drm/i915: remove dev_priv->pc8.enabled
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
7dc19d5a
DC
57static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
58 struct shrink_control *sc);
59static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
60 struct shrink_control *sc);
d9973b43
CW
61static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 63static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
cb216aa8 64static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 202 if (i915_gem_obj_is_pinned(obj))
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
42dcedd4
CW
212void *i915_gem_object_alloc(struct drm_device *dev)
213{
214 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 215 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
216}
217
218void i915_gem_object_free(struct drm_i915_gem_object *obj)
219{
220 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221 kmem_cache_free(dev_priv->slab, obj);
222}
223
ff72145b
DA
224static int
225i915_gem_create(struct drm_file *file,
226 struct drm_device *dev,
227 uint64_t size,
228 uint32_t *handle_p)
673a394b 229{
05394f39 230 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
231 int ret;
232 u32 handle;
673a394b 233
ff72145b 234 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
235 if (size == 0)
236 return -EINVAL;
673a394b
EA
237
238 /* Allocate the new object */
ff72145b 239 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
240 if (obj == NULL)
241 return -ENOMEM;
242
05394f39 243 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 244 /* drop reference from allocate - handle holds it now */
d861e338
DV
245 drm_gem_object_unreference_unlocked(&obj->base);
246 if (ret)
247 return ret;
202f2fef 248
ff72145b 249 *handle_p = handle;
673a394b
EA
250 return 0;
251}
252
ff72145b
DA
253int
254i915_gem_dumb_create(struct drm_file *file,
255 struct drm_device *dev,
256 struct drm_mode_create_dumb *args)
257{
258 /* have to work out size/pitch and return them */
de45eaf7 259 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
260 args->size = args->pitch * args->height;
261 return i915_gem_create(file, dev,
262 args->size, &args->handle);
263}
264
ff72145b
DA
265/**
266 * Creates a new mm object and returns a handle to it.
267 */
268int
269i915_gem_create_ioctl(struct drm_device *dev, void *data,
270 struct drm_file *file)
271{
272 struct drm_i915_gem_create *args = data;
63ed2cb2 273
ff72145b
DA
274 return i915_gem_create(file, dev,
275 args->size, &args->handle);
276}
277
8461d226
DV
278static inline int
279__copy_to_user_swizzled(char __user *cpu_vaddr,
280 const char *gpu_vaddr, int gpu_offset,
281 int length)
282{
283 int ret, cpu_offset = 0;
284
285 while (length > 0) {
286 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287 int this_length = min(cacheline_end - gpu_offset, length);
288 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291 gpu_vaddr + swizzled_gpu_offset,
292 this_length);
293 if (ret)
294 return ret + length;
295
296 cpu_offset += this_length;
297 gpu_offset += this_length;
298 length -= this_length;
299 }
300
301 return 0;
302}
303
8c59967c 304static inline int
4f0c7cfb
BW
305__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306 const char __user *cpu_vaddr,
8c59967c
DV
307 int length)
308{
309 int ret, cpu_offset = 0;
310
311 while (length > 0) {
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 int this_length = min(cacheline_end - gpu_offset, length);
314 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317 cpu_vaddr + cpu_offset,
318 this_length);
319 if (ret)
320 return ret + length;
321
322 cpu_offset += this_length;
323 gpu_offset += this_length;
324 length -= this_length;
325 }
326
327 return 0;
328}
329
4c914c0c
BV
330/*
331 * Pins the specified object's pages and synchronizes the object with
332 * GPU accesses. Sets needs_clflush to non-zero if the caller should
333 * flush the object from the CPU cache.
334 */
335int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
336 int *needs_clflush)
337{
338 int ret;
339
340 *needs_clflush = 0;
341
342 if (!obj->base.filp)
343 return -EINVAL;
344
345 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
346 /* If we're not in the cpu read domain, set ourself into the gtt
347 * read domain and manually flush cachelines (if required). This
348 * optimizes for the case when the gpu will dirty the data
349 * anyway again before the next pread happens. */
350 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
351 obj->cache_level);
352 ret = i915_gem_object_wait_rendering(obj, true);
353 if (ret)
354 return ret;
355 }
356
357 ret = i915_gem_object_get_pages(obj);
358 if (ret)
359 return ret;
360
361 i915_gem_object_pin_pages(obj);
362
363 return ret;
364}
365
d174bd64
DV
366/* Per-page copy function for the shmem pread fastpath.
367 * Flushes invalid cachelines before reading the target if
368 * needs_clflush is set. */
eb01459f 369static int
d174bd64
DV
370shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
371 char __user *user_data,
372 bool page_do_bit17_swizzling, bool needs_clflush)
373{
374 char *vaddr;
375 int ret;
376
e7e58eb5 377 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
378 return -EINVAL;
379
380 vaddr = kmap_atomic(page);
381 if (needs_clflush)
382 drm_clflush_virt_range(vaddr + shmem_page_offset,
383 page_length);
384 ret = __copy_to_user_inatomic(user_data,
385 vaddr + shmem_page_offset,
386 page_length);
387 kunmap_atomic(vaddr);
388
f60d7f0c 389 return ret ? -EFAULT : 0;
d174bd64
DV
390}
391
23c18c71
DV
392static void
393shmem_clflush_swizzled_range(char *addr, unsigned long length,
394 bool swizzled)
395{
e7e58eb5 396 if (unlikely(swizzled)) {
23c18c71
DV
397 unsigned long start = (unsigned long) addr;
398 unsigned long end = (unsigned long) addr + length;
399
400 /* For swizzling simply ensure that we always flush both
401 * channels. Lame, but simple and it works. Swizzled
402 * pwrite/pread is far from a hotpath - current userspace
403 * doesn't use it at all. */
404 start = round_down(start, 128);
405 end = round_up(end, 128);
406
407 drm_clflush_virt_range((void *)start, end - start);
408 } else {
409 drm_clflush_virt_range(addr, length);
410 }
411
412}
413
d174bd64
DV
414/* Only difference to the fast-path function is that this can handle bit17
415 * and uses non-atomic copy and kmap functions. */
416static int
417shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
418 char __user *user_data,
419 bool page_do_bit17_swizzling, bool needs_clflush)
420{
421 char *vaddr;
422 int ret;
423
424 vaddr = kmap(page);
425 if (needs_clflush)
23c18c71
DV
426 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
427 page_length,
428 page_do_bit17_swizzling);
d174bd64
DV
429
430 if (page_do_bit17_swizzling)
431 ret = __copy_to_user_swizzled(user_data,
432 vaddr, shmem_page_offset,
433 page_length);
434 else
435 ret = __copy_to_user(user_data,
436 vaddr + shmem_page_offset,
437 page_length);
438 kunmap(page);
439
f60d7f0c 440 return ret ? - EFAULT : 0;
d174bd64
DV
441}
442
eb01459f 443static int
dbf7bff0
DV
444i915_gem_shmem_pread(struct drm_device *dev,
445 struct drm_i915_gem_object *obj,
446 struct drm_i915_gem_pread *args,
447 struct drm_file *file)
eb01459f 448{
8461d226 449 char __user *user_data;
eb01459f 450 ssize_t remain;
8461d226 451 loff_t offset;
eb2c0c81 452 int shmem_page_offset, page_length, ret = 0;
8461d226 453 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 454 int prefaulted = 0;
8489731c 455 int needs_clflush = 0;
67d5a50c 456 struct sg_page_iter sg_iter;
eb01459f 457
2bb4629a 458 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
459 remain = args->size;
460
8461d226 461 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 462
4c914c0c 463 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
464 if (ret)
465 return ret;
466
8461d226 467 offset = args->offset;
eb01459f 468
67d5a50c
ID
469 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
470 offset >> PAGE_SHIFT) {
2db76d7c 471 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
472
473 if (remain <= 0)
474 break;
475
eb01459f
EA
476 /* Operation in this page
477 *
eb01459f 478 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
479 * page_length = bytes to copy for this page
480 */
c8cbbb8b 481 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
482 page_length = remain;
483 if ((shmem_page_offset + page_length) > PAGE_SIZE)
484 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 485
8461d226
DV
486 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
487 (page_to_phys(page) & (1 << 17)) != 0;
488
d174bd64
DV
489 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492 if (ret == 0)
493 goto next_page;
dbf7bff0 494
dbf7bff0
DV
495 mutex_unlock(&dev->struct_mutex);
496
d330a953 497 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 498 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
499 /* Userspace is tricking us, but we've already clobbered
500 * its pages with the prefault and promised to write the
501 * data up to the first fault. Hence ignore any errors
502 * and just continue. */
503 (void)ret;
504 prefaulted = 1;
505 }
eb01459f 506
d174bd64
DV
507 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
508 user_data, page_do_bit17_swizzling,
509 needs_clflush);
eb01459f 510
dbf7bff0 511 mutex_lock(&dev->struct_mutex);
f60d7f0c 512
f60d7f0c 513 if (ret)
8461d226 514 goto out;
8461d226 515
17793c9a 516next_page:
eb01459f 517 remain -= page_length;
8461d226 518 user_data += page_length;
eb01459f
EA
519 offset += page_length;
520 }
521
4f27b75d 522out:
f60d7f0c
CW
523 i915_gem_object_unpin_pages(obj);
524
eb01459f
EA
525 return ret;
526}
527
673a394b
EA
528/**
529 * Reads data from the object referenced by handle.
530 *
531 * On error, the contents of *data are undefined.
532 */
533int
534i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 535 struct drm_file *file)
673a394b
EA
536{
537 struct drm_i915_gem_pread *args = data;
05394f39 538 struct drm_i915_gem_object *obj;
35b62a89 539 int ret = 0;
673a394b 540
51311d0a
CW
541 if (args->size == 0)
542 return 0;
543
544 if (!access_ok(VERIFY_WRITE,
2bb4629a 545 to_user_ptr(args->data_ptr),
51311d0a
CW
546 args->size))
547 return -EFAULT;
548
4f27b75d 549 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 550 if (ret)
4f27b75d 551 return ret;
673a394b 552
05394f39 553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 554 if (&obj->base == NULL) {
1d7cfea1
CW
555 ret = -ENOENT;
556 goto unlock;
4f27b75d 557 }
673a394b 558
7dcd2499 559 /* Bounds check source. */
05394f39
CW
560 if (args->offset > obj->base.size ||
561 args->size > obj->base.size - args->offset) {
ce9d419d 562 ret = -EINVAL;
35b62a89 563 goto out;
ce9d419d
CW
564 }
565
1286ff73
DV
566 /* prime objects have no backing filp to GEM pread/pwrite
567 * pages from.
568 */
569 if (!obj->base.filp) {
570 ret = -EINVAL;
571 goto out;
572 }
573
db53a302
CW
574 trace_i915_gem_object_pread(obj, args->offset, args->size);
575
dbf7bff0 576 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 577
35b62a89 578out:
05394f39 579 drm_gem_object_unreference(&obj->base);
1d7cfea1 580unlock:
4f27b75d 581 mutex_unlock(&dev->struct_mutex);
eb01459f 582 return ret;
673a394b
EA
583}
584
0839ccb8
KP
585/* This is the fast write path which cannot handle
586 * page faults in the source data
9b7530cc 587 */
0839ccb8
KP
588
589static inline int
590fast_user_write(struct io_mapping *mapping,
591 loff_t page_base, int page_offset,
592 char __user *user_data,
593 int length)
9b7530cc 594{
4f0c7cfb
BW
595 void __iomem *vaddr_atomic;
596 void *vaddr;
0839ccb8 597 unsigned long unwritten;
9b7530cc 598
3e4d3af5 599 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
600 /* We can use the cpu mem copy function because this is X86. */
601 vaddr = (void __force*)vaddr_atomic + page_offset;
602 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 603 user_data, length);
3e4d3af5 604 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 605 return unwritten;
0839ccb8
KP
606}
607
3de09aa3
EA
608/**
609 * This is the fast pwrite path, where we copy the data directly from the
610 * user into the GTT, uncached.
611 */
673a394b 612static int
05394f39
CW
613i915_gem_gtt_pwrite_fast(struct drm_device *dev,
614 struct drm_i915_gem_object *obj,
3de09aa3 615 struct drm_i915_gem_pwrite *args,
05394f39 616 struct drm_file *file)
673a394b 617{
0839ccb8 618 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 619 ssize_t remain;
0839ccb8 620 loff_t offset, page_base;
673a394b 621 char __user *user_data;
935aaa69
DV
622 int page_offset, page_length, ret;
623
1ec9e26d 624 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
625 if (ret)
626 goto out;
627
628 ret = i915_gem_object_set_to_gtt_domain(obj, true);
629 if (ret)
630 goto out_unpin;
631
632 ret = i915_gem_object_put_fence(obj);
633 if (ret)
634 goto out_unpin;
673a394b 635
2bb4629a 636 user_data = to_user_ptr(args->data_ptr);
673a394b 637 remain = args->size;
673a394b 638
f343c5f6 639 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
640
641 while (remain > 0) {
642 /* Operation in this page
643 *
0839ccb8
KP
644 * page_base = page offset within aperture
645 * page_offset = offset within page
646 * page_length = bytes to copy for this page
673a394b 647 */
c8cbbb8b
CW
648 page_base = offset & PAGE_MASK;
649 page_offset = offset_in_page(offset);
0839ccb8
KP
650 page_length = remain;
651 if ((page_offset + remain) > PAGE_SIZE)
652 page_length = PAGE_SIZE - page_offset;
653
0839ccb8 654 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
655 * source page isn't available. Return the error and we'll
656 * retry in the slow path.
0839ccb8 657 */
5d4545ae 658 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
659 page_offset, user_data, page_length)) {
660 ret = -EFAULT;
661 goto out_unpin;
662 }
673a394b 663
0839ccb8
KP
664 remain -= page_length;
665 user_data += page_length;
666 offset += page_length;
673a394b 667 }
673a394b 668
935aaa69 669out_unpin:
d7f46fc4 670 i915_gem_object_ggtt_unpin(obj);
935aaa69 671out:
3de09aa3 672 return ret;
673a394b
EA
673}
674
d174bd64
DV
675/* Per-page copy function for the shmem pwrite fastpath.
676 * Flushes invalid cachelines before writing to the target if
677 * needs_clflush_before is set and flushes out any written cachelines after
678 * writing if needs_clflush is set. */
3043c60c 679static int
d174bd64
DV
680shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
681 char __user *user_data,
682 bool page_do_bit17_swizzling,
683 bool needs_clflush_before,
684 bool needs_clflush_after)
673a394b 685{
d174bd64 686 char *vaddr;
673a394b 687 int ret;
3de09aa3 688
e7e58eb5 689 if (unlikely(page_do_bit17_swizzling))
d174bd64 690 return -EINVAL;
3de09aa3 691
d174bd64
DV
692 vaddr = kmap_atomic(page);
693 if (needs_clflush_before)
694 drm_clflush_virt_range(vaddr + shmem_page_offset,
695 page_length);
c2831a94
CW
696 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
697 user_data, page_length);
d174bd64
DV
698 if (needs_clflush_after)
699 drm_clflush_virt_range(vaddr + shmem_page_offset,
700 page_length);
701 kunmap_atomic(vaddr);
3de09aa3 702
755d2218 703 return ret ? -EFAULT : 0;
3de09aa3
EA
704}
705
d174bd64
DV
706/* Only difference to the fast-path function is that this can handle bit17
707 * and uses non-atomic copy and kmap functions. */
3043c60c 708static int
d174bd64
DV
709shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
710 char __user *user_data,
711 bool page_do_bit17_swizzling,
712 bool needs_clflush_before,
713 bool needs_clflush_after)
673a394b 714{
d174bd64
DV
715 char *vaddr;
716 int ret;
e5281ccd 717
d174bd64 718 vaddr = kmap(page);
e7e58eb5 719 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
d174bd64
DV
723 if (page_do_bit17_swizzling)
724 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
725 user_data,
726 page_length);
d174bd64
DV
727 else
728 ret = __copy_from_user(vaddr + shmem_page_offset,
729 user_data,
730 page_length);
731 if (needs_clflush_after)
23c18c71
DV
732 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
733 page_length,
734 page_do_bit17_swizzling);
d174bd64 735 kunmap(page);
40123c1f 736
755d2218 737 return ret ? -EFAULT : 0;
40123c1f
EA
738}
739
40123c1f 740static int
e244a443
DV
741i915_gem_shmem_pwrite(struct drm_device *dev,
742 struct drm_i915_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file)
40123c1f 745{
40123c1f 746 ssize_t remain;
8c59967c
DV
747 loff_t offset;
748 char __user *user_data;
eb2c0c81 749 int shmem_page_offset, page_length, ret = 0;
8c59967c 750 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 751 int hit_slowpath = 0;
58642885
DV
752 int needs_clflush_after = 0;
753 int needs_clflush_before = 0;
67d5a50c 754 struct sg_page_iter sg_iter;
40123c1f 755
2bb4629a 756 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
757 remain = args->size;
758
8c59967c 759 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 760
58642885
DV
761 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
762 /* If we're not in the cpu write domain, set ourself into the gtt
763 * write domain and manually flush cachelines (if required). This
764 * optimizes for the case when the gpu will use the data
765 * right away and we therefore have to clflush anyway. */
2c22569b 766 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
767 ret = i915_gem_object_wait_rendering(obj, false);
768 if (ret)
769 return ret;
58642885 770 }
c76ce038
CW
771 /* Same trick applies to invalidate partially written cachelines read
772 * before writing. */
773 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
774 needs_clflush_before =
775 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 776
755d2218
CW
777 ret = i915_gem_object_get_pages(obj);
778 if (ret)
779 return ret;
780
781 i915_gem_object_pin_pages(obj);
782
673a394b 783 offset = args->offset;
05394f39 784 obj->dirty = 1;
673a394b 785
67d5a50c
ID
786 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
787 offset >> PAGE_SHIFT) {
2db76d7c 788 struct page *page = sg_page_iter_page(&sg_iter);
58642885 789 int partial_cacheline_write;
e5281ccd 790
9da3da66
CW
791 if (remain <= 0)
792 break;
793
40123c1f
EA
794 /* Operation in this page
795 *
40123c1f 796 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
797 * page_length = bytes to copy for this page
798 */
c8cbbb8b 799 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
800
801 page_length = remain;
802 if ((shmem_page_offset + page_length) > PAGE_SIZE)
803 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 804
58642885
DV
805 /* If we don't overwrite a cacheline completely we need to be
806 * careful to have up-to-date data by first clflushing. Don't
807 * overcomplicate things and flush the entire patch. */
808 partial_cacheline_write = needs_clflush_before &&
809 ((shmem_page_offset | page_length)
810 & (boot_cpu_data.x86_clflush_size - 1));
811
8c59967c
DV
812 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
813 (page_to_phys(page) & (1 << 17)) != 0;
814
d174bd64
DV
815 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 partial_cacheline_write,
818 needs_clflush_after);
819 if (ret == 0)
820 goto next_page;
e244a443
DV
821
822 hit_slowpath = 1;
e244a443 823 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
824 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
825 user_data, page_do_bit17_swizzling,
826 partial_cacheline_write,
827 needs_clflush_after);
40123c1f 828
e244a443 829 mutex_lock(&dev->struct_mutex);
755d2218 830
755d2218 831 if (ret)
8c59967c 832 goto out;
8c59967c 833
17793c9a 834next_page:
40123c1f 835 remain -= page_length;
8c59967c 836 user_data += page_length;
40123c1f 837 offset += page_length;
673a394b
EA
838 }
839
fbd5a26d 840out:
755d2218
CW
841 i915_gem_object_unpin_pages(obj);
842
e244a443 843 if (hit_slowpath) {
8dcf015e
DV
844 /*
845 * Fixup: Flush cpu caches in case we didn't flush the dirty
846 * cachelines in-line while writing and the object moved
847 * out of the cpu write domain while we've dropped the lock.
