drm/i915: create dev_priv->dri1 dragon dungeon^W^W sub-struct
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
8c59967c 58static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 59
61050808
CW
60static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61{
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
5d82e3e6 68 obj->fence_dirty = false;
61050808
CW
69 obj->fence_reg = I915_FENCE_REG_NONE;
70}
71
73aa808f
CW
72/* some bookkeeping */
73static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78}
79
80static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82{
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85}
86
21dd3734
CW
87static int
88i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
89{
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
98 ret = wait_for_completion_interruptible(x);
99 if (ret)
100 return ret;
101
21dd3734
CW
102 if (atomic_read(&dev_priv->mm.wedged)) {
103 /* GPU is hung, bump the completion count to account for
104 * the token we just consumed so that we never hit zero and
105 * end up waiting upon a subsequent completion event that
106 * will never happen.
107 */
108 spin_lock_irqsave(&x->wait.lock, flags);
109 x->done++;
110 spin_unlock_irqrestore(&x->wait.lock, flags);
111 }
112 return 0;
30dbf0c0
CW
113}
114
54cf91dc 115int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 116{
76c1dec1
CW
117 int ret;
118
21dd3734 119 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
120 if (ret)
121 return ret;
122
123 ret = mutex_lock_interruptible(&dev->struct_mutex);
124 if (ret)
125 return ret;
126
23bc5982 127 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
128 return 0;
129}
30dbf0c0 130
7d1c4804 131static inline bool
05394f39 132i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 133{
1b50247a 134 return !obj->active;
7d1c4804
CW
135}
136
79e53945
JB
137int
138i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 139 struct drm_file *file)
79e53945
JB
140{
141 struct drm_i915_gem_init *args = data;
2021746e 142
7bb6fb8d
DV
143 if (drm_core_check_feature(dev, DRIVER_MODESET))
144 return -ENODEV;
145
2021746e
CW
146 if (args->gtt_start >= args->gtt_end ||
147 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
148 return -EINVAL;
79e53945 149
f534bc0b
DV
150 /* GEM with user mode setting was never supported on ilk and later. */
151 if (INTEL_INFO(dev)->gen >= 5)
152 return -ENODEV;
153
79e53945 154 mutex_lock(&dev->struct_mutex);
644ec02b
DV
155 i915_gem_init_global_gtt(dev, args->gtt_start,
156 args->gtt_end, args->gtt_end);
673a394b
EA
157 mutex_unlock(&dev->struct_mutex);
158
2021746e 159 return 0;
673a394b
EA
160}
161
5a125c3c
EA
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
5a125c3c 165{
73aa808f 166 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 167 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
5a125c3c 170
6299f992 171 pinned = 0;
73aa808f 172 mutex_lock(&dev->struct_mutex);
1b50247a
CW
173 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
174 if (obj->pin_count)
175 pinned += obj->gtt_space->size;
73aa808f 176 mutex_unlock(&dev->struct_mutex);
5a125c3c 177
6299f992 178 args->aper_size = dev_priv->mm.gtt_total;
0206e353 179 args->aper_available_size = args->aper_size - pinned;
6299f992 180
5a125c3c
EA
181 return 0;
182}
183
ff72145b
DA
184static int
185i915_gem_create(struct drm_file *file,
186 struct drm_device *dev,
187 uint64_t size,
188 uint32_t *handle_p)
673a394b 189{
05394f39 190 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
191 int ret;
192 u32 handle;
673a394b 193
ff72145b 194 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
195 if (size == 0)
196 return -EINVAL;
673a394b
EA
197
198 /* Allocate the new object */
ff72145b 199 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
200 if (obj == NULL)
201 return -ENOMEM;
202
05394f39 203 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 204 if (ret) {
05394f39
CW
205 drm_gem_object_release(&obj->base);
206 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 207 kfree(obj);
673a394b 208 return ret;
1dfd9754 209 }
673a394b 210
202f2fef 211 /* drop reference from allocate - handle holds it now */
05394f39 212 drm_gem_object_unreference(&obj->base);
202f2fef
CW
213 trace_i915_gem_object_create(obj);
214
ff72145b 215 *handle_p = handle;
673a394b
EA
216 return 0;
217}
218
ff72145b
DA
219int
220i915_gem_dumb_create(struct drm_file *file,
221 struct drm_device *dev,
222 struct drm_mode_create_dumb *args)
223{
224 /* have to work out size/pitch and return them */
ed0291fd 225 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
226 args->size = args->pitch * args->height;
227 return i915_gem_create(file, dev,
228 args->size, &args->handle);
229}
230
231int i915_gem_dumb_destroy(struct drm_file *file,
232 struct drm_device *dev,
233 uint32_t handle)
234{
235 return drm_gem_handle_delete(file, handle);
236}
237
238/**
239 * Creates a new mm object and returns a handle to it.
240 */
241int
242i915_gem_create_ioctl(struct drm_device *dev, void *data,
243 struct drm_file *file)
244{
245 struct drm_i915_gem_create *args = data;
63ed2cb2 246
ff72145b
DA
247 return i915_gem_create(file, dev,
248 args->size, &args->handle);
249}
250
05394f39 251static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 252{
05394f39 253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
254
255 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 256 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
257}
258
8461d226
DV
259static inline int
260__copy_to_user_swizzled(char __user *cpu_vaddr,
261 const char *gpu_vaddr, int gpu_offset,
262 int length)
263{
264 int ret, cpu_offset = 0;
265
266 while (length > 0) {
267 int cacheline_end = ALIGN(gpu_offset + 1, 64);
268 int this_length = min(cacheline_end - gpu_offset, length);
269 int swizzled_gpu_offset = gpu_offset ^ 64;
270
271 ret = __copy_to_user(cpu_vaddr + cpu_offset,
272 gpu_vaddr + swizzled_gpu_offset,
273 this_length);
274 if (ret)
275 return ret + length;
276
277 cpu_offset += this_length;
278 gpu_offset += this_length;
279 length -= this_length;
280 }
281
282 return 0;
283}
284
8c59967c 285static inline int
4f0c7cfb
BW
286__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
287 const char __user *cpu_vaddr,
8c59967c
DV
288 int length)
289{
290 int ret, cpu_offset = 0;
291
292 while (length > 0) {
293 int cacheline_end = ALIGN(gpu_offset + 1, 64);
294 int this_length = min(cacheline_end - gpu_offset, length);
295 int swizzled_gpu_offset = gpu_offset ^ 64;
296
297 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
298 cpu_vaddr + cpu_offset,
299 this_length);
300 if (ret)
301 return ret + length;
302
303 cpu_offset += this_length;
304 gpu_offset += this_length;
305 length -= this_length;
306 }
307
308 return 0;
309}
310
d174bd64
DV
311/* Per-page copy function for the shmem pread fastpath.
312 * Flushes invalid cachelines before reading the target if
313 * needs_clflush is set. */
eb01459f 314static int
d174bd64
DV
315shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
316 char __user *user_data,
317 bool page_do_bit17_swizzling, bool needs_clflush)
318{
319 char *vaddr;
320 int ret;
321
e7e58eb5 322 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
323 return -EINVAL;
324
325 vaddr = kmap_atomic(page);
326 if (needs_clflush)
327 drm_clflush_virt_range(vaddr + shmem_page_offset,
328 page_length);
329 ret = __copy_to_user_inatomic(user_data,
330 vaddr + shmem_page_offset,
331 page_length);
332 kunmap_atomic(vaddr);
333
334 return ret;
335}
336
23c18c71
DV
337static void
338shmem_clflush_swizzled_range(char *addr, unsigned long length,
339 bool swizzled)
340{
e7e58eb5 341 if (unlikely(swizzled)) {
23c18c71
DV
342 unsigned long start = (unsigned long) addr;
343 unsigned long end = (unsigned long) addr + length;
344
345 /* For swizzling simply ensure that we always flush both
346 * channels. Lame, but simple and it works. Swizzled
347 * pwrite/pread is far from a hotpath - current userspace
348 * doesn't use it at all. */
349 start = round_down(start, 128);
350 end = round_up(end, 128);
351
352 drm_clflush_virt_range((void *)start, end - start);
353 } else {
354 drm_clflush_virt_range(addr, length);
355 }
356
357}
358
d174bd64
DV
359/* Only difference to the fast-path function is that this can handle bit17
360 * and uses non-atomic copy and kmap functions. */
361static int
362shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
363 char __user *user_data,
364 bool page_do_bit17_swizzling, bool needs_clflush)
365{
366 char *vaddr;
367 int ret;
368
369 vaddr = kmap(page);
370 if (needs_clflush)
23c18c71
DV
371 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
372 page_length,
373 page_do_bit17_swizzling);
d174bd64
DV
374
375 if (page_do_bit17_swizzling)
376 ret = __copy_to_user_swizzled(user_data,
377 vaddr, shmem_page_offset,
378 page_length);
379 else
380 ret = __copy_to_user(user_data,
381 vaddr + shmem_page_offset,
382 page_length);
383 kunmap(page);
384
385 return ret;
386}
387
eb01459f 388static int
dbf7bff0
DV
389i915_gem_shmem_pread(struct drm_device *dev,
390 struct drm_i915_gem_object *obj,
391 struct drm_i915_gem_pread *args,
392 struct drm_file *file)
eb01459f 393{
05394f39 394 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 395 char __user *user_data;
eb01459f 396 ssize_t remain;
8461d226 397 loff_t offset;
eb2c0c81 398 int shmem_page_offset, page_length, ret = 0;
8461d226 399 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 400 int hit_slowpath = 0;
96d79b52 401 int prefaulted = 0;
8489731c 402 int needs_clflush = 0;
692a576b 403 int release_page;
eb01459f 404
8461d226 405 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
406 remain = args->size;
407
8461d226 408 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 409
8489731c
DV
410 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
411 /* If we're not in the cpu read domain, set ourself into the gtt
412 * read domain and manually flush cachelines (if required). This
413 * optimizes for the case when the gpu will dirty the data
414 * anyway again before the next pread happens. */
415 if (obj->cache_level == I915_CACHE_NONE)
416 needs_clflush = 1;
417 ret = i915_gem_object_set_to_gtt_domain(obj, false);
418 if (ret)
419 return ret;
420 }
eb01459f 421
8461d226 422 offset = args->offset;
eb01459f
EA
423
424 while (remain > 0) {
e5281ccd
CW
425 struct page *page;
426
eb01459f
EA
427 /* Operation in this page
428 *
eb01459f 429 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
430 * page_length = bytes to copy for this page
431 */
c8cbbb8b 432 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
433 page_length = remain;
434 if ((shmem_page_offset + page_length) > PAGE_SIZE)
435 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 436
692a576b
DV
437 if (obj->pages) {
438 page = obj->pages[offset >> PAGE_SHIFT];
439 release_page = 0;
440 } else {
441 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
442 if (IS_ERR(page)) {
443 ret = PTR_ERR(page);
444 goto out;
445 }
446 release_page = 1;
b65552f0 447 }
e5281ccd 448
8461d226
DV
449 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
450 (page_to_phys(page) & (1 << 17)) != 0;
451
d174bd64
DV
452 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
453 user_data, page_do_bit17_swizzling,
454 needs_clflush);
455 if (ret == 0)
456 goto next_page;
dbf7bff0
DV
457
458 hit_slowpath = 1;
692a576b 459 page_cache_get(page);
dbf7bff0
DV
460 mutex_unlock(&dev->struct_mutex);
461
96d79b52 462 if (!prefaulted) {
f56f821f 463 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
464 /* Userspace is tricking us, but we've already clobbered
465 * its pages with the prefault and promised to write the
466 * data up to the first fault. Hence ignore any errors
467 * and just continue. */
468 (void)ret;
469 prefaulted = 1;
470 }
eb01459f 471
d174bd64
DV
472 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
473 user_data, page_do_bit17_swizzling,
474 needs_clflush);
eb01459f 475
dbf7bff0 476 mutex_lock(&dev->struct_mutex);
e5281ccd 477 page_cache_release(page);
dbf7bff0 478next_page:
e5281ccd 479 mark_page_accessed(page);
692a576b
DV
480 if (release_page)
481 page_cache_release(page);
e5281ccd 482
8461d226
DV
483 if (ret) {
484 ret = -EFAULT;
485 goto out;
486 }
487
eb01459f 488 remain -= page_length;
8461d226 489 user_data += page_length;
eb01459f
EA
490 offset += page_length;
491 }
492
4f27b75d 493out:
dbf7bff0
DV
494 if (hit_slowpath) {
495 /* Fixup: Kill any reinstated backing storage pages */
496 if (obj->madv == __I915_MADV_PURGED)
497 i915_gem_object_truncate(obj);
498 }
eb01459f
EA
499
500 return ret;
501}
502
673a394b
EA
503/**
504 * Reads data from the object referenced by handle.
505 *
506 * On error, the contents of *data are undefined.
507 */
508int
509i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 510 struct drm_file *file)
673a394b
EA
511{
512 struct drm_i915_gem_pread *args = data;
05394f39 513 struct drm_i915_gem_object *obj;
35b62a89 514 int ret = 0;
673a394b 515
51311d0a
CW
516 if (args->size == 0)
517 return 0;
518
519 if (!access_ok(VERIFY_WRITE,
520 (char __user *)(uintptr_t)args->data_ptr,
521 args->size))
522 return -EFAULT;
523
4f27b75d 524 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 525 if (ret)
4f27b75d 526 return ret;
673a394b 527
05394f39 528 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 529 if (&obj->base == NULL) {
1d7cfea1
CW
530 ret = -ENOENT;
531 goto unlock;
4f27b75d 532 }
673a394b 533
7dcd2499 534 /* Bounds check source. */
05394f39
CW
535 if (args->offset > obj->base.size ||
536 args->size > obj->base.size - args->offset) {
ce9d419d 537 ret = -EINVAL;
35b62a89 538 goto out;
ce9d419d
CW
539 }
540
db53a302
CW
541 trace_i915_gem_object_pread(obj, args->offset, args->size);
542
dbf7bff0 543 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 544
35b62a89 545out:
05394f39 546 drm_gem_object_unreference(&obj->base);
1d7cfea1 547unlock:
4f27b75d 548 mutex_unlock(&dev->struct_mutex);
eb01459f 549 return ret;
673a394b
EA
550}
551
0839ccb8
KP
552/* This is the fast write path which cannot handle
553 * page faults in the source data
9b7530cc 554 */
0839ccb8
KP
555
556static inline int
557fast_user_write(struct io_mapping *mapping,
558 loff_t page_base, int page_offset,
559 char __user *user_data,
560 int length)
9b7530cc 561{
4f0c7cfb
BW
562 void __iomem *vaddr_atomic;
563 void *vaddr;
0839ccb8 564 unsigned long unwritten;
9b7530cc 565
3e4d3af5 566 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
567 /* We can use the cpu mem copy function because this is X86. */
568 vaddr = (void __force*)vaddr_atomic + page_offset;
569 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 570 user_data, length);
3e4d3af5 571 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 572 return unwritten;
0839ccb8
KP
573}
574
3de09aa3
EA
575/**
576 * This is the fast pwrite path, where we copy the data directly from the
577 * user into the GTT, uncached.
