drm/i915: Push pipelining of display plane flushes to the caller
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
ba3d8d74 51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
52static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
53 unsigned alignment);
de151cf6 54static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
55static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
56 struct drm_i915_gem_pwrite *args,
57 struct drm_file *file_priv);
be72615b 58static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 59
31169714
CW
60static LIST_HEAD(shrink_list);
61static DEFINE_SPINLOCK(shrink_list_lock);
62
7d1c4804
CW
63static inline bool
64i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
65{
66 return obj_priv->gtt_space &&
67 !obj_priv->active &&
68 obj_priv->pin_count == 0;
69}
70
79e53945
JB
71int i915_gem_do_init(struct drm_device *dev, unsigned long start,
72 unsigned long end)
673a394b
EA
73{
74 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 75
79e53945
JB
76 if (start >= end ||
77 (start & (PAGE_SIZE - 1)) != 0 ||
78 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
79 return -EINVAL;
80 }
81
79e53945
JB
82 drm_mm_init(&dev_priv->mm.gtt_space, start,
83 end - start);
673a394b 84
79e53945
JB
85 dev->gtt_total = (uint32_t) (end - start);
86
87 return 0;
88}
673a394b 89
79e53945
JB
90int
91i915_gem_init_ioctl(struct drm_device *dev, void *data,
92 struct drm_file *file_priv)
93{
94 struct drm_i915_gem_init *args = data;
95 int ret;
96
97 mutex_lock(&dev->struct_mutex);
98 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
99 mutex_unlock(&dev->struct_mutex);
100
79e53945 101 return ret;
673a394b
EA
102}
103
5a125c3c
EA
104int
105i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
106 struct drm_file *file_priv)
107{
5a125c3c 108 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
109
110 if (!(dev->driver->driver_features & DRIVER_GEM))
111 return -ENODEV;
112
113 args->aper_size = dev->gtt_total;
2678d9d6
KP
114 args->aper_available_size = (args->aper_size -
115 atomic_read(&dev->pin_memory));
5a125c3c
EA
116
117 return 0;
118}
119
673a394b
EA
120
121/**
122 * Creates a new mm object and returns a handle to it.
123 */
124int
125i915_gem_create_ioctl(struct drm_device *dev, void *data,
126 struct drm_file *file_priv)
127{
128 struct drm_i915_gem_create *args = data;
129 struct drm_gem_object *obj;
a1a2d1d3
PP
130 int ret;
131 u32 handle;
673a394b
EA
132
133 args->size = roundup(args->size, PAGE_SIZE);
134
135 /* Allocate the new object */
ac52bc56 136 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
137 if (obj == NULL)
138 return -ENOMEM;
139
140 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
141 if (ret) {
142 drm_gem_object_unreference_unlocked(obj);
673a394b 143 return ret;
1dfd9754 144 }
673a394b 145
1dfd9754
CW
146 /* Sink the floating reference from kref_init(handlecount) */
147 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 148
1dfd9754 149 args->handle = handle;
673a394b
EA
150 return 0;
151}
152
eb01459f
EA
153static inline int
154fast_shmem_read(struct page **pages,
155 loff_t page_base, int page_offset,
156 char __user *data,
157 int length)
158{
159 char __iomem *vaddr;
2bc43b5c 160 int unwritten;
eb01459f
EA
161
162 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
163 if (vaddr == NULL)
164 return -ENOMEM;
2bc43b5c 165 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
166 kunmap_atomic(vaddr, KM_USER0);
167
2bc43b5c
FM
168 if (unwritten)
169 return -EFAULT;
170
171 return 0;
eb01459f
EA
172}
173
280b713b
EA
174static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
175{
176 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 177 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
178
179 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
180 obj_priv->tiling_mode != I915_TILING_NONE;
181}
182
99a03df5 183static inline void
40123c1f
EA
184slow_shmem_copy(struct page *dst_page,
185 int dst_offset,
186 struct page *src_page,
187 int src_offset,
188 int length)
189{
190 char *dst_vaddr, *src_vaddr;
191
99a03df5
CW
192 dst_vaddr = kmap(dst_page);
193 src_vaddr = kmap(src_page);
40123c1f
EA
194
195 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
196
99a03df5
CW
197 kunmap(src_page);
198 kunmap(dst_page);
40123c1f
EA
199}
200
99a03df5 201static inline void
280b713b
EA
202slow_shmem_bit17_copy(struct page *gpu_page,
203 int gpu_offset,
204 struct page *cpu_page,
205 int cpu_offset,
206 int length,
207 int is_read)
208{
209 char *gpu_vaddr, *cpu_vaddr;
210
211 /* Use the unswizzled path if this page isn't affected. */
212 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
213 if (is_read)
214 return slow_shmem_copy(cpu_page, cpu_offset,
215 gpu_page, gpu_offset, length);
216 else
217 return slow_shmem_copy(gpu_page, gpu_offset,
218 cpu_page, cpu_offset, length);
219 }
220
99a03df5
CW
221 gpu_vaddr = kmap(gpu_page);
222 cpu_vaddr = kmap(cpu_page);
280b713b
EA
223
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
226 */
227 while (length > 0) {
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232 if (is_read) {
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
235 this_length);
236 } else {
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
239 this_length);
240 }
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
244 }
245
99a03df5
CW
246 kunmap(cpu_page);
247 kunmap(gpu_page);
280b713b
EA
248}
249
eb01459f
EA
250/**
251 * This is the fast shmem pread path, which attempts to copy_from_user directly
252 * from the backing pages of the object to the user's address space. On a
253 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
254 */
255static int
256i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
257 struct drm_i915_gem_pread *args,
258 struct drm_file *file_priv)
259{
23010e43 260 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
261 ssize_t remain;
262 loff_t offset, page_base;
263 char __user *user_data;
264 int page_offset, page_length;
265 int ret;
266
267 user_data = (char __user *) (uintptr_t) args->data_ptr;
268 remain = args->size;
269
270 mutex_lock(&dev->struct_mutex);
271
4bdadb97 272 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
273 if (ret != 0)
274 goto fail_unlock;
275
276 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
277 args->size);
278 if (ret != 0)
279 goto fail_put_pages;
280
23010e43 281 obj_priv = to_intel_bo(obj);
eb01459f
EA
282 offset = args->offset;
283
284 while (remain > 0) {
285 /* Operation in this page
286 *
287 * page_base = page offset within aperture
288 * page_offset = offset within page
289 * page_length = bytes to copy for this page
290 */
291 page_base = (offset & ~(PAGE_SIZE-1));
292 page_offset = offset & (PAGE_SIZE-1);
293 page_length = remain;
294 if ((page_offset + remain) > PAGE_SIZE)
295 page_length = PAGE_SIZE - page_offset;
296
297 ret = fast_shmem_read(obj_priv->pages,
298 page_base, page_offset,
299 user_data, page_length);
300 if (ret)
301 goto fail_put_pages;
302
303 remain -= page_length;
304 user_data += page_length;
305 offset += page_length;
306 }
307
308fail_put_pages:
309 i915_gem_object_put_pages(obj);
310fail_unlock:
311 mutex_unlock(&dev->struct_mutex);
312
313 return ret;
314}
315
07f73f69
CW
316static int
317i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
318{
319 int ret;
320
4bdadb97 321 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
322
323 /* If we've insufficient memory to map in the pages, attempt
324 * to make some space by throwing out some old buffers.
325 */
326 if (ret == -ENOMEM) {
327 struct drm_device *dev = obj->dev;
07f73f69 328
0108a3ed
DV
329 ret = i915_gem_evict_something(dev, obj->size,
330 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
331 if (ret)
332 return ret;
333
4bdadb97 334 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
335 }
336
337 return ret;
338}
339
eb01459f
EA
340/**
341 * This is the fallback shmem pread path, which allocates temporary storage
342 * in kernel space to copy_to_user into outside of the struct_mutex, so we
343 * can copy out of the object's backing pages while holding the struct mutex
344 * and not take page faults.
345 */
346static int
347i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
348 struct drm_i915_gem_pread *args,
349 struct drm_file *file_priv)
350{
23010e43 351 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
352 struct mm_struct *mm = current->mm;
353 struct page **user_pages;
354 ssize_t remain;
355 loff_t offset, pinned_pages, i;
356 loff_t first_data_page, last_data_page, num_pages;
357 int shmem_page_index, shmem_page_offset;
358 int data_page_index, data_page_offset;
359 int page_length;
360 int ret;
361 uint64_t data_ptr = args->data_ptr;
280b713b 362 int do_bit17_swizzling;
eb01459f
EA
363
364 remain = args->size;
365
366 /* Pin the user pages containing the data. We can't fault while
367 * holding the struct mutex, yet we want to hold it while
368 * dereferencing the user data.
369 */
370 first_data_page = data_ptr / PAGE_SIZE;
371 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
372 num_pages = last_data_page - first_data_page + 1;
373
8e7d2b2c 374 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
375 if (user_pages == NULL)
376 return -ENOMEM;
377
378 down_read(&mm->mmap_sem);
379 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 380 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
381 up_read(&mm->mmap_sem);
382 if (pinned_pages < num_pages) {
383 ret = -EFAULT;
384 goto fail_put_user_pages;
385 }
386
280b713b
EA
387 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
388
eb01459f
EA
389 mutex_lock(&dev->struct_mutex);
390
07f73f69
CW
391 ret = i915_gem_object_get_pages_or_evict(obj);
392 if (ret)
eb01459f
EA
393 goto fail_unlock;
394
395 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
396 args->size);
397 if (ret != 0)
398 goto fail_put_pages;
399
23010e43 400 obj_priv = to_intel_bo(obj);
eb01459f
EA
401 offset = args->offset;
402
403 while (remain > 0) {
404 /* Operation in this page
405 *
406 * shmem_page_index = page number within shmem file
407 * shmem_page_offset = offset within page in shmem file
408 * data_page_index = page number in get_user_pages return
409 * data_page_offset = offset with data_page_index page.
410 * page_length = bytes to copy for this page
411 */
412 shmem_page_index = offset / PAGE_SIZE;
413 shmem_page_offset = offset & ~PAGE_MASK;
414 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
415 data_page_offset = data_ptr & ~PAGE_MASK;
416
417 page_length = remain;
418 if ((shmem_page_offset + page_length) > PAGE_SIZE)
419 page_length = PAGE_SIZE - shmem_page_offset;
420 if ((data_page_offset + page_length) > PAGE_SIZE)
421 page_length = PAGE_SIZE - data_page_offset;
422
280b713b 423 if (do_bit17_swizzling) {
99a03df5 424 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 425 shmem_page_offset,
99a03df5
CW
426 user_pages[data_page_index],
427 data_page_offset,
428 page_length,
429 1);
430 } else {
431 slow_shmem_copy(user_pages[data_page_index],
432 data_page_offset,
433 obj_priv->pages[shmem_page_index],
434 shmem_page_offset,
435 page_length);
280b713b 436 }
eb01459f
EA
437
438 remain -= page_length;
439 data_ptr += page_length;
440 offset += page_length;
441 }
442
443fail_put_pages:
444 i915_gem_object_put_pages(obj);
445fail_unlock:
446 mutex_unlock(&dev->struct_mutex);
447fail_put_user_pages:
448 for (i = 0; i < pinned_pages; i++) {
449 SetPageDirty(user_pages[i]);
450 page_cache_release(user_pages[i]);
451 }
8e7d2b2c 452 drm_free_large(user_pages);
eb01459f
EA
453
454 return ret;
455}
456
673a394b
EA
457/**
458 * Reads data from the object referenced by handle.
459 *
460 * On error, the contents of *data are undefined.
461 */
462int
463i915_gem_pread_ioctl(struct drm_device *dev, void *data,
464 struct drm_file *file_priv)
465{
466 struct drm_i915_gem_pread *args = data;
467 struct drm_gem_object *obj;
468 struct drm_i915_gem_object *obj_priv;
673a394b
EA
469 int ret;
470
471 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
472 if (obj == NULL)
bf79cb91 473 return -ENOENT;
23010e43 474 obj_priv = to_intel_bo(obj);
673a394b
EA
475
476 /* Bounds check source.
477 *
478 * XXX: This could use review for overflow issues...
479 */
480 if (args->offset > obj->size || args->size > obj->size ||
481 args->offset + args->size > obj->size) {
bc9025bd 482 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
483 return -EINVAL;
484 }
485
280b713b 486 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 487 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
488 } else {
489 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
490 if (ret != 0)
491 ret = i915_gem_shmem_pread_slow(dev, obj, args,
492 file_priv);
493 }
673a394b 494
bc9025bd 495 drm_gem_object_unreference_unlocked(obj);
673a394b 496
eb01459f 497 return ret;
673a394b
EA
498}
499
0839ccb8
KP
500/* This is the fast write path which cannot handle
501 * page faults in the source data
9b7530cc 502 */
0839ccb8
KP
503
504static inline int
505fast_user_write(struct io_mapping *mapping,
506 loff_t page_base, int page_offset,
507 char __user *user_data,
508 int length)
9b7530cc 509{
9b7530cc 510 char *vaddr_atomic;
0839ccb8 511 unsigned long unwritten;
9b7530cc 512
fca3ec01 513 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
514 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
515 user_data, length);
fca3ec01 516 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
517 if (unwritten)
518 return -EFAULT;
519 return 0;
520}
521
522/* Here's the write path which can sleep for
523 * page faults
524 */
525
ab34c226 526static inline void
3de09aa3
EA
527slow_kernel_write(struct io_mapping *mapping,
528 loff_t gtt_base, int gtt_offset,
529 struct page *user_page, int user_offset,
530 int length)
0839ccb8 531{
ab34c226
CW
532 char __iomem *dst_vaddr;
533 char *src_vaddr;
0839ccb8 534
ab34c226
CW
535 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
536 src_vaddr = kmap(user_page);
537
538 memcpy_toio(dst_vaddr + gtt_offset,
539 src_vaddr + user_offset,
540 length);
541
542 kunmap(user_page);
543 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
544}
545
40123c1f
EA
546static inline int
547fast_shmem_write(struct page **pages,
548 loff_t page_base, int page_offset,
549 char __user *data,
550 int length)
551{
552 char __iomem *vaddr;
d0088775 553 unsigned long unwritten;
40123c1f
EA
554
555 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
556 if (vaddr == NULL)
557 return -ENOMEM;
d0088775 558 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
559 kunmap_atomic(vaddr, KM_USER0);
560
d0088775
DA
561 if (unwritten)
562 return -EFAULT;
40123c1f
EA
563 return 0;
564}
565
3de09aa3
EA
566/**
567 * This is the fast pwrite path, where we copy the data directly from the
568 * user into the GTT, uncached.
569 */
673a394b 570static int
3de09aa3
EA
571i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
572 struct drm_i915_gem_pwrite *args,
573 struct drm_file *file_priv)
673a394b 574{
23010e43 575 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 576 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 577 ssize_t remain;
0839ccb8 578 loff_t offset, page_base;
673a394b 579 char __user *user_data;
0839ccb8
KP
580 int page_offset, page_length;
581 int ret;
673a394b
EA
582
583 user_data = (char __user *) (uintptr_t) args->data_ptr;
584 remain = args->size;
585 if (!access_ok(VERIFY_READ, user_data, remain))
586 return -EFAULT;
587
588
589 mutex_lock(&dev->struct_mutex);
590 ret = i915_gem_object_pin(obj, 0);
591 if (ret) {
592 mutex_unlock(&dev->struct_mutex);
593 return ret;
594 }
2ef7eeaa 595 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
596 if (ret)
597 goto fail;
598
23010e43 599 obj_priv = to_intel_bo(obj);
673a394b 600 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
601
602 while (remain > 0) {
603 /* Operation in this page
604 *
0839ccb8
KP
605 * page_base = page offset within aperture
606 * page_offset = offset within page
607 * page_length = bytes to copy for this page
673a394b 608 */
0839ccb8
KP
609 page_base = (offset & ~(PAGE_SIZE-1));
610 page_offset = offset & (PAGE_SIZE-1);
611 page_length = remain;
612 if ((page_offset + remain) > PAGE_SIZE)
613 page_length = PAGE_SIZE - page_offset;
614
615 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
616 page_offset, user_data, page_length);
617
618 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
619 * source page isn't available. Return the error and we'll
620 * retry in the slow path.
0839ccb8 621 */
3de09aa3
EA
622 if (ret)
623 goto fail;
673a394b 624
0839ccb8
KP
625 remain -= page_length;
626 user_data += page_length;
627 offset += page_length;
673a394b 628 }
673a394b
EA
629
630fail:
631 i915_gem_object_unpin(obj);
632 mutex_unlock(&dev->struct_mutex);
633
634 return ret;
635}
636
3de09aa3
EA
637/**
638 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
639 * the memory and maps it using kmap_atomic for copying.
640 *
641 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
642 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
643 */
3043c60c 644static int
3de09aa3
EA
645i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
646 struct drm_i915_gem_pwrite *args,
647 struct drm_file *file_priv)
673a394b 648{
23010e43 649 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
650 drm_i915_private_t *dev_priv = dev->dev_private;
651 ssize_t remain;
652 loff_t gtt_page_base, offset;
653 loff_t first_data_page, last_data_page, num_pages;
654 loff_t pinned_pages, i;
655 struct page **user_pages;
656 struct mm_struct *mm = current->mm;
657 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 658 int ret;
3de09aa3
EA
659 uint64_t data_ptr = args->data_ptr;
660
661 remain = args->size;
662
663 /* Pin the user pages containing the data. We can't fault while
664 * holding the struct mutex, and all of the pwrite implementations
665 * want to hold it while dereferencing the user data.
666 */
667 first_data_page = data_ptr / PAGE_SIZE;
668 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
669 num_pages = last_data_page - first_data_page + 1;
670
8e7d2b2c 671 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
672 if (user_pages == NULL)
673 return -ENOMEM;
674
675 down_read(&mm->mmap_sem);
676 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
677 num_pages, 0, 0, user_pages, NULL);
678 up_read(&mm->mmap_sem);
679 if (pinned_pages < num_pages) {
680 ret = -EFAULT;
681 goto out_unpin_pages;
682 }
673a394b
EA
683
684 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
685 ret = i915_gem_object_pin(obj, 0);
686 if (ret)
687 goto out_unlock;
688
689 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
690 if (ret)
691 goto out_unpin_object;
692
23010e43 693 obj_priv = to_intel_bo(obj);
3de09aa3
EA
694 offset = obj_priv->gtt_offset + args->offset;
695
696 while (remain > 0) {
697 /* Operation in this page
698 *
699 * gtt_page_base = page offset within aperture
700 * gtt_page_offset = offset within page in aperture
701 * data_page_index = page number in get_user_pages return
702 * data_page_offset = offset with data_page_index page.