848 */
849 if (!needs_clflush_after &&
850 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
851 if (i915_gem_clflush_object(obj, obj->pin_display))
852 i915_gem_chipset_flush(dev);
e244a443 853 }
8c59967c 854 }
673a394b 855
58642885 856 if (needs_clflush_after)
e76e9aeb 857 i915_gem_chipset_flush(dev);
58642885 858
40123c1f 859 return ret;
673a394b
EA
860}
861
862/**
863 * Writes data to the object referenced by handle.
864 *
865 * On error, the contents of the buffer that were to be modified are undefined.
866 */
867int
868i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 869 struct drm_file *file)
673a394b
EA
870{
871 struct drm_i915_gem_pwrite *args = data;
05394f39 872 struct drm_i915_gem_object *obj;
51311d0a
CW
873 int ret;
874
875 if (args->size == 0)
876 return 0;
877
878 if (!access_ok(VERIFY_READ,
2bb4629a 879 to_user_ptr(args->data_ptr),
51311d0a
CW
880 args->size))
881 return -EFAULT;
882
d330a953 883 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
884 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
885 args->size);
886 if (ret)
887 return -EFAULT;
888 }
673a394b 889
fbd5a26d 890 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 891 if (ret)
fbd5a26d 892 return ret;
1d7cfea1 893
05394f39 894 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 895 if (&obj->base == NULL) {
1d7cfea1
CW
896 ret = -ENOENT;
897 goto unlock;
fbd5a26d 898 }
673a394b 899
7dcd2499 900 /* Bounds check destination. */
05394f39
CW
901 if (args->offset > obj->base.size ||
902 args->size > obj->base.size - args->offset) {
ce9d419d 903 ret = -EINVAL;
35b62a89 904 goto out;
ce9d419d
CW
905 }
906
1286ff73
DV
907 /* prime objects have no backing filp to GEM pread/pwrite
908 * pages from.
909 */
910 if (!obj->base.filp) {
911 ret = -EINVAL;
912 goto out;
913 }
914
db53a302
CW
915 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
916
935aaa69 917 ret = -EFAULT;
673a394b
EA
918 /* We can only do the GTT pwrite on untiled buffers, as otherwise
919 * it would end up going through the fenced access, and we'll get
920 * different detiling behavior between reading and writing.
921 * pread/pwrite currently are reading and writing from the CPU
922 * perspective, requiring manual detiling by the client.
923 */
5c0480f2 924 if (obj->phys_obj) {
fbd5a26d 925 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
926 goto out;
927 }
928
2c22569b
CW
929 if (obj->tiling_mode == I915_TILING_NONE &&
930 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
931 cpu_write_needs_clflush(obj)) {
fbd5a26d 932 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
933 /* Note that the gtt paths might fail with non-page-backed user
934 * pointers (e.g. gtt mappings when moving data between
935 * textures). Fallback to the shmem path in that case. */
fbd5a26d 936 }
673a394b 937
86a1ee26 938 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 939 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 940
35b62a89 941out:
05394f39 942 drm_gem_object_unreference(&obj->base);
1d7cfea1 943unlock:
fbd5a26d 944 mutex_unlock(&dev->struct_mutex);
673a394b
EA
945 return ret;
946}
947
b361237b 948int
33196ded 949i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
950 bool interruptible)
951{
1f83fee0 952 if (i915_reset_in_progress(error)) {
b361237b
CW
953 /* Non-interruptible callers can't handle -EAGAIN, hence return
954 * -EIO unconditionally for these. */
955 if (!interruptible)
956 return -EIO;
957
1f83fee0
DV
958 /* Recovery complete, but the reset failed ... */
959 if (i915_terminally_wedged(error))
b361237b
CW
960 return -EIO;
961
962 return -EAGAIN;
963 }
964
965 return 0;
966}
967
968/*
969 * Compare seqno against outstanding lazy request. Emit a request if they are
970 * equal.
971 */
972static int
973i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974{
975 int ret;
976
977 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979 ret = 0;
1823521d 980 if (seqno == ring->outstanding_lazy_seqno)
0025c077 981 ret = i915_add_request(ring, NULL);
b361237b
CW
982
983 return ret;
984}
985
094f9a54
CW
986static void fake_irq(unsigned long data)
987{
988 wake_up_process((struct task_struct *)data);
989}
990
991static bool missed_irq(struct drm_i915_private *dev_priv,
992 struct intel_ring_buffer *ring)
993{
994 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
995}
996
b29c19b6
CW
997static bool can_wait_boost(struct drm_i915_file_private *file_priv)
998{
999 if (file_priv == NULL)
1000 return true;
1001
1002 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1003}
1004
b361237b
CW
1005/**
1006 * __wait_seqno - wait until execution of seqno has finished
1007 * @ring: the ring expected to report seqno
1008 * @seqno: duh!
f69061be 1009 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1010 * @interruptible: do an interruptible wait (normally yes)
1011 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1012 *
f69061be
DV
1013 * Note: It is of utmost importance that the passed in seqno and reset_counter
1014 * values have been read by the caller in an smp safe manner. Where read-side
1015 * locks are involved, it is sufficient to read the reset_counter before
1016 * unlocking the lock that protects the seqno. For lockless tricks, the
1017 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1018 * inserted.
1019 *
b361237b
CW
1020 * Returns 0 if the seqno was found within the alloted time. Else returns the
1021 * errno with remaining time filled in timeout argument.
1022 */
1023static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1024 unsigned reset_counter,
b29c19b6
CW
1025 bool interruptible,
1026 struct timespec *timeout,
1027 struct drm_i915_file_private *file_priv)
b361237b 1028{
3d13ef2e
DL
1029 struct drm_device *dev = ring->dev;
1030 drm_i915_private_t *dev_priv = dev->dev_private;
168c3f21
MK
1031 const bool irq_test_in_progress =
1032 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1033 struct timespec before, now;
1034 DEFINE_WAIT(wait);
47e9766d 1035 unsigned long timeout_expire;
b361237b
CW
1036 int ret;
1037
c67a470b
PZ
1038 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1039
b361237b
CW
1040 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1041 return 0;
1042
47e9766d 1043 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1044
3d13ef2e 1045 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1046 gen6_rps_boost(dev_priv);
1047 if (file_priv)
1048 mod_delayed_work(dev_priv->wq,
1049 &file_priv->mm.idle_work,
1050 msecs_to_jiffies(100));
1051 }
1052
168c3f21 1053 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1054 return -ENODEV;
1055
094f9a54
CW
1056 /* Record current time in case interrupted by signal, or wedged */
1057 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1058 getrawmonotonic(&before);
094f9a54
CW
1059 for (;;) {
1060 struct timer_list timer;
b361237b 1061
094f9a54
CW
1062 prepare_to_wait(&ring->irq_queue, &wait,
1063 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1064
f69061be
DV
1065 /* We need to check whether any gpu reset happened in between
1066 * the caller grabbing the seqno and now ... */
094f9a54
CW
1067 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1068 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1069 * is truely gone. */
1070 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1071 if (ret == 0)
1072 ret = -EAGAIN;
1073 break;
1074 }
f69061be 1075
094f9a54
CW
1076 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1077 ret = 0;
1078 break;
1079 }
b361237b 1080
094f9a54
CW
1081 if (interruptible && signal_pending(current)) {
1082 ret = -ERESTARTSYS;
1083 break;
1084 }
1085
47e9766d 1086 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1087 ret = -ETIME;
1088 break;
1089 }
1090
1091 timer.function = NULL;
1092 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1093 unsigned long expire;
1094
094f9a54 1095 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1096 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1097 mod_timer(&timer, expire);
1098 }
1099
5035c275 1100 io_schedule();
094f9a54 1101
094f9a54
CW
1102 if (timer.function) {
1103 del_singleshot_timer_sync(&timer);
1104 destroy_timer_on_stack(&timer);
1105 }
1106 }
b361237b 1107 getrawmonotonic(&now);
094f9a54 1108 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1109
168c3f21
MK
1110 if (!irq_test_in_progress)
1111 ring->irq_put(ring);
094f9a54
CW
1112
1113 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1114
1115 if (timeout) {
1116 struct timespec sleep_time = timespec_sub(now, before);
1117 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1118 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1119 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1120 }
1121
094f9a54 1122 return ret;
b361237b
CW
1123}
1124
1125/**
1126 * Waits for a sequence number to be signaled, and cleans up the
1127 * request and object lists appropriately for that event.
1128 */
1129int
1130i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1131{
1132 struct drm_device *dev = ring->dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 bool interruptible = dev_priv->mm.interruptible;
1135 int ret;
1136
1137 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1138 BUG_ON(seqno == 0);
1139
33196ded 1140 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1141 if (ret)
1142 return ret;
1143
1144 ret = i915_gem_check_olr(ring, seqno);
1145 if (ret)
1146 return ret;
1147
f69061be
DV
1148 return __wait_seqno(ring, seqno,
1149 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1150 interruptible, NULL, NULL);
b361237b
CW
1151}
1152
d26e3af8
CW
1153static int
1154i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1155 struct intel_ring_buffer *ring)
1156{
1157 i915_gem_retire_requests_ring(ring);
1158
1159 /* Manually manage the write flush as we may have not yet
1160 * retired the buffer.
1161 *
1162 * Note that the last_write_seqno is always the earlier of
1163 * the two (read/write) seqno, so if we haved successfully waited,
1164 * we know we have passed the last write.
1165 */
1166 obj->last_write_seqno = 0;
1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168
1169 return 0;
1170}
1171
b361237b
CW
1172/**
1173 * Ensures that all rendering to the object has completed and the object is
1174 * safe to unbind from the GTT or access from the CPU.
1175 */
1176static __must_check int
1177i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1178 bool readonly)
1179{
1180 struct intel_ring_buffer *ring = obj->ring;
1181 u32 seqno;
1182 int ret;
1183
1184 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1185 if (seqno == 0)
1186 return 0;
1187
1188 ret = i915_wait_seqno(ring, seqno);
1189 if (ret)
1190 return ret;
1191
d26e3af8 1192 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1193}
1194
3236f57a
CW
1195/* A nonblocking variant of the above wait. This is a highly dangerous routine
1196 * as the object state may change during this call.
1197 */
1198static __must_check int
1199i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1200 struct drm_i915_file_private *file_priv,
3236f57a
CW
1201 bool readonly)
1202{
1203 struct drm_device *dev = obj->base.dev;
1204 struct drm_i915_private *dev_priv = dev->dev_private;
1205 struct intel_ring_buffer *ring = obj->ring;
f69061be 1206 unsigned reset_counter;
3236f57a
CW
1207 u32 seqno;
1208 int ret;
1209
1210 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1211 BUG_ON(!dev_priv->mm.interruptible);
1212
1213 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1214 if (seqno == 0)
1215 return 0;
1216
33196ded 1217 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1218 if (ret)
1219 return ret;
1220
1221 ret = i915_gem_check_olr(ring, seqno);
1222 if (ret)
1223 return ret;
1224
f69061be 1225 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1226 mutex_unlock(&dev->struct_mutex);
6e4930f6 1227 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1228 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1229 if (ret)
1230 return ret;
3236f57a 1231
d26e3af8 1232 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1233}
1234
673a394b 1235/**
2ef7eeaa
EA
1236 * Called when user space prepares to use an object with the CPU, either
1237 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1238 */
1239int
1240i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1241 struct drm_file *file)
673a394b
EA
1242{
1243 struct drm_i915_gem_set_domain *args = data;
05394f39 1244 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1245 uint32_t read_domains = args->read_domains;
1246 uint32_t write_domain = args->write_domain;
673a394b
EA
1247 int ret;
1248
2ef7eeaa 1249 /* Only handle setting domains to types used by the CPU. */
21d509e3 1250 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1251 return -EINVAL;
1252
21d509e3 1253 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1254 return -EINVAL;
1255
1256 /* Having something in the write domain implies it's in the read
1257 * domain, and only that read domain. Enforce that in the request.
1258 */
1259 if (write_domain != 0 && read_domains != write_domain)
1260 return -EINVAL;
1261
76c1dec1 1262 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1263 if (ret)
76c1dec1 1264 return ret;
1d7cfea1 1265
05394f39 1266 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1267 if (&obj->base == NULL) {
1d7cfea1
CW
1268 ret = -ENOENT;
1269 goto unlock;
76c1dec1 1270 }
673a394b 1271
3236f57a
CW
1272 /* Try to flush the object off the GPU without holding the lock.
1273 * We will repeat the flush holding the lock in the normal manner
1274 * to catch cases where we are gazumped.
1275 */
6e4930f6
CW
1276 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1277 file->driver_priv,
1278 !write_domain);
3236f57a
CW
1279 if (ret)
1280 goto unref;
1281
2ef7eeaa
EA
1282 if (read_domains & I915_GEM_DOMAIN_GTT) {
1283 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1284
1285 /* Silently promote "you're not bound, there was nothing to do"
1286 * to success, since the client was just asking us to
1287 * make sure everything was done.
1288 */
1289 if (ret == -EINVAL)
1290 ret = 0;
2ef7eeaa 1291 } else {
e47c68e9 1292 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1293 }
1294
3236f57a 1295unref:
05394f39 1296 drm_gem_object_unreference(&obj->base);
1d7cfea1 1297unlock:
673a394b
EA
1298 mutex_unlock(&dev->struct_mutex);
1299 return ret;
1300}
1301
1302/**
1303 * Called when user space has done writes to this buffer
1304 */
1305int
1306i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1307 struct drm_file *file)
673a394b
EA
1308{
1309 struct drm_i915_gem_sw_finish *args = data;
05394f39 1310 struct drm_i915_gem_object *obj;
673a394b
EA
1311 int ret = 0;
1312
76c1dec1 1313 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1314 if (ret)
76c1dec1 1315 return ret;
1d7cfea1 1316
05394f39 1317 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1318 if (&obj->base == NULL) {
1d7cfea1
CW
1319 ret = -ENOENT;
1320 goto unlock;
673a394b
EA
1321 }
1322
673a394b 1323 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1324 if (obj->pin_display)
1325 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1326
05394f39 1327 drm_gem_object_unreference(&obj->base);
1d7cfea1 1328unlock:
673a394b
EA
1329 mutex_unlock(&dev->struct_mutex);
1330 return ret;
1331}
1332
1333/**
1334 * Maps the contents of an object, returning the address it is mapped
1335 * into.
1336 *
1337 * While the mapping holds a reference on the contents of the object, it doesn't
1338 * imply a ref on the object itself.
1339 */
1340int
1341i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1342 struct drm_file *file)
673a394b
EA
1343{
1344 struct drm_i915_gem_mmap *args = data;
1345 struct drm_gem_object *obj;
673a394b
EA
1346 unsigned long addr;
1347
05394f39 1348 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1349 if (obj == NULL)
bf79cb91 1350 return -ENOENT;
673a394b 1351
1286ff73
DV
1352 /* prime objects have no backing filp to GEM mmap
1353 * pages from.
1354 */
1355 if (!obj->filp) {
1356 drm_gem_object_unreference_unlocked(obj);
1357 return -EINVAL;
1358 }
1359
6be5ceb0 1360 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1361 PROT_READ | PROT_WRITE, MAP_SHARED,
1362 args->offset);
bc9025bd 1363 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1364 if (IS_ERR((void *)addr))
1365 return addr;
1366
1367 args->addr_ptr = (uint64_t) addr;
1368
1369 return 0;
1370}
1371
de151cf6
JB
1372/**
1373 * i915_gem_fault - fault a page into the GTT
1374 * vma: VMA in question
1375 * vmf: fault info
1376 *
1377 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1378 * from userspace. The fault handler takes care of binding the object to
1379 * the GTT (if needed), allocating and programming a fence register (again,
1380 * only if needed based on whether the old reg is still valid or the object
1381 * is tiled) and inserting a new PTE into the faulting process.
1382 *
1383 * Note that the faulting process may involve evicting existing objects
1384 * from the GTT and/or fence registers to make room. So performance may
1385 * suffer if the GTT working set is large or there are few fence registers
1386 * left.
1387 */
1388int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1389{
05394f39
CW
1390 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1391 struct drm_device *dev = obj->base.dev;
7d1c4804 1392 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1393 pgoff_t page_offset;
1394 unsigned long pfn;
1395 int ret = 0;
0f973f27 1396 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1397
f65c9168
PZ
1398 intel_runtime_pm_get(dev_priv);
1399
de151cf6
JB
1400 /* We don't use vmf->pgoff since that has the fake offset */
1401 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1402 PAGE_SHIFT;
1403
d9bc7e9f
CW
1404 ret = i915_mutex_lock_interruptible(dev);
1405 if (ret)
1406 goto out;
a00b10c3 1407
db53a302
CW
1408 trace_i915_gem_object_fault(obj, page_offset, true, write);
1409
6e4930f6
CW
1410 /* Try to flush the object off the GPU first without holding the lock.
1411 * Upon reacquiring the lock, we will perform our sanity checks and then
1412 * repeat the flush holding the lock in the normal manner to catch cases
1413 * where we are gazumped.
1414 */
1415 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1416 if (ret)
1417 goto unlock;
1418
eb119bd6
CW
1419 /* Access to snoopable pages through the GTT is incoherent. */
1420 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1421 ret = -EINVAL;
1422 goto unlock;
1423 }
1424
d9bc7e9f 1425 /* Now bind it into the GTT if needed */
1ec9e26d 1426 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1427 if (ret)
1428 goto unlock;
4a684a41 1429
c9839303
CW
1430 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1431 if (ret)
1432 goto unpin;
74898d7e 1433
06d98131 1434 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1435 if (ret)
c9839303 1436 goto unpin;
7d1c4804 1437
6299f992
CW
1438 obj->fault_mappable = true;
1439
f343c5f6
BW
1440 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1441 pfn >>= PAGE_SHIFT;
1442 pfn += page_offset;
de151cf6
JB
1443
1444 /* Finally, remap it using the new GTT offset */
1445 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1446unpin:
d7f46fc4 1447 i915_gem_object_ggtt_unpin(obj);
c715089f 1448unlock:
de151cf6 1449 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1450out:
de151cf6 1451 switch (ret) {
d9bc7e9f 1452 case -EIO:
a9340cca
DV
1453 /* If this -EIO is due to a gpu hang, give the reset code a
1454 * chance to clean up the mess. Otherwise return the proper
1455 * SIGBUS. */
f65c9168
PZ
1456 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1457 ret = VM_FAULT_SIGBUS;
1458 break;
1459 }
045e769a 1460 case -EAGAIN:
571c608d
DV
1461 /*
1462 * EAGAIN means the gpu is hung and we'll wait for the error
1463 * handler to reset everything when re-faulting in
1464 * i915_mutex_lock_interruptible.
d9bc7e9f 1465 */
c715089f
CW
1466 case 0:
1467 case -ERESTARTSYS:
bed636ab 1468 case -EINTR:
e79e0fe3
DR
1469 case -EBUSY:
1470 /*
1471 * EBUSY is ok: this just means that another thread
1472 * already did the job.