578 */
673a394b 579static int
05394f39
CW
580i915_gem_gtt_pwrite_fast(struct drm_device *dev,
581 struct drm_i915_gem_object *obj,
3de09aa3 582 struct drm_i915_gem_pwrite *args,
05394f39 583 struct drm_file *file)
673a394b 584{
0839ccb8 585 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 586 ssize_t remain;
0839ccb8 587 loff_t offset, page_base;
673a394b 588 char __user *user_data;
935aaa69
DV
589 int page_offset, page_length, ret;
590
591 ret = i915_gem_object_pin(obj, 0, true);
592 if (ret)
593 goto out;
594
595 ret = i915_gem_object_set_to_gtt_domain(obj, true);
596 if (ret)
597 goto out_unpin;
598
599 ret = i915_gem_object_put_fence(obj);
600 if (ret)
601 goto out_unpin;
673a394b
EA
602
603 user_data = (char __user *) (uintptr_t) args->data_ptr;
604 remain = args->size;
673a394b 605
05394f39 606 offset = obj->gtt_offset + args->offset;
673a394b
EA
607
608 while (remain > 0) {
609 /* Operation in this page
610 *
0839ccb8
KP
611 * page_base = page offset within aperture
612 * page_offset = offset within page
613 * page_length = bytes to copy for this page
673a394b 614 */
c8cbbb8b
CW
615 page_base = offset & PAGE_MASK;
616 page_offset = offset_in_page(offset);
0839ccb8
KP
617 page_length = remain;
618 if ((page_offset + remain) > PAGE_SIZE)
619 page_length = PAGE_SIZE - page_offset;
620
0839ccb8 621 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
622 * source page isn't available. Return the error and we'll
623 * retry in the slow path.
0839ccb8 624 */
fbd5a26d 625 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
626 page_offset, user_data, page_length)) {
627 ret = -EFAULT;
628 goto out_unpin;
629 }
673a394b 630
0839ccb8
KP
631 remain -= page_length;
632 user_data += page_length;
633 offset += page_length;
673a394b 634 }
673a394b 635
935aaa69
DV
636out_unpin:
637 i915_gem_object_unpin(obj);
638out:
3de09aa3 639 return ret;
673a394b
EA
640}
641
d174bd64
DV
642/* Per-page copy function for the shmem pwrite fastpath.
643 * Flushes invalid cachelines before writing to the target if
644 * needs_clflush_before is set and flushes out any written cachelines after
645 * writing if needs_clflush is set. */
3043c60c 646static int
d174bd64
DV
647shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
648 char __user *user_data,
649 bool page_do_bit17_swizzling,
650 bool needs_clflush_before,
651 bool needs_clflush_after)
673a394b 652{
d174bd64 653 char *vaddr;
673a394b 654 int ret;
3de09aa3 655
e7e58eb5 656 if (unlikely(page_do_bit17_swizzling))
d174bd64 657 return -EINVAL;
3de09aa3 658
d174bd64
DV
659 vaddr = kmap_atomic(page);
660 if (needs_clflush_before)
661 drm_clflush_virt_range(vaddr + shmem_page_offset,
662 page_length);
663 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
664 user_data,
665 page_length);
666 if (needs_clflush_after)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 kunmap_atomic(vaddr);
3de09aa3
EA
670
671 return ret;
672}
673
d174bd64
DV
674/* Only difference to the fast-path function is that this can handle bit17
675 * and uses non-atomic copy and kmap functions. */
3043c60c 676static int
d174bd64
DV
677shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
678 char __user *user_data,
679 bool page_do_bit17_swizzling,
680 bool needs_clflush_before,
681 bool needs_clflush_after)
673a394b 682{
d174bd64
DV
683 char *vaddr;
684 int ret;
e5281ccd 685
d174bd64 686 vaddr = kmap(page);
e7e58eb5 687 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
688 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
689 page_length,
690 page_do_bit17_swizzling);
d174bd64
DV
691 if (page_do_bit17_swizzling)
692 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
693 user_data,
694 page_length);
d174bd64
DV
695 else
696 ret = __copy_from_user(vaddr + shmem_page_offset,
697 user_data,
698 page_length);
699 if (needs_clflush_after)
23c18c71
DV
700 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
701 page_length,
702 page_do_bit17_swizzling);
d174bd64 703 kunmap(page);
40123c1f 704
d174bd64 705 return ret;
40123c1f
EA
706}
707
40123c1f 708static int
e244a443
DV
709i915_gem_shmem_pwrite(struct drm_device *dev,
710 struct drm_i915_gem_object *obj,
711 struct drm_i915_gem_pwrite *args,
712 struct drm_file *file)
40123c1f 713{
05394f39 714 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 715 ssize_t remain;
8c59967c
DV
716 loff_t offset;
717 char __user *user_data;
eb2c0c81 718 int shmem_page_offset, page_length, ret = 0;
8c59967c 719 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 720 int hit_slowpath = 0;
58642885
DV
721 int needs_clflush_after = 0;
722 int needs_clflush_before = 0;
692a576b 723 int release_page;
40123c1f 724
8c59967c 725 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
726 remain = args->size;
727
8c59967c 728 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 729
58642885
DV
730 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
731 /* If we're not in the cpu write domain, set ourself into the gtt
732 * write domain and manually flush cachelines (if required). This
733 * optimizes for the case when the gpu will use the data
734 * right away and we therefore have to clflush anyway. */
735 if (obj->cache_level == I915_CACHE_NONE)
736 needs_clflush_after = 1;
737 ret = i915_gem_object_set_to_gtt_domain(obj, true);
738 if (ret)
739 return ret;
740 }
741 /* Same trick applies for invalidate partially written cachelines before
742 * writing. */
743 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
744 && obj->cache_level == I915_CACHE_NONE)
745 needs_clflush_before = 1;
746
673a394b 747 offset = args->offset;
05394f39 748 obj->dirty = 1;
673a394b 749
40123c1f 750 while (remain > 0) {
e5281ccd 751 struct page *page;
58642885 752 int partial_cacheline_write;
e5281ccd 753
40123c1f
EA
754 /* Operation in this page
755 *
40123c1f 756 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
757 * page_length = bytes to copy for this page
758 */
c8cbbb8b 759 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
760
761 page_length = remain;
762 if ((shmem_page_offset + page_length) > PAGE_SIZE)
763 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 764
58642885
DV
765 /* If we don't overwrite a cacheline completely we need to be
766 * careful to have up-to-date data by first clflushing. Don't
767 * overcomplicate things and flush the entire patch. */
768 partial_cacheline_write = needs_clflush_before &&
769 ((shmem_page_offset | page_length)
770 & (boot_cpu_data.x86_clflush_size - 1));
771
692a576b
DV
772 if (obj->pages) {
773 page = obj->pages[offset >> PAGE_SHIFT];
774 release_page = 0;
775 } else {
776 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
777 if (IS_ERR(page)) {
778 ret = PTR_ERR(page);
779 goto out;
780 }
781 release_page = 1;
e5281ccd
CW
782 }
783
8c59967c
DV
784 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
785 (page_to_phys(page) & (1 << 17)) != 0;
786
d174bd64
DV
787 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
788 user_data, page_do_bit17_swizzling,
789 partial_cacheline_write,
790 needs_clflush_after);
791 if (ret == 0)
792 goto next_page;
e244a443
DV
793
794 hit_slowpath = 1;
692a576b 795 page_cache_get(page);
e244a443
DV
796 mutex_unlock(&dev->struct_mutex);
797
d174bd64
DV
798 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
799 user_data, page_do_bit17_swizzling,
800 partial_cacheline_write,
801 needs_clflush_after);
40123c1f 802
e244a443 803 mutex_lock(&dev->struct_mutex);
692a576b 804 page_cache_release(page);
e244a443 805next_page:
e5281ccd
CW
806 set_page_dirty(page);
807 mark_page_accessed(page);
692a576b
DV
808 if (release_page)
809 page_cache_release(page);
e5281ccd 810
8c59967c
DV
811 if (ret) {
812 ret = -EFAULT;
813 goto out;
814 }
815
40123c1f 816 remain -= page_length;
8c59967c 817 user_data += page_length;
40123c1f 818 offset += page_length;
673a394b
EA
819 }
820
fbd5a26d 821out:
e244a443
DV
822 if (hit_slowpath) {
823 /* Fixup: Kill any reinstated backing storage pages */
824 if (obj->madv == __I915_MADV_PURGED)
825 i915_gem_object_truncate(obj);
826 /* and flush dirty cachelines in case the object isn't in the cpu write
827 * domain anymore. */
828 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
829 i915_gem_clflush_object(obj);
830 intel_gtt_chipset_flush();
831 }
8c59967c 832 }
673a394b 833
58642885
DV
834 if (needs_clflush_after)
835 intel_gtt_chipset_flush();
836
40123c1f 837 return ret;
673a394b
EA
838}
839
840/**
841 * Writes data to the object referenced by handle.
842 *
843 * On error, the contents of the buffer that were to be modified are undefined.
844 */
845int
846i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 847 struct drm_file *file)
673a394b
EA
848{
849 struct drm_i915_gem_pwrite *args = data;
05394f39 850 struct drm_i915_gem_object *obj;
51311d0a
CW
851 int ret;
852
853 if (args->size == 0)
854 return 0;
855
856 if (!access_ok(VERIFY_READ,
857 (char __user *)(uintptr_t)args->data_ptr,
858 args->size))
859 return -EFAULT;
860
f56f821f
DV
861 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
862 args->size);
51311d0a
CW
863 if (ret)
864 return -EFAULT;
673a394b 865
fbd5a26d 866 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 867 if (ret)
fbd5a26d 868 return ret;
1d7cfea1 869
05394f39 870 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 871 if (&obj->base == NULL) {
1d7cfea1
CW
872 ret = -ENOENT;
873 goto unlock;
fbd5a26d 874 }
673a394b 875
7dcd2499 876 /* Bounds check destination. */
05394f39
CW
877 if (args->offset > obj->base.size ||
878 args->size > obj->base.size - args->offset) {
ce9d419d 879 ret = -EINVAL;
35b62a89 880 goto out;
ce9d419d
CW
881 }
882
db53a302
CW
883 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
884
935aaa69 885 ret = -EFAULT;
673a394b
EA
886 /* We can only do the GTT pwrite on untiled buffers, as otherwise
887 * it would end up going through the fenced access, and we'll get
888 * different detiling behavior between reading and writing.
889 * pread/pwrite currently are reading and writing from the CPU
890 * perspective, requiring manual detiling by the client.
891 */
5c0480f2 892 if (obj->phys_obj) {
fbd5a26d 893 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
894 goto out;
895 }
896
897 if (obj->gtt_space &&
3ae53783 898 obj->cache_level == I915_CACHE_NONE &&
c07496fa 899 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 900 obj->map_and_fenceable &&
5c0480f2 901 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 902 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
903 /* Note that the gtt paths might fail with non-page-backed user
904 * pointers (e.g. gtt mappings when moving data between
905 * textures). Fallback to the shmem path in that case. */
fbd5a26d 906 }
673a394b 907
5c0480f2 908 if (ret == -EFAULT)
935aaa69 909 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 910
35b62a89 911out:
05394f39 912 drm_gem_object_unreference(&obj->base);
1d7cfea1 913unlock:
fbd5a26d 914 mutex_unlock(&dev->struct_mutex);
673a394b
EA
915 return ret;
916}
917
918/**
2ef7eeaa
EA
919 * Called when user space prepares to use an object with the CPU, either
920 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
921 */
922int
923i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 924 struct drm_file *file)
673a394b
EA
925{
926 struct drm_i915_gem_set_domain *args = data;
05394f39 927 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
928 uint32_t read_domains = args->read_domains;
929 uint32_t write_domain = args->write_domain;
673a394b
EA
930 int ret;
931
2ef7eeaa 932 /* Only handle setting domains to types used by the CPU. */
21d509e3 933 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
934 return -EINVAL;
935
21d509e3 936 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
937 return -EINVAL;
938
939 /* Having something in the write domain implies it's in the read
940 * domain, and only that read domain. Enforce that in the request.
941 */
942 if (write_domain != 0 && read_domains != write_domain)
943 return -EINVAL;
944
76c1dec1 945 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 946 if (ret)
76c1dec1 947 return ret;
1d7cfea1 948
05394f39 949 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 950 if (&obj->base == NULL) {
1d7cfea1
CW
951 ret = -ENOENT;
952 goto unlock;
76c1dec1 953 }
673a394b 954
2ef7eeaa
EA
955 if (read_domains & I915_GEM_DOMAIN_GTT) {
956 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
957
958 /* Silently promote "you're not bound, there was nothing to do"
959 * to success, since the client was just asking us to
960 * make sure everything was done.
961 */
962 if (ret == -EINVAL)
963 ret = 0;
2ef7eeaa 964 } else {
e47c68e9 965 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
966 }
967
05394f39 968 drm_gem_object_unreference(&obj->base);
1d7cfea1 969unlock:
673a394b
EA
970 mutex_unlock(&dev->struct_mutex);
971 return ret;
972}
973
974/**
975 * Called when user space has done writes to this buffer
976 */
977int
978i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 979 struct drm_file *file)
673a394b
EA
980{
981 struct drm_i915_gem_sw_finish *args = data;
05394f39 982 struct drm_i915_gem_object *obj;
673a394b
EA
983 int ret = 0;
984
76c1dec1 985 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 986 if (ret)
76c1dec1 987 return ret;
1d7cfea1 988
05394f39 989 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 990 if (&obj->base == NULL) {
1d7cfea1
CW
991 ret = -ENOENT;
992 goto unlock;
673a394b
EA
993 }
994
673a394b 995 /* Pinned buffers may be scanout, so flush the cache */
05394f39 996 if (obj->pin_count)
e47c68e9
EA
997 i915_gem_object_flush_cpu_write_domain(obj);
998
05394f39 999 drm_gem_object_unreference(&obj->base);
1d7cfea1 1000unlock:
673a394b
EA
1001 mutex_unlock(&dev->struct_mutex);
1002 return ret;
1003}
1004
1005/**
1006 * Maps the contents of an object, returning the address it is mapped
1007 * into.
1008 *
1009 * While the mapping holds a reference on the contents of the object, it doesn't
1010 * imply a ref on the object itself.
1011 */
1012int
1013i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1014 struct drm_file *file)
673a394b
EA
1015{
1016 struct drm_i915_gem_mmap *args = data;
1017 struct drm_gem_object *obj;
673a394b
EA
1018 unsigned long addr;
1019
05394f39 1020 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1021 if (obj == NULL)
bf79cb91 1022 return -ENOENT;
673a394b 1023
673a394b
EA
1024 down_write(&current->mm->mmap_sem);
1025 addr = do_mmap(obj->filp, 0, args->size,
1026 PROT_READ | PROT_WRITE, MAP_SHARED,
1027 args->offset);
1028 up_write(&current->mm->mmap_sem);
bc9025bd 1029 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1030 if (IS_ERR((void *)addr))
1031 return addr;
1032
1033 args->addr_ptr = (uint64_t) addr;
1034
1035 return 0;
1036}
1037
de151cf6
JB
1038/**
1039 * i915_gem_fault - fault a page into the GTT
1040 * vma: VMA in question
1041 * vmf: fault info
1042 *
1043 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1044 * from userspace. The fault handler takes care of binding the object to
1045 * the GTT (if needed), allocating and programming a fence register (again,
1046 * only if needed based on whether the old reg is still valid or the object
1047 * is tiled) and inserting a new PTE into the faulting process.
1048 *
1049 * Note that the faulting process may involve evicting existing objects
1050 * from the GTT and/or fence registers to make room. So performance may
1051 * suffer if the GTT working set is large or there are few fence registers
1052 * left.
