drm/i915: Kill GTT mappings when moving from GTT domain
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6 53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
920afa77 54 unsigned alignment, bool mappable);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
17250b71
CW
61static int i915_gem_inactive_shrink(struct shrinker *shrinker,
62 int nr_to_scan,
63 gfp_t gfp_mask);
64
31169714 65
73aa808f
CW
66/* some bookkeeping */
67static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
68 size_t size)
69{
70 dev_priv->mm.object_count++;
71 dev_priv->mm.object_memory += size;
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
79}
80
81static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
fb7d516a 82 struct drm_gem_object *obj)
73aa808f 83{
fb7d516a 84 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 85 dev_priv->mm.gtt_count++;
fb7d516a
DV
86 dev_priv->mm.gtt_memory += obj->size;
87 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
88 dev_priv->mm.mappable_gtt_used +=
89 min_t(size_t, obj->size,
90 dev_priv->mm.gtt_mappable_end
91 - obj_priv->gtt_offset);
92 }
73aa808f
CW
93}
94
95static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
fb7d516a 96 struct drm_gem_object *obj)
73aa808f 97{
fb7d516a 98 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 99 dev_priv->mm.gtt_count--;
fb7d516a
DV
100 dev_priv->mm.gtt_memory -= obj->size;
101 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
102 dev_priv->mm.mappable_gtt_used -=
103 min_t(size_t, obj->size,
104 dev_priv->mm.gtt_mappable_end
105 - obj_priv->gtt_offset);
106 }
107}
108
109/**
110 * Update the mappable working set counters. Call _only_ when there is a change
111 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
112 * @mappable: new state the changed mappable flag (either pin_ or fault_).
113 */
114static void
115i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
116 struct drm_gem_object *obj,
117 bool mappable)
118{
119 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
120
121 if (mappable) {
122 if (obj_priv->pin_mappable && obj_priv->fault_mappable)
123 /* Combined state was already mappable. */
124 return;
125 dev_priv->mm.gtt_mappable_count++;
126 dev_priv->mm.gtt_mappable_memory += obj->size;
127 } else {
128 if (obj_priv->pin_mappable || obj_priv->fault_mappable)
129 /* Combined state still mappable. */
130 return;
131 dev_priv->mm.gtt_mappable_count--;
132 dev_priv->mm.gtt_mappable_memory -= obj->size;
133 }
73aa808f
CW
134}
135
136static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
fb7d516a
DV
137 struct drm_gem_object *obj,
138 bool mappable)
73aa808f 139{
fb7d516a 140 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 141 dev_priv->mm.pin_count++;
fb7d516a
DV
142 dev_priv->mm.pin_memory += obj->size;
143 if (mappable) {
144 obj_priv->pin_mappable = true;
145 i915_gem_info_update_mappable(dev_priv, obj, true);
146 }
73aa808f
CW
147}
148
149static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
fb7d516a 150 struct drm_gem_object *obj)
73aa808f 151{
fb7d516a 152 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 153 dev_priv->mm.pin_count--;
fb7d516a
DV
154 dev_priv->mm.pin_memory -= obj->size;
155 if (obj_priv->pin_mappable) {
156 obj_priv->pin_mappable = false;
157 i915_gem_info_update_mappable(dev_priv, obj, false);
158 }
73aa808f
CW
159}
160
30dbf0c0
CW
161int
162i915_gem_check_is_wedged(struct drm_device *dev)
163{
164 struct drm_i915_private *dev_priv = dev->dev_private;
165 struct completion *x = &dev_priv->error_completion;
166 unsigned long flags;
167 int ret;
168
169 if (!atomic_read(&dev_priv->mm.wedged))
170 return 0;
171
172 ret = wait_for_completion_interruptible(x);
173 if (ret)
174 return ret;
175
176 /* Success, we reset the GPU! */
177 if (!atomic_read(&dev_priv->mm.wedged))
178 return 0;
179
180 /* GPU is hung, bump the completion count to account for
181 * the token we just consumed so that we never hit zero and
182 * end up waiting upon a subsequent completion event that
183 * will never happen.
184 */
185 spin_lock_irqsave(&x->wait.lock, flags);
186 x->done++;
187 spin_unlock_irqrestore(&x->wait.lock, flags);
188 return -EIO;
189}
190
76c1dec1
CW
191static int i915_mutex_lock_interruptible(struct drm_device *dev)
192{
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 int ret;
195
196 ret = i915_gem_check_is_wedged(dev);
197 if (ret)
198 return ret;
199
200 ret = mutex_lock_interruptible(&dev->struct_mutex);
201 if (ret)
202 return ret;
203
204 if (atomic_read(&dev_priv->mm.wedged)) {
205 mutex_unlock(&dev->struct_mutex);
206 return -EAGAIN;
207 }
208
23bc5982 209 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
210 return 0;
211}
30dbf0c0 212
7d1c4804
CW
213static inline bool
214i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
215{
216 return obj_priv->gtt_space &&
217 !obj_priv->active &&
218 obj_priv->pin_count == 0;
219}
220
73aa808f
CW
221int i915_gem_do_init(struct drm_device *dev,
222 unsigned long start,
53984635 223 unsigned long mappable_end,
79e53945 224 unsigned long end)
673a394b
EA
225{
226 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 227
79e53945
JB
228 if (start >= end ||
229 (start & (PAGE_SIZE - 1)) != 0 ||
230 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
231 return -EINVAL;
232 }
233
79e53945
JB
234 drm_mm_init(&dev_priv->mm.gtt_space, start,
235 end - start);
673a394b 236
73aa808f 237 dev_priv->mm.gtt_total = end - start;
fb7d516a 238 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 239 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945
JB
240
241 return 0;
242}
673a394b 243
79e53945
JB
244int
245i915_gem_init_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file_priv)
247{
248 struct drm_i915_gem_init *args = data;
249 int ret;
250
251 mutex_lock(&dev->struct_mutex);
53984635 252 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
253 mutex_unlock(&dev->struct_mutex);
254
79e53945 255 return ret;
673a394b
EA
256}
257
5a125c3c
EA
258int
259i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
260 struct drm_file *file_priv)
261{
73aa808f 262 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 263 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
264
265 if (!(dev->driver->driver_features & DRIVER_GEM))
266 return -ENODEV;
267
73aa808f
CW
268 mutex_lock(&dev->struct_mutex);
269 args->aper_size = dev_priv->mm.gtt_total;
270 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
271 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
272
273 return 0;
274}
275
673a394b
EA
276
277/**
278 * Creates a new mm object and returns a handle to it.
279 */
280int
281i915_gem_create_ioctl(struct drm_device *dev, void *data,
282 struct drm_file *file_priv)
283{
284 struct drm_i915_gem_create *args = data;
285 struct drm_gem_object *obj;
a1a2d1d3
PP
286 int ret;
287 u32 handle;
673a394b
EA
288
289 args->size = roundup(args->size, PAGE_SIZE);
290
291 /* Allocate the new object */
ac52bc56 292 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
293 if (obj == NULL)
294 return -ENOMEM;
295
296 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 297 if (ret) {
202f2fef
CW
298 drm_gem_object_release(obj);
299 i915_gem_info_remove_obj(dev->dev_private, obj->size);
300 kfree(obj);
673a394b 301 return ret;
1dfd9754 302 }
673a394b 303
202f2fef
CW
304 /* drop reference from allocate - handle holds it now */
305 drm_gem_object_unreference(obj);
306 trace_i915_gem_object_create(obj);
307
1dfd9754 308 args->handle = handle;
673a394b
EA
309 return 0;
310}
311
16e809ac
DV
312static bool
313i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
314{
315 struct drm_device *dev = obj->base.dev;
316 drm_i915_private_t *dev_priv = dev->dev_private;
317
318 return obj->gtt_space == NULL ||
319 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
320}
321
280b713b
EA
322static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
323{
324 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 325 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
326
327 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
328 obj_priv->tiling_mode != I915_TILING_NONE;
329}
330
99a03df5 331static inline void
40123c1f
EA
332slow_shmem_copy(struct page *dst_page,
333 int dst_offset,
334 struct page *src_page,
335 int src_offset,
336 int length)
337{
338 char *dst_vaddr, *src_vaddr;
339
99a03df5
CW
340 dst_vaddr = kmap(dst_page);
341 src_vaddr = kmap(src_page);
40123c1f
EA
342
343 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
344
99a03df5
CW
345 kunmap(src_page);
346 kunmap(dst_page);
40123c1f
EA
347}
348
99a03df5 349static inline void
280b713b
EA
350slow_shmem_bit17_copy(struct page *gpu_page,
351 int gpu_offset,
352 struct page *cpu_page,
353 int cpu_offset,
354 int length,
355 int is_read)
356{
357 char *gpu_vaddr, *cpu_vaddr;
358
359 /* Use the unswizzled path if this page isn't affected. */
360 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
361 if (is_read)
362 return slow_shmem_copy(cpu_page, cpu_offset,
363 gpu_page, gpu_offset, length);
364 else
365 return slow_shmem_copy(gpu_page, gpu_offset,
366 cpu_page, cpu_offset, length);
367 }
368
99a03df5
CW
369 gpu_vaddr = kmap(gpu_page);
370 cpu_vaddr = kmap(cpu_page);
280b713b
EA
371
372 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
373 * XORing with the other bits (A9 for Y, A9 and A10 for X)
374 */
375 while (length > 0) {
376 int cacheline_end = ALIGN(gpu_offset + 1, 64);
377 int this_length = min(cacheline_end - gpu_offset, length);
378 int swizzled_gpu_offset = gpu_offset ^ 64;
379
380 if (is_read) {
381 memcpy(cpu_vaddr + cpu_offset,
382 gpu_vaddr + swizzled_gpu_offset,
383 this_length);
384 } else {
385 memcpy(gpu_vaddr + swizzled_gpu_offset,
386 cpu_vaddr + cpu_offset,
387 this_length);
388 }
389 cpu_offset += this_length;
390 gpu_offset += this_length;
391 length -= this_length;
392 }
393
99a03df5
CW
394 kunmap(cpu_page);
395 kunmap(gpu_page);
280b713b
EA
396}
397
eb01459f
EA
398/**
399 * This is the fast shmem pread path, which attempts to copy_from_user directly
400 * from the backing pages of the object to the user's address space. On a
401 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
402 */
403static int
404i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
405 struct drm_i915_gem_pread *args,
406 struct drm_file *file_priv)
407{
23010e43 408 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e5281ccd 409 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
eb01459f 410 ssize_t remain;
e5281ccd 411 loff_t offset;
eb01459f
EA
412 char __user *user_data;
413 int page_offset, page_length;
eb01459f
EA
414
415 user_data = (char __user *) (uintptr_t) args->data_ptr;
416 remain = args->size;
417
23010e43 418 obj_priv = to_intel_bo(obj);
eb01459f
EA
419 offset = args->offset;
420
421 while (remain > 0) {
e5281ccd
CW
422 struct page *page;
423 char *vaddr;
424 int ret;
425
eb01459f
EA
426 /* Operation in this page
427 *
eb01459f
EA
428 * page_offset = offset within page
429 * page_length = bytes to copy for this page
430 */
eb01459f
EA
431 page_offset = offset & (PAGE_SIZE-1);
432 page_length = remain;
433 if ((page_offset + remain) > PAGE_SIZE)
434 page_length = PAGE_SIZE - page_offset;
435
e5281ccd
CW
436 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
437 GFP_HIGHUSER | __GFP_RECLAIMABLE);
438 if (IS_ERR(page))
439 return PTR_ERR(page);
440
441 vaddr = kmap_atomic(page);
442 ret = __copy_to_user_inatomic(user_data,
443 vaddr + page_offset,
444 page_length);
445 kunmap_atomic(vaddr);
446
447 mark_page_accessed(page);
448 page_cache_release(page);
449 if (ret)
4f27b75d 450 return -EFAULT;
eb01459f
EA
451
452 remain -= page_length;
453 user_data += page_length;
454 offset += page_length;
455 }
456
4f27b75d 457 return 0;
eb01459f
EA
458}
459
460/**
461 * This is the fallback shmem pread path, which allocates temporary storage
462 * in kernel space to copy_to_user into outside of the struct_mutex, so we
463 * can copy out of the object's backing pages while holding the struct mutex
464 * and not take page faults.
465 */
466static int
467i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
468 struct drm_i915_gem_pread *args,
469 struct drm_file *file_priv)
470{
e5281ccd 471 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 472 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
473 struct mm_struct *mm = current->mm;
474 struct page **user_pages;
475 ssize_t remain;
476 loff_t offset, pinned_pages, i;
477 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
478 int shmem_page_offset;
479 int data_page_index, data_page_offset;
eb01459f
EA
480 int page_length;
481 int ret;
482 uint64_t data_ptr = args->data_ptr;
280b713b 483 int do_bit17_swizzling;
eb01459f
EA
484
485 remain = args->size;
486
487 /* Pin the user pages containing the data. We can't fault while
488 * holding the struct mutex, yet we want to hold it while
489 * dereferencing the user data.
490 */
491 first_data_page = data_ptr / PAGE_SIZE;
492 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
493 num_pages = last_data_page - first_data_page + 1;
494
4f27b75d 495 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
496 if (user_pages == NULL)
497 return -ENOMEM;
498
4f27b75d 499 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
500 down_read(&mm->mmap_sem);
501 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 502 num_pages, 1, 0, user_pages, NULL);
eb01459f 503 up_read(&mm->mmap_sem);
4f27b75d 504 mutex_lock(&dev->struct_mutex);
eb01459f
EA
505 if (pinned_pages < num_pages) {
506 ret = -EFAULT;
4f27b75d 507 goto out;
eb01459f
EA
508 }
509
4f27b75d
CW
510 ret = i915_gem_object_set_cpu_read_domain_range(obj,
511 args->offset,
512 args->size);
07f73f69 513 if (ret)
4f27b75d 514 goto out;
eb01459f 515
4f27b75d 516 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 517
23010e43 518 obj_priv = to_intel_bo(obj);
eb01459f
EA
519 offset = args->offset;
520
521 while (remain > 0) {
e5281ccd
CW
522 struct page *page;
523
eb01459f
EA
524 /* Operation in this page
525 *
eb01459f
EA
526 * shmem_page_offset = offset within page in shmem file
527 * data_page_index = page number in get_user_pages return
528 * data_page_offset = offset with data_page_index page.
529 * page_length = bytes to copy for this page
530 */
eb01459f
EA
531 shmem_page_offset = offset & ~PAGE_MASK;
532 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
533 data_page_offset = data_ptr & ~PAGE_MASK;
534
535 page_length = remain;
536 if ((shmem_page_offset + page_length) > PAGE_SIZE)
537 page_length = PAGE_SIZE - shmem_page_offset;
538 if ((data_page_offset + page_length) > PAGE_SIZE)
539 page_length = PAGE_SIZE - data_page_offset;
540
e5281ccd
CW
541 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
542 GFP_HIGHUSER | __GFP_RECLAIMABLE);
543 if (IS_ERR(page))
544 return PTR_ERR(page);
545
280b713b 546 if (do_bit17_swizzling) {
e5281ccd 547 slow_shmem_bit17_copy(page,
280b713b 548 shmem_page_offset,
99a03df5
CW
549 user_pages[data_page_index],
550 data_page_offset,
551 page_length,
552 1);
553 } else {
554 slow_shmem_copy(user_pages[data_page_index],
555 data_page_offset,
e5281ccd 556 page,
99a03df5
CW
557 shmem_page_offset,
558 page_length);
280b713b 559 }
eb01459f 560
e5281ccd
CW
561 mark_page_accessed(page);
562 page_cache_release(page);
563
eb01459f
EA
564 remain -= page_length;
565 data_ptr += page_length;
566 offset += page_length;
567 }
568
4f27b75d 569out:
eb01459f
EA
570 for (i = 0; i < pinned_pages; i++) {
571 SetPageDirty(user_pages[i]);
e5281ccd 572 mark_page_accessed(user_pages[i]);
eb01459f
EA
573 page_cache_release(user_pages[i]);
574 }
8e7d2b2c 575 drm_free_large(user_pages);
eb01459f
EA
576
577 return ret;
578}
579
673a394b
EA
580/**
581 * Reads data from the object referenced by handle.
582 *
583 * On error, the contents of *data are undefined.
584 */
585int
586i915_gem_pread_ioctl(struct drm_device *dev, void *data,
587 struct drm_file *file_priv)
588{
589 struct drm_i915_gem_pread *args = data;
590 struct drm_gem_object *obj;
591 struct drm_i915_gem_object *obj_priv;
35b62a89 592 int ret = 0;
673a394b 593
4f27b75d 594 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 595 if (ret)
4f27b75d 596 return ret;
673a394b
EA
597
598 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
599 if (obj == NULL) {
600 ret = -ENOENT;
601 goto unlock;
4f27b75d 602 }
23010e43 603 obj_priv = to_intel_bo(obj);
673a394b 604
7dcd2499
CW
605 /* Bounds check source. */
606 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 607 ret = -EINVAL;
35b62a89 608 goto out;
ce9d419d
CW
609 }
610
35b62a89
CW
611 if (args->size == 0)
612 goto out;
613
ce9d419d
CW
614 if (!access_ok(VERIFY_WRITE,
615 (char __user *)(uintptr_t)args->data_ptr,
616 args->size)) {
617 ret = -EFAULT;
35b62a89 618 goto out;
673a394b
EA
619 }
620
b5e4feb6
CW
621 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
622 args->size);
623 if (ret) {
624 ret = -EFAULT;
625 goto out;
280b713b 626 }
673a394b 627
4f27b75d
CW
628 ret = i915_gem_object_set_cpu_read_domain_range(obj,
629 args->offset,
630 args->size);
631 if (ret)
e5281ccd 632 goto out;
4f27b75d
CW
633
634 ret = -EFAULT;
635 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 636 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
637 if (ret == -EFAULT)
638 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 639
35b62a89 640out:
4f27b75d 641 drm_gem_object_unreference(obj);
1d7cfea1 642unlock:
4f27b75d 643 mutex_unlock(&dev->struct_mutex);
eb01459f 644 return ret;
673a394b
EA
645}
646
0839ccb8
KP
647/* This is the fast write path which cannot handle
648 * page faults in the source data
9b7530cc 649 */
0839ccb8
KP
650
651static inline int
652fast_user_write(struct io_mapping *mapping,
653 loff_t page_base, int page_offset,
654 char __user *user_data,
655 int length)
9b7530cc 656{
9b7530cc 657 char *vaddr_atomic;
0839ccb8 658 unsigned long unwritten;
9b7530cc 659
3e4d3af5 660 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
661 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
662 user_data, length);
3e4d3af5 663 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 664 return unwritten;
0839ccb8
KP
665}
666
667/* Here's the write path which can sleep for
668 * page faults
669 */
670
ab34c226 671static inline void
3de09aa3
EA
672slow_kernel_write(struct io_mapping *mapping,
673 loff_t gtt_base, int gtt_offset,
674 struct page *user_page, int user_offset,
675 int length)
0839ccb8 676{
ab34c226
CW
677 char __iomem *dst_vaddr;
678 char *src_vaddr;
0839ccb8 679
ab34c226
CW
680 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
681 src_vaddr = kmap(user_page);
682
683 memcpy_toio(dst_vaddr + gtt_offset,
684 src_vaddr + user_offset,
685 length);
686
687 kunmap(user_page);
688 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
689}
690
3de09aa3
EA
691/**
692 * This is the fast pwrite path, where we copy the data directly from the
693 * user into the GTT, uncached.
694 */
673a394b 695static int
3de09aa3
EA
696i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
697 struct drm_i915_gem_pwrite *args,
698 struct drm_file *file_priv)
673a394b 699{
23010e43 700 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 701 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 702 ssize_t remain;
0839ccb8 703 loff_t offset, page_base;
673a394b 704 char __user *user_data;
0839ccb8 705 int page_offset, page_length;
673a394b
EA
706
707 user_data = (char __user *) (uintptr_t) args->data_ptr;
708 remain = args->size;
673a394b 709
23010e43 710 obj_priv = to_intel_bo(obj);
673a394b 711 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
712
713 while (remain > 0) {
714 /* Operation in this page
715 *
0839ccb8
KP
716 * page_base = page offset within aperture
717 * page_offset = offset within page
718 * page_length = bytes to copy for this page
673a394b 719 */
0839ccb8
KP
720 page_base = (offset & ~(PAGE_SIZE-1));
721 page_offset = offset & (PAGE_SIZE-1);
722 page_length = remain;
723 if ((page_offset + remain) > PAGE_SIZE)
724 page_length = PAGE_SIZE - page_offset;
725
0839ccb8 726 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
727 * source page isn't available. Return the error and we'll
728 * retry in the slow path.
