drm/i915: Cancel hangcheck before GPU is suspended
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
ca1543be
TU
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
853ba5d2 149 args->aper_size = dev_priv->gtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
5d4545ae 810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1144 struct intel_engine_cs *ring)
094f9a54
CW
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
eed29a5b 1149static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1150{
2def4ad9
CW
1151 unsigned long timeout;
1152
eed29a5b 1153 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
eed29a5b 1158 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1159 return 0;
1160
1161 if (time_after_eq(jiffies, timeout))
1162 break;
b29c19b6 1163
2def4ad9
CW
1164 cpu_relax_lowlatency();
1165 }
eed29a5b 1166 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1167 return 0;
1168
1169 return -EAGAIN;
b29c19b6
CW
1170}
1171
b361237b 1172/**
9c654818
JH
1173 * __i915_wait_request - wait until execution of request has finished
1174 * @req: duh!
1175 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1176 * @interruptible: do an interruptible wait (normally yes)
1177 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178 *
f69061be
DV
1179 * Note: It is of utmost importance that the passed in seqno and reset_counter
1180 * values have been read by the caller in an smp safe manner. Where read-side
1181 * locks are involved, it is sufficient to read the reset_counter before
1182 * unlocking the lock that protects the seqno. For lockless tricks, the
1183 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184 * inserted.
1185 *
9c654818 1186 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1187 * errno with remaining time filled in timeout argument.
1188 */
9c654818 1189int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1190 unsigned reset_counter,
b29c19b6 1191 bool interruptible,
5ed0bdf2 1192 s64 *timeout,
2e1b8730 1193 struct intel_rps_client *rps)
b361237b 1194{
9c654818 1195 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1196 struct drm_device *dev = ring->dev;
3e31c6c0 1197 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1198 const bool irq_test_in_progress =
1199 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1200 DEFINE_WAIT(wait);
47e9766d 1201 unsigned long timeout_expire;
5ed0bdf2 1202 s64 before, now;
b361237b
CW
1203 int ret;
1204
9df7575f 1205 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1206
b4716185
CW
1207 if (list_empty(&req->list))
1208 return 0;
1209
1b5a433a 1210 if (i915_gem_request_completed(req, true))
b361237b
CW
1211 return 0;
1212
7bd0e226
DV
1213 timeout_expire = timeout ?
1214 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1215
2e1b8730 1216 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1217 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1218
094f9a54 1219 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1220 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1221 before = ktime_get_raw_ns();
2def4ad9
CW
1222
1223 /* Optimistic spin for the next jiffie before touching IRQs */
1224 ret = __i915_spin_request(req);
1225 if (ret == 0)
1226 goto out;
1227
1228 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1229 ret = -ENODEV;
1230 goto out;
1231 }
1232
094f9a54
CW
1233 for (;;) {
1234 struct timer_list timer;
b361237b 1235
094f9a54
CW
1236 prepare_to_wait(&ring->irq_queue, &wait,
1237 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1238
f69061be
DV
1239 /* We need to check whether any gpu reset happened in between
1240 * the caller grabbing the seqno and now ... */
094f9a54
CW
1241 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1242 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1243 * is truely gone. */
1244 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1245 if (ret == 0)
1246 ret = -EAGAIN;
1247 break;
1248 }
f69061be 1249
1b5a433a 1250 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1251 ret = 0;
1252 break;
1253 }
b361237b 1254
094f9a54
CW
1255 if (interruptible && signal_pending(current)) {
1256 ret = -ERESTARTSYS;
1257 break;
1258 }
1259
47e9766d 1260 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1261 ret = -ETIME;
1262 break;
1263 }
1264
1265 timer.function = NULL;
1266 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1267 unsigned long expire;
1268
094f9a54 1269 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1270 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1271 mod_timer(&timer, expire);
1272 }
1273
5035c275 1274 io_schedule();
094f9a54 1275
094f9a54
CW
1276 if (timer.function) {
1277 del_singleshot_timer_sync(&timer);
1278 destroy_timer_on_stack(&timer);
1279 }
1280 }
168c3f21
MK
1281 if (!irq_test_in_progress)
1282 ring->irq_put(ring);
094f9a54
CW
1283
1284 finish_wait(&ring->irq_queue, &wait);
b361237b 1285
2def4ad9
CW
1286out:
1287 now = ktime_get_raw_ns();
1288 trace_i915_gem_request_wait_end(req);
1289
b361237b 1290 if (timeout) {
5ed0bdf2
TG
1291 s64 tres = *timeout - (now - before);
1292
1293 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1294
1295 /*
1296 * Apparently ktime isn't accurate enough and occasionally has a
1297 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298 * things up to make the test happy. We allow up to 1 jiffy.
1299 *
1300 * This is a regrssion from the timespec->ktime conversion.
1301 */
1302 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303 *timeout = 0;
b361237b
CW
1304 }
1305
094f9a54 1306 return ret;
b361237b
CW
1307}
1308
fcfa423c
JH
1309int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1310 struct drm_file *file)
1311{
1312 struct drm_i915_private *dev_private;
1313 struct drm_i915_file_private *file_priv;
1314
1315 WARN_ON(!req || !file || req->file_priv);
1316
1317 if (!req || !file)
1318 return -EINVAL;
1319
1320 if (req->file_priv)
1321 return -EINVAL;
1322
1323 dev_private = req->ring->dev->dev_private;
1324 file_priv = file->driver_priv;
1325
1326 spin_lock(&file_priv->mm.lock);
1327 req->file_priv = file_priv;
1328 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1329 spin_unlock(&file_priv->mm.lock);
1330
1331 req->pid = get_pid(task_pid(current));
1332
1333 return 0;
1334}
1335
b4716185
CW
1336static inline void
1337i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1338{
1339 struct drm_i915_file_private *file_priv = request->file_priv;
1340
1341 if (!file_priv)
1342 return;
1343
1344 spin_lock(&file_priv->mm.lock);
1345 list_del(&request->client_list);
1346 request->file_priv = NULL;
1347 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1348
1349 put_pid(request->pid);
1350 request->pid = NULL;
b4716185
CW
1351}
1352
1353static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1354{
1355 trace_i915_gem_request_retire(request);
1356
1357 /* We know the GPU must have read the request to have
1358 * sent us the seqno + interrupt, so use the position
1359 * of tail of the request to update the last known position
1360 * of the GPU head.
1361 *
1362 * Note this requires that we are always called in request
1363 * completion order.
1364 */
1365 request->ringbuf->last_retired_head = request->postfix;
1366
1367 list_del_init(&request->list);
1368 i915_gem_request_remove_from_client(request);
1369
b4716185
CW
1370 i915_gem_request_unreference(request);
1371}
1372
1373static void
1374__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375{
1376 struct intel_engine_cs *engine = req->ring;
1377 struct drm_i915_gem_request *tmp;
1378
1379 lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381 if (list_empty(&req->list))
1382 return;
1383
1384 do {
1385 tmp = list_first_entry(&engine->request_list,
1386 typeof(*tmp), list);
1387
1388 i915_gem_request_retire(tmp);
1389 } while (tmp != req);
1390
1391 WARN_ON(i915_verify_lists(engine->dev));
1392}
1393
b361237b 1394/**
a4b3a571 1395 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1396 * request and object lists appropriately for that event.
1397 */
1398int
a4b3a571 1399i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1400{
a4b3a571
DV
1401 struct drm_device *dev;
1402 struct drm_i915_private *dev_priv;
1403 bool interruptible;
b361237b
CW
1404 int ret;
1405
a4b3a571
DV
1406 BUG_ON(req == NULL);
1407
1408 dev = req->ring->dev;
1409 dev_priv = dev->dev_private;
1410 interruptible = dev_priv->mm.interruptible;
1411
b361237b 1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1413
33196ded 1414 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1415 if (ret)
1416 return ret;
1417
b4716185
CW
1418 ret = __i915_wait_request(req,
1419 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1420 interruptible, NULL, NULL);
b4716185
CW
1421 if (ret)
1422 return ret;
d26e3af8 1423
b4716185 1424 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1425 return 0;
1426}
1427
b361237b
CW
1428/**
1429 * Ensures that all rendering to the object has completed and the object is
1430 * safe to unbind from the GTT or access from the CPU.
1431 */
2e2f351d 1432int
b361237b
CW
1433i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1434 bool readonly)
1435{
b4716185 1436 int ret, i;
b361237b 1437
b4716185 1438 if (!obj->active)
b361237b
CW
1439 return 0;
1440
b4716185
CW
1441 if (readonly) {
1442 if (obj->last_write_req != NULL) {
1443 ret = i915_wait_request(obj->last_write_req);
1444 if (ret)
1445 return ret;
b361237b 1446
b4716185
CW
1447 i = obj->last_write_req->ring->id;
1448 if (obj->last_read_req[i] == obj->last_write_req)
1449 i915_gem_object_retire__read(obj, i);
1450 else
1451 i915_gem_object_retire__write(obj);
1452 }
1453 } else {
1454 for (i = 0; i < I915_NUM_RINGS; i++) {
1455 if (obj->last_read_req[i] == NULL)
1456 continue;
1457
1458 ret = i915_wait_request(obj->last_read_req[i]);
1459 if (ret)
1460 return ret;
1461
1462 i915_gem_object_retire__read(obj, i);
1463 }
1464 RQ_BUG_ON(obj->active);
1465 }
1466
1467 return 0;
1468}
1469
1470static void
1471i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1472 struct drm_i915_gem_request *req)
1473{
1474 int ring = req->ring->id;
1475
1476 if (obj->last_read_req[ring] == req)
1477 i915_gem_object_retire__read(obj, ring);
1478 else if (obj->last_write_req == req)
1479 i915_gem_object_retire__write(obj);
1480
1481 __i915_gem_request_retire__upto(req);
b361237b
CW
1482}
1483
3236f57a
CW
1484/* A nonblocking variant of the above wait. This is a highly dangerous routine
1485 * as the object state may change during this call.
1486 */
1487static __must_check int
1488i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1489 struct intel_rps_client *rps,
3236f57a
CW
1490 bool readonly)
1491{
1492 struct drm_device *dev = obj->base.dev;
1493 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1494 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1495 unsigned reset_counter;
b4716185 1496 int ret, i, n = 0;
3236f57a
CW
1497
1498 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1499 BUG_ON(!dev_priv->mm.interruptible);
1500
b4716185 1501 if (!obj->active)
3236f57a
CW
1502 return 0;
1503
33196ded 1504 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1505 if (ret)
1506 return ret;
1507
f69061be 1508 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1509
1510 if (readonly) {
1511 struct drm_i915_gem_request *req;
1512
1513 req = obj->last_write_req;
1514 if (req == NULL)
1515 return 0;
1516
b4716185
CW
1517 requests[n++] = i915_gem_request_reference(req);
1518 } else {
1519 for (i = 0; i < I915_NUM_RINGS; i++) {
1520 struct drm_i915_gem_request *req;
1521
1522 req = obj->last_read_req[i];
1523 if (req == NULL)
1524 continue;
1525
b4716185
CW
1526 requests[n++] = i915_gem_request_reference(req);
1527 }
1528 }
1529
3236f57a 1530 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1531 for (i = 0; ret == 0 && i < n; i++)
1532 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1533 NULL, rps);
3236f57a
CW
1534 mutex_lock(&dev->struct_mutex);
1535
b4716185
CW
1536 for (i = 0; i < n; i++) {
1537 if (ret == 0)
1538 i915_gem_object_retire_request(obj, requests[i]);
1539 i915_gem_request_unreference(requests[i]);
1540 }
1541
1542 return ret;
3236f57a
CW
1543}
1544
2e1b8730
CW
1545static struct intel_rps_client *to_rps_client(struct drm_file *file)
1546{
1547 struct drm_i915_file_private *fpriv = file->driver_priv;
1548 return &fpriv->rps;
1549}
1550
673a394b 1551/**
2ef7eeaa
EA
1552 * Called when user space prepares to use an object with the CPU, either
1553 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1554 */
1555int
1556i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1557 struct drm_file *file)
673a394b
EA
1558{
1559 struct drm_i915_gem_set_domain *args = data;
05394f39 1560 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1561 uint32_t read_domains = args->read_domains;
1562 uint32_t write_domain = args->write_domain;
673a394b
EA
1563 int ret;
1564
2ef7eeaa 1565 /* Only handle setting domains to types used by the CPU. */
21d509e3 1566 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1567 return -EINVAL;
1568
21d509e3 1569 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1570 return -EINVAL;
1571
1572 /* Having something in the write domain implies it's in the read
1573 * domain, and only that read domain. Enforce that in the request.
1574 */
1575 if (write_domain != 0 && read_domains != write_domain)
1576 return -EINVAL;
1577
76c1dec1 1578 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1579 if (ret)
76c1dec1 1580 return ret;
1d7cfea1 1581
05394f39 1582 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1583 if (&obj->base == NULL) {
1d7cfea1
CW
1584 ret = -ENOENT;
1585 goto unlock;
76c1dec1 1586 }
673a394b 1587
3236f57a
CW
1588 /* Try to flush the object off the GPU without holding the lock.
1589 * We will repeat the flush holding the lock in the normal manner
1590 * to catch cases where we are gazumped.
1591 */
6e4930f6 1592 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1593 to_rps_client(file),
6e4930f6 1594 !write_domain);
3236f57a
CW
1595 if (ret)
1596 goto unref;
1597
43566ded 1598 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1599 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1600 else
e47c68e9 1601 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1602
031b698a
DV
1603 if (write_domain != 0)
1604 intel_fb_obj_invalidate(obj,
1605 write_domain == I915_GEM_DOMAIN_GTT ?
1606 ORIGIN_GTT : ORIGIN_CPU);
1607
3236f57a 1608unref:
05394f39 1609 drm_gem_object_unreference(&obj->base);
1d7cfea1 1610unlock:
673a394b
EA
1611 mutex_unlock(&dev->struct_mutex);
1612 return ret;
1613}
1614
1615/**
1616 * Called when user space has done writes to this buffer
1617 */
1618int
1619i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1620 struct drm_file *file)
673a394b
EA
1621{
1622 struct drm_i915_gem_sw_finish *args = data;
05394f39 1623 struct drm_i915_gem_object *obj;
673a394b
EA
1624 int ret = 0;
1625
76c1dec1 1626 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1627 if (ret)
76c1dec1 1628 return ret;
1d7cfea1 1629
05394f39 1630 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1631 if (&obj->base == NULL) {
1d7cfea1
CW
1632 ret = -ENOENT;
1633 goto unlock;
673a394b
EA
1634 }
1635
673a394b 1636 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1637 if (obj->pin_display)
e62b59e4 1638 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1639
05394f39 1640 drm_gem_object_unreference(&obj->base);
1d7cfea1 1641unlock:
673a394b
EA
1642 mutex_unlock(&dev->struct_mutex);
1643 return ret;
1644}
1645
1646/**
1647 * Maps the contents of an object, returning the address it is mapped
1648 * into.
1649 *
1650 * While the mapping holds a reference on the contents of the object, it doesn't
1651 * imply a ref on the object itself.
34367381
DV
1652 *
1653 * IMPORTANT:
1654 *
1655 * DRM driver writers who look a this function as an example for how to do GEM
1656 * mmap support, please don't implement mmap support like here. The modern way
1657 * to implement DRM mmap support is with an mmap offset ioctl (like
1658 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1659 * That way debug tooling like valgrind will understand what's going on, hiding
1660 * the mmap call in a driver private ioctl will break that. The i915 driver only
1661 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1662 */
1663int
1664i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1665 struct drm_file *file)
673a394b
EA
1666{
1667 struct drm_i915_gem_mmap *args = data;
1668 struct drm_gem_object *obj;
673a394b
EA
1669 unsigned long addr;
1670
1816f923
AG
1671 if (args->flags & ~(I915_MMAP_WC))
1672 return -EINVAL;
1673
1674 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1675 return -ENODEV;
1676
05394f39 1677 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1678 if (obj == NULL)
bf79cb91 1679 return -ENOENT;
673a394b 1680
1286ff73
DV
1681 /* prime objects have no backing filp to GEM mmap
1682 * pages from.
