tail(&obj->mm_list,
673a394b 3339 &dev_priv->mm.inactive_list);
6299f992 3340 obj->pin_mappable = false;
673a394b 3341 }
23bc5982 3342 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3343}
3344
3345int
3346i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3347 struct drm_file *file)
673a394b
EA
3348{
3349 struct drm_i915_gem_pin *args = data;
05394f39 3350 struct drm_i915_gem_object *obj;
673a394b
EA
3351 int ret;
3352
1d7cfea1
CW
3353 ret = i915_mutex_lock_interruptible(dev);
3354 if (ret)
3355 return ret;
673a394b 3356
05394f39 3357 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3358 if (&obj->base == NULL) {
1d7cfea1
CW
3359 ret = -ENOENT;
3360 goto unlock;
673a394b 3361 }
673a394b 3362
05394f39 3363 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3364 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3365 ret = -EINVAL;
3366 goto out;
3ef94daa
CW
3367 }
3368
05394f39 3369 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3370 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3371 args->handle);
1d7cfea1
CW
3372 ret = -EINVAL;
3373 goto out;
79e53945
JB
3374 }
3375
05394f39
CW
3376 obj->user_pin_count++;
3377 obj->pin_filp = file;
3378 if (obj->user_pin_count == 1) {
75e9e915 3379 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3380 if (ret)
3381 goto out;
673a394b
EA
3382 }
3383
3384 /* XXX - flush the CPU caches for pinned objects
3385 * as the X server doesn't manage domains yet
3386 */
e47c68e9 3387 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3388 args->offset = obj->gtt_offset;
1d7cfea1 3389out:
05394f39 3390 drm_gem_object_unreference(&obj->base);
1d7cfea1 3391unlock:
673a394b 3392 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3393 return ret;
673a394b
EA
3394}
3395
3396int
3397i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3398 struct drm_file *file)
673a394b
EA
3399{
3400 struct drm_i915_gem_pin *args = data;
05394f39 3401 struct drm_i915_gem_object *obj;
76c1dec1 3402 int ret;
673a394b 3403
1d7cfea1
CW
3404 ret = i915_mutex_lock_interruptible(dev);
3405 if (ret)
3406 return ret;
673a394b 3407
05394f39 3408 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3409 if (&obj->base == NULL) {
1d7cfea1
CW
3410 ret = -ENOENT;
3411 goto unlock;
673a394b 3412 }
76c1dec1 3413
05394f39 3414 if (obj->pin_filp != file) {
79e53945
JB
3415 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3416 args->handle);
1d7cfea1
CW
3417 ret = -EINVAL;
3418 goto out;
79e53945 3419 }
05394f39
CW
3420 obj->user_pin_count--;
3421 if (obj->user_pin_count == 0) {
3422 obj->pin_filp = NULL;
79e53945
JB
3423 i915_gem_object_unpin(obj);
3424 }
673a394b 3425
1d7cfea1 3426out:
05394f39 3427 drm_gem_object_unreference(&obj->base);
1d7cfea1 3428unlock:
673a394b 3429 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3430 return ret;
673a394b
EA
3431}
3432
3433int
3434i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3435 struct drm_file *file)
673a394b
EA
3436{
3437 struct drm_i915_gem_busy *args = data;
05394f39 3438 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3439 int ret;
3440
76c1dec1 3441 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3442 if (ret)
76c1dec1 3443 return ret;
673a394b 3444
05394f39 3445 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3446 if (&obj->base == NULL) {
1d7cfea1
CW
3447 ret = -ENOENT;
3448 goto unlock;
673a394b 3449 }
d1b851fc 3450
0be555b6
CW
3451 /* Count all active objects as busy, even if they are currently not used
3452 * by the gpu. Users of this interface expect objects to eventually
3453 * become non-busy without any further actions, therefore emit any
3454 * necessary flushes here.
c4de0a5d 3455 */
05394f39 3456 args->busy = obj->active;
0be555b6
CW
3457 if (args->busy) {
3458 /* Unconditionally flush objects, even when the gpu still uses this
3459 * object. Userspace calling this function indicates that it wants to
3460 * use this buffer rather sooner than later, so issuing the required
3461 * flush earlier is beneficial.
3462 */
1a1c6976 3463 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3464 ret = i915_gem_flush_ring(obj->ring,
88241785 3465 0, obj->base.write_domain);
1a1c6976
CW
3466 } else if (obj->ring->outstanding_lazy_request ==
3467 obj->last_rendering_seqno) {
3468 struct drm_i915_gem_request *request;
3469
7a194876
CW
3470 /* This ring is not being cleared by active usage,
3471 * so emit a request to do so.