1473 */
f65c9168
PZ
1474 ret = VM_FAULT_NOPAGE;
1475 break;
de151cf6 1476 case -ENOMEM:
f65c9168
PZ
1477 ret = VM_FAULT_OOM;
1478 break;
a7c2e1aa 1479 case -ENOSPC:
45d67817 1480 case -EFAULT:
f65c9168
PZ
1481 ret = VM_FAULT_SIGBUS;
1482 break;
de151cf6 1483 default:
a7c2e1aa 1484 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1485 ret = VM_FAULT_SIGBUS;
1486 break;
de151cf6 1487 }
f65c9168
PZ
1488
1489 intel_runtime_pm_put(dev_priv);
1490 return ret;
de151cf6
JB
1491}
1492
48018a57
PZ
1493void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1494{
1495 struct i915_vma *vma;
1496
1497 /*
1498 * Only the global gtt is relevant for gtt memory mappings, so restrict
1499 * list traversal to objects bound into the global address space. Note
1500 * that the active list should be empty, but better safe than sorry.
1501 */
1502 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1503 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1504 i915_gem_release_mmap(vma->obj);
1505 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1506 i915_gem_release_mmap(vma->obj);
1507}
1508
901782b2
CW
1509/**
1510 * i915_gem_release_mmap - remove physical page mappings
1511 * @obj: obj in question
1512 *
af901ca1 1513 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1514 * relinquish ownership of the pages back to the system.
1515 *
1516 * It is vital that we remove the page mapping if we have mapped a tiled
1517 * object through the GTT and then lose the fence register due to
1518 * resource pressure. Similarly if the object has been moved out of the
1519 * aperture, than pages mapped into userspace must be revoked. Removing the
1520 * mapping will then trigger a page fault on the next user access, allowing
1521 * fixup by i915_gem_fault().
1522 */
d05ca301 1523void
05394f39 1524i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1525{
6299f992
CW
1526 if (!obj->fault_mappable)
1527 return;
901782b2 1528
6796cb16
DH
1529 drm_vma_node_unmap(&obj->base.vma_node,
1530 obj->base.dev->anon_inode->i_mapping);
6299f992 1531 obj->fault_mappable = false;
901782b2
CW
1532}
1533
0fa87796 1534uint32_t
e28f8711 1535i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1536{
e28f8711 1537 uint32_t gtt_size;
92b88aeb
CW
1538
1539 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1540 tiling_mode == I915_TILING_NONE)
1541 return size;
92b88aeb
CW
1542
1543 /* Previous chips need a power-of-two fence region when tiling */
1544 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1545 gtt_size = 1024*1024;
92b88aeb 1546 else
e28f8711 1547 gtt_size = 512*1024;
92b88aeb 1548
e28f8711
CW
1549 while (gtt_size < size)
1550 gtt_size <<= 1;
92b88aeb 1551
e28f8711 1552 return gtt_size;
92b88aeb
CW
1553}
1554
de151cf6
JB
1555/**
1556 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1557 * @obj: object to check
1558 *
1559 * Return the required GTT alignment for an object, taking into account
5e783301 1560 * potential fence register mapping.
de151cf6 1561 */
d865110c
ID
1562uint32_t
1563i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1564 int tiling_mode, bool fenced)
de151cf6 1565{
de151cf6
JB
1566 /*
1567 * Minimum alignment is 4k (GTT page size), but might be greater
1568 * if a fence register is needed for the object.
1569 */
d865110c 1570 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1571 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1572 return 4096;
1573
a00b10c3
CW
1574 /*
1575 * Previous chips need to be aligned to the size of the smallest
1576 * fence register that can contain the object.
1577 */
e28f8711 1578 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1579}
1580
d8cb5086
CW
1581static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1582{
1583 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1584 int ret;
1585
0de23977 1586 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1587 return 0;
1588
da494d7c
DV
1589 dev_priv->mm.shrinker_no_lock_stealing = true;
1590
d8cb5086
CW
1591 ret = drm_gem_create_mmap_offset(&obj->base);
1592 if (ret != -ENOSPC)
da494d7c 1593 goto out;
d8cb5086
CW
1594
1595 /* Badly fragmented mmap space? The only way we can recover
1596 * space is by destroying unwanted objects. We can't randomly release
1597 * mmap_offsets as userspace expects them to be persistent for the
1598 * lifetime of the objects. The closest we can is to release the
1599 * offsets on purgeable objects by truncating it and marking it purged,
1600 * which prevents userspace from ever using that object again.
1601 */
1602 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1603 ret = drm_gem_create_mmap_offset(&obj->base);
1604 if (ret != -ENOSPC)
da494d7c 1605 goto out;
d8cb5086
CW
1606
1607 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1608 ret = drm_gem_create_mmap_offset(&obj->base);
1609out:
1610 dev_priv->mm.shrinker_no_lock_stealing = false;
1611
1612 return ret;
d8cb5086
CW
1613}
1614
1615static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1616{
d8cb5086
CW
1617 drm_gem_free_mmap_offset(&obj->base);
1618}
1619
de151cf6 1620int
ff72145b
DA
1621i915_gem_mmap_gtt(struct drm_file *file,
1622 struct drm_device *dev,
1623 uint32_t handle,
1624 uint64_t *offset)
de151cf6 1625{
da761a6e 1626 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1627 struct drm_i915_gem_object *obj;
de151cf6
JB
1628 int ret;
1629
76c1dec1 1630 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1631 if (ret)
76c1dec1 1632 return ret;
de151cf6 1633
ff72145b 1634 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1635 if (&obj->base == NULL) {
1d7cfea1
CW
1636 ret = -ENOENT;
1637 goto unlock;
1638 }
de151cf6 1639
5d4545ae 1640 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1641 ret = -E2BIG;
ff56b0bc 1642 goto out;
da761a6e
CW
1643 }
1644
05394f39 1645 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1646 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1647 ret = -EFAULT;
1d7cfea1 1648 goto out;
ab18282d
CW
1649 }
1650
d8cb5086
CW
1651 ret = i915_gem_object_create_mmap_offset(obj);
1652 if (ret)
1653 goto out;
de151cf6 1654
0de23977 1655 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1656
1d7cfea1 1657out:
05394f39 1658 drm_gem_object_unreference(&obj->base);
1d7cfea1 1659unlock:
de151cf6 1660 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1661 return ret;
de151cf6
JB
1662}
1663
ff72145b
DA
1664/**
1665 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1666 * @dev: DRM device
1667 * @data: GTT mapping ioctl data
1668 * @file: GEM object info
1669 *
1670 * Simply returns the fake offset to userspace so it can mmap it.
1671 * The mmap call will end up in drm_gem_mmap(), which will set things
1672 * up so we can get faults in the handler above.
1673 *
1674 * The fault handler will take care of binding the object into the GTT
1675 * (since it may have been evicted to make room for something), allocating
1676 * a fence register, and mapping the appropriate aperture address into
1677 * userspace.
1678 */
1679int
1680i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1681 struct drm_file *file)
1682{
1683 struct drm_i915_gem_mmap_gtt *args = data;
1684
ff72145b
DA
1685 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1686}
1687
225067ee
DV
1688/* Immediately discard the backing storage */
1689static void
1690i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1691{
e5281ccd 1692 struct inode *inode;
e5281ccd 1693
4d6294bf 1694 i915_gem_object_free_mmap_offset(obj);
1286ff73 1695
4d6294bf
CW
1696 if (obj->base.filp == NULL)
1697 return;
e5281ccd 1698
225067ee
DV
1699 /* Our goal here is to return as much of the memory as
1700 * is possible back to the system as we are called from OOM.
1701 * To do this we must instruct the shmfs to drop all of its
1702 * backing pages, *now*.
1703 */
496ad9aa 1704 inode = file_inode(obj->base.filp);
225067ee 1705 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1706
225067ee
DV
1707 obj->madv = __I915_MADV_PURGED;
1708}
e5281ccd 1709
225067ee
DV
1710static inline int
1711i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1712{
1713 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1714}
1715
5cdf5881 1716static void
05394f39 1717i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1718{
90797e6d
ID
1719 struct sg_page_iter sg_iter;
1720 int ret;
1286ff73 1721
05394f39 1722 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1723
6c085a72
CW
1724 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1725 if (ret) {
1726 /* In the event of a disaster, abandon all caches and
1727 * hope for the best.
1728 */
1729 WARN_ON(ret != -EIO);
2c22569b 1730 i915_gem_clflush_object(obj, true);
6c085a72
CW
1731 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1732 }
1733
6dacfd2f 1734 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1735 i915_gem_object_save_bit_17_swizzle(obj);
1736
05394f39
CW
1737 if (obj->madv == I915_MADV_DONTNEED)
1738 obj->dirty = 0;
3ef94daa 1739
90797e6d 1740 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1741 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1742
05394f39 1743 if (obj->dirty)
9da3da66 1744 set_page_dirty(page);
3ef94daa 1745
05394f39 1746 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1747 mark_page_accessed(page);
3ef94daa 1748
9da3da66 1749 page_cache_release(page);
3ef94daa 1750 }
05394f39 1751 obj->dirty = 0;
673a394b 1752
9da3da66
CW
1753 sg_free_table(obj->pages);
1754 kfree(obj->pages);
37e680a1 1755}
6c085a72 1756
dd624afd 1757int
37e680a1
CW
1758i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1759{
1760 const struct drm_i915_gem_object_ops *ops = obj->ops;
1761
2f745ad3 1762 if (obj->pages == NULL)
37e680a1
CW
1763 return 0;
1764
a5570178
CW
1765 if (obj->pages_pin_count)
1766 return -EBUSY;
1767
9843877d 1768 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1769
a2165e31
CW
1770 /* ->put_pages might need to allocate memory for the bit17 swizzle
1771 * array, hence protect them from being reaped by removing them from gtt
1772 * lists early. */
35c20a60 1773 list_del(&obj->global_list);
a2165e31 1774
37e680a1 1775 ops->put_pages(obj);
05394f39 1776 obj->pages = NULL;
37e680a1 1777
6c085a72
CW
1778 if (i915_gem_object_is_purgeable(obj))
1779 i915_gem_object_truncate(obj);
1780
1781 return 0;
1782}
1783
d9973b43 1784static unsigned long
93927ca5
DV
1785__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1786 bool purgeable_only)
6c085a72 1787{
57094f82 1788 struct list_head still_bound_list;
6c085a72 1789 struct drm_i915_gem_object *obj, *next;
d9973b43 1790 unsigned long count = 0;
6c085a72
CW
1791
1792 list_for_each_entry_safe(obj, next,
1793 &dev_priv->mm.unbound_list,
35c20a60 1794 global_list) {
93927ca5 1795 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1796 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1797 count += obj->base.size >> PAGE_SHIFT;
1798 if (count >= target)
1799 return count;
1800 }
1801 }
1802
57094f82
CW
1803 /*
1804 * As we may completely rewrite the bound list whilst unbinding
1805 * (due to retiring requests) we have to strictly process only
1806 * one element of the list at the time, and recheck the list
1807 * on every iteration.
1808 */
1809 INIT_LIST_HEAD(&still_bound_list);
1810 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1811 struct i915_vma *vma, *v;
80dcfdbd 1812
57094f82
CW
1813 obj = list_first_entry(&dev_priv->mm.bound_list,
1814 typeof(*obj), global_list);
1815 list_move_tail(&obj->global_list, &still_bound_list);
1816
80dcfdbd
BW
1817 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1818 continue;
1819
57094f82
CW
1820 /*
1821 * Hold a reference whilst we unbind this object, as we may
1822 * end up waiting for and retiring requests. This might
1823 * release the final reference (held by the active list)
1824 * and result in the object being freed from under us.
1825 * in this object being freed.
1826 *
1827 * Note 1: Shrinking the bound list is special since only active
1828 * (and hence bound objects) can contain such limbo objects, so
1829 * we don't need special tricks for shrinking the unbound list.
1830 * The only other place where we have to be careful with active
1831 * objects suddenly disappearing due to retiring requests is the
1832 * eviction code.
1833 *
1834 * Note 2: Even though the bound list doesn't hold a reference
1835 * to the object we can safely grab one here: The final object
1836 * unreferencing and the bound_list are both protected by the
1837 * dev->struct_mutex and so we won't ever be able to observe an
1838 * object on the bound_list with a reference count equals 0.
1839 */
1840 drm_gem_object_reference(&obj->base);
1841
07fe0b12
BW
1842 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1843 if (i915_vma_unbind(vma))
1844 break;
80dcfdbd 1845
57094f82 1846 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1847 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1848
1849 drm_gem_object_unreference(&obj->base);
6c085a72 1850 }
57094f82 1851 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1852
1853 return count;
1854}
1855
d9973b43 1856static unsigned long
93927ca5
DV
1857i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1858{
1859 return __i915_gem_shrink(dev_priv, target, true);
1860}
1861
d9973b43 1862static unsigned long
6c085a72
CW
1863i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1864{
1865 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1866 long freed = 0;
6c085a72
CW
1867
1868 i915_gem_evict_everything(dev_priv->dev);
1869
35c20a60 1870 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1871 global_list) {
d9973b43 1872 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1873 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1874 }
1875 return freed;
225067ee
DV
1876}
1877
37e680a1 1878static int
6c085a72 1879i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1880{
6c085a72 1881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1882 int page_count, i;
1883 struct address_space *mapping;
9da3da66
CW
1884 struct sg_table *st;
1885 struct scatterlist *sg;
90797e6d 1886 struct sg_page_iter sg_iter;
e5281ccd 1887 struct page *page;
90797e6d 1888 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1889 gfp_t gfp;
e5281ccd 1890
6c085a72
CW
1891 /* Assert that the object is not currently in any GPU domain. As it
1892 * wasn't in the GTT, there shouldn't be any way it could have been in
1893 * a GPU cache
1894 */
1895 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1896 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1897
9da3da66
CW
1898 st = kmalloc(sizeof(*st), GFP_KERNEL);
1899 if (st == NULL)
1900 return -ENOMEM;
1901
05394f39 1902 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1903 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1904 kfree(st);
e5281ccd 1905 return -ENOMEM;
9da3da66 1906 }
e5281ccd 1907
9da3da66
CW
1908 /* Get the list of pages out of our struct file. They'll be pinned
1909 * at this point until we release them.
1910 *
1911 * Fail silently without starting the shrinker
1912 */
496ad9aa 1913 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1914 gfp = mapping_gfp_mask(mapping);
caf49191 1915 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1916 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1917 sg = st->sgl;
1918 st->nents = 0;
1919 for (i = 0; i < page_count; i++) {
6c085a72
CW
1920 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921 if (IS_ERR(page)) {
1922 i915_gem_purge(dev_priv, page_count);
1923 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1924 }
1925 if (IS_ERR(page)) {
1926 /* We've tried hard to allocate the memory by reaping
1927 * our own buffer, now let the real VM do its job and
1928 * go down in flames if truly OOM.
1929 */
caf49191 1930 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1931 gfp |= __GFP_IO | __GFP_WAIT;
1932
1933 i915_gem_shrink_all(dev_priv);
1934 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1935 if (IS_ERR(page))
1936 goto err_pages;
1937
caf49191 1938 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1939 gfp &= ~(__GFP_IO | __GFP_WAIT);
1940 }
426729dc
KRW
1941#ifdef CONFIG_SWIOTLB
1942 if (swiotlb_nr_tbl()) {
1943 st->nents++;
1944 sg_set_page(sg, page, PAGE_SIZE, 0);
1945 sg = sg_next(sg);
1946 continue;
1947 }
1948#endif
90797e6d
ID
1949 if (!i || page_to_pfn(page) != last_pfn + 1) {
1950 if (i)
1951 sg = sg_next(sg);
1952 st->nents++;
1953 sg_set_page(sg, page, PAGE_SIZE, 0);
1954 } else {
1955 sg->length += PAGE_SIZE;
1956 }
1957 last_pfn = page_to_pfn(page);
3bbbe706
DV
1958
1959 /* Check that the i965g/gm workaround works. */
1960 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1961 }
426729dc
KRW
1962#ifdef CONFIG_SWIOTLB
1963 if (!swiotlb_nr_tbl())
1964#endif
1965 sg_mark_end(sg);
74ce6b6c
CW
1966 obj->pages = st;
1967
6dacfd2f 1968 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1969 i915_gem_object_do_bit_17_swizzle(obj);
1970
1971 return 0;
1972
1973err_pages:
90797e6d
ID
1974 sg_mark_end(sg);
1975 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1976 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1977 sg_free_table(st);
1978 kfree(st);
e5281ccd 1979 return PTR_ERR(page);
673a394b
EA
1980}
1981
37e680a1
CW
1982/* Ensure that the associated pages are gathered from the backing storage
1983 * and pinned into our object. i915_gem_object_get_pages() may be called
1984 * multiple times before they are released by a single call to
1985 * i915_gem_object_put_pages() - once the pages are no longer referenced
1986 * either as a result of memory pressure (reaping pages under the shrinker)
1987 * or as the object is itself released.