0839ccb8 729 */
fbd5a26d
CW
730 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
731 page_offset, user_data, page_length))
732
733 return -EFAULT;
673a394b 734
0839ccb8
KP
735 remain -= page_length;
736 user_data += page_length;
737 offset += page_length;
673a394b 738 }
673a394b 739
fbd5a26d 740 return 0;
673a394b
EA
741}
742
3de09aa3
EA
743/**
744 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
745 * the memory and maps it using kmap_atomic for copying.
746 *
747 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
748 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
749 */
3043c60c 750static int
3de09aa3
EA
751i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
752 struct drm_i915_gem_pwrite *args,
753 struct drm_file *file_priv)
673a394b 754{
23010e43 755 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
756 drm_i915_private_t *dev_priv = dev->dev_private;
757 ssize_t remain;
758 loff_t gtt_page_base, offset;
759 loff_t first_data_page, last_data_page, num_pages;
760 loff_t pinned_pages, i;
761 struct page **user_pages;
762 struct mm_struct *mm = current->mm;
763 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 764 int ret;
3de09aa3
EA
765 uint64_t data_ptr = args->data_ptr;
766
767 remain = args->size;
768
769 /* Pin the user pages containing the data. We can't fault while
770 * holding the struct mutex, and all of the pwrite implementations
771 * want to hold it while dereferencing the user data.
772 */
773 first_data_page = data_ptr / PAGE_SIZE;
774 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
775 num_pages = last_data_page - first_data_page + 1;
776
fbd5a26d 777 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
778 if (user_pages == NULL)
779 return -ENOMEM;
780
fbd5a26d 781 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
782 down_read(&mm->mmap_sem);
783 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
784 num_pages, 0, 0, user_pages, NULL);
785 up_read(&mm->mmap_sem);
fbd5a26d 786 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
787 if (pinned_pages < num_pages) {
788 ret = -EFAULT;
789 goto out_unpin_pages;
790 }
673a394b 791
3de09aa3
EA
792 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
793 if (ret)
fbd5a26d 794 goto out_unpin_pages;
3de09aa3 795
23010e43 796 obj_priv = to_intel_bo(obj);
3de09aa3
EA
797 offset = obj_priv->gtt_offset + args->offset;
798
799 while (remain > 0) {
800 /* Operation in this page
801 *
802 * gtt_page_base = page offset within aperture
803 * gtt_page_offset = offset within page in aperture
804 * data_page_index = page number in get_user_pages return
805 * data_page_offset = offset with data_page_index page.
806 * page_length = bytes to copy for this page
807 */
808 gtt_page_base = offset & PAGE_MASK;
809 gtt_page_offset = offset & ~PAGE_MASK;
810 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
811 data_page_offset = data_ptr & ~PAGE_MASK;
812
813 page_length = remain;
814 if ((gtt_page_offset + page_length) > PAGE_SIZE)
815 page_length = PAGE_SIZE - gtt_page_offset;
816 if ((data_page_offset + page_length) > PAGE_SIZE)
817 page_length = PAGE_SIZE - data_page_offset;
818
ab34c226
CW
819 slow_kernel_write(dev_priv->mm.gtt_mapping,
820 gtt_page_base, gtt_page_offset,
821 user_pages[data_page_index],
822 data_page_offset,
823 page_length);
3de09aa3
EA
824
825 remain -= page_length;
826 offset += page_length;
827 data_ptr += page_length;
828 }
829
3de09aa3
EA
830out_unpin_pages:
831 for (i = 0; i < pinned_pages; i++)
832 page_cache_release(user_pages[i]);
8e7d2b2c 833 drm_free_large(user_pages);
3de09aa3
EA
834
835 return ret;
836}
837
40123c1f
EA
838/**
839 * This is the fast shmem pwrite path, which attempts to directly
840 * copy_from_user into the kmapped pages backing the object.
841 */
3043c60c 842static int
40123c1f
EA
843i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
844 struct drm_i915_gem_pwrite *args,
845 struct drm_file *file_priv)
673a394b 846{
e5281ccd 847 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 848 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f 849 ssize_t remain;
e5281ccd 850 loff_t offset;
40123c1f
EA
851 char __user *user_data;
852 int page_offset, page_length;
40123c1f
EA
853
854 user_data = (char __user *) (uintptr_t) args->data_ptr;
855 remain = args->size;
673a394b 856
23010e43 857 obj_priv = to_intel_bo(obj);
40123c1f
EA
858 offset = args->offset;
859 obj_priv->dirty = 1;
860
861 while (remain > 0) {
e5281ccd
CW
862 struct page *page;
863 char *vaddr;
864 int ret;
865
40123c1f
EA
866 /* Operation in this page
867 *
40123c1f
EA
868 * page_offset = offset within page
869 * page_length = bytes to copy for this page
870 */
40123c1f
EA
871 page_offset = offset & (PAGE_SIZE-1);
872 page_length = remain;
873 if ((page_offset + remain) > PAGE_SIZE)
874 page_length = PAGE_SIZE - page_offset;
875
e5281ccd
CW
876 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
877 GFP_HIGHUSER | __GFP_RECLAIMABLE);
878 if (IS_ERR(page))
879 return PTR_ERR(page);
880
881 vaddr = kmap_atomic(page, KM_USER0);
882 ret = __copy_from_user_inatomic(vaddr + page_offset,
883 user_data,
884 page_length);
885 kunmap_atomic(vaddr, KM_USER0);
886
887 set_page_dirty(page);
888 mark_page_accessed(page);
889 page_cache_release(page);
890
891 /* If we get a fault while copying data, then (presumably) our
892 * source page isn't available. Return the error and we'll
893 * retry in the slow path.
894 */
895 if (ret)
fbd5a26d 896 return -EFAULT;
40123c1f
EA
897
898 remain -= page_length;
899 user_data += page_length;
900 offset += page_length;
901 }
902
fbd5a26d 903 return 0;
40123c1f
EA
904}
905
906/**
907 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
908 * the memory and maps it using kmap_atomic for copying.
909 *
910 * This avoids taking mmap_sem for faulting on the user's address while the
911 * struct_mutex is held.
912 */
913static int
914i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file_priv)
917{
e5281ccd 918 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 919 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
920 struct mm_struct *mm = current->mm;
921 struct page **user_pages;
922 ssize_t remain;
923 loff_t offset, pinned_pages, i;
924 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 925 int shmem_page_offset;
40123c1f
EA
926 int data_page_index, data_page_offset;
927 int page_length;
928 int ret;
929 uint64_t data_ptr = args->data_ptr;
280b713b 930 int do_bit17_swizzling;
40123c1f
EA
931
932 remain = args->size;
933
934 /* Pin the user pages containing the data. We can't fault while
935 * holding the struct mutex, and all of the pwrite implementations
936 * want to hold it while dereferencing the user data.
937 */
938 first_data_page = data_ptr / PAGE_SIZE;
939 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
940 num_pages = last_data_page - first_data_page + 1;
941
4f27b75d 942 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
943 if (user_pages == NULL)
944 return -ENOMEM;
945
fbd5a26d 946 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
947 down_read(&mm->mmap_sem);
948 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
949 num_pages, 0, 0, user_pages, NULL);
950 up_read(&mm->mmap_sem);
fbd5a26d 951 mutex_lock(&dev->struct_mutex);
40123c1f
EA
952 if (pinned_pages < num_pages) {
953 ret = -EFAULT;
fbd5a26d 954 goto out;
673a394b
EA
955 }
956
fbd5a26d 957 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 958 if (ret)
fbd5a26d 959 goto out;
40123c1f 960
fbd5a26d 961 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 962
23010e43 963 obj_priv = to_intel_bo(obj);
673a394b 964 offset = args->offset;
40123c1f 965 obj_priv->dirty = 1;
673a394b 966
40123c1f 967 while (remain > 0) {
e5281ccd
CW
968 struct page *page;
969
40123c1f
EA
970 /* Operation in this page
971 *
40123c1f
EA
972 * shmem_page_offset = offset within page in shmem file
973 * data_page_index = page number in get_user_pages return
974 * data_page_offset = offset with data_page_index page.
975 * page_length = bytes to copy for this page
976 */
40123c1f
EA
977 shmem_page_offset = offset & ~PAGE_MASK;
978 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
979 data_page_offset = data_ptr & ~PAGE_MASK;
980
981 page_length = remain;
982 if ((shmem_page_offset + page_length) > PAGE_SIZE)
983 page_length = PAGE_SIZE - shmem_page_offset;
984 if ((data_page_offset + page_length) > PAGE_SIZE)
985 page_length = PAGE_SIZE - data_page_offset;
986
e5281ccd
CW
987 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
988 GFP_HIGHUSER | __GFP_RECLAIMABLE);
989 if (IS_ERR(page)) {
990 ret = PTR_ERR(page);
991 goto out;
992 }
993
280b713b 994 if (do_bit17_swizzling) {
e5281ccd 995 slow_shmem_bit17_copy(page,
280b713b
EA
996 shmem_page_offset,
997 user_pages[data_page_index],
998 data_page_offset,
99a03df5
CW
999 page_length,
1000 0);
1001 } else {
e5281ccd 1002 slow_shmem_copy(page,
99a03df5
CW
1003 shmem_page_offset,
1004 user_pages[data_page_index],
1005 data_page_offset,
1006 page_length);
280b713b 1007 }
40123c1f 1008
e5281ccd
CW
1009 set_page_dirty(page);
1010 mark_page_accessed(page);
1011 page_cache_release(page);
1012
40123c1f
EA
1013 remain -= page_length;
1014 data_ptr += page_length;
1015 offset += page_length;
673a394b
EA
1016 }
1017
fbd5a26d 1018out:
40123c1f
EA
1019 for (i = 0; i < pinned_pages; i++)
1020 page_cache_release(user_pages[i]);
8e7d2b2c 1021 drm_free_large(user_pages);
673a394b 1022
40123c1f 1023 return ret;
673a394b
EA
1024}
1025
1026/**
1027 * Writes data to the object referenced by handle.
1028 *
1029 * On error, the contents of the buffer that were to be modified are undefined.
1030 */
1031int
1032i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1033 struct drm_file *file)
673a394b
EA
1034{
1035 struct drm_i915_gem_pwrite *args = data;
1036 struct drm_gem_object *obj;
1037 struct drm_i915_gem_object *obj_priv;
1038 int ret = 0;
1039
fbd5a26d 1040 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1041 if (ret)
fbd5a26d 1042 return ret;
1d7cfea1
CW
1043
1044 obj = drm_gem_object_lookup(dev, file, args->handle);
1045 if (obj == NULL) {
1046 ret = -ENOENT;
1047 goto unlock;
fbd5a26d 1048 }
23010e43 1049 obj_priv = to_intel_bo(obj);
673a394b 1050
fbd5a26d 1051
7dcd2499
CW
1052 /* Bounds check destination. */
1053 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1054 ret = -EINVAL;
35b62a89 1055 goto out;
ce9d419d
CW
1056 }
1057
35b62a89
CW
1058 if (args->size == 0)
1059 goto out;
1060
ce9d419d
CW
1061 if (!access_ok(VERIFY_READ,
1062 (char __user *)(uintptr_t)args->data_ptr,
1063 args->size)) {
1064 ret = -EFAULT;
35b62a89 1065 goto out;
673a394b
EA
1066 }
1067
b5e4feb6
CW
1068 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1069 args->size);
1070 if (ret) {
1071 ret = -EFAULT;
1072 goto out;
673a394b
EA
1073 }
1074
1075 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1076 * it would end up going through the fenced access, and we'll get
1077 * different detiling behavior between reading and writing.
1078 * pread/pwrite currently are reading and writing from the CPU
1079 * perspective, requiring manual detiling by the client.
1080 */
71acb5eb 1081 if (obj_priv->phys_obj)
fbd5a26d 1082 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1083 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1084 obj_priv->gtt_space &&
9b8c4a0b 1085 obj->write_domain != I915_GEM_DOMAIN_CPU) {
920afa77 1086 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1087 if (ret)
1088 goto out;
1089
1090 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1091 if (ret)
1092 goto out_unpin;
1093
1094 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1095 if (ret == -EFAULT)
1096 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1097
1098out_unpin:
1099 i915_gem_object_unpin(obj);
40123c1f 1100 } else {
fbd5a26d
CW
1101 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1102 if (ret)
e5281ccd 1103 goto out;
673a394b 1104
fbd5a26d
CW
1105 ret = -EFAULT;
1106 if (!i915_gem_object_needs_bit17_swizzle(obj))
1107 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1108 if (ret == -EFAULT)
1109 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1110 }
673a394b 1111
35b62a89 1112out:
fbd5a26d 1113 drm_gem_object_unreference(obj);
1d7cfea1 1114unlock:
fbd5a26d 1115 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1116 return ret;
1117}
1118
1119/**
2ef7eeaa
EA
1120 * Called when user space prepares to use an object with the CPU, either
1121 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1122 */
1123int
1124i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1125 struct drm_file *file_priv)
1126{
a09ba7fa 1127 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1128 struct drm_i915_gem_set_domain *args = data;
1129 struct drm_gem_object *obj;
652c393a 1130 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1131 uint32_t read_domains = args->read_domains;
1132 uint32_t write_domain = args->write_domain;
673a394b
EA
1133 int ret;
1134
1135 if (!(dev->driver->driver_features & DRIVER_GEM))
1136 return -ENODEV;
1137
2ef7eeaa 1138 /* Only handle setting domains to types used by the CPU. */
21d509e3 1139 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1140 return -EINVAL;
1141
21d509e3 1142 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1143 return -EINVAL;
1144
1145 /* Having something in the write domain implies it's in the read
1146 * domain, and only that read domain. Enforce that in the request.
1147 */
1148 if (write_domain != 0 && read_domains != write_domain)
1149 return -EINVAL;
1150
76c1dec1 1151 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1152 if (ret)
76c1dec1 1153 return ret;
1d7cfea1 1154
673a394b 1155 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1156 if (obj == NULL) {
1157 ret = -ENOENT;
1158 goto unlock;
76c1dec1 1159 }
23010e43 1160 obj_priv = to_intel_bo(obj);
673a394b 1161
652c393a
JB
1162 intel_mark_busy(dev, obj);
1163
2ef7eeaa
EA
1164 if (read_domains & I915_GEM_DOMAIN_GTT) {
1165 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1166
a09ba7fa
EA
1167 /* Update the LRU on the fence for the CPU access that's
1168 * about to occur.
1169 */
1170 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1171 struct drm_i915_fence_reg *reg =
1172 &dev_priv->fence_regs[obj_priv->fence_reg];
1173 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1174 &dev_priv->mm.fence_list);
1175 }
1176
02354392
EA
1177 /* Silently promote "you're not bound, there was nothing to do"
1178 * to success, since the client was just asking us to
1179 * make sure everything was done.
1180 */
1181 if (ret == -EINVAL)
1182 ret = 0;
2ef7eeaa 1183 } else {
e47c68e9 1184 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1185 }
1186
7d1c4804
CW
1187 /* Maintain LRU order of "inactive" objects */
1188 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1189 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1190
673a394b 1191 drm_gem_object_unreference(obj);
1d7cfea1 1192unlock:
673a394b
EA
1193 mutex_unlock(&dev->struct_mutex);
1194 return ret;
1195}
1196
1197/**
1198 * Called when user space has done writes to this buffer
1199 */
1200int
1201i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1202 struct drm_file *file_priv)
1203{
1204 struct drm_i915_gem_sw_finish *args = data;
1205 struct drm_gem_object *obj;
673a394b
EA
1206 int ret = 0;
1207
1208 if (!(dev->driver->driver_features & DRIVER_GEM))
1209 return -ENODEV;
1210
76c1dec1 1211 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1212 if (ret)
76c1dec1 1213 return ret;
1d7cfea1 1214
673a394b
EA
1215 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1216 if (obj == NULL) {
1d7cfea1
CW
1217 ret = -ENOENT;
1218 goto unlock;
673a394b
EA
1219 }
1220
673a394b 1221 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1222 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1223 i915_gem_object_flush_cpu_write_domain(obj);
1224
673a394b 1225 drm_gem_object_unreference(obj);
1d7cfea1 1226unlock:
673a394b
EA
1227 mutex_unlock(&dev->struct_mutex);
1228 return ret;
1229}
1230
1231/**
1232 * Maps the contents of an object, returning the address it is mapped
1233 * into.
1234 *
1235 * While the mapping holds a reference on the contents of the object, it doesn't
1236 * imply a ref on the object itself.
1237 */
1238int
1239i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1240 struct drm_file *file_priv)
1241{
da761a6e 1242 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1243 struct drm_i915_gem_mmap *args = data;
1244 struct drm_gem_object *obj;
1245 loff_t offset;
1246 unsigned long addr;
1247
1248 if (!(dev->driver->driver_features & DRIVER_GEM))
1249 return -ENODEV;
1250
1251 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1252 if (obj == NULL)
bf79cb91 1253 return -ENOENT;
673a394b 1254
da761a6e
CW
1255 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1256 drm_gem_object_unreference_unlocked(obj);
1257 return -E2BIG;
1258 }
1259
673a394b
EA
1260 offset = args->offset;
1261
1262 down_write(&current->mm->mmap_sem);
1263 addr = do_mmap(obj->filp, 0, args->size,
1264 PROT_READ | PROT_WRITE, MAP_SHARED,
1265 args->offset);
1266 up_write(&current->mm->mmap_sem);
bc9025bd 1267 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1268 if (IS_ERR((void *)addr))
1269 return addr;
1270
1271 args->addr_ptr = (uint64_t) addr;
1272
1273 return 0;
1274}
1275
de151cf6
JB
1276/**
1277 * i915_gem_fault - fault a page into the GTT
1278 * vma: VMA in question
1279 * vmf: fault info
1280 *
1281 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1282 * from userspace. The fault handler takes care of binding the object to
1283 * the GTT (if needed), allocating and programming a fence register (again,
1284 * only if needed based on whether the old reg is still valid or the object
1285 * is tiled) and inserting a new PTE into the faulting process.
1286 *
1287 * Note that the faulting process may involve evicting existing objects
1288 * from the GTT and/or fence registers to make room. So performance may
1289 * suffer if the GTT working set is large or there are few fence registers
1290 * left.
1291 */
1292int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1293{
1294 struct drm_gem_object *obj = vma->vm_private_data;
1295 struct drm_device *dev = obj->dev;
7d1c4804 1296 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1297 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1298 pgoff_t page_offset;
1299 unsigned long pfn;
1300 int ret = 0;
0f973f27 1301 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1302
1303 /* We don't use vmf->pgoff since that has the fake offset */
1304 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1305 PAGE_SHIFT;
1306
1307 /* Now bind it into the GTT if needed */
1308 mutex_lock(&dev->struct_mutex);
fb7d516a 1309 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
16e809ac
DV
1310 if (!i915_gem_object_cpu_accessible(obj_priv))
1311 i915_gem_object_unbind(obj);
1312
de151cf6 1313 if (!obj_priv->gtt_space) {
920afa77 1314 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1315 if (ret)
1316 goto unlock;
de151cf6
JB
1317 }
1318
4a684a41
CW
1319 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1320 if (ret)
1321 goto unlock;
1322
fb7d516a
DV
1323 if (!obj_priv->fault_mappable) {
1324 obj_priv->fault_mappable = true;
1325 i915_gem_info_update_mappable(dev_priv, obj, true);
1326 }
1327
de151cf6 1328 /* Need a new fence register? */
a09ba7fa 1329 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1330 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1331 if (ret)
1332 goto unlock;
d9ddcb96 1333 }
de151cf6 1334
7d1c4804 1335 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1336 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1337
de151cf6
JB
1338 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1339 page_offset;
1340
1341 /* Finally, remap it using the new GTT offset */
1342 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1343unlock:
de151cf6
JB
1344 mutex_unlock(&dev->struct_mutex);
1345
1346 switch (ret) {
c715089f
CW
1347 case 0:
1348 case -ERESTARTSYS:
1349 return VM_FAULT_NOPAGE;
de151cf6
JB
1350 case -ENOMEM:
1351 case -EAGAIN:
1352 return VM_FAULT_OOM;
de151cf6 1353 default:
c715089f 1354 return VM_FAULT_SIGBUS;
de151cf6
JB
1355 }
1356}
1357
1358/**
1359 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1360 * @obj: obj in question
1361 *
1362 * GEM memory mapping works by handing back to userspace a fake mmap offset
1363 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1364 * up the object based on the offset and sets up the various memory mapping
1365 * structures.