3472 */
1a1c6976
CW
3473 request = kzalloc(sizeof(*request), GFP_KERNEL);
3474 if (request)
db53a302 3475 ret = i915_add_request(obj->ring, NULL,request);
1a1c6976 3476 else
7a194876
CW
3477 ret = -ENOMEM;
3478 }
0be555b6
CW
3479
3480 /* Update the active list for the hardware's current position.
3481 * Otherwise this only updates on a delayed timer or when irqs
3482 * are actually unmasked, and our working set ends up being
3483 * larger than required.
3484 */
db53a302 3485 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3486
05394f39 3487 args->busy = obj->active;
0be555b6 3488 }
673a394b 3489
05394f39 3490 drm_gem_object_unreference(&obj->base);
1d7cfea1 3491unlock:
673a394b 3492 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3493 return ret;
673a394b
EA
3494}
3495
3496int
3497i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3498 struct drm_file *file_priv)
3499{
3500 return i915_gem_ring_throttle(dev, file_priv);
3501}
3502
3ef94daa
CW
3503int
3504i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3505 struct drm_file *file_priv)
3506{
3507 struct drm_i915_gem_madvise *args = data;
05394f39 3508 struct drm_i915_gem_object *obj;
76c1dec1 3509 int ret;
3ef94daa
CW
3510
3511 switch (args->madv) {
3512 case I915_MADV_DONTNEED:
3513 case I915_MADV_WILLNEED:
3514 break;
3515 default:
3516 return -EINVAL;
3517 }
3518
1d7cfea1
CW
3519 ret = i915_mutex_lock_interruptible(dev);
3520 if (ret)
3521 return ret;
3522
05394f39 3523 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3524 if (&obj->base == NULL) {
1d7cfea1
CW
3525 ret = -ENOENT;
3526 goto unlock;
3ef94daa 3527 }
3ef94daa 3528
05394f39 3529 if (obj->pin_count) {
1d7cfea1
CW
3530 ret = -EINVAL;
3531 goto out;
3ef94daa
CW
3532 }
3533
05394f39
CW
3534 if (obj->madv != __I915_MADV_PURGED)
3535 obj->madv = args->madv;
3ef94daa 3536
2d7ef395 3537 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3538 if (i915_gem_object_is_purgeable(obj) &&
3539 obj->gtt_space == NULL)
2d7ef395
CW
3540 i915_gem_object_truncate(obj);
3541
05394f39 3542 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3543
1d7cfea1 3544out:
05394f39 3545 drm_gem_object_unreference(&obj->base);
1d7cfea1 3546unlock:
3ef94daa 3547 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3548 return ret;
3ef94daa
CW
3549}
3550
05394f39
CW
3551struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3552 size_t size)
ac52bc56 3553{
73aa808f 3554 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3555 struct drm_i915_gem_object *obj;
ac52bc56 3556
c397b908
DV
3557 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3558 if (obj == NULL)
3559 return NULL;
673a394b 3560
c397b908
DV
3561 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3562 kfree(obj);
3563 return NULL;
3564 }
673a394b 3565
73aa808f
CW
3566 i915_gem_info_add_obj(dev_priv, size);
3567
c397b908
DV
3568 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3569 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3570
c397b908 3571 obj->agp_type = AGP_USER_MEMORY;
62b8b215 3572 obj->base.driver_private = NULL;
c397b908 3573 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3574 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3575 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3576 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3577 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3578 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3579 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3580 /* Avoid an unnecessary call to unbind on the first bind. */
3581 obj->map_and_fenceable = true;
de151cf6 3582
05394f39 3583 return obj;
c397b908
DV
3584}
3585
3586int i915_gem_init_object(struct drm_gem_object *obj)
3587{
3588 BUG();
de151cf6 3589
673a394b
EA
3590 return 0;
3591}
3592
05394f39 3593static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3594{
05394f39 3595 struct drm_device *dev = obj->base.dev;
be72615b 3596 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3597 int ret;
673a394b 3598
be72615b
CW
3599 ret = i915_gem_object_unbind(obj);
3600 if (ret == -ERESTARTSYS) {
05394f39 3601 list_move(&obj->mm_list,
be72615b
CW
3602 &dev_priv->mm.deferred_free_list);
3603 return;
3604 }
673a394b 3605
05394f39 3606 if (obj->base.map_list.map)
7e616158 3607 i915_gem_free_mmap_offset(obj);
de151cf6 3608
05394f39
CW
3609 drm_gem_object_release(&obj->base);
3610 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3611
05394f39
CW
3612 kfree(obj->page_cpu_valid);
3613 kfree(obj->bit_17);