1988 */
1989int
1990i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1991{
1992 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1993 const struct drm_i915_gem_object_ops *ops = obj->ops;
1994 int ret;
1995
2f745ad3 1996 if (obj->pages)
37e680a1
CW
1997 return 0;
1998
43e28f09 1999 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2000 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2001 return -EFAULT;
43e28f09
CW
2002 }
2003
a5570178
CW
2004 BUG_ON(obj->pages_pin_count);
2005
37e680a1
CW
2006 ret = ops->get_pages(obj);
2007 if (ret)
2008 return ret;
2009
35c20a60 2010 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2011 return 0;
673a394b
EA
2012}
2013
e2d05a8b 2014static void
05394f39 2015i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 2016 struct intel_ring_buffer *ring)
673a394b 2017{
05394f39 2018 struct drm_device *dev = obj->base.dev;
69dc4987 2019 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2020 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2021
852835f3 2022 BUG_ON(ring == NULL);
02978ff5
CW
2023 if (obj->ring != ring && obj->last_write_seqno) {
2024 /* Keep the seqno relative to the current ring */
2025 obj->last_write_seqno = seqno;
2026 }
05394f39 2027 obj->ring = ring;
673a394b
EA
2028
2029 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2030 if (!obj->active) {
2031 drm_gem_object_reference(&obj->base);
2032 obj->active = 1;
673a394b 2033 }
e35a41de 2034
05394f39 2035 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2036
0201f1ec 2037 obj->last_read_seqno = seqno;
caea7476 2038
7dd49065 2039 if (obj->fenced_gpu_access) {
caea7476 2040 obj->last_fenced_seqno = seqno;
caea7476 2041
7dd49065
CW
2042 /* Bump MRU to take account of the delayed flush */
2043 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2044 struct drm_i915_fence_reg *reg;
2045
2046 reg = &dev_priv->fence_regs[obj->fence_reg];
2047 list_move_tail(&reg->lru_list,
2048 &dev_priv->mm.fence_list);
2049 }
caea7476
CW
2050 }
2051}
2052
e2d05a8b
BW
2053void i915_vma_move_to_active(struct i915_vma *vma,
2054 struct intel_ring_buffer *ring)
2055{
2056 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2057 return i915_gem_object_move_to_active(vma->obj, ring);
2058}
2059
caea7476 2060static void
caea7476 2061i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2062{
ca191b13 2063 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2064 struct i915_address_space *vm;
2065 struct i915_vma *vma;
ce44b0ea 2066
65ce3027 2067 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2068 BUG_ON(!obj->active);
caea7476 2069
feb822cf
BW
2070 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2071 vma = i915_gem_obj_to_vma(obj, vm);
2072 if (vma && !list_empty(&vma->mm_list))
2073 list_move_tail(&vma->mm_list, &vm->inactive_list);
2074 }
caea7476 2075
65ce3027 2076 list_del_init(&obj->ring_list);
caea7476
CW
2077 obj->ring = NULL;
2078
65ce3027
CW
2079 obj->last_read_seqno = 0;
2080 obj->last_write_seqno = 0;
2081 obj->base.write_domain = 0;
2082
2083 obj->last_fenced_seqno = 0;
caea7476 2084 obj->fenced_gpu_access = false;
caea7476
CW
2085
2086 obj->active = 0;
2087 drm_gem_object_unreference(&obj->base);
2088
2089 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2090}
673a394b 2091
9d773091 2092static int
fca26bb4 2093i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2094{
9d773091
CW
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 struct intel_ring_buffer *ring;
2097 int ret, i, j;
53d227f2 2098
107f27a5 2099 /* Carefully retire all requests without writing to the rings */
9d773091 2100 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2101 ret = intel_ring_idle(ring);
2102 if (ret)
2103 return ret;
9d773091 2104 }
9d773091 2105 i915_gem_retire_requests(dev);
107f27a5
CW
2106
2107 /* Finally reset hw state */
9d773091 2108 for_each_ring(ring, dev_priv, i) {
fca26bb4 2109 intel_ring_init_seqno(ring, seqno);
498d2ac1 2110
9d773091
CW
2111 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2112 ring->sync_seqno[j] = 0;
2113 }
53d227f2 2114
9d773091 2115 return 0;
53d227f2
DV
2116}
2117
fca26bb4
MK
2118int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2119{
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2121 int ret;
2122
2123 if (seqno == 0)
2124 return -EINVAL;
2125
2126 /* HWS page needs to be set less than what we
2127 * will inject to ring
2128 */
2129 ret = i915_gem_init_seqno(dev, seqno - 1);
2130 if (ret)
2131 return ret;
2132
2133 /* Carefully set the last_seqno value so that wrap
2134 * detection still works
2135 */
2136 dev_priv->next_seqno = seqno;
2137 dev_priv->last_seqno = seqno - 1;
2138 if (dev_priv->last_seqno == 0)
2139 dev_priv->last_seqno--;
2140
2141 return 0;
2142}
2143
9d773091
CW
2144int
2145i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2146{
9d773091
CW
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148
2149 /* reserve 0 for non-seqno */
2150 if (dev_priv->next_seqno == 0) {
fca26bb4 2151 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2152 if (ret)
2153 return ret;
53d227f2 2154
9d773091
CW
2155 dev_priv->next_seqno = 1;
2156 }
53d227f2 2157
f72b3435 2158 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2159 return 0;
53d227f2
DV
2160}
2161
0025c077
MK
2162int __i915_add_request(struct intel_ring_buffer *ring,
2163 struct drm_file *file,
7d736f4f 2164 struct drm_i915_gem_object *obj,
0025c077 2165 u32 *out_seqno)
673a394b 2166{
db53a302 2167 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2168 struct drm_i915_gem_request *request;
7d736f4f 2169 u32 request_ring_position, request_start;
3cce469c
CW
2170 int ret;
2171
7d736f4f 2172 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2173 /*
2174 * Emit any outstanding flushes - execbuf can fail to emit the flush
2175 * after having emitted the batchbuffer command. Hence we need to fix
2176 * things up similar to emitting the lazy request. The difference here
2177 * is that the flush _must_ happen before the next request, no matter
2178 * what.
2179 */
a7b9761d
CW
2180 ret = intel_ring_flush_all_caches(ring);
2181 if (ret)
2182 return ret;
cc889e0f 2183
3c0e234c
CW
2184 request = ring->preallocated_lazy_request;
2185 if (WARN_ON(request == NULL))
acb868d3 2186 return -ENOMEM;
cc889e0f 2187
a71d8d94
CW
2188 /* Record the position of the start of the request so that
2189 * should we detect the updated seqno part-way through the
2190 * GPU processing the request, we never over-estimate the
2191 * position of the head.
2192 */
2193 request_ring_position = intel_ring_get_tail(ring);
2194
9d773091 2195 ret = ring->add_request(ring);
3c0e234c 2196 if (ret)
3bb73aba 2197 return ret;
673a394b 2198
9d773091 2199 request->seqno = intel_ring_get_seqno(ring);
852835f3 2200 request->ring = ring;
7d736f4f 2201 request->head = request_start;
a71d8d94 2202 request->tail = request_ring_position;
7d736f4f
MK
2203
2204 /* Whilst this request exists, batch_obj will be on the
2205 * active_list, and so will hold the active reference. Only when this
2206 * request is retired will the the batch_obj be moved onto the
2207 * inactive_list and lose its active reference. Hence we do not need
2208 * to explicitly hold another reference here.
2209 */
9a7e0c2a 2210 request->batch_obj = obj;
0e50e96b 2211
9a7e0c2a
CW
2212 /* Hold a reference to the current context so that we can inspect
2213 * it later in case a hangcheck error event fires.
2214 */
2215 request->ctx = ring->last_context;
0e50e96b
MK
2216 if (request->ctx)
2217 i915_gem_context_reference(request->ctx);
2218
673a394b 2219 request->emitted_jiffies = jiffies;
852835f3 2220 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2221 request->file_priv = NULL;
852835f3 2222
db53a302
CW
2223 if (file) {
2224 struct drm_i915_file_private *file_priv = file->driver_priv;
2225
1c25595f 2226 spin_lock(&file_priv->mm.lock);
f787a5f5 2227 request->file_priv = file_priv;
b962442e 2228 list_add_tail(&request->client_list,
f787a5f5 2229 &file_priv->mm.request_list);
1c25595f 2230 spin_unlock(&file_priv->mm.lock);
b962442e 2231 }
673a394b 2232
9d773091 2233 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2234 ring->outstanding_lazy_seqno = 0;
3c0e234c 2235 ring->preallocated_lazy_request = NULL;
db53a302 2236
db1b76ca 2237 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2238 i915_queue_hangcheck(ring->dev);
2239
f62a0076
CW
2240 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2241 queue_delayed_work(dev_priv->wq,
2242 &dev_priv->mm.retire_work,
2243 round_jiffies_up_relative(HZ));
2244 intel_mark_busy(dev_priv->dev);
f65d9421 2245 }
cc889e0f 2246
acb868d3 2247 if (out_seqno)
9d773091 2248 *out_seqno = request->seqno;
3cce469c 2249 return 0;
673a394b
EA
2250}
2251
f787a5f5
CW
2252static inline void
2253i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2254{
1c25595f 2255 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2256
1c25595f
CW
2257 if (!file_priv)
2258 return;
1c5d22f7 2259
1c25595f 2260 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2261 list_del(&request->client_list);
2262 request->file_priv = NULL;
1c25595f 2263 spin_unlock(&file_priv->mm.lock);
673a394b 2264}
673a394b 2265
939fd762 2266static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
44e2c070 2267 const struct i915_hw_context *ctx)
be62acb4 2268{
44e2c070 2269 unsigned long elapsed;
be62acb4 2270
44e2c070
MK
2271 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2272
2273 if (ctx->hang_stats.banned)
be62acb4
MK
2274 return true;
2275
2276 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2277 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2278 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0
VS
2279 return true;
2280 } else if (dev_priv->gpu_error.stop_rings == 0) {
2281 DRM_ERROR("gpu hanging too fast, banning!\n");
2282 return true;
3fac8978 2283 }
be62acb4
MK
2284 }
2285
2286 return false;
2287}
2288
939fd762
MK
2289static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2290 struct i915_hw_context *ctx,
b6b0fac0 2291 const bool guilty)
aa60c664 2292{
44e2c070
MK
2293 struct i915_ctx_hang_stats *hs;
2294
2295 if (WARN_ON(!ctx))
2296 return;
aa60c664 2297
44e2c070
MK
2298 hs = &ctx->hang_stats;
2299
2300 if (guilty) {
939fd762 2301 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2302 hs->batch_active++;
2303 hs->guilty_ts = get_seconds();
2304 } else {
2305 hs->batch_pending++;
aa60c664
MK
2306 }
2307}
2308
0e50e96b
MK
2309static void i915_gem_free_request(struct drm_i915_gem_request *request)
2310{
2311 list_del(&request->list);
2312 i915_gem_request_remove_from_client(request);
2313
2314 if (request->ctx)
2315 i915_gem_context_unreference(request->ctx);
2316
2317 kfree(request);
2318}
2319
8d9fc7fd
CW
2320struct drm_i915_gem_request *
2321i915_gem_find_active_request(struct intel_ring_buffer *ring)
9375e446 2322{
4db080f9 2323 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2324 u32 completed_seqno;
2325
2326 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2327
2328 list_for_each_entry(request, &ring->request_list, list) {
2329 if (i915_seqno_passed(completed_seqno, request->seqno))
2330 continue;
aa60c664 2331
b6b0fac0 2332 return request;
4db080f9 2333 }
b6b0fac0
MK
2334
2335 return NULL;
2336}
2337
2338static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2339 struct intel_ring_buffer *ring)
2340{
2341 struct drm_i915_gem_request *request;
2342 bool ring_hung;
2343
8d9fc7fd 2344 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2345
2346 if (request == NULL)
2347 return;
2348
2349 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2350
939fd762 2351 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2352
2353 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2354 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2355}
aa60c664 2356
4db080f9
CW
2357static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2358 struct intel_ring_buffer *ring)
2359{
dfaae392 2360 while (!list_empty(&ring->active_list)) {
05394f39 2361 struct drm_i915_gem_object *obj;
9375e446 2362
05394f39
CW
2363 obj = list_first_entry(&ring->active_list,
2364 struct drm_i915_gem_object,
2365 ring_list);
9375e446 2366
05394f39 2367 i915_gem_object_move_to_inactive(obj);
673a394b 2368 }
1d62beea
BW
2369
2370 /*
2371 * We must free the requests after all the corresponding objects have
2372 * been moved off active lists. Which is the same order as the normal
2373 * retire_requests function does. This is important if object hold
2374 * implicit references on things like e.g. ppgtt address spaces through
2375 * the request.
2376 */
2377 while (!list_empty(&ring->request_list)) {
2378 struct drm_i915_gem_request *request;
2379
2380 request = list_first_entry(&ring->request_list,
2381 struct drm_i915_gem_request,
2382 list);
2383
2384 i915_gem_free_request(request);
2385 }
673a394b
EA
2386}
2387
19b2dbde 2388void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2389{
2390 struct drm_i915_private *dev_priv = dev->dev_private;
2391 int i;
2392
4b9de737 2393 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2394 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2395
94a335db
DV
2396 /*
2397 * Commit delayed tiling changes if we have an object still
2398 * attached to the fence, otherwise just clear the fence.
2399 */
2400 if (reg->obj) {
2401 i915_gem_object_update_fence(reg->obj, reg,
2402 reg->obj->tiling_mode);
2403 } else {
2404 i915_gem_write_fence(dev, i, NULL);
2405 }
312817a3
CW
2406 }
2407}
2408
069efc1d 2409void i915_gem_reset(struct drm_device *dev)
673a394b 2410{
77f01230 2411 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2412 struct intel_ring_buffer *ring;
1ec14ad3 2413 int i;
673a394b 2414
4db080f9
CW
2415 /*
2416 * Before we free the objects from the requests, we need to inspect
2417 * them for finding the guilty party. As the requests only borrow
2418 * their reference to the objects, the inspection must be done first.
2419 */
2420 for_each_ring(ring, dev_priv, i)
2421 i915_gem_reset_ring_status(dev_priv, ring);
2422
b4519513 2423 for_each_ring(ring, dev_priv, i)
4db080f9 2424 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2425
3d57e5bd
BW
2426 i915_gem_cleanup_ringbuffer(dev);
2427
acce9ffa
BW
2428 i915_gem_context_reset(dev);
2429
19b2dbde 2430 i915_gem_restore_fences(dev);
673a394b
EA
2431}
2432
2433/**
2434 * This function clears the request list as sequence numbers are passed.
2435 */
cb216aa8 2436static void
db53a302 2437i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2438{
673a394b
EA
2439 uint32_t seqno;
2440
db53a302 2441 if (list_empty(&ring->request_list))
6c0594a3
KW
2442 return;
2443
db53a302 2444 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2445
b2eadbc8 2446 seqno = ring->get_seqno(ring, true);
1ec14ad3 2447
e9103038
CW
2448 /* Move any buffers on the active list that are no longer referenced
2449 * by the ringbuffer to the flushing/inactive lists as appropriate,
2450 * before we free the context associated with the requests.
2451 */
2452 while (!list_empty(&ring->active_list)) {
2453 struct drm_i915_gem_object *obj;
2454
2455 obj = list_first_entry(&ring->active_list,
2456 struct drm_i915_gem_object,
2457 ring_list);
2458
2459 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2460 break;
2461
2462 i915_gem_object_move_to_inactive(obj);
2463 }
2464
2465
852835f3 2466 while (!list_empty(&ring->request_list)) {
673a394b 2467 struct drm_i915_gem_request *request;
673a394b 2468
852835f3 2469 request = list_first_entry(&ring->request_list,
673a394b
EA
2470 struct drm_i915_gem_request,
2471 list);
673a394b 2472
dfaae392 2473 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2474 break;
2475
db53a302 2476 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2477 /* We know the GPU must have read the request to have
2478 * sent us the seqno + interrupt, so use the position
2479 * of tail of the request to update the last known position
2480 * of the GPU head.
2481 */
2482 ring->last_retired_head = request->tail;
b84d5f0c 2483
0e50e96b 2484 i915_gem_free_request(request);
b84d5f0c 2485 }
673a394b 2486
db53a302
CW
2487 if (unlikely(ring->trace_irq_seqno &&
2488 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2489 ring->irq_put(ring);
db53a302 2490 ring->trace_irq_seqno = 0;
9d34e5db 2491 }
23bc5982 2492
db53a302 2493 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2494}
2495
b29c19b6 2496bool
b09a1fec
CW
2497i915_gem_retire_requests(struct drm_device *dev)
2498{
2499 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2500 struct intel_ring_buffer *ring;
b29c19b6 2501 bool idle = true;
1ec14ad3 2502 int i;
b09a1fec 2503
b29c19b6 2504 for_each_ring(ring, dev_priv, i) {
b4519513 2505 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2506 idle &= list_empty(&ring->request_list);
2507 }
2508
2509 if (idle)
2510 mod_delayed_work(dev_priv->wq,
2511 &dev_priv->mm.idle_work,
2512 msecs_to_jiffies(100));
2513
2514 return idle;
b09a1fec
CW
2515}
2516
75ef9da2 2517static void
673a394b
EA
2518i915_gem_retire_work_handler(struct work_struct *work)
2519{
b29c19b6
CW
2520 struct drm_i915_private *dev_priv =
2521 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2522 struct drm_device *dev = dev_priv->dev;
0a58705b 2523 bool idle;
673a394b 2524
891b48cf 2525 /* Come back later if the device is busy... */
b29c19b6
CW
2526 idle = false;
2527 if (mutex_trylock(&dev->struct_mutex)) {
2528 idle = i915_gem_retire_requests(dev);
2529 mutex_unlock(&dev->struct_mutex);
673a394b 2530 }
b29c19b6 2531 if (!idle)
bcb45086
CW
2532 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2533 round_jiffies_up_relative(HZ));
b29c19b6 2534}
0a58705b 2535
b29c19b6
CW
2536static void
2537i915_gem_idle_work_handler(struct work_struct *work)
2538{
2539 struct drm_i915_private *dev_priv =
2540 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2541
2542 intel_mark_idle(dev_priv->dev);
673a394b
EA
2543}
2544
30dfebf3
DV
2545/**
2546 * Ensures that an object will eventually get non-busy by flushing any required
2547 * write domains, emitting any outstanding lazy request and retiring and
2548 * completed requests.
2549 */
2550static int
2551i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2552{
2553 int ret;
2554
2555 if (obj->active) {
0201f1ec 2556 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2557 if (ret)
2558 return ret;
2559
30dfebf3
DV
2560 i915_gem_retire_requests_ring(obj->ring);
2561 }
2562
2563 return 0;
2564}
2565
23ba4fd0
BW
2566/**
2567 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2568 * @DRM_IOCTL_ARGS: standard ioctl arguments
2569 *
2570 * Returns 0 if successful, else an error is returned with the remaining time in
2571 * the timeout parameter.
2572 * -ETIME: object is still busy after timeout
2573 * -ERESTARTSYS: signal interrupted the wait
2574 * -ENONENT: object doesn't exist
2575 * Also possible, but rare:
2576 * -EAGAIN: GPU wedged
2577 * -ENOMEM: damn
2578 * -ENODEV: Internal IRQ fail
2579 * -E?: The add request failed
2580 *
2581 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2582 * non-zero timeout parameter the wait ioctl will wait for the given number of
2583 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2584 * without holding struct_mutex the object may become re-busied before this
2585 * function completes. A similar but shorter * race condition exists in the busy
2586 * ioctl
2587 */
2588int
2589i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2590{
f69061be 2591 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2592 struct drm_i915_gem_wait *args = data;
2593 struct drm_i915_gem_object *obj;
2594 struct intel_ring_buffer *ring = NULL;
eac1f14f 2595 struct timespec timeout_stack, *timeout = NULL;
f69061be 2596 unsigned reset_counter;
23ba4fd0
BW
2597 u32 seqno = 0;
2598 int ret = 0;
2599
eac1f14f
BW
2600 if (args->timeout_ns >= 0) {
2601 timeout_stack = ns_to_timespec(args->timeout_ns);
2602 timeout = &timeout_stack;
2603 }
23ba4fd0
BW
2604
2605 ret = i915_mutex_lock_interruptible(dev);
2606 if (ret)
2607 return ret;
2608
2609 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2610 if (&obj->base == NULL) {
2611 mutex_unlock(&dev->struct_mutex);
2612 return -ENOENT;
2613 }
2614
30dfebf3
DV
2615 /* Need to make sure the object gets inactive eventually. */
2616 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2617 if (ret)
2618 goto out;
2619
2620 if (obj->active) {
0201f1ec 2621 seqno = obj->last_read_seqno;
23ba4fd0
BW
2622 ring = obj->ring;
2623 }
2624
2625 if (seqno == 0)
2626 goto out;
2627
23ba4fd0
BW
2628 /* Do this after OLR check to make sure we make forward progress polling
2629 * on this IOCTL with a 0 timeout (like busy ioctl)
2630 */
2631 if (!args->timeout_ns) {
2632 ret = -ETIME;
2633 goto out;
2634 }
2635
2636 drm_gem_object_unreference(&obj->base);
f69061be 2637 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2638 mutex_unlock(&dev->struct_mutex);
2639
b29c19b6 2640 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2641 if (timeout)
eac1f14f 2642 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2643 return ret;
2644
2645out:
2646 drm_gem_object_unreference(&obj->base);
2647 mutex_unlock(&dev->struct_mutex);
2648 return ret;
2649}
2650
5816d648
BW
2651/**
2652 * i915_gem_object_sync - sync an object to a ring.