1683 */
1684 if (!obj->filp) {
1685 drm_gem_object_unreference_unlocked(obj);
1686 return -EINVAL;
1687 }
1688
6be5ceb0 1689 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1690 PROT_READ | PROT_WRITE, MAP_SHARED,
1691 args->offset);
1816f923
AG
1692 if (args->flags & I915_MMAP_WC) {
1693 struct mm_struct *mm = current->mm;
1694 struct vm_area_struct *vma;
1695
1696 down_write(&mm->mmap_sem);
1697 vma = find_vma(mm, addr);
1698 if (vma)
1699 vma->vm_page_prot =
1700 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1701 else
1702 addr = -ENOMEM;
1703 up_write(&mm->mmap_sem);
1704 }
bc9025bd 1705 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1706 if (IS_ERR((void *)addr))
1707 return addr;
1708
1709 args->addr_ptr = (uint64_t) addr;
1710
1711 return 0;
1712}
1713
de151cf6
JB
1714/**
1715 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1716 * @vma: VMA in question
1717 * @vmf: fault info
de151cf6
JB
1718 *
1719 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1720 * from userspace. The fault handler takes care of binding the object to
1721 * the GTT (if needed), allocating and programming a fence register (again,
1722 * only if needed based on whether the old reg is still valid or the object
1723 * is tiled) and inserting a new PTE into the faulting process.
1724 *
1725 * Note that the faulting process may involve evicting existing objects
1726 * from the GTT and/or fence registers to make room. So performance may
1727 * suffer if the GTT working set is large or there are few fence registers
1728 * left.
1729 */
1730int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1731{
05394f39
CW
1732 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1733 struct drm_device *dev = obj->base.dev;
3e31c6c0 1734 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1735 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1736 pgoff_t page_offset;
1737 unsigned long pfn;
1738 int ret = 0;
0f973f27 1739 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1740
f65c9168
PZ
1741 intel_runtime_pm_get(dev_priv);
1742
de151cf6
JB
1743 /* We don't use vmf->pgoff since that has the fake offset */
1744 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1745 PAGE_SHIFT;
1746
d9bc7e9f
CW
1747 ret = i915_mutex_lock_interruptible(dev);
1748 if (ret)
1749 goto out;
a00b10c3 1750
db53a302
CW
1751 trace_i915_gem_object_fault(obj, page_offset, true, write);
1752
6e4930f6
CW
1753 /* Try to flush the object off the GPU first without holding the lock.
1754 * Upon reacquiring the lock, we will perform our sanity checks and then
1755 * repeat the flush holding the lock in the normal manner to catch cases
1756 * where we are gazumped.
1757 */
1758 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1759 if (ret)
1760 goto unlock;
1761
eb119bd6
CW
1762 /* Access to snoopable pages through the GTT is incoherent. */
1763 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1764 ret = -EFAULT;
eb119bd6
CW
1765 goto unlock;
1766 }
1767
c5ad54cf 1768 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1769 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1770 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1771 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1772
c5ad54cf
JL
1773 memset(&view, 0, sizeof(view));
1774 view.type = I915_GGTT_VIEW_PARTIAL;
1775 view.params.partial.offset = rounddown(page_offset, chunk_size);
1776 view.params.partial.size =
1777 min_t(unsigned int,
1778 chunk_size,
1779 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1780 view.params.partial.offset);
1781 }
1782
1783 /* Now pin it into the GTT if needed */
1784 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1785 if (ret)
1786 goto unlock;
4a684a41 1787
c9839303
CW
1788 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1789 if (ret)
1790 goto unpin;
74898d7e 1791
06d98131 1792 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1793 if (ret)
c9839303 1794 goto unpin;
7d1c4804 1795
b90b91d8 1796 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1797 pfn = dev_priv->gtt.mappable_base +
1798 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1799 pfn >>= PAGE_SHIFT;
de151cf6 1800
c5ad54cf
JL
1801 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1802 /* Overriding existing pages in partial view does not cause
1803 * us any trouble as TLBs are still valid because the fault
1804 * is due to userspace losing part of the mapping or never
1805 * having accessed it before (at this partials' range).
1806 */
1807 unsigned long base = vma->vm_start +
1808 (view.params.partial.offset << PAGE_SHIFT);
1809 unsigned int i;
b90b91d8 1810
c5ad54cf
JL
1811 for (i = 0; i < view.params.partial.size; i++) {
1812 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1813 if (ret)
1814 break;
1815 }
1816
1817 obj->fault_mappable = true;
c5ad54cf
JL
1818 } else {
1819 if (!obj->fault_mappable) {
1820 unsigned long size = min_t(unsigned long,
1821 vma->vm_end - vma->vm_start,
1822 obj->base.size);
1823 int i;
1824
1825 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1826 ret = vm_insert_pfn(vma,
1827 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1828 pfn + i);
1829 if (ret)
1830 break;
1831 }
1832
1833 obj->fault_mappable = true;
1834 } else
1835 ret = vm_insert_pfn(vma,
1836 (unsigned long)vmf->virtual_address,
1837 pfn + page_offset);
1838 }
c9839303 1839unpin:
c5ad54cf 1840 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1841unlock:
de151cf6 1842 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1843out:
de151cf6 1844 switch (ret) {
d9bc7e9f 1845 case -EIO:
2232f031
DV
1846 /*
1847 * We eat errors when the gpu is terminally wedged to avoid
1848 * userspace unduly crashing (gl has no provisions for mmaps to
1849 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1850 * and so needs to be reported.
1851 */
1852 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1853 ret = VM_FAULT_SIGBUS;
1854 break;
1855 }
045e769a 1856 case -EAGAIN:
571c608d
DV
1857 /*
1858 * EAGAIN means the gpu is hung and we'll wait for the error
1859 * handler to reset everything when re-faulting in
1860 * i915_mutex_lock_interruptible.
d9bc7e9f 1861 */
c715089f
CW
1862 case 0:
1863 case -ERESTARTSYS:
bed636ab 1864 case -EINTR:
e79e0fe3
DR
1865 case -EBUSY:
1866 /*
1867 * EBUSY is ok: this just means that another thread
1868 * already did the job.
1869 */
f65c9168
PZ
1870 ret = VM_FAULT_NOPAGE;
1871 break;
de151cf6 1872 case -ENOMEM:
f65c9168
PZ
1873 ret = VM_FAULT_OOM;
1874 break;
a7c2e1aa 1875 case -ENOSPC:
45d67817 1876 case -EFAULT:
f65c9168
PZ
1877 ret = VM_FAULT_SIGBUS;
1878 break;
de151cf6 1879 default:
a7c2e1aa 1880 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1881 ret = VM_FAULT_SIGBUS;
1882 break;
de151cf6 1883 }
f65c9168
PZ
1884
1885 intel_runtime_pm_put(dev_priv);
1886 return ret;
de151cf6
JB
1887}
1888
901782b2
CW
1889/**
1890 * i915_gem_release_mmap - remove physical page mappings
1891 * @obj: obj in question
1892 *
af901ca1 1893 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1894 * relinquish ownership of the pages back to the system.
1895 *
1896 * It is vital that we remove the page mapping if we have mapped a tiled
1897 * object through the GTT and then lose the fence register due to
1898 * resource pressure. Similarly if the object has been moved out of the
1899 * aperture, than pages mapped into userspace must be revoked. Removing the
1900 * mapping will then trigger a page fault on the next user access, allowing
1901 * fixup by i915_gem_fault().
1902 */
d05ca301 1903void
05394f39 1904i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1905{
6299f992
CW
1906 if (!obj->fault_mappable)
1907 return;
901782b2 1908
6796cb16
DH
1909 drm_vma_node_unmap(&obj->base.vma_node,
1910 obj->base.dev->anon_inode->i_mapping);
6299f992 1911 obj->fault_mappable = false;
901782b2
CW
1912}
1913
eedd10f4
CW
1914void
1915i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1916{
1917 struct drm_i915_gem_object *obj;
1918
1919 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1920 i915_gem_release_mmap(obj);
1921}
1922
0fa87796 1923uint32_t
e28f8711 1924i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1925{
e28f8711 1926 uint32_t gtt_size;
92b88aeb
CW
1927
1928 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1929 tiling_mode == I915_TILING_NONE)
1930 return size;
92b88aeb
CW
1931
1932 /* Previous chips need a power-of-two fence region when tiling */
1933 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1934 gtt_size = 1024*1024;
92b88aeb 1935 else
e28f8711 1936 gtt_size = 512*1024;
92b88aeb 1937
e28f8711
CW
1938 while (gtt_size < size)
1939 gtt_size <<= 1;
92b88aeb 1940
e28f8711 1941 return gtt_size;
92b88aeb
CW
1942}
1943
de151cf6
JB
1944/**
1945 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1946 * @obj: object to check
1947 *
1948 * Return the required GTT alignment for an object, taking into account
5e783301 1949 * potential fence register mapping.
de151cf6 1950 */
d865110c
ID
1951uint32_t
1952i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1953 int tiling_mode, bool fenced)
de151cf6 1954{
de151cf6
JB
1955 /*
1956 * Minimum alignment is 4k (GTT page size), but might be greater
1957 * if a fence register is needed for the object.
1958 */
d865110c 1959 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1960 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1961 return 4096;
1962
a00b10c3
CW
1963 /*
1964 * Previous chips need to be aligned to the size of the smallest
1965 * fence register that can contain the object.
1966 */
e28f8711 1967 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1968}
1969
d8cb5086
CW
1970static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1971{
1972 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1973 int ret;
1974
0de23977 1975 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1976 return 0;
1977
da494d7c
DV
1978 dev_priv->mm.shrinker_no_lock_stealing = true;
1979
d8cb5086
CW
1980 ret = drm_gem_create_mmap_offset(&obj->base);
1981 if (ret != -ENOSPC)
da494d7c 1982 goto out;
d8cb5086
CW
1983
1984 /* Badly fragmented mmap space? The only way we can recover
1985 * space is by destroying unwanted objects. We can't randomly release
1986 * mmap_offsets as userspace expects them to be persistent for the
1987 * lifetime of the objects. The closest we can is to release the
1988 * offsets on purgeable objects by truncating it and marking it purged,
1989 * which prevents userspace from ever using that object again.
1990 */
21ab4e74
CW
1991 i915_gem_shrink(dev_priv,
1992 obj->base.size >> PAGE_SHIFT,
1993 I915_SHRINK_BOUND |
1994 I915_SHRINK_UNBOUND |
1995 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1996 ret = drm_gem_create_mmap_offset(&obj->base);
1997 if (ret != -ENOSPC)
da494d7c 1998 goto out;
d8cb5086
CW
1999
2000 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2001 ret = drm_gem_create_mmap_offset(&obj->base);
2002out:
2003 dev_priv->mm.shrinker_no_lock_stealing = false;
2004
2005 return ret;
d8cb5086
CW
2006}
2007
2008static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2009{
d8cb5086
CW
2010 drm_gem_free_mmap_offset(&obj->base);
2011}
2012
da6b51d0 2013int
ff72145b
DA
2014i915_gem_mmap_gtt(struct drm_file *file,
2015 struct drm_device *dev,
da6b51d0 2016 uint32_t handle,
ff72145b 2017 uint64_t *offset)
de151cf6 2018{
05394f39 2019 struct drm_i915_gem_object *obj;
de151cf6
JB
2020 int ret;
2021
76c1dec1 2022 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2023 if (ret)
76c1dec1 2024 return ret;
de151cf6 2025
ff72145b 2026 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2027 if (&obj->base == NULL) {
1d7cfea1
CW
2028 ret = -ENOENT;
2029 goto unlock;
2030 }
de151cf6 2031
05394f39 2032 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2033 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2034 ret = -EFAULT;
1d7cfea1 2035 goto out;
ab18282d
CW
2036 }
2037
d8cb5086
CW
2038 ret = i915_gem_object_create_mmap_offset(obj);
2039 if (ret)
2040 goto out;
de151cf6 2041
0de23977 2042 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2043
1d7cfea1 2044out:
05394f39 2045 drm_gem_object_unreference(&obj->base);
1d7cfea1 2046unlock:
de151cf6 2047 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2048 return ret;
de151cf6
JB
2049}
2050
ff72145b
DA
2051/**
2052 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2053 * @dev: DRM device
2054 * @data: GTT mapping ioctl data
2055 * @file: GEM object info
2056 *
2057 * Simply returns the fake offset to userspace so it can mmap it.
2058 * The mmap call will end up in drm_gem_mmap(), which will set things
2059 * up so we can get faults in the handler above.
2060 *
2061 * The fault handler will take care of binding the object into the GTT
2062 * (since it may have been evicted to make room for something), allocating
2063 * a fence register, and mapping the appropriate aperture address into
2064 * userspace.
2065 */
2066int
2067i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2068 struct drm_file *file)
2069{
2070 struct drm_i915_gem_mmap_gtt *args = data;
2071
da6b51d0 2072 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2073}
2074
225067ee
DV
2075/* Immediately discard the backing storage */
2076static void
2077i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2078{
4d6294bf 2079 i915_gem_object_free_mmap_offset(obj);
1286ff73 2080
4d6294bf
CW
2081 if (obj->base.filp == NULL)
2082 return;
e5281ccd 2083
225067ee
DV
2084 /* Our goal here is to return as much of the memory as
2085 * is possible back to the system as we are called from OOM.
2086 * To do this we must instruct the shmfs to drop all of its
2087 * backing pages, *now*.
2088 */
5537252b 2089 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2090 obj->madv = __I915_MADV_PURGED;
2091}
e5281ccd 2092
5537252b
CW
2093/* Try to discard unwanted pages */
2094static void
2095i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2096{
5537252b
CW
2097 struct address_space *mapping;
2098
2099 switch (obj->madv) {
2100 case I915_MADV_DONTNEED:
2101 i915_gem_object_truncate(obj);
2102 case __I915_MADV_PURGED:
2103 return;
2104 }
2105
2106 if (obj->base.filp == NULL)
2107 return;
2108
2109 mapping = file_inode(obj->base.filp)->i_mapping,
2110 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2111}
2112
5cdf5881 2113static void
05394f39 2114i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2115{
90797e6d
ID
2116 struct sg_page_iter sg_iter;
2117 int ret;
1286ff73 2118
05394f39 2119 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2120
6c085a72
CW
2121 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2122 if (ret) {
2123 /* In the event of a disaster, abandon all caches and
2124 * hope for the best.
2125 */
2126 WARN_ON(ret != -EIO);
2c22569b 2127 i915_gem_clflush_object(obj, true);
6c085a72
CW
2128 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2129 }
2130
e2273302
ID
2131 i915_gem_gtt_finish_object(obj);
2132
6dacfd2f 2133 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2134 i915_gem_object_save_bit_17_swizzle(obj);
2135
05394f39
CW
2136 if (obj->madv == I915_MADV_DONTNEED)
2137 obj->dirty = 0;
3ef94daa 2138
90797e6d 2139 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2140 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2141
05394f39 2142 if (obj->dirty)
9da3da66 2143 set_page_dirty(page);
3ef94daa 2144
05394f39 2145 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2146 mark_page_accessed(page);
3ef94daa 2147
9da3da66 2148 page_cache_release(page);
3ef94daa 2149 }
05394f39 2150 obj->dirty = 0;
673a394b 2151
9da3da66
CW
2152 sg_free_table(obj->pages);
2153 kfree(obj->pages);
37e680a1 2154}
6c085a72 2155
dd624afd 2156int
37e680a1
CW
2157i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2158{
2159 const struct drm_i915_gem_object_ops *ops = obj->ops;
2160
2f745ad3 2161 if (obj->pages == NULL)
37e680a1
CW
2162 return 0;
2163
a5570178
CW
2164 if (obj->pages_pin_count)
2165 return -EBUSY;
2166
9843877d 2167 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2168
a2165e31
CW
2169 /* ->put_pages might need to allocate memory for the bit17 swizzle
2170 * array, hence protect them from being reaped by removing them from gtt
2171 * lists early. */
35c20a60 2172 list_del(&obj->global_list);
a2165e31 2173
37e680a1 2174 ops->put_pages(obj);
05394f39 2175 obj->pages = NULL;
37e680a1 2176
5537252b 2177 i915_gem_object_invalidate(obj);
6c085a72
CW
2178
2179 return 0;
2180}
2181
37e680a1 2182static int
6c085a72 2183i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2184{
6c085a72 2185 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2186 int page_count, i;
2187 struct address_space *mapping;
9da3da66
CW
2188 struct sg_table *st;
2189 struct scatterlist *sg;
90797e6d 2190 struct sg_page_iter sg_iter;
e5281ccd 2191 struct page *page;
90797e6d 2192 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2193 int ret;
6c085a72 2194 gfp_t gfp;
e5281ccd 2195
6c085a72
CW
2196 /* Assert that the object is not currently in any GPU domain. As it
2197 * wasn't in the GTT, there shouldn't be any way it could have been in
2198 * a GPU cache
2199 */
2200 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2201 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2202
9da3da66
CW
2203 st = kmalloc(sizeof(*st), GFP_KERNEL);
2204 if (st == NULL)
2205 return -ENOMEM;
2206
05394f39 2207 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2208 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2209 kfree(st);
e5281ccd 2210 return -ENOMEM;
9da3da66 2211 }
e5281ccd 2212
9da3da66
CW
2213 /* Get the list of pages out of our struct file. They'll be pinned
2214 * at this point until we release them.