3614 kfree(obj);
db53a302
CW
3615
3616 trace_i915_gem_object_destroy(obj);
673a394b
EA
3617}
3618
05394f39 3619void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3620{
05394f39
CW
3621 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3622 struct drm_device *dev = obj->base.dev;
be72615b 3623
05394f39 3624 while (obj->pin_count > 0)
be72615b
CW
3625 i915_gem_object_unpin(obj);
3626
05394f39 3627 if (obj->phys_obj)
be72615b
CW
3628 i915_gem_detach_phys_object(dev, obj);
3629
3630 i915_gem_free_object_tail(obj);
3631}
3632
29105ccc
CW
3633int
3634i915_gem_idle(struct drm_device *dev)
3635{
3636 drm_i915_private_t *dev_priv = dev->dev_private;
3637 int ret;
28dfe52a 3638
29105ccc 3639 mutex_lock(&dev->struct_mutex);
1c5d22f7 3640
87acb0a5 3641 if (dev_priv->mm.suspended) {
29105ccc
CW
3642 mutex_unlock(&dev->struct_mutex);
3643 return 0;
28dfe52a
EA
3644 }
3645
29105ccc 3646 ret = i915_gpu_idle(dev);
6dbe2772
KP
3647 if (ret) {
3648 mutex_unlock(&dev->struct_mutex);
673a394b 3649 return ret;
6dbe2772 3650 }
673a394b 3651
29105ccc
CW
3652 /* Under UMS, be paranoid and evict. */
3653 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3654 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3655 if (ret) {
3656 mutex_unlock(&dev->struct_mutex);
3657 return ret;
3658 }
3659 }
3660
312817a3
CW
3661 i915_gem_reset_fences(dev);
3662
29105ccc
CW
3663 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3664 * We need to replace this with a semaphore, or something.
3665 * And not confound mm.suspended!
3666 */
3667 dev_priv->mm.suspended = 1;
bc0c7f14 3668 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3669
3670 i915_kernel_lost_context(dev);
6dbe2772 3671 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3672
6dbe2772
KP
3673 mutex_unlock(&dev->struct_mutex);
3674
29105ccc
CW
3675 /* Cancel the retire work handler, which should be idle now. */
3676 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3677
673a394b
EA
3678 return 0;
3679}
3680
8187a2b7
ZN
3681int
3682i915_gem_init_ringbuffer(struct drm_device *dev)
3683{
3684 drm_i915_private_t *dev_priv = dev->dev_private;
3685 int ret;
68f95ba9 3686
5c1143bb 3687 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3688 if (ret)
b6913e4b 3689 return ret;
68f95ba9
CW
3690
3691 if (HAS_BSD(dev)) {
5c1143bb 3692 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3693 if (ret)
3694 goto cleanup_render_ring;
d1b851fc 3695 }
68f95ba9 3696
549f7365
CW
3697 if (HAS_BLT(dev)) {
3698 ret = intel_init_blt_ring_buffer(dev);
3699 if (ret)
3700 goto cleanup_bsd_ring;
3701 }
3702
6f392d54
CW
3703 dev_priv->next_seqno = 1;
3704
68f95ba9
CW
3705 return 0;
3706
549f7365 3707cleanup_bsd_ring:
1ec14ad3 3708 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3709cleanup_render_ring:
1ec14ad3 3710 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3711 return ret;
3712}
3713
3714void
3715i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3716{
3717 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3718 int i;
8187a2b7 3719
1ec14ad3
CW
3720 for (i = 0; i < I915_NUM_RINGS; i++)
3721 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3722}
3723
673a394b
EA
3724int
3725i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3726 struct drm_file *file_priv)
3727{
3728 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3729 int ret, i;
673a394b 3730
79e53945
JB
3731 if (drm_core_check_feature(dev, DRIVER_MODESET))
3732 return 0;
3733
ba1234d1 3734 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3735 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3736 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3737 }
3738
673a394b 3739 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3740 dev_priv->mm.suspended = 0;
3741
3742 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3743 if (ret != 0) {
3744 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3745 return ret;
d816f6ac 3746 }
9bb2d6f9 3747
69dc4987 3748 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3749 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3750 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3751 for (i = 0; i < I915_NUM_RINGS; i++) {
3752 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3753 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3754 }
673a394b 3755 mutex_unlock(&dev->struct_mutex);
dbb19d30 3756
5f35308b
CW
3757 ret = drm_irq_install(dev);
3758 if (ret)
3759 goto cleanup_ringbuffer;
dbb19d30 3760
673a394b 3761 return 0;
5f35308b
CW
3762
3763cleanup_ringbuffer:
3764 mutex_lock(&dev->struct_mutex);
3765 i915_gem_cleanup_ringbuffer(dev);
3766 dev_priv->mm.suspended = 1;
3767 mutex_unlock(&dev->struct_mutex);
3768
3769 return ret;
673a394b
EA
3770}
3771
3772int
3773i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3774 struct drm_file *file_priv)
3775{
79e53945
JB
3776 if (drm_core_check_feature(dev, DRIVER_MODESET))
3777 return 0;
3778
dbb19d30 3779 drm_irq_uninstall(dev);
e6890f6f 3780 return i915_gem_idle(dev);
673a394b
EA
3781}
3782
3783void
3784i915_gem_lastclose(struct drm_device *dev)
3785{
3786 int ret;
673a394b 3787
e806b495
EA
3788 if (drm_core_check_feature(dev, DRIVER_MODESET))
3789 return;
3790
6dbe2772
KP
3791 ret = i915_gem_idle(dev);
3792 if (ret)
3793 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3794}
3795
64193406
CW
3796static void
3797init_ring_lists(struct intel_ring_buffer *ring)
3798{
3799 INIT_LIST_HEAD(&ring->active_list);
3800 INIT_LIST_HEAD(&ring->request_list);
3801 INIT_LIST_HEAD(&ring->gpu_write_list);
3802}
3803
673a394b
EA
3804void
3805i915_gem_load(struct drm_device *dev)
3806{
b5aa8a0f 3807 int i;
673a394b
EA
3808 drm_i915_private_t *dev_priv = dev->dev_private;
3809
69dc4987 3810 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3811 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3812 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3813 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3814 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3815 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3816 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3817 for (i = 0; i < I915_NUM_RINGS; i++)
3818 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3819 for (i = 0; i < 16; i++)
3820 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3821 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3822 i915_gem_retire_work_handler);
30dbf0c0 3823 init_completion(&dev_priv->error_completion);
31169714 3824
94400120
DA
3825 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3826 if (IS_GEN3(dev)) {
3827 u32 tmp = I915_READ(MI_ARB_STATE);
3828 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3829 /* arb state is a masked write, so set bit + bit in mask */
3830 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3831 I915_WRITE(MI_ARB_STATE, tmp);
3832 }
3833 }
3834
72bfa19c
CW
3835 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3836
de151cf6 3837 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3838 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3839 dev_priv->fence_reg_start = 3;
de151cf6 3840
a6c45cf0 3841 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3842 dev_priv->num_fence_regs = 16;
3843 else
3844 dev_priv->num_fence_regs = 8;
3845
b5aa8a0f 3846 /* Initialize fence registers to zero */
a6c45cf0
CW
3847 switch (INTEL_INFO(dev)->gen) {
3848 case 6:
3849 for (i = 0; i < 16; i++)
3850 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3851 break;
3852 case 5:
3853 case 4:
b5aa8a0f
GH
3854 for (i = 0; i < 16; i++)
3855 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
3856 break;
3857 case 3:
b5aa8a0f
GH
3858 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3859 for (i = 0; i < 8; i++)
3860 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
3861 case 2:
3862 for (i = 0; i < 8; i++)
3863 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3864 break;
b5aa8a0f 3865 }
673a394b 3866 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3867 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3868
ce453d81
CW
3869 dev_priv->mm.interruptible = true;
3870
17250b71
CW
3871 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3872 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3873 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3874}
71acb5eb
DA
3875
3876/*
3877 * Create a physically contiguous memory object for this object
3878 * e.g. for cursor + overlay regs
3879 */
995b6762
CW
3880static int i915_gem_init_phys_object(struct drm_device *dev,
3881 int id, int size, int align)
71acb5eb
DA
3882{
3883 drm_i915_private_t *dev_priv = dev->dev_private;
3884 struct drm_i915_gem_phys_object *phys_obj;
3885 int ret;
3886
3887 if (dev_priv->mm.phys_objs[id - 1] || !size)
3888 return 0;
3889
9a298b2a 3890 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3891 if (!phys_obj)
3892 return -ENOMEM;
3893
3894 phys_obj->id = id;
3895
6eeefaf3 3896 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3897 if (!phys_obj->handle) {
3898 ret = -ENOMEM;
3899 goto kfree_obj;
3900 }