2653 *
2654 * @obj: object which may be in use on another ring.
2655 * @to: ring we wish to use the object on. May be NULL.
2656 *
2657 * This code is meant to abstract object synchronization with the GPU.
2658 * Calling with NULL implies synchronizing the object with the CPU
2659 * rather than a particular GPU ring.
2660 *
2661 * Returns 0 if successful, else propagates up the lower layer error.
2662 */
2911a35b
BW
2663int
2664i915_gem_object_sync(struct drm_i915_gem_object *obj,
2665 struct intel_ring_buffer *to)
2666{
2667 struct intel_ring_buffer *from = obj->ring;
2668 u32 seqno;
2669 int ret, idx;
2670
2671 if (from == NULL || to == from)
2672 return 0;
2673
5816d648 2674 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2675 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2676
2677 idx = intel_ring_sync_index(from, to);
2678
0201f1ec 2679 seqno = obj->last_read_seqno;
2911a35b
BW
2680 if (seqno <= from->sync_seqno[idx])
2681 return 0;
2682
b4aca010
BW
2683 ret = i915_gem_check_olr(obj->ring, seqno);
2684 if (ret)
2685 return ret;
2911a35b 2686
b52b89da 2687 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2688 ret = to->sync_to(to, from, seqno);
e3a5a225 2689 if (!ret)
7b01e260
MK
2690 /* We use last_read_seqno because sync_to()
2691 * might have just caused seqno wrap under
2692 * the radar.
2693 */
2694 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2695
e3a5a225 2696 return ret;
2911a35b
BW
2697}
2698
b5ffc9bc
CW
2699static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2700{
2701 u32 old_write_domain, old_read_domains;
2702
b5ffc9bc
CW
2703 /* Force a pagefault for domain tracking on next user access */
2704 i915_gem_release_mmap(obj);
2705
b97c3d9c
KP
2706 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2707 return;
2708
97c809fd
CW
2709 /* Wait for any direct GTT access to complete */
2710 mb();
2711
b5ffc9bc
CW
2712 old_read_domains = obj->base.read_domains;
2713 old_write_domain = obj->base.write_domain;
2714
2715 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2716 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2717
2718 trace_i915_gem_object_change_domain(obj,
2719 old_read_domains,
2720 old_write_domain);
2721}
2722
07fe0b12 2723int i915_vma_unbind(struct i915_vma *vma)
673a394b 2724{
07fe0b12 2725 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2726 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2727 int ret;
673a394b 2728
07fe0b12 2729 if (list_empty(&vma->vma_link))
673a394b
EA
2730 return 0;
2731
0ff501cb
DV
2732 if (!drm_mm_node_allocated(&vma->node)) {
2733 i915_gem_vma_destroy(vma);
0ff501cb
DV
2734 return 0;
2735 }
433544bd 2736
d7f46fc4 2737 if (vma->pin_count)
31d8d651 2738 return -EBUSY;
673a394b 2739
c4670ad0
CW
2740 BUG_ON(obj->pages == NULL);
2741
a8198eea 2742 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2743 if (ret)
a8198eea
CW
2744 return ret;
2745 /* Continue on if we fail due to EIO, the GPU is hung so we
2746 * should be safe and we need to cleanup or else we might
2747 * cause memory corruption through use-after-free.
2748 */
2749
b5ffc9bc 2750 i915_gem_object_finish_gtt(obj);
5323fd04 2751
96b47b65 2752 /* release the fence reg _after_ flushing */
d9e86c0e 2753 ret = i915_gem_object_put_fence(obj);
1488fc08 2754 if (ret)
d9e86c0e 2755 return ret;
96b47b65 2756
07fe0b12 2757 trace_i915_vma_unbind(vma);
db53a302 2758
6f65e29a
BW
2759 vma->unbind_vma(vma);
2760
74163907 2761 i915_gem_gtt_finish_object(obj);
7bddb01f 2762
64bf9303 2763 list_del_init(&vma->mm_list);
75e9e915 2764 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2765 if (i915_is_ggtt(vma->vm))
2766 obj->map_and_fenceable = true;
673a394b 2767
2f633156
BW
2768 drm_mm_remove_node(&vma->node);
2769 i915_gem_vma_destroy(vma);
2770
2771 /* Since the unbound list is global, only move to that list if
b93dab6e 2772 * no more VMAs exist. */
2f633156
BW
2773 if (list_empty(&obj->vma_list))
2774 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2775
70903c3b
CW
2776 /* And finally now the object is completely decoupled from this vma,
2777 * we can drop its hold on the backing storage and allow it to be
2778 * reaped by the shrinker.
2779 */
2780 i915_gem_object_unpin_pages(obj);
2781
88241785 2782 return 0;
54cf91dc
CW
2783}
2784
b2da9fe5 2785int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2786{
2787 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2788 struct intel_ring_buffer *ring;
1ec14ad3 2789 int ret, i;
4df2faf4 2790
4df2faf4 2791 /* Flush everything onto the inactive list. */
b4519513 2792 for_each_ring(ring, dev_priv, i) {
41bde553 2793 ret = i915_switch_context(ring, NULL, ring->default_context);
b6c7488d
BW
2794 if (ret)
2795 return ret;
2796
3e960501 2797 ret = intel_ring_idle(ring);
1ec14ad3
CW
2798 if (ret)
2799 return ret;
2800 }
4df2faf4 2801
8a1a49f9 2802 return 0;
4df2faf4
DV
2803}
2804
9ce079e4
CW
2805static void i965_write_fence_reg(struct drm_device *dev, int reg,
2806 struct drm_i915_gem_object *obj)
de151cf6 2807{
de151cf6 2808 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2809 int fence_reg;
2810 int fence_pitch_shift;
de151cf6 2811
56c844e5
ID
2812 if (INTEL_INFO(dev)->gen >= 6) {
2813 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2814 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2815 } else {
2816 fence_reg = FENCE_REG_965_0;
2817 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2818 }
2819
d18b9619
CW
2820 fence_reg += reg * 8;
2821
2822 /* To w/a incoherency with non-atomic 64-bit register updates,
2823 * we split the 64-bit update into two 32-bit writes. In order
2824 * for a partial fence not to be evaluated between writes, we
2825 * precede the update with write to turn off the fence register,
2826 * and only enable the fence as the last step.
2827 *
2828 * For extra levels of paranoia, we make sure each step lands
2829 * before applying the next step.
2830 */
2831 I915_WRITE(fence_reg, 0);
2832 POSTING_READ(fence_reg);
2833
9ce079e4 2834 if (obj) {
f343c5f6 2835 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2836 uint64_t val;
de151cf6 2837
f343c5f6 2838 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2839 0xfffff000) << 32;
f343c5f6 2840 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2841 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2842 if (obj->tiling_mode == I915_TILING_Y)
2843 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2844 val |= I965_FENCE_REG_VALID;
c6642782 2845
d18b9619
CW
2846 I915_WRITE(fence_reg + 4, val >> 32);
2847 POSTING_READ(fence_reg + 4);
2848
2849 I915_WRITE(fence_reg + 0, val);
2850 POSTING_READ(fence_reg);
2851 } else {
2852 I915_WRITE(fence_reg + 4, 0);
2853 POSTING_READ(fence_reg + 4);
2854 }
de151cf6
JB
2855}
2856
9ce079e4
CW
2857static void i915_write_fence_reg(struct drm_device *dev, int reg,
2858 struct drm_i915_gem_object *obj)
de151cf6 2859{
de151cf6 2860 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2861 u32 val;
de151cf6 2862
9ce079e4 2863 if (obj) {
f343c5f6 2864 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2865 int pitch_val;
2866 int tile_width;
c6642782 2867
f343c5f6 2868 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2869 (size & -size) != size ||
f343c5f6
BW
2870 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2871 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2872 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2873
9ce079e4
CW
2874 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2875 tile_width = 128;
2876 else
2877 tile_width = 512;
2878
2879 /* Note: pitch better be a power of two tile widths */
2880 pitch_val = obj->stride / tile_width;
2881 pitch_val = ffs(pitch_val) - 1;
2882
f343c5f6 2883 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2884 if (obj->tiling_mode == I915_TILING_Y)
2885 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2886 val |= I915_FENCE_SIZE_BITS(size);
2887 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2888 val |= I830_FENCE_REG_VALID;
2889 } else
2890 val = 0;
2891
2892 if (reg < 8)
2893 reg = FENCE_REG_830_0 + reg * 4;
2894 else
2895 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2896
2897 I915_WRITE(reg, val);
2898 POSTING_READ(reg);
de151cf6
JB
2899}
2900
9ce079e4
CW
2901static void i830_write_fence_reg(struct drm_device *dev, int reg,
2902 struct drm_i915_gem_object *obj)
de151cf6 2903{
de151cf6 2904 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2905 uint32_t val;
de151cf6 2906
9ce079e4 2907 if (obj) {
f343c5f6 2908 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2909 uint32_t pitch_val;
de151cf6 2910
f343c5f6 2911 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2912 (size & -size) != size ||
f343c5f6
BW
2913 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2914 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2915 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2916
9ce079e4
CW
2917 pitch_val = obj->stride / 128;
2918 pitch_val = ffs(pitch_val) - 1;
de151cf6 2919
f343c5f6 2920 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2921 if (obj->tiling_mode == I915_TILING_Y)
2922 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2923 val |= I830_FENCE_SIZE_BITS(size);
2924 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2925 val |= I830_FENCE_REG_VALID;
2926 } else
2927 val = 0;
c6642782 2928
9ce079e4
CW
2929 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2930 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2931}
2932
d0a57789
CW
2933inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2934{
2935 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2936}
2937
9ce079e4
CW
2938static void i915_gem_write_fence(struct drm_device *dev, int reg,
2939 struct drm_i915_gem_object *obj)
2940{
d0a57789
CW
2941 struct drm_i915_private *dev_priv = dev->dev_private;
2942
2943 /* Ensure that all CPU reads are completed before installing a fence
2944 * and all writes before removing the fence.
2945 */
2946 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2947 mb();
2948
94a335db
DV
2949 WARN(obj && (!obj->stride || !obj->tiling_mode),
2950 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2951 obj->stride, obj->tiling_mode);
2952
9ce079e4 2953 switch (INTEL_INFO(dev)->gen) {
5ab31333 2954 case 8:
9ce079e4 2955 case 7:
56c844e5 2956 case 6:
9ce079e4
CW
2957 case 5:
2958 case 4: i965_write_fence_reg(dev, reg, obj); break;
2959 case 3: i915_write_fence_reg(dev, reg, obj); break;
2960 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2961 default: BUG();
9ce079e4 2962 }
d0a57789
CW
2963
2964 /* And similarly be paranoid that no direct access to this region
2965 * is reordered to before the fence is installed.
2966 */
2967 if (i915_gem_object_needs_mb(obj))
2968 mb();
de151cf6
JB
2969}
2970
61050808
CW
2971static inline int fence_number(struct drm_i915_private *dev_priv,
2972 struct drm_i915_fence_reg *fence)
2973{
2974 return fence - dev_priv->fence_regs;
2975}
2976
2977static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2978 struct drm_i915_fence_reg *fence,
2979 bool enable)
2980{
2dc8aae0 2981 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2982 int reg = fence_number(dev_priv, fence);
2983
2984 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2985
2986 if (enable) {
46a0b638 2987 obj->fence_reg = reg;
61050808
CW
2988 fence->obj = obj;
2989 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2990 } else {
2991 obj->fence_reg = I915_FENCE_REG_NONE;
2992 fence->obj = NULL;
2993 list_del_init(&fence->lru_list);
2994 }
94a335db 2995 obj->fence_dirty = false;
61050808
CW
2996}
2997
d9e86c0e 2998static int
d0a57789 2999i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3000{
1c293ea3 3001 if (obj->last_fenced_seqno) {
86d5bc37 3002 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3003 if (ret)
3004 return ret;
d9e86c0e
CW
3005
3006 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3007 }
3008
86d5bc37 3009 obj->fenced_gpu_access = false;
d9e86c0e
CW
3010 return 0;
3011}
3012
3013int
3014i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3015{
61050808 3016 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3017 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3018 int ret;
3019
d0a57789 3020 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3021 if (ret)
3022 return ret;
3023
61050808
CW
3024 if (obj->fence_reg == I915_FENCE_REG_NONE)
3025 return 0;
d9e86c0e 3026
f9c513e9
CW
3027 fence = &dev_priv->fence_regs[obj->fence_reg];
3028
61050808 3029 i915_gem_object_fence_lost(obj);
f9c513e9 3030 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3031
3032 return 0;
3033}
3034
3035static struct drm_i915_fence_reg *
a360bb1a 3036i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3037{
ae3db24a 3038 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3039 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3040 int i;
ae3db24a
DV
3041
3042 /* First try to find a free reg */
d9e86c0e 3043 avail = NULL;
ae3db24a
DV
3044 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3045 reg = &dev_priv->fence_regs[i];
3046 if (!reg->obj)
d9e86c0e 3047 return reg;
ae3db24a 3048
1690e1eb 3049 if (!reg->pin_count)
d9e86c0e 3050 avail = reg;
ae3db24a
DV
3051 }
3052
d9e86c0e 3053 if (avail == NULL)
5dce5b93 3054 goto deadlock;
ae3db24a
DV
3055
3056 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3057 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3058 if (reg->pin_count)
ae3db24a
DV
3059 continue;
3060
8fe301ad 3061 return reg;
ae3db24a
DV
3062 }
3063
5dce5b93
CW
3064deadlock:
3065 /* Wait for completion of pending flips which consume fences */
3066 if (intel_has_pending_fb_unpin(dev))
3067 return ERR_PTR(-EAGAIN);
3068
3069 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3070}
3071
de151cf6 3072/**
9a5a53b3 3073 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3074 * @obj: object to map through a fence reg
3075 *
3076 * When mapping objects through the GTT, userspace wants to be able to write
3077 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3078 * This function walks the fence regs looking for a free one for @obj,
3079 * stealing one if it can't find any.
3080 *
3081 * It then sets up the reg based on the object's properties: address, pitch
3082 * and tiling format.
9a5a53b3
CW
3083 *
3084 * For an untiled surface, this removes any existing fence.
de151cf6 3085 */
8c4b8c3f 3086int
06d98131 3087i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3088{
05394f39 3089 struct drm_device *dev = obj->base.dev;
79e53945 3090 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3091 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3092 struct drm_i915_fence_reg *reg;
ae3db24a 3093 int ret;
de151cf6 3094
14415745
CW
3095 /* Have we updated the tiling parameters upon the object and so
3096 * will need to serialise the write to the associated fence register?
3097 */
5d82e3e6 3098 if (obj->fence_dirty) {
d0a57789 3099 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3100 if (ret)
3101 return ret;
3102 }
9a5a53b3 3103
d9e86c0e 3104 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3105 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3106 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3107 if (!obj->fence_dirty) {
14415745
CW
3108 list_move_tail(&reg->lru_list,
3109 &dev_priv->mm.fence_list);
3110 return 0;
3111 }
3112 } else if (enable) {
3113 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3114 if (IS_ERR(reg))
3115 return PTR_ERR(reg);
d9e86c0e 3116
14415745
CW
3117 if (reg->obj) {
3118 struct drm_i915_gem_object *old = reg->obj;
3119
d0a57789 3120 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3121 if (ret)
3122 return ret;
3123
14415745 3124 i915_gem_object_fence_lost(old);
29c5a587 3125 }
14415745 3126 } else
a09ba7fa 3127 return 0;
a09ba7fa 3128
14415745 3129 i915_gem_object_update_fence(obj, reg, enable);
14415745 3130
9ce079e4 3131 return 0;
de151cf6
JB
3132}
3133
42d6ab48
CW
3134static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3135 struct drm_mm_node *gtt_space,
3136 unsigned long cache_level)
3137{
3138 struct drm_mm_node *other;
3139
3140 /* On non-LLC machines we have to be careful when putting differing
3141 * types of snoopable memory together to avoid the prefetcher
4239ca77 3142 * crossing memory domains and dying.
42d6ab48
CW
3143 */
3144 if (HAS_LLC(dev))
3145 return true;
3146
c6cfb325 3147 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3148 return true;
3149
3150 if (list_empty(&gtt_space->node_list))
3151 return true;
3152
3153 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3154 if (other->allocated && !other->hole_follows && other->color != cache_level)
3155 return false;
3156
3157 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3158 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3159 return false;
3160
3161 return true;
3162}
3163
3164static void i915_gem_verify_gtt(struct drm_device *dev)
3165{
3166#if WATCH_GTT
3167 struct drm_i915_private *dev_priv = dev->dev_private;
3168 struct drm_i915_gem_object *obj;
3169 int err = 0;
3170
35c20a60 3171 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3172 if (obj->gtt_space == NULL) {
3173 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3174 err++;
3175 continue;
3176 }
3177
3178 if (obj->cache_level != obj->gtt_space->color) {
3179 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3180 i915_gem_obj_ggtt_offset(obj),
3181 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3182 obj->cache_level,
3183 obj->gtt_space->color);
3184 err++;
3185 continue;
3186 }
3187
3188 if (!i915_gem_valid_gtt_space(dev,
3189 obj->gtt_space,
3190 obj->cache_level)) {
3191 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3192 i915_gem_obj_ggtt_offset(obj),
3193 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3194 obj->cache_level);
3195 err++;
3196 continue;
3197 }
3198 }
3199
3200 WARN_ON(err);
3201#endif
3202}
3203
673a394b
EA
3204/**
3205 * Finds free space in the GTT aperture and binds the object there.