1053 */
1054int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1055{
05394f39
CW
1056 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1057 struct drm_device *dev = obj->base.dev;
7d1c4804 1058 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1059 pgoff_t page_offset;
1060 unsigned long pfn;
1061 int ret = 0;
0f973f27 1062 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1063
1064 /* We don't use vmf->pgoff since that has the fake offset */
1065 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1066 PAGE_SHIFT;
1067
d9bc7e9f
CW
1068 ret = i915_mutex_lock_interruptible(dev);
1069 if (ret)
1070 goto out;
a00b10c3 1071
db53a302
CW
1072 trace_i915_gem_object_fault(obj, page_offset, true, write);
1073
d9bc7e9f 1074 /* Now bind it into the GTT if needed */
919926ae
CW
1075 if (!obj->map_and_fenceable) {
1076 ret = i915_gem_object_unbind(obj);
1077 if (ret)
1078 goto unlock;
a00b10c3 1079 }
05394f39 1080 if (!obj->gtt_space) {
75e9e915 1081 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1082 if (ret)
1083 goto unlock;
de151cf6 1084
e92d03bf
EA
1085 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1086 if (ret)
1087 goto unlock;
1088 }
4a684a41 1089
74898d7e
DV
1090 if (!obj->has_global_gtt_mapping)
1091 i915_gem_gtt_bind_object(obj, obj->cache_level);
1092
06d98131 1093 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1094 if (ret)
1095 goto unlock;
de151cf6 1096
05394f39
CW
1097 if (i915_gem_object_is_inactive(obj))
1098 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1099
6299f992
CW
1100 obj->fault_mappable = true;
1101
05394f39 1102 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1103 page_offset;
1104
1105 /* Finally, remap it using the new GTT offset */
1106 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1107unlock:
de151cf6 1108 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1109out:
de151cf6 1110 switch (ret) {
d9bc7e9f 1111 case -EIO:
045e769a 1112 case -EAGAIN:
d9bc7e9f
CW
1113 /* Give the error handler a chance to run and move the
1114 * objects off the GPU active list. Next time we service the
1115 * fault, we should be able to transition the page into the
1116 * GTT without touching the GPU (and so avoid further
1117 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1118 * with coherency, just lost writes.
1119 */
045e769a 1120 set_need_resched();
c715089f
CW
1121 case 0:
1122 case -ERESTARTSYS:
bed636ab 1123 case -EINTR:
c715089f 1124 return VM_FAULT_NOPAGE;
de151cf6 1125 case -ENOMEM:
de151cf6 1126 return VM_FAULT_OOM;
de151cf6 1127 default:
c715089f 1128 return VM_FAULT_SIGBUS;
de151cf6
JB
1129 }
1130}
1131
901782b2
CW
1132/**
1133 * i915_gem_release_mmap - remove physical page mappings
1134 * @obj: obj in question
1135 *
af901ca1 1136 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1137 * relinquish ownership of the pages back to the system.
1138 *
1139 * It is vital that we remove the page mapping if we have mapped a tiled
1140 * object through the GTT and then lose the fence register due to
1141 * resource pressure. Similarly if the object has been moved out of the
1142 * aperture, than pages mapped into userspace must be revoked. Removing the
1143 * mapping will then trigger a page fault on the next user access, allowing
1144 * fixup by i915_gem_fault().
1145 */
d05ca301 1146void
05394f39 1147i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1148{
6299f992
CW
1149 if (!obj->fault_mappable)
1150 return;
901782b2 1151
f6e47884
CW
1152 if (obj->base.dev->dev_mapping)
1153 unmap_mapping_range(obj->base.dev->dev_mapping,
1154 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1155 obj->base.size, 1);
fb7d516a 1156
6299f992 1157 obj->fault_mappable = false;
901782b2
CW
1158}
1159
92b88aeb 1160static uint32_t
e28f8711 1161i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1162{
e28f8711 1163 uint32_t gtt_size;
92b88aeb
CW
1164
1165 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1166 tiling_mode == I915_TILING_NONE)
1167 return size;
92b88aeb
CW
1168
1169 /* Previous chips need a power-of-two fence region when tiling */
1170 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1171 gtt_size = 1024*1024;
92b88aeb 1172 else
e28f8711 1173 gtt_size = 512*1024;
92b88aeb 1174
e28f8711
CW
1175 while (gtt_size < size)
1176 gtt_size <<= 1;
92b88aeb 1177
e28f8711 1178 return gtt_size;
92b88aeb
CW
1179}
1180
de151cf6
JB
1181/**
1182 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1183 * @obj: object to check
1184 *
1185 * Return the required GTT alignment for an object, taking into account
5e783301 1186 * potential fence register mapping.
de151cf6
JB
1187 */
1188static uint32_t
e28f8711
CW
1189i915_gem_get_gtt_alignment(struct drm_device *dev,
1190 uint32_t size,
1191 int tiling_mode)
de151cf6 1192{
de151cf6
JB
1193 /*
1194 * Minimum alignment is 4k (GTT page size), but might be greater
1195 * if a fence register is needed for the object.
1196 */
a00b10c3 1197 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1198 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1199 return 4096;
1200
a00b10c3
CW
1201 /*
1202 * Previous chips need to be aligned to the size of the smallest
1203 * fence register that can contain the object.
1204 */
e28f8711 1205 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1206}
1207
5e783301
DV
1208/**
1209 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1210 * unfenced object
e28f8711
CW
1211 * @dev: the device
1212 * @size: size of the object
1213 * @tiling_mode: tiling mode of the object
5e783301
DV
1214 *
1215 * Return the required GTT alignment for an object, only taking into account
1216 * unfenced tiled surface requirements.
1217 */
467cffba 1218uint32_t
e28f8711
CW
1219i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1220 uint32_t size,
1221 int tiling_mode)
5e783301 1222{
5e783301
DV
1223 /*
1224 * Minimum alignment is 4k (GTT page size) for sane hw.
1225 */
1226 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1227 tiling_mode == I915_TILING_NONE)
5e783301
DV
1228 return 4096;
1229
e28f8711
CW
1230 /* Previous hardware however needs to be aligned to a power-of-two
1231 * tile height. The simplest method for determining this is to reuse
1232 * the power-of-tile object size.
5e783301 1233 */
e28f8711 1234 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1235}
1236
de151cf6 1237int
ff72145b
DA
1238i915_gem_mmap_gtt(struct drm_file *file,
1239 struct drm_device *dev,
1240 uint32_t handle,
1241 uint64_t *offset)
de151cf6 1242{
da761a6e 1243 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1244 struct drm_i915_gem_object *obj;
de151cf6
JB
1245 int ret;
1246
76c1dec1 1247 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1248 if (ret)
76c1dec1 1249 return ret;
de151cf6 1250
ff72145b 1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1252 if (&obj->base == NULL) {
1d7cfea1
CW
1253 ret = -ENOENT;
1254 goto unlock;
1255 }
de151cf6 1256
05394f39 1257 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1258 ret = -E2BIG;
ff56b0bc 1259 goto out;
da761a6e
CW
1260 }
1261
05394f39 1262 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1263 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1264 ret = -EINVAL;
1265 goto out;
ab18282d
CW
1266 }
1267
05394f39 1268 if (!obj->base.map_list.map) {
b464e9a2 1269 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1270 if (ret)
1271 goto out;
de151cf6
JB
1272 }
1273
ff72145b 1274 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1275
1d7cfea1 1276out:
05394f39 1277 drm_gem_object_unreference(&obj->base);
1d7cfea1 1278unlock:
de151cf6 1279 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1280 return ret;
de151cf6
JB
1281}
1282
ff72145b
DA
1283/**
1284 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1285 * @dev: DRM device
1286 * @data: GTT mapping ioctl data
1287 * @file: GEM object info
1288 *
1289 * Simply returns the fake offset to userspace so it can mmap it.
1290 * The mmap call will end up in drm_gem_mmap(), which will set things
1291 * up so we can get faults in the handler above.
1292 *
1293 * The fault handler will take care of binding the object into the GTT
1294 * (since it may have been evicted to make room for something), allocating
1295 * a fence register, and mapping the appropriate aperture address into
1296 * userspace.
1297 */
1298int
1299i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1300 struct drm_file *file)
1301{
1302 struct drm_i915_gem_mmap_gtt *args = data;
1303
ff72145b
DA
1304 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1305}
1306
1307
e5281ccd 1308static int
05394f39 1309i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1310 gfp_t gfpmask)
1311{
e5281ccd
CW
1312 int page_count, i;
1313 struct address_space *mapping;
1314 struct inode *inode;
1315 struct page *page;
1316
1317 /* Get the list of pages out of our struct file. They'll be pinned
1318 * at this point until we release them.
1319 */
05394f39
CW
1320 page_count = obj->base.size / PAGE_SIZE;
1321 BUG_ON(obj->pages != NULL);
1322 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1323 if (obj->pages == NULL)
e5281ccd
CW
1324 return -ENOMEM;
1325
05394f39 1326 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1327 mapping = inode->i_mapping;
5949eac4
HD
1328 gfpmask |= mapping_gfp_mask(mapping);
1329
e5281ccd 1330 for (i = 0; i < page_count; i++) {
5949eac4 1331 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1332 if (IS_ERR(page))
1333 goto err_pages;
1334
05394f39 1335 obj->pages[i] = page;
e5281ccd
CW
1336 }
1337
6dacfd2f 1338 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1339 i915_gem_object_do_bit_17_swizzle(obj);
1340
1341 return 0;
1342
1343err_pages:
1344 while (i--)
05394f39 1345 page_cache_release(obj->pages[i]);
e5281ccd 1346
05394f39
CW
1347 drm_free_large(obj->pages);
1348 obj->pages = NULL;
e5281ccd
CW
1349 return PTR_ERR(page);
1350}
1351
5cdf5881 1352static void
05394f39 1353i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1354{
05394f39 1355 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1356 int i;
1357
05394f39 1358 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1359
6dacfd2f 1360 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1361 i915_gem_object_save_bit_17_swizzle(obj);
1362
05394f39
CW
1363 if (obj->madv == I915_MADV_DONTNEED)
1364 obj->dirty = 0;
3ef94daa
CW
1365
1366 for (i = 0; i < page_count; i++) {
05394f39
CW
1367 if (obj->dirty)
1368 set_page_dirty(obj->pages[i]);
3ef94daa 1369
05394f39
CW
1370 if (obj->madv == I915_MADV_WILLNEED)
1371 mark_page_accessed(obj->pages[i]);
3ef94daa 1372
05394f39 1373 page_cache_release(obj->pages[i]);
3ef94daa 1374 }
05394f39 1375 obj->dirty = 0;
673a394b 1376
05394f39
CW
1377 drm_free_large(obj->pages);
1378 obj->pages = NULL;
673a394b
EA
1379}
1380
54cf91dc 1381void
05394f39 1382i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1383 struct intel_ring_buffer *ring,
1384 u32 seqno)
673a394b 1385{
05394f39 1386 struct drm_device *dev = obj->base.dev;
69dc4987 1387 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1388
852835f3 1389 BUG_ON(ring == NULL);
05394f39 1390 obj->ring = ring;
673a394b
EA
1391
1392 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1393 if (!obj->active) {
1394 drm_gem_object_reference(&obj->base);
1395 obj->active = 1;
673a394b 1396 }
e35a41de 1397
673a394b 1398 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1399 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1400 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1401
05394f39 1402 obj->last_rendering_seqno = seqno;
caea7476 1403
7dd49065 1404 if (obj->fenced_gpu_access) {
caea7476 1405 obj->last_fenced_seqno = seqno;
caea7476 1406
7dd49065
CW
1407 /* Bump MRU to take account of the delayed flush */
1408 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1409 struct drm_i915_fence_reg *reg;
1410
1411 reg = &dev_priv->fence_regs[obj->fence_reg];
1412 list_move_tail(&reg->lru_list,
1413 &dev_priv->mm.fence_list);
1414 }
caea7476
CW
1415 }
1416}
1417
1418static void
1419i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1420{
1421 list_del_init(&obj->ring_list);
1422 obj->last_rendering_seqno = 0;
15a13bbd 1423 obj->last_fenced_seqno = 0;
673a394b
EA
1424}
1425
ce44b0ea 1426static void
05394f39 1427i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1428{
05394f39 1429 struct drm_device *dev = obj->base.dev;
ce44b0ea 1430 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1431
05394f39
CW
1432 BUG_ON(!obj->active);
1433 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1434
1435 i915_gem_object_move_off_active(obj);
1436}
1437
1438static void
1439i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1440{
1441 struct drm_device *dev = obj->base.dev;
1442 struct drm_i915_private *dev_priv = dev->dev_private;
1443
1b50247a 1444 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476
CW
1445
1446 BUG_ON(!list_empty(&obj->gpu_write_list));
1447 BUG_ON(!obj->active);
1448 obj->ring = NULL;
1449
1450 i915_gem_object_move_off_active(obj);
1451 obj->fenced_gpu_access = false;
caea7476
CW
1452
1453 obj->active = 0;
87ca9c8a 1454 obj->pending_gpu_write = false;
caea7476
CW
1455 drm_gem_object_unreference(&obj->base);
1456
1457 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1458}
673a394b 1459
963b4836
CW
1460/* Immediately discard the backing storage */
1461static void
05394f39 1462i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1463{
bb6baf76 1464 struct inode *inode;
963b4836 1465
ae9fed6b
CW
1466 /* Our goal here is to return as much of the memory as
1467 * is possible back to the system as we are called from OOM.
1468 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1469 * backing pages, *now*.
ae9fed6b 1470 */
05394f39 1471 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1472 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1473
a14917ee
CW
1474 if (obj->base.map_list.map)
1475 drm_gem_free_mmap_offset(&obj->base);
1476
05394f39 1477 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1478}
1479
1480static inline int
05394f39 1481i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1482{
05394f39 1483 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1484}
1485
63560396 1486static void
db53a302
CW
1487i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1488 uint32_t flush_domains)
63560396 1489{
05394f39 1490 struct drm_i915_gem_object *obj, *next;
63560396 1491
05394f39 1492 list_for_each_entry_safe(obj, next,
64193406 1493 &ring->gpu_write_list,
63560396 1494 gpu_write_list) {
05394f39
CW
1495 if (obj->base.write_domain & flush_domains) {
1496 uint32_t old_write_domain = obj->base.write_domain;
63560396 1497
05394f39
CW
1498 obj->base.write_domain = 0;
1499 list_del_init(&obj->gpu_write_list);
1ec14ad3 1500 i915_gem_object_move_to_active(obj, ring,
db53a302 1501 i915_gem_next_request_seqno(ring));
63560396 1502
63560396 1503 trace_i915_gem_object_change_domain(obj,
05394f39 1504 obj->base.read_domains,
63560396
DV
1505 old_write_domain);
1506 }
1507 }
1508}
8187a2b7 1509
53d227f2
DV
1510static u32
1511i915_gem_get_seqno(struct drm_device *dev)
1512{
1513 drm_i915_private_t *dev_priv = dev->dev_private;
1514 u32 seqno = dev_priv->next_seqno;
1515
1516 /* reserve 0 for non-seqno */
1517 if (++dev_priv->next_seqno == 0)
1518 dev_priv->next_seqno = 1;
1519
1520 return seqno;
1521}
1522
1523u32
1524i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1525{
1526 if (ring->outstanding_lazy_request == 0)
1527 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1528
1529 return ring->outstanding_lazy_request;
1530}
1531
3cce469c 1532int
db53a302 1533i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1534 struct drm_file *file,
db53a302 1535 struct drm_i915_gem_request *request)
673a394b 1536{
db53a302 1537 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1538 uint32_t seqno;
a71d8d94 1539 u32 request_ring_position;
673a394b 1540 int was_empty;
3cce469c
CW
1541 int ret;
1542
1543 BUG_ON(request == NULL);
53d227f2 1544 seqno = i915_gem_next_request_seqno(ring);
673a394b 1545
a71d8d94
CW
1546 /* Record the position of the start of the request so that
1547 * should we detect the updated seqno part-way through the
1548 * GPU processing the request, we never over-estimate the
1549 * position of the head.