703 * page_length = bytes to copy for this page
704 */
705 gtt_page_base = offset & PAGE_MASK;
706 gtt_page_offset = offset & ~PAGE_MASK;
707 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
708 data_page_offset = data_ptr & ~PAGE_MASK;
709
710 page_length = remain;
711 if ((gtt_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - gtt_page_offset;
713 if ((data_page_offset + page_length) > PAGE_SIZE)
714 page_length = PAGE_SIZE - data_page_offset;
715
ab34c226
CW
716 slow_kernel_write(dev_priv->mm.gtt_mapping,
717 gtt_page_base, gtt_page_offset,
718 user_pages[data_page_index],
719 data_page_offset,
720 page_length);
3de09aa3
EA
721
722 remain -= page_length;
723 offset += page_length;
724 data_ptr += page_length;
725 }
726
727out_unpin_object:
728 i915_gem_object_unpin(obj);
729out_unlock:
730 mutex_unlock(&dev->struct_mutex);
731out_unpin_pages:
732 for (i = 0; i < pinned_pages; i++)
733 page_cache_release(user_pages[i]);
8e7d2b2c 734 drm_free_large(user_pages);
3de09aa3
EA
735
736 return ret;
737}
738
40123c1f
EA
739/**
740 * This is the fast shmem pwrite path, which attempts to directly
741 * copy_from_user into the kmapped pages backing the object.
742 */
3043c60c 743static int
40123c1f
EA
744i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
745 struct drm_i915_gem_pwrite *args,
746 struct drm_file *file_priv)
673a394b 747{
23010e43 748 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
749 ssize_t remain;
750 loff_t offset, page_base;
751 char __user *user_data;
752 int page_offset, page_length;
673a394b 753 int ret;
40123c1f
EA
754
755 user_data = (char __user *) (uintptr_t) args->data_ptr;
756 remain = args->size;
673a394b
EA
757
758 mutex_lock(&dev->struct_mutex);
759
4bdadb97 760 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
761 if (ret != 0)
762 goto fail_unlock;
673a394b 763
e47c68e9 764 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
765 if (ret != 0)
766 goto fail_put_pages;
767
23010e43 768 obj_priv = to_intel_bo(obj);
40123c1f
EA
769 offset = args->offset;
770 obj_priv->dirty = 1;
771
772 while (remain > 0) {
773 /* Operation in this page
774 *
775 * page_base = page offset within aperture
776 * page_offset = offset within page
777 * page_length = bytes to copy for this page
778 */
779 page_base = (offset & ~(PAGE_SIZE-1));
780 page_offset = offset & (PAGE_SIZE-1);
781 page_length = remain;
782 if ((page_offset + remain) > PAGE_SIZE)
783 page_length = PAGE_SIZE - page_offset;
784
785 ret = fast_shmem_write(obj_priv->pages,
786 page_base, page_offset,
787 user_data, page_length);
788 if (ret)
789 goto fail_put_pages;
790
791 remain -= page_length;
792 user_data += page_length;
793 offset += page_length;
794 }
795
796fail_put_pages:
797 i915_gem_object_put_pages(obj);
798fail_unlock:
799 mutex_unlock(&dev->struct_mutex);
800
801 return ret;
802}
803
804/**
805 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
806 * the memory and maps it using kmap_atomic for copying.
807 *
808 * This avoids taking mmap_sem for faulting on the user's address while the
809 * struct_mutex is held.
810 */
811static int
812i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
813 struct drm_i915_gem_pwrite *args,
814 struct drm_file *file_priv)
815{
23010e43 816 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
817 struct mm_struct *mm = current->mm;
818 struct page **user_pages;
819 ssize_t remain;
820 loff_t offset, pinned_pages, i;
821 loff_t first_data_page, last_data_page, num_pages;
822 int shmem_page_index, shmem_page_offset;
823 int data_page_index, data_page_offset;
824 int page_length;
825 int ret;
826 uint64_t data_ptr = args->data_ptr;
280b713b 827 int do_bit17_swizzling;
40123c1f
EA
828
829 remain = args->size;
830
831 /* Pin the user pages containing the data. We can't fault while
832 * holding the struct mutex, and all of the pwrite implementations
833 * want to hold it while dereferencing the user data.
834 */
835 first_data_page = data_ptr / PAGE_SIZE;
836 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
837 num_pages = last_data_page - first_data_page + 1;
838
8e7d2b2c 839 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
840 if (user_pages == NULL)
841 return -ENOMEM;
842
843 down_read(&mm->mmap_sem);
844 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
845 num_pages, 0, 0, user_pages, NULL);
846 up_read(&mm->mmap_sem);
847 if (pinned_pages < num_pages) {
848 ret = -EFAULT;
849 goto fail_put_user_pages;
673a394b
EA
850 }
851
280b713b
EA
852 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
853
40123c1f
EA
854 mutex_lock(&dev->struct_mutex);
855
07f73f69
CW
856 ret = i915_gem_object_get_pages_or_evict(obj);
857 if (ret)
40123c1f
EA
858 goto fail_unlock;
859
860 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
861 if (ret != 0)
862 goto fail_put_pages;
863
23010e43 864 obj_priv = to_intel_bo(obj);
673a394b 865 offset = args->offset;
40123c1f 866 obj_priv->dirty = 1;
673a394b 867
40123c1f
EA
868 while (remain > 0) {
869 /* Operation in this page
870 *
871 * shmem_page_index = page number within shmem file
872 * shmem_page_offset = offset within page in shmem file
873 * data_page_index = page number in get_user_pages return
874 * data_page_offset = offset with data_page_index page.
875 * page_length = bytes to copy for this page
876 */
877 shmem_page_index = offset / PAGE_SIZE;
878 shmem_page_offset = offset & ~PAGE_MASK;
879 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
880 data_page_offset = data_ptr & ~PAGE_MASK;
881
882 page_length = remain;
883 if ((shmem_page_offset + page_length) > PAGE_SIZE)
884 page_length = PAGE_SIZE - shmem_page_offset;
885 if ((data_page_offset + page_length) > PAGE_SIZE)
886 page_length = PAGE_SIZE - data_page_offset;
887
280b713b 888 if (do_bit17_swizzling) {
99a03df5 889 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
890 shmem_page_offset,
891 user_pages[data_page_index],
892 data_page_offset,
99a03df5
CW
893 page_length,
894 0);
895 } else {
896 slow_shmem_copy(obj_priv->pages[shmem_page_index],
897 shmem_page_offset,
898 user_pages[data_page_index],
899 data_page_offset,
900 page_length);
280b713b 901 }
40123c1f
EA
902
903 remain -= page_length;
904 data_ptr += page_length;
905 offset += page_length;
673a394b
EA
906 }
907
40123c1f
EA
908fail_put_pages:
909 i915_gem_object_put_pages(obj);
910fail_unlock:
673a394b 911 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
912fail_put_user_pages:
913 for (i = 0; i < pinned_pages; i++)
914 page_cache_release(user_pages[i]);
8e7d2b2c 915 drm_free_large(user_pages);
673a394b 916
40123c1f 917 return ret;
673a394b
EA
918}
919
920/**
921 * Writes data to the object referenced by handle.
922 *
923 * On error, the contents of the buffer that were to be modified are undefined.
924 */
925int
926i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
927 struct drm_file *file_priv)
928{
929 struct drm_i915_gem_pwrite *args = data;
930 struct drm_gem_object *obj;
931 struct drm_i915_gem_object *obj_priv;
932 int ret = 0;
933
934 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
935 if (obj == NULL)
bf79cb91 936 return -ENOENT;
23010e43 937 obj_priv = to_intel_bo(obj);
673a394b
EA
938
939 /* Bounds check destination.
940 *
941 * XXX: This could use review for overflow issues...
942 */
943 if (args->offset > obj->size || args->size > obj->size ||
944 args->offset + args->size > obj->size) {
bc9025bd 945 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
946 return -EINVAL;
947 }
948
949 /* We can only do the GTT pwrite on untiled buffers, as otherwise
950 * it would end up going through the fenced access, and we'll get
951 * different detiling behavior between reading and writing.
952 * pread/pwrite currently are reading and writing from the CPU
953 * perspective, requiring manual detiling by the client.
954 */
71acb5eb
DA
955 if (obj_priv->phys_obj)
956 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
957 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
958 dev->gtt_total != 0 &&
959 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
960 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
961 if (ret == -EFAULT) {
962 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
963 file_priv);
964 }
280b713b
EA
965 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
966 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
967 } else {
968 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
969 if (ret == -EFAULT) {
970 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
971 file_priv);
972 }
973 }
673a394b
EA
974
975#if WATCH_PWRITE
976 if (ret)
977 DRM_INFO("pwrite failed %d\n", ret);
978#endif
979
bc9025bd 980 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
981
982 return ret;
983}
984
985/**
2ef7eeaa
EA
986 * Called when user space prepares to use an object with the CPU, either
987 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
988 */
989int
990i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
991 struct drm_file *file_priv)
992{
a09ba7fa 993 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
994 struct drm_i915_gem_set_domain *args = data;
995 struct drm_gem_object *obj;
652c393a 996 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
997 uint32_t read_domains = args->read_domains;
998 uint32_t write_domain = args->write_domain;
673a394b
EA
999 int ret;
1000
1001 if (!(dev->driver->driver_features & DRIVER_GEM))
1002 return -ENODEV;
1003
2ef7eeaa 1004 /* Only handle setting domains to types used by the CPU. */
21d509e3 1005 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1006 return -EINVAL;
1007
21d509e3 1008 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1009 return -EINVAL;
1010
1011 /* Having something in the write domain implies it's in the read
1012 * domain, and only that read domain. Enforce that in the request.
1013 */
1014 if (write_domain != 0 && read_domains != write_domain)
1015 return -EINVAL;
1016
673a394b
EA
1017 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1018 if (obj == NULL)
bf79cb91 1019 return -ENOENT;
23010e43 1020 obj_priv = to_intel_bo(obj);
673a394b
EA
1021
1022 mutex_lock(&dev->struct_mutex);
652c393a
JB
1023
1024 intel_mark_busy(dev, obj);
1025
673a394b 1026#if WATCH_BUF
cfd43c02 1027 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1028 obj, obj->size, read_domains, write_domain);
673a394b 1029#endif
2ef7eeaa
EA
1030 if (read_domains & I915_GEM_DOMAIN_GTT) {
1031 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1032
a09ba7fa
EA
1033 /* Update the LRU on the fence for the CPU access that's
1034 * about to occur.
1035 */
1036 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1037 struct drm_i915_fence_reg *reg =
1038 &dev_priv->fence_regs[obj_priv->fence_reg];
1039 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1040 &dev_priv->mm.fence_list);
1041 }
1042
02354392
EA
1043 /* Silently promote "you're not bound, there was nothing to do"
1044 * to success, since the client was just asking us to
1045 * make sure everything was done.
1046 */
1047 if (ret == -EINVAL)
1048 ret = 0;
2ef7eeaa 1049 } else {
e47c68e9 1050 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1051 }
1052
7d1c4804
CW
1053
1054 /* Maintain LRU order of "inactive" objects */
1055 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1056 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1057
673a394b
EA
1058 drm_gem_object_unreference(obj);
1059 mutex_unlock(&dev->struct_mutex);
1060 return ret;
1061}
1062
1063/**
1064 * Called when user space has done writes to this buffer
1065 */
1066int
1067i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1068 struct drm_file *file_priv)
1069{
1070 struct drm_i915_gem_sw_finish *args = data;
1071 struct drm_gem_object *obj;
1072 struct drm_i915_gem_object *obj_priv;
1073 int ret = 0;
1074
1075 if (!(dev->driver->driver_features & DRIVER_GEM))
1076 return -ENODEV;
1077
1078 mutex_lock(&dev->struct_mutex);
1079 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1080 if (obj == NULL) {
1081 mutex_unlock(&dev->struct_mutex);
bf79cb91 1082 return -ENOENT;
673a394b
EA
1083 }
1084
1085#if WATCH_BUF
cfd43c02 1086 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1087 __func__, args->handle, obj, obj->size);
1088#endif
23010e43 1089 obj_priv = to_intel_bo(obj);
673a394b
EA
1090
1091 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1092 if (obj_priv->pin_count)
1093 i915_gem_object_flush_cpu_write_domain(obj);
1094
673a394b
EA
1095 drm_gem_object_unreference(obj);
1096 mutex_unlock(&dev->struct_mutex);
1097 return ret;
1098}
1099
1100/**
1101 * Maps the contents of an object, returning the address it is mapped
1102 * into.
1103 *
1104 * While the mapping holds a reference on the contents of the object, it doesn't
1105 * imply a ref on the object itself.
1106 */
1107int
1108i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1109 struct drm_file *file_priv)
1110{
1111 struct drm_i915_gem_mmap *args = data;
1112 struct drm_gem_object *obj;
1113 loff_t offset;
1114 unsigned long addr;
1115
1116 if (!(dev->driver->driver_features & DRIVER_GEM))
1117 return -ENODEV;
1118
1119 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1120 if (obj == NULL)
bf79cb91 1121 return -ENOENT;
673a394b
EA
1122
1123 offset = args->offset;
1124
1125 down_write(&current->mm->mmap_sem);
1126 addr = do_mmap(obj->filp, 0, args->size,
1127 PROT_READ | PROT_WRITE, MAP_SHARED,
1128 args->offset);
1129 up_write(&current->mm->mmap_sem);
bc9025bd 1130 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1131 if (IS_ERR((void *)addr))
1132 return addr;
1133
1134 args->addr_ptr = (uint64_t) addr;
1135
1136 return 0;
1137}
1138
de151cf6
JB
1139/**
1140 * i915_gem_fault - fault a page into the GTT
1141 * vma: VMA in question
1142 * vmf: fault info
1143 *
1144 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1145 * from userspace. The fault handler takes care of binding the object to
1146 * the GTT (if needed), allocating and programming a fence register (again,
1147 * only if needed based on whether the old reg is still valid or the object
1148 * is tiled) and inserting a new PTE into the faulting process.
1149 *
1150 * Note that the faulting process may involve evicting existing objects
1151 * from the GTT and/or fence registers to make room. So performance may
1152 * suffer if the GTT working set is large or there are few fence registers
1153 * left.
1154 */
1155int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1156{
1157 struct drm_gem_object *obj = vma->vm_private_data;
1158 struct drm_device *dev = obj->dev;
7d1c4804 1159 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1160 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1161 pgoff_t page_offset;
1162 unsigned long pfn;
1163 int ret = 0;
0f973f27 1164 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1165
1166 /* We don't use vmf->pgoff since that has the fake offset */
1167 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1168 PAGE_SHIFT;
1169
1170 /* Now bind it into the GTT if needed */
1171 mutex_lock(&dev->struct_mutex);
1172 if (!obj_priv->gtt_space) {
e67b8ce1 1173 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1174 if (ret)
1175 goto unlock;
07f4f3e8 1176
07f4f3e8 1177 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1178 if (ret)
1179 goto unlock;
de151cf6
JB
1180 }
1181
1182 /* Need a new fence register? */
a09ba7fa 1183 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1184 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1185 if (ret)
1186 goto unlock;
d9ddcb96 1187 }
de151cf6 1188
7d1c4804
CW
1189 if (i915_gem_object_is_inactive(obj_priv))
1190 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1191
de151cf6
JB
1192 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1193 page_offset;
1194
1195 /* Finally, remap it using the new GTT offset */
1196 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1197unlock:
de151cf6
JB
1198 mutex_unlock(&dev->struct_mutex);
1199
1200 switch (ret) {
c715089f
CW
1201 case 0:
1202 case -ERESTARTSYS:
1203 return VM_FAULT_NOPAGE;
de151cf6
JB
1204 case -ENOMEM:
1205 case -EAGAIN:
1206 return VM_FAULT_OOM;
de151cf6 1207 default:
c715089f 1208 return VM_FAULT_SIGBUS;
de151cf6
JB
1209 }
1210}
1211
1212/**
1213 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1214 * @obj: obj in question
1215 *
1216 * GEM memory mapping works by handing back to userspace a fake mmap offset
1217 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1218 * up the object based on the offset and sets up the various memory mapping
1219 * structures.
1220 *
1221 * This routine allocates and attaches a fake offset for @obj.
1222 */
1223static int
1224i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1225{
1226 struct drm_device *dev = obj->dev;
1227 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1229 struct drm_map_list *list;
f77d390c 1230 struct drm_local_map *map;
de151cf6
JB
1231 int ret = 0;
1232
1233 /* Set the object up for mmap'ing */
1234 list = &obj->map_list;
9a298b2a 1235 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1236 if (!list->map)
1237 return -ENOMEM;
1238
1239 map = list->map;
1240 map->type = _DRM_GEM;
1241 map->size = obj->size;
1242 map->handle = obj;
1243
1244 /* Get a DRM GEM mmap offset allocated... */
1245 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1246 obj->size / PAGE_SIZE, 0, 0);
1247 if (!list->file_offset_node) {
1248 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1249 ret = -ENOMEM;
1250 goto out_free_list;
1251 }
1252
1253 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1254 obj->size / PAGE_SIZE, 0);
1255 if (!list->file_offset_node) {
1256 ret = -ENOMEM;
1257 goto out_free_list;
1258 }
1259
1260 list->hash.key = list->file_offset_node->start;
1261 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1262 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1263 ret = -ENOMEM;
de151cf6
JB
1264 goto out_free_mm;
1265 }
1266
1267 /* By now we should be all set, any drm_mmap request on the offset
1268 * below will get to our mmap & fault handler */
1269 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1270
1271 return 0;
1272
1273out_free_mm:
1274 drm_mm_put_block(list->file_offset_node);
1275out_free_list:
9a298b2a 1276 kfree(list->map);
de151cf6
JB
1277
1278 return ret;
1279}
1280
901782b2
CW
1281/**
1282 * i915_gem_release_mmap - remove physical page mappings
1283 * @obj: obj in question
1284 *
af901ca1 1285 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1286 * relinquish ownership of the pages back to the system.
1287 *
1288 * It is vital that we remove the page mapping if we have mapped a tiled
1289 * object through the GTT and then lose the fence register due to
1290 * resource pressure. Similarly if the object has been moved out of the
1291 * aperture, than pages mapped into userspace must be revoked. Removing the
1292 * mapping will then trigger a page fault on the next user access, allowing
1293 * fixup by i915_gem_fault().
1294 */
d05ca301 1295void
901782b2
CW
1296i915_gem_release_mmap(struct drm_gem_object *obj)
1297{
1298 struct drm_device *dev = obj->dev;
23010e43 1299 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1300
1301 if (dev->dev_mapping)
1302 unmap_mapping_range(dev->dev_mapping,
1303 obj_priv->mmap_offset, obj->size, 1);
1304}
1305
ab00b3e5
JB
1306static void
1307i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1308{
1309 struct drm_device *dev = obj->dev;
23010e43 1310 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_map_list *list;
1313
1314 list = &obj->map_list;
1315 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1316
1317 if (list->file_offset_node) {
1318 drm_mm_put_block(list->file_offset_node);
1319 list->file_offset_node = NULL;
1320 }
1321
1322 if (list->map) {
9a298b2a 1323 kfree(list->map);
ab00b3e5
JB
1324 list->map = NULL;
1325 }
1326
1327 obj_priv->mmap_offset = 0;
1328}
1329
de151cf6
JB
1330/**
1331 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1332 * @obj: object to check
1333 *
1334 * Return the required GTT alignment for an object, taking into account
1335 * potential fence register mapping if needed.
1336 */
1337static uint32_t
1338i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1339{
1340 struct drm_device *dev = obj->dev;
23010e43 1341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1342 int start, i;
1343
1344 /*
1345 * Minimum alignment is 4k (GTT page size), but might be greater
1346 * if a fence register is needed for the object.
1347 */
1348 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1349 return 4096;
1350
1351 /*
1352 * Previous chips need to be aligned to the size of the smallest
1353 * fence register that can contain the object.