1366 *
1367 * This routine allocates and attaches a fake offset for @obj.
1368 */
1369static int
1370i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1371{
1372 struct drm_device *dev = obj->dev;
1373 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1374 struct drm_map_list *list;
f77d390c 1375 struct drm_local_map *map;
de151cf6
JB
1376 int ret = 0;
1377
1378 /* Set the object up for mmap'ing */
1379 list = &obj->map_list;
9a298b2a 1380 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1381 if (!list->map)
1382 return -ENOMEM;
1383
1384 map = list->map;
1385 map->type = _DRM_GEM;
1386 map->size = obj->size;
1387 map->handle = obj;
1388
1389 /* Get a DRM GEM mmap offset allocated... */
1390 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1391 obj->size / PAGE_SIZE, 0, 0);
1392 if (!list->file_offset_node) {
1393 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1394 ret = -ENOSPC;
de151cf6
JB
1395 goto out_free_list;
1396 }
1397
1398 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1399 obj->size / PAGE_SIZE, 0);
1400 if (!list->file_offset_node) {
1401 ret = -ENOMEM;
1402 goto out_free_list;
1403 }
1404
1405 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1406 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1407 if (ret) {
de151cf6
JB
1408 DRM_ERROR("failed to add to map hash\n");
1409 goto out_free_mm;
1410 }
1411
de151cf6
JB
1412 return 0;
1413
1414out_free_mm:
1415 drm_mm_put_block(list->file_offset_node);
1416out_free_list:
9a298b2a 1417 kfree(list->map);
39a01d1f 1418 list->map = NULL;
de151cf6
JB
1419
1420 return ret;
1421}
1422
901782b2
CW
1423/**
1424 * i915_gem_release_mmap - remove physical page mappings
1425 * @obj: obj in question
1426 *
af901ca1 1427 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1428 * relinquish ownership of the pages back to the system.
1429 *
1430 * It is vital that we remove the page mapping if we have mapped a tiled
1431 * object through the GTT and then lose the fence register due to
1432 * resource pressure. Similarly if the object has been moved out of the
1433 * aperture, than pages mapped into userspace must be revoked. Removing the
1434 * mapping will then trigger a page fault on the next user access, allowing
1435 * fixup by i915_gem_fault().
1436 */
d05ca301 1437void
901782b2
CW
1438i915_gem_release_mmap(struct drm_gem_object *obj)
1439{
1440 struct drm_device *dev = obj->dev;
fb7d516a 1441 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1442 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2 1443
39a01d1f 1444 if (unlikely(obj->map_list.map && dev->dev_mapping))
901782b2 1445 unmap_mapping_range(dev->dev_mapping,
39a01d1f
CW
1446 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1447 obj->size, 1);
fb7d516a
DV
1448
1449 if (obj_priv->fault_mappable) {
1450 obj_priv->fault_mappable = false;
1451 i915_gem_info_update_mappable(dev_priv, obj, false);
1452 }
901782b2
CW
1453}
1454
ab00b3e5
JB
1455static void
1456i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1457{
1458 struct drm_device *dev = obj->dev;
ab00b3e5 1459 struct drm_gem_mm *mm = dev->mm_private;
39a01d1f 1460 struct drm_map_list *list = &obj->map_list;
ab00b3e5 1461
ab00b3e5 1462 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1463 drm_mm_put_block(list->file_offset_node);
1464 kfree(list->map);
1465 list->map = NULL;
ab00b3e5
JB
1466}
1467
de151cf6
JB
1468/**
1469 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1470 * @obj: object to check
1471 *
1472 * Return the required GTT alignment for an object, taking into account
1473 * potential fence register mapping if needed.
1474 */
1475static uint32_t
1476i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1477{
1478 struct drm_device *dev = obj->dev;
23010e43 1479 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1480 int start, i;
1481
1482 /*
1483 * Minimum alignment is 4k (GTT page size), but might be greater
1484 * if a fence register is needed for the object.
1485 */
a6c45cf0 1486 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1487 return 4096;
1488
1489 /*
1490 * Previous chips need to be aligned to the size of the smallest
1491 * fence register that can contain the object.
1492 */
a6c45cf0 1493 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1494 start = 1024*1024;
1495 else
1496 start = 512*1024;
1497
1498 for (i = start; i < obj->size; i <<= 1)
1499 ;
1500
1501 return i;
1502}
1503
1504/**
1505 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1506 * @dev: DRM device
1507 * @data: GTT mapping ioctl data
1508 * @file_priv: GEM object info
1509 *
1510 * Simply returns the fake offset to userspace so it can mmap it.
1511 * The mmap call will end up in drm_gem_mmap(), which will set things
1512 * up so we can get faults in the handler above.
1513 *
1514 * The fault handler will take care of binding the object into the GTT
1515 * (since it may have been evicted to make room for something), allocating
1516 * a fence register, and mapping the appropriate aperture address into
1517 * userspace.
1518 */
1519int
1520i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1521 struct drm_file *file_priv)
1522{
da761a6e 1523 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1524 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1525 struct drm_gem_object *obj;
1526 struct drm_i915_gem_object *obj_priv;
1527 int ret;
1528
1529 if (!(dev->driver->driver_features & DRIVER_GEM))
1530 return -ENODEV;
1531
76c1dec1 1532 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1533 if (ret)
76c1dec1 1534 return ret;
de151cf6 1535
1d7cfea1
CW
1536 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1537 if (obj == NULL) {
1538 ret = -ENOENT;
1539 goto unlock;
1540 }
23010e43 1541 obj_priv = to_intel_bo(obj);
de151cf6 1542
da761a6e
CW
1543 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1544 ret = -E2BIG;
1545 goto unlock;
1546 }
1547
ab18282d
CW
1548 if (obj_priv->madv != I915_MADV_WILLNEED) {
1549 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1550 ret = -EINVAL;
1551 goto out;
ab18282d
CW
1552 }
1553
39a01d1f 1554 if (!obj->map_list.map) {
de151cf6 1555 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1556 if (ret)
1557 goto out;
de151cf6
JB
1558 }
1559
39a01d1f 1560 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
de151cf6 1561
1d7cfea1 1562out:
de151cf6 1563 drm_gem_object_unreference(obj);
1d7cfea1 1564unlock:
de151cf6 1565 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1566 return ret;
de151cf6
JB
1567}
1568
e5281ccd
CW
1569static int
1570i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1571 gfp_t gfpmask)
1572{
1573 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1574 int page_count, i;
1575 struct address_space *mapping;
1576 struct inode *inode;
1577 struct page *page;
1578
1579 /* Get the list of pages out of our struct file. They'll be pinned
1580 * at this point until we release them.
1581 */
1582 page_count = obj->size / PAGE_SIZE;
1583 BUG_ON(obj_priv->pages != NULL);
1584 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1585 if (obj_priv->pages == NULL)
1586 return -ENOMEM;
1587
1588 inode = obj->filp->f_path.dentry->d_inode;
1589 mapping = inode->i_mapping;
1590 for (i = 0; i < page_count; i++) {
1591 page = read_cache_page_gfp(mapping, i,
1592 GFP_HIGHUSER |
1593 __GFP_COLD |
1594 __GFP_RECLAIMABLE |
1595 gfpmask);
1596 if (IS_ERR(page))
1597 goto err_pages;
1598
1599 obj_priv->pages[i] = page;
1600 }
1601
1602 if (obj_priv->tiling_mode != I915_TILING_NONE)
1603 i915_gem_object_do_bit_17_swizzle(obj);
1604
1605 return 0;
1606
1607err_pages:
1608 while (i--)
1609 page_cache_release(obj_priv->pages[i]);
1610
1611 drm_free_large(obj_priv->pages);
1612 obj_priv->pages = NULL;
1613 return PTR_ERR(page);
1614}
1615
5cdf5881 1616static void
e5281ccd 1617i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
673a394b 1618{
23010e43 1619 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1620 int page_count = obj->size / PAGE_SIZE;
1621 int i;
1622
bb6baf76 1623 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1624
280b713b
EA
1625 if (obj_priv->tiling_mode != I915_TILING_NONE)
1626 i915_gem_object_save_bit_17_swizzle(obj);
1627
3ef94daa 1628 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1629 obj_priv->dirty = 0;
3ef94daa
CW
1630
1631 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1632 if (obj_priv->dirty)
1633 set_page_dirty(obj_priv->pages[i]);
1634
1635 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1636 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1637
1638 page_cache_release(obj_priv->pages[i]);
1639 }
673a394b
EA
1640 obj_priv->dirty = 0;
1641
8e7d2b2c 1642 drm_free_large(obj_priv->pages);
856fa198 1643 obj_priv->pages = NULL;
673a394b
EA
1644}
1645
a56ba56c
CW
1646static uint32_t
1647i915_gem_next_request_seqno(struct drm_device *dev,
1648 struct intel_ring_buffer *ring)
1649{
1650 drm_i915_private_t *dev_priv = dev->dev_private;
1651
1652 ring->outstanding_lazy_request = true;
1653 return dev_priv->next_seqno;
1654}
1655
673a394b 1656static void
617dbe27 1657i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1658 struct intel_ring_buffer *ring)
673a394b
EA
1659{
1660 struct drm_device *dev = obj->dev;
69dc4987 1661 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1662 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1663 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1664
852835f3
ZN
1665 BUG_ON(ring == NULL);
1666 obj_priv->ring = ring;
673a394b
EA
1667
1668 /* Add a reference if we're newly entering the active list. */
1669 if (!obj_priv->active) {
1670 drm_gem_object_reference(obj);
1671 obj_priv->active = 1;
1672 }
e35a41de 1673
673a394b 1674 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1675 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1676 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1677 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1678}
1679
ce44b0ea
EA
1680static void
1681i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1682{
1683 struct drm_device *dev = obj->dev;
1684 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1685 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1686
1687 BUG_ON(!obj_priv->active);
69dc4987
CW
1688 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1689 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1690 obj_priv->last_rendering_seqno = 0;
1691}
673a394b 1692
963b4836
CW
1693/* Immediately discard the backing storage */
1694static void
1695i915_gem_object_truncate(struct drm_gem_object *obj)
1696{
23010e43 1697 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1698 struct inode *inode;
963b4836 1699
ae9fed6b
CW
1700 /* Our goal here is to return as much of the memory as
1701 * is possible back to the system as we are called from OOM.
1702 * To do this we must instruct the shmfs to drop all of its
1703 * backing pages, *now*. Here we mirror the actions taken
1704 * when by shmem_delete_inode() to release the backing store.
1705 */
bb6baf76 1706 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1707 truncate_inode_pages(inode->i_mapping, 0);
1708 if (inode->i_op->truncate_range)
1709 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1710
1711 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1712}
1713
1714static inline int
1715i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1716{
1717 return obj_priv->madv == I915_MADV_DONTNEED;
1718}
1719
673a394b
EA
1720static void
1721i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1722{
1723 struct drm_device *dev = obj->dev;
1724 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1725 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1726
673a394b 1727 if (obj_priv->pin_count != 0)
69dc4987 1728 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1729 else
69dc4987
CW
1730 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1731 list_del_init(&obj_priv->ring_list);
673a394b 1732
99fcb766
DV
1733 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1734
ce44b0ea 1735 obj_priv->last_rendering_seqno = 0;
852835f3 1736 obj_priv->ring = NULL;
673a394b
EA
1737 if (obj_priv->active) {
1738 obj_priv->active = 0;
1739 drm_gem_object_unreference(obj);
1740 }
23bc5982 1741 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1742}
1743
63560396
DV
1744static void
1745i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1746 uint32_t flush_domains,
852835f3 1747 struct intel_ring_buffer *ring)
63560396
DV
1748{
1749 drm_i915_private_t *dev_priv = dev->dev_private;
1750 struct drm_i915_gem_object *obj_priv, *next;
1751
1752 list_for_each_entry_safe(obj_priv, next,
64193406 1753 &ring->gpu_write_list,
63560396 1754 gpu_write_list) {
a8089e84 1755 struct drm_gem_object *obj = &obj_priv->base;
63560396 1756
64193406 1757 if (obj->write_domain & flush_domains) {
63560396
DV
1758 uint32_t old_write_domain = obj->write_domain;
1759
1760 obj->write_domain = 0;
1761 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1762 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1763
1764 /* update the fence lru list */
007cc8ac
DV
1765 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1766 struct drm_i915_fence_reg *reg =
1767 &dev_priv->fence_regs[obj_priv->fence_reg];
1768 list_move_tail(&reg->lru_list,
63560396 1769 &dev_priv->mm.fence_list);
007cc8ac 1770 }
63560396
DV
1771
1772 trace_i915_gem_object_change_domain(obj,
1773 obj->read_domains,
1774 old_write_domain);
1775 }
1776 }
1777}
8187a2b7 1778
3cce469c 1779int
8a1a49f9 1780i915_add_request(struct drm_device *dev,
f787a5f5 1781 struct drm_file *file,
8dc5d147 1782 struct drm_i915_gem_request *request,
8a1a49f9 1783 struct intel_ring_buffer *ring)
673a394b
EA
1784{
1785 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1786 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1787 uint32_t seqno;
1788 int was_empty;
3cce469c
CW
1789 int ret;
1790
1791 BUG_ON(request == NULL);
673a394b 1792
f787a5f5
CW
1793 if (file != NULL)
1794 file_priv = file->driver_priv;
b962442e 1795
3cce469c
CW
1796 ret = ring->add_request(ring, &seqno);
1797 if (ret)
1798 return ret;
673a394b 1799
a56ba56c 1800 ring->outstanding_lazy_request = false;
673a394b
EA
1801
1802 request->seqno = seqno;
852835f3 1803 request->ring = ring;
673a394b 1804 request->emitted_jiffies = jiffies;
852835f3
ZN
1805 was_empty = list_empty(&ring->request_list);
1806 list_add_tail(&request->list, &ring->request_list);
1807
f787a5f5 1808 if (file_priv) {
1c25595f 1809 spin_lock(&file_priv->mm.lock);
f787a5f5 1810 request->file_priv = file_priv;
b962442e 1811 list_add_tail(&request->client_list,
f787a5f5 1812 &file_priv->mm.request_list);
1c25595f 1813 spin_unlock(&file_priv->mm.lock);
b962442e 1814 }
673a394b 1815
f65d9421 1816 if (!dev_priv->mm.suspended) {
b3b079db
CW
1817 mod_timer(&dev_priv->hangcheck_timer,
1818 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1819 if (was_empty)
b3b079db
CW
1820 queue_delayed_work(dev_priv->wq,
1821 &dev_priv->mm.retire_work, HZ);
f65d9421 1822 }
3cce469c 1823 return 0;
673a394b
EA
1824}
1825
1826/**
1827 * Command execution barrier
1828 *
1829 * Ensures that all commands in the ring are finished
1830 * before signalling the CPU
1831 */
8a1a49f9 1832static void
852835f3 1833i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1834{
673a394b 1835 uint32_t flush_domains = 0;
673a394b
EA
1836
1837 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1838 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1839 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1840
78501eac 1841 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1842}
1843
f787a5f5
CW
1844static inline void
1845i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1846{
1c25595f 1847 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1848
1c25595f
CW
1849 if (!file_priv)
1850 return;
1c5d22f7 1851
1c25595f
CW
1852 spin_lock(&file_priv->mm.lock);
1853 list_del(&request->client_list);
1854 request->file_priv = NULL;
1855 spin_unlock(&file_priv->mm.lock);
673a394b 1856}
673a394b 1857
dfaae392
CW
1858static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1859 struct intel_ring_buffer *ring)
9375e446 1860{
dfaae392
CW
1861 while (!list_empty(&ring->request_list)) {
1862 struct drm_i915_gem_request *request;
673a394b 1863
dfaae392
CW
1864 request = list_first_entry(&ring->request_list,
1865 struct drm_i915_gem_request,
1866 list);
de151cf6 1867
dfaae392 1868 list_del(&request->list);
f787a5f5 1869 i915_gem_request_remove_from_client(request);
dfaae392
CW
1870 kfree(request);
1871 }
673a394b 1872
dfaae392 1873 while (!list_empty(&ring->active_list)) {
9375e446
CW
1874 struct drm_i915_gem_object *obj_priv;
1875
dfaae392 1876 obj_priv = list_first_entry(&ring->active_list,
9375e446 1877 struct drm_i915_gem_object,
69dc4987 1878 ring_list);
9375e446
CW
1879
1880 obj_priv->base.write_domain = 0;
dfaae392 1881 list_del_init(&obj_priv->gpu_write_list);
9375e446 1882 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1883 }
1884}
1885
069efc1d 1886void i915_gem_reset(struct drm_device *dev)
673a394b 1887{
77f01230
CW
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889 struct drm_i915_gem_object *obj_priv;
069efc1d 1890 int i;
673a394b 1891
dfaae392 1892 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1893 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1894 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1895
1896 /* Remove anything from the flushing lists. The GPU cache is likely
1897 * to be lost on reset along with the data, so simply move the
1898 * lost bo to the inactive list.
1899 */
1900 while (!list_empty(&dev_priv->mm.flushing_list)) {
1901 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1902 struct drm_i915_gem_object,
69dc4987 1903 mm_list);
dfaae392
CW
1904
1905 obj_priv->base.write_domain = 0;
1906 list_del_init(&obj_priv->gpu_write_list);
1907 i915_gem_object_move_to_inactive(&obj_priv->base);
1908 }
1909
1910 /* Move everything out of the GPU domains to ensure we do any
1911 * necessary invalidation upon reuse.
1912 */
77f01230
CW
1913 list_for_each_entry(obj_priv,
1914 &dev_priv->mm.inactive_list,
69dc4987 1915 mm_list)
77f01230
CW
1916 {
1917 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1918 }
069efc1d
CW
1919
1920 /* The fence registers are invalidated so clear them out */
1921 for (i = 0; i < 16; i++) {
1922 struct drm_i915_fence_reg *reg;
1923
1924 reg = &dev_priv->fence_regs[i];
1925 if (!reg->obj)
1926 continue;
1927
1928 i915_gem_clear_fence_reg(reg->obj);
1929 }
673a394b
EA
1930}
1931
1932/**
1933 * This function clears the request list as sequence numbers are passed.
1934 */
b09a1fec
CW
1935static void
1936i915_gem_retire_requests_ring(struct drm_device *dev,
1937 struct intel_ring_buffer *ring)
673a394b
EA
1938{
1939 drm_i915_private_t *dev_priv = dev->dev_private;
1940 uint32_t seqno;
1941
b84d5f0c
CW
1942 if (!ring->status_page.page_addr ||
1943 list_empty(&ring->request_list))
6c0594a3
KW
1944 return;
1945
23bc5982 1946 WARN_ON(i915_verify_lists(dev));
673a394b 1947
78501eac 1948 seqno = ring->get_seqno(ring);
852835f3 1949 while (!list_empty(&ring->request_list)) {
673a394b 1950 struct drm_i915_gem_request *request;
673a394b 1951
852835f3 1952 request = list_first_entry(&ring->request_list,
673a394b
EA
1953 struct drm_i915_gem_request,
1954 list);
673a394b 1955
dfaae392 1956 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1957 break;
1958
1959 trace_i915_gem_request_retire(dev, request->seqno);
1960
1961 list_del(&request->list);
f787a5f5 1962 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1963 kfree(request);
1964 }
673a394b 1965
b84d5f0c
CW
1966 /* Move any buffers on the active list that are no longer referenced
1967 * by the ringbuffer to the flushing/inactive lists as appropriate.