1550 */
1551 request_ring_position = intel_ring_get_tail(ring);
1552
3cce469c
CW
1553 ret = ring->add_request(ring, &seqno);
1554 if (ret)
1555 return ret;
673a394b 1556
db53a302 1557 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1558
1559 request->seqno = seqno;
852835f3 1560 request->ring = ring;
a71d8d94 1561 request->tail = request_ring_position;
673a394b 1562 request->emitted_jiffies = jiffies;
852835f3
ZN
1563 was_empty = list_empty(&ring->request_list);
1564 list_add_tail(&request->list, &ring->request_list);
1565
db53a302
CW
1566 if (file) {
1567 struct drm_i915_file_private *file_priv = file->driver_priv;
1568
1c25595f 1569 spin_lock(&file_priv->mm.lock);
f787a5f5 1570 request->file_priv = file_priv;
b962442e 1571 list_add_tail(&request->client_list,
f787a5f5 1572 &file_priv->mm.request_list);
1c25595f 1573 spin_unlock(&file_priv->mm.lock);
b962442e 1574 }
673a394b 1575
5391d0cf 1576 ring->outstanding_lazy_request = 0;
db53a302 1577
f65d9421 1578 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1579 if (i915_enable_hangcheck) {
1580 mod_timer(&dev_priv->hangcheck_timer,
1581 jiffies +
1582 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1583 }
f65d9421 1584 if (was_empty)
b3b079db
CW
1585 queue_delayed_work(dev_priv->wq,
1586 &dev_priv->mm.retire_work, HZ);
f65d9421 1587 }
3cce469c 1588 return 0;
673a394b
EA
1589}
1590
f787a5f5
CW
1591static inline void
1592i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1593{
1c25595f 1594 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1595
1c25595f
CW
1596 if (!file_priv)
1597 return;
1c5d22f7 1598
1c25595f 1599 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1600 if (request->file_priv) {
1601 list_del(&request->client_list);
1602 request->file_priv = NULL;
1603 }
1c25595f 1604 spin_unlock(&file_priv->mm.lock);
673a394b 1605}
673a394b 1606
dfaae392
CW
1607static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1608 struct intel_ring_buffer *ring)
9375e446 1609{
dfaae392
CW
1610 while (!list_empty(&ring->request_list)) {
1611 struct drm_i915_gem_request *request;
673a394b 1612
dfaae392
CW
1613 request = list_first_entry(&ring->request_list,
1614 struct drm_i915_gem_request,
1615 list);
de151cf6 1616
dfaae392 1617 list_del(&request->list);
f787a5f5 1618 i915_gem_request_remove_from_client(request);
dfaae392
CW
1619 kfree(request);
1620 }
673a394b 1621
dfaae392 1622 while (!list_empty(&ring->active_list)) {
05394f39 1623 struct drm_i915_gem_object *obj;
9375e446 1624
05394f39
CW
1625 obj = list_first_entry(&ring->active_list,
1626 struct drm_i915_gem_object,
1627 ring_list);
9375e446 1628
05394f39
CW
1629 obj->base.write_domain = 0;
1630 list_del_init(&obj->gpu_write_list);
1631 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1632 }
1633}
1634
312817a3
CW
1635static void i915_gem_reset_fences(struct drm_device *dev)
1636{
1637 struct drm_i915_private *dev_priv = dev->dev_private;
1638 int i;
1639
4b9de737 1640 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1641 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1642
ada726c7 1643 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1644
ada726c7
CW
1645 if (reg->obj)
1646 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1647
ada726c7
CW
1648 reg->pin_count = 0;
1649 reg->obj = NULL;
1650 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1651 }
ada726c7
CW
1652
1653 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1654}
1655
069efc1d 1656void i915_gem_reset(struct drm_device *dev)
673a394b 1657{
77f01230 1658 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1659 struct drm_i915_gem_object *obj;
1ec14ad3 1660 int i;
673a394b 1661
1ec14ad3
CW
1662 for (i = 0; i < I915_NUM_RINGS; i++)
1663 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1664
1665 /* Remove anything from the flushing lists. The GPU cache is likely
1666 * to be lost on reset along with the data, so simply move the
1667 * lost bo to the inactive list.
1668 */
1669 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1670 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1671 struct drm_i915_gem_object,
1672 mm_list);
dfaae392 1673
05394f39
CW
1674 obj->base.write_domain = 0;
1675 list_del_init(&obj->gpu_write_list);
1676 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1677 }
1678
1679 /* Move everything out of the GPU domains to ensure we do any
1680 * necessary invalidation upon reuse.
1681 */
05394f39 1682 list_for_each_entry(obj,
77f01230 1683 &dev_priv->mm.inactive_list,
69dc4987 1684 mm_list)
77f01230 1685 {
05394f39 1686 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1687 }
069efc1d
CW
1688
1689 /* The fence registers are invalidated so clear them out */
312817a3 1690 i915_gem_reset_fences(dev);
673a394b
EA
1691}
1692
1693/**
1694 * This function clears the request list as sequence numbers are passed.
1695 */
a71d8d94 1696void
db53a302 1697i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1698{
673a394b 1699 uint32_t seqno;
1ec14ad3 1700 int i;
673a394b 1701
db53a302 1702 if (list_empty(&ring->request_list))
6c0594a3
KW
1703 return;
1704
db53a302 1705 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1706
78501eac 1707 seqno = ring->get_seqno(ring);
1ec14ad3 1708
076e2c0e 1709 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1710 if (seqno >= ring->sync_seqno[i])
1711 ring->sync_seqno[i] = 0;
1712
852835f3 1713 while (!list_empty(&ring->request_list)) {
673a394b 1714 struct drm_i915_gem_request *request;
673a394b 1715
852835f3 1716 request = list_first_entry(&ring->request_list,
673a394b
EA
1717 struct drm_i915_gem_request,
1718 list);
673a394b 1719
dfaae392 1720 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1721 break;
1722
db53a302 1723 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1724 /* We know the GPU must have read the request to have
1725 * sent us the seqno + interrupt, so use the position
1726 * of tail of the request to update the last known position
1727 * of the GPU head.
1728 */
1729 ring->last_retired_head = request->tail;
b84d5f0c
CW
1730
1731 list_del(&request->list);
f787a5f5 1732 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1733 kfree(request);
1734 }
673a394b 1735
b84d5f0c
CW
1736 /* Move any buffers on the active list that are no longer referenced
1737 * by the ringbuffer to the flushing/inactive lists as appropriate.
1738 */
1739 while (!list_empty(&ring->active_list)) {
05394f39 1740 struct drm_i915_gem_object *obj;
b84d5f0c 1741
0206e353 1742 obj = list_first_entry(&ring->active_list,
05394f39
CW
1743 struct drm_i915_gem_object,
1744 ring_list);
673a394b 1745
05394f39 1746 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1747 break;
b84d5f0c 1748
05394f39 1749 if (obj->base.write_domain != 0)
b84d5f0c
CW
1750 i915_gem_object_move_to_flushing(obj);
1751 else
1752 i915_gem_object_move_to_inactive(obj);
673a394b 1753 }
9d34e5db 1754
db53a302
CW
1755 if (unlikely(ring->trace_irq_seqno &&
1756 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1757 ring->irq_put(ring);
db53a302 1758 ring->trace_irq_seqno = 0;
9d34e5db 1759 }
23bc5982 1760
db53a302 1761 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1762}
1763
b09a1fec
CW
1764void
1765i915_gem_retire_requests(struct drm_device *dev)
1766{
1767 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1768 int i;
b09a1fec 1769
1ec14ad3 1770 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1771 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1772}
1773
75ef9da2 1774static void
673a394b
EA
1775i915_gem_retire_work_handler(struct work_struct *work)
1776{
1777 drm_i915_private_t *dev_priv;
1778 struct drm_device *dev;
0a58705b
CW
1779 bool idle;
1780 int i;
673a394b
EA
1781
1782 dev_priv = container_of(work, drm_i915_private_t,
1783 mm.retire_work.work);
1784 dev = dev_priv->dev;
1785
891b48cf
CW
1786 /* Come back later if the device is busy... */
1787 if (!mutex_trylock(&dev->struct_mutex)) {
1788 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1789 return;
1790 }
1791
b09a1fec 1792 i915_gem_retire_requests(dev);
d1b851fc 1793
0a58705b
CW
1794 /* Send a periodic flush down the ring so we don't hold onto GEM
1795 * objects indefinitely.
1796 */
1797 idle = true;
1798 for (i = 0; i < I915_NUM_RINGS; i++) {
1799 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1800
1801 if (!list_empty(&ring->gpu_write_list)) {
1802 struct drm_i915_gem_request *request;
1803 int ret;
1804
db53a302
CW
1805 ret = i915_gem_flush_ring(ring,
1806 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1807 request = kzalloc(sizeof(*request), GFP_KERNEL);
1808 if (ret || request == NULL ||
db53a302 1809 i915_add_request(ring, NULL, request))
0a58705b
CW
1810 kfree(request);
1811 }
1812
1813 idle &= list_empty(&ring->request_list);
1814 }
1815
1816 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1817 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1818
673a394b
EA
1819 mutex_unlock(&dev->struct_mutex);
1820}
1821
604dd3ec
BW
1822static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1823 bool interruptible)
1824{
1825 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1826 int ret = 0;
1827
1828 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1829 return 0;
1830
1831 trace_i915_gem_request_wait_begin(ring, seqno);
1832 if (WARN_ON(!ring->irq_get(ring)))
1833 return -ENODEV;
1834
1835#define EXIT_COND \
1836 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1837 atomic_read(&dev_priv->mm.wedged))
1838
1839 if (interruptible)
1840 ret = wait_event_interruptible(ring->irq_queue,
1841 EXIT_COND);
1842 else
1843 wait_event(ring->irq_queue, EXIT_COND);
1844
1845 ring->irq_put(ring);
1846 trace_i915_gem_request_wait_end(ring, seqno);
1847#undef EXIT_COND
1848
1849 return ret;
1850}
1851
db53a302
CW
1852/**
1853 * Waits for a sequence number to be signaled, and cleans up the
1854 * request and object lists appropriately for that event.
1855 */
5a5a0c64 1856int
db53a302 1857i915_wait_request(struct intel_ring_buffer *ring,
b2da9fe5 1858 uint32_t seqno)
673a394b 1859{
db53a302 1860 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1861 int ret = 0;
1862
1863 BUG_ON(seqno == 0);
1864
d9bc7e9f
CW
1865 if (atomic_read(&dev_priv->mm.wedged)) {
1866 struct completion *x = &dev_priv->error_completion;
1867 bool recovery_complete;
1868 unsigned long flags;
1869
1870 /* Give the error handler a chance to run. */
1871 spin_lock_irqsave(&x->wait.lock, flags);
1872 recovery_complete = x->done > 0;
1873 spin_unlock_irqrestore(&x->wait.lock, flags);
1874
1875 return recovery_complete ? -EIO : -EAGAIN;
1876 }
30dbf0c0 1877
5d97eb69 1878 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1879 struct drm_i915_gem_request *request;
1880
1881 request = kzalloc(sizeof(*request), GFP_KERNEL);
1882 if (request == NULL)
e35a41de 1883 return -ENOMEM;
3cce469c 1884
db53a302 1885 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1886 if (ret) {
1887 kfree(request);
1888 return ret;
1889 }
1890
1891 seqno = request->seqno;
e35a41de 1892 }
ffed1d09 1893
604dd3ec 1894 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible);
ba1234d1 1895 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1896 ret = -EAGAIN;
673a394b 1897
673a394b
EA
1898 return ret;
1899}
1900
673a394b
EA
1901/**
1902 * Ensures that all rendering to the object has completed and the object is
1903 * safe to unbind from the GTT or access from the CPU.
1904 */
54cf91dc 1905int
ce453d81 1906i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1907{
673a394b
EA
1908 int ret;
1909
e47c68e9
EA
1910 /* This function only exists to support waiting for existing rendering,
1911 * not for emitting required flushes.
673a394b 1912 */
05394f39 1913 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1914
1915 /* If there is rendering queued on the buffer being evicted, wait for
1916 * it.
1917 */
05394f39 1918 if (obj->active) {
b2da9fe5 1919 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2cf34d7b 1920 if (ret)
673a394b 1921 return ret;
b2da9fe5 1922 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
1923 }
1924
1925 return 0;
1926}
1927
5816d648
BW
1928/**
1929 * i915_gem_object_sync - sync an object to a ring.
1930 *
1931 * @obj: object which may be in use on another ring.
1932 * @to: ring we wish to use the object on. May be NULL.
1933 *
1934 * This code is meant to abstract object synchronization with the GPU.
1935 * Calling with NULL implies synchronizing the object with the CPU
1936 * rather than a particular GPU ring.
1937 *
1938 * Returns 0 if successful, else propagates up the lower layer error.
1939 */
2911a35b
BW
1940int
1941i915_gem_object_sync(struct drm_i915_gem_object *obj,
1942 struct intel_ring_buffer *to)
1943{
1944 struct intel_ring_buffer *from = obj->ring;
1945 u32 seqno;
1946 int ret, idx;
1947
1948 if (from == NULL || to == from)
1949 return 0;
1950
5816d648 1951 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
1952 return i915_gem_object_wait_rendering(obj);
1953
1954 idx = intel_ring_sync_index(from, to);
1955
1956 seqno = obj->last_rendering_seqno;
1957 if (seqno <= from->sync_seqno[idx])
1958 return 0;
1959
1960 if (seqno == from->outstanding_lazy_request) {
1961 struct drm_i915_gem_request *request;
1962
1963 request = kzalloc(sizeof(*request), GFP_KERNEL);
1964 if (request == NULL)
1965 return -ENOMEM;
1966
1967 ret = i915_add_request(from, NULL, request);
1968 if (ret) {
1969 kfree(request);
1970 return ret;
1971 }
1972
1973 seqno = request->seqno;
1974 }
1975
2911a35b 1976
1500f7ea 1977 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
1978 if (!ret)
1979 from->sync_seqno[idx] = seqno;
2911a35b 1980
e3a5a225 1981 return ret;
2911a35b
BW
1982}
1983
b5ffc9bc
CW
1984static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
1985{
1986 u32 old_write_domain, old_read_domains;
1987
b5ffc9bc
CW
1988 /* Act a barrier for all accesses through the GTT */
1989 mb();
1990
1991 /* Force a pagefault for domain tracking on next user access */
1992 i915_gem_release_mmap(obj);
1993
b97c3d9c
KP
1994 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
1995 return;
1996
b5ffc9bc
CW
1997 old_read_domains = obj->base.read_domains;
1998 old_write_domain = obj->base.write_domain;
1999
2000 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2001 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2002
2003 trace_i915_gem_object_change_domain(obj,
2004 old_read_domains,
2005 old_write_domain);
2006}
2007
673a394b
EA
2008/**
2009 * Unbinds an object from the GTT aperture.