2215 *
2216 * Fail silently without starting the shrinker
2217 */
496ad9aa 2218 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2219 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2220 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2221 sg = st->sgl;
2222 st->nents = 0;
2223 for (i = 0; i < page_count; i++) {
6c085a72
CW
2224 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2225 if (IS_ERR(page)) {
21ab4e74
CW
2226 i915_gem_shrink(dev_priv,
2227 page_count,
2228 I915_SHRINK_BOUND |
2229 I915_SHRINK_UNBOUND |
2230 I915_SHRINK_PURGEABLE);
6c085a72
CW
2231 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2232 }
2233 if (IS_ERR(page)) {
2234 /* We've tried hard to allocate the memory by reaping
2235 * our own buffer, now let the real VM do its job and
2236 * go down in flames if truly OOM.
2237 */
6c085a72 2238 i915_gem_shrink_all(dev_priv);
f461d1be 2239 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2240 if (IS_ERR(page)) {
2241 ret = PTR_ERR(page);
6c085a72 2242 goto err_pages;
e2273302 2243 }
6c085a72 2244 }
426729dc
KRW
2245#ifdef CONFIG_SWIOTLB
2246 if (swiotlb_nr_tbl()) {
2247 st->nents++;
2248 sg_set_page(sg, page, PAGE_SIZE, 0);
2249 sg = sg_next(sg);
2250 continue;
2251 }
2252#endif
90797e6d
ID
2253 if (!i || page_to_pfn(page) != last_pfn + 1) {
2254 if (i)
2255 sg = sg_next(sg);
2256 st->nents++;
2257 sg_set_page(sg, page, PAGE_SIZE, 0);
2258 } else {
2259 sg->length += PAGE_SIZE;
2260 }
2261 last_pfn = page_to_pfn(page);
3bbbe706
DV
2262
2263 /* Check that the i965g/gm workaround works. */
2264 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2265 }
426729dc
KRW
2266#ifdef CONFIG_SWIOTLB
2267 if (!swiotlb_nr_tbl())
2268#endif
2269 sg_mark_end(sg);
74ce6b6c
CW
2270 obj->pages = st;
2271
e2273302
ID
2272 ret = i915_gem_gtt_prepare_object(obj);
2273 if (ret)
2274 goto err_pages;
2275
6dacfd2f 2276 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2277 i915_gem_object_do_bit_17_swizzle(obj);
2278
656bfa3a
DV
2279 if (obj->tiling_mode != I915_TILING_NONE &&
2280 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281 i915_gem_object_pin_pages(obj);
2282
e5281ccd
CW
2283 return 0;
2284
2285err_pages:
90797e6d
ID
2286 sg_mark_end(sg);
2287 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2288 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2289 sg_free_table(st);
2290 kfree(st);
0820baf3
CW
2291
2292 /* shmemfs first checks if there is enough memory to allocate the page
2293 * and reports ENOSPC should there be insufficient, along with the usual
2294 * ENOMEM for a genuine allocation failure.
2295 *
2296 * We use ENOSPC in our driver to mean that we have run out of aperture
2297 * space and so want to translate the error from shmemfs back to our
2298 * usual understanding of ENOMEM.
2299 */
e2273302
ID
2300 if (ret == -ENOSPC)
2301 ret = -ENOMEM;
2302
2303 return ret;
673a394b
EA
2304}
2305
37e680a1
CW
2306/* Ensure that the associated pages are gathered from the backing storage
2307 * and pinned into our object. i915_gem_object_get_pages() may be called
2308 * multiple times before they are released by a single call to
2309 * i915_gem_object_put_pages() - once the pages are no longer referenced
2310 * either as a result of memory pressure (reaping pages under the shrinker)
2311 * or as the object is itself released.
2312 */
2313int
2314i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315{
2316 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317 const struct drm_i915_gem_object_ops *ops = obj->ops;
2318 int ret;
2319
2f745ad3 2320 if (obj->pages)
37e680a1
CW
2321 return 0;
2322
43e28f09 2323 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2324 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2325 return -EFAULT;
43e28f09
CW
2326 }
2327
a5570178
CW
2328 BUG_ON(obj->pages_pin_count);
2329
37e680a1
CW
2330 ret = ops->get_pages(obj);
2331 if (ret)
2332 return ret;
2333
35c20a60 2334 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2335
2336 obj->get_page.sg = obj->pages->sgl;
2337 obj->get_page.last = 0;
2338
37e680a1 2339 return 0;
673a394b
EA
2340}
2341
b4716185 2342void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2343 struct drm_i915_gem_request *req)
673a394b 2344{
b4716185 2345 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2346 struct intel_engine_cs *ring;
2347
2348 ring = i915_gem_request_get_ring(req);
673a394b
EA
2349
2350 /* Add a reference if we're newly entering the active list. */
b4716185 2351 if (obj->active == 0)
05394f39 2352 drm_gem_object_reference(&obj->base);
b4716185 2353 obj->active |= intel_ring_flag(ring);
e35a41de 2354
b4716185 2355 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2356 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2357
b4716185 2358 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2359}
2360
b4716185
CW
2361static void
2362i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2363{
b4716185
CW
2364 RQ_BUG_ON(obj->last_write_req == NULL);
2365 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2366
2367 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2368 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2369}
2370
caea7476 2371static void
b4716185 2372i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2373{
feb822cf 2374 struct i915_vma *vma;
ce44b0ea 2375
b4716185
CW
2376 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2377 RQ_BUG_ON(!(obj->active & (1 << ring)));
2378
2379 list_del_init(&obj->ring_list[ring]);
2380 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2381
2382 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2383 i915_gem_object_retire__write(obj);
2384
2385 obj->active &= ~(1 << ring);
2386 if (obj->active)
2387 return;
caea7476 2388
6c246959
CW
2389 /* Bump our place on the bound list to keep it roughly in LRU order
2390 * so that we don't steal from recently used but inactive objects
2391 * (unless we are forced to ofc!)
2392 */
2393 list_move_tail(&obj->global_list,
2394 &to_i915(obj->base.dev)->mm.bound_list);
2395
fe14d5f4
TU
2396 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2397 if (!list_empty(&vma->mm_list))
2398 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2399 }
caea7476 2400
97b2a6a1 2401 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2402 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2403}
2404
9d773091 2405static int
fca26bb4 2406i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2407{
9d773091 2408 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2409 struct intel_engine_cs *ring;
9d773091 2410 int ret, i, j;
53d227f2 2411
107f27a5 2412 /* Carefully retire all requests without writing to the rings */
9d773091 2413 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2414 ret = intel_ring_idle(ring);
2415 if (ret)
2416 return ret;
9d773091 2417 }
9d773091 2418 i915_gem_retire_requests(dev);
107f27a5
CW
2419
2420 /* Finally reset hw state */
9d773091 2421 for_each_ring(ring, dev_priv, i) {
fca26bb4 2422 intel_ring_init_seqno(ring, seqno);
498d2ac1 2423
ebc348b2
BW
2424 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2425 ring->semaphore.sync_seqno[j] = 0;
9d773091 2426 }
53d227f2 2427
9d773091 2428 return 0;
53d227f2
DV
2429}
2430
fca26bb4
MK
2431int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2432{
2433 struct drm_i915_private *dev_priv = dev->dev_private;
2434 int ret;
2435
2436 if (seqno == 0)
2437 return -EINVAL;
2438
2439 /* HWS page needs to be set less than what we
2440 * will inject to ring
2441 */
2442 ret = i915_gem_init_seqno(dev, seqno - 1);
2443 if (ret)
2444 return ret;
2445
2446 /* Carefully set the last_seqno value so that wrap
2447 * detection still works
2448 */
2449 dev_priv->next_seqno = seqno;
2450 dev_priv->last_seqno = seqno - 1;
2451 if (dev_priv->last_seqno == 0)
2452 dev_priv->last_seqno--;
2453
2454 return 0;
2455}
2456
9d773091
CW
2457int
2458i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2459{
9d773091
CW
2460 struct drm_i915_private *dev_priv = dev->dev_private;
2461
2462 /* reserve 0 for non-seqno */
2463 if (dev_priv->next_seqno == 0) {
fca26bb4 2464 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2465 if (ret)
2466 return ret;
53d227f2 2467
9d773091
CW
2468 dev_priv->next_seqno = 1;
2469 }
53d227f2 2470
f72b3435 2471 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2472 return 0;
53d227f2
DV
2473}
2474
bf7dc5b7
JH
2475/*
2476 * NB: This function is not allowed to fail. Doing so would mean the the
2477 * request is not being tracked for completion but the work itself is
2478 * going to happen on the hardware. This would be a Bad Thing(tm).
2479 */
75289874 2480void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2481 struct drm_i915_gem_object *obj,
2482 bool flush_caches)
673a394b 2483{
75289874
JH
2484 struct intel_engine_cs *ring;
2485 struct drm_i915_private *dev_priv;
48e29f55 2486 struct intel_ringbuffer *ringbuf;
6d3d8274 2487 u32 request_start;
3cce469c
CW
2488 int ret;
2489
48e29f55 2490 if (WARN_ON(request == NULL))
bf7dc5b7 2491 return;
48e29f55 2492
75289874
JH
2493 ring = request->ring;
2494 dev_priv = ring->dev->dev_private;
2495 ringbuf = request->ringbuf;
2496
29b1b415
JH
2497 /*
2498 * To ensure that this call will not fail, space for its emissions
2499 * should already have been reserved in the ring buffer. Let the ring
2500 * know that it is time to use that space up.
2501 */
2502 intel_ring_reserved_space_use(ringbuf);
2503
48e29f55 2504 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2505 /*
2506 * Emit any outstanding flushes - execbuf can fail to emit the flush
2507 * after having emitted the batchbuffer command. Hence we need to fix
2508 * things up similar to emitting the lazy request. The difference here
2509 * is that the flush _must_ happen before the next request, no matter
2510 * what.
2511 */
5b4a60c2
JH
2512 if (flush_caches) {
2513 if (i915.enable_execlists)
4866d729 2514 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2515 else
4866d729 2516 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2517 /* Not allowed to fail! */
2518 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2519 }
cc889e0f 2520
a71d8d94
CW
2521 /* Record the position of the start of the request so that
2522 * should we detect the updated seqno part-way through the
2523 * GPU processing the request, we never over-estimate the
2524 * position of the head.
2525 */
6d3d8274 2526 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2527
bf7dc5b7 2528 if (i915.enable_execlists)
c4e76638 2529 ret = ring->emit_request(request);
bf7dc5b7 2530 else {
ee044a88 2531 ret = ring->add_request(request);
53292cdb
MT
2532
2533 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2534 }
bf7dc5b7
JH
2535 /* Not allowed to fail! */
2536 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2537
7d736f4f 2538 request->head = request_start;
7d736f4f
MK
2539
2540 /* Whilst this request exists, batch_obj will be on the
2541 * active_list, and so will hold the active reference. Only when this
2542 * request is retired will the the batch_obj be moved onto the
2543 * inactive_list and lose its active reference. Hence we do not need
2544 * to explicitly hold another reference here.
2545 */
9a7e0c2a 2546 request->batch_obj = obj;
0e50e96b 2547
673a394b 2548 request->emitted_jiffies = jiffies;
94f7bbe1 2549 ring->last_submitted_seqno = request->seqno;
852835f3 2550 list_add_tail(&request->list, &ring->request_list);
673a394b 2551
74328ee5 2552 trace_i915_gem_request_add(request);
db53a302 2553
87255483 2554 i915_queue_hangcheck(ring->dev);
10cd45b6 2555
87255483
DV
2556 queue_delayed_work(dev_priv->wq,
2557 &dev_priv->mm.retire_work,
2558 round_jiffies_up_relative(HZ));
2559 intel_mark_busy(dev_priv->dev);
cc889e0f 2560
29b1b415
JH
2561 /* Sanity check that the reserved size was large enough. */
2562 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2563}
2564
939fd762 2565static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2566 const struct intel_context *ctx)
be62acb4 2567{
44e2c070 2568 unsigned long elapsed;
be62acb4 2569
44e2c070
MK
2570 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2571
2572 if (ctx->hang_stats.banned)
be62acb4
MK
2573 return true;
2574
676fa572
CW
2575 if (ctx->hang_stats.ban_period_seconds &&
2576 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2577 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2578 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2579 return true;
88b4aa87
MK
2580 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2581 if (i915_stop_ring_allow_warn(dev_priv))
2582 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2583 return true;
3fac8978 2584 }
be62acb4
MK
2585 }
2586
2587 return false;
2588}
2589
939fd762 2590static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2591 struct intel_context *ctx,
b6b0fac0 2592 const bool guilty)
aa60c664 2593{
44e2c070
MK
2594 struct i915_ctx_hang_stats *hs;
2595
2596 if (WARN_ON(!ctx))
2597 return;
aa60c664 2598
44e2c070
MK
2599 hs = &ctx->hang_stats;
2600
2601 if (guilty) {
939fd762 2602 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2603 hs->batch_active++;
2604 hs->guilty_ts = get_seconds();
2605 } else {
2606 hs->batch_pending++;
aa60c664
MK
2607 }
2608}
2609
abfe262a
JH
2610void i915_gem_request_free(struct kref *req_ref)
2611{
2612 struct drm_i915_gem_request *req = container_of(req_ref,
2613 typeof(*req), ref);
2614 struct intel_context *ctx = req->ctx;
2615
fcfa423c
JH
2616 if (req->file_priv)
2617 i915_gem_request_remove_from_client(req);
2618
0794aed3
TD
2619 if (ctx) {
2620 if (i915.enable_execlists) {
8ba319da
MK
2621 if (ctx != req->ring->default_context)
2622 intel_lr_context_unpin(req);
0794aed3 2623 }
abfe262a 2624
dcb4c12a
OM
2625 i915_gem_context_unreference(ctx);
2626 }
abfe262a 2627
efab6d8d 2628 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2629}
2630
6689cb2b 2631int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2632 struct intel_context *ctx,
2633 struct drm_i915_gem_request **req_out)
6689cb2b 2634{
efab6d8d 2635 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2636 struct drm_i915_gem_request *req;
6689cb2b 2637 int ret;
6689cb2b 2638
217e46b5
JH
2639 if (!req_out)
2640 return -EINVAL;
2641
bccca494 2642 *req_out = NULL;
6689cb2b 2643
eed29a5b
DV
2644 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2645 if (req == NULL)
6689cb2b
JH
2646 return -ENOMEM;
2647
eed29a5b 2648 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2649 if (ret)
2650 goto err;
6689cb2b 2651
40e895ce
JH
2652 kref_init(&req->ref);
2653 req->i915 = dev_priv;
eed29a5b 2654 req->ring = ring;
40e895ce
JH
2655 req->ctx = ctx;
2656 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2657
2658 if (i915.enable_execlists)
40e895ce 2659 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2660 else
eed29a5b 2661 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2662 if (ret) {
2663 i915_gem_context_unreference(req->ctx);
9a0c1e27 2664 goto err;
40e895ce 2665 }
6689cb2b 2666
29b1b415
JH
2667 /*
2668 * Reserve space in the ring buffer for all the commands required to
2669 * eventually emit this request. This is to guarantee that the
2670 * i915_add_request() call can't fail. Note that the reserve may need
2671 * to be redone if the request is not actually submitted straight
2672 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2673 */
ccd98fe4
JH
2674 if (i915.enable_execlists)
2675 ret = intel_logical_ring_reserve_space(req);
2676 else
2677 ret = intel_ring_reserve_space(req);
2678 if (ret) {
2679 /*
2680 * At this point, the request is fully allocated even if not
2681 * fully prepared. Thus it can be cleaned up using the proper
2682 * free code.