1354 */
1355 if (IS_I9XX(dev))
1356 start = 1024*1024;
1357 else
1358 start = 512*1024;
1359
1360 for (i = start; i < obj->size; i <<= 1)
1361 ;
1362
1363 return i;
1364}
1365
1366/**
1367 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1368 * @dev: DRM device
1369 * @data: GTT mapping ioctl data
1370 * @file_priv: GEM object info
1371 *
1372 * Simply returns the fake offset to userspace so it can mmap it.
1373 * The mmap call will end up in drm_gem_mmap(), which will set things
1374 * up so we can get faults in the handler above.
1375 *
1376 * The fault handler will take care of binding the object into the GTT
1377 * (since it may have been evicted to make room for something), allocating
1378 * a fence register, and mapping the appropriate aperture address into
1379 * userspace.
1380 */
1381int
1382i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1383 struct drm_file *file_priv)
1384{
1385 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1386 struct drm_gem_object *obj;
1387 struct drm_i915_gem_object *obj_priv;
1388 int ret;
1389
1390 if (!(dev->driver->driver_features & DRIVER_GEM))
1391 return -ENODEV;
1392
1393 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1394 if (obj == NULL)
bf79cb91 1395 return -ENOENT;
de151cf6
JB
1396
1397 mutex_lock(&dev->struct_mutex);
1398
23010e43 1399 obj_priv = to_intel_bo(obj);
de151cf6 1400
ab18282d
CW
1401 if (obj_priv->madv != I915_MADV_WILLNEED) {
1402 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1403 drm_gem_object_unreference(obj);
1404 mutex_unlock(&dev->struct_mutex);
1405 return -EINVAL;
1406 }
1407
1408
de151cf6
JB
1409 if (!obj_priv->mmap_offset) {
1410 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1411 if (ret) {
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
de151cf6 1414 return ret;
13af1062 1415 }
de151cf6
JB
1416 }
1417
1418 args->offset = obj_priv->mmap_offset;
1419
de151cf6
JB
1420 /*
1421 * Pull it into the GTT so that we have a page list (makes the
1422 * initial fault faster and any subsequent flushing possible).
1423 */
1424 if (!obj_priv->agp_mem) {
e67b8ce1 1425 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1426 if (ret) {
1427 drm_gem_object_unreference(obj);
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
de151cf6
JB
1431 }
1432
1433 drm_gem_object_unreference(obj);
1434 mutex_unlock(&dev->struct_mutex);
1435
1436 return 0;
1437}
1438
6911a9b8 1439void
856fa198 1440i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1441{
23010e43 1442 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1443 int page_count = obj->size / PAGE_SIZE;
1444 int i;
1445
856fa198 1446 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1447 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1448
856fa198
EA
1449 if (--obj_priv->pages_refcount != 0)
1450 return;
673a394b 1451
280b713b
EA
1452 if (obj_priv->tiling_mode != I915_TILING_NONE)
1453 i915_gem_object_save_bit_17_swizzle(obj);
1454
3ef94daa 1455 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1456 obj_priv->dirty = 0;
3ef94daa
CW
1457
1458 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1459 if (obj_priv->dirty)
1460 set_page_dirty(obj_priv->pages[i]);
1461
1462 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1463 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1464
1465 page_cache_release(obj_priv->pages[i]);
1466 }
673a394b
EA
1467 obj_priv->dirty = 0;
1468
8e7d2b2c 1469 drm_free_large(obj_priv->pages);
856fa198 1470 obj_priv->pages = NULL;
673a394b
EA
1471}
1472
e35a41de 1473static uint32_t
a6910434
DV
1474i915_gem_next_request_seqno(struct drm_device *dev,
1475 struct intel_ring_buffer *ring)
e35a41de
DV
1476{
1477 drm_i915_private_t *dev_priv = dev->dev_private;
1478
a6910434
DV
1479 ring->outstanding_lazy_request = true;
1480
e35a41de
DV
1481 return dev_priv->next_seqno;
1482}
1483
673a394b 1484static void
617dbe27 1485i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1486 struct intel_ring_buffer *ring)
673a394b
EA
1487{
1488 struct drm_device *dev = obj->dev;
23010e43 1489 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
617dbe27
DV
1490 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1491
852835f3
ZN
1492 BUG_ON(ring == NULL);
1493 obj_priv->ring = ring;
673a394b
EA
1494
1495 /* Add a reference if we're newly entering the active list. */
1496 if (!obj_priv->active) {
1497 drm_gem_object_reference(obj);
1498 obj_priv->active = 1;
1499 }
e35a41de 1500
673a394b 1501 /* Move from whatever list we were on to the tail of execution. */
852835f3 1502 list_move_tail(&obj_priv->list, &ring->active_list);
ce44b0ea 1503 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1504}
1505
ce44b0ea
EA
1506static void
1507i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508{
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1511 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1512
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1516}
673a394b 1517
963b4836
CW
1518/* Immediately discard the backing storage */
1519static void
1520i915_gem_object_truncate(struct drm_gem_object *obj)
1521{
23010e43 1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1523 struct inode *inode;
963b4836 1524
ae9fed6b
CW
1525 /* Our goal here is to return as much of the memory as
1526 * is possible back to the system as we are called from OOM.
1527 * To do this we must instruct the shmfs to drop all of its
1528 * backing pages, *now*. Here we mirror the actions taken
1529 * when by shmem_delete_inode() to release the backing store.
1530 */
bb6baf76 1531 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1532 truncate_inode_pages(inode->i_mapping, 0);
1533 if (inode->i_op->truncate_range)
1534 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1535
1536 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1537}
1538
1539static inline int
1540i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1541{
1542 return obj_priv->madv == I915_MADV_DONTNEED;
1543}
1544
673a394b
EA
1545static void
1546i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1547{
1548 struct drm_device *dev = obj->dev;
1549 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1550 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1551
1552 i915_verify_inactive(dev, __FILE__, __LINE__);
1553 if (obj_priv->pin_count != 0)
1554 list_del_init(&obj_priv->list);
1555 else
1556 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1557
99fcb766
DV
1558 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1559
ce44b0ea 1560 obj_priv->last_rendering_seqno = 0;
852835f3 1561 obj_priv->ring = NULL;
673a394b
EA
1562 if (obj_priv->active) {
1563 obj_priv->active = 0;
1564 drm_gem_object_unreference(obj);
1565 }
1566 i915_verify_inactive(dev, __FILE__, __LINE__);
1567}
1568
8a1a49f9 1569void
63560396 1570i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1571 uint32_t flush_domains,
852835f3 1572 struct intel_ring_buffer *ring)
63560396
DV
1573{
1574 drm_i915_private_t *dev_priv = dev->dev_private;
1575 struct drm_i915_gem_object *obj_priv, *next;
1576
1577 list_for_each_entry_safe(obj_priv, next,
1578 &dev_priv->mm.gpu_write_list,
1579 gpu_write_list) {
a8089e84 1580 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1581
1582 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1583 obj->write_domain &&
1584 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1585 uint32_t old_write_domain = obj->write_domain;
1586
1587 obj->write_domain = 0;
1588 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1589 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1590
1591 /* update the fence lru list */
007cc8ac
DV
1592 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1593 struct drm_i915_fence_reg *reg =
1594 &dev_priv->fence_regs[obj_priv->fence_reg];
1595 list_move_tail(&reg->lru_list,
63560396 1596 &dev_priv->mm.fence_list);
007cc8ac 1597 }
63560396
DV
1598
1599 trace_i915_gem_object_change_domain(obj,
1600 obj->read_domains,
1601 old_write_domain);
1602 }
1603 }
1604}
8187a2b7 1605
5a5a0c64 1606uint32_t
8a1a49f9
DV
1607i915_add_request(struct drm_device *dev,
1608 struct drm_file *file_priv,
8dc5d147 1609 struct drm_i915_gem_request *request,
8a1a49f9 1610 struct intel_ring_buffer *ring)
673a394b
EA
1611{
1612 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1613 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1614 uint32_t seqno;
1615 int was_empty;
673a394b 1616
b962442e
EA
1617 if (file_priv != NULL)
1618 i915_file_priv = file_priv->driver_priv;
1619
8dc5d147
CW
1620 if (request == NULL) {
1621 request = kzalloc(sizeof(*request), GFP_KERNEL);
1622 if (request == NULL)
1623 return 0;
1624 }
673a394b 1625
8a1a49f9 1626 seqno = ring->add_request(dev, ring, file_priv, 0);
673a394b
EA
1627
1628 request->seqno = seqno;
852835f3 1629 request->ring = ring;
673a394b 1630 request->emitted_jiffies = jiffies;
852835f3
ZN
1631 was_empty = list_empty(&ring->request_list);
1632 list_add_tail(&request->list, &ring->request_list);
1633
b962442e
EA
1634 if (i915_file_priv) {
1635 list_add_tail(&request->client_list,
1636 &i915_file_priv->mm.request_list);
1637 } else {
1638 INIT_LIST_HEAD(&request->client_list);
1639 }
673a394b 1640
f65d9421 1641 if (!dev_priv->mm.suspended) {
b3b079db
CW
1642 mod_timer(&dev_priv->hangcheck_timer,
1643 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1644 if (was_empty)
b3b079db
CW
1645 queue_delayed_work(dev_priv->wq,
1646 &dev_priv->mm.retire_work, HZ);
f65d9421 1647 }
673a394b
EA
1648 return seqno;
1649}
1650
1651/**
1652 * Command execution barrier
1653 *
1654 * Ensures that all commands in the ring are finished
1655 * before signalling the CPU
1656 */
8a1a49f9 1657static void
852835f3 1658i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1659{
673a394b 1660 uint32_t flush_domains = 0;
673a394b
EA
1661
1662 /* The sampler always gets flushed on i965 (sigh) */
1663 if (IS_I965G(dev))
1664 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1665
1666 ring->flush(dev, ring,
1667 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1668}
1669
1670/**
1671 * Moves buffers associated only with the given active seqno from the active
1672 * to inactive list, potentially freeing them.
1673 */
1674static void
1675i915_gem_retire_request(struct drm_device *dev,
1676 struct drm_i915_gem_request *request)
1677{
1c5d22f7
CW
1678 trace_i915_gem_request_retire(dev, request->seqno);
1679
673a394b
EA
1680 /* Move any buffers on the active list that are no longer referenced
1681 * by the ringbuffer to the flushing/inactive lists as appropriate.
1682 */
852835f3 1683 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1684 struct drm_gem_object *obj;
1685 struct drm_i915_gem_object *obj_priv;
1686
852835f3 1687 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1688 struct drm_i915_gem_object,
1689 list);
a8089e84 1690 obj = &obj_priv->base;
673a394b
EA
1691
1692 /* If the seqno being retired doesn't match the oldest in the
1693 * list, then the oldest in the list must still be newer than
1694 * this seqno.
1695 */
1696 if (obj_priv->last_rendering_seqno != request->seqno)
de227ef0 1697 return;
de151cf6 1698
673a394b
EA
1699#if WATCH_LRU
1700 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1701 __func__, request->seqno, obj);
1702#endif
1703
ce44b0ea
EA
1704 if (obj->write_domain != 0)
1705 i915_gem_object_move_to_flushing(obj);
de227ef0 1706 else
673a394b 1707 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1708 }
1709}
1710
1711/**
1712 * Returns true if seq1 is later than seq2.
1713 */
22be1724 1714bool
673a394b
EA
1715i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1716{
1717 return (int32_t)(seq1 - seq2) >= 0;
1718}
1719
1720uint32_t
852835f3 1721i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1722 struct intel_ring_buffer *ring)
673a394b 1723{
852835f3 1724 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1725}
1726
1727/**
1728 * This function clears the request list as sequence numbers are passed.
1729 */
b09a1fec
CW
1730static void
1731i915_gem_retire_requests_ring(struct drm_device *dev,
1732 struct intel_ring_buffer *ring)
673a394b
EA
1733{
1734 drm_i915_private_t *dev_priv = dev->dev_private;
1735 uint32_t seqno;
1736
8187a2b7 1737 if (!ring->status_page.page_addr
852835f3 1738 || list_empty(&ring->request_list))
6c0594a3
KW
1739 return;
1740
852835f3 1741 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1742
852835f3 1743 while (!list_empty(&ring->request_list)) {
673a394b
EA
1744 struct drm_i915_gem_request *request;
1745 uint32_t retiring_seqno;
1746
852835f3 1747 request = list_first_entry(&ring->request_list,
673a394b
EA
1748 struct drm_i915_gem_request,
1749 list);
1750 retiring_seqno = request->seqno;
1751
1752 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1753 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1754 i915_gem_retire_request(dev, request);
1755
1756 list_del(&request->list);
b962442e 1757 list_del(&request->client_list);
9a298b2a 1758 kfree(request);
673a394b
EA
1759 } else
1760 break;
1761 }
9d34e5db
CW
1762
1763 if (unlikely (dev_priv->trace_irq_seqno &&
1764 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1765
1766 ring->user_irq_put(dev, ring);
9d34e5db
CW
1767 dev_priv->trace_irq_seqno = 0;
1768 }
673a394b
EA
1769}
1770
b09a1fec
CW
1771void
1772i915_gem_retire_requests(struct drm_device *dev)
1773{
1774 drm_i915_private_t *dev_priv = dev->dev_private;
1775
be72615b
CW
1776 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1777 struct drm_i915_gem_object *obj_priv, *tmp;
1778
1779 /* We must be careful that during unbind() we do not
1780 * accidentally infinitely recurse into retire requests.
1781 * Currently:
1782 * retire -> free -> unbind -> wait -> retire_ring
1783 */
1784 list_for_each_entry_safe(obj_priv, tmp,
1785 &dev_priv->mm.deferred_free_list,
1786 list)
1787 i915_gem_free_object_tail(&obj_priv->base);
1788 }
1789
b09a1fec
CW
1790 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1791 if (HAS_BSD(dev))
1792 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1793}
1794
75ef9da2 1795static void
673a394b
EA
1796i915_gem_retire_work_handler(struct work_struct *work)
1797{
1798 drm_i915_private_t *dev_priv;
1799 struct drm_device *dev;
1800
1801 dev_priv = container_of(work, drm_i915_private_t,
1802 mm.retire_work.work);
1803 dev = dev_priv->dev;
1804
1805 mutex_lock(&dev->struct_mutex);
b09a1fec 1806 i915_gem_retire_requests(dev);
d1b851fc 1807
6dbe2772 1808 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1809 (!list_empty(&dev_priv->render_ring.request_list) ||
1810 (HAS_BSD(dev) &&
1811 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1812 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1813 mutex_unlock(&dev->struct_mutex);
1814}
1815
5a5a0c64 1816int
852835f3 1817i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1818 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1819{
1820 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1821 u32 ier;
673a394b
EA
1822 int ret = 0;
1823
1824 BUG_ON(seqno == 0);
1825
e35a41de 1826 if (seqno == dev_priv->next_seqno) {
8dc5d147 1827 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1828 if (seqno == 0)
1829 return -ENOMEM;
1830 }
1831
ba1234d1 1832 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1833 return -EIO;
1834
852835f3 1835 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1836 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1837 ier = I915_READ(DEIER) | I915_READ(GTIER);
1838 else
1839 ier = I915_READ(IER);
802c7eb6
JB
1840 if (!ier) {
1841 DRM_ERROR("something (likely vbetool) disabled "
1842 "interrupts, re-enabling\n");
1843 i915_driver_irq_preinstall(dev);
1844 i915_driver_irq_postinstall(dev);
1845 }
1846
1c5d22f7
CW
1847 trace_i915_gem_request_wait_begin(dev, seqno);
1848
852835f3 1849 ring->waiting_gem_seqno = seqno;
8187a2b7 1850 ring->user_irq_get(dev, ring);
48764bf4 1851 if (interruptible)
852835f3
ZN
1852 ret = wait_event_interruptible(ring->irq_queue,
1853 i915_seqno_passed(
1854 ring->get_gem_seqno(dev, ring), seqno)
1855 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1856 else
852835f3
ZN
1857 wait_event(ring->irq_queue,
1858 i915_seqno_passed(
1859 ring->get_gem_seqno(dev, ring), seqno)
1860 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1861
8187a2b7 1862 ring->user_irq_put(dev, ring);
852835f3 1863 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1864
1865 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1866 }
ba1234d1 1867 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1868 ret = -EIO;
1869
1870 if (ret && ret != -ERESTARTSYS)
8bff917c
DV
1871 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1872 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1873 dev_priv->next_seqno);
673a394b
EA
1874
1875 /* Directly dispatch request retiring. While we have the work queue
1876 * to handle this, the waiter on a request often wants an associated
1877 * buffer to have made it to the inactive list, and we would need
1878 * a separate wait queue to handle that.
1879 */
1880 if (ret == 0)
b09a1fec 1881 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1882
1883 return ret;
1884}
1885
48764bf4
DV
1886/**
1887 * Waits for a sequence number to be signaled, and cleans up the
1888 * request and object lists appropriately for that event.
1889 */
1890static int
852835f3
ZN
1891i915_wait_request(struct drm_device *dev, uint32_t seqno,
1892 struct intel_ring_buffer *ring)
48764bf4 1893{
852835f3 1894 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1895}
1896
8187a2b7
ZN
1897static void
1898i915_gem_flush(struct drm_device *dev,
1899 uint32_t invalidate_domains,
1900 uint32_t flush_domains)
1901{
1902 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 1903
8187a2b7
ZN
1904 if (flush_domains & I915_GEM_DOMAIN_CPU)
1905 drm_agp_chipset_flush(dev);
8bff917c 1906
8187a2b7
ZN
1907 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1908 invalidate_domains,
1909 flush_domains);
d1b851fc
ZN
1910
1911 if (HAS_BSD(dev))
1912 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1913 invalidate_domains,
1914 flush_domains);
8187a2b7
ZN
1915}
1916
673a394b
EA
1917/**
1918 * Ensures that all rendering to the object has completed and the object is
1919 * safe to unbind from the GTT or access from the CPU.
1920 */
1921static int
ba3d8d74 1922i915_gem_object_wait_rendering(struct drm_gem_object *obj)
673a394b
EA
1923{
1924 struct drm_device *dev = obj->dev;
23010e43 1925 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1926 int ret;
1927
e47c68e9
EA
1928 /* This function only exists to support waiting for existing rendering,
1929 * not for emitting required flushes.
673a394b 1930 */
e47c68e9 1931 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1932
1933 /* If there is rendering queued on the buffer being evicted, wait for
1934 * it.
1935 */
1936 if (obj_priv->active) {
1937#if WATCH_BUF
1938 DRM_INFO("%s: object %p wait for seqno %08x\n",
1939 __func__, obj, obj_priv->last_rendering_seqno);
1940#endif
ba3d8d74
DV
1941 ret = i915_wait_request(dev,
1942 obj_priv->last_rendering_seqno,
1943 obj_priv->ring);
673a394b
EA
1944 if (ret != 0)
1945 return ret;
1946 }
1947
1948 return 0;
1949}
1950
1951/**
1952 * Unbinds an object from the GTT aperture.