2010 */
0f973f27 2011int
05394f39 2012i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2013{
7bddb01f 2014 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2015 int ret = 0;
2016
05394f39 2017 if (obj->gtt_space == NULL)
673a394b
EA
2018 return 0;
2019
05394f39 2020 if (obj->pin_count != 0) {
673a394b
EA
2021 DRM_ERROR("Attempting to unbind pinned buffer\n");
2022 return -EINVAL;
2023 }
2024
a8198eea 2025 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2026 if (ret)
a8198eea
CW
2027 return ret;
2028 /* Continue on if we fail due to EIO, the GPU is hung so we
2029 * should be safe and we need to cleanup or else we might
2030 * cause memory corruption through use-after-free.
2031 */
2032
b5ffc9bc 2033 i915_gem_object_finish_gtt(obj);
5323fd04 2034
673a394b
EA
2035 /* Move the object to the CPU domain to ensure that
2036 * any possible CPU writes while it's not in the GTT
a8198eea 2037 * are flushed when we go to remap it.
673a394b 2038 */
a8198eea
CW
2039 if (ret == 0)
2040 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2041 if (ret == -ERESTARTSYS)
673a394b 2042 return ret;
812ed492 2043 if (ret) {
a8198eea
CW
2044 /* In the event of a disaster, abandon all caches and
2045 * hope for the best.
2046 */
812ed492 2047 i915_gem_clflush_object(obj);
05394f39 2048 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2049 }
673a394b 2050
96b47b65 2051 /* release the fence reg _after_ flushing */
d9e86c0e 2052 ret = i915_gem_object_put_fence(obj);
1488fc08 2053 if (ret)
d9e86c0e 2054 return ret;
96b47b65 2055
db53a302
CW
2056 trace_i915_gem_object_unbind(obj);
2057
74898d7e
DV
2058 if (obj->has_global_gtt_mapping)
2059 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2060 if (obj->has_aliasing_ppgtt_mapping) {
2061 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2062 obj->has_aliasing_ppgtt_mapping = 0;
2063 }
74163907 2064 i915_gem_gtt_finish_object(obj);
7bddb01f 2065
e5281ccd 2066 i915_gem_object_put_pages_gtt(obj);
673a394b 2067
6299f992 2068 list_del_init(&obj->gtt_list);
05394f39 2069 list_del_init(&obj->mm_list);
75e9e915 2070 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2071 obj->map_and_fenceable = true;
673a394b 2072
05394f39
CW
2073 drm_mm_put_block(obj->gtt_space);
2074 obj->gtt_space = NULL;
2075 obj->gtt_offset = 0;
673a394b 2076
05394f39 2077 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2078 i915_gem_object_truncate(obj);
2079
8dc1775d 2080 return ret;
673a394b
EA
2081}
2082
88241785 2083int
db53a302 2084i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2085 uint32_t invalidate_domains,
2086 uint32_t flush_domains)
2087{
88241785
CW
2088 int ret;
2089
36d527de
CW
2090 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2091 return 0;
2092
db53a302
CW
2093 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2094
88241785
CW
2095 ret = ring->flush(ring, invalidate_domains, flush_domains);
2096 if (ret)
2097 return ret;
2098
36d527de
CW
2099 if (flush_domains & I915_GEM_GPU_DOMAINS)
2100 i915_gem_process_flushing_list(ring, flush_domains);
2101
88241785 2102 return 0;
54cf91dc
CW
2103}
2104
b2da9fe5 2105static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2106{
88241785
CW
2107 int ret;
2108
395b70be 2109 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2110 return 0;
2111
88241785 2112 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2113 ret = i915_gem_flush_ring(ring,
0ac74c6b 2114 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2115 if (ret)
2116 return ret;
2117 }
2118
b2da9fe5 2119 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2120}
2121
b2da9fe5 2122int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2123{
2124 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2125 int ret, i;
4df2faf4 2126
4df2faf4 2127 /* Flush everything onto the inactive list. */
1ec14ad3 2128 for (i = 0; i < I915_NUM_RINGS; i++) {
b2da9fe5 2129 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2130 if (ret)
2131 return ret;
2132 }
4df2faf4 2133
8a1a49f9 2134 return 0;
4df2faf4
DV
2135}
2136
9ce079e4
CW
2137static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2138 struct drm_i915_gem_object *obj)
4e901fdc 2139{
4e901fdc 2140 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2141 uint64_t val;
2142
9ce079e4
CW
2143 if (obj) {
2144 u32 size = obj->gtt_space->size;
4e901fdc 2145
9ce079e4
CW
2146 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2147 0xfffff000) << 32;
2148 val |= obj->gtt_offset & 0xfffff000;
2149 val |= (uint64_t)((obj->stride / 128) - 1) <<
2150 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2151
9ce079e4
CW
2152 if (obj->tiling_mode == I915_TILING_Y)
2153 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2154 val |= I965_FENCE_REG_VALID;
2155 } else
2156 val = 0;
c6642782 2157
9ce079e4
CW
2158 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2159 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2160}
2161
9ce079e4
CW
2162static void i965_write_fence_reg(struct drm_device *dev, int reg,
2163 struct drm_i915_gem_object *obj)
de151cf6 2164{
de151cf6 2165 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2166 uint64_t val;
2167
9ce079e4
CW
2168 if (obj) {
2169 u32 size = obj->gtt_space->size;
de151cf6 2170
9ce079e4
CW
2171 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2172 0xfffff000) << 32;
2173 val |= obj->gtt_offset & 0xfffff000;
2174 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2175 if (obj->tiling_mode == I915_TILING_Y)
2176 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2177 val |= I965_FENCE_REG_VALID;
2178 } else
2179 val = 0;
c6642782 2180
9ce079e4
CW
2181 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2182 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2183}
2184
9ce079e4
CW
2185static void i915_write_fence_reg(struct drm_device *dev, int reg,
2186 struct drm_i915_gem_object *obj)
de151cf6 2187{
de151cf6 2188 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2189 u32 val;
de151cf6 2190
9ce079e4
CW
2191 if (obj) {
2192 u32 size = obj->gtt_space->size;
2193 int pitch_val;
2194 int tile_width;
c6642782 2195
9ce079e4
CW
2196 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2197 (size & -size) != size ||
2198 (obj->gtt_offset & (size - 1)),
2199 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2200 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2201
9ce079e4
CW
2202 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2203 tile_width = 128;
2204 else
2205 tile_width = 512;
2206
2207 /* Note: pitch better be a power of two tile widths */
2208 pitch_val = obj->stride / tile_width;
2209 pitch_val = ffs(pitch_val) - 1;
2210
2211 val = obj->gtt_offset;
2212 if (obj->tiling_mode == I915_TILING_Y)
2213 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2214 val |= I915_FENCE_SIZE_BITS(size);
2215 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2216 val |= I830_FENCE_REG_VALID;
2217 } else
2218 val = 0;
2219
2220 if (reg < 8)
2221 reg = FENCE_REG_830_0 + reg * 4;
2222 else
2223 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2224
2225 I915_WRITE(reg, val);
2226 POSTING_READ(reg);
de151cf6
JB
2227}
2228
9ce079e4
CW
2229static void i830_write_fence_reg(struct drm_device *dev, int reg,
2230 struct drm_i915_gem_object *obj)
de151cf6 2231{
de151cf6 2232 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2233 uint32_t val;
de151cf6 2234
9ce079e4
CW
2235 if (obj) {
2236 u32 size = obj->gtt_space->size;
2237 uint32_t pitch_val;
de151cf6 2238
9ce079e4
CW
2239 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2240 (size & -size) != size ||
2241 (obj->gtt_offset & (size - 1)),
2242 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2243 obj->gtt_offset, size);
e76a16de 2244
9ce079e4
CW
2245 pitch_val = obj->stride / 128;
2246 pitch_val = ffs(pitch_val) - 1;
de151cf6 2247
9ce079e4
CW
2248 val = obj->gtt_offset;
2249 if (obj->tiling_mode == I915_TILING_Y)
2250 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2251 val |= I830_FENCE_SIZE_BITS(size);
2252 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2253 val |= I830_FENCE_REG_VALID;
2254 } else
2255 val = 0;
c6642782 2256
9ce079e4
CW
2257 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2258 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2259}
2260
2261static void i915_gem_write_fence(struct drm_device *dev, int reg,
2262 struct drm_i915_gem_object *obj)
2263{
2264 switch (INTEL_INFO(dev)->gen) {
2265 case 7:
2266 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2267 case 5:
2268 case 4: i965_write_fence_reg(dev, reg, obj); break;
2269 case 3: i915_write_fence_reg(dev, reg, obj); break;
2270 case 2: i830_write_fence_reg(dev, reg, obj); break;
2271 default: break;
2272 }
de151cf6
JB
2273}
2274
61050808
CW
2275static inline int fence_number(struct drm_i915_private *dev_priv,
2276 struct drm_i915_fence_reg *fence)
2277{
2278 return fence - dev_priv->fence_regs;
2279}
2280
2281static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2282 struct drm_i915_fence_reg *fence,
2283 bool enable)
2284{
2285 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2286 int reg = fence_number(dev_priv, fence);
2287
2288 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2289
2290 if (enable) {
2291 obj->fence_reg = reg;
2292 fence->obj = obj;
2293 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2294 } else {
2295 obj->fence_reg = I915_FENCE_REG_NONE;
2296 fence->obj = NULL;
2297 list_del_init(&fence->lru_list);
2298 }
2299}
2300
d9e86c0e 2301static int
a360bb1a 2302i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2303{
2304 int ret;
2305
2306 if (obj->fenced_gpu_access) {
88241785 2307 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2308 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2309 0, obj->base.write_domain);
2310 if (ret)
2311 return ret;
2312 }
d9e86c0e
CW
2313
2314 obj->fenced_gpu_access = false;
2315 }
2316
1c293ea3 2317 if (obj->last_fenced_seqno) {
b2da9fe5 2318 ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
18991845
CW
2319 if (ret)
2320 return ret;
d9e86c0e
CW
2321
2322 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2323 }
2324
63256ec5
CW
2325 /* Ensure that all CPU reads are completed before installing a fence
2326 * and all writes before removing the fence.
2327 */
2328 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2329 mb();
2330
d9e86c0e
CW
2331 return 0;
2332}
2333
2334int
2335i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2336{
61050808 2337 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2338 int ret;
2339
a360bb1a 2340 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2341 if (ret)
2342 return ret;
2343
61050808
CW
2344 if (obj->fence_reg == I915_FENCE_REG_NONE)
2345 return 0;
d9e86c0e 2346
61050808
CW
2347 i915_gem_object_update_fence(obj,
2348 &dev_priv->fence_regs[obj->fence_reg],
2349 false);
2350 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2351
2352 return 0;
2353}
2354
2355static struct drm_i915_fence_reg *
a360bb1a 2356i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2357{
ae3db24a 2358 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2359 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2360 int i;
ae3db24a
DV
2361
2362 /* First try to find a free reg */
d9e86c0e 2363 avail = NULL;
ae3db24a
DV
2364 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2365 reg = &dev_priv->fence_regs[i];
2366 if (!reg->obj)
d9e86c0e 2367 return reg;
ae3db24a 2368
1690e1eb 2369 if (!reg->pin_count)
d9e86c0e 2370 avail = reg;
ae3db24a
DV
2371 }
2372
d9e86c0e
CW
2373 if (avail == NULL)
2374 return NULL;
ae3db24a
DV
2375
2376 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2377 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2378 if (reg->pin_count)
ae3db24a
DV
2379 continue;
2380
8fe301ad 2381 return reg;
ae3db24a
DV
2382 }
2383
8fe301ad 2384 return NULL;
ae3db24a
DV
2385}
2386
de151cf6 2387/**
9a5a53b3 2388 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2389 * @obj: object to map through a fence reg
2390 *
2391 * When mapping objects through the GTT, userspace wants to be able to write
2392 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2393 * This function walks the fence regs looking for a free one for @obj,
2394 * stealing one if it can't find any.
2395 *
2396 * It then sets up the reg based on the object's properties: address, pitch
2397 * and tiling format.
9a5a53b3
CW
2398 *
2399 * For an untiled surface, this removes any existing fence.
de151cf6 2400 */
8c4b8c3f 2401int
06d98131 2402i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2403{
05394f39 2404 struct drm_device *dev = obj->base.dev;
79e53945 2405 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2406 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2407 struct drm_i915_fence_reg *reg;
ae3db24a 2408 int ret;
de151cf6 2409
14415745
CW
2410 /* Have we updated the tiling parameters upon the object and so
2411 * will need to serialise the write to the associated fence register?
2412 */
5d82e3e6 2413 if (obj->fence_dirty) {
14415745
CW
2414 ret = i915_gem_object_flush_fence(obj);
2415 if (ret)
2416 return ret;
2417 }
9a5a53b3 2418
d9e86c0e 2419 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2420 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2421 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2422 if (!obj->fence_dirty) {
14415745
CW
2423 list_move_tail(&reg->lru_list,
2424 &dev_priv->mm.fence_list);
2425 return 0;
2426 }
2427 } else if (enable) {
2428 reg = i915_find_fence_reg(dev);
2429 if (reg == NULL)
2430 return -EDEADLK;
d9e86c0e 2431
14415745
CW
2432 if (reg->obj) {
2433 struct drm_i915_gem_object *old = reg->obj;
2434
2435 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2436 if (ret)
2437 return ret;
2438
14415745 2439 i915_gem_object_fence_lost(old);
29c5a587 2440 }
14415745 2441 } else
a09ba7fa 2442 return 0;
a09ba7fa 2443
14415745 2444 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2445 obj->fence_dirty = false;
14415745 2446
9ce079e4 2447 return 0;
de151cf6
JB
2448}
2449
673a394b
EA
2450/**
2451 * Finds free space in the GTT aperture and binds the object there.
2452 */
2453static int
05394f39 2454i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2455 unsigned alignment,
75e9e915 2456 bool map_and_fenceable)
673a394b 2457{
05394f39 2458 struct drm_device *dev = obj->base.dev;
673a394b 2459 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2460 struct drm_mm_node *free_space;
a00b10c3 2461 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2462 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2463 bool mappable, fenceable;
07f73f69 2464 int ret;
673a394b 2465
05394f39 2466 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2467 DRM_ERROR("Attempting to bind a purgeable object\n");
2468 return -EINVAL;
2469 }
2470
e28f8711
CW
2471 fence_size = i915_gem_get_gtt_size(dev,
2472 obj->base.size,
2473 obj->tiling_mode);
2474 fence_alignment = i915_gem_get_gtt_alignment(dev,
2475 obj->base.size,
2476 obj->tiling_mode);
2477 unfenced_alignment =
2478 i915_gem_get_unfenced_gtt_alignment(dev,
2479 obj->base.size,
2480 obj->tiling_mode);
a00b10c3 2481
673a394b 2482 if (alignment == 0)
5e783301
DV
2483 alignment = map_and_fenceable ? fence_alignment :
2484 unfenced_alignment;
75e9e915 2485 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2486 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2487 return -EINVAL;
2488 }
2489
05394f39 2490 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2491
654fc607
CW
2492 /* If the object is bigger than the entire aperture, reject it early
2493 * before evicting everything in a vain attempt to find space.