1968 */
1969 while (!list_empty(&ring->active_list)) {
1970 struct drm_gem_object *obj;
1971 struct drm_i915_gem_object *obj_priv;
1972
1973 obj_priv = list_first_entry(&ring->active_list,
1974 struct drm_i915_gem_object,
69dc4987 1975 ring_list);
673a394b 1976
dfaae392 1977 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1978 break;
b84d5f0c
CW
1979
1980 obj = &obj_priv->base;
b84d5f0c
CW
1981 if (obj->write_domain != 0)
1982 i915_gem_object_move_to_flushing(obj);
1983 else
1984 i915_gem_object_move_to_inactive(obj);
673a394b 1985 }
9d34e5db
CW
1986
1987 if (unlikely (dev_priv->trace_irq_seqno &&
1988 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 1989 ring->user_irq_put(ring);
9d34e5db
CW
1990 dev_priv->trace_irq_seqno = 0;
1991 }
23bc5982
CW
1992
1993 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1994}
1995
b09a1fec
CW
1996void
1997i915_gem_retire_requests(struct drm_device *dev)
1998{
1999 drm_i915_private_t *dev_priv = dev->dev_private;
2000
be72615b
CW
2001 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2002 struct drm_i915_gem_object *obj_priv, *tmp;
2003
2004 /* We must be careful that during unbind() we do not
2005 * accidentally infinitely recurse into retire requests.
2006 * Currently:
2007 * retire -> free -> unbind -> wait -> retire_ring
2008 */
2009 list_for_each_entry_safe(obj_priv, tmp,
2010 &dev_priv->mm.deferred_free_list,
69dc4987 2011 mm_list)
be72615b
CW
2012 i915_gem_free_object_tail(&obj_priv->base);
2013 }
2014
b09a1fec 2015 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 2016 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 2017 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
2018}
2019
75ef9da2 2020static void
673a394b
EA
2021i915_gem_retire_work_handler(struct work_struct *work)
2022{
2023 drm_i915_private_t *dev_priv;
2024 struct drm_device *dev;
2025
2026 dev_priv = container_of(work, drm_i915_private_t,
2027 mm.retire_work.work);
2028 dev = dev_priv->dev;
2029
891b48cf
CW
2030 /* Come back later if the device is busy... */
2031 if (!mutex_trylock(&dev->struct_mutex)) {
2032 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2033 return;
2034 }
2035
b09a1fec 2036 i915_gem_retire_requests(dev);
d1b851fc 2037
6dbe2772 2038 if (!dev_priv->mm.suspended &&
d1b851fc 2039 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
2040 !list_empty(&dev_priv->bsd_ring.request_list) ||
2041 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 2042 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
2043 mutex_unlock(&dev->struct_mutex);
2044}
2045
5a5a0c64 2046int
852835f3 2047i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 2048 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
2049{
2050 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 2051 u32 ier;
673a394b
EA
2052 int ret = 0;
2053
2054 BUG_ON(seqno == 0);
2055
ba1234d1 2056 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
2057 return -EAGAIN;
2058
a56ba56c 2059 if (ring->outstanding_lazy_request) {
3cce469c
CW
2060 struct drm_i915_gem_request *request;
2061
2062 request = kzalloc(sizeof(*request), GFP_KERNEL);
2063 if (request == NULL)
e35a41de 2064 return -ENOMEM;
3cce469c
CW
2065
2066 ret = i915_add_request(dev, NULL, request, ring);
2067 if (ret) {
2068 kfree(request);
2069 return ret;
2070 }
2071
2072 seqno = request->seqno;
e35a41de 2073 }
a56ba56c 2074 BUG_ON(seqno == dev_priv->next_seqno);
ffed1d09 2075
78501eac 2076 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2077 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2078 ier = I915_READ(DEIER) | I915_READ(GTIER);
2079 else
2080 ier = I915_READ(IER);
802c7eb6
JB
2081 if (!ier) {
2082 DRM_ERROR("something (likely vbetool) disabled "
2083 "interrupts, re-enabling\n");
2084 i915_driver_irq_preinstall(dev);
2085 i915_driver_irq_postinstall(dev);
2086 }
2087
1c5d22f7
CW
2088 trace_i915_gem_request_wait_begin(dev, seqno);
2089
b2223497 2090 ring->waiting_seqno = seqno;
78501eac 2091 ring->user_irq_get(ring);
48764bf4 2092 if (interruptible)
852835f3 2093 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2094 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2095 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2096 else
852835f3 2097 wait_event(ring->irq_queue,
78501eac 2098 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2099 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2100
78501eac 2101 ring->user_irq_put(ring);
b2223497 2102 ring->waiting_seqno = 0;
1c5d22f7
CW
2103
2104 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2105 }
ba1234d1 2106 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2107 ret = -EAGAIN;
673a394b
EA
2108
2109 if (ret && ret != -ERESTARTSYS)
8bff917c 2110 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2111 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2112 dev_priv->next_seqno);
673a394b
EA
2113
2114 /* Directly dispatch request retiring. While we have the work queue
2115 * to handle this, the waiter on a request often wants an associated
2116 * buffer to have made it to the inactive list, and we would need
2117 * a separate wait queue to handle that.
2118 */
2119 if (ret == 0)
b09a1fec 2120 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2121
2122 return ret;
2123}
2124
48764bf4
DV
2125/**
2126 * Waits for a sequence number to be signaled, and cleans up the
2127 * request and object lists appropriately for that event.
2128 */
2129static int
852835f3 2130i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2131 struct intel_ring_buffer *ring)
48764bf4 2132{
852835f3 2133 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2134}
2135
20f0cd55 2136static void
9220434a 2137i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2138 struct drm_file *file_priv,
9220434a
CW
2139 struct intel_ring_buffer *ring,
2140 uint32_t invalidate_domains,
2141 uint32_t flush_domains)
2142{
78501eac 2143 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2144 i915_gem_process_flushing_list(dev, flush_domains, ring);
2145}
2146
8187a2b7
ZN
2147static void
2148i915_gem_flush(struct drm_device *dev,
c78ec30b 2149 struct drm_file *file_priv,
8187a2b7 2150 uint32_t invalidate_domains,
9220434a
CW
2151 uint32_t flush_domains,
2152 uint32_t flush_rings)
8187a2b7
ZN
2153{
2154 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2155
8187a2b7
ZN
2156 if (flush_domains & I915_GEM_DOMAIN_CPU)
2157 drm_agp_chipset_flush(dev);
8bff917c 2158
9220434a
CW
2159 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2160 if (flush_rings & RING_RENDER)
c78ec30b 2161 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2162 &dev_priv->render_ring,
2163 invalidate_domains, flush_domains);
2164 if (flush_rings & RING_BSD)
c78ec30b 2165 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2166 &dev_priv->bsd_ring,
2167 invalidate_domains, flush_domains);
549f7365
CW
2168 if (flush_rings & RING_BLT)
2169 i915_gem_flush_ring(dev, file_priv,
2170 &dev_priv->blt_ring,
2171 invalidate_domains, flush_domains);
9220434a 2172 }
8187a2b7
ZN
2173}
2174
673a394b
EA
2175/**
2176 * Ensures that all rendering to the object has completed and the object is
2177 * safe to unbind from the GTT or access from the CPU.
2178 */
2179static int
2cf34d7b
CW
2180i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2181 bool interruptible)
673a394b
EA
2182{
2183 struct drm_device *dev = obj->dev;
23010e43 2184 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2185 int ret;
2186
e47c68e9
EA
2187 /* This function only exists to support waiting for existing rendering,
2188 * not for emitting required flushes.
673a394b 2189 */
e47c68e9 2190 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2191
2192 /* If there is rendering queued on the buffer being evicted, wait for
2193 * it.
2194 */
2195 if (obj_priv->active) {
2cf34d7b
CW
2196 ret = i915_do_wait_request(dev,
2197 obj_priv->last_rendering_seqno,
2198 interruptible,
2199 obj_priv->ring);
2200 if (ret)
673a394b
EA
2201 return ret;
2202 }
2203
2204 return 0;
2205}
2206
2207/**
2208 * Unbinds an object from the GTT aperture.
2209 */
0f973f27 2210int
673a394b
EA
2211i915_gem_object_unbind(struct drm_gem_object *obj)
2212{
2213 struct drm_device *dev = obj->dev;
73aa808f 2214 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2215 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2216 int ret = 0;
2217
673a394b
EA
2218 if (obj_priv->gtt_space == NULL)
2219 return 0;
2220
2221 if (obj_priv->pin_count != 0) {
2222 DRM_ERROR("Attempting to unbind pinned buffer\n");
2223 return -EINVAL;
2224 }
2225
5323fd04
EA
2226 /* blow away mappings if mapped through GTT */
2227 i915_gem_release_mmap(obj);
2228
673a394b
EA
2229 /* Move the object to the CPU domain to ensure that
2230 * any possible CPU writes while it's not in the GTT
2231 * are flushed when we go to remap it. This will
2232 * also ensure that all pending GPU writes are finished
2233 * before we unbind.
2234 */
e47c68e9 2235 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2236 if (ret == -ERESTARTSYS)
673a394b 2237 return ret;
8dc1775d
CW
2238 /* Continue on if we fail due to EIO, the GPU is hung so we
2239 * should be safe and we need to cleanup or else we might
2240 * cause memory corruption through use-after-free.
2241 */
812ed492
CW
2242 if (ret) {
2243 i915_gem_clflush_object(obj);
2244 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2245 }
673a394b 2246
96b47b65
DV
2247 /* release the fence reg _after_ flushing */
2248 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2249 i915_gem_clear_fence_reg(obj);
2250
73aa808f
CW
2251 drm_unbind_agp(obj_priv->agp_mem);
2252 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2253
e5281ccd 2254 i915_gem_object_put_pages_gtt(obj);
673a394b 2255
fb7d516a 2256 i915_gem_info_remove_gtt(dev_priv, obj);
69dc4987 2257 list_del_init(&obj_priv->mm_list);
673a394b 2258
73aa808f
CW
2259 drm_mm_put_block(obj_priv->gtt_space);
2260 obj_priv->gtt_space = NULL;
9af90d19 2261 obj_priv->gtt_offset = 0;
673a394b 2262
963b4836
CW
2263 if (i915_gem_object_is_purgeable(obj_priv))
2264 i915_gem_object_truncate(obj);
2265
1c5d22f7
CW
2266 trace_i915_gem_object_unbind(obj);
2267
8dc1775d 2268 return ret;
673a394b
EA
2269}
2270
a56ba56c
CW
2271static int i915_ring_idle(struct drm_device *dev,
2272 struct intel_ring_buffer *ring)
2273{
64193406
CW
2274 if (list_empty(&ring->gpu_write_list))
2275 return 0;
2276
a56ba56c
CW
2277 i915_gem_flush_ring(dev, NULL, ring,
2278 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2279 return i915_wait_request(dev,
2280 i915_gem_next_request_seqno(dev, ring),
2281 ring);
2282}
2283
b47eb4a2 2284int
4df2faf4
DV
2285i915_gpu_idle(struct drm_device *dev)
2286{
2287 drm_i915_private_t *dev_priv = dev->dev_private;
2288 bool lists_empty;
852835f3 2289 int ret;
4df2faf4 2290
d1b851fc
ZN
2291 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2292 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
2293 list_empty(&dev_priv->bsd_ring.active_list) &&
2294 list_empty(&dev_priv->blt_ring.active_list));
4df2faf4
DV
2295 if (lists_empty)
2296 return 0;
2297
2298 /* Flush everything onto the inactive list. */
a56ba56c 2299 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2300 if (ret)
2301 return ret;
d1b851fc 2302
87acb0a5
CW
2303 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2304 if (ret)
2305 return ret;
d1b851fc 2306
549f7365
CW
2307 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2308 if (ret)
2309 return ret;
4df2faf4 2310
8a1a49f9 2311 return 0;
4df2faf4
DV
2312}
2313
4e901fdc
EA
2314static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2315{
2316 struct drm_gem_object *obj = reg->obj;
2317 struct drm_device *dev = obj->dev;
2318 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2319 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2320 int regnum = obj_priv->fence_reg;
2321 uint64_t val;
2322
2323 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2324 0xfffff000) << 32;
2325 val |= obj_priv->gtt_offset & 0xfffff000;
2326 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2327 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2328
2329 if (obj_priv->tiling_mode == I915_TILING_Y)
2330 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2331 val |= I965_FENCE_REG_VALID;
2332
2333 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2334}
2335
de151cf6
JB
2336static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2337{
2338 struct drm_gem_object *obj = reg->obj;
2339 struct drm_device *dev = obj->dev;
2340 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2342 int regnum = obj_priv->fence_reg;
2343 uint64_t val;
2344
2345 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2346 0xfffff000) << 32;
2347 val |= obj_priv->gtt_offset & 0xfffff000;
2348 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2349 if (obj_priv->tiling_mode == I915_TILING_Y)
2350 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2351 val |= I965_FENCE_REG_VALID;
2352
2353 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2354}
2355
2356static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2357{
2358 struct drm_gem_object *obj = reg->obj;
2359 struct drm_device *dev = obj->dev;
2360 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2361 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2362 int regnum = obj_priv->fence_reg;
0f973f27 2363 int tile_width;
dc529a4f 2364 uint32_t fence_reg, val;
de151cf6
JB
2365 uint32_t pitch_val;
2366
2367 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2368 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2369 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2370 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2371 return;
2372 }
2373
0f973f27
JB
2374 if (obj_priv->tiling_mode == I915_TILING_Y &&
2375 HAS_128_BYTE_Y_TILING(dev))
2376 tile_width = 128;
de151cf6 2377 else
0f973f27
JB
2378 tile_width = 512;
2379
2380 /* Note: pitch better be a power of two tile widths */
2381 pitch_val = obj_priv->stride / tile_width;
2382 pitch_val = ffs(pitch_val) - 1;
de151cf6 2383
c36a2a6d
DV
2384 if (obj_priv->tiling_mode == I915_TILING_Y &&
2385 HAS_128_BYTE_Y_TILING(dev))
2386 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2387 else
2388 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2389
de151cf6
JB
2390 val = obj_priv->gtt_offset;
2391 if (obj_priv->tiling_mode == I915_TILING_Y)
2392 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2393 val |= I915_FENCE_SIZE_BITS(obj->size);
2394 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2395 val |= I830_FENCE_REG_VALID;
2396
dc529a4f
EA
2397 if (regnum < 8)
2398 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2399 else
2400 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2401 I915_WRITE(fence_reg, val);
de151cf6
JB
2402}
2403
2404static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2405{
2406 struct drm_gem_object *obj = reg->obj;
2407 struct drm_device *dev = obj->dev;
2408 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2409 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2410 int regnum = obj_priv->fence_reg;
2411 uint32_t val;
2412 uint32_t pitch_val;
8d7773a3 2413 uint32_t fence_size_bits;
de151cf6 2414
8d7773a3 2415 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2416 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2417 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2418 __func__, obj_priv->gtt_offset);
de151cf6
JB
2419 return;
2420 }
2421
e76a16de
EA
2422 pitch_val = obj_priv->stride / 128;
2423 pitch_val = ffs(pitch_val) - 1;
2424 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2425
de151cf6
JB
2426 val = obj_priv->gtt_offset;
2427 if (obj_priv->tiling_mode == I915_TILING_Y)
2428 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2429 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2430 WARN_ON(fence_size_bits & ~0x00000f00);
2431 val |= fence_size_bits;
de151cf6
JB
2432 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2433 val |= I830_FENCE_REG_VALID;
2434
2435 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2436}
2437
2cf34d7b
CW
2438static int i915_find_fence_reg(struct drm_device *dev,
2439 bool interruptible)
ae3db24a
DV
2440{
2441 struct drm_i915_fence_reg *reg = NULL;
2442 struct drm_i915_gem_object *obj_priv = NULL;
2443 struct drm_i915_private *dev_priv = dev->dev_private;
2444 struct drm_gem_object *obj = NULL;
2445 int i, avail, ret;
2446
2447 /* First try to find a free reg */
2448 avail = 0;
2449 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2450 reg = &dev_priv->fence_regs[i];
2451 if (!reg->obj)
2452 return i;
2453
23010e43 2454 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2455 if (!obj_priv->pin_count)
2456 avail++;
2457 }
2458
2459 if (avail == 0)
2460 return -ENOSPC;
2461
2462 /* None available, try to steal one or wait for a user to finish */
2463 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2464 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2465 lru_list) {
2466 obj = reg->obj;
2467 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2468
2469 if (obj_priv->pin_count)
2470 continue;
2471
2472 /* found one! */
2473 i = obj_priv->fence_reg;
2474 break;
2475 }
2476
2477 BUG_ON(i == I915_FENCE_REG_NONE);
2478
2479 /* We only have a reference on obj from the active list. put_fence_reg
2480 * might drop that one, causing a use-after-free in it. So hold a
2481 * private reference to obj like the other callers of put_fence_reg
2482 * (set_tiling ioctl) do. */
2483 drm_gem_object_reference(obj);
2cf34d7b 2484 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2485 drm_gem_object_unreference(obj);
2486 if (ret != 0)
2487 return ret;
2488
2489 return i;
2490}
2491
de151cf6
JB
2492/**
2493 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2494 * @obj: object to map through a fence reg
2495 *
2496 * When mapping objects through the GTT, userspace wants to be able to write
2497 * to them without having to worry about swizzling if the object is tiled.
2498 *
2499 * This function walks the fence regs looking for a free one for @obj,
2500 * stealing one if it can't find any.
2501 *
2502 * It then sets up the reg based on the object's properties: address, pitch
2503 * and tiling format.
2504 */
8c4b8c3f 2505int
2cf34d7b
CW
2506i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2507 bool interruptible)
de151cf6
JB
2508{
2509 struct drm_device *dev = obj->dev;
79e53945 2510 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2511 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2512 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2513 int ret;
de151cf6 2514
a09ba7fa
EA
2515 /* Just update our place in the LRU if our fence is getting used. */
2516 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2517 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2518 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2519 return 0;
2520 }
2521
de151cf6
JB
2522 switch (obj_priv->tiling_mode) {
2523 case I915_TILING_NONE:
2524 WARN(1, "allocating a fence for non-tiled object?\n");
2525 break;
2526 case I915_TILING_X:
0f973f27
JB
2527 if (!obj_priv->stride)
2528 return -EINVAL;
2529 WARN((obj_priv->stride & (512 - 1)),
2530 "object 0x%08x is X tiled but has non-512B pitch\n",
2531 obj_priv->gtt_offset);
de151cf6
JB
2532 break;
2533 case I915_TILING_Y:
0f973f27
JB
2534 if (!obj_priv->stride)
2535 return -EINVAL;
2536 WARN((obj_priv->stride & (128 - 1)),
2537 "object 0x%08x is Y tiled but has non-128B pitch\n",
2538 obj_priv->gtt_offset);
de151cf6
JB
2539 break;
2540 }
2541
2cf34d7b 2542 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2543 if (ret < 0)
2544 return ret;
de151cf6 2545
ae3db24a
DV
2546 obj_priv->fence_reg = ret;
2547 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2548 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2549
de151cf6
JB
2550 reg->obj = obj;
2551
e259befd
CW
2552 switch (INTEL_INFO(dev)->gen) {
2553 case 6:
4e901fdc 2554 sandybridge_write_fence_reg(reg);
e259befd
CW
2555 break;
2556 case 5:
2557 case 4:
de151cf6 2558 i965_write_fence_reg(reg);
e259befd
CW
2559 break;
2560 case 3:
de151cf6 2561 i915_write_fence_reg(reg);
e259befd
CW
2562 break;
2563 case 2:
de151cf6 2564 i830_write_fence_reg(reg);
e259befd
CW
2565 break;
2566 }
d9ddcb96 2567
ae3db24a
DV
2568 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2569 obj_priv->tiling_mode);
1c5d22f7 2570
d9ddcb96 2571 return 0;
de151cf6
JB
2572}
2573
2574/**
2575 * i915_gem_clear_fence_reg - clear out fence register info
2576 * @obj: object to clear
2577 *
2578 * Zeroes out the fence register itself and clears out the associated
2579 * data structures in dev_priv and obj_priv.