2683 */
2684 i915_gem_request_cancel(req);
2685 return ret;
2686 }
29b1b415 2687
bccca494 2688 *req_out = req;
6689cb2b 2689 return 0;
9a0c1e27
CW
2690
2691err:
2692 kmem_cache_free(dev_priv->requests, req);
2693 return ret;
0e50e96b
MK
2694}
2695
29b1b415
JH
2696void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2697{
2698 intel_ring_reserved_space_cancel(req->ringbuf);
2699
2700 i915_gem_request_unreference(req);
2701}
2702
8d9fc7fd 2703struct drm_i915_gem_request *
a4872ba6 2704i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2705{
4db080f9
CW
2706 struct drm_i915_gem_request *request;
2707
2708 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2709 if (i915_gem_request_completed(request, false))
4db080f9 2710 continue;
aa60c664 2711
b6b0fac0 2712 return request;
4db080f9 2713 }
b6b0fac0
MK
2714
2715 return NULL;
2716}
2717
2718static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2719 struct intel_engine_cs *ring)
b6b0fac0
MK
2720{
2721 struct drm_i915_gem_request *request;
2722 bool ring_hung;
2723
8d9fc7fd 2724 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2725
2726 if (request == NULL)
2727 return;
2728
2729 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2730
939fd762 2731 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2732
2733 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2734 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2735}
aa60c664 2736
4db080f9 2737static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2738 struct intel_engine_cs *ring)
4db080f9 2739{
608c1a52
CW
2740 struct intel_ringbuffer *buffer;
2741
dfaae392 2742 while (!list_empty(&ring->active_list)) {
05394f39 2743 struct drm_i915_gem_object *obj;
9375e446 2744
05394f39
CW
2745 obj = list_first_entry(&ring->active_list,
2746 struct drm_i915_gem_object,
b4716185 2747 ring_list[ring->id]);
9375e446 2748
b4716185 2749 i915_gem_object_retire__read(obj, ring->id);
673a394b 2750 }
1d62beea 2751
dcb4c12a
OM
2752 /*
2753 * Clear the execlists queue up before freeing the requests, as those
2754 * are the ones that keep the context and ringbuffer backing objects
2755 * pinned in place.
2756 */
dcb4c12a 2757
7de1691a
TE
2758 if (i915.enable_execlists) {
2759 spin_lock_irq(&ring->execlist_lock);
2760 while (!list_empty(&ring->execlist_queue)) {
2761 struct drm_i915_gem_request *submit_req;
1197b4f2 2762
7de1691a
TE
2763 submit_req = list_first_entry(&ring->execlist_queue,
2764 struct drm_i915_gem_request,
2765 execlist_link);
2766 list_del(&submit_req->execlist_link);
af3302b9
DV
2767
2768 if (submit_req->ctx != ring->default_context)
2769 intel_lr_context_unpin(submit_req);
2770
7de1691a
TE
2771 i915_gem_request_unreference(submit_req);
2772 }
2773 spin_unlock_irq(&ring->execlist_lock);
dcb4c12a
OM
2774 }
2775
1d62beea
BW
2776 /*
2777 * We must free the requests after all the corresponding objects have
2778 * been moved off active lists. Which is the same order as the normal
2779 * retire_requests function does. This is important if object hold
2780 * implicit references on things like e.g. ppgtt address spaces through
2781 * the request.
2782 */
2783 while (!list_empty(&ring->request_list)) {
2784 struct drm_i915_gem_request *request;
2785
2786 request = list_first_entry(&ring->request_list,
2787 struct drm_i915_gem_request,
2788 list);
2789
b4716185 2790 i915_gem_request_retire(request);
1d62beea 2791 }
608c1a52
CW
2792
2793 /* Having flushed all requests from all queues, we know that all
2794 * ringbuffers must now be empty. However, since we do not reclaim
2795 * all space when retiring the request (to prevent HEADs colliding
2796 * with rapid ringbuffer wraparound) the amount of available space
2797 * upon reset is less than when we start. Do one more pass over
2798 * all the ringbuffers to reset last_retired_head.
2799 */
2800 list_for_each_entry(buffer, &ring->buffers, link) {
2801 buffer->last_retired_head = buffer->tail;
2802 intel_ring_update_space(buffer);
2803 }
673a394b
EA
2804}
2805
069efc1d 2806void i915_gem_reset(struct drm_device *dev)
673a394b 2807{
77f01230 2808 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2809 struct intel_engine_cs *ring;
1ec14ad3 2810 int i;
673a394b 2811
4db080f9
CW
2812 /*
2813 * Before we free the objects from the requests, we need to inspect
2814 * them for finding the guilty party. As the requests only borrow
2815 * their reference to the objects, the inspection must be done first.
2816 */
2817 for_each_ring(ring, dev_priv, i)
2818 i915_gem_reset_ring_status(dev_priv, ring);
2819
b4519513 2820 for_each_ring(ring, dev_priv, i)
4db080f9 2821 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2822
acce9ffa
BW
2823 i915_gem_context_reset(dev);
2824
19b2dbde 2825 i915_gem_restore_fences(dev);
b4716185
CW
2826
2827 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2828}
2829
2830/**
2831 * This function clears the request list as sequence numbers are passed.
2832 */
1cf0ba14 2833void
a4872ba6 2834i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2835{
db53a302 2836 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2837
832a3aad
CW
2838 /* Retire requests first as we use it above for the early return.
2839 * If we retire requests last, we may use a later seqno and so clear
2840 * the requests lists without clearing the active list, leading to
2841 * confusion.
e9103038 2842 */
852835f3 2843 while (!list_empty(&ring->request_list)) {
673a394b 2844 struct drm_i915_gem_request *request;
673a394b 2845
852835f3 2846 request = list_first_entry(&ring->request_list,
673a394b
EA
2847 struct drm_i915_gem_request,
2848 list);
673a394b 2849
1b5a433a 2850 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2851 break;
2852
b4716185 2853 i915_gem_request_retire(request);
b84d5f0c 2854 }
673a394b 2855
832a3aad
CW
2856 /* Move any buffers on the active list that are no longer referenced
2857 * by the ringbuffer to the flushing/inactive lists as appropriate,
2858 * before we free the context associated with the requests.
2859 */
2860 while (!list_empty(&ring->active_list)) {
2861 struct drm_i915_gem_object *obj;
2862
2863 obj = list_first_entry(&ring->active_list,
2864 struct drm_i915_gem_object,
b4716185 2865 ring_list[ring->id]);
832a3aad 2866
b4716185 2867 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2868 break;
2869
b4716185 2870 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2871 }
2872
581c26e8
JH
2873 if (unlikely(ring->trace_irq_req &&
2874 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2875 ring->irq_put(ring);
581c26e8 2876 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2877 }
23bc5982 2878
db53a302 2879 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2880}
2881
b29c19b6 2882bool
b09a1fec
CW
2883i915_gem_retire_requests(struct drm_device *dev)
2884{
3e31c6c0 2885 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2886 struct intel_engine_cs *ring;
b29c19b6 2887 bool idle = true;
1ec14ad3 2888 int i;
b09a1fec 2889
b29c19b6 2890 for_each_ring(ring, dev_priv, i) {
b4519513 2891 i915_gem_retire_requests_ring(ring);
b29c19b6 2892 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2893 if (i915.enable_execlists) {
2894 unsigned long flags;
2895
2896 spin_lock_irqsave(&ring->execlist_lock, flags);
2897 idle &= list_empty(&ring->execlist_queue);
2898 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2899
2900 intel_execlists_retire_requests(ring);
2901 }
b29c19b6
CW
2902 }
2903
2904 if (idle)
2905 mod_delayed_work(dev_priv->wq,
2906 &dev_priv->mm.idle_work,
2907 msecs_to_jiffies(100));
2908
2909 return idle;
b09a1fec
CW
2910}
2911
75ef9da2 2912static void
673a394b
EA
2913i915_gem_retire_work_handler(struct work_struct *work)
2914{
b29c19b6
CW
2915 struct drm_i915_private *dev_priv =
2916 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2917 struct drm_device *dev = dev_priv->dev;
0a58705b 2918 bool idle;
673a394b 2919
891b48cf 2920 /* Come back later if the device is busy... */
b29c19b6
CW
2921 idle = false;
2922 if (mutex_trylock(&dev->struct_mutex)) {
2923 idle = i915_gem_retire_requests(dev);
2924 mutex_unlock(&dev->struct_mutex);
673a394b 2925 }
b29c19b6 2926 if (!idle)
bcb45086
CW
2927 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2928 round_jiffies_up_relative(HZ));
b29c19b6 2929}
0a58705b 2930
b29c19b6
CW
2931static void
2932i915_gem_idle_work_handler(struct work_struct *work)
2933{
2934 struct drm_i915_private *dev_priv =
2935 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2936 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2937 struct intel_engine_cs *ring;
2938 int i;
b29c19b6 2939
423795cb
CW
2940 for_each_ring(ring, dev_priv, i)
2941 if (!list_empty(&ring->request_list))
2942 return;
35c94185
CW
2943
2944 intel_mark_idle(dev);
2945
2946 if (mutex_trylock(&dev->struct_mutex)) {
2947 struct intel_engine_cs *ring;
2948 int i;
2949
2950 for_each_ring(ring, dev_priv, i)
2951 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2952
35c94185
CW
2953 mutex_unlock(&dev->struct_mutex);
2954 }
673a394b
EA
2955}
2956
30dfebf3
DV
2957/**
2958 * Ensures that an object will eventually get non-busy by flushing any required
2959 * write domains, emitting any outstanding lazy request and retiring and
2960 * completed requests.
2961 */
2962static int
2963i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2964{
a5ac0f90 2965 int i;
b4716185
CW
2966
2967 if (!obj->active)
2968 return 0;
30dfebf3 2969
b4716185
CW
2970 for (i = 0; i < I915_NUM_RINGS; i++) {
2971 struct drm_i915_gem_request *req;
41c52415 2972
b4716185
CW
2973 req = obj->last_read_req[i];
2974 if (req == NULL)
2975 continue;
2976
2977 if (list_empty(&req->list))
2978 goto retire;
2979
b4716185
CW
2980 if (i915_gem_request_completed(req, true)) {
2981 __i915_gem_request_retire__upto(req);
2982retire:
2983 i915_gem_object_retire__read(obj, i);
2984 }
30dfebf3
DV
2985 }
2986
2987 return 0;
2988}
2989
23ba4fd0
BW
2990/**
2991 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2992 * @DRM_IOCTL_ARGS: standard ioctl arguments
2993 *
2994 * Returns 0 if successful, else an error is returned with the remaining time in
2995 * the timeout parameter.
2996 * -ETIME: object is still busy after timeout
2997 * -ERESTARTSYS: signal interrupted the wait
2998 * -ENONENT: object doesn't exist
2999 * Also possible, but rare:
3000 * -EAGAIN: GPU wedged
3001 * -ENOMEM: damn
3002 * -ENODEV: Internal IRQ fail
3003 * -E?: The add request failed
3004 *
3005 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3006 * non-zero timeout parameter the wait ioctl will wait for the given number of
3007 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3008 * without holding struct_mutex the object may become re-busied before this
3009 * function completes. A similar but shorter * race condition exists in the busy
3010 * ioctl
3011 */
3012int
3013i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3014{
3e31c6c0 3015 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3016 struct drm_i915_gem_wait *args = data;
3017 struct drm_i915_gem_object *obj;
b4716185 3018 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3019 unsigned reset_counter;
b4716185
CW
3020 int i, n = 0;
3021 int ret;
23ba4fd0 3022
11b5d511
DV
3023 if (args->flags != 0)
3024 return -EINVAL;
3025
23ba4fd0
BW
3026 ret = i915_mutex_lock_interruptible(dev);
3027 if (ret)
3028 return ret;
3029
3030 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3031 if (&obj->base == NULL) {
3032 mutex_unlock(&dev->struct_mutex);
3033 return -ENOENT;
3034 }
3035
30dfebf3
DV
3036 /* Need to make sure the object gets inactive eventually. */
3037 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3038 if (ret)
3039 goto out;
3040
b4716185 3041 if (!obj->active)
97b2a6a1 3042 goto out;
23ba4fd0 3043
23ba4fd0 3044 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3045 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3046 */
762e4583 3047 if (args->timeout_ns == 0) {
23ba4fd0
BW
3048 ret = -ETIME;
3049 goto out;
3050 }
3051
3052 drm_gem_object_unreference(&obj->base);
f69061be 3053 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3054
3055 for (i = 0; i < I915_NUM_RINGS; i++) {
3056 if (obj->last_read_req[i] == NULL)
3057 continue;
3058
3059 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3060 }
3061
23ba4fd0
BW
3062 mutex_unlock(&dev->struct_mutex);
3063
b4716185
CW
3064 for (i = 0; i < n; i++) {
3065 if (ret == 0)
3066 ret = __i915_wait_request(req[i], reset_counter, true,
3067 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3068 to_rps_client(file));
b4716185
CW
3069 i915_gem_request_unreference__unlocked(req[i]);
3070 }
ff865885 3071 return ret;
23ba4fd0
BW
3072
3073out:
3074 drm_gem_object_unreference(&obj->base);
3075 mutex_unlock(&dev->struct_mutex);
3076 return ret;
3077}
3078
b4716185
CW
3079static int
3080__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3081 struct intel_engine_cs *to,
91af127f
JH
3082 struct drm_i915_gem_request *from_req,
3083 struct drm_i915_gem_request **to_req)
b4716185
CW
3084{
3085 struct intel_engine_cs *from;
3086 int ret;
3087
91af127f 3088 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3089 if (to == from)
3090 return 0;
3091
91af127f 3092 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3093 return 0;
3094
b4716185 3095 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3096 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3097 ret = __i915_wait_request(from_req,
a6f766f3
CW
3098 atomic_read(&i915->gpu_error.reset_counter),
3099 i915->mm.interruptible,
3100 NULL,
3101 &i915->rps.semaphores);
b4716185
CW
3102 if (ret)
3103 return ret;
3104
91af127f 3105 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3106 } else {
3107 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3108 u32 seqno = i915_gem_request_get_seqno(from_req);
3109
3110 WARN_ON(!to_req);
b4716185
CW
3111
3112 if (seqno <= from->semaphore.sync_seqno[idx])
3113 return 0;
3114
91af127f
JH
3115 if (*to_req == NULL) {
3116 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3117 if (ret)
3118 return ret;
3119 }
3120
599d924c
JH
3121 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3122 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3123 if (ret)
3124 return ret;
3125
3126 /* We use last_read_req because sync_to()
3127 * might have just caused seqno wrap under
3128 * the radar.
3129 */
3130 from->semaphore.sync_seqno[idx] =
3131 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3132 }
3133
3134 return 0;
3135}
3136
5816d648
BW
3137/**
3138 * i915_gem_object_sync - sync an object to a ring.
3139 *
3140 * @obj: object which may be in use on another ring.
3141 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3142 * @to_req: request we wish to use the object for. See below.
3143 * This will be allocated and returned if a request is
3144 * required but not passed in.
5816d648
BW
3145 *
3146 * This code is meant to abstract object synchronization with the GPU.
3147 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3148 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3149 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3150 * into a buffer at any time, but multiple readers. To ensure each has
3151 * a coherent view of memory, we must:
3152 *
3153 * - If there is an outstanding write request to the object, the new
3154 * request must wait for it to complete (either CPU or in hw, requests
3155 * on the same ring will be naturally ordered).
3156 *
3157 * - If we are a write request (pending_write_domain is set), the new
3158 * request must wait for outstanding read requests to complete.
5816d648 3159 *
91af127f
JH
3160 * For CPU synchronisation (NULL to) no request is required. For syncing with
3161 * rings to_req must be non-NULL. However, a request does not have to be
3162 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3163 * request will be allocated automatically and returned through *to_req. Note
3164 * that it is not guaranteed that commands will be emitted (because the system
3165 * might already be idle). Hence there is no need to create a request that
3166 * might never have any work submitted. Note further that if a request is
3167 * returned in *to_req, it is the responsibility of the caller to submit
3168 * that request (after potentially adding more work to it).
3169 *
5816d648
BW
3170 * Returns 0 if successful, else propagates up the lower layer error.