3206 */
262de145 3207static struct i915_vma *
07fe0b12
BW
3208i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3209 struct i915_address_space *vm,
3210 unsigned alignment,
1ec9e26d 3211 unsigned flags)
673a394b 3212{
05394f39 3213 struct drm_device *dev = obj->base.dev;
673a394b 3214 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3215 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12 3216 size_t gtt_max =
1ec9e26d 3217 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3218 struct i915_vma *vma;
07f73f69 3219 int ret;
673a394b 3220
e28f8711
CW
3221 fence_size = i915_gem_get_gtt_size(dev,
3222 obj->base.size,
3223 obj->tiling_mode);
3224 fence_alignment = i915_gem_get_gtt_alignment(dev,
3225 obj->base.size,
d865110c 3226 obj->tiling_mode, true);
e28f8711 3227 unfenced_alignment =
d865110c 3228 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3229 obj->base.size,
3230 obj->tiling_mode, false);
a00b10c3 3231
673a394b 3232 if (alignment == 0)
1ec9e26d 3233 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3234 unfenced_alignment;
1ec9e26d 3235 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3236 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3237 return ERR_PTR(-EINVAL);
673a394b
EA
3238 }
3239
1ec9e26d 3240 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3241
654fc607
CW
3242 /* If the object is bigger than the entire aperture, reject it early
3243 * before evicting everything in a vain attempt to find space.
3244 */
0a9ae0d7 3245 if (obj->base.size > gtt_max) {
bd9b6a4e 3246 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb 3247 obj->base.size,
1ec9e26d 3248 flags & PIN_MAPPABLE ? "mappable" : "total",
0a9ae0d7 3249 gtt_max);
262de145 3250 return ERR_PTR(-E2BIG);
654fc607
CW
3251 }
3252
37e680a1 3253 ret = i915_gem_object_get_pages(obj);
6c085a72 3254 if (ret)
262de145 3255 return ERR_PTR(ret);
6c085a72 3256
fbdda6fb
CW
3257 i915_gem_object_pin_pages(obj);
3258
accfef2e 3259 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3260 if (IS_ERR(vma))
bc6bc15b 3261 goto err_unpin;
2f633156 3262
0a9ae0d7 3263search_free:
07fe0b12 3264 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3265 size, alignment,
31e5d7c6
DH
3266 obj->cache_level, 0, gtt_max,
3267 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3268 if (ret) {
f6cd1f15 3269 ret = i915_gem_evict_something(dev, vm, size, alignment,
1ec9e26d 3270 obj->cache_level, flags);
dc9dd7a2
CW
3271 if (ret == 0)
3272 goto search_free;
9731129c 3273
bc6bc15b 3274 goto err_free_vma;
673a394b 3275 }
2f633156 3276 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3277 obj->cache_level))) {
2f633156 3278 ret = -EINVAL;
bc6bc15b 3279 goto err_remove_node;
673a394b
EA
3280 }
3281
74163907 3282 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3283 if (ret)
bc6bc15b 3284 goto err_remove_node;
673a394b 3285
35c20a60 3286 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3287 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3288
4bd561b3
BW
3289 if (i915_is_ggtt(vm)) {
3290 bool mappable, fenceable;
a00b10c3 3291
49987099
DV
3292 fenceable = (vma->node.size == fence_size &&
3293 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3294
49987099
DV
3295 mappable = (vma->node.start + obj->base.size <=
3296 dev_priv->gtt.mappable_end);
a00b10c3 3297
5cacaac7 3298 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3299 }
75e9e915 3300
1ec9e26d 3301 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3302
1ec9e26d 3303 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3304 vma->bind_vma(vma, obj->cache_level,
3305 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3306
42d6ab48 3307 i915_gem_verify_gtt(dev);
262de145 3308 return vma;
2f633156 3309
bc6bc15b 3310err_remove_node:
6286ef9b 3311 drm_mm_remove_node(&vma->node);
bc6bc15b 3312err_free_vma:
2f633156 3313 i915_gem_vma_destroy(vma);
262de145 3314 vma = ERR_PTR(ret);
bc6bc15b 3315err_unpin:
2f633156 3316 i915_gem_object_unpin_pages(obj);
262de145 3317 return vma;
673a394b
EA
3318}
3319
000433b6 3320bool
2c22569b
CW
3321i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3322 bool force)
673a394b 3323{
673a394b
EA
3324 /* If we don't have a page list set up, then we're not pinned
3325 * to GPU, and we can ignore the cache flush because it'll happen
3326 * again at bind time.
3327 */
05394f39 3328 if (obj->pages == NULL)
000433b6 3329 return false;
673a394b 3330
769ce464
ID
3331 /*
3332 * Stolen memory is always coherent with the GPU as it is explicitly
3333 * marked as wc by the system, or the system is cache-coherent.
3334 */
3335 if (obj->stolen)
000433b6 3336 return false;
769ce464 3337
9c23f7fc
CW
3338 /* If the GPU is snooping the contents of the CPU cache,
3339 * we do not need to manually clear the CPU cache lines. However,
3340 * the caches are only snooped when the render cache is
3341 * flushed/invalidated. As we always have to emit invalidations
3342 * and flushes when moving into and out of the RENDER domain, correct
3343 * snooping behaviour occurs naturally as the result of our domain
3344 * tracking.
3345 */
2c22569b 3346 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3347 return false;
9c23f7fc 3348
1c5d22f7 3349 trace_i915_gem_object_clflush(obj);
9da3da66 3350 drm_clflush_sg(obj->pages);
000433b6
CW
3351
3352 return true;
e47c68e9
EA
3353}
3354
3355/** Flushes the GTT write domain for the object if it's dirty. */
3356static void
05394f39 3357i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3358{
1c5d22f7
CW
3359 uint32_t old_write_domain;
3360
05394f39 3361 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3362 return;
3363
63256ec5 3364 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3365 * to it immediately go to main memory as far as we know, so there's
3366 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3367 *
3368 * However, we do have to enforce the order so that all writes through
3369 * the GTT land before any writes to the device, such as updates to
3370 * the GATT itself.
e47c68e9 3371 */
63256ec5
CW
3372 wmb();
3373
05394f39
CW
3374 old_write_domain = obj->base.write_domain;
3375 obj->base.write_domain = 0;
1c5d22f7
CW
3376
3377 trace_i915_gem_object_change_domain(obj,
05394f39 3378 obj->base.read_domains,
1c5d22f7 3379 old_write_domain);
e47c68e9
EA
3380}
3381
3382/** Flushes the CPU write domain for the object if it's dirty. */
3383static void
2c22569b
CW
3384i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3385 bool force)
e47c68e9 3386{
1c5d22f7 3387 uint32_t old_write_domain;
e47c68e9 3388
05394f39 3389 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3390 return;
3391
000433b6
CW
3392 if (i915_gem_clflush_object(obj, force))
3393 i915_gem_chipset_flush(obj->base.dev);
3394
05394f39
CW
3395 old_write_domain = obj->base.write_domain;
3396 obj->base.write_domain = 0;
1c5d22f7
CW
3397
3398 trace_i915_gem_object_change_domain(obj,
05394f39 3399 obj->base.read_domains,
1c5d22f7 3400 old_write_domain);
e47c68e9
EA
3401}
3402
2ef7eeaa
EA
3403/**
3404 * Moves a single object to the GTT read, and possibly write domain.
3405 *
3406 * This function returns when the move is complete, including waiting on
3407 * flushes to occur.
3408 */
79e53945 3409int
2021746e 3410i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3411{
8325a09d 3412 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3413 uint32_t old_write_domain, old_read_domains;
e47c68e9 3414 int ret;
2ef7eeaa 3415
02354392 3416 /* Not valid to be called on unbound objects. */
9843877d 3417 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3418 return -EINVAL;
3419
8d7e3de1
CW
3420 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3421 return 0;
3422
0201f1ec 3423 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3424 if (ret)
3425 return ret;
3426
2c22569b 3427 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3428
d0a57789
CW
3429 /* Serialise direct access to this object with the barriers for
3430 * coherent writes from the GPU, by effectively invalidating the
3431 * GTT domain upon first access.
3432 */
3433 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3434 mb();
3435
05394f39
CW
3436 old_write_domain = obj->base.write_domain;
3437 old_read_domains = obj->base.read_domains;
1c5d22f7 3438
e47c68e9
EA
3439 /* It should now be out of any other write domains, and we can update
3440 * the domain values for our changes.
3441 */
05394f39
CW
3442 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3443 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3444 if (write) {
05394f39
CW
3445 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3446 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3447 obj->dirty = 1;
2ef7eeaa
EA
3448 }
3449
1c5d22f7
CW
3450 trace_i915_gem_object_change_domain(obj,
3451 old_read_domains,
3452 old_write_domain);
3453
8325a09d 3454 /* And bump the LRU for this access */
ca191b13 3455 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3456 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3457 if (vma)
3458 list_move_tail(&vma->mm_list,
3459 &dev_priv->gtt.base.inactive_list);
3460
3461 }
8325a09d 3462
e47c68e9
EA
3463 return 0;
3464}
3465
e4ffd173
CW
3466int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3467 enum i915_cache_level cache_level)
3468{
7bddb01f 3469 struct drm_device *dev = obj->base.dev;
3089c6f2 3470 struct i915_vma *vma;
e4ffd173
CW
3471 int ret;
3472
3473 if (obj->cache_level == cache_level)
3474 return 0;
3475
d7f46fc4 3476 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3477 DRM_DEBUG("can not change the cache level of pinned objects\n");
3478 return -EBUSY;
3479 }
3480
3089c6f2
BW
3481 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3482 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3483 ret = i915_vma_unbind(vma);
3089c6f2
BW
3484 if (ret)
3485 return ret;
3089c6f2 3486 }
42d6ab48
CW
3487 }
3488
3089c6f2 3489 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3490 ret = i915_gem_object_finish_gpu(obj);
3491 if (ret)
3492 return ret;
3493
3494 i915_gem_object_finish_gtt(obj);
3495
3496 /* Before SandyBridge, you could not use tiling or fence
3497 * registers with snooped memory, so relinquish any fences
3498 * currently pointing to our region in the aperture.
3499 */
42d6ab48 3500 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3501 ret = i915_gem_object_put_fence(obj);
3502 if (ret)
3503 return ret;
3504 }
3505
6f65e29a 3506 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3507 if (drm_mm_node_allocated(&vma->node))
3508 vma->bind_vma(vma, cache_level,
3509 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3510 }
3511
2c22569b
CW
3512 list_for_each_entry(vma, &obj->vma_list, vma_link)
3513 vma->node.color = cache_level;
3514 obj->cache_level = cache_level;
3515
3516 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3517 u32 old_read_domains, old_write_domain;
3518
3519 /* If we're coming from LLC cached, then we haven't
3520 * actually been tracking whether the data is in the
3521 * CPU cache or not, since we only allow one bit set
3522 * in obj->write_domain and have been skipping the clflushes.
3523 * Just set it to the CPU cache for now.
3524 */
3525 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3526
3527 old_read_domains = obj->base.read_domains;
3528 old_write_domain = obj->base.write_domain;
3529
3530 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3531 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3532
3533 trace_i915_gem_object_change_domain(obj,
3534 old_read_domains,
3535 old_write_domain);
3536 }
3537
42d6ab48 3538 i915_gem_verify_gtt(dev);
e4ffd173
CW
3539 return 0;
3540}
3541
199adf40
BW
3542int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3543 struct drm_file *file)
e6994aee 3544{
199adf40 3545 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3546 struct drm_i915_gem_object *obj;
3547 int ret;
3548
3549 ret = i915_mutex_lock_interruptible(dev);
3550 if (ret)
3551 return ret;
3552
3553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3554 if (&obj->base == NULL) {
3555 ret = -ENOENT;
3556 goto unlock;
3557 }
3558
651d794f
CW
3559 switch (obj->cache_level) {
3560 case I915_CACHE_LLC:
3561 case I915_CACHE_L3_LLC:
3562 args->caching = I915_CACHING_CACHED;
3563 break;
3564
4257d3ba
CW
3565 case I915_CACHE_WT:
3566 args->caching = I915_CACHING_DISPLAY;
3567 break;
3568
651d794f
CW
3569 default:
3570 args->caching = I915_CACHING_NONE;
3571 break;
3572 }
e6994aee
CW
3573
3574 drm_gem_object_unreference(&obj->base);
3575unlock:
3576 mutex_unlock(&dev->struct_mutex);
3577 return ret;
3578}
3579
199adf40
BW
3580int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3581 struct drm_file *file)
e6994aee 3582{
199adf40 3583 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3584 struct drm_i915_gem_object *obj;
3585 enum i915_cache_level level;
3586 int ret;
3587
199adf40
BW
3588 switch (args->caching) {
3589 case I915_CACHING_NONE:
e6994aee
CW
3590 level = I915_CACHE_NONE;
3591 break;
199adf40 3592 case I915_CACHING_CACHED:
e6994aee
CW
3593 level = I915_CACHE_LLC;
3594 break;
4257d3ba
CW
3595 case I915_CACHING_DISPLAY:
3596 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3597 break;
e6994aee
CW
3598 default:
3599 return -EINVAL;
3600 }
3601
3bc2913e
BW
3602 ret = i915_mutex_lock_interruptible(dev);
3603 if (ret)
3604 return ret;
3605
e6994aee
CW
3606 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3607 if (&obj->base == NULL) {
3608 ret = -ENOENT;
3609 goto unlock;
3610 }
3611
3612 ret = i915_gem_object_set_cache_level(obj, level);
3613
3614 drm_gem_object_unreference(&obj->base);
3615unlock:
3616 mutex_unlock(&dev->struct_mutex);
3617 return ret;
3618}
3619
cc98b413
CW
3620static bool is_pin_display(struct drm_i915_gem_object *obj)
3621{
3622 /* There are 3 sources that pin objects:
3623 * 1. The display engine (scanouts, sprites, cursors);
3624 * 2. Reservations for execbuffer;
3625 * 3. The user.
3626 *
3627 * We can ignore reservations as we hold the struct_mutex and
3628 * are only called outside of the reservation path. The user
3629 * can only increment pin_count once, and so if after
3630 * subtracting the potential reference by the user, any pin_count
3631 * remains, it must be due to another use by the display engine.
3632 */
d7f46fc4 3633 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
cc98b413
CW
3634}
3635
b9241ea3 3636/*
2da3b9b9
CW
3637 * Prepare buffer for display plane (scanout, cursors, etc).
3638 * Can be called from an uninterruptible phase (modesetting) and allows
3639 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3640 */
3641int
2da3b9b9
CW
3642i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3643 u32 alignment,
919926ae 3644 struct intel_ring_buffer *pipelined)
b9241ea3 3645{
2da3b9b9 3646 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3647 int ret;
3648
0be73284 3649 if (pipelined != obj->ring) {
2911a35b
BW
3650 ret = i915_gem_object_sync(obj, pipelined);
3651 if (ret)
b9241ea3
ZW
3652 return ret;
3653 }
3654
cc98b413
CW
3655 /* Mark the pin_display early so that we account for the
3656 * display coherency whilst setting up the cache domains.
3657 */
3658 obj->pin_display = true;
3659
a7ef0640
EA
3660 /* The display engine is not coherent with the LLC cache on gen6. As
3661 * a result, we make sure that the pinning that is about to occur is
3662 * done with uncached PTEs. This is lowest common denominator for all
3663 * chipsets.
3664 *
3665 * However for gen6+, we could do better by using the GFDT bit instead
3666 * of uncaching, which would allow us to flush all the LLC-cached data
3667 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3668 */
651d794f
CW
3669 ret = i915_gem_object_set_cache_level(obj,
3670 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3671 if (ret)
cc98b413 3672 goto err_unpin_display;
a7ef0640 3673
2da3b9b9
CW
3674 /* As the user may map the buffer once pinned in the display plane
3675 * (e.g. libkms for the bootup splash), we have to ensure that we
3676 * always use map_and_fenceable for all scanout buffers.
3677 */
1ec9e26d 3678 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3679 if (ret)
cc98b413 3680 goto err_unpin_display;
2da3b9b9 3681
2c22569b 3682 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3683
2da3b9b9 3684 old_write_domain = obj->base.write_domain;
05394f39 3685 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3686
3687 /* It should now be out of any other write domains, and we can update
3688 * the domain values for our changes.
3689 */
e5f1d962 3690 obj->base.write_domain = 0;
05394f39 3691 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3692
3693 trace_i915_gem_object_change_domain(obj,
3694 old_read_domains,
2da3b9b9 3695 old_write_domain);
b9241ea3
ZW
3696
3697 return 0;
cc98b413
CW
3698
3699err_unpin_display:
3700 obj->pin_display = is_pin_display(obj);
3701 return ret;
3702}
3703
3704void
3705i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3706{
d7f46fc4 3707 i915_gem_object_ggtt_unpin(obj);
cc98b413 3708 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3709}
3710
85345517 3711int
a8198eea 3712i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3713{
88241785
CW
3714 int ret;
3715
a8198eea 3716 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3717 return 0;
3718
0201f1ec 3719 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3720 if (ret)
3721 return ret;
3722
a8198eea
CW
3723 /* Ensure that we invalidate the GPU's caches and TLBs. */
3724 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3725 return 0;
85345517
CW
3726}
3727
e47c68e9
EA
3728/**
3729 * Moves a single object to the CPU read, and possibly write domain.
3730 *
3731 * This function returns when the move is complete, including waiting on
3732 * flushes to occur.
3733 */
dabdfe02 3734int
919926ae 3735i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3736{
1c5d22f7 3737 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3738 int ret;
3739
8d7e3de1
CW
3740 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3741 return 0;
3742
0201f1ec 3743 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3744 if (ret)
3745 return ret;
3746
e47c68e9 3747 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3748
05394f39
CW
3749 old_write_domain = obj->base.write_domain;
3750 old_read_domains = obj->base.read_domains;
1c5d22f7 3751
e47c68e9 3752 /* Flush the CPU cache if it's still invalid. */
05394f39 3753 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3754 i915_gem_clflush_object(obj, false);
2ef7eeaa 3755
05394f39 3756 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3757 }
3758
3759 /* It should now be out of any other write domains, and we can update
3760 * the domain values for our changes.
3761 */
05394f39 3762 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3763
3764 /* If we're writing through the CPU, then the GPU read domains will
3765 * need to be invalidated at next use.
3766 */
3767 if (write) {
05394f39
CW
3768 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3769 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3770 }
2ef7eeaa 3771
1c5d22f7
CW
3772 trace_i915_gem_object_change_domain(obj,
3773 old_read_domains,
3774 old_write_domain);
3775
2ef7eeaa
EA
3776 return 0;
3777}
3778
673a394b
EA
3779/* Throttle our rendering by waiting until the ring has completed our requests
3780 * emitted over 20 msec ago.
3781 *
b962442e
EA
3782 * Note that if we were to use the current jiffies each time around the loop,
3783 * we wouldn't escape the function with any frames outstanding if the time to
3784 * render a frame was over 20ms.
3785 *
673a394b
EA
3786 * This should get us reasonable parallelism between CPU and GPU but also
3787 * relatively low latency when blocking on a particular request to finish.