2580 */
2581static void
2582i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2583{
2584 struct drm_device *dev = obj->dev;
79e53945 2585 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2586 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2587 struct drm_i915_fence_reg *reg =
2588 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2589 uint32_t fence_reg;
de151cf6 2590
e259befd
CW
2591 switch (INTEL_INFO(dev)->gen) {
2592 case 6:
4e901fdc
EA
2593 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2594 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2595 break;
2596 case 5:
2597 case 4:
de151cf6 2598 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2599 break;
2600 case 3:
9b74f734 2601 if (obj_priv->fence_reg >= 8)
e259befd 2602 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2603 else
e259befd
CW
2604 case 2:
2605 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2606
2607 I915_WRITE(fence_reg, 0);
e259befd 2608 break;
dc529a4f 2609 }
de151cf6 2610
007cc8ac 2611 reg->obj = NULL;
de151cf6 2612 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2613 list_del_init(&reg->lru_list);
de151cf6
JB
2614}
2615
52dc7d32
CW
2616/**
2617 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2618 * to the buffer to finish, and then resets the fence register.
2619 * @obj: tiled object holding a fence register.
2cf34d7b 2620 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2621 *
2622 * Zeroes out the fence register itself and clears out the associated
2623 * data structures in dev_priv and obj_priv.
2624 */
2625int
2cf34d7b
CW
2626i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2627 bool interruptible)
52dc7d32
CW
2628{
2629 struct drm_device *dev = obj->dev;
53640e1d 2630 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2631 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2632 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2633
2634 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2635 return 0;
2636
10ae9bd2
DV
2637 /* If we've changed tiling, GTT-mappings of the object
2638 * need to re-fault to ensure that the correct fence register
2639 * setup is in place.
2640 */
2641 i915_gem_release_mmap(obj);
2642
52dc7d32
CW
2643 /* On the i915, GPU access to tiled buffers is via a fence,
2644 * therefore we must wait for any outstanding access to complete
2645 * before clearing the fence.
2646 */
53640e1d
CW
2647 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2648 if (reg->gpu) {
52dc7d32
CW
2649 int ret;
2650
2cf34d7b 2651 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2652 if (ret)
2dafb1e0
CW
2653 return ret;
2654
2cf34d7b 2655 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2656 if (ret)
52dc7d32 2657 return ret;
53640e1d
CW
2658
2659 reg->gpu = false;
52dc7d32
CW
2660 }
2661
4a726612 2662 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2663 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2664
2665 return 0;
2666}
2667
673a394b
EA
2668/**
2669 * Finds free space in the GTT aperture and binds the object there.
2670 */
2671static int
920afa77
DV
2672i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2673 unsigned alignment,
2674 bool mappable)
673a394b
EA
2675{
2676 struct drm_device *dev = obj->dev;
2677 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2679 struct drm_mm_node *free_space;
4bdadb97 2680 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2681 int ret;
673a394b 2682
bb6baf76 2683 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2684 DRM_ERROR("Attempting to bind a purgeable object\n");
2685 return -EINVAL;
2686 }
2687
673a394b 2688 if (alignment == 0)
0f973f27 2689 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2690 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2691 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2692 return -EINVAL;
2693 }
2694
654fc607
CW
2695 /* If the object is bigger than the entire aperture, reject it early
2696 * before evicting everything in a vain attempt to find space.
2697 */
920afa77
DV
2698 if (obj->size >
2699 (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2700 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2701 return -E2BIG;
2702 }
2703
673a394b 2704 search_free:
920afa77
DV
2705 if (mappable)
2706 free_space =
2707 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2708 obj->size, alignment, 0,
2709 dev_priv->mm.gtt_mappable_end,
2710 0);
2711 else
2712 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2713 obj->size, alignment, 0);
2714
2715 if (free_space != NULL) {
2716 if (mappable)
2717 obj_priv->gtt_space =
2718 drm_mm_get_block_range_generic(free_space,
2719 obj->size,
2720 alignment, 0,
2721 dev_priv->mm.gtt_mappable_end,
2722 0);
2723 else
2724 obj_priv->gtt_space =
2725 drm_mm_get_block(free_space, obj->size,
2726 alignment);
2727 }
673a394b
EA
2728 if (obj_priv->gtt_space == NULL) {
2729 /* If the gtt is empty and we're still having trouble
2730 * fitting our object in, we're out of memory.
2731 */
920afa77
DV
2732 ret = i915_gem_evict_something(dev, obj->size, alignment,
2733 mappable);
9731129c 2734 if (ret)
673a394b 2735 return ret;
9731129c 2736
673a394b
EA
2737 goto search_free;
2738 }
2739
e5281ccd 2740 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b
EA
2741 if (ret) {
2742 drm_mm_put_block(obj_priv->gtt_space);
2743 obj_priv->gtt_space = NULL;
07f73f69
CW
2744
2745 if (ret == -ENOMEM) {
2746 /* first try to clear up some space from the GTT */
0108a3ed 2747 ret = i915_gem_evict_something(dev, obj->size,
920afa77 2748 alignment, mappable);
07f73f69 2749 if (ret) {
07f73f69 2750 /* now try to shrink everyone else */
4bdadb97
CW
2751 if (gfpmask) {
2752 gfpmask = 0;
2753 goto search_free;
07f73f69
CW
2754 }
2755
2756 return ret;
2757 }
2758
2759 goto search_free;
2760 }
2761
673a394b
EA
2762 return ret;
2763 }
2764
673a394b
EA
2765 /* Create an AGP memory structure pointing at our pages, and bind it
2766 * into the GTT.
2767 */
2768 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2769 obj_priv->pages,
07f73f69 2770 obj->size >> PAGE_SHIFT,
9af90d19 2771 obj_priv->gtt_space->start,
ba1eb1d8 2772 obj_priv->agp_type);
673a394b 2773 if (obj_priv->agp_mem == NULL) {
e5281ccd 2774 i915_gem_object_put_pages_gtt(obj);
673a394b
EA
2775 drm_mm_put_block(obj_priv->gtt_space);
2776 obj_priv->gtt_space = NULL;
07f73f69 2777
920afa77
DV
2778 ret = i915_gem_evict_something(dev, obj->size, alignment,
2779 mappable);
9731129c 2780 if (ret)
07f73f69 2781 return ret;
07f73f69
CW
2782
2783 goto search_free;
673a394b 2784 }
673a394b 2785
fb7d516a
DV
2786 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2787
bf1a1092 2788 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2789 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
fb7d516a 2790 i915_gem_info_add_gtt(dev_priv, obj);
bf1a1092 2791
673a394b
EA
2792 /* Assert that the object is not currently in any GPU domain. As it
2793 * wasn't in the GTT, there shouldn't be any way it could have been in
2794 * a GPU cache
2795 */
21d509e3
CW
2796 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2797 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2798
ec57d260 2799 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
1c5d22f7 2800
673a394b
EA
2801 return 0;
2802}
2803
2804void
2805i915_gem_clflush_object(struct drm_gem_object *obj)
2806{
23010e43 2807 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2808
2809 /* If we don't have a page list set up, then we're not pinned
2810 * to GPU, and we can ignore the cache flush because it'll happen
2811 * again at bind time.
2812 */
856fa198 2813 if (obj_priv->pages == NULL)
673a394b
EA
2814 return;
2815
1c5d22f7 2816 trace_i915_gem_object_clflush(obj);
cfa16a0d 2817
856fa198 2818 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2819}
2820
e47c68e9 2821/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2822static int
ba3d8d74
DV
2823i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2824 bool pipelined)
e47c68e9
EA
2825{
2826 struct drm_device *dev = obj->dev;
1c5d22f7 2827 uint32_t old_write_domain;
e47c68e9
EA
2828
2829 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2830 return 0;
e47c68e9
EA
2831
2832 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2833 old_write_domain = obj->write_domain;
c78ec30b 2834 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2835 to_intel_bo(obj)->ring,
2836 0, obj->write_domain);
48b956c5 2837 BUG_ON(obj->write_domain);
1c5d22f7
CW
2838
2839 trace_i915_gem_object_change_domain(obj,
2840 obj->read_domains,
2841 old_write_domain);
ba3d8d74
DV
2842
2843 if (pipelined)
2844 return 0;
2845
2cf34d7b 2846 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2847}
2848
2849/** Flushes the GTT write domain for the object if it's dirty. */
2850static void
2851i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2852{
1c5d22f7
CW
2853 uint32_t old_write_domain;
2854
e47c68e9
EA
2855 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2856 return;
2857
2858 /* No actual flushing is required for the GTT write domain. Writes
2859 * to it immediately go to main memory as far as we know, so there's
2860 * no chipset flush. It also doesn't land in render cache.
2861 */
4a684a41
CW
2862 i915_gem_release_mmap(obj);
2863
1c5d22f7 2864 old_write_domain = obj->write_domain;
e47c68e9 2865 obj->write_domain = 0;
1c5d22f7
CW
2866
2867 trace_i915_gem_object_change_domain(obj,
2868 obj->read_domains,
2869 old_write_domain);
e47c68e9
EA
2870}
2871
2872/** Flushes the CPU write domain for the object if it's dirty. */
2873static void
2874i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2875{
2876 struct drm_device *dev = obj->dev;
1c5d22f7 2877 uint32_t old_write_domain;
e47c68e9
EA
2878
2879 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2880 return;
2881
2882 i915_gem_clflush_object(obj);
2883 drm_agp_chipset_flush(dev);
1c5d22f7 2884 old_write_domain = obj->write_domain;
e47c68e9 2885 obj->write_domain = 0;
1c5d22f7
CW
2886
2887 trace_i915_gem_object_change_domain(obj,
2888 obj->read_domains,
2889 old_write_domain);
e47c68e9
EA
2890}
2891
2ef7eeaa
EA
2892/**
2893 * Moves a single object to the GTT read, and possibly write domain.
2894 *
2895 * This function returns when the move is complete, including waiting on
2896 * flushes to occur.
2897 */
79e53945 2898int
2ef7eeaa
EA
2899i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2900{
23010e43 2901 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2902 uint32_t old_write_domain, old_read_domains;
e47c68e9 2903 int ret;
2ef7eeaa 2904
02354392
EA
2905 /* Not valid to be called on unbound objects. */
2906 if (obj_priv->gtt_space == NULL)
2907 return -EINVAL;
2908
ba3d8d74 2909 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2910 if (ret != 0)
2911 return ret;
2912
7213342d 2913 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2914
ba3d8d74 2915 if (write) {
2cf34d7b 2916 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2917 if (ret)
2918 return ret;
ba3d8d74 2919 }
e47c68e9 2920
1c5d22f7
CW
2921 old_write_domain = obj->write_domain;
2922 old_read_domains = obj->read_domains;
2923
e47c68e9
EA
2924 /* It should now be out of any other write domains, and we can update
2925 * the domain values for our changes.
2926 */
2927 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2928 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2929 if (write) {
7213342d 2930 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2931 obj->write_domain = I915_GEM_DOMAIN_GTT;
2932 obj_priv->dirty = 1;
2ef7eeaa
EA
2933 }
2934
1c5d22f7
CW
2935 trace_i915_gem_object_change_domain(obj,
2936 old_read_domains,
2937 old_write_domain);
2938
e47c68e9
EA
2939 return 0;
2940}
2941
b9241ea3
ZW
2942/*
2943 * Prepare buffer for display plane. Use uninterruptible for possible flush
2944 * wait, as in modesetting process we're not supposed to be interrupted.
2945 */
2946int
48b956c5
CW
2947i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2948 bool pipelined)
b9241ea3 2949{
23010e43 2950 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2951 uint32_t old_read_domains;
b9241ea3
ZW
2952 int ret;
2953
2954 /* Not valid to be called on unbound objects. */
2955 if (obj_priv->gtt_space == NULL)
2956 return -EINVAL;
2957
ced270fa 2958 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
2959 if (ret)
2960 return ret;
b9241ea3 2961
ced270fa
CW
2962 /* Currently, we are always called from an non-interruptible context. */
2963 if (!pipelined) {
2964 ret = i915_gem_object_wait_rendering(obj, false);
2965 if (ret)
b9241ea3
ZW
2966 return ret;
2967 }
2968
b118c1e3
CW
2969 i915_gem_object_flush_cpu_write_domain(obj);
2970
b9241ea3 2971 old_read_domains = obj->read_domains;
c78ec30b 2972 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2973
2974 trace_i915_gem_object_change_domain(obj,
2975 old_read_domains,
ba3d8d74 2976 obj->write_domain);
b9241ea3
ZW
2977
2978 return 0;
2979}
2980
e47c68e9
EA
2981/**
2982 * Moves a single object to the CPU read, and possibly write domain.
2983 *
2984 * This function returns when the move is complete, including waiting on
2985 * flushes to occur.
2986 */
2987static int
2988i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2989{
1c5d22f7 2990 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2991 int ret;
2992
ba3d8d74 2993 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2994 if (ret != 0)
2995 return ret;
2ef7eeaa 2996
e47c68e9 2997 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2998
e47c68e9
EA
2999 /* If we have a partially-valid cache of the object in the CPU,
3000 * finish invalidating it and free the per-page flags.
2ef7eeaa 3001 */
e47c68e9 3002 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3003
7213342d 3004 if (write) {
2cf34d7b 3005 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
3006 if (ret)
3007 return ret;
3008 }
3009
1c5d22f7
CW
3010 old_write_domain = obj->write_domain;
3011 old_read_domains = obj->read_domains;
3012
e47c68e9
EA
3013 /* Flush the CPU cache if it's still invalid. */
3014 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3015 i915_gem_clflush_object(obj);
2ef7eeaa 3016
e47c68e9 3017 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3018 }
3019
3020 /* It should now be out of any other write domains, and we can update
3021 * the domain values for our changes.
3022 */
e47c68e9
EA
3023 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3024
3025 /* If we're writing through the CPU, then the GPU read domains will
3026 * need to be invalidated at next use.
3027 */
3028 if (write) {
c78ec30b 3029 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
3030 obj->write_domain = I915_GEM_DOMAIN_CPU;
3031 }
2ef7eeaa 3032
1c5d22f7
CW
3033 trace_i915_gem_object_change_domain(obj,
3034 old_read_domains,
3035 old_write_domain);
3036
2ef7eeaa
EA
3037 return 0;
3038}
3039
673a394b
EA
3040/*
3041 * Set the next domain for the specified object. This
3042 * may not actually perform the necessary flushing/invaliding though,
3043 * as that may want to be batched with other set_domain operations
3044 *
3045 * This is (we hope) the only really tricky part of gem. The goal
3046 * is fairly simple -- track which caches hold bits of the object
3047 * and make sure they remain coherent. A few concrete examples may
3048 * help to explain how it works. For shorthand, we use the notation
3049 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3050 * a pair of read and write domain masks.
3051 *
3052 * Case 1: the batch buffer
3053 *
3054 * 1. Allocated
3055 * 2. Written by CPU
3056 * 3. Mapped to GTT
3057 * 4. Read by GPU
3058 * 5. Unmapped from GTT
3059 * 6. Freed
3060 *
3061 * Let's take these a step at a time
3062 *
3063 * 1. Allocated
3064 * Pages allocated from the kernel may still have
3065 * cache contents, so we set them to (CPU, CPU) always.
3066 * 2. Written by CPU (using pwrite)
3067 * The pwrite function calls set_domain (CPU, CPU) and
3068 * this function does nothing (as nothing changes)
3069 * 3. Mapped by GTT
3070 * This function asserts that the object is not
3071 * currently in any GPU-based read or write domains
3072 * 4. Read by GPU
3073 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3074 * As write_domain is zero, this function adds in the
3075 * current read domains (CPU+COMMAND, 0).
3076 * flush_domains is set to CPU.
3077 * invalidate_domains is set to COMMAND
3078 * clflush is run to get data out of the CPU caches
3079 * then i915_dev_set_domain calls i915_gem_flush to
3080 * emit an MI_FLUSH and drm_agp_chipset_flush
3081 * 5. Unmapped from GTT
3082 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3083 * flush_domains and invalidate_domains end up both zero
3084 * so no flushing/invalidating happens
3085 * 6. Freed
3086 * yay, done
3087 *
3088 * Case 2: The shared render buffer
3089 *
3090 * 1. Allocated
3091 * 2. Mapped to GTT
3092 * 3. Read/written by GPU
3093 * 4. set_domain to (CPU,CPU)
3094 * 5. Read/written by CPU
3095 * 6. Read/written by GPU
3096 *
3097 * 1. Allocated
3098 * Same as last example, (CPU, CPU)
3099 * 2. Mapped to GTT
3100 * Nothing changes (assertions find that it is not in the GPU)
3101 * 3. Read/written by GPU
3102 * execbuffer calls set_domain (RENDER, RENDER)
3103 * flush_domains gets CPU
3104 * invalidate_domains gets GPU
3105 * clflush (obj)
3106 * MI_FLUSH and drm_agp_chipset_flush
3107 * 4. set_domain (CPU, CPU)
3108 * flush_domains gets GPU
3109 * invalidate_domains gets CPU
3110 * wait_rendering (obj) to make sure all drawing is complete.
3111 * This will include an MI_FLUSH to get the data from GPU
3112 * to memory
3113 * clflush (obj) to invalidate the CPU cache
3114 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3115 * 5. Read/written by CPU
3116 * cache lines are loaded and dirtied
3117 * 6. Read written by GPU
3118 * Same as last GPU access
3119 *
3120 * Case 3: The constant buffer
3121 *
3122 * 1. Allocated
3123 * 2. Written by CPU
3124 * 3. Read by GPU
3125 * 4. Updated (written) by CPU again
3126 * 5. Read by GPU
3127 *
3128 * 1. Allocated
3129 * (CPU, CPU)
3130 * 2. Written by CPU
3131 * (CPU, CPU)
3132 * 3. Read by GPU
3133 * (CPU+RENDER, 0)
3134 * flush_domains = CPU
3135 * invalidate_domains = RENDER
3136 * clflush (obj)
3137 * MI_FLUSH
3138 * drm_agp_chipset_flush
3139 * 4. Updated (written) by CPU again
3140 * (CPU, CPU)
3141 * flush_domains = 0 (no previous write domain)
3142 * invalidate_domains = 0 (no new read domains)
3143 * 5. Read by GPU
3144 * (CPU+RENDER, 0)
3145 * flush_domains = CPU
3146 * invalidate_domains = RENDER
3147 * clflush (obj)
3148 * MI_FLUSH
3149 * drm_agp_chipset_flush
3150 */
c0d90829 3151static void
b6651458
CW
3152i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3153 struct intel_ring_buffer *ring)
673a394b
EA
3154{
3155 struct drm_device *dev = obj->dev;
9220434a 3156 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3157 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3158 uint32_t invalidate_domains = 0;
3159 uint32_t flush_domains = 0;
652c393a 3160
673a394b
EA
3161 /*
3162 * If the object isn't moving to a new write domain,
3163 * let the object stay in multiple read domains
3164 */
8b0e378a
EA
3165 if (obj->pending_write_domain == 0)
3166 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3167
3168 /*
3169 * Flush the current write domain if
3170 * the new read domains don't match. Invalidate
3171 * any read domains which differ from the old
3172 * write domain
3173 */
8b0e378a
EA
3174 if (obj->write_domain &&
3175 obj->write_domain != obj->pending_read_domains) {
673a394b 3176 flush_domains |= obj->write_domain;
8b0e378a
EA
3177 invalidate_domains |=
3178 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3179 }
3180 /*
3181 * Invalidate any read caches which may have
3182 * stale data. That is, any new read domains.
3183 */
8b0e378a 3184 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3185 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3186 i915_gem_clflush_object(obj);
673a394b 3187
4a684a41
CW
3188 /* blow away mappings if mapped through GTT */
3189 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3190 i915_gem_release_mmap(obj);
3191
efbeed96
EA
3192 /* The actual obj->write_domain will be updated with
3193 * pending_write_domain after we emit the accumulated flush for all
3194 * of our domain changes in execbuffers (which clears objects'
3195 * write_domains). So if we have a current write domain that we
3196 * aren't changing, set pending_write_domain to that.