3171 */
2911a35b
BW
3172int
3173i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3174 struct intel_engine_cs *to,
3175 struct drm_i915_gem_request **to_req)
2911a35b 3176{
b4716185
CW
3177 const bool readonly = obj->base.pending_write_domain == 0;
3178 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3179 int ret, i, n;
41c52415 3180
b4716185 3181 if (!obj->active)
2911a35b
BW
3182 return 0;
3183
b4716185
CW
3184 if (to == NULL)
3185 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3186
b4716185
CW
3187 n = 0;
3188 if (readonly) {
3189 if (obj->last_write_req)
3190 req[n++] = obj->last_write_req;
3191 } else {
3192 for (i = 0; i < I915_NUM_RINGS; i++)
3193 if (obj->last_read_req[i])
3194 req[n++] = obj->last_read_req[i];
3195 }
3196 for (i = 0; i < n; i++) {
91af127f 3197 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3198 if (ret)
3199 return ret;
3200 }
2911a35b 3201
b4716185 3202 return 0;
2911a35b
BW
3203}
3204
b5ffc9bc
CW
3205static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3206{
3207 u32 old_write_domain, old_read_domains;
3208
b5ffc9bc
CW
3209 /* Force a pagefault for domain tracking on next user access */
3210 i915_gem_release_mmap(obj);
3211
b97c3d9c
KP
3212 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3213 return;
3214
97c809fd
CW
3215 /* Wait for any direct GTT access to complete */
3216 mb();
3217
b5ffc9bc
CW
3218 old_read_domains = obj->base.read_domains;
3219 old_write_domain = obj->base.write_domain;
3220
3221 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3222 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3223
3224 trace_i915_gem_object_change_domain(obj,
3225 old_read_domains,
3226 old_write_domain);
3227}
3228
e9f24d5f 3229static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3230{
07fe0b12 3231 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3232 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3233 int ret;
673a394b 3234
07fe0b12 3235 if (list_empty(&vma->vma_link))
673a394b
EA
3236 return 0;
3237
0ff501cb
DV
3238 if (!drm_mm_node_allocated(&vma->node)) {
3239 i915_gem_vma_destroy(vma);
0ff501cb
DV
3240 return 0;
3241 }
433544bd 3242
d7f46fc4 3243 if (vma->pin_count)
31d8d651 3244 return -EBUSY;
673a394b 3245
c4670ad0
CW
3246 BUG_ON(obj->pages == NULL);
3247
e9f24d5f
TU
3248 if (wait) {
3249 ret = i915_gem_object_wait_rendering(obj, false);
3250 if (ret)
3251 return ret;
3252 }
a8198eea 3253
fe14d5f4
TU
3254 if (i915_is_ggtt(vma->vm) &&
3255 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3256 i915_gem_object_finish_gtt(obj);
5323fd04 3257
8b1bc9b4
DV
3258 /* release the fence reg _after_ flushing */
3259 ret = i915_gem_object_put_fence(obj);
3260 if (ret)
3261 return ret;
3262 }
96b47b65 3263
07fe0b12 3264 trace_i915_vma_unbind(vma);
db53a302 3265
777dc5bb 3266 vma->vm->unbind_vma(vma);
5e562f1d 3267 vma->bound = 0;
6f65e29a 3268
64bf9303 3269 list_del_init(&vma->mm_list);
fe14d5f4
TU
3270 if (i915_is_ggtt(vma->vm)) {
3271 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3272 obj->map_and_fenceable = false;
3273 } else if (vma->ggtt_view.pages) {
3274 sg_free_table(vma->ggtt_view.pages);
3275 kfree(vma->ggtt_view.pages);
fe14d5f4 3276 }
016a65a3 3277 vma->ggtt_view.pages = NULL;
fe14d5f4 3278 }
673a394b 3279
2f633156
BW
3280 drm_mm_remove_node(&vma->node);
3281 i915_gem_vma_destroy(vma);
3282
3283 /* Since the unbound list is global, only move to that list if
b93dab6e 3284 * no more VMAs exist. */
e2273302 3285 if (list_empty(&obj->vma_list))
2f633156 3286 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3287
70903c3b
CW
3288 /* And finally now the object is completely decoupled from this vma,
3289 * we can drop its hold on the backing storage and allow it to be
3290 * reaped by the shrinker.
3291 */
3292 i915_gem_object_unpin_pages(obj);
3293
88241785 3294 return 0;
54cf91dc
CW
3295}
3296
e9f24d5f
TU
3297int i915_vma_unbind(struct i915_vma *vma)
3298{
3299 return __i915_vma_unbind(vma, true);
3300}
3301
3302int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3303{
3304 return __i915_vma_unbind(vma, false);
3305}
3306
b2da9fe5 3307int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3308{
3e31c6c0 3309 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3310 struct intel_engine_cs *ring;
1ec14ad3 3311 int ret, i;
4df2faf4 3312
4df2faf4 3313 /* Flush everything onto the inactive list. */
b4519513 3314 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3315 if (!i915.enable_execlists) {
73cfa865
JH
3316 struct drm_i915_gem_request *req;
3317
3318 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3319 if (ret)
3320 return ret;
73cfa865 3321
ba01cc93 3322 ret = i915_switch_context(req);
73cfa865
JH
3323 if (ret) {
3324 i915_gem_request_cancel(req);
3325 return ret;
3326 }
3327
75289874 3328 i915_add_request_no_flush(req);
ecdb5fd8 3329 }
b6c7488d 3330
3e960501 3331 ret = intel_ring_idle(ring);
1ec14ad3
CW
3332 if (ret)
3333 return ret;
3334 }
4df2faf4 3335
b4716185 3336 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3337 return 0;
4df2faf4
DV
3338}
3339
4144f9b5 3340static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3341 unsigned long cache_level)
3342{
4144f9b5 3343 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3344 struct drm_mm_node *other;
3345
4144f9b5
CW
3346 /*
3347 * On some machines we have to be careful when putting differing types
3348 * of snoopable memory together to avoid the prefetcher crossing memory
3349 * domains and dying. During vm initialisation, we decide whether or not
3350 * these constraints apply and set the drm_mm.color_adjust
3351 * appropriately.
42d6ab48 3352 */
4144f9b5 3353 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3354 return true;
3355
c6cfb325 3356 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3357 return true;
3358
3359 if (list_empty(&gtt_space->node_list))
3360 return true;
3361
3362 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3363 if (other->allocated && !other->hole_follows && other->color != cache_level)
3364 return false;
3365
3366 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3367 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3368 return false;
3369
3370 return true;
3371}
3372
673a394b 3373/**
91e6711e
JL
3374 * Finds free space in the GTT aperture and binds the object or a view of it
3375 * there.
673a394b 3376 */
262de145 3377static struct i915_vma *
07fe0b12
BW
3378i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3379 struct i915_address_space *vm,
ec7adb6e 3380 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3381 unsigned alignment,
ec7adb6e 3382 uint64_t flags)
673a394b 3383{
05394f39 3384 struct drm_device *dev = obj->base.dev;
3e31c6c0 3385 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3386 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3387 u32 search_flag, alloc_flag;
3388 u64 start, end;
65bd342f 3389 u64 size, fence_size;
2f633156 3390 struct i915_vma *vma;
07f73f69 3391 int ret;
673a394b 3392
91e6711e
JL
3393 if (i915_is_ggtt(vm)) {
3394 u32 view_size;
3395
3396 if (WARN_ON(!ggtt_view))
3397 return ERR_PTR(-EINVAL);
ec7adb6e 3398
91e6711e
JL
3399 view_size = i915_ggtt_view_size(obj, ggtt_view);
3400
3401 fence_size = i915_gem_get_gtt_size(dev,
3402 view_size,
3403 obj->tiling_mode);
3404 fence_alignment = i915_gem_get_gtt_alignment(dev,
3405 view_size,
3406 obj->tiling_mode,
3407 true);
3408 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3409 view_size,
3410 obj->tiling_mode,
3411 false);
3412 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3413 } else {
3414 fence_size = i915_gem_get_gtt_size(dev,
3415 obj->base.size,
3416 obj->tiling_mode);
3417 fence_alignment = i915_gem_get_gtt_alignment(dev,
3418 obj->base.size,
3419 obj->tiling_mode,
3420 true);
3421 unfenced_alignment =
3422 i915_gem_get_gtt_alignment(dev,
3423 obj->base.size,
3424 obj->tiling_mode,
3425 false);
3426 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3427 }
a00b10c3 3428
101b506a
MT
3429 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3430 end = vm->total;
3431 if (flags & PIN_MAPPABLE)
3432 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3433 if (flags & PIN_ZONE_4G)
3434 end = min_t(u64, end, (1ULL << 32));
3435
673a394b 3436 if (alignment == 0)
1ec9e26d 3437 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3438 unfenced_alignment;
1ec9e26d 3439 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3440 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3441 ggtt_view ? ggtt_view->type : 0,
3442 alignment);
262de145 3443 return ERR_PTR(-EINVAL);
673a394b
EA
3444 }
3445
91e6711e
JL
3446 /* If binding the object/GGTT view requires more space than the entire
3447 * aperture has, reject it early before evicting everything in a vain
3448 * attempt to find space.
654fc607 3449 */
91e6711e 3450 if (size > end) {
65bd342f 3451 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3452 ggtt_view ? ggtt_view->type : 0,
3453 size,
1ec9e26d 3454 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3455 end);
262de145 3456 return ERR_PTR(-E2BIG);
654fc607
CW
3457 }
3458
37e680a1 3459 ret = i915_gem_object_get_pages(obj);
6c085a72 3460 if (ret)
262de145 3461 return ERR_PTR(ret);
6c085a72 3462
fbdda6fb
CW
3463 i915_gem_object_pin_pages(obj);
3464
ec7adb6e
JL
3465 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3466 i915_gem_obj_lookup_or_create_vma(obj, vm);
3467
262de145 3468 if (IS_ERR(vma))
bc6bc15b 3469 goto err_unpin;
2f633156 3470
506a8e87
CW
3471 if (flags & PIN_OFFSET_FIXED) {
3472 uint64_t offset = flags & PIN_OFFSET_MASK;
3473
3474 if (offset & (alignment - 1) || offset + size > end) {
3475 ret = -EINVAL;
3476 goto err_free_vma;
3477 }
3478 vma->node.start = offset;
3479 vma->node.size = size;
3480 vma->node.color = obj->cache_level;
3481 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3482 if (ret) {
3483 ret = i915_gem_evict_for_vma(vma);
3484 if (ret == 0)
3485 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3486 }
3487 if (ret)
3488 goto err_free_vma;
101b506a 3489 } else {
506a8e87
CW
3490 if (flags & PIN_HIGH) {
3491 search_flag = DRM_MM_SEARCH_BELOW;
3492 alloc_flag = DRM_MM_CREATE_TOP;
3493 } else {
3494 search_flag = DRM_MM_SEARCH_DEFAULT;
3495 alloc_flag = DRM_MM_CREATE_DEFAULT;
3496 }
101b506a 3497
0a9ae0d7 3498search_free:
506a8e87
CW
3499 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3500 size, alignment,
3501 obj->cache_level,
3502 start, end,
3503 search_flag,
3504 alloc_flag);
3505 if (ret) {
3506 ret = i915_gem_evict_something(dev, vm, size, alignment,
3507 obj->cache_level,
3508 start, end,
3509 flags);
3510 if (ret == 0)
3511 goto search_free;
9731129c 3512
506a8e87
CW
3513 goto err_free_vma;
3514 }
673a394b 3515 }
4144f9b5 3516 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3517 ret = -EINVAL;
bc6bc15b 3518 goto err_remove_node;
673a394b
EA
3519 }
3520
fe14d5f4 3521 trace_i915_vma_bind(vma, flags);
0875546c 3522 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3523 if (ret)
e2273302 3524 goto err_remove_node;
fe14d5f4 3525
35c20a60 3526 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3527 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3528
262de145 3529 return vma;
2f633156 3530
bc6bc15b 3531err_remove_node:
6286ef9b 3532 drm_mm_remove_node(&vma->node);
bc6bc15b 3533err_free_vma:
2f633156 3534 i915_gem_vma_destroy(vma);
262de145 3535 vma = ERR_PTR(ret);
bc6bc15b 3536err_unpin:
2f633156 3537 i915_gem_object_unpin_pages(obj);
262de145 3538 return vma;
673a394b
EA
3539}
3540
000433b6 3541bool
2c22569b
CW
3542i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3543 bool force)
673a394b 3544{
673a394b
EA
3545 /* If we don't have a page list set up, then we're not pinned
3546 * to GPU, and we can ignore the cache flush because it'll happen
3547 * again at bind time.
3548 */
05394f39 3549 if (obj->pages == NULL)
000433b6 3550 return false;
673a394b 3551
769ce464
ID
3552 /*
3553 * Stolen memory is always coherent with the GPU as it is explicitly
3554 * marked as wc by the system, or the system is cache-coherent.
3555 */
6a2c4232 3556 if (obj->stolen || obj->phys_handle)
000433b6 3557 return false;
769ce464 3558
9c23f7fc
CW
3559 /* If the GPU is snooping the contents of the CPU cache,
3560 * we do not need to manually clear the CPU cache lines. However,
3561 * the caches are only snooped when the render cache is
3562 * flushed/invalidated. As we always have to emit invalidations
3563 * and flushes when moving into and out of the RENDER domain, correct
3564 * snooping behaviour occurs naturally as the result of our domain
3565 * tracking.
3566 */
0f71979a
CW
3567 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3568 obj->cache_dirty = true;
000433b6 3569 return false;
0f71979a 3570 }
9c23f7fc 3571
1c5d22f7 3572 trace_i915_gem_object_clflush(obj);
9da3da66 3573 drm_clflush_sg(obj->pages);
0f71979a 3574 obj->cache_dirty = false;
000433b6
CW
3575
3576 return true;
e47c68e9
EA
3577}
3578
3579/** Flushes the GTT write domain for the object if it's dirty. */
3580static void
05394f39 3581i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3582{
1c5d22f7
CW
3583 uint32_t old_write_domain;
3584
05394f39 3585 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3586 return;
3587
63256ec5 3588 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3589 * to it immediately go to main memory as far as we know, so there's
3590 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3591 *
3592 * However, we do have to enforce the order so that all writes through
3593 * the GTT land before any writes to the device, such as updates to
3594 * the GATT itself.
e47c68e9 3595 */
63256ec5
CW
3596 wmb();
3597
05394f39
CW
3598 old_write_domain = obj->base.write_domain;
3599 obj->base.write_domain = 0;
1c5d22f7 3600
de152b62 3601 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3602
1c5d22f7 3603 trace_i915_gem_object_change_domain(obj,
05394f39 3604 obj->base.read_domains,
1c5d22f7 3605 old_write_domain);
e47c68e9
EA
3606}
3607
3608/** Flushes the CPU write domain for the object if it's dirty. */
3609static void
e62b59e4 3610i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3611{
1c5d22f7 3612 uint32_t old_write_domain;
e47c68e9 3613
05394f39 3614 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3615 return;
3616
e62b59e4 3617 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3618 i915_gem_chipset_flush(obj->base.dev);
3619
05394f39
CW
3620 old_write_domain = obj->base.write_domain;
3621 obj->base.write_domain = 0;
1c5d22f7 3622
de152b62 3623 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3624
1c5d22f7 3625 trace_i915_gem_object_change_domain(obj,
05394f39 3626 obj->base.read_domains,
1c5d22f7 3627 old_write_domain);
e47c68e9
EA
3628}
3629
2ef7eeaa
EA
3630/**
3631 * Moves a single object to the GTT read, and possibly write domain.
3632 *
3633 * This function returns when the move is complete, including waiting on
3634 * flushes to occur.
3635 */
79e53945 3636int
2021746e 3637i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3638{
1c5d22f7 3639 uint32_t old_write_domain, old_read_domains;
43566ded 3640 struct i915_vma *vma;
e47c68e9 3641 int ret;
2ef7eeaa 3642
8d7e3de1
CW
3643 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3644 return 0;
3645
0201f1ec 3646 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3647 if (ret)
3648 return ret;
3649
43566ded
CW
3650 /* Flush and acquire obj->pages so that we are coherent through
3651 * direct access in memory with previous cached writes through
3652 * shmemfs and that our cache domain tracking remains valid.
3653 * For example, if the obj->filp was moved to swap without us
3654 * being notified and releasing the pages, we would mistakenly
3655 * continue to assume that the obj remained out of the CPU cached
3656 * domain.
3657 */
3658 ret = i915_gem_object_get_pages(obj);
3659 if (ret)
3660 return ret;
3661
e62b59e4 3662 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3663
d0a57789
CW
3664 /* Serialise direct access to this object with the barriers for
3665 * coherent writes from the GPU, by effectively invalidating the
3666 * GTT domain upon first access.
3667 */
3668 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3669 mb();
3670
05394f39
CW
3671 old_write_domain = obj->base.write_domain;
3672 old_read_domains = obj->base.read_domains;
1c5d22f7 3673
e47c68e9
EA
3674 /* It should now be out of any other write domains, and we can update
3675 * the domain values for our changes.