2494 */
05394f39 2495 if (obj->base.size >
75e9e915 2496 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2497 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2498 return -E2BIG;
2499 }
2500
673a394b 2501 search_free:
75e9e915 2502 if (map_and_fenceable)
920afa77
DV
2503 free_space =
2504 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2505 size, alignment, 0,
920afa77
DV
2506 dev_priv->mm.gtt_mappable_end,
2507 0);
2508 else
2509 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2510 size, alignment, 0);
920afa77
DV
2511
2512 if (free_space != NULL) {
75e9e915 2513 if (map_and_fenceable)
05394f39 2514 obj->gtt_space =
920afa77 2515 drm_mm_get_block_range_generic(free_space,
a00b10c3 2516 size, alignment, 0,
920afa77
DV
2517 dev_priv->mm.gtt_mappable_end,
2518 0);
2519 else
05394f39 2520 obj->gtt_space =
a00b10c3 2521 drm_mm_get_block(free_space, size, alignment);
920afa77 2522 }
05394f39 2523 if (obj->gtt_space == NULL) {
673a394b
EA
2524 /* If the gtt is empty and we're still having trouble
2525 * fitting our object in, we're out of memory.
2526 */
75e9e915
DV
2527 ret = i915_gem_evict_something(dev, size, alignment,
2528 map_and_fenceable);
9731129c 2529 if (ret)
673a394b 2530 return ret;
9731129c 2531
673a394b
EA
2532 goto search_free;
2533 }
2534
e5281ccd 2535 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2536 if (ret) {
05394f39
CW
2537 drm_mm_put_block(obj->gtt_space);
2538 obj->gtt_space = NULL;
07f73f69
CW
2539
2540 if (ret == -ENOMEM) {
809b6334
CW
2541 /* first try to reclaim some memory by clearing the GTT */
2542 ret = i915_gem_evict_everything(dev, false);
07f73f69 2543 if (ret) {
07f73f69 2544 /* now try to shrink everyone else */
4bdadb97
CW
2545 if (gfpmask) {
2546 gfpmask = 0;
2547 goto search_free;
07f73f69
CW
2548 }
2549
809b6334 2550 return -ENOMEM;
07f73f69
CW
2551 }
2552
2553 goto search_free;
2554 }
2555
673a394b
EA
2556 return ret;
2557 }
2558
74163907 2559 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2560 if (ret) {
e5281ccd 2561 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2562 drm_mm_put_block(obj->gtt_space);
2563 obj->gtt_space = NULL;
07f73f69 2564
809b6334 2565 if (i915_gem_evict_everything(dev, false))
07f73f69 2566 return ret;
07f73f69
CW
2567
2568 goto search_free;
673a394b 2569 }
673a394b 2570
0ebb9829
DV
2571 if (!dev_priv->mm.aliasing_ppgtt)
2572 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2573
6299f992 2574 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2575 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2576
673a394b
EA
2577 /* Assert that the object is not currently in any GPU domain. As it
2578 * wasn't in the GTT, there shouldn't be any way it could have been in
2579 * a GPU cache
2580 */
05394f39
CW
2581 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2582 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2583
6299f992 2584 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2585
75e9e915 2586 fenceable =
05394f39 2587 obj->gtt_space->size == fence_size &&
0206e353 2588 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2589
75e9e915 2590 mappable =
05394f39 2591 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2592
05394f39 2593 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2594
db53a302 2595 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2596 return 0;
2597}
2598
2599void
05394f39 2600i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2601{
673a394b
EA
2602 /* If we don't have a page list set up, then we're not pinned
2603 * to GPU, and we can ignore the cache flush because it'll happen
2604 * again at bind time.
2605 */
05394f39 2606 if (obj->pages == NULL)
673a394b
EA
2607 return;
2608
9c23f7fc
CW
2609 /* If the GPU is snooping the contents of the CPU cache,
2610 * we do not need to manually clear the CPU cache lines. However,
2611 * the caches are only snooped when the render cache is
2612 * flushed/invalidated. As we always have to emit invalidations
2613 * and flushes when moving into and out of the RENDER domain, correct
2614 * snooping behaviour occurs naturally as the result of our domain
2615 * tracking.
2616 */
2617 if (obj->cache_level != I915_CACHE_NONE)
2618 return;
2619
1c5d22f7 2620 trace_i915_gem_object_clflush(obj);
cfa16a0d 2621
05394f39 2622 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2623}
2624
e47c68e9 2625/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2626static int
3619df03 2627i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2628{
05394f39 2629 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2630 return 0;
e47c68e9
EA
2631
2632 /* Queue the GPU write cache flushing we need. */
db53a302 2633 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2634}
2635
2636/** Flushes the GTT write domain for the object if it's dirty. */
2637static void
05394f39 2638i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2639{
1c5d22f7
CW
2640 uint32_t old_write_domain;
2641
05394f39 2642 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2643 return;
2644
63256ec5 2645 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2646 * to it immediately go to main memory as far as we know, so there's
2647 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2648 *
2649 * However, we do have to enforce the order so that all writes through
2650 * the GTT land before any writes to the device, such as updates to
2651 * the GATT itself.
e47c68e9 2652 */
63256ec5
CW
2653 wmb();
2654
05394f39
CW
2655 old_write_domain = obj->base.write_domain;
2656 obj->base.write_domain = 0;
1c5d22f7
CW
2657
2658 trace_i915_gem_object_change_domain(obj,
05394f39 2659 obj->base.read_domains,
1c5d22f7 2660 old_write_domain);
e47c68e9
EA
2661}
2662
2663/** Flushes the CPU write domain for the object if it's dirty. */
2664static void
05394f39 2665i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2666{
1c5d22f7 2667 uint32_t old_write_domain;
e47c68e9 2668
05394f39 2669 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2670 return;
2671
2672 i915_gem_clflush_object(obj);
40ce6575 2673 intel_gtt_chipset_flush();
05394f39
CW
2674 old_write_domain = obj->base.write_domain;
2675 obj->base.write_domain = 0;
1c5d22f7
CW
2676
2677 trace_i915_gem_object_change_domain(obj,
05394f39 2678 obj->base.read_domains,
1c5d22f7 2679 old_write_domain);
e47c68e9
EA
2680}
2681
2ef7eeaa
EA
2682/**
2683 * Moves a single object to the GTT read, and possibly write domain.
2684 *
2685 * This function returns when the move is complete, including waiting on
2686 * flushes to occur.
2687 */
79e53945 2688int
2021746e 2689i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2690{
8325a09d 2691 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2692 uint32_t old_write_domain, old_read_domains;
e47c68e9 2693 int ret;
2ef7eeaa 2694
02354392 2695 /* Not valid to be called on unbound objects. */
05394f39 2696 if (obj->gtt_space == NULL)
02354392
EA
2697 return -EINVAL;
2698
8d7e3de1
CW
2699 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2700 return 0;
2701
88241785
CW
2702 ret = i915_gem_object_flush_gpu_write_domain(obj);
2703 if (ret)
2704 return ret;
2705
87ca9c8a 2706 if (obj->pending_gpu_write || write) {
ce453d81 2707 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2708 if (ret)
2709 return ret;
2710 }
2dafb1e0 2711
7213342d 2712 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2713
05394f39
CW
2714 old_write_domain = obj->base.write_domain;
2715 old_read_domains = obj->base.read_domains;
1c5d22f7 2716
e47c68e9
EA
2717 /* It should now be out of any other write domains, and we can update
2718 * the domain values for our changes.
2719 */
05394f39
CW
2720 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2721 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2722 if (write) {
05394f39
CW
2723 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2724 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2725 obj->dirty = 1;
2ef7eeaa
EA
2726 }
2727
1c5d22f7
CW
2728 trace_i915_gem_object_change_domain(obj,
2729 old_read_domains,
2730 old_write_domain);
2731
8325a09d
CW
2732 /* And bump the LRU for this access */
2733 if (i915_gem_object_is_inactive(obj))
2734 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2735
e47c68e9
EA
2736 return 0;
2737}
2738
e4ffd173
CW
2739int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2740 enum i915_cache_level cache_level)
2741{
7bddb01f
DV
2742 struct drm_device *dev = obj->base.dev;
2743 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2744 int ret;
2745
2746 if (obj->cache_level == cache_level)
2747 return 0;
2748
2749 if (obj->pin_count) {
2750 DRM_DEBUG("can not change the cache level of pinned objects\n");
2751 return -EBUSY;
2752 }
2753
2754 if (obj->gtt_space) {
2755 ret = i915_gem_object_finish_gpu(obj);
2756 if (ret)
2757 return ret;
2758
2759 i915_gem_object_finish_gtt(obj);
2760
2761 /* Before SandyBridge, you could not use tiling or fence
2762 * registers with snooped memory, so relinquish any fences
2763 * currently pointing to our region in the aperture.
2764 */
2765 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2766 ret = i915_gem_object_put_fence(obj);
2767 if (ret)
2768 return ret;
2769 }
2770
74898d7e
DV
2771 if (obj->has_global_gtt_mapping)
2772 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2773 if (obj->has_aliasing_ppgtt_mapping)
2774 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2775 obj, cache_level);
e4ffd173
CW
2776 }
2777
2778 if (cache_level == I915_CACHE_NONE) {
2779 u32 old_read_domains, old_write_domain;
2780
2781 /* If we're coming from LLC cached, then we haven't
2782 * actually been tracking whether the data is in the
2783 * CPU cache or not, since we only allow one bit set
2784 * in obj->write_domain and have been skipping the clflushes.
2785 * Just set it to the CPU cache for now.
2786 */
2787 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2788 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2789
2790 old_read_domains = obj->base.read_domains;
2791 old_write_domain = obj->base.write_domain;
2792
2793 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2794 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2795
2796 trace_i915_gem_object_change_domain(obj,
2797 old_read_domains,
2798 old_write_domain);
2799 }
2800
2801 obj->cache_level = cache_level;
2802 return 0;
2803}
2804
b9241ea3 2805/*
2da3b9b9
CW
2806 * Prepare buffer for display plane (scanout, cursors, etc).
2807 * Can be called from an uninterruptible phase (modesetting) and allows
2808 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2809 */
2810int
2da3b9b9
CW
2811i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2812 u32 alignment,
919926ae 2813 struct intel_ring_buffer *pipelined)
b9241ea3 2814{
2da3b9b9 2815 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2816 int ret;
2817
88241785
CW
2818 ret = i915_gem_object_flush_gpu_write_domain(obj);
2819 if (ret)
2820 return ret;
2821
0be73284 2822 if (pipelined != obj->ring) {
2911a35b
BW
2823 ret = i915_gem_object_sync(obj, pipelined);
2824 if (ret)
b9241ea3
ZW
2825 return ret;
2826 }
2827
a7ef0640
EA
2828 /* The display engine is not coherent with the LLC cache on gen6. As
2829 * a result, we make sure that the pinning that is about to occur is
2830 * done with uncached PTEs. This is lowest common denominator for all
2831 * chipsets.
2832 *
2833 * However for gen6+, we could do better by using the GFDT bit instead
2834 * of uncaching, which would allow us to flush all the LLC-cached data
2835 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2836 */
2837 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2838 if (ret)
2839 return ret;
2840
2da3b9b9
CW
2841 /* As the user may map the buffer once pinned in the display plane
2842 * (e.g. libkms for the bootup splash), we have to ensure that we
2843 * always use map_and_fenceable for all scanout buffers.
2844 */
2845 ret = i915_gem_object_pin(obj, alignment, true);
2846 if (ret)
2847 return ret;
2848
b118c1e3
CW
2849 i915_gem_object_flush_cpu_write_domain(obj);
2850
2da3b9b9 2851 old_write_domain = obj->base.write_domain;
05394f39 2852 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2853
2854 /* It should now be out of any other write domains, and we can update
2855 * the domain values for our changes.
2856 */
2857 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 2858 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2859
2860 trace_i915_gem_object_change_domain(obj,
2861 old_read_domains,
2da3b9b9 2862 old_write_domain);
b9241ea3
ZW
2863
2864 return 0;
2865}
2866
85345517 2867int
a8198eea 2868i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2869{
88241785
CW
2870 int ret;
2871
a8198eea 2872 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2873 return 0;
2874
88241785 2875 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2876 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
2877 if (ret)
2878 return ret;
2879 }
85345517 2880
c501ae7f
CW
2881 ret = i915_gem_object_wait_rendering(obj);
2882 if (ret)
2883 return ret;
2884
a8198eea
CW
2885 /* Ensure that we invalidate the GPU's caches and TLBs. */
2886 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 2887 return 0;
85345517
CW
2888}
2889
e47c68e9
EA
2890/**
2891 * Moves a single object to the CPU read, and possibly write domain.
2892 *
2893 * This function returns when the move is complete, including waiting on
2894 * flushes to occur.
2895 */
dabdfe02 2896int
919926ae 2897i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 2898{
1c5d22f7 2899 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2900 int ret;
2901
8d7e3de1
CW
2902 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2903 return 0;
2904
88241785
CW
2905 ret = i915_gem_object_flush_gpu_write_domain(obj);
2906 if (ret)
2907 return ret;
2908
f8413190
CW
2909 if (write || obj->pending_gpu_write) {
2910 ret = i915_gem_object_wait_rendering(obj);
2911 if (ret)
2912 return ret;
2913 }
2ef7eeaa 2914
e47c68e9 2915 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2916
05394f39
CW
2917 old_write_domain = obj->base.write_domain;
2918 old_read_domains = obj->base.read_domains;
1c5d22f7 2919
e47c68e9 2920 /* Flush the CPU cache if it's still invalid. */
05394f39 2921 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2922 i915_gem_clflush_object(obj);
2ef7eeaa 2923
05394f39 2924 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2925 }
2926
2927 /* It should now be out of any other write domains, and we can update
2928 * the domain values for our changes.
2929 */
05394f39 2930 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
2931
2932 /* If we're writing through the CPU, then the GPU read domains will
2933 * need to be invalidated at next use.
2934 */
2935 if (write) {
05394f39
CW
2936 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2937 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 2938 }
2ef7eeaa 2939
1c5d22f7
CW
2940 trace_i915_gem_object_change_domain(obj,
2941 old_read_domains,
2942 old_write_domain);
2943
2ef7eeaa
EA
2944 return 0;
2945}
2946
673a394b
EA
2947/* Throttle our rendering by waiting until the ring has completed our requests
2948 * emitted over 20 msec ago.
2949 *
b962442e
EA
2950 * Note that if we were to use the current jiffies each time around the loop,
2951 * we wouldn't escape the function with any frames outstanding if the time to
2952 * render a frame was over 20ms.
2953 *
673a394b
EA
2954 * This should get us reasonable parallelism between CPU and GPU but also
2955 * relatively low latency when blocking on a particular request to finish.