3197 */
3198 if (flush_domains == 0 && obj->pending_write_domain == 0)
3199 obj->pending_write_domain = obj->write_domain;
673a394b
EA
3200
3201 dev->invalidate_domains |= invalidate_domains;
3202 dev->flush_domains |= flush_domains;
b6651458 3203 if (flush_domains & I915_GEM_GPU_DOMAINS)
9220434a 3204 dev_priv->mm.flush_rings |= obj_priv->ring->id;
b6651458
CW
3205 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3206 dev_priv->mm.flush_rings |= ring->id;
673a394b
EA
3207}
3208
3209/**
e47c68e9 3210 * Moves the object from a partially CPU read to a full one.
673a394b 3211 *
e47c68e9
EA
3212 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3213 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3214 */
e47c68e9
EA
3215static void
3216i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3217{
23010e43 3218 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3219
e47c68e9
EA
3220 if (!obj_priv->page_cpu_valid)
3221 return;
3222
3223 /* If we're partially in the CPU read domain, finish moving it in.
3224 */
3225 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3226 int i;
3227
3228 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3229 if (obj_priv->page_cpu_valid[i])
3230 continue;
856fa198 3231 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3232 }
e47c68e9
EA
3233 }
3234
3235 /* Free the page_cpu_valid mappings which are now stale, whether
3236 * or not we've got I915_GEM_DOMAIN_CPU.
3237 */
9a298b2a 3238 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3239 obj_priv->page_cpu_valid = NULL;
3240}
3241
3242/**
3243 * Set the CPU read domain on a range of the object.
3244 *
3245 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3246 * not entirely valid. The page_cpu_valid member of the object flags which
3247 * pages have been flushed, and will be respected by
3248 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3249 * of the whole object.
3250 *
3251 * This function returns when the move is complete, including waiting on
3252 * flushes to occur.
3253 */
3254static int
3255i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3256 uint64_t offset, uint64_t size)
3257{
23010e43 3258 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3259 uint32_t old_read_domains;
e47c68e9 3260 int i, ret;
673a394b 3261
e47c68e9
EA
3262 if (offset == 0 && size == obj->size)
3263 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3264
ba3d8d74 3265 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3266 if (ret != 0)
6a47baa6 3267 return ret;
e47c68e9
EA
3268 i915_gem_object_flush_gtt_write_domain(obj);
3269
3270 /* If we're already fully in the CPU read domain, we're done. */
3271 if (obj_priv->page_cpu_valid == NULL &&
3272 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3273 return 0;
673a394b 3274
e47c68e9
EA
3275 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3276 * newly adding I915_GEM_DOMAIN_CPU
3277 */
673a394b 3278 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3279 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3280 GFP_KERNEL);
e47c68e9
EA
3281 if (obj_priv->page_cpu_valid == NULL)
3282 return -ENOMEM;
3283 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3284 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3285
3286 /* Flush the cache on any pages that are still invalid from the CPU's
3287 * perspective.
3288 */
e47c68e9
EA
3289 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3290 i++) {
673a394b
EA
3291 if (obj_priv->page_cpu_valid[i])
3292 continue;
3293
856fa198 3294 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3295
3296 obj_priv->page_cpu_valid[i] = 1;
3297 }
3298
e47c68e9
EA
3299 /* It should now be out of any other write domains, and we can update
3300 * the domain values for our changes.
3301 */
3302 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3303
1c5d22f7 3304 old_read_domains = obj->read_domains;
e47c68e9
EA
3305 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3306
1c5d22f7
CW
3307 trace_i915_gem_object_change_domain(obj,
3308 old_read_domains,
3309 obj->write_domain);
3310
673a394b
EA
3311 return 0;
3312}
3313
673a394b
EA
3314/**
3315 * Pin an object to the GTT and evaluate the relocations landing in it.
3316 */
3317static int
9af90d19
CW
3318i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3319 struct drm_file *file_priv,
3320 struct drm_i915_gem_exec_object2 *entry)
673a394b 3321{
9af90d19 3322 struct drm_device *dev = obj->base.dev;
0839ccb8 3323 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3324 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3325 struct drm_gem_object *target_obj = NULL;
3326 uint32_t target_handle = 0;
3327 int i, ret = 0;
673a394b 3328
2549d6c2 3329 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3330 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3331 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3332 uint32_t target_offset;
673a394b 3333
9af90d19
CW
3334 if (__copy_from_user_inatomic(&reloc,
3335 user_relocs+i,
3336 sizeof(reloc))) {
3337 ret = -EFAULT;
3338 break;
76446cac 3339 }
76446cac 3340
9af90d19
CW
3341 if (reloc.target_handle != target_handle) {
3342 drm_gem_object_unreference(target_obj);
673a394b 3343
9af90d19
CW
3344 target_obj = drm_gem_object_lookup(dev, file_priv,
3345 reloc.target_handle);
3346 if (target_obj == NULL) {
3347 ret = -ENOENT;
3348 break;
3349 }
3350
3351 target_handle = reloc.target_handle;
673a394b 3352 }
9af90d19 3353 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3354
8542a0bb
CW
3355#if WATCH_RELOC
3356 DRM_INFO("%s: obj %p offset %08x target %d "
3357 "read %08x write %08x gtt %08x "
3358 "presumed %08x delta %08x\n",
3359 __func__,
3360 obj,
2549d6c2
CW
3361 (int) reloc.offset,
3362 (int) reloc.target_handle,
3363 (int) reloc.read_domains,
3364 (int) reloc.write_domain,
9af90d19 3365 (int) target_offset,
2549d6c2
CW
3366 (int) reloc.presumed_offset,
3367 reloc.delta);
8542a0bb
CW
3368#endif
3369
673a394b
EA
3370 /* The target buffer should have appeared before us in the
3371 * exec_object list, so it should have a GTT space bound by now.
3372 */
9af90d19 3373 if (target_offset == 0) {
673a394b 3374 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3375 reloc.target_handle);
9af90d19
CW
3376 ret = -EINVAL;
3377 break;
673a394b
EA
3378 }
3379
8542a0bb 3380 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3381 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3382 DRM_ERROR("reloc with multiple write domains: "
3383 "obj %p target %d offset %d "
3384 "read %08x write %08x",
2549d6c2
CW
3385 obj, reloc.target_handle,
3386 (int) reloc.offset,
3387 reloc.read_domains,
3388 reloc.write_domain);
9af90d19
CW
3389 ret = -EINVAL;
3390 break;
16edd550 3391 }
2549d6c2
CW
3392 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3393 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3394 DRM_ERROR("reloc with read/write CPU domains: "
3395 "obj %p target %d offset %d "
3396 "read %08x write %08x",
2549d6c2
CW
3397 obj, reloc.target_handle,
3398 (int) reloc.offset,
3399 reloc.read_domains,
3400 reloc.write_domain);
9af90d19
CW
3401 ret = -EINVAL;
3402 break;
e47c68e9 3403 }
2549d6c2
CW
3404 if (reloc.write_domain && target_obj->pending_write_domain &&
3405 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3406 DRM_ERROR("Write domain conflict: "
3407 "obj %p target %d offset %d "
3408 "new %08x old %08x\n",
2549d6c2
CW
3409 obj, reloc.target_handle,
3410 (int) reloc.offset,
3411 reloc.write_domain,
673a394b 3412 target_obj->pending_write_domain);
9af90d19
CW
3413 ret = -EINVAL;
3414 break;
673a394b
EA
3415 }
3416
2549d6c2 3417 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3418 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3419
3420 /* If the relocation already has the right value in it, no
3421 * more work needs to be done.
3422 */
9af90d19 3423 if (target_offset == reloc.presumed_offset)
673a394b 3424 continue;
673a394b 3425
8542a0bb 3426 /* Check that the relocation address is valid... */
9af90d19 3427 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3428 DRM_ERROR("Relocation beyond object bounds: "
3429 "obj %p target %d offset %d size %d.\n",
2549d6c2 3430 obj, reloc.target_handle,
9af90d19
CW
3431 (int) reloc.offset, (int) obj->base.size);
3432 ret = -EINVAL;
3433 break;
8542a0bb 3434 }
2549d6c2 3435 if (reloc.offset & 3) {
8542a0bb
CW
3436 DRM_ERROR("Relocation not 4-byte aligned: "
3437 "obj %p target %d offset %d.\n",
2549d6c2
CW
3438 obj, reloc.target_handle,
3439 (int) reloc.offset);
9af90d19
CW
3440 ret = -EINVAL;
3441 break;
8542a0bb
CW
3442 }
3443
3444 /* and points to somewhere within the target object. */
2549d6c2 3445 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3446 DRM_ERROR("Relocation beyond target object bounds: "
3447 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3448 obj, reloc.target_handle,
3449 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3450 ret = -EINVAL;
3451 break;
673a394b
EA
3452 }
3453
9af90d19
CW
3454 reloc.delta += target_offset;
3455 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3456 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3457 char *vaddr;
673a394b 3458
c48c43e4 3459 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3460 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3461 kunmap_atomic(vaddr);
f0c43d9b
CW
3462 } else {
3463 uint32_t __iomem *reloc_entry;
3464 void __iomem *reloc_page;
b962442e 3465
9af90d19
CW
3466 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3467 if (ret)
3468 break;
b962442e 3469
f0c43d9b 3470 /* Map the page containing the relocation we're going to perform. */
9af90d19 3471 reloc.offset += obj->gtt_offset;
f0c43d9b 3472 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3473 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3474 reloc_entry = (uint32_t __iomem *)
3475 (reloc_page + (reloc.offset & ~PAGE_MASK));
3476 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3477 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3478 }
b962442e 3479
b5dc608c
CW
3480 /* and update the user's relocation entry */
3481 reloc.presumed_offset = target_offset;
3482 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3483 &reloc.presumed_offset,
3484 sizeof(reloc.presumed_offset))) {
3485 ret = -EFAULT;
3486 break;
3487 }
b962442e 3488 }
b962442e 3489
9af90d19 3490 drm_gem_object_unreference(target_obj);
673a394b
EA
3491 return ret;
3492}
3493
40a5f0de 3494static int
9af90d19
CW
3495i915_gem_execbuffer_pin(struct drm_device *dev,
3496 struct drm_file *file,
3497 struct drm_gem_object **object_list,
3498 struct drm_i915_gem_exec_object2 *exec_list,
3499 int count)
40a5f0de 3500{
9af90d19
CW
3501 struct drm_i915_private *dev_priv = dev->dev_private;
3502 int ret, i, retry;
40a5f0de 3503
9af90d19
CW
3504 /* attempt to pin all of the buffers into the GTT */
3505 for (retry = 0; retry < 2; retry++) {
3506 ret = 0;
3507 for (i = 0; i < count; i++) {
3508 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
16e809ac 3509 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
9af90d19
CW
3510 bool need_fence =
3511 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3512 obj->tiling_mode != I915_TILING_NONE;
3513
16e809ac
DV
3514 /* g33/pnv can't fence buffers in the unmappable part */
3515 bool need_mappable =
3516 entry->relocation_count ? true : need_fence;
3517
9af90d19
CW
3518 /* Check fence reg constraints and rebind if necessary */
3519 if (need_fence &&
3520 !i915_gem_object_fence_offset_ok(&obj->base,
3521 obj->tiling_mode)) {
3522 ret = i915_gem_object_unbind(&obj->base);
3523 if (ret)
3524 break;
3525 }
40a5f0de 3526
920afa77 3527 ret = i915_gem_object_pin(&obj->base,
16e809ac
DV
3528 entry->alignment,
3529 need_mappable);
9af90d19
CW
3530 if (ret)
3531 break;
40a5f0de 3532
9af90d19
CW
3533 /*
3534 * Pre-965 chips need a fence register set up in order
3535 * to properly handle blits to/from tiled surfaces.
3536 */
3537 if (need_fence) {
3538 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3539 if (ret) {
3540 i915_gem_object_unpin(&obj->base);
3541 break;
3542 }
40a5f0de 3543
9af90d19
CW
3544 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3545 }
40a5f0de 3546
9af90d19 3547 entry->offset = obj->gtt_offset;
40a5f0de
EA
3548 }
3549
9af90d19
CW
3550 while (i--)
3551 i915_gem_object_unpin(object_list[i]);
3552
3553 if (ret == 0)
3554 break;
673a394b 3555
9af90d19
CW
3556 if (ret != -ENOSPC || retry)
3557 return ret;
3558
3559 ret = i915_gem_evict_everything(dev);
3560 if (ret)
3561 return ret;
40a5f0de
EA
3562 }
3563
2bc43b5c 3564 return 0;
40a5f0de
EA
3565}
3566
673a394b
EA
3567/* Throttle our rendering by waiting until the ring has completed our requests
3568 * emitted over 20 msec ago.
3569 *
b962442e
EA
3570 * Note that if we were to use the current jiffies each time around the loop,
3571 * we wouldn't escape the function with any frames outstanding if the time to
3572 * render a frame was over 20ms.
3573 *
673a394b
EA
3574 * This should get us reasonable parallelism between CPU and GPU but also
3575 * relatively low latency when blocking on a particular request to finish.
3576 */
40a5f0de 3577static int
f787a5f5 3578i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3579{
f787a5f5
CW
3580 struct drm_i915_private *dev_priv = dev->dev_private;
3581 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3582 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3583 struct drm_i915_gem_request *request;
3584 struct intel_ring_buffer *ring = NULL;
3585 u32 seqno = 0;
3586 int ret;
93533c29 3587
1c25595f 3588 spin_lock(&file_priv->mm.lock);
f787a5f5 3589 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3590 if (time_after_eq(request->emitted_jiffies, recent_enough))
3591 break;
40a5f0de 3592
f787a5f5
CW
3593 ring = request->ring;
3594 seqno = request->seqno;
b962442e 3595 }
1c25595f 3596 spin_unlock(&file_priv->mm.lock);
40a5f0de 3597
f787a5f5
CW
3598 if (seqno == 0)
3599 return 0;
2bc43b5c 3600
f787a5f5 3601 ret = 0;
78501eac 3602 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3603 /* And wait for the seqno passing without holding any locks and
3604 * causing extra latency for others. This is safe as the irq
3605 * generation is designed to be run atomically and so is
3606 * lockless.
3607 */
78501eac 3608 ring->user_irq_get(ring);
f787a5f5 3609 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3610 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3611 || atomic_read(&dev_priv->mm.wedged));
78501eac 3612 ring->user_irq_put(ring);
40a5f0de 3613
f787a5f5
CW
3614 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3615 ret = -EIO;
40a5f0de
EA
3616 }
3617
f787a5f5
CW
3618 if (ret == 0)
3619 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3620
3621 return ret;
3622}
3623
83d60795 3624static int
2549d6c2
CW
3625i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3626 uint64_t exec_offset)
83d60795
CW
3627{
3628 uint32_t exec_start, exec_len;
3629
3630 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3631 exec_len = (uint32_t) exec->batch_len;
3632
3633 if ((exec_start | exec_len) & 0x7)
3634 return -EINVAL;
3635
3636 if (!exec_start)
3637 return -EINVAL;
3638
3639 return 0;
3640}
3641
6b95a207 3642static int
2549d6c2
CW
3643validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3644 int count)
6b95a207 3645{
2549d6c2 3646 int i;
6b95a207 3647
2549d6c2
CW
3648 for (i = 0; i < count; i++) {
3649 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3650 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
6b95a207 3651
2549d6c2
CW
3652 if (!access_ok(VERIFY_READ, ptr, length))
3653 return -EFAULT;
40a5f0de 3654
b5dc608c
CW
3655 /* we may also need to update the presumed offsets */
3656 if (!access_ok(VERIFY_WRITE, ptr, length))
3657 return -EFAULT;
3658
2549d6c2
CW
3659 if (fault_in_pages_readable(ptr, length))
3660 return -EFAULT;
6b95a207 3661 }
6b95a207 3662
83d60795 3663 return 0;
6b95a207
KH
3664}
3665
8dc5d147 3666static int
76446cac 3667i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3668 struct drm_file *file,
76446cac
JB
3669 struct drm_i915_gem_execbuffer2 *args,
3670 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3671{
3672 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3673 struct drm_gem_object **object_list = NULL;
3674 struct drm_gem_object *batch_obj;
201361a5 3675 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3676 struct drm_i915_gem_request *request = NULL;
9af90d19 3677 int ret, i, flips;
673a394b 3678 uint64_t exec_offset;
673a394b 3679
852835f3
ZN
3680 struct intel_ring_buffer *ring = NULL;
3681
30dbf0c0
CW
3682 ret = i915_gem_check_is_wedged(dev);
3683 if (ret)
3684 return ret;
3685
2549d6c2
CW
3686 ret = validate_exec_list(exec_list, args->buffer_count);
3687 if (ret)
3688 return ret;
3689
673a394b
EA
3690#if WATCH_EXEC
3691 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3692 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3693#endif
549f7365
CW
3694 switch (args->flags & I915_EXEC_RING_MASK) {
3695 case I915_EXEC_DEFAULT:
3696 case I915_EXEC_RENDER:
3697 ring = &dev_priv->render_ring;
3698 break;
3699 case I915_EXEC_BSD:
d1b851fc 3700 if (!HAS_BSD(dev)) {
549f7365 3701 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3702 return -EINVAL;
3703 }
3704 ring = &dev_priv->bsd_ring;
549f7365
CW
3705 break;
3706 case I915_EXEC_BLT:
3707 if (!HAS_BLT(dev)) {
3708 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3709 return -EINVAL;
3710 }
3711 ring = &dev_priv->blt_ring;
3712 break;
3713 default:
3714 DRM_ERROR("execbuf with unknown ring: %d\n",
3715 (int)(args->flags & I915_EXEC_RING_MASK));
3716 return -EINVAL;
d1b851fc
ZN
3717 }
3718
4f481ed2
EA
3719 if (args->buffer_count < 1) {
3720 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3721 return -EINVAL;
3722 }
c8e0f93a 3723 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3724 if (object_list == NULL) {
3725 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3726 args->buffer_count);
3727 ret = -ENOMEM;
3728 goto pre_mutex_err;
3729 }
673a394b 3730
201361a5 3731 if (args->num_cliprects != 0) {
9a298b2a
EA
3732 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3733 GFP_KERNEL);
a40e8d31
OA
3734 if (cliprects == NULL) {
3735 ret = -ENOMEM;
201361a5 3736 goto pre_mutex_err;
a40e8d31 3737 }
201361a5
EA
3738
3739 ret = copy_from_user(cliprects,
3740 (struct drm_clip_rect __user *)
3741 (uintptr_t) args->cliprects_ptr,
3742 sizeof(*cliprects) * args->num_cliprects);
3743 if (ret != 0) {
3744 DRM_ERROR("copy %d cliprects failed: %d\n",
3745 args->num_cliprects, ret);
c877cdce 3746 ret = -EFAULT;
201361a5
EA
3747 goto pre_mutex_err;
3748 }
3749 }
3750
8dc5d147
CW
3751 request = kzalloc(sizeof(*request), GFP_KERNEL);
3752 if (request == NULL) {
3753 ret = -ENOMEM;
40a5f0de 3754 goto pre_mutex_err;
8dc5d147 3755 }
40a5f0de 3756
76c1dec1
CW
3757 ret = i915_mutex_lock_interruptible(dev);
3758 if (ret)
a198bc80 3759 goto pre_mutex_err;
673a394b
EA
3760
3761 if (dev_priv->mm.suspended) {
673a394b 3762 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3763 ret = -EBUSY;
3764 goto pre_mutex_err;
673a394b
EA
3765 }
3766
ac94a962 3767 /* Look up object handles */
673a394b 3768 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3769 struct drm_i915_gem_object *obj_priv;
3770
9af90d19 3771 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3772 exec_list[i].handle);
3773 if (object_list[i] == NULL) {
3774 DRM_ERROR("Invalid object handle %d at index %d\n",
3775 exec_list[i].handle, i);
0ce907f8
CW
3776 /* prevent error path from reading uninitialized data */
3777 args->buffer_count = i + 1;
bf79cb91 3778 ret = -ENOENT;
673a394b
EA
3779 goto err;
3780 }
b70d11da 3781
23010e43 3782 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3783 if (obj_priv->in_execbuffer) {
3784 DRM_ERROR("Object %p appears more than once in object list\n",
3785 object_list[i]);
0ce907f8
CW
3786 /* prevent error path from reading uninitialized data */
3787 args->buffer_count = i + 1;
bf79cb91 3788 ret = -EINVAL;
b70d11da
KH
3789 goto err;
3790 }
3791 obj_priv->in_execbuffer = true;
ac94a962 3792 }
673a394b 3793
9af90d19
CW
3794 /* Move the objects en-masse into the GTT, evicting if necessary. */
3795 ret = i915_gem_execbuffer_pin(dev, file,
3796 object_list, exec_list,
3797 args->buffer_count);
3798 if (ret)
3799 goto err;
ac94a962 3800
9af90d19
CW
3801 /* The objects are in their final locations, apply the relocations. */
3802 for (i = 0; i < args->buffer_count; i++) {
3803 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3804 obj->base.pending_read_domains = 0;
3805 obj->base.pending_write_domain = 0;
3806 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3807 if (ret)
ac94a962 3808 goto err;
673a394b
EA
3809 }
3810
3811 /* Set the pending read domains for the batch buffer to COMMAND */
3812 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3813 if (batch_obj->pending_write_domain) {
3814 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3815 ret = -EINVAL;
3816 goto err;
3817 }
3818 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3819
9af90d19
CW
3820 /* Sanity check the batch buffer */
3821 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3822 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3823 if (ret != 0) {
3824 DRM_ERROR("execbuf with invalid offset/length\n");
3825 goto err;
3826 }
3827
646f0f6e
KP
3828 /* Zero the global flush/invalidate flags. These
3829 * will be modified as new domains are computed
3830 * for each object
3831 */
3832 dev->invalidate_domains = 0;
3833 dev->flush_domains = 0;
9220434a 3834 dev_priv->mm.flush_rings = 0;
7e318e18
CW
3835 for (i = 0; i < args->buffer_count; i++)
3836 i915_gem_object_set_to_gpu_domain(object_list[i], ring);
673a394b 3837
646f0f6e
KP
3838 if (dev->invalidate_domains | dev->flush_domains) {
3839#if WATCH_EXEC
3840 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3841 __func__,
3842 dev->invalidate_domains,
3843 dev->flush_domains);
3844#endif
9af90d19 3845 i915_gem_flush(dev, file,
646f0f6e 3846 dev->invalidate_domains,
9220434a
CW
3847 dev->flush_domains,
3848 dev_priv->mm.flush_rings);
646f0f6e 3849 }
673a394b 3850
673a394b
EA
3851#if WATCH_COHERENCY
3852 for (i = 0; i < args->buffer_count; i++) {
3853 i915_gem_object_check_coherency(object_list[i],
3854 exec_list[i].handle);
3855 }
3856#endif
3857
673a394b 3858#if WATCH_EXEC
6911a9b8 3859 i915_gem_dump_object(batch_obj,
673a394b
EA
3860 args->batch_len,
3861 __func__,
3862 ~0);
3863#endif
3864
e59f2bac
CW
3865 /* Check for any pending flips. As we only maintain a flip queue depth
3866 * of 1, we can simply insert a WAIT for the next display flip prior
3867 * to executing the batch and avoid stalling the CPU.