3676 */
05394f39
CW
3677 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3678 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3679 if (write) {
05394f39
CW
3680 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3681 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3682 obj->dirty = 1;
2ef7eeaa
EA
3683 }
3684
1c5d22f7
CW
3685 trace_i915_gem_object_change_domain(obj,
3686 old_read_domains,
3687 old_write_domain);
3688
8325a09d 3689 /* And bump the LRU for this access */
43566ded
CW
3690 vma = i915_gem_obj_to_ggtt(obj);
3691 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3692 list_move_tail(&vma->mm_list,
43566ded 3693 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3694
e47c68e9
EA
3695 return 0;
3696}
3697
ef55f92a
CW
3698/**
3699 * Changes the cache-level of an object across all VMA.
3700 *
3701 * After this function returns, the object will be in the new cache-level
3702 * across all GTT and the contents of the backing storage will be coherent,
3703 * with respect to the new cache-level. In order to keep the backing storage
3704 * coherent for all users, we only allow a single cache level to be set
3705 * globally on the object and prevent it from being changed whilst the
3706 * hardware is reading from the object. That is if the object is currently
3707 * on the scanout it will be set to uncached (or equivalent display
3708 * cache coherency) and all non-MOCS GPU access will also be uncached so
3709 * that all direct access to the scanout remains coherent.
3710 */
e4ffd173
CW
3711int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3712 enum i915_cache_level cache_level)
3713{
7bddb01f 3714 struct drm_device *dev = obj->base.dev;
df6f783a 3715 struct i915_vma *vma, *next;
ef55f92a 3716 bool bound = false;
ed75a55b 3717 int ret = 0;
e4ffd173
CW
3718
3719 if (obj->cache_level == cache_level)
ed75a55b 3720 goto out;
e4ffd173 3721
ef55f92a
CW
3722 /* Inspect the list of currently bound VMA and unbind any that would
3723 * be invalid given the new cache-level. This is principally to
3724 * catch the issue of the CS prefetch crossing page boundaries and
3725 * reading an invalid PTE on older architectures.
3726 */
df6f783a 3727 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
ef55f92a
CW
3728 if (!drm_mm_node_allocated(&vma->node))
3729 continue;
3730
3731 if (vma->pin_count) {
3732 DRM_DEBUG("can not change the cache level of pinned objects\n");
3733 return -EBUSY;
3734 }
3735
4144f9b5 3736 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3737 ret = i915_vma_unbind(vma);
3089c6f2
BW
3738 if (ret)
3739 return ret;
ef55f92a
CW
3740 } else
3741 bound = true;
42d6ab48
CW
3742 }
3743
ef55f92a
CW
3744 /* We can reuse the existing drm_mm nodes but need to change the
3745 * cache-level on the PTE. We could simply unbind them all and
3746 * rebind with the correct cache-level on next use. However since
3747 * we already have a valid slot, dma mapping, pages etc, we may as
3748 * rewrite the PTE in the belief that doing so tramples upon less
3749 * state and so involves less work.
3750 */
3751 if (bound) {
3752 /* Before we change the PTE, the GPU must not be accessing it.
3753 * If we wait upon the object, we know that all the bound
3754 * VMA are no longer active.
3755 */
2e2f351d 3756 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3757 if (ret)
3758 return ret;
3759
ef55f92a
CW
3760 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3761 /* Access to snoopable pages through the GTT is
3762 * incoherent and on some machines causes a hard
3763 * lockup. Relinquish the CPU mmaping to force
3764 * userspace to refault in the pages and we can
3765 * then double check if the GTT mapping is still
3766 * valid for that pointer access.
3767 */
3768 i915_gem_release_mmap(obj);
3769
3770 /* As we no longer need a fence for GTT access,
3771 * we can relinquish it now (and so prevent having
3772 * to steal a fence from someone else on the next
3773 * fence request). Note GPU activity would have
3774 * dropped the fence as all snoopable access is
3775 * supposed to be linear.
3776 */
e4ffd173
CW
3777 ret = i915_gem_object_put_fence(obj);
3778 if (ret)
3779 return ret;
ef55f92a
CW
3780 } else {
3781 /* We either have incoherent backing store and
3782 * so no GTT access or the architecture is fully
3783 * coherent. In such cases, existing GTT mmaps
3784 * ignore the cache bit in the PTE and we can
3785 * rewrite it without confusing the GPU or having
3786 * to force userspace to fault back in its mmaps.
3787 */
e4ffd173
CW
3788 }
3789
ef55f92a
CW
3790 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3791 if (!drm_mm_node_allocated(&vma->node))
3792 continue;
3793
3794 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3795 if (ret)
3796 return ret;
3797 }
e4ffd173
CW
3798 }
3799
2c22569b
CW
3800 list_for_each_entry(vma, &obj->vma_list, vma_link)
3801 vma->node.color = cache_level;
3802 obj->cache_level = cache_level;
3803
ed75a55b 3804out:
ef55f92a
CW
3805 /* Flush the dirty CPU caches to the backing storage so that the
3806 * object is now coherent at its new cache level (with respect
3807 * to the access domain).
3808 */
0f71979a
CW
3809 if (obj->cache_dirty &&
3810 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3811 cpu_write_needs_clflush(obj)) {
3812 if (i915_gem_clflush_object(obj, true))
3813 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3814 }
3815
e4ffd173
CW
3816 return 0;
3817}
3818
199adf40
BW
3819int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3820 struct drm_file *file)
e6994aee 3821{
199adf40 3822 struct drm_i915_gem_caching *args = data;
e6994aee 3823 struct drm_i915_gem_object *obj;
e6994aee
CW
3824
3825 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3826 if (&obj->base == NULL)
3827 return -ENOENT;
e6994aee 3828
651d794f
CW
3829 switch (obj->cache_level) {
3830 case I915_CACHE_LLC:
3831 case I915_CACHE_L3_LLC:
3832 args->caching = I915_CACHING_CACHED;
3833 break;
3834
4257d3ba
CW
3835 case I915_CACHE_WT:
3836 args->caching = I915_CACHING_DISPLAY;
3837 break;
3838
651d794f
CW
3839 default:
3840 args->caching = I915_CACHING_NONE;
3841 break;
3842 }
e6994aee 3843
432be69d
CW
3844 drm_gem_object_unreference_unlocked(&obj->base);
3845 return 0;
e6994aee
CW
3846}
3847
199adf40
BW
3848int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3849 struct drm_file *file)
e6994aee 3850{
fd0fe6ac 3851 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3852 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3853 struct drm_i915_gem_object *obj;
3854 enum i915_cache_level level;
3855 int ret;
3856
199adf40
BW
3857 switch (args->caching) {
3858 case I915_CACHING_NONE:
e6994aee
CW
3859 level = I915_CACHE_NONE;
3860 break;
199adf40 3861 case I915_CACHING_CACHED:
e5756c10
ID
3862 /*
3863 * Due to a HW issue on BXT A stepping, GPU stores via a
3864 * snooped mapping may leave stale data in a corresponding CPU
3865 * cacheline, whereas normally such cachelines would get
3866 * invalidated.
3867 */
e87a005d 3868 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
e5756c10
ID
3869 return -ENODEV;
3870
e6994aee
CW
3871 level = I915_CACHE_LLC;
3872 break;
4257d3ba
CW
3873 case I915_CACHING_DISPLAY:
3874 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3875 break;
e6994aee
CW
3876 default:
3877 return -EINVAL;
3878 }
3879
fd0fe6ac
ID
3880 intel_runtime_pm_get(dev_priv);
3881
3bc2913e
BW
3882 ret = i915_mutex_lock_interruptible(dev);
3883 if (ret)
fd0fe6ac 3884 goto rpm_put;
3bc2913e 3885
e6994aee
CW
3886 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3887 if (&obj->base == NULL) {
3888 ret = -ENOENT;
3889 goto unlock;
3890 }
3891
3892 ret = i915_gem_object_set_cache_level(obj, level);
3893
3894 drm_gem_object_unreference(&obj->base);
3895unlock:
3896 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3897rpm_put:
3898 intel_runtime_pm_put(dev_priv);
3899
e6994aee
CW
3900 return ret;
3901}
3902
b9241ea3 3903/*
2da3b9b9
CW
3904 * Prepare buffer for display plane (scanout, cursors, etc).
3905 * Can be called from an uninterruptible phase (modesetting) and allows
3906 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3907 */
3908int
2da3b9b9
CW
3909i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3910 u32 alignment,
e6617330 3911 const struct i915_ggtt_view *view)
b9241ea3 3912{
2da3b9b9 3913 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3914 int ret;
3915
cc98b413
CW
3916 /* Mark the pin_display early so that we account for the
3917 * display coherency whilst setting up the cache domains.
3918 */
8a0c39b1 3919 obj->pin_display++;
cc98b413 3920
a7ef0640
EA
3921 /* The display engine is not coherent with the LLC cache on gen6. As
3922 * a result, we make sure that the pinning that is about to occur is
3923 * done with uncached PTEs. This is lowest common denominator for all
3924 * chipsets.
3925 *
3926 * However for gen6+, we could do better by using the GFDT bit instead
3927 * of uncaching, which would allow us to flush all the LLC-cached data
3928 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3929 */
651d794f
CW
3930 ret = i915_gem_object_set_cache_level(obj,
3931 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3932 if (ret)
cc98b413 3933 goto err_unpin_display;
a7ef0640 3934
2da3b9b9
CW
3935 /* As the user may map the buffer once pinned in the display plane
3936 * (e.g. libkms for the bootup splash), we have to ensure that we
3937 * always use map_and_fenceable for all scanout buffers.
3938 */
50470bb0
TU
3939 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3940 view->type == I915_GGTT_VIEW_NORMAL ?
3941 PIN_MAPPABLE : 0);
2da3b9b9 3942 if (ret)
cc98b413 3943 goto err_unpin_display;
2da3b9b9 3944
e62b59e4 3945 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3946
2da3b9b9 3947 old_write_domain = obj->base.write_domain;
05394f39 3948 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3949
3950 /* It should now be out of any other write domains, and we can update
3951 * the domain values for our changes.
3952 */
e5f1d962 3953 obj->base.write_domain = 0;
05394f39 3954 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3955
3956 trace_i915_gem_object_change_domain(obj,
3957 old_read_domains,
2da3b9b9 3958 old_write_domain);
b9241ea3
ZW
3959
3960 return 0;
cc98b413
CW
3961
3962err_unpin_display:
8a0c39b1 3963 obj->pin_display--;
cc98b413
CW
3964 return ret;
3965}
3966
3967void
e6617330
TU
3968i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3969 const struct i915_ggtt_view *view)
cc98b413 3970{
8a0c39b1
TU
3971 if (WARN_ON(obj->pin_display == 0))
3972 return;
3973
e6617330
TU
3974 i915_gem_object_ggtt_unpin_view(obj, view);
3975
8a0c39b1 3976 obj->pin_display--;
b9241ea3
ZW
3977}
3978
e47c68e9
EA
3979/**
3980 * Moves a single object to the CPU read, and possibly write domain.
3981 *
3982 * This function returns when the move is complete, including waiting on
3983 * flushes to occur.
3984 */
dabdfe02 3985int
919926ae 3986i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3987{
1c5d22f7 3988 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3989 int ret;
3990
8d7e3de1
CW
3991 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3992 return 0;
3993
0201f1ec 3994 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3995 if (ret)
3996 return ret;
3997
e47c68e9 3998 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3999
05394f39
CW
4000 old_write_domain = obj->base.write_domain;
4001 old_read_domains = obj->base.read_domains;
1c5d22f7 4002
e47c68e9 4003 /* Flush the CPU cache if it's still invalid. */
05394f39 4004 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4005 i915_gem_clflush_object(obj, false);
2ef7eeaa 4006
05394f39 4007 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4008 }
4009
4010 /* It should now be out of any other write domains, and we can update
4011 * the domain values for our changes.
4012 */
05394f39 4013 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4014
4015 /* If we're writing through the CPU, then the GPU read domains will
4016 * need to be invalidated at next use.
4017 */
4018 if (write) {
05394f39
CW
4019 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4020 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4021 }
2ef7eeaa 4022
1c5d22f7
CW
4023 trace_i915_gem_object_change_domain(obj,
4024 old_read_domains,
4025 old_write_domain);
4026
2ef7eeaa
EA
4027 return 0;
4028}
4029
673a394b
EA
4030/* Throttle our rendering by waiting until the ring has completed our requests
4031 * emitted over 20 msec ago.
4032 *
b962442e
EA
4033 * Note that if we were to use the current jiffies each time around the loop,
4034 * we wouldn't escape the function with any frames outstanding if the time to
4035 * render a frame was over 20ms.
4036 *
673a394b
EA
4037 * This should get us reasonable parallelism between CPU and GPU but also
4038 * relatively low latency when blocking on a particular request to finish.
4039 */
40a5f0de 4040static int
f787a5f5 4041i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4042{
f787a5f5
CW
4043 struct drm_i915_private *dev_priv = dev->dev_private;
4044 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4045 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4046 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4047 unsigned reset_counter;
f787a5f5 4048 int ret;
93533c29 4049
308887aa
DV
4050 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4051 if (ret)
4052 return ret;
4053
4054 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4055 if (ret)
4056 return ret;
e110e8d6 4057
1c25595f 4058 spin_lock(&file_priv->mm.lock);
f787a5f5 4059 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4060 if (time_after_eq(request->emitted_jiffies, recent_enough))
4061 break;
40a5f0de 4062
fcfa423c
JH
4063 /*
4064 * Note that the request might not have been submitted yet.
4065 * In which case emitted_jiffies will be zero.
4066 */
4067 if (!request->emitted_jiffies)
4068 continue;
4069
54fb2411 4070 target = request;
b962442e 4071 }
f69061be 4072 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4073 if (target)
4074 i915_gem_request_reference(target);
1c25595f 4075 spin_unlock(&file_priv->mm.lock);
40a5f0de 4076
54fb2411 4077 if (target == NULL)
f787a5f5 4078 return 0;
2bc43b5c 4079
9c654818 4080 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4081 if (ret == 0)
4082 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4083
41037f9f 4084 i915_gem_request_unreference__unlocked(target);
ff865885 4085
40a5f0de
EA
4086 return ret;
4087}
4088
d23db88c
CW
4089static bool
4090i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4091{
4092 struct drm_i915_gem_object *obj = vma->obj;
4093
4094 if (alignment &&
4095 vma->node.start & (alignment - 1))
4096 return true;
4097
4098 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4099 return true;
4100
4101 if (flags & PIN_OFFSET_BIAS &&
4102 vma->node.start < (flags & PIN_OFFSET_MASK))
4103 return true;
4104
506a8e87
CW
4105 if (flags & PIN_OFFSET_FIXED &&
4106 vma->node.start != (flags & PIN_OFFSET_MASK))
4107 return true;
4108
d23db88c
CW
4109 return false;
4110}
4111
ec7adb6e
JL
4112static int
4113i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4114 struct i915_address_space *vm,
4115 const struct i915_ggtt_view *ggtt_view,
4116 uint32_t alignment,
4117 uint64_t flags)
673a394b 4118{
6e7186af 4119 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4120 struct i915_vma *vma;
ef79e17c 4121 unsigned bound;
673a394b
EA
4122 int ret;
4123
6e7186af
BW
4124 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4125 return -ENODEV;
4126
bf3d149b 4127 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4128 return -EINVAL;
07fe0b12 4129
c826c449
CW
4130 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4131 return -EINVAL;
4132
ec7adb6e
JL
4133 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4134 return -EINVAL;
4135
4136 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4137 i915_gem_obj_to_vma(obj, vm);
4138
4139 if (IS_ERR(vma))
4140 return PTR_ERR(vma);
4141
07fe0b12 4142 if (vma) {
d7f46fc4
BW
4143 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4144 return -EBUSY;
4145
d23db88c 4146 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4147 WARN(vma->pin_count,
ec7adb6e 4148 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4149 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4150 " obj->map_and_fenceable=%d\n",
ec7adb6e 4151 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4152 upper_32_bits(vma->node.start),
4153 lower_32_bits(vma->node.start),
fe14d5f4 4154 alignment,
d23db88c 4155 !!(flags & PIN_MAPPABLE),
05394f39 4156 obj->map_and_fenceable);
07fe0b12 4157 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4158 if (ret)
4159 return ret;
8ea99c92
DV
4160
4161 vma = NULL;
ac0c6b5a
CW
4162 }
4163 }
4164
ef79e17c 4165 bound = vma ? vma->bound : 0;
8ea99c92 4166 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4167 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4168 flags);
262de145
DV
4169 if (IS_ERR(vma))
4170 return PTR_ERR(vma);
0875546c
DV
4171 } else {
4172 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4173 if (ret)
4174 return ret;
4175 }
74898d7e 4176
91e6711e
JL
4177 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4178 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4179 bool mappable, fenceable;
4180 u32 fence_size, fence_alignment;
4181
4182 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4183 obj->base.size,
4184 obj->tiling_mode);
4185 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4186 obj->base.size,
4187 obj->tiling_mode,
4188 true);
4189
4190 fenceable = (vma->node.size == fence_size &&
4191 (vma->node.start & (fence_alignment - 1)) == 0);
4192
e8dec1dd 4193 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4194 dev_priv->gtt.mappable_end);
4195
4196 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4197
91e6711e
JL
4198 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4199 }
ef79e17c 4200
8ea99c92 4201 vma->pin_count++;
673a394b
EA
4202 return 0;
4203}
4204
ec7adb6e
JL
4205int
4206i915_gem_object_pin(struct drm_i915_gem_object *obj,
4207 struct i915_address_space *vm,
4208 uint32_t alignment,
4209 uint64_t flags)
4210{
4211 return i915_gem_object_do_pin(obj, vm,
4212 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4213 alignment, flags);
4214}
4215
4216int
4217i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4218 const struct i915_ggtt_view *view,
4219 uint32_t alignment,
4220 uint64_t flags)
4221{
4222 if (WARN_ONCE(!view, "no view specified"))
4223 return -EINVAL;
4224
4225 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4226 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4227}
4228
673a394b 4229void
e6617330
TU
4230i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4231 const struct i915_ggtt_view *view)
673a394b 4232{
e6617330 4233 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4234
d7f46fc4 4235 BUG_ON(!vma);
e6617330 4236 WARN_ON(vma->pin_count == 0);
9abc4648 4237 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4238
30154650 4239 --vma->pin_count;
673a394b
EA
4240}
4241
673a394b
EA
4242int
4243i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4244 struct drm_file *file)
673a394b
EA
4245{
4246 struct drm_i915_gem_busy *args = data;
05394f39 4247 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4248 int ret;
4249
76c1dec1 4250 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4251 if (ret)
76c1dec1 4252 return ret;
673a394b 4253
05394f39 4254 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4255 if (&obj->base == NULL) {
1d7cfea1
CW
4256 ret = -ENOENT;
4257 goto unlock;
673a394b 4258 }
d1b851fc 4259
0be555b6
CW
4260 /* Count all active objects as busy, even if they are currently not used
4261 * by the gpu. Users of this interface expect objects to eventually
4262 * become non-busy without any further actions, therefore emit any
4263 * necessary flushes here.