2956 */
40a5f0de 2957static int
f787a5f5 2958i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 2959{
f787a5f5
CW
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 2962 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
2963 struct drm_i915_gem_request *request;
2964 struct intel_ring_buffer *ring = NULL;
2965 u32 seqno = 0;
2966 int ret;
93533c29 2967
e110e8d6
CW
2968 if (atomic_read(&dev_priv->mm.wedged))
2969 return -EIO;
2970
1c25595f 2971 spin_lock(&file_priv->mm.lock);
f787a5f5 2972 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
2973 if (time_after_eq(request->emitted_jiffies, recent_enough))
2974 break;
40a5f0de 2975
f787a5f5
CW
2976 ring = request->ring;
2977 seqno = request->seqno;
b962442e 2978 }
1c25595f 2979 spin_unlock(&file_priv->mm.lock);
40a5f0de 2980
f787a5f5
CW
2981 if (seqno == 0)
2982 return 0;
2bc43b5c 2983
3b88cc0d 2984 ret = __wait_seqno(ring, seqno, true);
f787a5f5
CW
2985 if (ret == 0)
2986 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
2987
2988 return ret;
2989}
2990
673a394b 2991int
05394f39
CW
2992i915_gem_object_pin(struct drm_i915_gem_object *obj,
2993 uint32_t alignment,
75e9e915 2994 bool map_and_fenceable)
673a394b 2995{
673a394b
EA
2996 int ret;
2997
05394f39 2998 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 2999
05394f39
CW
3000 if (obj->gtt_space != NULL) {
3001 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3002 (map_and_fenceable && !obj->map_and_fenceable)) {
3003 WARN(obj->pin_count,
ae7d49d8 3004 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3005 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3006 " obj->map_and_fenceable=%d\n",
05394f39 3007 obj->gtt_offset, alignment,
75e9e915 3008 map_and_fenceable,
05394f39 3009 obj->map_and_fenceable);
ac0c6b5a
CW
3010 ret = i915_gem_object_unbind(obj);
3011 if (ret)
3012 return ret;
3013 }
3014 }
3015
05394f39 3016 if (obj->gtt_space == NULL) {
a00b10c3 3017 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3018 map_and_fenceable);
9731129c 3019 if (ret)
673a394b 3020 return ret;
22c344e9 3021 }
76446cac 3022
74898d7e
DV
3023 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3024 i915_gem_gtt_bind_object(obj, obj->cache_level);
3025
1b50247a 3026 obj->pin_count++;
6299f992 3027 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3028
3029 return 0;
3030}
3031
3032void
05394f39 3033i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3034{
05394f39
CW
3035 BUG_ON(obj->pin_count == 0);
3036 BUG_ON(obj->gtt_space == NULL);
673a394b 3037
1b50247a 3038 if (--obj->pin_count == 0)
6299f992 3039 obj->pin_mappable = false;
673a394b
EA
3040}
3041
3042int
3043i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3044 struct drm_file *file)
673a394b
EA
3045{
3046 struct drm_i915_gem_pin *args = data;
05394f39 3047 struct drm_i915_gem_object *obj;
673a394b
EA
3048 int ret;
3049
1d7cfea1
CW
3050 ret = i915_mutex_lock_interruptible(dev);
3051 if (ret)
3052 return ret;
673a394b 3053
05394f39 3054 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3055 if (&obj->base == NULL) {
1d7cfea1
CW
3056 ret = -ENOENT;
3057 goto unlock;
673a394b 3058 }
673a394b 3059
05394f39 3060 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3061 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3062 ret = -EINVAL;
3063 goto out;
3ef94daa
CW
3064 }
3065
05394f39 3066 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3067 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3068 args->handle);
1d7cfea1
CW
3069 ret = -EINVAL;
3070 goto out;
79e53945
JB
3071 }
3072
05394f39
CW
3073 obj->user_pin_count++;
3074 obj->pin_filp = file;
3075 if (obj->user_pin_count == 1) {
75e9e915 3076 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3077 if (ret)
3078 goto out;
673a394b
EA
3079 }
3080
3081 /* XXX - flush the CPU caches for pinned objects
3082 * as the X server doesn't manage domains yet
3083 */
e47c68e9 3084 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3085 args->offset = obj->gtt_offset;
1d7cfea1 3086out:
05394f39 3087 drm_gem_object_unreference(&obj->base);
1d7cfea1 3088unlock:
673a394b 3089 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3090 return ret;
673a394b
EA
3091}
3092
3093int
3094i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3095 struct drm_file *file)
673a394b
EA
3096{
3097 struct drm_i915_gem_pin *args = data;
05394f39 3098 struct drm_i915_gem_object *obj;
76c1dec1 3099 int ret;
673a394b 3100
1d7cfea1
CW
3101 ret = i915_mutex_lock_interruptible(dev);
3102 if (ret)
3103 return ret;
673a394b 3104
05394f39 3105 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3106 if (&obj->base == NULL) {
1d7cfea1
CW
3107 ret = -ENOENT;
3108 goto unlock;
673a394b 3109 }
76c1dec1 3110
05394f39 3111 if (obj->pin_filp != file) {
79e53945
JB
3112 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3113 args->handle);
1d7cfea1
CW
3114 ret = -EINVAL;
3115 goto out;
79e53945 3116 }
05394f39
CW
3117 obj->user_pin_count--;
3118 if (obj->user_pin_count == 0) {
3119 obj->pin_filp = NULL;
79e53945
JB
3120 i915_gem_object_unpin(obj);
3121 }
673a394b 3122
1d7cfea1 3123out:
05394f39 3124 drm_gem_object_unreference(&obj->base);
1d7cfea1 3125unlock:
673a394b 3126 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3127 return ret;
673a394b
EA
3128}
3129
3130int
3131i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3132 struct drm_file *file)
673a394b
EA
3133{
3134 struct drm_i915_gem_busy *args = data;
05394f39 3135 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3136 int ret;
3137
76c1dec1 3138 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3139 if (ret)
76c1dec1 3140 return ret;
673a394b 3141
05394f39 3142 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3143 if (&obj->base == NULL) {
1d7cfea1
CW
3144 ret = -ENOENT;
3145 goto unlock;
673a394b 3146 }
d1b851fc 3147
0be555b6
CW
3148 /* Count all active objects as busy, even if they are currently not used
3149 * by the gpu. Users of this interface expect objects to eventually
3150 * become non-busy without any further actions, therefore emit any
3151 * necessary flushes here.
c4de0a5d 3152 */
05394f39 3153 args->busy = obj->active;
0be555b6
CW
3154 if (args->busy) {
3155 /* Unconditionally flush objects, even when the gpu still uses this
3156 * object. Userspace calling this function indicates that it wants to
3157 * use this buffer rather sooner than later, so issuing the required
3158 * flush earlier is beneficial.
3159 */
1a1c6976 3160 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3161 ret = i915_gem_flush_ring(obj->ring,
88241785 3162 0, obj->base.write_domain);
1a1c6976
CW
3163 } else if (obj->ring->outstanding_lazy_request ==
3164 obj->last_rendering_seqno) {
3165 struct drm_i915_gem_request *request;
3166
7a194876
CW
3167 /* This ring is not being cleared by active usage,
3168 * so emit a request to do so.
3169 */
1a1c6976 3170 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3171 if (request) {
0206e353 3172 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3173 if (ret)
3174 kfree(request);
3175 } else
7a194876
CW
3176 ret = -ENOMEM;
3177 }
0be555b6
CW
3178
3179 /* Update the active list for the hardware's current position.
3180 * Otherwise this only updates on a delayed timer or when irqs
3181 * are actually unmasked, and our working set ends up being
3182 * larger than required.
3183 */
db53a302 3184 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3185
05394f39 3186 args->busy = obj->active;
0be555b6 3187 }
673a394b 3188
05394f39 3189 drm_gem_object_unreference(&obj->base);
1d7cfea1 3190unlock:
673a394b 3191 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3192 return ret;
673a394b
EA
3193}
3194
3195int
3196i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3197 struct drm_file *file_priv)
3198{
0206e353 3199 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3200}
3201
3ef94daa
CW
3202int
3203i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3204 struct drm_file *file_priv)
3205{
3206 struct drm_i915_gem_madvise *args = data;
05394f39 3207 struct drm_i915_gem_object *obj;
76c1dec1 3208 int ret;
3ef94daa
CW
3209
3210 switch (args->madv) {
3211 case I915_MADV_DONTNEED:
3212 case I915_MADV_WILLNEED:
3213 break;
3214 default:
3215 return -EINVAL;
3216 }
3217
1d7cfea1
CW
3218 ret = i915_mutex_lock_interruptible(dev);
3219 if (ret)
3220 return ret;
3221
05394f39 3222 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3223 if (&obj->base == NULL) {
1d7cfea1
CW
3224 ret = -ENOENT;
3225 goto unlock;
3ef94daa 3226 }
3ef94daa 3227
05394f39 3228 if (obj->pin_count) {
1d7cfea1
CW
3229 ret = -EINVAL;
3230 goto out;
3ef94daa
CW
3231 }
3232
05394f39
CW
3233 if (obj->madv != __I915_MADV_PURGED)
3234 obj->madv = args->madv;
3ef94daa 3235
2d7ef395 3236 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3237 if (i915_gem_object_is_purgeable(obj) &&
3238 obj->gtt_space == NULL)
2d7ef395
CW
3239 i915_gem_object_truncate(obj);
3240
05394f39 3241 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3242
1d7cfea1 3243out:
05394f39 3244 drm_gem_object_unreference(&obj->base);
1d7cfea1 3245unlock:
3ef94daa 3246 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3247 return ret;
3ef94daa
CW
3248}
3249
05394f39
CW
3250struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3251 size_t size)
ac52bc56 3252{
73aa808f 3253 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3254 struct drm_i915_gem_object *obj;
5949eac4 3255 struct address_space *mapping;
ac52bc56 3256
c397b908
DV
3257 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3258 if (obj == NULL)
3259 return NULL;
673a394b 3260
c397b908
DV
3261 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3262 kfree(obj);
3263 return NULL;
3264 }
673a394b 3265
5949eac4
HD
3266 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3267 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3268
73aa808f
CW
3269 i915_gem_info_add_obj(dev_priv, size);
3270
c397b908
DV
3271 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3272 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3273
3d29b842
ED
3274 if (HAS_LLC(dev)) {
3275 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3276 * cache) for about a 10% performance improvement
3277 * compared to uncached. Graphics requests other than
3278 * display scanout are coherent with the CPU in
3279 * accessing this cache. This means in this mode we
3280 * don't need to clflush on the CPU side, and on the
3281 * GPU side we only need to flush internal caches to
3282 * get data visible to the CPU.
3283 *
3284 * However, we maintain the display planes as UC, and so
3285 * need to rebind when first used as such.
3286 */
3287 obj->cache_level = I915_CACHE_LLC;
3288 } else
3289 obj->cache_level = I915_CACHE_NONE;
3290
62b8b215 3291 obj->base.driver_private = NULL;
c397b908 3292 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3293 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3294 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3295 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3296 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3297 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3298 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3299 /* Avoid an unnecessary call to unbind on the first bind. */
3300 obj->map_and_fenceable = true;
de151cf6 3301
05394f39 3302 return obj;
c397b908
DV
3303}
3304
3305int i915_gem_init_object(struct drm_gem_object *obj)
3306{
3307 BUG();
de151cf6 3308
673a394b
EA
3309 return 0;
3310}
3311
1488fc08 3312void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3313{
1488fc08 3314 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3315 struct drm_device *dev = obj->base.dev;
be72615b 3316 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3317
26e12f89
CW
3318 trace_i915_gem_object_destroy(obj);
3319
1488fc08
CW
3320 if (obj->phys_obj)
3321 i915_gem_detach_phys_object(dev, obj);
3322
3323 obj->pin_count = 0;
3324 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3325 bool was_interruptible;
3326
3327 was_interruptible = dev_priv->mm.interruptible;
3328 dev_priv->mm.interruptible = false;
3329
3330 WARN_ON(i915_gem_object_unbind(obj));
3331
3332 dev_priv->mm.interruptible = was_interruptible;
3333 }
3334
05394f39 3335 if (obj->base.map_list.map)
b464e9a2 3336 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3337
05394f39
CW
3338 drm_gem_object_release(&obj->base);
3339 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3340
05394f39
CW
3341 kfree(obj->bit_17);
3342 kfree(obj);
673a394b
EA
3343}
3344
29105ccc
CW
3345int
3346i915_gem_idle(struct drm_device *dev)
3347{
3348 drm_i915_private_t *dev_priv = dev->dev_private;
3349 int ret;
28dfe52a 3350
29105ccc 3351 mutex_lock(&dev->struct_mutex);
1c5d22f7 3352
87acb0a5 3353 if (dev_priv->mm.suspended) {
29105ccc
CW
3354 mutex_unlock(&dev->struct_mutex);
3355 return 0;
28dfe52a
EA
3356 }
3357
b2da9fe5 3358 ret = i915_gpu_idle(dev);
6dbe2772
KP
3359 if (ret) {
3360 mutex_unlock(&dev->struct_mutex);
673a394b 3361 return ret;
6dbe2772 3362 }
b2da9fe5 3363 i915_gem_retire_requests(dev);
673a394b 3364
29105ccc 3365 /* Under UMS, be paranoid and evict. */
a39d7efc
CW
3366 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3367 i915_gem_evict_everything(dev, false);
29105ccc 3368
312817a3
CW
3369 i915_gem_reset_fences(dev);
3370
29105ccc
CW
3371 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3372 * We need to replace this with a semaphore, or something.
3373 * And not confound mm.suspended!
3374 */
3375 dev_priv->mm.suspended = 1;
bc0c7f14 3376 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3377
3378 i915_kernel_lost_context(dev);
6dbe2772 3379 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3380
6dbe2772
KP
3381 mutex_unlock(&dev->struct_mutex);
3382
29105ccc
CW
3383 /* Cancel the retire work handler, which should be idle now. */
3384 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3385
673a394b
EA
3386 return 0;
3387}
3388
f691e2f4
DV
3389void i915_gem_init_swizzling(struct drm_device *dev)
3390{
3391 drm_i915_private_t *dev_priv = dev->dev_private;
3392
11782b02 3393 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3394 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3395 return;
3396
3397 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3398 DISP_TILE_SURFACE_SWIZZLING);
3399
11782b02
DV
3400 if (IS_GEN5(dev))
3401 return;
3402
f691e2f4
DV
3403 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3404 if (IS_GEN6(dev))
6b26c86d 3405 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3406 else
6b26c86d 3407 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3408}
e21af88d
DV
3409
3410void i915_gem_init_ppgtt(struct drm_device *dev)
3411{
3412 drm_i915_private_t *dev_priv = dev->dev_private;
3413 uint32_t pd_offset;
3414 struct intel_ring_buffer *ring;
55a254ac
DV
3415 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3416 uint32_t __iomem *pd_addr;
3417 uint32_t pd_entry;
e21af88d
DV
3418 int i;
3419
3420 if (!dev_priv->mm.aliasing_ppgtt)
3421 return;
3422
55a254ac
DV
3423
3424 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3425 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3426 dma_addr_t pt_addr;
3427
3428 if (dev_priv->mm.gtt->needs_dmar)
3429 pt_addr = ppgtt->pt_dma_addr[i];
3430 else
3431 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3432
3433 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3434 pd_entry |= GEN6_PDE_VALID;
3435
3436 writel(pd_entry, pd_addr + i);
3437 }
3438 readl(pd_addr);
3439
3440 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3441 pd_offset /= 64; /* in cachelines, */
3442 pd_offset <<= 16;
3443
3444 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3445 uint32_t ecochk, gab_ctl, ecobits;
3446
3447 ecobits = I915_READ(GAC_ECO_BITS);
3448 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3449
3450 gab_ctl = I915_READ(GAB_CTL);
3451 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3452
3453 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3454 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3455 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3456 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3457 } else if (INTEL_INFO(dev)->gen >= 7) {
3458 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3459 /* GFX_MODE is per-ring on gen7+ */
3460 }
3461
3462 for (i = 0; i < I915_NUM_RINGS; i++) {
3463 ring = &dev_priv->ring[i];
3464
3465 if (INTEL_INFO(dev)->gen >= 7)
3466 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3467 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3468
3469 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3470 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3471 }
3472}
3473
8187a2b7 3474int
f691e2f4 3475i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3476{
3477 drm_i915_private_t *dev_priv = dev->dev_private;
3478 int ret;
68f95ba9 3479
f691e2f4
DV
3480 i915_gem_init_swizzling(dev);
3481
5c1143bb 3482 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3483 if (ret)
b6913e4b 3484 return ret;
68f95ba9
CW
3485
3486 if (HAS_BSD(dev)) {
5c1143bb 3487 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3488 if (ret)
3489 goto cleanup_render_ring;
d1b851fc 3490 }
68f95ba9 3491
549f7365
CW
3492 if (HAS_BLT(dev)) {
3493 ret = intel_init_blt_ring_buffer(dev);
3494 if (ret)
3495 goto cleanup_bsd_ring;
3496 }
3497
6f392d54
CW
3498 dev_priv->next_seqno = 1;
3499
e21af88d
DV
3500 i915_gem_init_ppgtt(dev);
3501
68f95ba9
CW
3502 return 0;
3503
549f7365 3504cleanup_bsd_ring:
1ec14ad3 3505 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3506cleanup_render_ring:
1ec14ad3 3507 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3508 return ret;
3509}
3510
1070a42b
CW
3511static bool
3512intel_enable_ppgtt(struct drm_device *dev)
3513{
3514 if (i915_enable_ppgtt >= 0)
3515 return i915_enable_ppgtt;
3516
3517#ifdef CONFIG_INTEL_IOMMU
3518 /* Disable ppgtt on SNB if VT-d is on. */
3519 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3520 return false;
3521#endif
3522
3523 return true;
3524}
3525
3526int i915_gem_init(struct drm_device *dev)
3527{
3528 struct drm_i915_private *dev_priv = dev->dev_private;
3529 unsigned long gtt_size, mappable_size;
3530 int ret;
3531
3532 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3533 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3534
3535 mutex_lock(&dev->struct_mutex);
3536 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3537 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3538 * aperture accordingly when using aliasing ppgtt. */
3539 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3540
3541 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3542
3543 ret = i915_gem_init_aliasing_ppgtt(dev);
3544 if (ret) {
3545 mutex_unlock(&dev->struct_mutex);
3546 return ret;
3547 }
3548 } else {
3549 /* Let GEM Manage all of the aperture.