3788 */
40a5f0de 3789static int
f787a5f5 3790i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3791{
f787a5f5
CW
3792 struct drm_i915_private *dev_priv = dev->dev_private;
3793 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3794 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3795 struct drm_i915_gem_request *request;
3796 struct intel_ring_buffer *ring = NULL;
f69061be 3797 unsigned reset_counter;
f787a5f5
CW
3798 u32 seqno = 0;
3799 int ret;
93533c29 3800
308887aa
DV
3801 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3802 if (ret)
3803 return ret;
3804
3805 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3806 if (ret)
3807 return ret;
e110e8d6 3808
1c25595f 3809 spin_lock(&file_priv->mm.lock);
f787a5f5 3810 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3811 if (time_after_eq(request->emitted_jiffies, recent_enough))
3812 break;
40a5f0de 3813
f787a5f5
CW
3814 ring = request->ring;
3815 seqno = request->seqno;
b962442e 3816 }
f69061be 3817 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3818 spin_unlock(&file_priv->mm.lock);
40a5f0de 3819
f787a5f5
CW
3820 if (seqno == 0)
3821 return 0;
2bc43b5c 3822
b29c19b6 3823 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3824 if (ret == 0)
3825 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3826
3827 return ret;
3828}
3829
673a394b 3830int
05394f39 3831i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3832 struct i915_address_space *vm,
05394f39 3833 uint32_t alignment,
1ec9e26d 3834 unsigned flags)
673a394b 3835{
07fe0b12 3836 struct i915_vma *vma;
673a394b
EA
3837 int ret;
3838
bf3d149b 3839 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3840 return -EINVAL;
07fe0b12
BW
3841
3842 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 3843 if (vma) {
d7f46fc4
BW
3844 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3845 return -EBUSY;
3846
07fe0b12
BW
3847 if ((alignment &&
3848 vma->node.start & (alignment - 1)) ||
1ec9e26d 3849 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
d7f46fc4 3850 WARN(vma->pin_count,
ae7d49d8 3851 "bo is already pinned with incorrect alignment:"
f343c5f6 3852 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3853 " obj->map_and_fenceable=%d\n",
07fe0b12 3854 i915_gem_obj_offset(obj, vm), alignment,
1ec9e26d 3855 flags & PIN_MAPPABLE,
05394f39 3856 obj->map_and_fenceable);
07fe0b12 3857 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3858 if (ret)
3859 return ret;
8ea99c92
DV
3860
3861 vma = NULL;
ac0c6b5a
CW
3862 }
3863 }
3864
8ea99c92 3865 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
3866 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3867 if (IS_ERR(vma))
3868 return PTR_ERR(vma);
22c344e9 3869 }
76446cac 3870
8ea99c92
DV
3871 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3872 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 3873
8ea99c92 3874 vma->pin_count++;
1ec9e26d
DV
3875 if (flags & PIN_MAPPABLE)
3876 obj->pin_mappable |= true;
673a394b
EA
3877
3878 return 0;
3879}
3880
3881void
d7f46fc4 3882i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3883{
d7f46fc4 3884 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3885
d7f46fc4
BW
3886 BUG_ON(!vma);
3887 BUG_ON(vma->pin_count == 0);
3888 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3889
3890 if (--vma->pin_count == 0)
6299f992 3891 obj->pin_mappable = false;
673a394b
EA
3892}
3893
3894int
3895i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3896 struct drm_file *file)
673a394b
EA
3897{
3898 struct drm_i915_gem_pin *args = data;
05394f39 3899 struct drm_i915_gem_object *obj;
673a394b
EA
3900 int ret;
3901
02f6bccc
DV
3902 if (INTEL_INFO(dev)->gen >= 6)
3903 return -ENODEV;
3904
1d7cfea1
CW
3905 ret = i915_mutex_lock_interruptible(dev);
3906 if (ret)
3907 return ret;
673a394b 3908
05394f39 3909 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3910 if (&obj->base == NULL) {
1d7cfea1
CW
3911 ret = -ENOENT;
3912 goto unlock;
673a394b 3913 }
673a394b 3914
05394f39 3915 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 3916 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 3917 ret = -EFAULT;
1d7cfea1 3918 goto out;
3ef94daa
CW
3919 }
3920
05394f39 3921 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 3922 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 3923 args->handle);
1d7cfea1
CW
3924 ret = -EINVAL;
3925 goto out;
79e53945
JB
3926 }
3927
aa5f8021
DV
3928 if (obj->user_pin_count == ULONG_MAX) {
3929 ret = -EBUSY;
3930 goto out;
3931 }
3932
93be8788 3933 if (obj->user_pin_count == 0) {
1ec9e26d 3934 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
3935 if (ret)
3936 goto out;
673a394b
EA
3937 }
3938
93be8788
CW
3939 obj->user_pin_count++;
3940 obj->pin_filp = file;
3941
f343c5f6 3942 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3943out:
05394f39 3944 drm_gem_object_unreference(&obj->base);
1d7cfea1 3945unlock:
673a394b 3946 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3947 return ret;
673a394b
EA
3948}
3949
3950int
3951i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3952 struct drm_file *file)
673a394b
EA
3953{
3954 struct drm_i915_gem_pin *args = data;
05394f39 3955 struct drm_i915_gem_object *obj;
76c1dec1 3956 int ret;
673a394b 3957
1d7cfea1
CW
3958 ret = i915_mutex_lock_interruptible(dev);
3959 if (ret)
3960 return ret;
673a394b 3961
05394f39 3962 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3963 if (&obj->base == NULL) {
1d7cfea1
CW
3964 ret = -ENOENT;
3965 goto unlock;
673a394b 3966 }
76c1dec1 3967
05394f39 3968 if (obj->pin_filp != file) {
bd9b6a4e 3969 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 3970 args->handle);
1d7cfea1
CW
3971 ret = -EINVAL;
3972 goto out;
79e53945 3973 }
05394f39
CW
3974 obj->user_pin_count--;
3975 if (obj->user_pin_count == 0) {
3976 obj->pin_filp = NULL;
d7f46fc4 3977 i915_gem_object_ggtt_unpin(obj);
79e53945 3978 }
673a394b 3979
1d7cfea1 3980out:
05394f39 3981 drm_gem_object_unreference(&obj->base);
1d7cfea1 3982unlock:
673a394b 3983 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3984 return ret;
673a394b
EA
3985}
3986
3987int
3988i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3989 struct drm_file *file)
673a394b
EA
3990{
3991 struct drm_i915_gem_busy *args = data;
05394f39 3992 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3993 int ret;
3994
76c1dec1 3995 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3996 if (ret)
76c1dec1 3997 return ret;
673a394b 3998
05394f39 3999 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4000 if (&obj->base == NULL) {
1d7cfea1
CW
4001 ret = -ENOENT;
4002 goto unlock;
673a394b 4003 }
d1b851fc 4004
0be555b6
CW
4005 /* Count all active objects as busy, even if they are currently not used
4006 * by the gpu. Users of this interface expect objects to eventually
4007 * become non-busy without any further actions, therefore emit any
4008 * necessary flushes here.
c4de0a5d 4009 */
30dfebf3 4010 ret = i915_gem_object_flush_active(obj);
0be555b6 4011
30dfebf3 4012 args->busy = obj->active;
e9808edd
CW
4013 if (obj->ring) {
4014 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4015 args->busy |= intel_ring_flag(obj->ring) << 16;
4016 }
673a394b 4017
05394f39 4018 drm_gem_object_unreference(&obj->base);
1d7cfea1 4019unlock:
673a394b 4020 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4021 return ret;
673a394b
EA
4022}
4023
4024int
4025i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4026 struct drm_file *file_priv)
4027{
0206e353 4028 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4029}
4030
3ef94daa
CW
4031int
4032i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4033 struct drm_file *file_priv)
4034{
4035 struct drm_i915_gem_madvise *args = data;
05394f39 4036 struct drm_i915_gem_object *obj;
76c1dec1 4037 int ret;
3ef94daa
CW
4038
4039 switch (args->madv) {
4040 case I915_MADV_DONTNEED:
4041 case I915_MADV_WILLNEED:
4042 break;
4043 default:
4044 return -EINVAL;
4045 }
4046
1d7cfea1
CW
4047 ret = i915_mutex_lock_interruptible(dev);
4048 if (ret)
4049 return ret;
4050
05394f39 4051 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4052 if (&obj->base == NULL) {
1d7cfea1
CW
4053 ret = -ENOENT;
4054 goto unlock;
3ef94daa 4055 }
3ef94daa 4056
d7f46fc4 4057 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4058 ret = -EINVAL;
4059 goto out;
3ef94daa
CW
4060 }
4061
05394f39
CW
4062 if (obj->madv != __I915_MADV_PURGED)
4063 obj->madv = args->madv;
3ef94daa 4064
6c085a72
CW
4065 /* if the object is no longer attached, discard its backing storage */
4066 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4067 i915_gem_object_truncate(obj);
4068
05394f39 4069 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4070
1d7cfea1 4071out:
05394f39 4072 drm_gem_object_unreference(&obj->base);
1d7cfea1 4073unlock:
3ef94daa 4074 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4075 return ret;
3ef94daa
CW
4076}
4077
37e680a1
CW
4078void i915_gem_object_init(struct drm_i915_gem_object *obj,
4079 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4080{
35c20a60 4081 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4082 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4083 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4084 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4085
37e680a1
CW
4086 obj->ops = ops;
4087
0327d6ba
CW
4088 obj->fence_reg = I915_FENCE_REG_NONE;
4089 obj->madv = I915_MADV_WILLNEED;
4090 /* Avoid an unnecessary call to unbind on the first bind. */
4091 obj->map_and_fenceable = true;
4092
4093 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4094}
4095
37e680a1
CW
4096static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4097 .get_pages = i915_gem_object_get_pages_gtt,
4098 .put_pages = i915_gem_object_put_pages_gtt,
4099};
4100
05394f39
CW
4101struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4102 size_t size)
ac52bc56 4103{
c397b908 4104 struct drm_i915_gem_object *obj;
5949eac4 4105 struct address_space *mapping;
1a240d4d 4106 gfp_t mask;
ac52bc56 4107
42dcedd4 4108 obj = i915_gem_object_alloc(dev);
c397b908
DV
4109 if (obj == NULL)
4110 return NULL;
673a394b 4111
c397b908 4112 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4113 i915_gem_object_free(obj);
c397b908
DV
4114 return NULL;
4115 }
673a394b 4116
bed1ea95
CW
4117 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4118 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4119 /* 965gm cannot relocate objects above 4GiB. */
4120 mask &= ~__GFP_HIGHMEM;
4121 mask |= __GFP_DMA32;
4122 }
4123
496ad9aa 4124 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4125 mapping_set_gfp_mask(mapping, mask);
5949eac4 4126
37e680a1 4127 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4128
c397b908
DV
4129 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4130 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4131
3d29b842
ED
4132 if (HAS_LLC(dev)) {
4133 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4134 * cache) for about a 10% performance improvement
4135 * compared to uncached. Graphics requests other than
4136 * display scanout are coherent with the CPU in
4137 * accessing this cache. This means in this mode we
4138 * don't need to clflush on the CPU side, and on the
4139 * GPU side we only need to flush internal caches to
4140 * get data visible to the CPU.
4141 *
4142 * However, we maintain the display planes as UC, and so
4143 * need to rebind when first used as such.
4144 */
4145 obj->cache_level = I915_CACHE_LLC;
4146 } else
4147 obj->cache_level = I915_CACHE_NONE;
4148
d861e338
DV
4149 trace_i915_gem_object_create(obj);
4150
05394f39 4151 return obj;
c397b908
DV
4152}
4153
1488fc08 4154void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4155{
1488fc08 4156 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4157 struct drm_device *dev = obj->base.dev;
be72615b 4158 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4159 struct i915_vma *vma, *next;
673a394b 4160
f65c9168
PZ
4161 intel_runtime_pm_get(dev_priv);
4162
26e12f89
CW
4163 trace_i915_gem_object_destroy(obj);
4164
1488fc08
CW
4165 if (obj->phys_obj)
4166 i915_gem_detach_phys_object(dev, obj);
4167
07fe0b12 4168 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4169 int ret;
4170
4171 vma->pin_count = 0;
4172 ret = i915_vma_unbind(vma);
07fe0b12
BW
4173 if (WARN_ON(ret == -ERESTARTSYS)) {
4174 bool was_interruptible;
1488fc08 4175
07fe0b12
BW
4176 was_interruptible = dev_priv->mm.interruptible;
4177 dev_priv->mm.interruptible = false;
1488fc08 4178
07fe0b12 4179 WARN_ON(i915_vma_unbind(vma));
1488fc08 4180
07fe0b12
BW
4181 dev_priv->mm.interruptible = was_interruptible;
4182 }
1488fc08
CW
4183 }
4184
1d64ae71
BW
4185 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4186 * before progressing. */
4187 if (obj->stolen)
4188 i915_gem_object_unpin_pages(obj);
4189
401c29f6
BW
4190 if (WARN_ON(obj->pages_pin_count))
4191 obj->pages_pin_count = 0;
37e680a1 4192 i915_gem_object_put_pages(obj);
d8cb5086 4193 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4194 i915_gem_object_release_stolen(obj);
de151cf6 4195
9da3da66
CW
4196 BUG_ON(obj->pages);
4197
2f745ad3
CW
4198 if (obj->base.import_attach)
4199 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4200
05394f39
CW
4201 drm_gem_object_release(&obj->base);
4202 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4203
05394f39 4204 kfree(obj->bit_17);
42dcedd4 4205 i915_gem_object_free(obj);
f65c9168
PZ
4206
4207 intel_runtime_pm_put(dev_priv);
673a394b
EA
4208}
4209
e656a6cb 4210struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4211 struct i915_address_space *vm)
e656a6cb
DV
4212{
4213 struct i915_vma *vma;
4214 list_for_each_entry(vma, &obj->vma_list, vma_link)
4215 if (vma->vm == vm)
4216 return vma;
4217
4218 return NULL;
4219}
4220
2f633156
BW
4221void i915_gem_vma_destroy(struct i915_vma *vma)
4222{
4223 WARN_ON(vma->node.allocated);
aaa05667
CW
4224
4225 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4226 if (!list_empty(&vma->exec_list))
4227 return;
4228
8b9c2b94 4229 list_del(&vma->vma_link);
b93dab6e 4230
2f633156
BW
4231 kfree(vma);
4232}
4233
29105ccc 4234int
45c5f202 4235i915_gem_suspend(struct drm_device *dev)
29105ccc
CW
4236{
4237 drm_i915_private_t *dev_priv = dev->dev_private;
45c5f202 4238 int ret = 0;
28dfe52a 4239
45c5f202 4240 mutex_lock(&dev->struct_mutex);
f7403347 4241 if (dev_priv->ums.mm_suspended)
45c5f202 4242 goto err;
28dfe52a 4243
b2da9fe5 4244 ret = i915_gpu_idle(dev);
f7403347 4245 if (ret)
45c5f202 4246 goto err;
f7403347 4247
b2da9fe5 4248 i915_gem_retire_requests(dev);
673a394b 4249
29105ccc 4250 /* Under UMS, be paranoid and evict. */
a39d7efc 4251 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4252 i915_gem_evict_everything(dev);
29105ccc 4253
29105ccc 4254 i915_kernel_lost_context(dev);
6dbe2772 4255 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4256
45c5f202
CW
4257 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4258 * We need to replace this with a semaphore, or something.
4259 * And not confound ums.mm_suspended!
4260 */
4261 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4262 DRIVER_MODESET);
4263 mutex_unlock(&dev->struct_mutex);
4264
4265 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4266 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4267 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4268
673a394b 4269 return 0;
45c5f202
CW
4270
4271err:
4272 mutex_unlock(&dev->struct_mutex);
4273 return ret;
673a394b
EA
4274}
4275
c3787e2e 4276int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4277{
c3787e2e 4278 struct drm_device *dev = ring->dev;
b9524a1e 4279 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4280 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4281 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4282 int i, ret;
b9524a1e 4283
040d2baa 4284 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4285 return 0;
b9524a1e 4286
c3787e2e
BW
4287 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4288 if (ret)
4289 return ret;
b9524a1e 4290
c3787e2e
BW
4291 /*
4292 * Note: We do not worry about the concurrent register cacheline hang
4293 * here because no other code should access these registers other than
4294 * at initialization time.