c4de0a5d 4264 */
30dfebf3 4265 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4266 if (ret)
4267 goto unref;
0be555b6 4268
b4716185
CW
4269 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4270 args->busy = obj->active << 16;
4271 if (obj->last_write_req)
4272 args->busy |= obj->last_write_req->ring->id;
673a394b 4273
b4716185 4274unref:
05394f39 4275 drm_gem_object_unreference(&obj->base);
1d7cfea1 4276unlock:
673a394b 4277 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4278 return ret;
673a394b
EA
4279}
4280
4281int
4282i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4283 struct drm_file *file_priv)
4284{
0206e353 4285 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4286}
4287
3ef94daa
CW
4288int
4289i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4290 struct drm_file *file_priv)
4291{
656bfa3a 4292 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4293 struct drm_i915_gem_madvise *args = data;
05394f39 4294 struct drm_i915_gem_object *obj;
76c1dec1 4295 int ret;
3ef94daa
CW
4296
4297 switch (args->madv) {
4298 case I915_MADV_DONTNEED:
4299 case I915_MADV_WILLNEED:
4300 break;
4301 default:
4302 return -EINVAL;
4303 }
4304
1d7cfea1
CW
4305 ret = i915_mutex_lock_interruptible(dev);
4306 if (ret)
4307 return ret;
4308
05394f39 4309 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4310 if (&obj->base == NULL) {
1d7cfea1
CW
4311 ret = -ENOENT;
4312 goto unlock;
3ef94daa 4313 }
3ef94daa 4314
d7f46fc4 4315 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4316 ret = -EINVAL;
4317 goto out;
3ef94daa
CW
4318 }
4319
656bfa3a
DV
4320 if (obj->pages &&
4321 obj->tiling_mode != I915_TILING_NONE &&
4322 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4323 if (obj->madv == I915_MADV_WILLNEED)
4324 i915_gem_object_unpin_pages(obj);
4325 if (args->madv == I915_MADV_WILLNEED)
4326 i915_gem_object_pin_pages(obj);
4327 }
4328
05394f39
CW
4329 if (obj->madv != __I915_MADV_PURGED)
4330 obj->madv = args->madv;
3ef94daa 4331
6c085a72 4332 /* if the object is no longer attached, discard its backing storage */
be6a0376 4333 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4334 i915_gem_object_truncate(obj);
4335
05394f39 4336 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4337
1d7cfea1 4338out:
05394f39 4339 drm_gem_object_unreference(&obj->base);
1d7cfea1 4340unlock:
3ef94daa 4341 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4342 return ret;
3ef94daa
CW
4343}
4344
37e680a1
CW
4345void i915_gem_object_init(struct drm_i915_gem_object *obj,
4346 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4347{
b4716185
CW
4348 int i;
4349
35c20a60 4350 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4351 for (i = 0; i < I915_NUM_RINGS; i++)
4352 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4353 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4354 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4355 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4356
37e680a1
CW
4357 obj->ops = ops;
4358
0327d6ba
CW
4359 obj->fence_reg = I915_FENCE_REG_NONE;
4360 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4361
4362 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4363}
4364
37e680a1
CW
4365static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4366 .get_pages = i915_gem_object_get_pages_gtt,
4367 .put_pages = i915_gem_object_put_pages_gtt,
4368};
4369
05394f39
CW
4370struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4371 size_t size)
ac52bc56 4372{
c397b908 4373 struct drm_i915_gem_object *obj;
5949eac4 4374 struct address_space *mapping;
1a240d4d 4375 gfp_t mask;
ac52bc56 4376
42dcedd4 4377 obj = i915_gem_object_alloc(dev);
c397b908
DV
4378 if (obj == NULL)
4379 return NULL;
673a394b 4380
c397b908 4381 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4382 i915_gem_object_free(obj);
c397b908
DV
4383 return NULL;
4384 }
673a394b 4385
bed1ea95
CW
4386 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4387 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4388 /* 965gm cannot relocate objects above 4GiB. */
4389 mask &= ~__GFP_HIGHMEM;
4390 mask |= __GFP_DMA32;
4391 }
4392
496ad9aa 4393 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4394 mapping_set_gfp_mask(mapping, mask);
5949eac4 4395
37e680a1 4396 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4397
c397b908
DV
4398 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4399 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4400
3d29b842
ED
4401 if (HAS_LLC(dev)) {
4402 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4403 * cache) for about a 10% performance improvement
4404 * compared to uncached. Graphics requests other than
4405 * display scanout are coherent with the CPU in
4406 * accessing this cache. This means in this mode we
4407 * don't need to clflush on the CPU side, and on the
4408 * GPU side we only need to flush internal caches to
4409 * get data visible to the CPU.
4410 *
4411 * However, we maintain the display planes as UC, and so
4412 * need to rebind when first used as such.
4413 */
4414 obj->cache_level = I915_CACHE_LLC;
4415 } else
4416 obj->cache_level = I915_CACHE_NONE;
4417
d861e338
DV
4418 trace_i915_gem_object_create(obj);
4419
05394f39 4420 return obj;
c397b908
DV
4421}
4422
340fbd8c
CW
4423static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4424{
4425 /* If we are the last user of the backing storage (be it shmemfs
4426 * pages or stolen etc), we know that the pages are going to be
4427 * immediately released. In this case, we can then skip copying
4428 * back the contents from the GPU.
4429 */
4430
4431 if (obj->madv != I915_MADV_WILLNEED)
4432 return false;
4433
4434 if (obj->base.filp == NULL)
4435 return true;
4436
4437 /* At first glance, this looks racy, but then again so would be
4438 * userspace racing mmap against close. However, the first external
4439 * reference to the filp can only be obtained through the
4440 * i915_gem_mmap_ioctl() which safeguards us against the user
4441 * acquiring such a reference whilst we are in the middle of
4442 * freeing the object.
4443 */
4444 return atomic_long_read(&obj->base.filp->f_count) == 1;
4445}
4446
1488fc08 4447void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4448{
1488fc08 4449 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4450 struct drm_device *dev = obj->base.dev;
3e31c6c0 4451 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4452 struct i915_vma *vma, *next;
673a394b 4453
f65c9168
PZ
4454 intel_runtime_pm_get(dev_priv);
4455
26e12f89
CW
4456 trace_i915_gem_object_destroy(obj);
4457
07fe0b12 4458 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4459 int ret;
4460
4461 vma->pin_count = 0;
4462 ret = i915_vma_unbind(vma);
07fe0b12
BW
4463 if (WARN_ON(ret == -ERESTARTSYS)) {
4464 bool was_interruptible;
1488fc08 4465
07fe0b12
BW
4466 was_interruptible = dev_priv->mm.interruptible;
4467 dev_priv->mm.interruptible = false;
1488fc08 4468
07fe0b12 4469 WARN_ON(i915_vma_unbind(vma));
1488fc08 4470
07fe0b12
BW
4471 dev_priv->mm.interruptible = was_interruptible;
4472 }
1488fc08
CW
4473 }
4474
1d64ae71
BW
4475 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4476 * before progressing. */
4477 if (obj->stolen)
4478 i915_gem_object_unpin_pages(obj);
4479
a071fa00
DV
4480 WARN_ON(obj->frontbuffer_bits);
4481
656bfa3a
DV
4482 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4483 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4484 obj->tiling_mode != I915_TILING_NONE)
4485 i915_gem_object_unpin_pages(obj);
4486
401c29f6
BW
4487 if (WARN_ON(obj->pages_pin_count))
4488 obj->pages_pin_count = 0;
340fbd8c 4489 if (discard_backing_storage(obj))
5537252b 4490 obj->madv = I915_MADV_DONTNEED;
37e680a1 4491 i915_gem_object_put_pages(obj);
d8cb5086 4492 i915_gem_object_free_mmap_offset(obj);
de151cf6 4493
9da3da66
CW
4494 BUG_ON(obj->pages);
4495
2f745ad3
CW
4496 if (obj->base.import_attach)
4497 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4498
5cc9ed4b
CW
4499 if (obj->ops->release)
4500 obj->ops->release(obj);
4501
05394f39
CW
4502 drm_gem_object_release(&obj->base);
4503 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4504
05394f39 4505 kfree(obj->bit_17);
42dcedd4 4506 i915_gem_object_free(obj);
f65c9168
PZ
4507
4508 intel_runtime_pm_put(dev_priv);
673a394b
EA
4509}
4510
ec7adb6e
JL
4511struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4512 struct i915_address_space *vm)
e656a6cb
DV
4513{
4514 struct i915_vma *vma;
ec7adb6e 4515 list_for_each_entry(vma, &obj->vma_list, vma_link) {
1b683729
TU
4516 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4517 vma->vm == vm)
e656a6cb 4518 return vma;
ec7adb6e
JL
4519 }
4520 return NULL;
4521}
4522
4523struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4524 const struct i915_ggtt_view *view)
4525{
4526 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4527 struct i915_vma *vma;
e656a6cb 4528
ec7adb6e
JL
4529 if (WARN_ONCE(!view, "no view specified"))
4530 return ERR_PTR(-EINVAL);
4531
4532 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4533 if (vma->vm == ggtt &&
4534 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4535 return vma;
e656a6cb
DV
4536 return NULL;
4537}
4538
2f633156
BW
4539void i915_gem_vma_destroy(struct i915_vma *vma)
4540{
b9d06dd9 4541 struct i915_address_space *vm = NULL;
2f633156 4542 WARN_ON(vma->node.allocated);
aaa05667
CW
4543
4544 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4545 if (!list_empty(&vma->exec_list))
4546 return;
4547
b9d06dd9 4548 vm = vma->vm;
b9d06dd9 4549
841cd773
DV
4550 if (!i915_is_ggtt(vm))
4551 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4552
8b9c2b94 4553 list_del(&vma->vma_link);
b93dab6e 4554
e20d2ab7 4555 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4556}
4557
e3efda49
CW
4558static void
4559i915_gem_stop_ringbuffers(struct drm_device *dev)
4560{
4561 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4562 struct intel_engine_cs *ring;
e3efda49
CW
4563 int i;
4564
4565 for_each_ring(ring, dev_priv, i)
a83014d3 4566 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4567}
4568
29105ccc 4569int
45c5f202 4570i915_gem_suspend(struct drm_device *dev)
29105ccc 4571{
3e31c6c0 4572 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4573 int ret = 0;
28dfe52a 4574
45c5f202 4575 mutex_lock(&dev->struct_mutex);
b2da9fe5 4576 ret = i915_gpu_idle(dev);
f7403347 4577 if (ret)
45c5f202 4578 goto err;
f7403347 4579
b2da9fe5 4580 i915_gem_retire_requests(dev);
673a394b 4581
e3efda49 4582 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4583 mutex_unlock(&dev->struct_mutex);
4584
737b1506 4585 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4586 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4587 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4588
bdcf120b
CW
4589 /* Assert that we sucessfully flushed all the work and
4590 * reset the GPU back to its idle, low power state.
4591 */
4592 WARN_ON(dev_priv->mm.busy);
4593
673a394b 4594 return 0;
45c5f202
CW
4595
4596err:
4597 mutex_unlock(&dev->struct_mutex);
4598 return ret;
673a394b
EA
4599}
4600
6909a666 4601int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4602{
6909a666 4603 struct intel_engine_cs *ring = req->ring;
c3787e2e 4604 struct drm_device *dev = ring->dev;
3e31c6c0 4605 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4606 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4607 int i, ret;
b9524a1e 4608
040d2baa 4609 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4610 return 0;
b9524a1e 4611
5fb9de1a 4612 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4613 if (ret)
4614 return ret;
b9524a1e 4615
c3787e2e
BW
4616 /*
4617 * Note: We do not worry about the concurrent register cacheline hang
4618 * here because no other code should access these registers other than
4619 * at initialization time.