3901#ifdef CONFIG_X86
3902 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3903#endif
3904
3905 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3906
3907 return 0;
3908kfree_obj:
9a298b2a 3909 kfree(phys_obj);
71acb5eb
DA
3910 return ret;
3911}
3912
995b6762 3913static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3914{
3915 drm_i915_private_t *dev_priv = dev->dev_private;
3916 struct drm_i915_gem_phys_object *phys_obj;
3917
3918 if (!dev_priv->mm.phys_objs[id - 1])
3919 return;
3920
3921 phys_obj = dev_priv->mm.phys_objs[id - 1];
3922 if (phys_obj->cur_obj) {
3923 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3924 }
3925
3926#ifdef CONFIG_X86
3927 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3928#endif
3929 drm_pci_free(dev, phys_obj->handle);
3930 kfree(phys_obj);
3931 dev_priv->mm.phys_objs[id - 1] = NULL;
3932}
3933
3934void i915_gem_free_all_phys_object(struct drm_device *dev)
3935{
3936 int i;
3937
260883c8 3938 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3939 i915_gem_free_phys_object(dev, i);
3940}
3941
3942void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3943 struct drm_i915_gem_object *obj)
71acb5eb 3944{
05394f39 3945 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3946 char *vaddr;
71acb5eb 3947 int i;
71acb5eb
DA
3948 int page_count;
3949
05394f39 3950 if (!obj->phys_obj)
71acb5eb 3951 return;
05394f39 3952 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3953
05394f39 3954 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3955 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3956 struct page *page = read_cache_page_gfp(mapping, i,
3957 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3958 if (!IS_ERR(page)) {
3959 char *dst = kmap_atomic(page);
3960 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3961 kunmap_atomic(dst);
3962
3963 drm_clflush_pages(&page, 1);
3964
3965 set_page_dirty(page);
3966 mark_page_accessed(page);
3967 page_cache_release(page);
3968 }
71acb5eb 3969 }
40ce6575 3970 intel_gtt_chipset_flush();
d78b47b9 3971
05394f39
CW
3972 obj->phys_obj->cur_obj = NULL;
3973 obj->phys_obj = NULL;
71acb5eb
DA
3974}
3975
3976int
3977i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3978 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3979 int id,
3980 int align)
71acb5eb 3981{
05394f39 3982 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3983 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3984 int ret = 0;
3985 int page_count;
3986 int i;
3987
3988 if (id > I915_MAX_PHYS_OBJECT)
3989 return -EINVAL;
3990
05394f39
CW
3991 if (obj->phys_obj) {
3992 if (obj->phys_obj->id == id)
71acb5eb
DA
3993 return 0;
3994 i915_gem_detach_phys_object(dev, obj);
3995 }
3996
71acb5eb
DA
3997 /* create a new object */
3998 if (!dev_priv->mm.phys_objs[id - 1]) {
3999 ret = i915_gem_init_phys_object(dev, id,
05394f39 4000 obj->base.size, align);
71acb5eb 4001 if (ret) {
05394f39
CW
4002 DRM_ERROR("failed to init phys object %d size: %zu\n",
4003 id, obj->base.size);
e5281ccd 4004 return ret;
71acb5eb
DA
4005 }
4006 }
4007
4008 /* bind to the object */
05394f39
CW
4009 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4010 obj->phys_obj->cur_obj = obj;
71acb5eb 4011
05394f39 4012 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4013
4014 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4015 struct page *page;
4016 char *dst, *src;
4017
4018 page = read_cache_page_gfp(mapping, i,
4019 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4020 if (IS_ERR(page))
4021 return PTR_ERR(page);
71acb5eb 4022
ff75b9bc 4023 src = kmap_atomic(page);
05394f39 4024 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4025 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4026 kunmap_atomic(src);
71acb5eb 4027
e5281ccd
CW
4028 mark_page_accessed(page);
4029 page_cache_release(page);
4030 }
d78b47b9 4031
71acb5eb 4032 return 0;
71acb5eb
DA
4033}
4034
4035static int
05394f39
CW
4036i915_gem_phys_pwrite(struct drm_device *dev,
4037 struct drm_i915_gem_object *obj,
71acb5eb
DA
4038 struct drm_i915_gem_pwrite *args,
4039 struct drm_file *file_priv)
4040{
05394f39 4041 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4042 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4043
b47b30cc
CW
4044 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4045 unsigned long unwritten;
4046
4047 /* The physical object once assigned is fixed for the lifetime
4048 * of the obj, so we can safely drop the lock and continue
4049 * to access vaddr.