4295 */
b9524a1e 4296 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4297 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4298 intel_ring_emit(ring, reg_base + i);
4299 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4300 }
4301
c3787e2e 4302 intel_ring_advance(ring);
b9524a1e 4303
c3787e2e 4304 return ret;
b9524a1e
BW
4305}
4306
f691e2f4
DV
4307void i915_gem_init_swizzling(struct drm_device *dev)
4308{
4309 drm_i915_private_t *dev_priv = dev->dev_private;
4310
11782b02 4311 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4312 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4313 return;
4314
4315 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4316 DISP_TILE_SURFACE_SWIZZLING);
4317
11782b02
DV
4318 if (IS_GEN5(dev))
4319 return;
4320
f691e2f4
DV
4321 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4322 if (IS_GEN6(dev))
6b26c86d 4323 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4324 else if (IS_GEN7(dev))
6b26c86d 4325 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4326 else if (IS_GEN8(dev))
4327 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4328 else
4329 BUG();
f691e2f4 4330}
e21af88d 4331
67b1b571
CW
4332static bool
4333intel_enable_blt(struct drm_device *dev)
4334{
4335 if (!HAS_BLT(dev))
4336 return false;
4337
4338 /* The blitter was dysfunctional on early prototypes */
4339 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4340 DRM_INFO("BLT not supported on this pre-production hardware;"
4341 " graphics performance will be degraded.\n");
4342 return false;
4343 }
4344
4345 return true;
4346}
4347
4fc7c971 4348static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4349{
4fc7c971 4350 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4351 int ret;
68f95ba9 4352
5c1143bb 4353 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4354 if (ret)
b6913e4b 4355 return ret;
68f95ba9
CW
4356
4357 if (HAS_BSD(dev)) {
5c1143bb 4358 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4359 if (ret)
4360 goto cleanup_render_ring;
d1b851fc 4361 }
68f95ba9 4362
67b1b571 4363 if (intel_enable_blt(dev)) {
549f7365
CW
4364 ret = intel_init_blt_ring_buffer(dev);
4365 if (ret)
4366 goto cleanup_bsd_ring;
4367 }
4368
9a8a2213
BW
4369 if (HAS_VEBOX(dev)) {
4370 ret = intel_init_vebox_ring_buffer(dev);
4371 if (ret)
4372 goto cleanup_blt_ring;
4373 }
4374
4375
99433931 4376 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4377 if (ret)
9a8a2213 4378 goto cleanup_vebox_ring;
4fc7c971
BW
4379
4380 return 0;
4381
9a8a2213
BW
4382cleanup_vebox_ring:
4383 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4384cleanup_blt_ring:
4385 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4386cleanup_bsd_ring:
4387 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4388cleanup_render_ring:
4389 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4390
4391 return ret;
4392}
4393
4394int
4395i915_gem_init_hw(struct drm_device *dev)
4396{
4397 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4398 int ret, i;
4fc7c971
BW
4399
4400 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4401 return -EIO;
4402
59124506 4403 if (dev_priv->ellc_size)
05e21cc4 4404 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4405
0bf21347
VS
4406 if (IS_HASWELL(dev))
4407 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4408 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4409
88a2b2a3 4410 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4411 if (IS_IVYBRIDGE(dev)) {
4412 u32 temp = I915_READ(GEN7_MSG_CTL);
4413 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4414 I915_WRITE(GEN7_MSG_CTL, temp);
4415 } else if (INTEL_INFO(dev)->gen >= 7) {
4416 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4417 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4418 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4419 }
88a2b2a3
BW
4420 }
4421
4fc7c971
BW
4422 i915_gem_init_swizzling(dev);
4423
4424 ret = i915_gem_init_rings(dev);
99433931
MK
4425 if (ret)
4426 return ret;
4427
c3787e2e
BW
4428 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4429 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4430
254f965c 4431 /*
2fa48d8d
BW
4432 * XXX: Contexts should only be initialized once. Doing a switch to the
4433 * default context switch however is something we'd like to do after
4434 * reset or thaw (the latter may not actually be necessary for HW, but
4435 * goes with our code better). Context switching requires rings (for
4436 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4437 */
2fa48d8d 4438 ret = i915_gem_context_enable(dev_priv);
8245be31 4439 if (ret) {
2fa48d8d
BW
4440 DRM_ERROR("Context enable failed %d\n", ret);
4441 goto err_out;
b7c36d25 4442 }
e21af88d 4443
68f95ba9 4444 return 0;
2fa48d8d
BW
4445
4446err_out:
4447 i915_gem_cleanup_ringbuffer(dev);
4448 return ret;
8187a2b7
ZN
4449}
4450
1070a42b
CW
4451int i915_gem_init(struct drm_device *dev)
4452{
4453 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4454 int ret;
4455
1070a42b 4456 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4457
4458 if (IS_VALLEYVIEW(dev)) {
4459 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4460 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4461 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4462 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4463 }
4464
d7e5008f 4465 i915_gem_init_global_gtt(dev);
d62b4892 4466
2fa48d8d 4467 ret = i915_gem_context_init(dev);
e3848694
MK
4468 if (ret) {
4469 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4470 return ret;
e3848694 4471 }
2fa48d8d 4472
1070a42b
CW
4473 ret = i915_gem_init_hw(dev);
4474 mutex_unlock(&dev->struct_mutex);
4475 if (ret) {
bdf4fd7e 4476 WARN_ON(dev_priv->mm.aliasing_ppgtt);
2fa48d8d 4477 i915_gem_context_fini(dev);
c39538a8 4478 drm_mm_takedown(&dev_priv->gtt.base.mm);
1070a42b
CW
4479 return ret;
4480 }
4481
53ca26ca
DV
4482 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4483 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4484 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4485 return 0;
4486}
4487
8187a2b7
ZN
4488void
4489i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4490{
4491 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4492 struct intel_ring_buffer *ring;
1ec14ad3 4493 int i;
8187a2b7 4494
b4519513
CW
4495 for_each_ring(ring, dev_priv, i)
4496 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4497}
4498
673a394b
EA
4499int
4500i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4501 struct drm_file *file_priv)
4502{
db1b76ca 4503 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4504 int ret;
673a394b 4505
79e53945
JB
4506 if (drm_core_check_feature(dev, DRIVER_MODESET))
4507 return 0;
4508
1f83fee0 4509 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4510 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4511 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4512 }
4513
673a394b 4514 mutex_lock(&dev->struct_mutex);
db1b76ca 4515 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4516
f691e2f4 4517 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4518 if (ret != 0) {
4519 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4520 return ret;
d816f6ac 4521 }
9bb2d6f9 4522
5cef07e1 4523 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4524 mutex_unlock(&dev->struct_mutex);
dbb19d30 4525
5f35308b
CW
4526 ret = drm_irq_install(dev);
4527 if (ret)
4528 goto cleanup_ringbuffer;
dbb19d30 4529
673a394b 4530 return 0;
5f35308b
CW
4531
4532cleanup_ringbuffer:
4533 mutex_lock(&dev->struct_mutex);
4534 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4535 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4536 mutex_unlock(&dev->struct_mutex);
4537
4538 return ret;
673a394b
EA
4539}
4540
4541int
4542i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4543 struct drm_file *file_priv)
4544{
79e53945
JB
4545 if (drm_core_check_feature(dev, DRIVER_MODESET))
4546 return 0;
4547
dbb19d30 4548 drm_irq_uninstall(dev);
db1b76ca 4549
45c5f202 4550 return i915_gem_suspend(dev);
673a394b
EA
4551}
4552
4553void
4554i915_gem_lastclose(struct drm_device *dev)
4555{
4556 int ret;
673a394b 4557
e806b495
EA
4558 if (drm_core_check_feature(dev, DRIVER_MODESET))
4559 return;
4560
45c5f202 4561 ret = i915_gem_suspend(dev);
6dbe2772
KP
4562 if (ret)
4563 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4564}
4565
64193406
CW
4566static void
4567init_ring_lists(struct intel_ring_buffer *ring)
4568{
4569 INIT_LIST_HEAD(&ring->active_list);
4570 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4571}
4572
7e0d96bc
BW
4573void i915_init_vm(struct drm_i915_private *dev_priv,
4574 struct i915_address_space *vm)
fc8c067e 4575{
7e0d96bc
BW
4576 if (!i915_is_ggtt(vm))
4577 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4578 vm->dev = dev_priv->dev;
4579 INIT_LIST_HEAD(&vm->active_list);
4580 INIT_LIST_HEAD(&vm->inactive_list);
4581 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4582 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4583}
4584
673a394b
EA
4585void
4586i915_gem_load(struct drm_device *dev)
4587{
4588 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4589 int i;
4590
4591 dev_priv->slab =
4592 kmem_cache_create("i915_gem_object",
4593 sizeof(struct drm_i915_gem_object), 0,
4594 SLAB_HWCACHE_ALIGN,
4595 NULL);
673a394b 4596
fc8c067e
BW
4597 INIT_LIST_HEAD(&dev_priv->vm_list);
4598 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4599
a33afea5 4600 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4601 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4602 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4603 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4604 for (i = 0; i < I915_NUM_RINGS; i++)
4605 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4606 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4607 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4608 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4609 i915_gem_retire_work_handler);
b29c19b6
CW
4610 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4611 i915_gem_idle_work_handler);
1f83fee0 4612 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4613
94400120
DA
4614 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4615 if (IS_GEN3(dev)) {
50743298
DV
4616 I915_WRITE(MI_ARB_STATE,
4617 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4618 }
4619
72bfa19c
CW
4620 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4621
de151cf6 4622 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4623 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4624 dev_priv->fence_reg_start = 3;
de151cf6 4625
42b5aeab
VS
4626 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4627 dev_priv->num_fence_regs = 32;
4628 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4629 dev_priv->num_fence_regs = 16;
4630 else
4631 dev_priv->num_fence_regs = 8;
4632
b5aa8a0f 4633 /* Initialize fence registers to zero */
19b2dbde
CW
4634 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4635 i915_gem_restore_fences(dev);
10ed13e4 4636
673a394b 4637 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4638 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4639
ce453d81
CW
4640 dev_priv->mm.interruptible = true;
4641
7dc19d5a
DC
4642 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4643 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4644 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4645 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4646}
71acb5eb
DA
4647
4648/*
4649 * Create a physically contiguous memory object for this object
4650 * e.g. for cursor + overlay regs
4651 */
995b6762
CW
4652static int i915_gem_init_phys_object(struct drm_device *dev,
4653 int id, int size, int align)
71acb5eb
DA
4654{
4655 drm_i915_private_t *dev_priv = dev->dev_private;
4656 struct drm_i915_gem_phys_object *phys_obj;
4657 int ret;
4658
4659 if (dev_priv->mm.phys_objs[id - 1] || !size)
4660 return 0;
4661
b14c5679 4662 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4663 if (!phys_obj)
4664 return -ENOMEM;
4665
4666 phys_obj->id = id;
4667
6eeefaf3 4668 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4669 if (!phys_obj->handle) {
4670 ret = -ENOMEM;
4671 goto kfree_obj;
4672 }
4673#ifdef CONFIG_X86
4674 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4675#endif
4676
4677 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4678
4679 return 0;
4680kfree_obj:
9a298b2a 4681 kfree(phys_obj);
71acb5eb
DA
4682 return ret;
4683}
4684
995b6762 4685static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4686{
4687 drm_i915_private_t *dev_priv = dev->dev_private;
4688 struct drm_i915_gem_phys_object *phys_obj;
4689
4690 if (!dev_priv->mm.phys_objs[id - 1])
4691 return;
4692
4693 phys_obj = dev_priv->mm.phys_objs[id - 1];
4694 if (phys_obj->cur_obj) {
4695 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4696 }
4697
4698#ifdef CONFIG_X86
4699 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4700#endif
4701 drm_pci_free(dev, phys_obj->handle);
4702 kfree(phys_obj);
4703 dev_priv->mm.phys_objs[id - 1] = NULL;
4704}
4705
4706void i915_gem_free_all_phys_object(struct drm_device *dev)
4707{
4708 int i;
4709
260883c8 4710 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4711 i915_gem_free_phys_object(dev, i);
4712}
4713
4714void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4715 struct drm_i915_gem_object *obj)
71acb5eb 4716{
496ad9aa 4717 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4718 char *vaddr;
71acb5eb 4719 int i;
71acb5eb
DA
4720 int page_count;
4721
05394f39 4722 if (!obj->phys_obj)
71acb5eb 4723 return;
05394f39 4724 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4725
05394f39 4726 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4727 for (i = 0; i < page_count; i++) {
5949eac4 4728 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4729 if (!IS_ERR(page)) {
4730 char *dst = kmap_atomic(page);
4731 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4732 kunmap_atomic(dst);
4733
4734 drm_clflush_pages(&page, 1);
4735
4736 set_page_dirty(page);
4737 mark_page_accessed(page);
4738 page_cache_release(page);
4739 }
71acb5eb 4740 }
e76e9aeb 4741 i915_gem_chipset_flush(dev);
d78b47b9 4742
05394f39
CW
4743 obj->phys_obj->cur_obj = NULL;
4744 obj->phys_obj = NULL;
71acb5eb
DA
4745}
4746
4747int
4748i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4749 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4750 int id,
4751 int align)
71acb5eb 4752{
496ad9aa 4753 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4754 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4755 int ret = 0;
4756 int page_count;
4757 int i;
4758
4759 if (id > I915_MAX_PHYS_OBJECT)
4760 return -EINVAL;
4761
05394f39
CW
4762 if (obj->phys_obj) {
4763 if (obj->phys_obj->id == id)
71acb5eb
DA
4764 return 0;
4765 i915_gem_detach_phys_object(dev, obj);
4766 }
4767
71acb5eb
DA
4768 /* create a new object */
4769 if (!dev_priv->mm.phys_objs[id - 1]) {
4770 ret = i915_gem_init_phys_object(dev, id,
05394f39 4771 obj->base.size, align);
71acb5eb 4772 if (ret) {
05394f39
CW
4773 DRM_ERROR("failed to init phys object %d size: %zu\n",
4774 id, obj->base.size);
e5281ccd 4775 return ret;
71acb5eb
DA
4776 }
4777 }
4778
4779 /* bind to the object */
05394f39
CW
4780 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4781 obj->phys_obj->cur_obj = obj;
71acb5eb 4782
05394f39 4783 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4784
4785 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4786 struct page *page;
4787 char *dst, *src;
4788
5949eac4 4789 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4790 if (IS_ERR(page))
4791 return PTR_ERR(page);
71acb5eb 4792
ff75b9bc 4793 src = kmap_atomic(page);
05394f39 4794 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4795 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4796 kunmap_atomic(src);
71acb5eb 4797
e5281ccd
CW
4798 mark_page_accessed(page);
4799 page_cache_release(page);
4800 }
d78b47b9 4801
71acb5eb 4802 return 0;
71acb5eb
DA
4803}
4804
4805static int
05394f39
CW
4806i915_gem_phys_pwrite(struct drm_device *dev,
4807 struct drm_i915_gem_object *obj,
71acb5eb
DA
4808 struct drm_i915_gem_pwrite *args,
4809 struct drm_file *file_priv)
4810{
05394f39 4811 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4812 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4813
b47b30cc
CW
4814 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4815 unsigned long unwritten;
4816
4817 /* The physical object once assigned is fixed for the lifetime
4818 * of the obj, so we can safely drop the lock and continue
4819 * to access vaddr.
4820 */
4821 mutex_unlock(&dev->struct_mutex);
4822 unwritten = copy_from_user(vaddr, user_data, args->size);
4823 mutex_lock(&dev->struct_mutex);
4824 if (unwritten)
4825 return -EFAULT;
4826 }
71acb5eb 4827
e76e9aeb 4828 i915_gem_chipset_flush(dev);
71acb5eb
DA
4829 return 0;
4830}
b962442e 4831
f787a5f5 4832void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4833{
f787a5f5 4834 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4835
b29c19b6
CW
4836 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4837
b962442e
EA
4838 /* Clean up our request list when the client is going away, so that
4839 * later retire_requests won't dereference our soon-to-be-gone
4840 * file_priv.
4841 */
1c25595f 4842 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4843 while (!list_empty(&file_priv->mm.request_list)) {
4844 struct drm_i915_gem_request *request;
4845
4846 request = list_first_entry(&file_priv->mm.request_list,
4847 struct drm_i915_gem_request,
4848 client_list);
4849 list_del(&request->client_list);
4850 request->file_priv = NULL;
4851 }
1c25595f 4852 spin_unlock(&file_priv->mm.lock);
b962442e 4853}
31169714 4854
b29c19b6
CW
4855static void
4856i915_gem_file_idle_work_handler(struct work_struct *work)
4857{
4858 struct drm_i915_file_private *file_priv =
4859 container_of(work, typeof(*file_priv), mm.idle_work.work);
4860
4861 atomic_set(&file_priv->rps_wait_boost, false);
4862}
4863
4864int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4865{
4866 struct drm_i915_file_private *file_priv;
e422b888 4867 int ret;
b29c19b6
CW
4868
4869 DRM_DEBUG_DRIVER("\n");
4870
4871 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4872 if (!file_priv)
4873 return -ENOMEM;
4874
4875 file->driver_priv = file_priv;
4876 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4877 file_priv->file = file;
b29c19b6
CW
4878
4879 spin_lock_init(&file_priv->mm.lock);
4880 INIT_LIST_HEAD(&file_priv->mm.request_list);
4881 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4882 i915_gem_file_idle_work_handler);
4883
e422b888
BW
4884 ret = i915_gem_context_open(dev, file);
4885 if (ret)
4886 kfree(file_priv);
b29c19b6 4887
e422b888 4888 return ret;
b29c19b6
CW
4889}
4890
5774506f
CW
4891static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4892{
4893 if (!mutex_is_locked(mutex))
4894 return false;
4895
4896#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4897 return mutex->owner == task;
4898#else
4899 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4900 return false;
4901#endif
4902}
4903
7dc19d5a
DC
4904static unsigned long
4905i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4906{
17250b71
CW
4907 struct drm_i915_private *dev_priv =
4908 container_of(shrinker,
4909 struct drm_i915_private,
4910 mm.inactive_shrinker);
4911 struct drm_device *dev = dev_priv->dev;
6c085a72 4912 struct drm_i915_gem_object *obj;
5774506f 4913 bool unlock = true;
7dc19d5a 4914 unsigned long count;
17250b71 4915
5774506f
CW
4916 if (!mutex_trylock(&dev->struct_mutex)) {
4917 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4918 return 0;
5774506f 4919
677feac2 4920 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4921 return 0;
677feac2 4922
5774506f
CW
4923 unlock = false;
4924 }
31169714 4925
7dc19d5a 4926 count = 0;
35c20a60 4927 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4928 if (obj->pages_pin_count == 0)
7dc19d5a 4929 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4930
4931 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4932 if (obj->active)
4933 continue;
4934
d7f46fc4 4935 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
7dc19d5a 4936 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4937 }
17250b71 4938
5774506f
CW
4939 if (unlock)
4940 mutex_unlock(&dev->struct_mutex);
d9973b43 4941
7dc19d5a 4942 return count;
31169714 4943}
a70a3148
BW
4944
4945/* All the new VM stuff */
4946unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4947 struct i915_address_space *vm)
4948{
4949 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4950 struct i915_vma *vma;
4951
6f425321
BW
4952 if (!dev_priv->mm.aliasing_ppgtt ||
4953 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4954 vm = &dev_priv->gtt.base;
4955
4956 BUG_ON(list_empty(&o->vma_list));
4957 list_for_each_entry(vma, &o->vma_list, vma_link) {
4958 if (vma->vm == vm)
4959 return vma->node.start;
4960
4961 }
4962 return -1;
4963}
4964
4965bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4966 struct i915_address_space *vm)
4967{
4968 struct i915_vma *vma;
4969
4970 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4971 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4972 return true;
4973
4974 return false;
4975}
4976
4977bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4978{
5a1d5eb0 4979 struct i915_vma *vma;
a70a3148 4980
5a1d5eb0
CW
4981 list_for_each_entry(vma, &o->vma_list, vma_link)
4982 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
4983 return true;
4984
4985 return false;
4986}
4987
4988unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4989 struct i915_address_space *vm)
4990{
4991 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4992 struct i915_vma *vma;
4993
6f425321
BW
4994 if (!dev_priv->mm.aliasing_ppgtt ||
4995 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4996 vm = &dev_priv->gtt.base;
4997
4998 BUG_ON(list_empty(&o->vma_list));
4999
5000 list_for_each_entry(vma, &o->vma_list, vma_link)
5001 if (vma->vm == vm)
5002 return vma->node.size;
5003
5004 return 0;
5005}
5006
7dc19d5a
DC
5007static unsigned long
5008i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5009{
5010 struct drm_i915_private *dev_priv =
5011 container_of(shrinker,
5012 struct drm_i915_private,
5013 mm.inactive_shrinker);
5014 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5015 unsigned long freed;
5016 bool unlock = true;
5017
5018 if (!mutex_trylock(&dev->struct_mutex)) {
5019 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5020 return SHRINK_STOP;
7dc19d5a
DC
5021
5022 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5023 return SHRINK_STOP;
7dc19d5a
DC
5024
5025 unlock = false;
5026 }
5027
d9973b43
CW
5028 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5029 if (freed < sc->nr_to_scan)
5030 freed += __i915_gem_shrink(dev_priv,
5031 sc->nr_to_scan - freed,
5032 false);
5033 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5034 freed += i915_gem_shrink_all(dev_priv);
5035
5036 if (unlock)
5037 mutex_unlock(&dev->struct_mutex);
d9973b43 5038
7dc19d5a
DC
5039 return freed;
5040}
5c2abbea
BW
5041
5042struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5043{
5044 struct i915_vma *vma;
5045
5046 if (WARN_ON(list_empty(&obj->vma_list)))
5047 return NULL;
5048
5049 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5050 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5051 return NULL;
5052
5053 return vma;
5054}
This page took 1.056389 seconds and 5 git commands to generate.