3868 */
3869 flips = 0;
3870 for (i = 0; i < args->buffer_count; i++) {
3871 if (object_list[i]->write_domain)
3872 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3873 }
3874 if (flips) {
3875 int plane, flip_mask;
3876
3877 for (plane = 0; flips >> plane; plane++) {
3878 if (((flips >> plane) & 1) == 0)
3879 continue;
3880
3881 if (plane)
3882 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3883 else
3884 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3885
e1f99ce6
CW
3886 ret = intel_ring_begin(ring, 2);
3887 if (ret)
3888 goto err;
3889
78501eac
CW
3890 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3891 intel_ring_emit(ring, MI_NOOP);
3892 intel_ring_advance(ring);
e59f2bac
CW
3893 }
3894 }
3895
673a394b 3896 /* Exec the batchbuffer */
78501eac 3897 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
3898 if (ret) {
3899 DRM_ERROR("dispatch failed %d\n", ret);
3900 goto err;
3901 }
3902
673a394b
EA
3903 for (i = 0; i < args->buffer_count; i++) {
3904 struct drm_gem_object *obj = object_list[i];
673a394b 3905
7e318e18
CW
3906 obj->read_domains = obj->pending_read_domains;
3907 obj->write_domain = obj->pending_write_domain;
3908
617dbe27 3909 i915_gem_object_move_to_active(obj, ring);
7e318e18
CW
3910 if (obj->write_domain) {
3911 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3912 obj_priv->dirty = 1;
3913 list_move_tail(&obj_priv->gpu_write_list,
64193406 3914 &ring->gpu_write_list);
7e318e18
CW
3915 intel_mark_busy(dev, obj);
3916 }
3917
3918 trace_i915_gem_object_change_domain(obj,
3919 obj->read_domains,
3920 obj->write_domain);
673a394b 3921 }
673a394b 3922
7e318e18
CW
3923 /*
3924 * Ensure that the commands in the batch buffer are
3925 * finished before the interrupt fires
3926 */
3927 i915_retire_commands(dev, ring);
3928
3cce469c
CW
3929 if (i915_add_request(dev, file, request, ring))
3930 ring->outstanding_lazy_request = true;
3931 else
3932 request = NULL;
673a394b 3933
673a394b 3934err:
b70d11da 3935 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3936 if (object_list[i] == NULL)
3937 break;
3938
3939 to_intel_bo(object_list[i])->in_execbuffer = false;
aad87dff 3940 drm_gem_object_unreference(object_list[i]);
b70d11da 3941 }
673a394b 3942
673a394b
EA
3943 mutex_unlock(&dev->struct_mutex);
3944
93533c29 3945pre_mutex_err:
8e7d2b2c 3946 drm_free_large(object_list);
9a298b2a 3947 kfree(cliprects);
8dc5d147 3948 kfree(request);
673a394b
EA
3949
3950 return ret;
3951}
3952
76446cac
JB
3953/*
3954 * Legacy execbuffer just creates an exec2 list from the original exec object
3955 * list array and passes it to the real function.
3956 */
3957int
3958i915_gem_execbuffer(struct drm_device *dev, void *data,
3959 struct drm_file *file_priv)
3960{
3961 struct drm_i915_gem_execbuffer *args = data;
3962 struct drm_i915_gem_execbuffer2 exec2;
3963 struct drm_i915_gem_exec_object *exec_list = NULL;
3964 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3965 int ret, i;
3966
3967#if WATCH_EXEC
3968 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3969 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3970#endif
3971
3972 if (args->buffer_count < 1) {
3973 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3974 return -EINVAL;
3975 }
3976
3977 /* Copy in the exec list from userland */
3978 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3979 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3980 if (exec_list == NULL || exec2_list == NULL) {
3981 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3982 args->buffer_count);
3983 drm_free_large(exec_list);
3984 drm_free_large(exec2_list);
3985 return -ENOMEM;
3986 }
3987 ret = copy_from_user(exec_list,
3988 (struct drm_i915_relocation_entry __user *)
3989 (uintptr_t) args->buffers_ptr,
3990 sizeof(*exec_list) * args->buffer_count);
3991 if (ret != 0) {
3992 DRM_ERROR("copy %d exec entries failed %d\n",
3993 args->buffer_count, ret);
3994 drm_free_large(exec_list);
3995 drm_free_large(exec2_list);
3996 return -EFAULT;
3997 }
3998
3999 for (i = 0; i < args->buffer_count; i++) {
4000 exec2_list[i].handle = exec_list[i].handle;
4001 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4002 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4003 exec2_list[i].alignment = exec_list[i].alignment;
4004 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 4005 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
4006 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4007 else
4008 exec2_list[i].flags = 0;
4009 }
4010
4011 exec2.buffers_ptr = args->buffers_ptr;
4012 exec2.buffer_count = args->buffer_count;
4013 exec2.batch_start_offset = args->batch_start_offset;
4014 exec2.batch_len = args->batch_len;
4015 exec2.DR1 = args->DR1;
4016 exec2.DR4 = args->DR4;
4017 exec2.num_cliprects = args->num_cliprects;
4018 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4019 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4020
4021 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4022 if (!ret) {
4023 /* Copy the new buffer offsets back to the user's exec list. */
4024 for (i = 0; i < args->buffer_count; i++)
4025 exec_list[i].offset = exec2_list[i].offset;
4026 /* ... and back out to userspace */
4027 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4028 (uintptr_t) args->buffers_ptr,
4029 exec_list,
4030 sizeof(*exec_list) * args->buffer_count);
4031 if (ret) {
4032 ret = -EFAULT;
4033 DRM_ERROR("failed to copy %d exec entries "
4034 "back to user (%d)\n",
4035 args->buffer_count, ret);
4036 }
76446cac
JB
4037 }
4038
4039 drm_free_large(exec_list);
4040 drm_free_large(exec2_list);
4041 return ret;
4042}
4043
4044int
4045i915_gem_execbuffer2(struct drm_device *dev, void *data,
4046 struct drm_file *file_priv)
4047{
4048 struct drm_i915_gem_execbuffer2 *args = data;
4049 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4050 int ret;
4051
4052#if WATCH_EXEC
4053 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4054 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4055#endif
4056
4057 if (args->buffer_count < 1) {
4058 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4059 return -EINVAL;
4060 }
4061
4062 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4063 if (exec2_list == NULL) {
4064 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4065 args->buffer_count);
4066 return -ENOMEM;
4067 }
4068 ret = copy_from_user(exec2_list,
4069 (struct drm_i915_relocation_entry __user *)
4070 (uintptr_t) args->buffers_ptr,
4071 sizeof(*exec2_list) * args->buffer_count);
4072 if (ret != 0) {
4073 DRM_ERROR("copy %d exec entries failed %d\n",
4074 args->buffer_count, ret);
4075 drm_free_large(exec2_list);
4076 return -EFAULT;
4077 }
4078
4079 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4080 if (!ret) {
4081 /* Copy the new buffer offsets back to the user's exec list. */
4082 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4083 (uintptr_t) args->buffers_ptr,
4084 exec2_list,
4085 sizeof(*exec2_list) * args->buffer_count);
4086 if (ret) {
4087 ret = -EFAULT;
4088 DRM_ERROR("failed to copy %d exec entries "
4089 "back to user (%d)\n",
4090 args->buffer_count, ret);
4091 }
4092 }
4093
4094 drm_free_large(exec2_list);
4095 return ret;
4096}
4097
673a394b 4098int
920afa77
DV
4099i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4100 bool mappable)
673a394b
EA
4101{
4102 struct drm_device *dev = obj->dev;
f13d3f73 4103 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4104 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4105 int ret;
4106
778c3544 4107 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4108 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4109
4110 if (obj_priv->gtt_space != NULL) {
4111 if (alignment == 0)
4112 alignment = i915_gem_get_gtt_alignment(obj);
16e809ac
DV
4113 if (obj_priv->gtt_offset & (alignment - 1) ||
4114 (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
ae7d49d8
CW
4115 WARN(obj_priv->pin_count,
4116 "bo is already pinned with incorrect alignment:"
4117 " offset=%x, req.alignment=%x\n",
4118 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4119 ret = i915_gem_object_unbind(obj);
4120 if (ret)
4121 return ret;
4122 }
4123 }
4124
673a394b 4125 if (obj_priv->gtt_space == NULL) {
920afa77 4126 ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
9731129c 4127 if (ret)
673a394b 4128 return ret;
22c344e9 4129 }
76446cac 4130
673a394b
EA
4131 obj_priv->pin_count++;
4132
4133 /* If the object is not active and not pending a flush,
4134 * remove it from the inactive list
4135 */
4136 if (obj_priv->pin_count == 1) {
fb7d516a 4137 i915_gem_info_add_pin(dev_priv, obj, mappable);
f13d3f73 4138 if (!obj_priv->active)
69dc4987 4139 list_move_tail(&obj_priv->mm_list,
f13d3f73 4140 &dev_priv->mm.pinned_list);
673a394b 4141 }
fb7d516a 4142 BUG_ON(!obj_priv->pin_mappable && mappable);
673a394b 4143
23bc5982 4144 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4145 return 0;
4146}
4147
4148void
4149i915_gem_object_unpin(struct drm_gem_object *obj)
4150{
4151 struct drm_device *dev = obj->dev;
4152 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4153 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4154
23bc5982 4155 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4156 obj_priv->pin_count--;
4157 BUG_ON(obj_priv->pin_count < 0);
4158 BUG_ON(obj_priv->gtt_space == NULL);
4159
4160 /* If the object is no longer pinned, and is
4161 * neither active nor being flushed, then stick it on
4162 * the inactive list
4163 */
4164 if (obj_priv->pin_count == 0) {
f13d3f73 4165 if (!obj_priv->active)
69dc4987 4166 list_move_tail(&obj_priv->mm_list,
673a394b 4167 &dev_priv->mm.inactive_list);
fb7d516a 4168 i915_gem_info_remove_pin(dev_priv, obj);
673a394b 4169 }
23bc5982 4170 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4171}
4172
4173int
4174i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4175 struct drm_file *file_priv)
4176{
4177 struct drm_i915_gem_pin *args = data;
4178 struct drm_gem_object *obj;
4179 struct drm_i915_gem_object *obj_priv;
4180 int ret;
4181
1d7cfea1
CW
4182 ret = i915_mutex_lock_interruptible(dev);
4183 if (ret)
4184 return ret;
673a394b
EA
4185
4186 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4187 if (obj == NULL) {
1d7cfea1
CW
4188 ret = -ENOENT;
4189 goto unlock;
673a394b 4190 }
23010e43 4191 obj_priv = to_intel_bo(obj);
673a394b 4192
bb6baf76
CW
4193 if (obj_priv->madv != I915_MADV_WILLNEED) {
4194 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4195 ret = -EINVAL;
4196 goto out;
3ef94daa
CW
4197 }
4198
79e53945
JB
4199 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4200 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4201 args->handle);
1d7cfea1
CW
4202 ret = -EINVAL;
4203 goto out;
79e53945
JB
4204 }
4205
4206 obj_priv->user_pin_count++;
4207 obj_priv->pin_filp = file_priv;
4208 if (obj_priv->user_pin_count == 1) {
920afa77 4209 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
4210 if (ret)
4211 goto out;
673a394b
EA
4212 }
4213
4214 /* XXX - flush the CPU caches for pinned objects
4215 * as the X server doesn't manage domains yet
4216 */
e47c68e9 4217 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4218 args->offset = obj_priv->gtt_offset;
1d7cfea1 4219out:
673a394b 4220 drm_gem_object_unreference(obj);
1d7cfea1 4221unlock:
673a394b 4222 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4223 return ret;
673a394b
EA
4224}
4225
4226int
4227i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4228 struct drm_file *file_priv)
4229{
4230 struct drm_i915_gem_pin *args = data;
4231 struct drm_gem_object *obj;
79e53945 4232 struct drm_i915_gem_object *obj_priv;
76c1dec1 4233 int ret;
673a394b 4234
1d7cfea1
CW
4235 ret = i915_mutex_lock_interruptible(dev);
4236 if (ret)
4237 return ret;
673a394b
EA
4238
4239 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4240 if (obj == NULL) {
1d7cfea1
CW
4241 ret = -ENOENT;
4242 goto unlock;
673a394b 4243 }
23010e43 4244 obj_priv = to_intel_bo(obj);
76c1dec1 4245
79e53945
JB
4246 if (obj_priv->pin_filp != file_priv) {
4247 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4248 args->handle);
1d7cfea1
CW
4249 ret = -EINVAL;
4250 goto out;
79e53945
JB
4251 }
4252 obj_priv->user_pin_count--;
4253 if (obj_priv->user_pin_count == 0) {
4254 obj_priv->pin_filp = NULL;
4255 i915_gem_object_unpin(obj);
4256 }
673a394b 4257
1d7cfea1 4258out:
673a394b 4259 drm_gem_object_unreference(obj);
1d7cfea1 4260unlock:
673a394b 4261 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4262 return ret;
673a394b
EA
4263}
4264
4265int
4266i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4267 struct drm_file *file_priv)
4268{
4269 struct drm_i915_gem_busy *args = data;
4270 struct drm_gem_object *obj;
4271 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4272 int ret;
4273
76c1dec1 4274 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4275 if (ret)
76c1dec1 4276 return ret;
673a394b 4277
673a394b
EA
4278 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4279 if (obj == NULL) {
1d7cfea1
CW
4280 ret = -ENOENT;
4281 goto unlock;
673a394b 4282 }
1d7cfea1 4283 obj_priv = to_intel_bo(obj);
d1b851fc 4284
0be555b6
CW
4285 /* Count all active objects as busy, even if they are currently not used
4286 * by the gpu. Users of this interface expect objects to eventually
4287 * become non-busy without any further actions, therefore emit any
4288 * necessary flushes here.
c4de0a5d 4289 */
0be555b6
CW
4290 args->busy = obj_priv->active;
4291 if (args->busy) {
4292 /* Unconditionally flush objects, even when the gpu still uses this
4293 * object. Userspace calling this function indicates that it wants to
4294 * use this buffer rather sooner than later, so issuing the required
4295 * flush earlier is beneficial.
4296 */
c78ec30b
CW
4297 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4298 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4299 obj_priv->ring,
4300 0, obj->write_domain);
0be555b6
CW
4301
4302 /* Update the active list for the hardware's current position.
4303 * Otherwise this only updates on a delayed timer or when irqs
4304 * are actually unmasked, and our working set ends up being
4305 * larger than required.