3550 *
3551 * However, leave one page at the end still bound to the scratch
3552 * page. There are a number of places where the hardware
3553 * apparently prefetches past the end of the object, and we've
3554 * seen multiple hangs with the GPU head pointer stuck in a
3555 * batchbuffer bound at the last page of the aperture. One page
3556 * should be enough to keep any prefetching inside of the
3557 * aperture.
3558 */
3559 i915_gem_init_global_gtt(dev, 0, mappable_size,
3560 gtt_size);
3561 }
3562
3563 ret = i915_gem_init_hw(dev);
3564 mutex_unlock(&dev->struct_mutex);
3565 if (ret) {
3566 i915_gem_cleanup_aliasing_ppgtt(dev);
3567 return ret;
3568 }
3569
3570 /* Allow hardware batchbuffers unless told otherwise. */
8781342d 3571 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3572 return 0;
3573}
3574
8187a2b7
ZN
3575void
3576i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3577{
3578 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3579 int i;
8187a2b7 3580
1ec14ad3
CW
3581 for (i = 0; i < I915_NUM_RINGS; i++)
3582 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3583}
3584
673a394b
EA
3585int
3586i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3587 struct drm_file *file_priv)
3588{
3589 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3590 int ret, i;
673a394b 3591
79e53945
JB
3592 if (drm_core_check_feature(dev, DRIVER_MODESET))
3593 return 0;
3594
ba1234d1 3595 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3596 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3597 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3598 }
3599
673a394b 3600 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3601 dev_priv->mm.suspended = 0;
3602
f691e2f4 3603 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3604 if (ret != 0) {
3605 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3606 return ret;
d816f6ac 3607 }
9bb2d6f9 3608
69dc4987 3609 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3610 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3611 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3612 for (i = 0; i < I915_NUM_RINGS; i++) {
3613 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3614 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3615 }
673a394b 3616 mutex_unlock(&dev->struct_mutex);
dbb19d30 3617
5f35308b
CW
3618 ret = drm_irq_install(dev);
3619 if (ret)
3620 goto cleanup_ringbuffer;
dbb19d30 3621
673a394b 3622 return 0;
5f35308b
CW
3623
3624cleanup_ringbuffer:
3625 mutex_lock(&dev->struct_mutex);
3626 i915_gem_cleanup_ringbuffer(dev);
3627 dev_priv->mm.suspended = 1;
3628 mutex_unlock(&dev->struct_mutex);
3629
3630 return ret;
673a394b
EA
3631}
3632
3633int
3634i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3635 struct drm_file *file_priv)
3636{
79e53945
JB
3637 if (drm_core_check_feature(dev, DRIVER_MODESET))
3638 return 0;
3639
dbb19d30 3640 drm_irq_uninstall(dev);
e6890f6f 3641 return i915_gem_idle(dev);
673a394b
EA
3642}
3643
3644void
3645i915_gem_lastclose(struct drm_device *dev)
3646{
3647 int ret;
673a394b 3648
e806b495
EA
3649 if (drm_core_check_feature(dev, DRIVER_MODESET))
3650 return;
3651
6dbe2772
KP
3652 ret = i915_gem_idle(dev);
3653 if (ret)
3654 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3655}
3656
64193406
CW
3657static void
3658init_ring_lists(struct intel_ring_buffer *ring)
3659{
3660 INIT_LIST_HEAD(&ring->active_list);
3661 INIT_LIST_HEAD(&ring->request_list);
3662 INIT_LIST_HEAD(&ring->gpu_write_list);
3663}
3664
673a394b
EA
3665void
3666i915_gem_load(struct drm_device *dev)
3667{
b5aa8a0f 3668 int i;
673a394b
EA
3669 drm_i915_private_t *dev_priv = dev->dev_private;
3670
69dc4987 3671 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3672 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3673 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 3674 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
93a37f20 3675 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3676 for (i = 0; i < I915_NUM_RINGS; i++)
3677 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3678 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3679 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3680 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3681 i915_gem_retire_work_handler);
30dbf0c0 3682 init_completion(&dev_priv->error_completion);
31169714 3683
94400120
DA
3684 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3685 if (IS_GEN3(dev)) {
50743298
DV
3686 I915_WRITE(MI_ARB_STATE,
3687 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
3688 }
3689
72bfa19c
CW
3690 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3691
de151cf6 3692 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3693 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3694 dev_priv->fence_reg_start = 3;
de151cf6 3695
a6c45cf0 3696 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3697 dev_priv->num_fence_regs = 16;
3698 else
3699 dev_priv->num_fence_regs = 8;
3700
b5aa8a0f 3701 /* Initialize fence registers to zero */
ada726c7 3702 i915_gem_reset_fences(dev);
10ed13e4 3703
673a394b 3704 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3705 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3706
ce453d81
CW
3707 dev_priv->mm.interruptible = true;
3708
17250b71
CW
3709 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3710 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3711 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3712}
71acb5eb
DA
3713
3714/*
3715 * Create a physically contiguous memory object for this object
3716 * e.g. for cursor + overlay regs
3717 */
995b6762
CW
3718static int i915_gem_init_phys_object(struct drm_device *dev,
3719 int id, int size, int align)
71acb5eb
DA
3720{
3721 drm_i915_private_t *dev_priv = dev->dev_private;
3722 struct drm_i915_gem_phys_object *phys_obj;
3723 int ret;
3724
3725 if (dev_priv->mm.phys_objs[id - 1] || !size)
3726 return 0;
3727
9a298b2a 3728 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3729 if (!phys_obj)
3730 return -ENOMEM;
3731
3732 phys_obj->id = id;
3733
6eeefaf3 3734 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3735 if (!phys_obj->handle) {
3736 ret = -ENOMEM;
3737 goto kfree_obj;
3738 }
3739#ifdef CONFIG_X86
3740 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3741#endif
3742
3743 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3744
3745 return 0;
3746kfree_obj:
9a298b2a 3747 kfree(phys_obj);
71acb5eb
DA
3748 return ret;
3749}
3750
995b6762 3751static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3752{
3753 drm_i915_private_t *dev_priv = dev->dev_private;
3754 struct drm_i915_gem_phys_object *phys_obj;
3755
3756 if (!dev_priv->mm.phys_objs[id - 1])
3757 return;
3758
3759 phys_obj = dev_priv->mm.phys_objs[id - 1];
3760 if (phys_obj->cur_obj) {
3761 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3762 }
3763
3764#ifdef CONFIG_X86
3765 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3766#endif
3767 drm_pci_free(dev, phys_obj->handle);
3768 kfree(phys_obj);
3769 dev_priv->mm.phys_objs[id - 1] = NULL;
3770}
3771
3772void i915_gem_free_all_phys_object(struct drm_device *dev)
3773{
3774 int i;
3775
260883c8 3776 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3777 i915_gem_free_phys_object(dev, i);
3778}
3779
3780void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3781 struct drm_i915_gem_object *obj)
71acb5eb 3782{
05394f39 3783 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3784 char *vaddr;
71acb5eb 3785 int i;
71acb5eb
DA
3786 int page_count;
3787
05394f39 3788 if (!obj->phys_obj)
71acb5eb 3789 return;
05394f39 3790 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3791
05394f39 3792 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3793 for (i = 0; i < page_count; i++) {
5949eac4 3794 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3795 if (!IS_ERR(page)) {
3796 char *dst = kmap_atomic(page);
3797 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3798 kunmap_atomic(dst);
3799
3800 drm_clflush_pages(&page, 1);
3801
3802 set_page_dirty(page);
3803 mark_page_accessed(page);
3804 page_cache_release(page);
3805 }
71acb5eb 3806 }
40ce6575 3807 intel_gtt_chipset_flush();
d78b47b9 3808
05394f39
CW
3809 obj->phys_obj->cur_obj = NULL;
3810 obj->phys_obj = NULL;
71acb5eb
DA
3811}
3812
3813int
3814i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3815 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3816 int id,
3817 int align)
71acb5eb 3818{
05394f39 3819 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3820 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3821 int ret = 0;
3822 int page_count;
3823 int i;
3824
3825 if (id > I915_MAX_PHYS_OBJECT)
3826 return -EINVAL;
3827
05394f39
CW
3828 if (obj->phys_obj) {
3829 if (obj->phys_obj->id == id)
71acb5eb
DA
3830 return 0;
3831 i915_gem_detach_phys_object(dev, obj);
3832 }
3833
71acb5eb
DA
3834 /* create a new object */
3835 if (!dev_priv->mm.phys_objs[id - 1]) {
3836 ret = i915_gem_init_phys_object(dev, id,
05394f39 3837 obj->base.size, align);
71acb5eb 3838 if (ret) {
05394f39
CW
3839 DRM_ERROR("failed to init phys object %d size: %zu\n",
3840 id, obj->base.size);
e5281ccd 3841 return ret;
71acb5eb
DA
3842 }
3843 }
3844
3845 /* bind to the object */
05394f39
CW
3846 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3847 obj->phys_obj->cur_obj = obj;
71acb5eb 3848
05394f39 3849 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3850
3851 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3852 struct page *page;
3853 char *dst, *src;
3854
5949eac4 3855 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3856 if (IS_ERR(page))
3857 return PTR_ERR(page);
71acb5eb 3858
ff75b9bc 3859 src = kmap_atomic(page);
05394f39 3860 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3861 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3862 kunmap_atomic(src);
71acb5eb 3863
e5281ccd
CW
3864 mark_page_accessed(page);
3865 page_cache_release(page);
3866 }
d78b47b9 3867
71acb5eb 3868 return 0;
71acb5eb
DA
3869}
3870
3871static int
05394f39
CW
3872i915_gem_phys_pwrite(struct drm_device *dev,
3873 struct drm_i915_gem_object *obj,
71acb5eb
DA
3874 struct drm_i915_gem_pwrite *args,
3875 struct drm_file *file_priv)
3876{
05394f39 3877 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 3878 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 3879
b47b30cc
CW
3880 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3881 unsigned long unwritten;
3882
3883 /* The physical object once assigned is fixed for the lifetime
3884 * of the obj, so we can safely drop the lock and continue
3885 * to access vaddr.
3886 */
3887 mutex_unlock(&dev->struct_mutex);
3888 unwritten = copy_from_user(vaddr, user_data, args->size);
3889 mutex_lock(&dev->struct_mutex);
3890 if (unwritten)
3891 return -EFAULT;
3892 }
71acb5eb 3893
40ce6575 3894 intel_gtt_chipset_flush();
71acb5eb
DA
3895 return 0;
3896}
b962442e 3897
f787a5f5 3898void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 3899{
f787a5f5 3900 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
3901
3902 /* Clean up our request list when the client is going away, so that
3903 * later retire_requests won't dereference our soon-to-be-gone
3904 * file_priv.
3905 */
1c25595f 3906 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
3907 while (!list_empty(&file_priv->mm.request_list)) {
3908 struct drm_i915_gem_request *request;
3909
3910 request = list_first_entry(&file_priv->mm.request_list,
3911 struct drm_i915_gem_request,
3912 client_list);
3913 list_del(&request->client_list);
3914 request->file_priv = NULL;
3915 }
1c25595f 3916 spin_unlock(&file_priv->mm.lock);
b962442e 3917}
31169714 3918
1637ef41
CW
3919static int
3920i915_gpu_is_active(struct drm_device *dev)
3921{
3922 drm_i915_private_t *dev_priv = dev->dev_private;
3923 int lists_empty;
3924
1637ef41 3925 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 3926 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
3927
3928 return !lists_empty;
3929}
3930
31169714 3931static int
1495f230 3932i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 3933{
17250b71
CW
3934 struct drm_i915_private *dev_priv =
3935 container_of(shrinker,
3936 struct drm_i915_private,
3937 mm.inactive_shrinker);
3938 struct drm_device *dev = dev_priv->dev;
3939 struct drm_i915_gem_object *obj, *next;
1495f230 3940 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
3941 int cnt;
3942
3943 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 3944 return 0;
31169714
CW
3945
3946 /* "fast-path" to count number of available objects */
3947 if (nr_to_scan == 0) {
17250b71
CW
3948 cnt = 0;
3949 list_for_each_entry(obj,
3950 &dev_priv->mm.inactive_list,
3951 mm_list)
3952 cnt++;
3953 mutex_unlock(&dev->struct_mutex);
3954 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
3955 }
3956
1637ef41 3957rescan:
31169714 3958 /* first scan for clean buffers */
17250b71 3959 i915_gem_retire_requests(dev);
31169714 3960
17250b71
CW
3961 list_for_each_entry_safe(obj, next,
3962 &dev_priv->mm.inactive_list,
3963 mm_list) {
3964 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
3965 if (i915_gem_object_unbind(obj) == 0 &&
3966 --nr_to_scan == 0)
17250b71 3967 break;
31169714 3968 }
31169714
CW
3969 }
3970
3971 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
3972 cnt = 0;
3973 list_for_each_entry_safe(obj, next,
3974 &dev_priv->mm.inactive_list,
3975 mm_list) {
2021746e
CW
3976 if (nr_to_scan &&
3977 i915_gem_object_unbind(obj) == 0)
17250b71 3978 nr_to_scan--;
2021746e 3979 else
17250b71
CW
3980 cnt++;
3981 }
3982
3983 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
3984 /*
3985 * We are desperate for pages, so as a last resort, wait
3986 * for the GPU to finish and discard whatever we can.
3987 * This has a dramatic impact to reduce the number of
3988 * OOM-killer events whilst running the GPU aggressively.
3989 */
b2da9fe5 3990 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
3991 goto rescan;
3992 }
17250b71
CW
3993 mutex_unlock(&dev->struct_mutex);
3994 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 3995}
This page took 0.715104 seconds and 5 git commands to generate.