4620 */
6fa1c5f1 4621 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
c3787e2e 4622 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 4623 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
6fa1c5f1 4624 intel_ring_emit(ring, remap_info[i]);
b9524a1e
BW
4625 }
4626
c3787e2e 4627 intel_ring_advance(ring);
b9524a1e 4628
c3787e2e 4629 return ret;
b9524a1e
BW
4630}
4631
f691e2f4
DV
4632void i915_gem_init_swizzling(struct drm_device *dev)
4633{
3e31c6c0 4634 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4635
11782b02 4636 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4637 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4638 return;
4639
4640 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4641 DISP_TILE_SURFACE_SWIZZLING);
4642
11782b02
DV
4643 if (IS_GEN5(dev))
4644 return;
4645
f691e2f4
DV
4646 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4647 if (IS_GEN6(dev))
6b26c86d 4648 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4649 else if (IS_GEN7(dev))
6b26c86d 4650 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4651 else if (IS_GEN8(dev))
4652 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4653 else
4654 BUG();
f691e2f4 4655}
e21af88d 4656
81e7f200
VS
4657static void init_unused_ring(struct drm_device *dev, u32 base)
4658{
4659 struct drm_i915_private *dev_priv = dev->dev_private;
4660
4661 I915_WRITE(RING_CTL(base), 0);
4662 I915_WRITE(RING_HEAD(base), 0);
4663 I915_WRITE(RING_TAIL(base), 0);
4664 I915_WRITE(RING_START(base), 0);
4665}
4666
4667static void init_unused_rings(struct drm_device *dev)
4668{
4669 if (IS_I830(dev)) {
4670 init_unused_ring(dev, PRB1_BASE);
4671 init_unused_ring(dev, SRB0_BASE);
4672 init_unused_ring(dev, SRB1_BASE);
4673 init_unused_ring(dev, SRB2_BASE);
4674 init_unused_ring(dev, SRB3_BASE);
4675 } else if (IS_GEN2(dev)) {
4676 init_unused_ring(dev, SRB0_BASE);
4677 init_unused_ring(dev, SRB1_BASE);
4678 } else if (IS_GEN3(dev)) {
4679 init_unused_ring(dev, PRB1_BASE);
4680 init_unused_ring(dev, PRB2_BASE);
4681 }
4682}
4683
a83014d3 4684int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4685{
4fc7c971 4686 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4687 int ret;
68f95ba9 4688
5c1143bb 4689 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4690 if (ret)
b6913e4b 4691 return ret;
68f95ba9
CW
4692
4693 if (HAS_BSD(dev)) {
5c1143bb 4694 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4695 if (ret)
4696 goto cleanup_render_ring;
d1b851fc 4697 }
68f95ba9 4698
d39398f5 4699 if (HAS_BLT(dev)) {
549f7365
CW
4700 ret = intel_init_blt_ring_buffer(dev);
4701 if (ret)
4702 goto cleanup_bsd_ring;
4703 }
4704
9a8a2213
BW
4705 if (HAS_VEBOX(dev)) {
4706 ret = intel_init_vebox_ring_buffer(dev);
4707 if (ret)
4708 goto cleanup_blt_ring;
4709 }
4710
845f74a7
ZY
4711 if (HAS_BSD2(dev)) {
4712 ret = intel_init_bsd2_ring_buffer(dev);
4713 if (ret)
4714 goto cleanup_vebox_ring;
4715 }
9a8a2213 4716
4fc7c971
BW
4717 return 0;
4718
9a8a2213
BW
4719cleanup_vebox_ring:
4720 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4721cleanup_blt_ring:
4722 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4723cleanup_bsd_ring:
4724 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4725cleanup_render_ring:
4726 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4727
4728 return ret;
4729}
4730
4731int
4732i915_gem_init_hw(struct drm_device *dev)
4733{
3e31c6c0 4734 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4735 struct intel_engine_cs *ring;
4ad2fd88 4736 int ret, i, j;
4fc7c971
BW
4737
4738 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4739 return -EIO;
4740
5e4f5189
CW
4741 /* Double layer security blanket, see i915_gem_init() */
4742 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4743
59124506 4744 if (dev_priv->ellc_size)
05e21cc4 4745 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4746
0bf21347
VS
4747 if (IS_HASWELL(dev))
4748 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4749 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4750
88a2b2a3 4751 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4752 if (IS_IVYBRIDGE(dev)) {
4753 u32 temp = I915_READ(GEN7_MSG_CTL);
4754 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4755 I915_WRITE(GEN7_MSG_CTL, temp);
4756 } else if (INTEL_INFO(dev)->gen >= 7) {
4757 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4758 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4759 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4760 }
88a2b2a3
BW
4761 }
4762
4fc7c971
BW
4763 i915_gem_init_swizzling(dev);
4764
d5abdfda
DV
4765 /*
4766 * At least 830 can leave some of the unused rings
4767 * "active" (ie. head != tail) after resume which
4768 * will prevent c3 entry. Makes sure all unused rings
4769 * are totally idle.
4770 */
4771 init_unused_rings(dev);
4772
90638cc1
JH
4773 BUG_ON(!dev_priv->ring[RCS].default_context);
4774
4ad2fd88
JH
4775 ret = i915_ppgtt_init_hw(dev);
4776 if (ret) {
4777 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4778 goto out;
4779 }
4780
4781 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
4782 for_each_ring(ring, dev_priv, i) {
4783 ret = ring->init_hw(ring);
4784 if (ret)
5e4f5189 4785 goto out;
35a57ffb 4786 }
99433931 4787
33a732f4 4788 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4789 if (HAS_GUC_UCODE(dev)) {
4790 ret = intel_guc_ucode_load(dev);
4791 if (ret) {
9f9e539f
DV
4792 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4793 ret = -EIO;
4794 goto out;
87bcdd2e 4795 }
33a732f4
AD
4796 }
4797
e84fe803
NH
4798 /*
4799 * Increment the next seqno by 0x100 so we have a visible break
4800 * on re-initialisation
4801 */
4802 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4803 if (ret)
4804 goto out;
4805
4ad2fd88
JH
4806 /* Now it is safe to go back round and do everything else: */
4807 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
4808 struct drm_i915_gem_request *req;
4809
90638cc1
JH
4810 WARN_ON(!ring->default_context);
4811
dc4be607
JH
4812 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4813 if (ret) {
4814 i915_gem_cleanup_ringbuffer(dev);
4815 goto out;
4816 }
4817
4ad2fd88
JH
4818 if (ring->id == RCS) {
4819 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4820 i915_gem_l3_remap(req, j);
4ad2fd88 4821 }
c3787e2e 4822
b3dd6b96 4823 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4824 if (ret && ret != -EIO) {
4825 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4826 i915_gem_request_cancel(req);
4ad2fd88
JH
4827 i915_gem_cleanup_ringbuffer(dev);
4828 goto out;
4829 }
82460d97 4830
b3dd6b96 4831 ret = i915_gem_context_enable(req);
90638cc1
JH
4832 if (ret && ret != -EIO) {
4833 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4834 i915_gem_request_cancel(req);
90638cc1
JH
4835 i915_gem_cleanup_ringbuffer(dev);
4836 goto out;
4837 }
dc4be607 4838
75289874 4839 i915_add_request_no_flush(req);
b7c36d25 4840 }
e21af88d 4841
5e4f5189
CW
4842out:
4843 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4844 return ret;
8187a2b7
ZN
4845}
4846
1070a42b
CW
4847int i915_gem_init(struct drm_device *dev)
4848{
4849 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4850 int ret;
4851
127f1003
OM
4852 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4853 i915.enable_execlists);
4854
1070a42b 4855 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4856
4857 if (IS_VALLEYVIEW(dev)) {
4858 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4859 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4860 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4861 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4862 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4863 }
4864
a83014d3 4865 if (!i915.enable_execlists) {
f3dc74c0 4866 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4867 dev_priv->gt.init_rings = i915_gem_init_rings;
4868 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4869 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4870 } else {
f3dc74c0 4871 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4872 dev_priv->gt.init_rings = intel_logical_rings_init;
4873 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4874 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4875 }
4876
5e4f5189
CW
4877 /* This is just a security blanket to placate dragons.
4878 * On some systems, we very sporadically observe that the first TLBs
4879 * used by the CS may be stale, despite us poking the TLB reset. If
4880 * we hold the forcewake during initialisation these problems
4881 * just magically go away.
4882 */
4883 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4884
6c5566a8 4885 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4886 if (ret)
4887 goto out_unlock;
6c5566a8 4888
d7e5008f 4889 i915_gem_init_global_gtt(dev);
d62b4892 4890
2fa48d8d 4891 ret = i915_gem_context_init(dev);
7bcc3777
JN
4892 if (ret)
4893 goto out_unlock;
2fa48d8d 4894
35a57ffb
DV
4895 ret = dev_priv->gt.init_rings(dev);
4896 if (ret)
7bcc3777 4897 goto out_unlock;
2fa48d8d 4898
1070a42b 4899 ret = i915_gem_init_hw(dev);
60990320
CW
4900 if (ret == -EIO) {
4901 /* Allow ring initialisation to fail by marking the GPU as
4902 * wedged. But we only want to do this where the GPU is angry,
4903 * for all other failure, such as an allocation failure, bail.
4904 */
4905 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4906 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4907 ret = 0;
1070a42b 4908 }
7bcc3777
JN
4909
4910out_unlock:
5e4f5189 4911 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4912 mutex_unlock(&dev->struct_mutex);
1070a42b 4913
60990320 4914 return ret;
1070a42b
CW
4915}
4916
8187a2b7
ZN
4917void
4918i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4919{
3e31c6c0 4920 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4921 struct intel_engine_cs *ring;
1ec14ad3 4922 int i;
8187a2b7 4923
b4519513 4924 for_each_ring(ring, dev_priv, i)
a83014d3 4925 dev_priv->gt.cleanup_ring(ring);
a647828a
NB
4926
4927 if (i915.enable_execlists)
4928 /*
4929 * Neither the BIOS, ourselves or any other kernel
4930 * expects the system to be in execlists mode on startup,
4931 * so we need to reset the GPU back to legacy mode.
4932 */
4933 intel_gpu_reset(dev);
8187a2b7
ZN
4934}
4935
64193406 4936static void
a4872ba6 4937init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4938{
4939 INIT_LIST_HEAD(&ring->active_list);
4940 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4941}
4942
673a394b
EA
4943void
4944i915_gem_load(struct drm_device *dev)
4945{
3e31c6c0 4946 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4947 int i;
4948
efab6d8d 4949 dev_priv->objects =
42dcedd4
CW
4950 kmem_cache_create("i915_gem_object",
4951 sizeof(struct drm_i915_gem_object), 0,
4952 SLAB_HWCACHE_ALIGN,
4953 NULL);
e20d2ab7
CW
4954 dev_priv->vmas =
4955 kmem_cache_create("i915_gem_vma",
4956 sizeof(struct i915_vma), 0,
4957 SLAB_HWCACHE_ALIGN,
4958 NULL);
efab6d8d
CW
4959 dev_priv->requests =
4960 kmem_cache_create("i915_gem_request",
4961 sizeof(struct drm_i915_gem_request), 0,
4962 SLAB_HWCACHE_ALIGN,
4963 NULL);
673a394b 4964
fc8c067e 4965 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 4966 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4967 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4968 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4969 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4970 for (i = 0; i < I915_NUM_RINGS; i++)
4971 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4972 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4973 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4974 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4975 i915_gem_retire_work_handler);
b29c19b6
CW
4976 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4977 i915_gem_idle_work_handler);
1f83fee0 4978 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4979
72bfa19c
CW
4980 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4981
42b5aeab
VS
4982 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4983 dev_priv->num_fence_regs = 32;
4984 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4985 dev_priv->num_fence_regs = 16;
4986 else
4987 dev_priv->num_fence_regs = 8;
4988
eb82289a
YZ
4989 if (intel_vgpu_active(dev))
4990 dev_priv->num_fence_regs =
4991 I915_READ(vgtif_reg(avail_rs.fence_num));
4992
e84fe803
NH
4993 /*
4994 * Set initial sequence number for requests.
4995 * Using this number allows the wraparound to happen early,
4996 * catching any obvious problems.
4997 */
4998 dev_priv->next_seqno = ((u32)~0 - 0x1100);
4999 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5000
b5aa8a0f 5001 /* Initialize fence registers to zero */
19b2dbde
CW
5002 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5003 i915_gem_restore_fences(dev);
10ed13e4 5004
673a394b 5005 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5006 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5007
ce453d81
CW
5008 dev_priv->mm.interruptible = true;
5009
be6a0376 5010 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5011
5012 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5013}
71acb5eb 5014
f787a5f5 5015void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5016{
f787a5f5 5017 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5018
5019 /* Clean up our request list when the client is going away, so that
5020 * later retire_requests won't dereference our soon-to-be-gone
5021 * file_priv.
5022 */
1c25595f 5023 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5024 while (!list_empty(&file_priv->mm.request_list)) {
5025 struct drm_i915_gem_request *request;
5026
5027 request = list_first_entry(&file_priv->mm.request_list,
5028 struct drm_i915_gem_request,
5029 client_list);
5030 list_del(&request->client_list);
5031 request->file_priv = NULL;
5032 }
1c25595f 5033 spin_unlock(&file_priv->mm.lock);
b29c19b6 5034
2e1b8730 5035 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5036 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5037 list_del(&file_priv->rps.link);
8d3afd7d 5038 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5039 }
b29c19b6
CW
5040}
5041
5042int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5043{
5044 struct drm_i915_file_private *file_priv;
e422b888 5045 int ret;
b29c19b6
CW
5046
5047 DRM_DEBUG_DRIVER("\n");
5048
5049 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5050 if (!file_priv)
5051 return -ENOMEM;
5052
5053 file->driver_priv = file_priv;
5054 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5055 file_priv->file = file;
2e1b8730 5056 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5057
5058 spin_lock_init(&file_priv->mm.lock);
5059 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5060
e422b888
BW
5061 ret = i915_gem_context_open(dev, file);
5062 if (ret)
5063 kfree(file_priv);
b29c19b6 5064
e422b888 5065 return ret;
b29c19b6
CW
5066}
5067
b680c37a
DV
5068/**
5069 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5070 * @old: current GEM buffer for the frontbuffer slots
5071 * @new: new GEM buffer for the frontbuffer slots
5072 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5073 *
5074 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5075 * from @old and setting them in @new. Both @old and @new can be NULL.
5076 */
a071fa00
DV
5077void i915_gem_track_fb(struct drm_i915_gem_object *old,
5078 struct drm_i915_gem_object *new,
5079 unsigned frontbuffer_bits)
5080{
5081 if (old) {
5082 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5083 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5084 old->frontbuffer_bits &= ~frontbuffer_bits;
5085 }
5086
5087 if (new) {
5088 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5089 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5090 new->frontbuffer_bits |= frontbuffer_bits;
5091 }
5092}
5093
a70a3148 5094/* All the new VM stuff */
088e0df4
MT
5095u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5096 struct i915_address_space *vm)
a70a3148
BW
5097{
5098 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5099 struct i915_vma *vma;
5100
896ab1a5 5101 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5102
a70a3148 5103 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5104 if (i915_is_ggtt(vma->vm) &&
5105 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5106 continue;
5107 if (vma->vm == vm)
a70a3148 5108 return vma->node.start;
a70a3148 5109 }
ec7adb6e 5110
f25748ea
DV
5111 WARN(1, "%s vma for this object not found.\n",
5112 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5113 return -1;
5114}
5115
088e0df4
MT
5116u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5117 const struct i915_ggtt_view *view)
a70a3148 5118{
ec7adb6e 5119 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5120 struct i915_vma *vma;
5121
5122 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5123 if (vma->vm == ggtt &&
5124 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5125 return vma->node.start;
5126
5678ad73 5127 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5128 return -1;
5129}
5130
5131bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5132 struct i915_address_space *vm)
5133{
5134 struct i915_vma *vma;
5135
5136 list_for_each_entry(vma, &o->vma_list, vma_link) {
5137 if (i915_is_ggtt(vma->vm) &&
5138 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5139 continue;
5140 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5141 return true;
5142 }
5143
5144 return false;
5145}
5146
5147bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5148 const struct i915_ggtt_view *view)
ec7adb6e
JL
5149{
5150 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5151 struct i915_vma *vma;
5152
5153 list_for_each_entry(vma, &o->vma_list, vma_link)
5154 if (vma->vm == ggtt &&
9abc4648 5155 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5156 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5157 return true;
5158
5159 return false;
5160}
5161
5162bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5163{
5a1d5eb0 5164 struct i915_vma *vma;
a70a3148 5165
5a1d5eb0
CW
5166 list_for_each_entry(vma, &o->vma_list, vma_link)
5167 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5168 return true;
5169
5170 return false;
5171}
5172
5173unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5174 struct i915_address_space *vm)
5175{
5176 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5177 struct i915_vma *vma;
5178
896ab1a5 5179 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5180
5181 BUG_ON(list_empty(&o->vma_list));
5182
ec7adb6e
JL
5183 list_for_each_entry(vma, &o->vma_list, vma_link) {
5184 if (i915_is_ggtt(vma->vm) &&
5185 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5186 continue;
a70a3148
BW
5187 if (vma->vm == vm)
5188 return vma->node.size;
ec7adb6e 5189 }
a70a3148
BW
5190 return 0;
5191}
5192
ec7adb6e 5193bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5194{
5195 struct i915_vma *vma;
a6631ae1 5196 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5197 if (vma->pin_count > 0)
5198 return true;
a6631ae1 5199
ec7adb6e 5200 return false;
5c2abbea 5201}
ea70299d
DG
5202
5203/* Allocate a new GEM object and fill it with the supplied data */
5204struct drm_i915_gem_object *
5205i915_gem_object_create_from_data(struct drm_device *dev,
5206 const void *data, size_t size)
5207{
5208 struct drm_i915_gem_object *obj;
5209 struct sg_table *sg;
5210 size_t bytes;
5211 int ret;
5212
5213 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5214 if (IS_ERR_OR_NULL(obj))
5215 return obj;
5216
5217 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5218 if (ret)
5219 goto fail;
5220
5221 ret = i915_gem_object_get_pages(obj);
5222 if (ret)
5223 goto fail;
5224
5225 i915_gem_object_pin_pages(obj);
5226 sg = obj->pages;
5227 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5228 i915_gem_object_unpin_pages(obj);
5229
5230 if (WARN_ON(bytes != size)) {
5231 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5232 ret = -EFAULT;
5233 goto fail;
5234 }
5235
5236 return obj;
5237
5238fail:
5239 drm_gem_object_unreference(&obj->base);
5240 return ERR_PTR(ret);
5241}
This page took 1.535037 seconds and 5 git commands to generate.