1953 */
0f973f27 1954int
673a394b
EA
1955i915_gem_object_unbind(struct drm_gem_object *obj)
1956{
1957 struct drm_device *dev = obj->dev;
23010e43 1958 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1959 int ret = 0;
1960
1961#if WATCH_BUF
1962 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1963 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1964#endif
1965 if (obj_priv->gtt_space == NULL)
1966 return 0;
1967
1968 if (obj_priv->pin_count != 0) {
1969 DRM_ERROR("Attempting to unbind pinned buffer\n");
1970 return -EINVAL;
1971 }
1972
5323fd04
EA
1973 /* blow away mappings if mapped through GTT */
1974 i915_gem_release_mmap(obj);
1975
673a394b
EA
1976 /* Move the object to the CPU domain to ensure that
1977 * any possible CPU writes while it's not in the GTT
1978 * are flushed when we go to remap it. This will
1979 * also ensure that all pending GPU writes are finished
1980 * before we unbind.
1981 */
e47c68e9 1982 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1983 if (ret == -ERESTARTSYS)
673a394b 1984 return ret;
8dc1775d
CW
1985 /* Continue on if we fail due to EIO, the GPU is hung so we
1986 * should be safe and we need to cleanup or else we might
1987 * cause memory corruption through use-after-free.
1988 */
673a394b 1989
96b47b65
DV
1990 /* release the fence reg _after_ flushing */
1991 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1992 i915_gem_clear_fence_reg(obj);
1993
673a394b
EA
1994 if (obj_priv->agp_mem != NULL) {
1995 drm_unbind_agp(obj_priv->agp_mem);
1996 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1997 obj_priv->agp_mem = NULL;
1998 }
1999
856fa198 2000 i915_gem_object_put_pages(obj);
a32808c0 2001 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2002
2003 if (obj_priv->gtt_space) {
2004 atomic_dec(&dev->gtt_count);
2005 atomic_sub(obj->size, &dev->gtt_memory);
2006
2007 drm_mm_put_block(obj_priv->gtt_space);
2008 obj_priv->gtt_space = NULL;
2009 }
2010
2011 /* Remove ourselves from the LRU list if present. */
2012 if (!list_empty(&obj_priv->list))
2013 list_del_init(&obj_priv->list);
2014
963b4836
CW
2015 if (i915_gem_object_is_purgeable(obj_priv))
2016 i915_gem_object_truncate(obj);
2017
1c5d22f7
CW
2018 trace_i915_gem_object_unbind(obj);
2019
8dc1775d 2020 return ret;
673a394b
EA
2021}
2022
b47eb4a2 2023int
4df2faf4
DV
2024i915_gpu_idle(struct drm_device *dev)
2025{
2026 drm_i915_private_t *dev_priv = dev->dev_private;
2027 bool lists_empty;
852835f3 2028 int ret;
4df2faf4 2029
d1b851fc
ZN
2030 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2031 list_empty(&dev_priv->render_ring.active_list) &&
2032 (!HAS_BSD(dev) ||
2033 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2034 if (lists_empty)
2035 return 0;
2036
2037 /* Flush everything onto the inactive list. */
2038 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4fc6ee76
DV
2039
2040 ret = i915_wait_request(dev,
2041 i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
2042 &dev_priv->render_ring);
8a1a49f9
DV
2043 if (ret)
2044 return ret;
d1b851fc
ZN
2045
2046 if (HAS_BSD(dev)) {
4fc6ee76
DV
2047 ret = i915_wait_request(dev,
2048 i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
2049 &dev_priv->bsd_ring);
d1b851fc
ZN
2050 if (ret)
2051 return ret;
2052 }
2053
8a1a49f9 2054 return 0;
4df2faf4
DV
2055}
2056
6911a9b8 2057int
4bdadb97
CW
2058i915_gem_object_get_pages(struct drm_gem_object *obj,
2059 gfp_t gfpmask)
673a394b 2060{
23010e43 2061 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2062 int page_count, i;
2063 struct address_space *mapping;
2064 struct inode *inode;
2065 struct page *page;
673a394b 2066
778c3544
DV
2067 BUG_ON(obj_priv->pages_refcount
2068 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2069
856fa198 2070 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2071 return 0;
2072
2073 /* Get the list of pages out of our struct file. They'll be pinned
2074 * at this point until we release them.
2075 */
2076 page_count = obj->size / PAGE_SIZE;
856fa198 2077 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2078 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2079 if (obj_priv->pages == NULL) {
856fa198 2080 obj_priv->pages_refcount--;
673a394b
EA
2081 return -ENOMEM;
2082 }
2083
2084 inode = obj->filp->f_path.dentry->d_inode;
2085 mapping = inode->i_mapping;
2086 for (i = 0; i < page_count; i++) {
4bdadb97 2087 page = read_cache_page_gfp(mapping, i,
985b823b 2088 GFP_HIGHUSER |
4bdadb97 2089 __GFP_COLD |
cd9f040d 2090 __GFP_RECLAIMABLE |
4bdadb97 2091 gfpmask);
1f2b1013
CW
2092 if (IS_ERR(page))
2093 goto err_pages;
2094
856fa198 2095 obj_priv->pages[i] = page;
673a394b 2096 }
280b713b
EA
2097
2098 if (obj_priv->tiling_mode != I915_TILING_NONE)
2099 i915_gem_object_do_bit_17_swizzle(obj);
2100
673a394b 2101 return 0;
1f2b1013
CW
2102
2103err_pages:
2104 while (i--)
2105 page_cache_release(obj_priv->pages[i]);
2106
2107 drm_free_large(obj_priv->pages);
2108 obj_priv->pages = NULL;
2109 obj_priv->pages_refcount--;
2110 return PTR_ERR(page);
673a394b
EA
2111}
2112
4e901fdc
EA
2113static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2114{
2115 struct drm_gem_object *obj = reg->obj;
2116 struct drm_device *dev = obj->dev;
2117 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2118 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2119 int regnum = obj_priv->fence_reg;
2120 uint64_t val;
2121
2122 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2123 0xfffff000) << 32;
2124 val |= obj_priv->gtt_offset & 0xfffff000;
2125 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2126 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2127
2128 if (obj_priv->tiling_mode == I915_TILING_Y)
2129 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2130 val |= I965_FENCE_REG_VALID;
2131
2132 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2133}
2134
de151cf6
JB
2135static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2136{
2137 struct drm_gem_object *obj = reg->obj;
2138 struct drm_device *dev = obj->dev;
2139 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2140 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2141 int regnum = obj_priv->fence_reg;
2142 uint64_t val;
2143
2144 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2145 0xfffff000) << 32;
2146 val |= obj_priv->gtt_offset & 0xfffff000;
2147 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2148 if (obj_priv->tiling_mode == I915_TILING_Y)
2149 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2150 val |= I965_FENCE_REG_VALID;
2151
2152 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2153}
2154
2155static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2156{
2157 struct drm_gem_object *obj = reg->obj;
2158 struct drm_device *dev = obj->dev;
2159 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2160 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2161 int regnum = obj_priv->fence_reg;
0f973f27 2162 int tile_width;
dc529a4f 2163 uint32_t fence_reg, val;
de151cf6
JB
2164 uint32_t pitch_val;
2165
2166 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2167 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2168 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2169 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2170 return;
2171 }
2172
0f973f27
JB
2173 if (obj_priv->tiling_mode == I915_TILING_Y &&
2174 HAS_128_BYTE_Y_TILING(dev))
2175 tile_width = 128;
de151cf6 2176 else
0f973f27
JB
2177 tile_width = 512;
2178
2179 /* Note: pitch better be a power of two tile widths */
2180 pitch_val = obj_priv->stride / tile_width;
2181 pitch_val = ffs(pitch_val) - 1;
de151cf6 2182
c36a2a6d
DV
2183 if (obj_priv->tiling_mode == I915_TILING_Y &&
2184 HAS_128_BYTE_Y_TILING(dev))
2185 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2186 else
2187 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2188
de151cf6
JB
2189 val = obj_priv->gtt_offset;
2190 if (obj_priv->tiling_mode == I915_TILING_Y)
2191 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2192 val |= I915_FENCE_SIZE_BITS(obj->size);
2193 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2194 val |= I830_FENCE_REG_VALID;
2195
dc529a4f
EA
2196 if (regnum < 8)
2197 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2198 else
2199 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2200 I915_WRITE(fence_reg, val);
de151cf6
JB
2201}
2202
2203static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2204{
2205 struct drm_gem_object *obj = reg->obj;
2206 struct drm_device *dev = obj->dev;
2207 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2208 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2209 int regnum = obj_priv->fence_reg;
2210 uint32_t val;
2211 uint32_t pitch_val;
8d7773a3 2212 uint32_t fence_size_bits;
de151cf6 2213
8d7773a3 2214 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2215 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2216 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2217 __func__, obj_priv->gtt_offset);
de151cf6
JB
2218 return;
2219 }
2220
e76a16de
EA
2221 pitch_val = obj_priv->stride / 128;
2222 pitch_val = ffs(pitch_val) - 1;
2223 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2224
de151cf6
JB
2225 val = obj_priv->gtt_offset;
2226 if (obj_priv->tiling_mode == I915_TILING_Y)
2227 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2228 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2229 WARN_ON(fence_size_bits & ~0x00000f00);
2230 val |= fence_size_bits;
de151cf6
JB
2231 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2232 val |= I830_FENCE_REG_VALID;
2233
2234 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2235}
2236
ae3db24a
DV
2237static int i915_find_fence_reg(struct drm_device *dev)
2238{
2239 struct drm_i915_fence_reg *reg = NULL;
2240 struct drm_i915_gem_object *obj_priv = NULL;
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 struct drm_gem_object *obj = NULL;
2243 int i, avail, ret;
2244
2245 /* First try to find a free reg */
2246 avail = 0;
2247 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2248 reg = &dev_priv->fence_regs[i];
2249 if (!reg->obj)
2250 return i;
2251
23010e43 2252 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2253 if (!obj_priv->pin_count)
2254 avail++;
2255 }
2256
2257 if (avail == 0)
2258 return -ENOSPC;
2259
2260 /* None available, try to steal one or wait for a user to finish */
2261 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2262 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2263 lru_list) {
2264 obj = reg->obj;
2265 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2266
2267 if (obj_priv->pin_count)
2268 continue;
2269
2270 /* found one! */
2271 i = obj_priv->fence_reg;
2272 break;
2273 }
2274
2275 BUG_ON(i == I915_FENCE_REG_NONE);
2276
2277 /* We only have a reference on obj from the active list. put_fence_reg
2278 * might drop that one, causing a use-after-free in it. So hold a
2279 * private reference to obj like the other callers of put_fence_reg
2280 * (set_tiling ioctl) do. */
2281 drm_gem_object_reference(obj);
2282 ret = i915_gem_object_put_fence_reg(obj);
2283 drm_gem_object_unreference(obj);
2284 if (ret != 0)
2285 return ret;
2286
2287 return i;
2288}
2289
de151cf6
JB
2290/**
2291 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2292 * @obj: object to map through a fence reg
2293 *
2294 * When mapping objects through the GTT, userspace wants to be able to write
2295 * to them without having to worry about swizzling if the object is tiled.
2296 *
2297 * This function walks the fence regs looking for a free one for @obj,
2298 * stealing one if it can't find any.
2299 *
2300 * It then sets up the reg based on the object's properties: address, pitch
2301 * and tiling format.
2302 */
8c4b8c3f
CW
2303int
2304i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2305{
2306 struct drm_device *dev = obj->dev;
79e53945 2307 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2308 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2309 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2310 int ret;
de151cf6 2311
a09ba7fa
EA
2312 /* Just update our place in the LRU if our fence is getting used. */
2313 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2314 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2315 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2316 return 0;
2317 }
2318
de151cf6
JB
2319 switch (obj_priv->tiling_mode) {
2320 case I915_TILING_NONE:
2321 WARN(1, "allocating a fence for non-tiled object?\n");
2322 break;
2323 case I915_TILING_X:
0f973f27
JB
2324 if (!obj_priv->stride)
2325 return -EINVAL;
2326 WARN((obj_priv->stride & (512 - 1)),
2327 "object 0x%08x is X tiled but has non-512B pitch\n",
2328 obj_priv->gtt_offset);
de151cf6
JB
2329 break;
2330 case I915_TILING_Y:
0f973f27
JB
2331 if (!obj_priv->stride)
2332 return -EINVAL;
2333 WARN((obj_priv->stride & (128 - 1)),
2334 "object 0x%08x is Y tiled but has non-128B pitch\n",
2335 obj_priv->gtt_offset);
de151cf6
JB
2336 break;
2337 }
2338
ae3db24a
DV
2339 ret = i915_find_fence_reg(dev);
2340 if (ret < 0)
2341 return ret;
de151cf6 2342
ae3db24a
DV
2343 obj_priv->fence_reg = ret;
2344 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2345 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2346
de151cf6
JB
2347 reg->obj = obj;
2348
4e901fdc
EA
2349 if (IS_GEN6(dev))
2350 sandybridge_write_fence_reg(reg);
2351 else if (IS_I965G(dev))
de151cf6
JB
2352 i965_write_fence_reg(reg);
2353 else if (IS_I9XX(dev))
2354 i915_write_fence_reg(reg);
2355 else
2356 i830_write_fence_reg(reg);
d9ddcb96 2357
ae3db24a
DV
2358 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2359 obj_priv->tiling_mode);
1c5d22f7 2360
d9ddcb96 2361 return 0;
de151cf6
JB
2362}
2363
2364/**
2365 * i915_gem_clear_fence_reg - clear out fence register info
2366 * @obj: object to clear
2367 *
2368 * Zeroes out the fence register itself and clears out the associated
2369 * data structures in dev_priv and obj_priv.
2370 */
2371static void
2372i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2373{
2374 struct drm_device *dev = obj->dev;
79e53945 2375 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2376 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2377 struct drm_i915_fence_reg *reg =
2378 &dev_priv->fence_regs[obj_priv->fence_reg];
de151cf6 2379
4e901fdc
EA
2380 if (IS_GEN6(dev)) {
2381 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2382 (obj_priv->fence_reg * 8), 0);
2383 } else if (IS_I965G(dev)) {
de151cf6 2384 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2385 } else {
dc529a4f
EA
2386 uint32_t fence_reg;
2387
2388 if (obj_priv->fence_reg < 8)
2389 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2390 else
2391 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2392 8) * 4;
2393
2394 I915_WRITE(fence_reg, 0);
2395 }
de151cf6 2396
007cc8ac 2397 reg->obj = NULL;
de151cf6 2398 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2399 list_del_init(&reg->lru_list);
de151cf6
JB
2400}
2401
52dc7d32
CW
2402/**
2403 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2404 * to the buffer to finish, and then resets the fence register.
2405 * @obj: tiled object holding a fence register.
2406 *
2407 * Zeroes out the fence register itself and clears out the associated
2408 * data structures in dev_priv and obj_priv.
2409 */
2410int
2411i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2412{
2413 struct drm_device *dev = obj->dev;
23010e43 2414 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2415
2416 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2417 return 0;
2418
10ae9bd2
DV
2419 /* If we've changed tiling, GTT-mappings of the object
2420 * need to re-fault to ensure that the correct fence register
2421 * setup is in place.
2422 */
2423 i915_gem_release_mmap(obj);
2424
52dc7d32
CW
2425 /* On the i915, GPU access to tiled buffers is via a fence,
2426 * therefore we must wait for any outstanding access to complete
2427 * before clearing the fence.
2428 */
2429 if (!IS_I965G(dev)) {
2430 int ret;
2431
ba3d8d74 2432 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
0bc23aad
CW
2433 if (ret)
2434 return ret;
2435
2436 ret = i915_gem_object_wait_rendering(obj);
2437 if (ret)
52dc7d32
CW
2438 return ret;
2439 }
2440
4a726612 2441 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2442 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2443
2444 return 0;
2445}
2446
673a394b
EA
2447/**
2448 * Finds free space in the GTT aperture and binds the object there.
2449 */
2450static int
2451i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2452{
2453 struct drm_device *dev = obj->dev;
2454 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2455 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2456 struct drm_mm_node *free_space;
4bdadb97 2457 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2458 int ret;
673a394b 2459
bb6baf76 2460 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2461 DRM_ERROR("Attempting to bind a purgeable object\n");
2462 return -EINVAL;
2463 }
2464
673a394b 2465 if (alignment == 0)
0f973f27 2466 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2467 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2468 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2469 return -EINVAL;
2470 }
2471
654fc607
CW
2472 /* If the object is bigger than the entire aperture, reject it early
2473 * before evicting everything in a vain attempt to find space.
2474 */
2475 if (obj->size > dev->gtt_total) {
2476 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2477 return -E2BIG;
2478 }
2479
673a394b
EA
2480 search_free:
2481 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2482 obj->size, alignment, 0);
2483 if (free_space != NULL) {
2484 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2485 alignment);
db3307a9 2486 if (obj_priv->gtt_space != NULL)
673a394b 2487 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2488 }
2489 if (obj_priv->gtt_space == NULL) {
2490 /* If the gtt is empty and we're still having trouble
2491 * fitting our object in, we're out of memory.
2492 */
2493#if WATCH_LRU
2494 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2495#endif
0108a3ed 2496 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2497 if (ret)
673a394b 2498 return ret;
9731129c 2499
673a394b
EA
2500 goto search_free;
2501 }
2502
2503#if WATCH_BUF
cfd43c02 2504 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2505 obj->size, obj_priv->gtt_offset);
2506#endif
4bdadb97 2507 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2508 if (ret) {
2509 drm_mm_put_block(obj_priv->gtt_space);
2510 obj_priv->gtt_space = NULL;
07f73f69
CW
2511
2512 if (ret == -ENOMEM) {
2513 /* first try to clear up some space from the GTT */
0108a3ed
DV
2514 ret = i915_gem_evict_something(dev, obj->size,
2515 alignment);
07f73f69 2516 if (ret) {
07f73f69 2517 /* now try to shrink everyone else */
4bdadb97
CW
2518 if (gfpmask) {
2519 gfpmask = 0;
2520 goto search_free;
07f73f69
CW
2521 }
2522
2523 return ret;
2524 }
2525
2526 goto search_free;
2527 }
2528
673a394b
EA
2529 return ret;
2530 }
2531
673a394b
EA
2532 /* Create an AGP memory structure pointing at our pages, and bind it
2533 * into the GTT.
2534 */
2535 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2536 obj_priv->pages,
07f73f69 2537 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2538 obj_priv->gtt_offset,
2539 obj_priv->agp_type);
673a394b 2540 if (obj_priv->agp_mem == NULL) {
856fa198 2541 i915_gem_object_put_pages(obj);
673a394b
EA
2542 drm_mm_put_block(obj_priv->gtt_space);
2543 obj_priv->gtt_space = NULL;
07f73f69 2544
0108a3ed 2545 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2546 if (ret)
07f73f69 2547 return ret;
07f73f69
CW
2548
2549 goto search_free;
673a394b
EA
2550 }
2551 atomic_inc(&dev->gtt_count);
2552 atomic_add(obj->size, &dev->gtt_memory);
2553
bf1a1092
CW
2554 /* keep track of bounds object by adding it to the inactive list */
2555 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2556
673a394b
EA
2557 /* Assert that the object is not currently in any GPU domain. As it
2558 * wasn't in the GTT, there shouldn't be any way it could have been in
2559 * a GPU cache
2560 */
21d509e3
CW
2561 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2562 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2563
1c5d22f7
CW
2564 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2565
673a394b
EA
2566 return 0;
2567}
2568
2569void
2570i915_gem_clflush_object(struct drm_gem_object *obj)
2571{
23010e43 2572 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2573
2574 /* If we don't have a page list set up, then we're not pinned
2575 * to GPU, and we can ignore the cache flush because it'll happen
2576 * again at bind time.