4050 */
4051 mutex_unlock(&dev->struct_mutex);
4052 unwritten = copy_from_user(vaddr, user_data, args->size);
4053 mutex_lock(&dev->struct_mutex);
4054 if (unwritten)
4055 return -EFAULT;
4056 }
71acb5eb 4057
40ce6575 4058 intel_gtt_chipset_flush();
71acb5eb
DA
4059 return 0;
4060}
b962442e 4061
f787a5f5 4062void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4063{
f787a5f5 4064 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4065
4066 /* Clean up our request list when the client is going away, so that
4067 * later retire_requests won't dereference our soon-to-be-gone
4068 * file_priv.
4069 */
1c25595f 4070 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4071 while (!list_empty(&file_priv->mm.request_list)) {
4072 struct drm_i915_gem_request *request;
4073
4074 request = list_first_entry(&file_priv->mm.request_list,
4075 struct drm_i915_gem_request,
4076 client_list);
4077 list_del(&request->client_list);
4078 request->file_priv = NULL;
4079 }
1c25595f 4080 spin_unlock(&file_priv->mm.lock);
b962442e 4081}
31169714 4082
1637ef41
CW
4083static int
4084i915_gpu_is_active(struct drm_device *dev)
4085{
4086 drm_i915_private_t *dev_priv = dev->dev_private;
4087 int lists_empty;
4088
1637ef41 4089 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4090 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4091
4092 return !lists_empty;
4093}
4094
31169714 4095static int
17250b71
CW
4096i915_gem_inactive_shrink(struct shrinker *shrinker,
4097 int nr_to_scan,
4098 gfp_t gfp_mask)
31169714 4099{
17250b71
CW
4100 struct drm_i915_private *dev_priv =
4101 container_of(shrinker,
4102 struct drm_i915_private,
4103 mm.inactive_shrinker);
4104 struct drm_device *dev = dev_priv->dev;
4105 struct drm_i915_gem_object *obj, *next;
4106 int cnt;
4107
4108 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4109 return 0;
31169714
CW
4110
4111 /* "fast-path" to count number of available objects */
4112 if (nr_to_scan == 0) {
17250b71
CW
4113 cnt = 0;
4114 list_for_each_entry(obj,
4115 &dev_priv->mm.inactive_list,
4116 mm_list)
4117 cnt++;
4118 mutex_unlock(&dev->struct_mutex);
4119 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4120 }
4121
1637ef41 4122rescan:
31169714 4123 /* first scan for clean buffers */
17250b71 4124 i915_gem_retire_requests(dev);
31169714 4125
17250b71
CW
4126 list_for_each_entry_safe(obj, next,
4127 &dev_priv->mm.inactive_list,
4128 mm_list) {
4129 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4130 if (i915_gem_object_unbind(obj) == 0 &&
4131 --nr_to_scan == 0)
17250b71 4132 break;
31169714 4133 }
31169714
CW
4134 }
4135
4136 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4137 cnt = 0;
4138 list_for_each_entry_safe(obj, next,
4139 &dev_priv->mm.inactive_list,
4140 mm_list) {
2021746e
CW
4141 if (nr_to_scan &&
4142 i915_gem_object_unbind(obj) == 0)
17250b71 4143 nr_to_scan--;
2021746e 4144 else
17250b71
CW
4145 cnt++;
4146 }
4147
4148 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4149 /*
4150 * We are desperate for pages, so as a last resort, wait
4151 * for the GPU to finish and discard whatever we can.
4152 * This has a dramatic impact to reduce the number of
4153 * OOM-killer events whilst running the GPU aggressively.
4154 */
17250b71 4155 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4156 goto rescan;
4157 }
17250b71
CW
4158 mutex_unlock(&dev->struct_mutex);
4159 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4160}
This page took 1.458069 seconds and 5 git commands to generate.