4306 */
4307 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4308
4309 args->busy = obj_priv->active;
4310 }
673a394b
EA
4311
4312 drm_gem_object_unreference(obj);
1d7cfea1 4313unlock:
673a394b 4314 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4315 return ret;
673a394b
EA
4316}
4317
4318int
4319i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4320 struct drm_file *file_priv)
4321{
4322 return i915_gem_ring_throttle(dev, file_priv);
4323}
4324
3ef94daa
CW
4325int
4326i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4327 struct drm_file *file_priv)
4328{
4329 struct drm_i915_gem_madvise *args = data;
4330 struct drm_gem_object *obj;
4331 struct drm_i915_gem_object *obj_priv;
76c1dec1 4332 int ret;
3ef94daa
CW
4333
4334 switch (args->madv) {
4335 case I915_MADV_DONTNEED:
4336 case I915_MADV_WILLNEED:
4337 break;
4338 default:
4339 return -EINVAL;
4340 }
4341
1d7cfea1
CW
4342 ret = i915_mutex_lock_interruptible(dev);
4343 if (ret)
4344 return ret;
4345
3ef94daa
CW
4346 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4347 if (obj == NULL) {
1d7cfea1
CW
4348 ret = -ENOENT;
4349 goto unlock;
3ef94daa 4350 }
23010e43 4351 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4352
4353 if (obj_priv->pin_count) {
1d7cfea1
CW
4354 ret = -EINVAL;
4355 goto out;
3ef94daa
CW
4356 }
4357
bb6baf76
CW
4358 if (obj_priv->madv != __I915_MADV_PURGED)
4359 obj_priv->madv = args->madv;
3ef94daa 4360
2d7ef395
CW
4361 /* if the object is no longer bound, discard its backing storage */
4362 if (i915_gem_object_is_purgeable(obj_priv) &&
4363 obj_priv->gtt_space == NULL)
4364 i915_gem_object_truncate(obj);
4365
bb6baf76
CW
4366 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4367
1d7cfea1 4368out:
3ef94daa 4369 drm_gem_object_unreference(obj);
1d7cfea1 4370unlock:
3ef94daa 4371 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4372 return ret;
3ef94daa
CW
4373}
4374
ac52bc56
DV
4375struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4376 size_t size)
4377{
73aa808f 4378 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4379 struct drm_i915_gem_object *obj;
ac52bc56 4380
c397b908
DV
4381 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4382 if (obj == NULL)
4383 return NULL;
673a394b 4384
c397b908
DV
4385 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4386 kfree(obj);
4387 return NULL;
4388 }
673a394b 4389
73aa808f
CW
4390 i915_gem_info_add_obj(dev_priv, size);
4391
c397b908
DV
4392 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4393 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4394
c397b908 4395 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4396 obj->base.driver_private = NULL;
c397b908 4397 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4398 INIT_LIST_HEAD(&obj->mm_list);
4399 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4400 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4401 obj->madv = I915_MADV_WILLNEED;
de151cf6 4402
c397b908
DV
4403 return &obj->base;
4404}
4405
4406int i915_gem_init_object(struct drm_gem_object *obj)
4407{
4408 BUG();
de151cf6 4409
673a394b
EA
4410 return 0;
4411}
4412
be72615b 4413static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4414{
de151cf6 4415 struct drm_device *dev = obj->dev;
be72615b 4416 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4417 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4418 int ret;
673a394b 4419
be72615b
CW
4420 ret = i915_gem_object_unbind(obj);
4421 if (ret == -ERESTARTSYS) {
69dc4987 4422 list_move(&obj_priv->mm_list,
be72615b
CW
4423 &dev_priv->mm.deferred_free_list);
4424 return;
4425 }
673a394b 4426
39a01d1f 4427 if (obj->map_list.map)
7e616158 4428 i915_gem_free_mmap_offset(obj);
de151cf6 4429
c397b908 4430 drm_gem_object_release(obj);
73aa808f 4431 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4432
9a298b2a 4433 kfree(obj_priv->page_cpu_valid);
280b713b 4434 kfree(obj_priv->bit_17);
c397b908 4435 kfree(obj_priv);
673a394b
EA
4436}
4437
be72615b
CW
4438void i915_gem_free_object(struct drm_gem_object *obj)
4439{
4440 struct drm_device *dev = obj->dev;
4441 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4442
4443 trace_i915_gem_object_destroy(obj);
4444
4445 while (obj_priv->pin_count > 0)
4446 i915_gem_object_unpin(obj);
4447
4448 if (obj_priv->phys_obj)
4449 i915_gem_detach_phys_object(dev, obj);
4450
4451 i915_gem_free_object_tail(obj);
4452}
4453
29105ccc
CW
4454int
4455i915_gem_idle(struct drm_device *dev)
4456{
4457 drm_i915_private_t *dev_priv = dev->dev_private;
4458 int ret;
28dfe52a 4459
29105ccc 4460 mutex_lock(&dev->struct_mutex);
1c5d22f7 4461
87acb0a5 4462 if (dev_priv->mm.suspended) {
29105ccc
CW
4463 mutex_unlock(&dev->struct_mutex);
4464 return 0;
28dfe52a
EA
4465 }
4466
29105ccc 4467 ret = i915_gpu_idle(dev);
6dbe2772
KP
4468 if (ret) {
4469 mutex_unlock(&dev->struct_mutex);
673a394b 4470 return ret;
6dbe2772 4471 }
673a394b 4472
29105ccc
CW
4473 /* Under UMS, be paranoid and evict. */
4474 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4475 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4476 if (ret) {
4477 mutex_unlock(&dev->struct_mutex);
4478 return ret;
4479 }
4480 }
4481
4482 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4483 * We need to replace this with a semaphore, or something.
4484 * And not confound mm.suspended!
4485 */
4486 dev_priv->mm.suspended = 1;
bc0c7f14 4487 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4488
4489 i915_kernel_lost_context(dev);
6dbe2772 4490 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4491
6dbe2772
KP
4492 mutex_unlock(&dev->struct_mutex);
4493
29105ccc
CW
4494 /* Cancel the retire work handler, which should be idle now. */
4495 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4496
673a394b
EA
4497 return 0;
4498}
4499
e552eb70
JB
4500/*
4501 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4502 * over cache flushing.
4503 */
8187a2b7 4504static int
e552eb70
JB
4505i915_gem_init_pipe_control(struct drm_device *dev)
4506{
4507 drm_i915_private_t *dev_priv = dev->dev_private;
4508 struct drm_gem_object *obj;
4509 struct drm_i915_gem_object *obj_priv;
4510 int ret;
4511
34dc4d44 4512 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4513 if (obj == NULL) {
4514 DRM_ERROR("Failed to allocate seqno page\n");
4515 ret = -ENOMEM;
4516 goto err;
4517 }
4518 obj_priv = to_intel_bo(obj);
4519 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4520
920afa77 4521 ret = i915_gem_object_pin(obj, 4096, true);
e552eb70
JB
4522 if (ret)
4523 goto err_unref;
4524
4525 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4526 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4527 if (dev_priv->seqno_page == NULL)
4528 goto err_unpin;
4529
4530 dev_priv->seqno_obj = obj;
4531 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4532
4533 return 0;
4534
4535err_unpin:
4536 i915_gem_object_unpin(obj);
4537err_unref:
4538 drm_gem_object_unreference(obj);
4539err:
4540 return ret;
4541}
4542
8187a2b7
ZN
4543
4544static void
e552eb70
JB
4545i915_gem_cleanup_pipe_control(struct drm_device *dev)
4546{
4547 drm_i915_private_t *dev_priv = dev->dev_private;
4548 struct drm_gem_object *obj;
4549 struct drm_i915_gem_object *obj_priv;
4550
4551 obj = dev_priv->seqno_obj;
4552 obj_priv = to_intel_bo(obj);
4553 kunmap(obj_priv->pages[0]);
4554 i915_gem_object_unpin(obj);
4555 drm_gem_object_unreference(obj);
4556 dev_priv->seqno_obj = NULL;
4557
4558 dev_priv->seqno_page = NULL;
673a394b
EA
4559}
4560
8187a2b7
ZN
4561int
4562i915_gem_init_ringbuffer(struct drm_device *dev)
4563{
4564 drm_i915_private_t *dev_priv = dev->dev_private;
4565 int ret;
68f95ba9 4566
8187a2b7
ZN
4567 if (HAS_PIPE_CONTROL(dev)) {
4568 ret = i915_gem_init_pipe_control(dev);
4569 if (ret)
4570 return ret;
4571 }
68f95ba9 4572
5c1143bb 4573 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4574 if (ret)
4575 goto cleanup_pipe_control;
4576
4577 if (HAS_BSD(dev)) {
5c1143bb 4578 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4579 if (ret)
4580 goto cleanup_render_ring;
d1b851fc 4581 }
68f95ba9 4582
549f7365
CW
4583 if (HAS_BLT(dev)) {
4584 ret = intel_init_blt_ring_buffer(dev);
4585 if (ret)
4586 goto cleanup_bsd_ring;
4587 }
4588
6f392d54
CW
4589 dev_priv->next_seqno = 1;
4590
68f95ba9
CW
4591 return 0;
4592
549f7365 4593cleanup_bsd_ring:
78501eac 4594 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4595cleanup_render_ring:
78501eac 4596 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4597cleanup_pipe_control:
4598 if (HAS_PIPE_CONTROL(dev))
4599 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4600 return ret;
4601}
4602
4603void
4604i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4605{
4606 drm_i915_private_t *dev_priv = dev->dev_private;
4607
78501eac
CW
4608 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4609 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4610 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4611 if (HAS_PIPE_CONTROL(dev))
4612 i915_gem_cleanup_pipe_control(dev);
4613}
4614
673a394b
EA
4615int
4616i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4617 struct drm_file *file_priv)
4618{
4619 drm_i915_private_t *dev_priv = dev->dev_private;
4620 int ret;
4621
79e53945
JB
4622 if (drm_core_check_feature(dev, DRIVER_MODESET))
4623 return 0;
4624
ba1234d1 4625 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4626 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4627 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4628 }
4629
673a394b 4630 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4631 dev_priv->mm.suspended = 0;
4632
4633 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4634 if (ret != 0) {
4635 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4636 return ret;
d816f6ac 4637 }
9bb2d6f9 4638
69dc4987 4639 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4640 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4641 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4642 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4643 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4644 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4645 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4646 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4647 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4648 mutex_unlock(&dev->struct_mutex);
dbb19d30 4649
5f35308b
CW
4650 ret = drm_irq_install(dev);
4651 if (ret)
4652 goto cleanup_ringbuffer;
dbb19d30 4653
673a394b 4654 return 0;
5f35308b
CW
4655
4656cleanup_ringbuffer:
4657 mutex_lock(&dev->struct_mutex);
4658 i915_gem_cleanup_ringbuffer(dev);
4659 dev_priv->mm.suspended = 1;
4660 mutex_unlock(&dev->struct_mutex);
4661
4662 return ret;
673a394b
EA
4663}
4664
4665int
4666i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4667 struct drm_file *file_priv)
4668{
79e53945
JB
4669 if (drm_core_check_feature(dev, DRIVER_MODESET))
4670 return 0;
4671
dbb19d30 4672 drm_irq_uninstall(dev);
e6890f6f 4673 return i915_gem_idle(dev);
673a394b
EA
4674}
4675
4676void
4677i915_gem_lastclose(struct drm_device *dev)
4678{
4679 int ret;
673a394b 4680
e806b495
EA
4681 if (drm_core_check_feature(dev, DRIVER_MODESET))
4682 return;
4683
6dbe2772
KP
4684 ret = i915_gem_idle(dev);
4685 if (ret)
4686 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4687}
4688
64193406
CW
4689static void
4690init_ring_lists(struct intel_ring_buffer *ring)
4691{
4692 INIT_LIST_HEAD(&ring->active_list);
4693 INIT_LIST_HEAD(&ring->request_list);
4694 INIT_LIST_HEAD(&ring->gpu_write_list);
4695}
4696
673a394b
EA
4697void
4698i915_gem_load(struct drm_device *dev)
4699{
b5aa8a0f 4700 int i;
673a394b
EA
4701 drm_i915_private_t *dev_priv = dev->dev_private;
4702
69dc4987 4703 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4704 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4705 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4706 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4707 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4708 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4709 init_ring_lists(&dev_priv->render_ring);
4710 init_ring_lists(&dev_priv->bsd_ring);
4711 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4712 for (i = 0; i < 16; i++)
4713 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4714 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4715 i915_gem_retire_work_handler);
30dbf0c0 4716 init_completion(&dev_priv->error_completion);
31169714 4717
94400120
DA
4718 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4719 if (IS_GEN3(dev)) {
4720 u32 tmp = I915_READ(MI_ARB_STATE);
4721 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4722 /* arb state is a masked write, so set bit + bit in mask */
4723 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4724 I915_WRITE(MI_ARB_STATE, tmp);
4725 }
4726 }
4727
de151cf6 4728 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4729 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4730 dev_priv->fence_reg_start = 3;
de151cf6 4731
a6c45cf0 4732 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4733 dev_priv->num_fence_regs = 16;
4734 else
4735 dev_priv->num_fence_regs = 8;
4736
b5aa8a0f 4737 /* Initialize fence registers to zero */
a6c45cf0
CW
4738 switch (INTEL_INFO(dev)->gen) {
4739 case 6:
4740 for (i = 0; i < 16; i++)
4741 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4742 break;
4743 case 5:
4744 case 4:
b5aa8a0f
GH
4745 for (i = 0; i < 16; i++)
4746 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4747 break;
4748 case 3:
b5aa8a0f
GH
4749 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4750 for (i = 0; i < 8; i++)
4751 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4752 case 2:
4753 for (i = 0; i < 8; i++)
4754 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4755 break;
b5aa8a0f 4756 }
673a394b 4757 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4758 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
4759
4760 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4761 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4762 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4763}
71acb5eb
DA
4764
4765/*
4766 * Create a physically contiguous memory object for this object
4767 * e.g. for cursor + overlay regs
4768 */
995b6762
CW
4769static int i915_gem_init_phys_object(struct drm_device *dev,
4770 int id, int size, int align)
71acb5eb
DA
4771{
4772 drm_i915_private_t *dev_priv = dev->dev_private;
4773 struct drm_i915_gem_phys_object *phys_obj;
4774 int ret;
4775
4776 if (dev_priv->mm.phys_objs[id - 1] || !size)
4777 return 0;
4778
9a298b2a 4779 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4780 if (!phys_obj)
4781 return -ENOMEM;
4782
4783 phys_obj->id = id;
4784
6eeefaf3 4785 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4786 if (!phys_obj->handle) {
4787 ret = -ENOMEM;
4788 goto kfree_obj;
4789 }
4790#ifdef CONFIG_X86
4791 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4792#endif
4793
4794 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4795
4796 return 0;
4797kfree_obj:
9a298b2a 4798 kfree(phys_obj);
71acb5eb
DA
4799 return ret;
4800}
4801
995b6762 4802static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4803{
4804 drm_i915_private_t *dev_priv = dev->dev_private;
4805 struct drm_i915_gem_phys_object *phys_obj;
4806
4807 if (!dev_priv->mm.phys_objs[id - 1])
4808 return;
4809
4810 phys_obj = dev_priv->mm.phys_objs[id - 1];
4811 if (phys_obj->cur_obj) {
4812 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4813 }
4814
4815#ifdef CONFIG_X86
4816 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4817#endif
4818 drm_pci_free(dev, phys_obj->handle);
4819 kfree(phys_obj);
4820 dev_priv->mm.phys_objs[id - 1] = NULL;
4821}
4822
4823void i915_gem_free_all_phys_object(struct drm_device *dev)
4824{
4825 int i;
4826
260883c8 4827 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4828 i915_gem_free_phys_object(dev, i);
4829}
4830
4831void i915_gem_detach_phys_object(struct drm_device *dev,
4832 struct drm_gem_object *obj)
4833{
e5281ccd
CW
4834 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4835 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4836 char *vaddr;
71acb5eb 4837 int i;
71acb5eb
DA
4838 int page_count;
4839
71acb5eb
DA
4840 if (!obj_priv->phys_obj)
4841 return;
e5281ccd 4842 vaddr = obj_priv->phys_obj->handle->vaddr;
71acb5eb
DA
4843
4844 page_count = obj->size / PAGE_SIZE;
4845
4846 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4847 struct page *page = read_cache_page_gfp(mapping, i,
4848 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4849 if (!IS_ERR(page)) {
4850 char *dst = kmap_atomic(page);
4851 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4852 kunmap_atomic(dst);
4853
4854 drm_clflush_pages(&page, 1);
4855
4856 set_page_dirty(page);
4857 mark_page_accessed(page);
4858 page_cache_release(page);
4859 }
71acb5eb 4860 }
71acb5eb 4861 drm_agp_chipset_flush(dev);
d78b47b9 4862
71acb5eb
DA
4863 obj_priv->phys_obj->cur_obj = NULL;
4864 obj_priv->phys_obj = NULL;
4865}
4866
4867int
4868i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4869 struct drm_gem_object *obj,
4870 int id,
4871 int align)
71acb5eb 4872{
e5281ccd 4873 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
71acb5eb
DA
4874 drm_i915_private_t *dev_priv = dev->dev_private;
4875 struct drm_i915_gem_object *obj_priv;
4876 int ret = 0;
4877 int page_count;
4878 int i;
4879
4880 if (id > I915_MAX_PHYS_OBJECT)
4881 return -EINVAL;
4882
23010e43 4883 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4884
4885 if (obj_priv->phys_obj) {
4886 if (obj_priv->phys_obj->id == id)
4887 return 0;
4888 i915_gem_detach_phys_object(dev, obj);
4889 }
4890
71acb5eb
DA
4891 /* create a new object */
4892 if (!dev_priv->mm.phys_objs[id - 1]) {
4893 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4894 obj->size, align);
71acb5eb 4895 if (ret) {
aeb565df 4896 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
e5281ccd 4897 return ret;
71acb5eb
DA
4898 }
4899 }
4900
4901 /* bind to the object */
4902 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4903 obj_priv->phys_obj->cur_obj = obj;
4904
71acb5eb
DA
4905 page_count = obj->size / PAGE_SIZE;
4906
4907 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4908 struct page *page;
4909 char *dst, *src;
4910
4911 page = read_cache_page_gfp(mapping, i,
4912 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4913 if (IS_ERR(page))
4914 return PTR_ERR(page);
71acb5eb 4915
e5281ccd
CW
4916 src = kmap_atomic(obj_priv->pages[i]);
4917 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4918 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4919 kunmap_atomic(src);
71acb5eb 4920
e5281ccd
CW
4921 mark_page_accessed(page);
4922 page_cache_release(page);
4923 }
d78b47b9 4924
71acb5eb 4925 return 0;
71acb5eb
DA
4926}
4927
4928static int
4929i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4930 struct drm_i915_gem_pwrite *args,
4931 struct drm_file *file_priv)
4932{
23010e43 4933 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4934 void *obj_addr;
4935 int ret;
4936 char __user *user_data;
4937
4938 user_data = (char __user *) (uintptr_t) args->data_ptr;
4939 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4940
44d98a61 4941 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4942 ret = copy_from_user(obj_addr, user_data, args->size);
4943 if (ret)
4944 return -EFAULT;
4945
4946 drm_agp_chipset_flush(dev);
4947 return 0;
4948}
b962442e 4949
f787a5f5 4950void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4951{
f787a5f5 4952 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4953
4954 /* Clean up our request list when the client is going away, so that
4955 * later retire_requests won't dereference our soon-to-be-gone
4956 * file_priv.
4957 */
1c25595f 4958 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4959 while (!list_empty(&file_priv->mm.request_list)) {
4960 struct drm_i915_gem_request *request;
4961
4962 request = list_first_entry(&file_priv->mm.request_list,
4963 struct drm_i915_gem_request,
4964 client_list);
4965 list_del(&request->client_list);
4966 request->file_priv = NULL;
4967 }
1c25595f 4968 spin_unlock(&file_priv->mm.lock);
b962442e 4969}
31169714 4970
1637ef41
CW
4971static int
4972i915_gpu_is_active(struct drm_device *dev)
4973{
4974 drm_i915_private_t *dev_priv = dev->dev_private;
4975 int lists_empty;
4976
1637ef41 4977 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4978 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4979
4980 return !lists_empty;
4981}
4982
31169714 4983static int
17250b71
CW
4984i915_gem_inactive_shrink(struct shrinker *shrinker,
4985 int nr_to_scan,
4986 gfp_t gfp_mask)
31169714 4987{
17250b71
CW
4988 struct drm_i915_private *dev_priv =
4989 container_of(shrinker,
4990 struct drm_i915_private,
4991 mm.inactive_shrinker);
4992 struct drm_device *dev = dev_priv->dev;
4993 struct drm_i915_gem_object *obj, *next;
4994 int cnt;
4995
4996 if (!mutex_trylock(&dev->struct_mutex))
4997 return nr_to_scan ? 0 : -1;
31169714
CW
4998
4999 /* "fast-path" to count number of available objects */
5000 if (nr_to_scan == 0) {
17250b71
CW
5001 cnt = 0;
5002 list_for_each_entry(obj,
5003 &dev_priv->mm.inactive_list,
5004 mm_list)
5005 cnt++;
5006 mutex_unlock(&dev->struct_mutex);
5007 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
5008 }
5009
1637ef41 5010rescan:
31169714 5011 /* first scan for clean buffers */
17250b71 5012 i915_gem_retire_requests(dev);
31169714 5013
17250b71
CW
5014 list_for_each_entry_safe(obj, next,
5015 &dev_priv->mm.inactive_list,
5016 mm_list) {
5017 if (i915_gem_object_is_purgeable(obj)) {
5018 i915_gem_object_unbind(&obj->base);
5019 if (--nr_to_scan == 0)
5020 break;
31169714 5021 }
31169714
CW
5022 }
5023
5024 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
5025 cnt = 0;
5026 list_for_each_entry_safe(obj, next,
5027 &dev_priv->mm.inactive_list,
5028 mm_list) {
5029 if (nr_to_scan) {
5030 i915_gem_object_unbind(&obj->base);
5031 nr_to_scan--;
5032 } else
5033 cnt++;
5034 }
5035
5036 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
5037 /*
5038 * We are desperate for pages, so as a last resort, wait
5039 * for the GPU to finish and discard whatever we can.
5040 * This has a dramatic impact to reduce the number of
5041 * OOM-killer events whilst running the GPU aggressively.
5042 */
17250b71 5043 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
5044 goto rescan;
5045 }
17250b71
CW
5046 mutex_unlock(&dev->struct_mutex);
5047 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 5048}
This page took 0.711139 seconds and 5 git commands to generate.