2577 */
856fa198 2578 if (obj_priv->pages == NULL)
673a394b
EA
2579 return;
2580
1c5d22f7 2581 trace_i915_gem_object_clflush(obj);
cfa16a0d 2582
856fa198 2583 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2584}
2585
e47c68e9 2586/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2587static int
ba3d8d74
DV
2588i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2589 bool pipelined)
e47c68e9
EA
2590{
2591 struct drm_device *dev = obj->dev;
1c5d22f7 2592 uint32_t old_write_domain;
e47c68e9
EA
2593
2594 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2595 return 0;
e47c68e9
EA
2596
2597 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2598 old_write_domain = obj->write_domain;
e47c68e9 2599 i915_gem_flush(dev, 0, obj->write_domain);
48b956c5 2600 BUG_ON(obj->write_domain);
1c5d22f7
CW
2601
2602 trace_i915_gem_object_change_domain(obj,
2603 obj->read_domains,
2604 old_write_domain);
ba3d8d74
DV
2605
2606 if (pipelined)
2607 return 0;
2608
2609 return i915_gem_object_wait_rendering(obj);
e47c68e9
EA
2610}
2611
2612/** Flushes the GTT write domain for the object if it's dirty. */
2613static void
2614i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2615{
1c5d22f7
CW
2616 uint32_t old_write_domain;
2617
e47c68e9
EA
2618 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2619 return;
2620
2621 /* No actual flushing is required for the GTT write domain. Writes
2622 * to it immediately go to main memory as far as we know, so there's
2623 * no chipset flush. It also doesn't land in render cache.
2624 */
1c5d22f7 2625 old_write_domain = obj->write_domain;
e47c68e9 2626 obj->write_domain = 0;
1c5d22f7
CW
2627
2628 trace_i915_gem_object_change_domain(obj,
2629 obj->read_domains,
2630 old_write_domain);
e47c68e9
EA
2631}
2632
2633/** Flushes the CPU write domain for the object if it's dirty. */
2634static void
2635i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2636{
2637 struct drm_device *dev = obj->dev;
1c5d22f7 2638 uint32_t old_write_domain;
e47c68e9
EA
2639
2640 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2641 return;
2642
2643 i915_gem_clflush_object(obj);
2644 drm_agp_chipset_flush(dev);
1c5d22f7 2645 old_write_domain = obj->write_domain;
e47c68e9 2646 obj->write_domain = 0;
1c5d22f7
CW
2647
2648 trace_i915_gem_object_change_domain(obj,
2649 obj->read_domains,
2650 old_write_domain);
e47c68e9
EA
2651}
2652
2ef7eeaa
EA
2653/**
2654 * Moves a single object to the GTT read, and possibly write domain.
2655 *
2656 * This function returns when the move is complete, including waiting on
2657 * flushes to occur.
2658 */
79e53945 2659int
2ef7eeaa
EA
2660i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2661{
23010e43 2662 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2663 uint32_t old_write_domain, old_read_domains;
e47c68e9 2664 int ret;
2ef7eeaa 2665
02354392
EA
2666 /* Not valid to be called on unbound objects. */
2667 if (obj_priv->gtt_space == NULL)
2668 return -EINVAL;
2669
ba3d8d74 2670 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2671 if (ret != 0)
2672 return ret;
2673
7213342d 2674 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2675
ba3d8d74
DV
2676 if (write) {
2677 ret = i915_gem_object_wait_rendering(obj);
2678 if (ret)
2679 return ret;
ba3d8d74 2680 }
2ef7eeaa 2681
7213342d
CW
2682 old_write_domain = obj->write_domain;
2683 old_read_domains = obj->read_domains;
2ef7eeaa 2684
e47c68e9
EA
2685 /* It should now be out of any other write domains, and we can update
2686 * the domain values for our changes.
2687 */
2688 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2689 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2690 if (write) {
7213342d 2691 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2692 obj->write_domain = I915_GEM_DOMAIN_GTT;
2693 obj_priv->dirty = 1;
2ef7eeaa
EA
2694 }
2695
1c5d22f7
CW
2696 trace_i915_gem_object_change_domain(obj,
2697 old_read_domains,
2698 old_write_domain);
2699
e47c68e9
EA
2700 return 0;
2701}
2702
b9241ea3
ZW
2703/*
2704 * Prepare buffer for display plane. Use uninterruptible for possible flush
2705 * wait, as in modesetting process we're not supposed to be interrupted.
2706 */
2707int
48b956c5
CW
2708i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2709 bool pipelined)
b9241ea3 2710{
23010e43 2711 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2712 uint32_t old_read_domains;
b9241ea3
ZW
2713 int ret;
2714
2715 /* Not valid to be called on unbound objects. */
2716 if (obj_priv->gtt_space == NULL)
2717 return -EINVAL;
2718
48b956c5
CW
2719 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2720 if (ret)
e35a41de 2721 return ret;
b9241ea3 2722
b118c1e3
CW
2723 i915_gem_object_flush_cpu_write_domain(obj);
2724
b9241ea3 2725 old_read_domains = obj->read_domains;
b118c1e3 2726 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2727
2728 trace_i915_gem_object_change_domain(obj,
2729 old_read_domains,
ba3d8d74 2730 obj->write_domain);
b9241ea3
ZW
2731
2732 return 0;
2733}
2734
e47c68e9
EA
2735/**
2736 * Moves a single object to the CPU read, and possibly write domain.
2737 *
2738 * This function returns when the move is complete, including waiting on
2739 * flushes to occur.
2740 */
2741static int
2742i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2743{
1c5d22f7 2744 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2745 int ret;
2746
ba3d8d74 2747 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2748 if (ret != 0)
2749 return ret;
2ef7eeaa 2750
e47c68e9 2751 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2752
e47c68e9
EA
2753 /* If we have a partially-valid cache of the object in the CPU,
2754 * finish invalidating it and free the per-page flags.
2ef7eeaa 2755 */
e47c68e9 2756 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2757
7213342d
CW
2758 if (write) {
2759 ret = i915_gem_object_wait_rendering(obj);
2760 if (ret)
2761 return ret;
2762 }
2763
1c5d22f7
CW
2764 old_write_domain = obj->write_domain;
2765 old_read_domains = obj->read_domains;
2766
e47c68e9
EA
2767 /* Flush the CPU cache if it's still invalid. */
2768 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2769 i915_gem_clflush_object(obj);
2ef7eeaa 2770
e47c68e9 2771 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2772 }
2773
2774 /* It should now be out of any other write domains, and we can update
2775 * the domain values for our changes.
2776 */
e47c68e9
EA
2777 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2778
2779 /* If we're writing through the CPU, then the GPU read domains will
2780 * need to be invalidated at next use.
2781 */
2782 if (write) {
2783 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2784 obj->write_domain = I915_GEM_DOMAIN_CPU;
2785 }
2ef7eeaa 2786
1c5d22f7
CW
2787 trace_i915_gem_object_change_domain(obj,
2788 old_read_domains,
2789 old_write_domain);
2790
2ef7eeaa
EA
2791 return 0;
2792}
2793
673a394b
EA
2794/*
2795 * Set the next domain for the specified object. This
2796 * may not actually perform the necessary flushing/invaliding though,
2797 * as that may want to be batched with other set_domain operations
2798 *
2799 * This is (we hope) the only really tricky part of gem. The goal
2800 * is fairly simple -- track which caches hold bits of the object
2801 * and make sure they remain coherent. A few concrete examples may
2802 * help to explain how it works. For shorthand, we use the notation
2803 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2804 * a pair of read and write domain masks.
2805 *
2806 * Case 1: the batch buffer
2807 *
2808 * 1. Allocated
2809 * 2. Written by CPU
2810 * 3. Mapped to GTT
2811 * 4. Read by GPU
2812 * 5. Unmapped from GTT
2813 * 6. Freed
2814 *
2815 * Let's take these a step at a time
2816 *
2817 * 1. Allocated
2818 * Pages allocated from the kernel may still have
2819 * cache contents, so we set them to (CPU, CPU) always.
2820 * 2. Written by CPU (using pwrite)
2821 * The pwrite function calls set_domain (CPU, CPU) and
2822 * this function does nothing (as nothing changes)
2823 * 3. Mapped by GTT
2824 * This function asserts that the object is not
2825 * currently in any GPU-based read or write domains
2826 * 4. Read by GPU
2827 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2828 * As write_domain is zero, this function adds in the
2829 * current read domains (CPU+COMMAND, 0).
2830 * flush_domains is set to CPU.
2831 * invalidate_domains is set to COMMAND
2832 * clflush is run to get data out of the CPU caches
2833 * then i915_dev_set_domain calls i915_gem_flush to
2834 * emit an MI_FLUSH and drm_agp_chipset_flush
2835 * 5. Unmapped from GTT
2836 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2837 * flush_domains and invalidate_domains end up both zero
2838 * so no flushing/invalidating happens
2839 * 6. Freed
2840 * yay, done
2841 *
2842 * Case 2: The shared render buffer
2843 *
2844 * 1. Allocated
2845 * 2. Mapped to GTT
2846 * 3. Read/written by GPU
2847 * 4. set_domain to (CPU,CPU)
2848 * 5. Read/written by CPU
2849 * 6. Read/written by GPU
2850 *
2851 * 1. Allocated
2852 * Same as last example, (CPU, CPU)
2853 * 2. Mapped to GTT
2854 * Nothing changes (assertions find that it is not in the GPU)
2855 * 3. Read/written by GPU
2856 * execbuffer calls set_domain (RENDER, RENDER)
2857 * flush_domains gets CPU
2858 * invalidate_domains gets GPU
2859 * clflush (obj)
2860 * MI_FLUSH and drm_agp_chipset_flush
2861 * 4. set_domain (CPU, CPU)
2862 * flush_domains gets GPU
2863 * invalidate_domains gets CPU
2864 * wait_rendering (obj) to make sure all drawing is complete.
2865 * This will include an MI_FLUSH to get the data from GPU
2866 * to memory
2867 * clflush (obj) to invalidate the CPU cache
2868 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2869 * 5. Read/written by CPU
2870 * cache lines are loaded and dirtied
2871 * 6. Read written by GPU
2872 * Same as last GPU access
2873 *
2874 * Case 3: The constant buffer
2875 *
2876 * 1. Allocated
2877 * 2. Written by CPU
2878 * 3. Read by GPU
2879 * 4. Updated (written) by CPU again
2880 * 5. Read by GPU
2881 *
2882 * 1. Allocated
2883 * (CPU, CPU)
2884 * 2. Written by CPU
2885 * (CPU, CPU)
2886 * 3. Read by GPU
2887 * (CPU+RENDER, 0)
2888 * flush_domains = CPU
2889 * invalidate_domains = RENDER
2890 * clflush (obj)
2891 * MI_FLUSH
2892 * drm_agp_chipset_flush
2893 * 4. Updated (written) by CPU again
2894 * (CPU, CPU)
2895 * flush_domains = 0 (no previous write domain)
2896 * invalidate_domains = 0 (no new read domains)
2897 * 5. Read by GPU
2898 * (CPU+RENDER, 0)
2899 * flush_domains = CPU
2900 * invalidate_domains = RENDER
2901 * clflush (obj)
2902 * MI_FLUSH
2903 * drm_agp_chipset_flush
2904 */
c0d90829 2905static void
8b0e378a 2906i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2907{
2908 struct drm_device *dev = obj->dev;
23010e43 2909 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2910 uint32_t invalidate_domains = 0;
2911 uint32_t flush_domains = 0;
1c5d22f7 2912 uint32_t old_read_domains;
e47c68e9 2913
8b0e378a
EA
2914 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2915 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2916
652c393a
JB
2917 intel_mark_busy(dev, obj);
2918
673a394b
EA
2919#if WATCH_BUF
2920 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2921 __func__, obj,
8b0e378a
EA
2922 obj->read_domains, obj->pending_read_domains,
2923 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2924#endif
2925 /*
2926 * If the object isn't moving to a new write domain,
2927 * let the object stay in multiple read domains
2928 */
8b0e378a
EA
2929 if (obj->pending_write_domain == 0)
2930 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2931 else
2932 obj_priv->dirty = 1;
2933
2934 /*
2935 * Flush the current write domain if
2936 * the new read domains don't match. Invalidate
2937 * any read domains which differ from the old
2938 * write domain
2939 */
8b0e378a
EA
2940 if (obj->write_domain &&
2941 obj->write_domain != obj->pending_read_domains) {
673a394b 2942 flush_domains |= obj->write_domain;
8b0e378a
EA
2943 invalidate_domains |=
2944 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2945 }
2946 /*
2947 * Invalidate any read caches which may have
2948 * stale data. That is, any new read domains.
2949 */
8b0e378a 2950 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2951 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2952#if WATCH_BUF
2953 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2954 __func__, flush_domains, invalidate_domains);
2955#endif
673a394b
EA
2956 i915_gem_clflush_object(obj);
2957 }
2958
1c5d22f7
CW
2959 old_read_domains = obj->read_domains;
2960
efbeed96
EA
2961 /* The actual obj->write_domain will be updated with
2962 * pending_write_domain after we emit the accumulated flush for all
2963 * of our domain changes in execbuffers (which clears objects'
2964 * write_domains). So if we have a current write domain that we
2965 * aren't changing, set pending_write_domain to that.
2966 */
2967 if (flush_domains == 0 && obj->pending_write_domain == 0)
2968 obj->pending_write_domain = obj->write_domain;
8b0e378a 2969 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2970
2971 dev->invalidate_domains |= invalidate_domains;
2972 dev->flush_domains |= flush_domains;
2973#if WATCH_BUF
2974 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2975 __func__,
2976 obj->read_domains, obj->write_domain,
2977 dev->invalidate_domains, dev->flush_domains);
2978#endif
1c5d22f7
CW
2979
2980 trace_i915_gem_object_change_domain(obj,
2981 old_read_domains,
2982 obj->write_domain);
673a394b
EA
2983}
2984
2985/**
e47c68e9 2986 * Moves the object from a partially CPU read to a full one.
673a394b 2987 *
e47c68e9
EA
2988 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2989 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2990 */
e47c68e9
EA
2991static void
2992i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 2993{
23010e43 2994 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2995
e47c68e9
EA
2996 if (!obj_priv->page_cpu_valid)
2997 return;
2998
2999 /* If we're partially in the CPU read domain, finish moving it in.
3000 */
3001 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3002 int i;
3003
3004 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3005 if (obj_priv->page_cpu_valid[i])
3006 continue;
856fa198 3007 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3008 }
e47c68e9
EA
3009 }
3010
3011 /* Free the page_cpu_valid mappings which are now stale, whether
3012 * or not we've got I915_GEM_DOMAIN_CPU.
3013 */
9a298b2a 3014 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3015 obj_priv->page_cpu_valid = NULL;
3016}
3017
3018/**
3019 * Set the CPU read domain on a range of the object.
3020 *
3021 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3022 * not entirely valid. The page_cpu_valid member of the object flags which
3023 * pages have been flushed, and will be respected by
3024 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3025 * of the whole object.
3026 *
3027 * This function returns when the move is complete, including waiting on
3028 * flushes to occur.
3029 */
3030static int
3031i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3032 uint64_t offset, uint64_t size)
3033{
23010e43 3034 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3035 uint32_t old_read_domains;
e47c68e9 3036 int i, ret;
673a394b 3037
e47c68e9
EA
3038 if (offset == 0 && size == obj->size)
3039 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3040
ba3d8d74 3041 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3042 if (ret != 0)
6a47baa6 3043 return ret;
e47c68e9
EA
3044 i915_gem_object_flush_gtt_write_domain(obj);
3045
3046 /* If we're already fully in the CPU read domain, we're done. */
3047 if (obj_priv->page_cpu_valid == NULL &&
3048 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3049 return 0;
673a394b 3050
e47c68e9
EA
3051 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3052 * newly adding I915_GEM_DOMAIN_CPU
3053 */
673a394b 3054 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3055 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3056 GFP_KERNEL);
e47c68e9
EA
3057 if (obj_priv->page_cpu_valid == NULL)
3058 return -ENOMEM;
3059 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3060 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3061
3062 /* Flush the cache on any pages that are still invalid from the CPU's
3063 * perspective.
3064 */
e47c68e9
EA
3065 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3066 i++) {
673a394b
EA
3067 if (obj_priv->page_cpu_valid[i])
3068 continue;
3069
856fa198 3070 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3071
3072 obj_priv->page_cpu_valid[i] = 1;
3073 }
3074
e47c68e9
EA
3075 /* It should now be out of any other write domains, and we can update
3076 * the domain values for our changes.
3077 */
3078 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3079
1c5d22f7 3080 old_read_domains = obj->read_domains;
e47c68e9
EA
3081 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3082
1c5d22f7
CW
3083 trace_i915_gem_object_change_domain(obj,
3084 old_read_domains,
3085 obj->write_domain);
3086
673a394b
EA
3087 return 0;
3088}
3089
673a394b
EA
3090/**
3091 * Pin an object to the GTT and evaluate the relocations landing in it.
3092 */
3093static int
3094i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3095 struct drm_file *file_priv,
76446cac 3096 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3097 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3098{
3099 struct drm_device *dev = obj->dev;
0839ccb8 3100 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3101 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3102 int i, ret;
0839ccb8 3103 void __iomem *reloc_page;
76446cac
JB
3104 bool need_fence;
3105
3106 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3107 obj_priv->tiling_mode != I915_TILING_NONE;
3108
3109 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3110 if (need_fence &&
3111 !i915_gem_object_fence_offset_ok(obj,
3112 obj_priv->tiling_mode)) {
3113 ret = i915_gem_object_unbind(obj);
3114 if (ret)
3115 return ret;
3116 }
673a394b
EA
3117
3118 /* Choose the GTT offset for our buffer and put it there. */
3119 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3120 if (ret)
3121 return ret;
3122
76446cac
JB
3123 /*
3124 * Pre-965 chips need a fence register set up in order to
3125 * properly handle blits to/from tiled surfaces.
3126 */
3127 if (need_fence) {
3128 ret = i915_gem_object_get_fence_reg(obj);
3129 if (ret != 0) {
76446cac
JB
3130 i915_gem_object_unpin(obj);
3131 return ret;
3132 }
3133 }
3134
673a394b
EA
3135 entry->offset = obj_priv->gtt_offset;
3136
673a394b
EA
3137 /* Apply the relocations, using the GTT aperture to avoid cache
3138 * flushing requirements.
3139 */
3140 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3141 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3142 struct drm_gem_object *target_obj;
3143 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3144 uint32_t reloc_val, reloc_offset;
3145 uint32_t __iomem *reloc_entry;
673a394b 3146
673a394b 3147 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3148 reloc->target_handle);
673a394b
EA
3149 if (target_obj == NULL) {
3150 i915_gem_object_unpin(obj);
bf79cb91 3151 return -ENOENT;
673a394b 3152 }
23010e43 3153 target_obj_priv = to_intel_bo(target_obj);
673a394b 3154
8542a0bb
CW
3155#if WATCH_RELOC
3156 DRM_INFO("%s: obj %p offset %08x target %d "
3157 "read %08x write %08x gtt %08x "
3158 "presumed %08x delta %08x\n",
3159 __func__,
3160 obj,
3161 (int) reloc->offset,
3162 (int) reloc->target_handle,
3163 (int) reloc->read_domains,
3164 (int) reloc->write_domain,
3165 (int) target_obj_priv->gtt_offset,
3166 (int) reloc->presumed_offset,
3167 reloc->delta);
3168#endif
3169
673a394b
EA
3170 /* The target buffer should have appeared before us in the
3171 * exec_object list, so it should have a GTT space bound by now.
3172 */
3173 if (target_obj_priv->gtt_space == NULL) {
3174 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3175 reloc->target_handle);
673a394b
EA
3176 drm_gem_object_unreference(target_obj);
3177 i915_gem_object_unpin(obj);
3178 return -EINVAL;
3179 }
3180
8542a0bb 3181 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3182 if (reloc->write_domain & (reloc->write_domain - 1)) {
3183 DRM_ERROR("reloc with multiple write domains: "
3184 "obj %p target %d offset %d "
3185 "read %08x write %08x",
3186 obj, reloc->target_handle,
3187 (int) reloc->offset,
3188 reloc->read_domains,
3189 reloc->write_domain);
3190 return -EINVAL;
3191 }
40a5f0de
EA
3192 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3193 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3194 DRM_ERROR("reloc with read/write CPU domains: "
3195 "obj %p target %d offset %d "
3196 "read %08x write %08x",
40a5f0de
EA
3197 obj, reloc->target_handle,
3198 (int) reloc->offset,
3199 reloc->read_domains,
3200 reloc->write_domain);
491152b8
CW
3201 drm_gem_object_unreference(target_obj);
3202 i915_gem_object_unpin(obj);
e47c68e9
EA
3203 return -EINVAL;
3204 }
40a5f0de
EA
3205 if (reloc->write_domain && target_obj->pending_write_domain &&
3206 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3207 DRM_ERROR("Write domain conflict: "
3208 "obj %p target %d offset %d "
3209 "new %08x old %08x\n",
40a5f0de
EA
3210 obj, reloc->target_handle,
3211 (int) reloc->offset,
3212 reloc->write_domain,
673a394b
EA
3213 target_obj->pending_write_domain);
3214 drm_gem_object_unreference(target_obj);
3215 i915_gem_object_unpin(obj);
3216 return -EINVAL;
3217 }
3218
40a5f0de
EA
3219 target_obj->pending_read_domains |= reloc->read_domains;
3220 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3221
3222 /* If the relocation already has the right value in it, no
3223 * more work needs to be done.
3224 */
40a5f0de 3225 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3226 drm_gem_object_unreference(target_obj);
3227 continue;
3228 }
3229
8542a0bb
CW
3230 /* Check that the relocation address is valid... */
3231 if (reloc->offset > obj->size - 4) {
3232 DRM_ERROR("Relocation beyond object bounds: "
3233 "obj %p target %d offset %d size %d.\n",
3234 obj, reloc->target_handle,
3235 (int) reloc->offset, (int) obj->size);
3236 drm_gem_object_unreference(target_obj);
3237 i915_gem_object_unpin(obj);
3238 return -EINVAL;
3239 }
3240 if (reloc->offset & 3) {
3241 DRM_ERROR("Relocation not 4-byte aligned: "
3242 "obj %p target %d offset %d.\n",
3243 obj, reloc->target_handle,
3244 (int) reloc->offset);
3245 drm_gem_object_unreference(target_obj);
3246 i915_gem_object_unpin(obj);
3247 return -EINVAL;
3248 }
3249
3250 /* and points to somewhere within the target object. */
3251 if (reloc->delta >= target_obj->size) {
3252 DRM_ERROR("Relocation beyond target object bounds: "
3253 "obj %p target %d delta %d size %d.\n",
3254 obj, reloc->target_handle,
3255 (int) reloc->delta, (int) target_obj->size);
3256 drm_gem_object_unreference(target_obj);
3257 i915_gem_object_unpin(obj);
3258 return -EINVAL;
3259 }
3260
2ef7eeaa
EA
3261 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3262 if (ret != 0) {
3263 drm_gem_object_unreference(target_obj);
3264 i915_gem_object_unpin(obj);
3265 return -EINVAL;
673a394b
EA
3266 }
3267
3268 /* Map the page containing the relocation we're going to
3269 * perform.
3270 */
40a5f0de 3271 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3272 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3273 (reloc_offset &
fca3ec01
CW
3274 ~(PAGE_SIZE - 1)),
3275 KM_USER0);
3043c60c 3276 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3277 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3278 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3279
3280#if WATCH_BUF
3281 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3282 obj, (unsigned int) reloc->offset,
673a394b
EA
3283 readl(reloc_entry), reloc_val);
3284#endif
3285 writel(reloc_val, reloc_entry);
fca3ec01 3286 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3287
40a5f0de
EA
3288 /* The updated presumed offset for this entry will be
3289 * copied back out to the user.
673a394b 3290 */
40a5f0de 3291 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3292
3293 drm_gem_object_unreference(target_obj);
3294 }
3295
673a394b
EA
3296#if WATCH_BUF
3297 if (0)
3298 i915_gem_dump_object(obj, 128, __func__, ~0);
3299#endif
3300 return 0;
3301}
3302
673a394b
EA
3303/* Throttle our rendering by waiting until the ring has completed our requests
3304 * emitted over 20 msec ago.
3305 *
b962442e
EA
3306 * Note that if we were to use the current jiffies each time around the loop,
3307 * we wouldn't escape the function with any frames outstanding if the time to
3308 * render a frame was over 20ms.
3309 *
673a394b
EA
3310 * This should get us reasonable parallelism between CPU and GPU but also
3311 * relatively low latency when blocking on a particular request to finish.
3312 */
3313static int
3314i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3315{
3316 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3317 int ret = 0;
b962442e 3318 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3319
3320 mutex_lock(&dev->struct_mutex);
b962442e
EA
3321 while (!list_empty(&i915_file_priv->mm.request_list)) {
3322 struct drm_i915_gem_request *request;
3323
3324 request = list_first_entry(&i915_file_priv->mm.request_list,
3325 struct drm_i915_gem_request,
3326 client_list);
3327
3328 if (time_after_eq(request->emitted_jiffies, recent_enough))
3329 break;
3330
852835f3 3331 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3332 if (ret != 0)
3333 break;
3334 }
673a394b 3335 mutex_unlock(&dev->struct_mutex);
b962442e 3336
673a394b
EA
3337 return ret;
3338}
3339
40a5f0de 3340static int
76446cac 3341i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3342 uint32_t buffer_count,
3343 struct drm_i915_gem_relocation_entry **relocs)
3344{
3345 uint32_t reloc_count = 0, reloc_index = 0, i;
3346 int ret;
3347
3348 *relocs = NULL;
3349 for (i = 0; i < buffer_count; i++) {
3350 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3351 return -EINVAL;
3352 reloc_count += exec_list[i].relocation_count;
3353 }
3354
8e7d2b2c 3355 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3356 if (*relocs == NULL) {
3357 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3358 return -ENOMEM;
76446cac 3359 }
40a5f0de
EA
3360
3361 for (i = 0; i < buffer_count; i++) {
3362 struct drm_i915_gem_relocation_entry __user *user_relocs;
3363
3364 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3365
3366 ret = copy_from_user(&(*relocs)[reloc_index],
3367 user_relocs,
3368 exec_list[i].relocation_count *
3369 sizeof(**relocs));
3370 if (ret != 0) {
8e7d2b2c 3371 drm_free_large(*relocs);
40a5f0de 3372 *relocs = NULL;
2bc43b5c 3373 return -EFAULT;
40a5f0de
EA
3374 }
3375
3376 reloc_index += exec_list[i].relocation_count;
3377 }
3378
2bc43b5c 3379 return 0;
40a5f0de
EA
3380}
3381
3382static int
76446cac 3383i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3384 uint32_t buffer_count,
3385 struct drm_i915_gem_relocation_entry *relocs)
3386{
3387 uint32_t reloc_count = 0, i;
2bc43b5c 3388 int ret = 0;
40a5f0de 3389
93533c29
CW
3390 if (relocs == NULL)
3391 return 0;
3392
40a5f0de
EA
3393 for (i = 0; i < buffer_count; i++) {
3394 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3395 int unwritten;
40a5f0de
EA
3396
3397 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3398
2bc43b5c
FM
3399 unwritten = copy_to_user(user_relocs,
3400 &relocs[reloc_count],
3401 exec_list[i].relocation_count *
3402 sizeof(*relocs));
3403
3404 if (unwritten) {
3405 ret = -EFAULT;
3406 goto err;
40a5f0de
EA
3407 }
3408
3409 reloc_count += exec_list[i].relocation_count;
3410 }
3411
2bc43b5c 3412err:
8e7d2b2c 3413 drm_free_large(relocs);
40a5f0de
EA
3414
3415 return ret;
3416}
3417
83d60795 3418static int
76446cac 3419i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3420 uint64_t exec_offset)
3421{
3422 uint32_t exec_start, exec_len;
3423
3424 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3425 exec_len = (uint32_t) exec->batch_len;
3426
3427 if ((exec_start | exec_len) & 0x7)
3428 return -EINVAL;
3429
3430 if (!exec_start)
3431 return -EINVAL;
3432
3433 return 0;
3434}
3435
6b95a207
KH
3436static int
3437i915_gem_wait_for_pending_flip(struct drm_device *dev,
3438 struct drm_gem_object **object_list,
3439 int count)
3440{
3441 drm_i915_private_t *dev_priv = dev->dev_private;
3442 struct drm_i915_gem_object *obj_priv;
3443 DEFINE_WAIT(wait);
3444 int i, ret = 0;
3445
3446 for (;;) {
3447 prepare_to_wait(&dev_priv->pending_flip_queue,
3448 &wait, TASK_INTERRUPTIBLE);
3449 for (i = 0; i < count; i++) {
23010e43 3450 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3451 if (atomic_read(&obj_priv->pending_flip) > 0)
3452 break;
3453 }
3454 if (i == count)
3455 break;
3456
3457 if (!signal_pending(current)) {
3458 mutex_unlock(&dev->struct_mutex);
3459 schedule();
3460 mutex_lock(&dev->struct_mutex);
3461 continue;
3462 }
3463 ret = -ERESTARTSYS;
3464 break;
3465 }
3466 finish_wait(&dev_priv->pending_flip_queue, &wait);
3467
3468 return ret;
3469}
3470
8dc5d147 3471static int
76446cac
JB
3472i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3473 struct drm_file *file_priv,
3474 struct drm_i915_gem_execbuffer2 *args,
3475 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3476{
3477 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3478 struct drm_gem_object **object_list = NULL;
3479 struct drm_gem_object *batch_obj;
b70d11da 3480 struct drm_i915_gem_object *obj_priv;
201361a5 3481 struct drm_clip_rect *cliprects = NULL;
93533c29 3482 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3483 struct drm_i915_gem_request *request = NULL;
76446cac 3484 int ret = 0, ret2, i, pinned = 0;
673a394b 3485 uint64_t exec_offset;
8a1a49f9 3486 uint32_t seqno, reloc_index;
6b95a207 3487 int pin_tries, flips;
673a394b 3488
852835f3
ZN
3489 struct intel_ring_buffer *ring = NULL;
3490
673a394b
EA
3491#if WATCH_EXEC
3492 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3493 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3494#endif
d1b851fc
ZN
3495 if (args->flags & I915_EXEC_BSD) {
3496 if (!HAS_BSD(dev)) {
3497 DRM_ERROR("execbuf with wrong flag\n");
3498 return -EINVAL;
3499 }
3500 ring = &dev_priv->bsd_ring;
3501 } else {
3502 ring = &dev_priv->render_ring;
3503 }
3504
4f481ed2
EA
3505 if (args->buffer_count < 1) {
3506 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3507 return -EINVAL;
3508 }
c8e0f93a 3509 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3510 if (object_list == NULL) {
3511 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3512 args->buffer_count);
3513 ret = -ENOMEM;
3514 goto pre_mutex_err;
3515 }
673a394b 3516
201361a5 3517 if (args->num_cliprects != 0) {
9a298b2a
EA
3518 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3519 GFP_KERNEL);
a40e8d31
OA
3520 if (cliprects == NULL) {
3521 ret = -ENOMEM;
201361a5 3522 goto pre_mutex_err;
a40e8d31 3523 }
201361a5
EA
3524
3525 ret = copy_from_user(cliprects,
3526 (struct drm_clip_rect __user *)
3527 (uintptr_t) args->cliprects_ptr,
3528 sizeof(*cliprects) * args->num_cliprects);
3529 if (ret != 0) {
3530 DRM_ERROR("copy %d cliprects failed: %d\n",
3531 args->num_cliprects, ret);
c877cdce 3532 ret = -EFAULT;
201361a5
EA
3533 goto pre_mutex_err;
3534 }
3535 }
3536
8dc5d147
CW
3537 request = kzalloc(sizeof(*request), GFP_KERNEL);
3538 if (request == NULL) {
3539 ret = -ENOMEM;
3540 goto pre_mutex_err;
3541 }
3542
40a5f0de
EA
3543 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3544 &relocs);
3545 if (ret != 0)
3546 goto pre_mutex_err;
3547
673a394b
EA
3548 mutex_lock(&dev->struct_mutex);
3549
3550 i915_verify_inactive(dev, __FILE__, __LINE__);
3551
ba1234d1 3552 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3553 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3554 ret = -EIO;
3555 goto pre_mutex_err;
673a394b
EA
3556 }
3557
3558 if (dev_priv->mm.suspended) {
673a394b 3559 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3560 ret = -EBUSY;
3561 goto pre_mutex_err;
673a394b
EA
3562 }
3563
ac94a962 3564 /* Look up object handles */
6b95a207 3565 flips = 0;
673a394b
EA
3566 for (i = 0; i < args->buffer_count; i++) {
3567 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3568 exec_list[i].handle);
3569 if (object_list[i] == NULL) {
3570 DRM_ERROR("Invalid object handle %d at index %d\n",
3571 exec_list[i].handle, i);
0ce907f8
CW
3572 /* prevent error path from reading uninitialized data */
3573 args->buffer_count = i + 1;
bf79cb91 3574 ret = -ENOENT;
673a394b
EA
3575 goto err;
3576 }
b70d11da 3577
23010e43 3578 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3579 if (obj_priv->in_execbuffer) {
3580 DRM_ERROR("Object %p appears more than once in object list\n",
3581 object_list[i]);
0ce907f8
CW
3582 /* prevent error path from reading uninitialized data */
3583 args->buffer_count = i + 1;
bf79cb91 3584 ret = -EINVAL;
b70d11da
KH
3585 goto err;
3586 }
3587 obj_priv->in_execbuffer = true;
6b95a207
KH
3588 flips += atomic_read(&obj_priv->pending_flip);
3589 }
3590
3591 if (flips > 0) {
3592 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3593 args->buffer_count);
3594 if (ret)
3595 goto err;
ac94a962 3596 }
673a394b 3597
ac94a962
KP
3598 /* Pin and relocate */
3599 for (pin_tries = 0; ; pin_tries++) {
3600 ret = 0;
40a5f0de
EA
3601 reloc_index = 0;
3602
ac94a962
KP
3603 for (i = 0; i < args->buffer_count; i++) {
3604 object_list[i]->pending_read_domains = 0;
3605 object_list[i]->pending_write_domain = 0;
3606 ret = i915_gem_object_pin_and_relocate(object_list[i],
3607 file_priv,
40a5f0de
EA
3608 &exec_list[i],
3609 &relocs[reloc_index]);
ac94a962
KP
3610 if (ret)
3611 break;
3612 pinned = i + 1;
40a5f0de 3613 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3614 }
3615 /* success */
3616 if (ret == 0)
3617 break;
3618
3619 /* error other than GTT full, or we've already tried again */
2939e1f5 3620 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3621 if (ret != -ERESTARTSYS) {
3622 unsigned long long total_size = 0;
3d1cc470
CW
3623 int num_fences = 0;
3624 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3625 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3626
07f73f69 3627 total_size += object_list[i]->size;
3d1cc470
CW
3628 num_fences +=
3629 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3630 obj_priv->tiling_mode != I915_TILING_NONE;
3631 }
3632 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3633 pinned+1, args->buffer_count,
3d1cc470
CW
3634 total_size, num_fences,
3635 ret);
07f73f69
CW
3636 DRM_ERROR("%d objects [%d pinned], "
3637 "%d object bytes [%d pinned], "
3638 "%d/%d gtt bytes\n",
3639 atomic_read(&dev->object_count),
3640 atomic_read(&dev->pin_count),
3641 atomic_read(&dev->object_memory),
3642 atomic_read(&dev->pin_memory),
3643 atomic_read(&dev->gtt_memory),
3644 dev->gtt_total);
3645 }
673a394b
EA
3646 goto err;
3647 }
ac94a962
KP
3648
3649 /* unpin all of our buffers */
3650 for (i = 0; i < pinned; i++)
3651 i915_gem_object_unpin(object_list[i]);
b1177636 3652 pinned = 0;
ac94a962
KP
3653
3654 /* evict everyone we can from the aperture */
3655 ret = i915_gem_evict_everything(dev);
07f73f69 3656 if (ret && ret != -ENOSPC)
ac94a962 3657 goto err;
673a394b
EA
3658 }
3659
3660 /* Set the pending read domains for the batch buffer to COMMAND */
3661 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3662 if (batch_obj->pending_write_domain) {
3663 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3664 ret = -EINVAL;
3665 goto err;
3666 }
3667 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3668
83d60795
CW
3669 /* Sanity check the batch buffer, prior to moving objects */
3670 exec_offset = exec_list[args->buffer_count - 1].offset;
3671 ret = i915_gem_check_execbuffer (args, exec_offset);
3672 if (ret != 0) {
3673 DRM_ERROR("execbuf with invalid offset/length\n");
3674 goto err;
3675 }
3676
673a394b
EA
3677 i915_verify_inactive(dev, __FILE__, __LINE__);
3678
646f0f6e
KP
3679 /* Zero the global flush/invalidate flags. These
3680 * will be modified as new domains are computed
3681 * for each object
3682 */
3683 dev->invalidate_domains = 0;
3684 dev->flush_domains = 0;
3685
673a394b
EA
3686 for (i = 0; i < args->buffer_count; i++) {
3687 struct drm_gem_object *obj = object_list[i];
673a394b 3688
646f0f6e 3689 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3690 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3691 }
3692
3693 i915_verify_inactive(dev, __FILE__, __LINE__);
3694
646f0f6e
KP
3695 if (dev->invalidate_domains | dev->flush_domains) {
3696#if WATCH_EXEC
3697 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3698 __func__,
3699 dev->invalidate_domains,
3700 dev->flush_domains);
3701#endif
3702 i915_gem_flush(dev,
3703 dev->invalidate_domains,
3704 dev->flush_domains);
a6910434
DV
3705 }
3706
3707 if (dev_priv->render_ring.outstanding_lazy_request) {
8dc5d147 3708 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
a6910434
DV
3709 dev_priv->render_ring.outstanding_lazy_request = false;
3710 }
3711 if (dev_priv->bsd_ring.outstanding_lazy_request) {
8dc5d147 3712 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
a6910434 3713 dev_priv->bsd_ring.outstanding_lazy_request = false;
646f0f6e 3714 }
673a394b 3715
efbeed96
EA
3716 for (i = 0; i < args->buffer_count; i++) {
3717 struct drm_gem_object *obj = object_list[i];
23010e43 3718 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3719 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3720
3721 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3722 if (obj->write_domain)
3723 list_move_tail(&obj_priv->gpu_write_list,
3724 &dev_priv->mm.gpu_write_list);
3725 else
3726 list_del_init(&obj_priv->gpu_write_list);
3727
1c5d22f7
CW
3728 trace_i915_gem_object_change_domain(obj,
3729 obj->read_domains,
3730 old_write_domain);
efbeed96
EA
3731 }
3732
673a394b
EA
3733 i915_verify_inactive(dev, __FILE__, __LINE__);
3734
3735#if WATCH_COHERENCY
3736 for (i = 0; i < args->buffer_count; i++) {
3737 i915_gem_object_check_coherency(object_list[i],
3738 exec_list[i].handle);
3739 }
3740#endif
3741
673a394b 3742#if WATCH_EXEC
6911a9b8 3743 i915_gem_dump_object(batch_obj,
673a394b
EA
3744 args->batch_len,
3745 __func__,
3746 ~0);
3747#endif
3748
673a394b 3749 /* Exec the batchbuffer */
852835f3
ZN
3750 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3751 cliprects, exec_offset);
673a394b
EA
3752 if (ret) {
3753 DRM_ERROR("dispatch failed %d\n", ret);
3754 goto err;
3755 }
3756
3757 /*
3758 * Ensure that the commands in the batch buffer are
3759 * finished before the interrupt fires
3760 */
8a1a49f9 3761 i915_retire_commands(dev, ring);
673a394b
EA
3762
3763 i915_verify_inactive(dev, __FILE__, __LINE__);
3764
617dbe27
DV
3765 for (i = 0; i < args->buffer_count; i++) {
3766 struct drm_gem_object *obj = object_list[i];
3767 obj_priv = to_intel_bo(obj);
3768
3769 i915_gem_object_move_to_active(obj, ring);
3770#if WATCH_LRU
3771 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3772#endif
3773 }
3774
673a394b
EA
3775 /*
3776 * Get a seqno representing the execution of the current buffer,
3777 * which we can wait on. We would like to mitigate these interrupts,
3778 * likely by only creating seqnos occasionally (so that we have
3779 * *some* interrupts representing completion of buffers that we can
3780 * wait on when trying to clear up gtt space).
3781 */
8dc5d147
CW
3782 seqno = i915_add_request(dev, file_priv, request, ring);
3783 request = NULL;
673a394b 3784
673a394b
EA
3785#if WATCH_LRU
3786 i915_dump_lru(dev, __func__);
3787#endif
3788
3789 i915_verify_inactive(dev, __FILE__, __LINE__);
3790
673a394b 3791err:
aad87dff
JL
3792 for (i = 0; i < pinned; i++)
3793 i915_gem_object_unpin(object_list[i]);
3794
b70d11da
KH
3795 for (i = 0; i < args->buffer_count; i++) {
3796 if (object_list[i]) {
23010e43 3797 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3798 obj_priv->in_execbuffer = false;
3799 }
aad87dff 3800 drm_gem_object_unreference(object_list[i]);
b70d11da 3801 }
673a394b 3802
673a394b
EA
3803 mutex_unlock(&dev->struct_mutex);
3804
93533c29 3805pre_mutex_err:
40a5f0de
EA
3806 /* Copy the updated relocations out regardless of current error
3807 * state. Failure to update the relocs would mean that the next
3808 * time userland calls execbuf, it would do so with presumed offset
3809 * state that didn't match the actual object state.
3810 */
3811 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3812 relocs);
3813 if (ret2 != 0) {
3814 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3815
3816 if (ret == 0)
3817 ret = ret2;
3818 }
3819
8e7d2b2c 3820 drm_free_large(object_list);
9a298b2a 3821 kfree(cliprects);
8dc5d147 3822 kfree(request);
673a394b
EA
3823
3824 return ret;
3825}
3826
76446cac
JB
3827/*
3828 * Legacy execbuffer just creates an exec2 list from the original exec object
3829 * list array and passes it to the real function.
3830 */
3831int
3832i915_gem_execbuffer(struct drm_device *dev, void *data,
3833 struct drm_file *file_priv)
3834{
3835 struct drm_i915_gem_execbuffer *args = data;
3836 struct drm_i915_gem_execbuffer2 exec2;
3837 struct drm_i915_gem_exec_object *exec_list = NULL;
3838 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3839 int ret, i;
3840
3841#if WATCH_EXEC
3842 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3843 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3844#endif
3845
3846 if (args->buffer_count < 1) {
3847 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3848 return -EINVAL;
3849 }
3850
3851 /* Copy in the exec list from userland */
3852 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3853 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3854 if (exec_list == NULL || exec2_list == NULL) {
3855 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3856 args->buffer_count);
3857 drm_free_large(exec_list);
3858 drm_free_large(exec2_list);
3859 return -ENOMEM;
3860 }
3861 ret = copy_from_user(exec_list,
3862 (struct drm_i915_relocation_entry __user *)
3863 (uintptr_t) args->buffers_ptr,
3864 sizeof(*exec_list) * args->buffer_count);
3865 if (ret != 0) {
3866 DRM_ERROR("copy %d exec entries failed %d\n",
3867 args->buffer_count, ret);
3868 drm_free_large(exec_list);
3869 drm_free_large(exec2_list);
3870 return -EFAULT;
3871 }
3872
3873 for (i = 0; i < args->buffer_count; i++) {
3874 exec2_list[i].handle = exec_list[i].handle;
3875 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3876 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3877 exec2_list[i].alignment = exec_list[i].alignment;
3878 exec2_list[i].offset = exec_list[i].offset;
3879 if (!IS_I965G(dev))
3880 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3881 else
3882 exec2_list[i].flags = 0;
3883 }
3884
3885 exec2.buffers_ptr = args->buffers_ptr;
3886 exec2.buffer_count = args->buffer_count;
3887 exec2.batch_start_offset = args->batch_start_offset;
3888 exec2.batch_len = args->batch_len;
3889 exec2.DR1 = args->DR1;
3890 exec2.DR4 = args->DR4;
3891 exec2.num_cliprects = args->num_cliprects;
3892 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3893 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3894
3895 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3896 if (!ret) {
3897 /* Copy the new buffer offsets back to the user's exec list. */
3898 for (i = 0; i < args->buffer_count; i++)
3899 exec_list[i].offset = exec2_list[i].offset;
3900 /* ... and back out to userspace */
3901 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3902 (uintptr_t) args->buffers_ptr,
3903 exec_list,
3904 sizeof(*exec_list) * args->buffer_count);
3905 if (ret) {
3906 ret = -EFAULT;
3907 DRM_ERROR("failed to copy %d exec entries "
3908 "back to user (%d)\n",
3909 args->buffer_count, ret);
3910 }
76446cac
JB
3911 }
3912
3913 drm_free_large(exec_list);
3914 drm_free_large(exec2_list);
3915 return ret;
3916}
3917
3918int
3919i915_gem_execbuffer2(struct drm_device *dev, void *data,
3920 struct drm_file *file_priv)
3921{
3922 struct drm_i915_gem_execbuffer2 *args = data;
3923 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3924 int ret;
3925
3926#if WATCH_EXEC
3927 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3928 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3929#endif
3930
3931 if (args->buffer_count < 1) {
3932 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3933 return -EINVAL;
3934 }
3935
3936 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3937 if (exec2_list == NULL) {
3938 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3939 args->buffer_count);
3940 return -ENOMEM;
3941 }
3942 ret = copy_from_user(exec2_list,
3943 (struct drm_i915_relocation_entry __user *)
3944 (uintptr_t) args->buffers_ptr,
3945 sizeof(*exec2_list) * args->buffer_count);
3946 if (ret != 0) {
3947 DRM_ERROR("copy %d exec entries failed %d\n",
3948 args->buffer_count, ret);
3949 drm_free_large(exec2_list);
3950 return -EFAULT;
3951 }
3952
3953 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3954 if (!ret) {
3955 /* Copy the new buffer offsets back to the user's exec list. */
3956 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3957 (uintptr_t) args->buffers_ptr,
3958 exec2_list,
3959 sizeof(*exec2_list) * args->buffer_count);
3960 if (ret) {
3961 ret = -EFAULT;
3962 DRM_ERROR("failed to copy %d exec entries "
3963 "back to user (%d)\n",
3964 args->buffer_count, ret);
3965 }
3966 }
3967
3968 drm_free_large(exec2_list);
3969 return ret;
3970}
3971
673a394b
EA
3972int
3973i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3974{
3975 struct drm_device *dev = obj->dev;
23010e43 3976 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3977 int ret;
3978
778c3544
DV
3979 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3980
673a394b 3981 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
3982
3983 if (obj_priv->gtt_space != NULL) {
3984 if (alignment == 0)
3985 alignment = i915_gem_get_gtt_alignment(obj);
3986 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
3987 WARN(obj_priv->pin_count,
3988 "bo is already pinned with incorrect alignment:"
3989 " offset=%x, req.alignment=%x\n",
3990 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
3991 ret = i915_gem_object_unbind(obj);
3992 if (ret)
3993 return ret;
3994 }
3995 }
3996
673a394b
EA
3997 if (obj_priv->gtt_space == NULL) {
3998 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 3999 if (ret)
673a394b 4000 return ret;
22c344e9 4001 }
76446cac 4002
673a394b
EA
4003 obj_priv->pin_count++;
4004
4005 /* If the object is not active and not pending a flush,
4006 * remove it from the inactive list
4007 */
4008 if (obj_priv->pin_count == 1) {
4009 atomic_inc(&dev->pin_count);
4010 atomic_add(obj->size, &dev->pin_memory);
4011 if (!obj_priv->active &&
bf1a1092 4012 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4013 list_del_init(&obj_priv->list);
4014 }
4015 i915_verify_inactive(dev, __FILE__, __LINE__);
4016
4017 return 0;
4018}
4019
4020void
4021i915_gem_object_unpin(struct drm_gem_object *obj)
4022{
4023 struct drm_device *dev = obj->dev;
4024 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4025 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4026
4027 i915_verify_inactive(dev, __FILE__, __LINE__);
4028 obj_priv->pin_count--;
4029 BUG_ON(obj_priv->pin_count < 0);
4030 BUG_ON(obj_priv->gtt_space == NULL);
4031
4032 /* If the object is no longer pinned, and is
4033 * neither active nor being flushed, then stick it on
4034 * the inactive list
4035 */
4036 if (obj_priv->pin_count == 0) {
4037 if (!obj_priv->active &&
21d509e3 4038 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4039 list_move_tail(&obj_priv->list,
4040 &dev_priv->mm.inactive_list);
4041 atomic_dec(&dev->pin_count);
4042 atomic_sub(obj->size, &dev->pin_memory);
4043 }
4044 i915_verify_inactive(dev, __FILE__, __LINE__);
4045}
4046
4047int
4048i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4049 struct drm_file *file_priv)
4050{
4051 struct drm_i915_gem_pin *args = data;
4052 struct drm_gem_object *obj;
4053 struct drm_i915_gem_object *obj_priv;
4054 int ret;
4055
4056 mutex_lock(&dev->struct_mutex);
4057
4058 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4059 if (obj == NULL) {
4060 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4061 args->handle);
4062 mutex_unlock(&dev->struct_mutex);
bf79cb91 4063 return -ENOENT;
673a394b 4064 }
23010e43 4065 obj_priv = to_intel_bo(obj);
673a394b 4066
bb6baf76
CW
4067 if (obj_priv->madv != I915_MADV_WILLNEED) {
4068 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4069 drm_gem_object_unreference(obj);
4070 mutex_unlock(&dev->struct_mutex);
4071 return -EINVAL;
4072 }
4073
79e53945
JB
4074 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4075 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4076 args->handle);
96dec61d 4077 drm_gem_object_unreference(obj);
673a394b 4078 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4079 return -EINVAL;
4080 }
4081
4082 obj_priv->user_pin_count++;
4083 obj_priv->pin_filp = file_priv;
4084 if (obj_priv->user_pin_count == 1) {
4085 ret = i915_gem_object_pin(obj, args->alignment);
4086 if (ret != 0) {
4087 drm_gem_object_unreference(obj);
4088 mutex_unlock(&dev->struct_mutex);
4089 return ret;
4090 }
673a394b
EA
4091 }
4092
4093 /* XXX - flush the CPU caches for pinned objects
4094 * as the X server doesn't manage domains yet
4095 */
e47c68e9 4096 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4097 args->offset = obj_priv->gtt_offset;
4098 drm_gem_object_unreference(obj);
4099 mutex_unlock(&dev->struct_mutex);
4100
4101 return 0;
4102}
4103
4104int
4105i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4106 struct drm_file *file_priv)
4107{
4108 struct drm_i915_gem_pin *args = data;
4109 struct drm_gem_object *obj;
79e53945 4110 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4111
4112 mutex_lock(&dev->struct_mutex);
4113
4114 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4115 if (obj == NULL) {
4116 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4117 args->handle);
4118 mutex_unlock(&dev->struct_mutex);
bf79cb91 4119 return -ENOENT;
673a394b
EA
4120 }
4121
23010e43 4122 obj_priv = to_intel_bo(obj);
79e53945
JB
4123 if (obj_priv->pin_filp != file_priv) {
4124 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4125 args->handle);
4126 drm_gem_object_unreference(obj);
4127 mutex_unlock(&dev->struct_mutex);
4128 return -EINVAL;
4129 }
4130 obj_priv->user_pin_count--;
4131 if (obj_priv->user_pin_count == 0) {
4132 obj_priv->pin_filp = NULL;
4133 i915_gem_object_unpin(obj);
4134 }
673a394b
EA
4135
4136 drm_gem_object_unreference(obj);
4137 mutex_unlock(&dev->struct_mutex);
4138 return 0;
4139}
4140
4141int
4142i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4143 struct drm_file *file_priv)
4144{
4145 struct drm_i915_gem_busy *args = data;
4146 struct drm_gem_object *obj;
4147 struct drm_i915_gem_object *obj_priv;
4148
673a394b
EA
4149 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4150 if (obj == NULL) {
4151 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4152 args->handle);
bf79cb91 4153 return -ENOENT;
673a394b
EA
4154 }
4155
b1ce786c 4156 mutex_lock(&dev->struct_mutex);
d1b851fc 4157
0be555b6
CW
4158 /* Count all active objects as busy, even if they are currently not used
4159 * by the gpu. Users of this interface expect objects to eventually
4160 * become non-busy without any further actions, therefore emit any
4161 * necessary flushes here.
c4de0a5d 4162 */
0be555b6
CW
4163 obj_priv = to_intel_bo(obj);
4164 args->busy = obj_priv->active;
4165 if (args->busy) {
4166 /* Unconditionally flush objects, even when the gpu still uses this
4167 * object. Userspace calling this function indicates that it wants to
4168 * use this buffer rather sooner than later, so issuing the required
4169 * flush earlier is beneficial.
4170 */
4171 if (obj->write_domain) {
4172 i915_gem_flush(dev, 0, obj->write_domain);
8dc5d147 4173 (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
0be555b6
CW
4174 }
4175
4176 /* Update the active list for the hardware's current position.
4177 * Otherwise this only updates on a delayed timer or when irqs
4178 * are actually unmasked, and our working set ends up being
4179 * larger than required.
4180 */
4181 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4182
4183 args->busy = obj_priv->active;
4184 }
673a394b
EA
4185
4186 drm_gem_object_unreference(obj);
4187 mutex_unlock(&dev->struct_mutex);
4188 return 0;
4189}
4190
4191int
4192i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4193 struct drm_file *file_priv)
4194{
4195 return i915_gem_ring_throttle(dev, file_priv);
4196}
4197
3ef94daa
CW
4198int
4199i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4200 struct drm_file *file_priv)
4201{
4202 struct drm_i915_gem_madvise *args = data;
4203 struct drm_gem_object *obj;
4204 struct drm_i915_gem_object *obj_priv;
4205
4206 switch (args->madv) {
4207 case I915_MADV_DONTNEED:
4208 case I915_MADV_WILLNEED:
4209 break;
4210 default:
4211 return -EINVAL;
4212 }
4213
4214 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4215 if (obj == NULL) {
4216 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4217 args->handle);
bf79cb91 4218 return -ENOENT;
3ef94daa
CW
4219 }
4220
4221 mutex_lock(&dev->struct_mutex);
23010e43 4222 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4223
4224 if (obj_priv->pin_count) {
4225 drm_gem_object_unreference(obj);
4226 mutex_unlock(&dev->struct_mutex);
4227
4228 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4229 return -EINVAL;
4230 }
4231
bb6baf76
CW
4232 if (obj_priv->madv != __I915_MADV_PURGED)
4233 obj_priv->madv = args->madv;
3ef94daa 4234
2d7ef395
CW
4235 /* if the object is no longer bound, discard its backing storage */
4236 if (i915_gem_object_is_purgeable(obj_priv) &&
4237 obj_priv->gtt_space == NULL)
4238 i915_gem_object_truncate(obj);
4239
bb6baf76
CW
4240 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4241
3ef94daa
CW
4242 drm_gem_object_unreference(obj);
4243 mutex_unlock(&dev->struct_mutex);
4244
4245 return 0;
4246}
4247
ac52bc56
DV
4248struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4249 size_t size)
4250{
c397b908 4251 struct drm_i915_gem_object *obj;
ac52bc56 4252
c397b908
DV
4253 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4254 if (obj == NULL)
4255 return NULL;
673a394b 4256
c397b908
DV
4257 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4258 kfree(obj);
4259 return NULL;
4260 }
673a394b 4261
c397b908
DV
4262 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4263 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4264
c397b908 4265 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4266 obj->base.driver_private = NULL;
c397b908
DV
4267 obj->fence_reg = I915_FENCE_REG_NONE;
4268 INIT_LIST_HEAD(&obj->list);
4269 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4270 obj->madv = I915_MADV_WILLNEED;
de151cf6 4271
c397b908
DV
4272 trace_i915_gem_object_create(&obj->base);
4273
4274 return &obj->base;
4275}
4276
4277int i915_gem_init_object(struct drm_gem_object *obj)
4278{
4279 BUG();
de151cf6 4280
673a394b
EA
4281 return 0;
4282}
4283
be72615b 4284static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4285{
de151cf6 4286 struct drm_device *dev = obj->dev;
be72615b 4287 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4288 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4289 int ret;
673a394b 4290
be72615b
CW
4291 ret = i915_gem_object_unbind(obj);
4292 if (ret == -ERESTARTSYS) {
4293 list_move(&obj_priv->list,
4294 &dev_priv->mm.deferred_free_list);
4295 return;
4296 }
673a394b 4297
7e616158
CW
4298 if (obj_priv->mmap_offset)
4299 i915_gem_free_mmap_offset(obj);
de151cf6 4300
c397b908
DV
4301 drm_gem_object_release(obj);
4302
9a298b2a 4303 kfree(obj_priv->page_cpu_valid);
280b713b 4304 kfree(obj_priv->bit_17);
c397b908 4305 kfree(obj_priv);
673a394b
EA
4306}
4307
be72615b
CW
4308void i915_gem_free_object(struct drm_gem_object *obj)
4309{
4310 struct drm_device *dev = obj->dev;
4311 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4312
4313 trace_i915_gem_object_destroy(obj);
4314
4315 while (obj_priv->pin_count > 0)
4316 i915_gem_object_unpin(obj);
4317
4318 if (obj_priv->phys_obj)
4319 i915_gem_detach_phys_object(dev, obj);
4320
4321 i915_gem_free_object_tail(obj);
4322}
4323
29105ccc
CW
4324int
4325i915_gem_idle(struct drm_device *dev)
4326{
4327 drm_i915_private_t *dev_priv = dev->dev_private;
4328 int ret;
28dfe52a 4329
29105ccc 4330 mutex_lock(&dev->struct_mutex);
1c5d22f7 4331
8187a2b7 4332 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4333 (dev_priv->render_ring.gem_object == NULL) ||
4334 (HAS_BSD(dev) &&
4335 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4336 mutex_unlock(&dev->struct_mutex);
4337 return 0;
28dfe52a
EA
4338 }
4339
29105ccc 4340 ret = i915_gpu_idle(dev);
6dbe2772
KP
4341 if (ret) {
4342 mutex_unlock(&dev->struct_mutex);
673a394b 4343 return ret;
6dbe2772 4344 }
673a394b 4345
29105ccc
CW
4346 /* Under UMS, be paranoid and evict. */
4347 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4348 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4349 if (ret) {
4350 mutex_unlock(&dev->struct_mutex);
4351 return ret;
4352 }
4353 }
4354
4355 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4356 * We need to replace this with a semaphore, or something.
4357 * And not confound mm.suspended!
4358 */
4359 dev_priv->mm.suspended = 1;
bc0c7f14 4360 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4361
4362 i915_kernel_lost_context(dev);
6dbe2772 4363 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4364
6dbe2772
KP
4365 mutex_unlock(&dev->struct_mutex);
4366
29105ccc
CW
4367 /* Cancel the retire work handler, which should be idle now. */
4368 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4369
673a394b
EA
4370 return 0;
4371}
4372
e552eb70
JB
4373/*
4374 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4375 * over cache flushing.
4376 */
8187a2b7 4377static int
e552eb70
JB
4378i915_gem_init_pipe_control(struct drm_device *dev)
4379{
4380 drm_i915_private_t *dev_priv = dev->dev_private;
4381 struct drm_gem_object *obj;
4382 struct drm_i915_gem_object *obj_priv;
4383 int ret;
4384
34dc4d44 4385 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4386 if (obj == NULL) {
4387 DRM_ERROR("Failed to allocate seqno page\n");
4388 ret = -ENOMEM;
4389 goto err;
4390 }
4391 obj_priv = to_intel_bo(obj);
4392 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4393
4394 ret = i915_gem_object_pin(obj, 4096);
4395 if (ret)
4396 goto err_unref;
4397
4398 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4399 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4400 if (dev_priv->seqno_page == NULL)
4401 goto err_unpin;
4402
4403 dev_priv->seqno_obj = obj;
4404 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4405
4406 return 0;
4407
4408err_unpin:
4409 i915_gem_object_unpin(obj);
4410err_unref:
4411 drm_gem_object_unreference(obj);
4412err:
4413 return ret;
4414}
4415
8187a2b7
ZN
4416
4417static void
e552eb70
JB
4418i915_gem_cleanup_pipe_control(struct drm_device *dev)
4419{
4420 drm_i915_private_t *dev_priv = dev->dev_private;
4421 struct drm_gem_object *obj;
4422 struct drm_i915_gem_object *obj_priv;
4423
4424 obj = dev_priv->seqno_obj;
4425 obj_priv = to_intel_bo(obj);
4426 kunmap(obj_priv->pages[0]);
4427 i915_gem_object_unpin(obj);
4428 drm_gem_object_unreference(obj);
4429 dev_priv->seqno_obj = NULL;
4430
4431 dev_priv->seqno_page = NULL;
673a394b
EA
4432}
4433
8187a2b7
ZN
4434int
4435i915_gem_init_ringbuffer(struct drm_device *dev)
4436{
4437 drm_i915_private_t *dev_priv = dev->dev_private;
4438 int ret;
68f95ba9 4439
8187a2b7 4440 dev_priv->render_ring = render_ring;
68f95ba9 4441
8187a2b7
ZN
4442 if (!I915_NEED_GFX_HWS(dev)) {
4443 dev_priv->render_ring.status_page.page_addr
4444 = dev_priv->status_page_dmah->vaddr;
4445 memset(dev_priv->render_ring.status_page.page_addr,
4446 0, PAGE_SIZE);
4447 }
68f95ba9 4448
8187a2b7
ZN
4449 if (HAS_PIPE_CONTROL(dev)) {
4450 ret = i915_gem_init_pipe_control(dev);
4451 if (ret)
4452 return ret;
4453 }
68f95ba9 4454
8187a2b7 4455 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4456 if (ret)
4457 goto cleanup_pipe_control;
4458
4459 if (HAS_BSD(dev)) {
d1b851fc
ZN
4460 dev_priv->bsd_ring = bsd_ring;
4461 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4462 if (ret)
4463 goto cleanup_render_ring;
d1b851fc 4464 }
68f95ba9 4465
6f392d54
CW
4466 dev_priv->next_seqno = 1;
4467
68f95ba9
CW
4468 return 0;
4469
4470cleanup_render_ring:
4471 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4472cleanup_pipe_control:
4473 if (HAS_PIPE_CONTROL(dev))
4474 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4475 return ret;
4476}
4477
4478void
4479i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4480{
4481 drm_i915_private_t *dev_priv = dev->dev_private;
4482
4483 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4484 if (HAS_BSD(dev))
4485 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4486 if (HAS_PIPE_CONTROL(dev))
4487 i915_gem_cleanup_pipe_control(dev);
4488}
4489
673a394b
EA
4490int
4491i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4492 struct drm_file *file_priv)
4493{
4494 drm_i915_private_t *dev_priv = dev->dev_private;
4495 int ret;
4496
79e53945
JB
4497 if (drm_core_check_feature(dev, DRIVER_MODESET))
4498 return 0;
4499
ba1234d1 4500 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4501 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4502 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4503 }
4504
673a394b 4505 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4506 dev_priv->mm.suspended = 0;
4507
4508 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4509 if (ret != 0) {
4510 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4511 return ret;
d816f6ac 4512 }
9bb2d6f9 4513
852835f3 4514 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4515 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4516 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4517 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4518 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4519 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4520 mutex_unlock(&dev->struct_mutex);
dbb19d30 4521
5f35308b
CW
4522 ret = drm_irq_install(dev);
4523 if (ret)
4524 goto cleanup_ringbuffer;
dbb19d30 4525
673a394b 4526 return 0;
5f35308b
CW
4527
4528cleanup_ringbuffer:
4529 mutex_lock(&dev->struct_mutex);
4530 i915_gem_cleanup_ringbuffer(dev);
4531 dev_priv->mm.suspended = 1;
4532 mutex_unlock(&dev->struct_mutex);
4533
4534 return ret;
673a394b
EA
4535}
4536
4537int
4538i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4539 struct drm_file *file_priv)
4540{
79e53945
JB
4541 if (drm_core_check_feature(dev, DRIVER_MODESET))
4542 return 0;
4543
dbb19d30 4544 drm_irq_uninstall(dev);
e6890f6f 4545 return i915_gem_idle(dev);
673a394b
EA
4546}
4547
4548void
4549i915_gem_lastclose(struct drm_device *dev)
4550{
4551 int ret;
673a394b 4552
e806b495
EA
4553 if (drm_core_check_feature(dev, DRIVER_MODESET))
4554 return;
4555
6dbe2772
KP
4556 ret = i915_gem_idle(dev);
4557 if (ret)
4558 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4559}
4560
4561void
4562i915_gem_load(struct drm_device *dev)
4563{
b5aa8a0f 4564 int i;
673a394b
EA
4565 drm_i915_private_t *dev_priv = dev->dev_private;
4566
673a394b 4567 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4568 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4569 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4570 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4571 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4572 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4573 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4574 if (HAS_BSD(dev)) {
4575 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4576 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4577 }
007cc8ac
DV
4578 for (i = 0; i < 16; i++)
4579 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4580 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4581 i915_gem_retire_work_handler);
31169714
CW
4582 spin_lock(&shrink_list_lock);
4583 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4584 spin_unlock(&shrink_list_lock);
4585
94400120
DA
4586 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4587 if (IS_GEN3(dev)) {
4588 u32 tmp = I915_READ(MI_ARB_STATE);
4589 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4590 /* arb state is a masked write, so set bit + bit in mask */
4591 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4592 I915_WRITE(MI_ARB_STATE, tmp);
4593 }
4594 }
4595
de151cf6 4596 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4597 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4598 dev_priv->fence_reg_start = 3;
de151cf6 4599
0f973f27 4600 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4601 dev_priv->num_fence_regs = 16;
4602 else
4603 dev_priv->num_fence_regs = 8;
4604
b5aa8a0f
GH
4605 /* Initialize fence registers to zero */
4606 if (IS_I965G(dev)) {
4607 for (i = 0; i < 16; i++)
4608 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4609 } else {
4610 for (i = 0; i < 8; i++)
4611 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4612 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4613 for (i = 0; i < 8; i++)
4614 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4615 }
673a394b 4616 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4617 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4618}
71acb5eb
DA
4619
4620/*
4621 * Create a physically contiguous memory object for this object
4622 * e.g. for cursor + overlay regs
4623 */
995b6762
CW
4624static int i915_gem_init_phys_object(struct drm_device *dev,
4625 int id, int size, int align)
71acb5eb
DA
4626{
4627 drm_i915_private_t *dev_priv = dev->dev_private;
4628 struct drm_i915_gem_phys_object *phys_obj;
4629 int ret;
4630
4631 if (dev_priv->mm.phys_objs[id - 1] || !size)
4632 return 0;
4633
9a298b2a 4634 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4635 if (!phys_obj)
4636 return -ENOMEM;
4637
4638 phys_obj->id = id;
4639
6eeefaf3 4640 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4641 if (!phys_obj->handle) {
4642 ret = -ENOMEM;
4643 goto kfree_obj;
4644 }
4645#ifdef CONFIG_X86
4646 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4647#endif
4648
4649 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4650
4651 return 0;
4652kfree_obj:
9a298b2a 4653 kfree(phys_obj);
71acb5eb
DA
4654 return ret;
4655}
4656
995b6762 4657static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4658{
4659 drm_i915_private_t *dev_priv = dev->dev_private;
4660 struct drm_i915_gem_phys_object *phys_obj;
4661
4662 if (!dev_priv->mm.phys_objs[id - 1])
4663 return;
4664
4665 phys_obj = dev_priv->mm.phys_objs[id - 1];
4666 if (phys_obj->cur_obj) {
4667 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4668 }
4669
4670#ifdef CONFIG_X86
4671 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4672#endif
4673 drm_pci_free(dev, phys_obj->handle);
4674 kfree(phys_obj);
4675 dev_priv->mm.phys_objs[id - 1] = NULL;
4676}
4677
4678void i915_gem_free_all_phys_object(struct drm_device *dev)
4679{
4680 int i;
4681
260883c8 4682 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4683 i915_gem_free_phys_object(dev, i);
4684}
4685
4686void i915_gem_detach_phys_object(struct drm_device *dev,
4687 struct drm_gem_object *obj)
4688{
4689 struct drm_i915_gem_object *obj_priv;
4690 int i;
4691 int ret;
4692 int page_count;
4693
23010e43 4694 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4695 if (!obj_priv->phys_obj)
4696 return;
4697
4bdadb97 4698 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4699 if (ret)
4700 goto out;
4701
4702 page_count = obj->size / PAGE_SIZE;
4703
4704 for (i = 0; i < page_count; i++) {
856fa198 4705 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4706 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4707
4708 memcpy(dst, src, PAGE_SIZE);
4709 kunmap_atomic(dst, KM_USER0);
4710 }
856fa198 4711 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4712 drm_agp_chipset_flush(dev);
d78b47b9
CW
4713
4714 i915_gem_object_put_pages(obj);
71acb5eb
DA
4715out:
4716 obj_priv->phys_obj->cur_obj = NULL;
4717 obj_priv->phys_obj = NULL;
4718}
4719
4720int
4721i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4722 struct drm_gem_object *obj,
4723 int id,
4724 int align)
71acb5eb
DA
4725{
4726 drm_i915_private_t *dev_priv = dev->dev_private;
4727 struct drm_i915_gem_object *obj_priv;
4728 int ret = 0;
4729 int page_count;
4730 int i;
4731
4732 if (id > I915_MAX_PHYS_OBJECT)
4733 return -EINVAL;
4734
23010e43 4735 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4736
4737 if (obj_priv->phys_obj) {
4738 if (obj_priv->phys_obj->id == id)
4739 return 0;
4740 i915_gem_detach_phys_object(dev, obj);
4741 }
4742
71acb5eb
DA
4743 /* create a new object */
4744 if (!dev_priv->mm.phys_objs[id - 1]) {
4745 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4746 obj->size, align);
71acb5eb 4747 if (ret) {
aeb565df 4748 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4749 goto out;
4750 }
4751 }
4752
4753 /* bind to the object */
4754 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4755 obj_priv->phys_obj->cur_obj = obj;
4756
4bdadb97 4757 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4758 if (ret) {
4759 DRM_ERROR("failed to get page list\n");
4760 goto out;
4761 }
4762
4763 page_count = obj->size / PAGE_SIZE;
4764
4765 for (i = 0; i < page_count; i++) {
856fa198 4766 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4767 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4768
4769 memcpy(dst, src, PAGE_SIZE);
4770 kunmap_atomic(src, KM_USER0);
4771 }
4772
d78b47b9
CW
4773 i915_gem_object_put_pages(obj);
4774
71acb5eb
DA
4775 return 0;
4776out:
4777 return ret;
4778}
4779
4780static int
4781i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4782 struct drm_i915_gem_pwrite *args,
4783 struct drm_file *file_priv)
4784{
23010e43 4785 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4786 void *obj_addr;
4787 int ret;
4788 char __user *user_data;
4789
4790 user_data = (char __user *) (uintptr_t) args->data_ptr;
4791 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4792
44d98a61 4793 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4794 ret = copy_from_user(obj_addr, user_data, args->size);
4795 if (ret)
4796 return -EFAULT;
4797
4798 drm_agp_chipset_flush(dev);
4799 return 0;
4800}
b962442e
EA
4801
4802void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4803{
4804 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4805
4806 /* Clean up our request list when the client is going away, so that
4807 * later retire_requests won't dereference our soon-to-be-gone
4808 * file_priv.
4809 */
4810 mutex_lock(&dev->struct_mutex);
4811 while (!list_empty(&i915_file_priv->mm.request_list))
4812 list_del_init(i915_file_priv->mm.request_list.next);
4813 mutex_unlock(&dev->struct_mutex);
4814}
31169714 4815
1637ef41
CW
4816static int
4817i915_gpu_is_active(struct drm_device *dev)
4818{
4819 drm_i915_private_t *dev_priv = dev->dev_private;
4820 int lists_empty;
4821
1637ef41 4822 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4823 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4824 if (HAS_BSD(dev))
4825 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4826
4827 return !lists_empty;
4828}
4829
31169714 4830static int
7f8275d0 4831i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4832{
4833 drm_i915_private_t *dev_priv, *next_dev;
4834 struct drm_i915_gem_object *obj_priv, *next_obj;
4835 int cnt = 0;
4836 int would_deadlock = 1;
4837
4838 /* "fast-path" to count number of available objects */
4839 if (nr_to_scan == 0) {
4840 spin_lock(&shrink_list_lock);
4841 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4842 struct drm_device *dev = dev_priv->dev;
4843
4844 if (mutex_trylock(&dev->struct_mutex)) {
4845 list_for_each_entry(obj_priv,
4846 &dev_priv->mm.inactive_list,
4847 list)
4848 cnt++;
4849 mutex_unlock(&dev->struct_mutex);
4850 }
4851 }
4852 spin_unlock(&shrink_list_lock);
4853
4854 return (cnt / 100) * sysctl_vfs_cache_pressure;
4855 }
4856
4857 spin_lock(&shrink_list_lock);
4858
1637ef41 4859rescan:
31169714
CW
4860 /* first scan for clean buffers */
4861 list_for_each_entry_safe(dev_priv, next_dev,
4862 &shrink_list, mm.shrink_list) {
4863 struct drm_device *dev = dev_priv->dev;
4864
4865 if (! mutex_trylock(&dev->struct_mutex))
4866 continue;
4867
4868 spin_unlock(&shrink_list_lock);
b09a1fec 4869 i915_gem_retire_requests(dev);
31169714
CW
4870
4871 list_for_each_entry_safe(obj_priv, next_obj,
4872 &dev_priv->mm.inactive_list,
4873 list) {
4874 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4875 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4876 if (--nr_to_scan <= 0)
4877 break;
4878 }
4879 }
4880
4881 spin_lock(&shrink_list_lock);
4882 mutex_unlock(&dev->struct_mutex);
4883
963b4836
CW
4884 would_deadlock = 0;
4885
31169714
CW
4886 if (nr_to_scan <= 0)
4887 break;
4888 }
4889
4890 /* second pass, evict/count anything still on the inactive list */
4891 list_for_each_entry_safe(dev_priv, next_dev,
4892 &shrink_list, mm.shrink_list) {
4893 struct drm_device *dev = dev_priv->dev;
4894
4895 if (! mutex_trylock(&dev->struct_mutex))
4896 continue;
4897
4898 spin_unlock(&shrink_list_lock);
4899
4900 list_for_each_entry_safe(obj_priv, next_obj,
4901 &dev_priv->mm.inactive_list,
4902 list) {
4903 if (nr_to_scan > 0) {
a8089e84 4904 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4905 nr_to_scan--;
4906 } else
4907 cnt++;
4908 }
4909
4910 spin_lock(&shrink_list_lock);
4911 mutex_unlock(&dev->struct_mutex);
4912
4913 would_deadlock = 0;
4914 }
4915
1637ef41
CW
4916 if (nr_to_scan) {
4917 int active = 0;
4918
4919 /*
4920 * We are desperate for pages, so as a last resort, wait
4921 * for the GPU to finish and discard whatever we can.
4922 * This has a dramatic impact to reduce the number of
4923 * OOM-killer events whilst running the GPU aggressively.
4924 */
4925 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4926 struct drm_device *dev = dev_priv->dev;
4927
4928 if (!mutex_trylock(&dev->struct_mutex))
4929 continue;
4930
4931 spin_unlock(&shrink_list_lock);
4932
4933 if (i915_gpu_is_active(dev)) {
4934 i915_gpu_idle(dev);
4935 active++;
4936 }
4937
4938 spin_lock(&shrink_list_lock);
4939 mutex_unlock(&dev->struct_mutex);
4940 }
4941
4942 if (active)
4943 goto rescan;
4944 }
4945
31169714
CW
4946 spin_unlock(&shrink_list_lock);
4947
4948 if (would_deadlock)
4949 return -1;
4950 else if (cnt > 0)
4951 return (cnt / 100) * sysctl_vfs_cache_pressure;
4952 else
4953 return 0;
4954}
4955
4956static struct shrinker shrinker = {
4957 .shrink = i915_gem_shrink,
4958 .seeks = DEFAULT_SEEKS,
4959};
4960
4961__init void
4962i915_gem_shrinker_init(void)
4963{
4964 register_shrinker(&shrinker);
4965}
4966
4967__exit void
4968i915_gem_shrinker_exit(void)
4969{
4970 unregister_shrinker(&shrinker);
4971}
This page took 0.519158 seconds and 5 git commands to generate.