drm/i915: vlv: handle only enabled pipestat interrupt events
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
07fe0b12
BW
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39 55 struct drm_file *file);
673a394b 56
61050808
CW
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
7dc19d5a
DC
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
d9973b43
CW
67static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 70
c76ce038
CW
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
2c22569b
CW
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
61050808
CW
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
5d82e3e6 93 obj->fence_dirty = false;
61050808
CW
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
73aa808f
CW
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
c20e8355 110 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
c20e8355 113 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
114}
115
21dd3734 116static int
33196ded 117i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 118{
30dbf0c0
CW
119 int ret;
120
7abb690a
DV
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
1f83fee0 123 if (EXIT_COND)
30dbf0c0
CW
124 return 0;
125
0a6759c6
DV
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
1f83fee0
DV
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
0a6759c6
DV
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
30dbf0c0 138 return ret;
0a6759c6 139 }
1f83fee0 140#undef EXIT_COND
30dbf0c0 141
21dd3734 142 return 0;
30dbf0c0
CW
143}
144
54cf91dc 145int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 146{
33196ded 147 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
148 int ret;
149
33196ded 150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
23bc5982 158 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
159 return 0;
160}
30dbf0c0 161
7d1c4804 162static inline bool
05394f39 163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 164{
9843877d 165 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
166}
167
79e53945
JB
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
79e53945 171{
93d18799 172 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 173 struct drm_i915_gem_init *args = data;
2021746e 174
7bb6fb8d
DV
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
2021746e
CW
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
79e53945 181
f534bc0b
DV
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
79e53945 186 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
93d18799 189 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
190 mutex_unlock(&dev->struct_mutex);
191
2021746e 192 return 0;
673a394b
EA
193}
194
5a125c3c
EA
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
5a125c3c 198{
73aa808f 199 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 200 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
5a125c3c 203
6299f992 204 pinned = 0;
73aa808f 205 mutex_lock(&dev->struct_mutex);
35c20a60 206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 207 if (i915_gem_obj_is_pinned(obj))
f343c5f6 208 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 209 mutex_unlock(&dev->struct_mutex);
5a125c3c 210
853ba5d2 211 args->aper_size = dev_priv->gtt.base.total;
0206e353 212 args->aper_available_size = args->aper_size - pinned;
6299f992 213
5a125c3c
EA
214 return 0;
215}
216
42dcedd4
CW
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
ff72145b
DA
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
673a394b 234{
05394f39 235 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b 238
ff72145b 239 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
240 if (size == 0)
241 return -EINVAL;
673a394b
EA
242
243 /* Allocate the new object */
ff72145b 244 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
05394f39 248 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 249 /* drop reference from allocate - handle holds it now */
d861e338
DV
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
202f2fef 253
ff72145b 254 *handle_p = handle;
673a394b
EA
255 return 0;
256}
257
ff72145b
DA
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
de45eaf7 264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
ff72145b
DA
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
63ed2cb2 278
ff72145b
DA
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
8461d226
DV
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
8c59967c 309static inline int
4f0c7cfb
BW
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
8c59967c
DV
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
d174bd64
DV
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
eb01459f 338static int
d174bd64
DV
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
e7e58eb5 346 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
f60d7f0c 358 return ret ? -EFAULT : 0;
d174bd64
DV
359}
360
23c18c71
DV
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
e7e58eb5 365 if (unlikely(swizzled)) {
23c18c71
DV
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
d174bd64
DV
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
23c18c71
DV
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
d174bd64
DV
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
f60d7f0c 409 return ret ? - EFAULT : 0;
d174bd64
DV
410}
411
eb01459f 412static int
dbf7bff0
DV
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
eb01459f 417{
8461d226 418 char __user *user_data;
eb01459f 419 ssize_t remain;
8461d226 420 loff_t offset;
eb2c0c81 421 int shmem_page_offset, page_length, ret = 0;
8461d226 422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 423 int prefaulted = 0;
8489731c 424 int needs_clflush = 0;
67d5a50c 425 struct sg_page_iter sg_iter;
eb01459f 426
2bb4629a 427 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
428 remain = args->size;
429
8461d226 430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 431
8489731c
DV
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
c76ce038 437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
23f54483
BW
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
8489731c 441 }
eb01459f 442
f60d7f0c
CW
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
8461d226 449 offset = args->offset;
eb01459f 450
67d5a50c
ID
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
2db76d7c 453 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
454
455 if (remain <= 0)
456 break;
457
eb01459f
EA
458 /* Operation in this page
459 *
eb01459f 460 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
461 * page_length = bytes to copy for this page
462 */
c8cbbb8b 463 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 467
8461d226
DV
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
d174bd64
DV
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
dbf7bff0 476
dbf7bff0
DV
477 mutex_unlock(&dev->struct_mutex);
478
d330a953 479 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 480 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
eb01459f 488
d174bd64
DV
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
eb01459f 492
dbf7bff0 493 mutex_lock(&dev->struct_mutex);
f60d7f0c 494
dbf7bff0 495next_page:
e5281ccd 496 mark_page_accessed(page);
e5281ccd 497
f60d7f0c 498 if (ret)
8461d226 499 goto out;
8461d226 500
eb01459f 501 remain -= page_length;
8461d226 502 user_data += page_length;
eb01459f
EA
503 offset += page_length;
504 }
505
4f27b75d 506out:
f60d7f0c
CW
507 i915_gem_object_unpin_pages(obj);
508
eb01459f
EA
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
2bb4629a 529 to_user_ptr(args->data_ptr),
51311d0a
CW
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
c37e2204 608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b 619
2bb4629a 620 user_data = to_user_ptr(args->data_ptr);
673a394b 621 remain = args->size;
673a394b 622
f343c5f6 623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
5d4545ae 642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69 653out_unpin:
d7f46fc4 654 i915_gem_object_ggtt_unpin(obj);
935aaa69 655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3 687
755d2218 688 return ret ? -EFAULT : 0;
3de09aa3
EA
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
755d2218 722 return ret ? -EFAULT : 0;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
40123c1f 731 ssize_t remain;
8c59967c
DV
732 loff_t offset;
733 char __user *user_data;
eb2c0c81 734 int shmem_page_offset, page_length, ret = 0;
8c59967c 735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 736 int hit_slowpath = 0;
58642885
DV
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
67d5a50c 739 struct sg_page_iter sg_iter;
40123c1f 740
2bb4629a 741 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
742 remain = args->size;
743
8c59967c 744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 745
58642885
DV
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
2c22569b 751 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
58642885 755 }
c76ce038
CW
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 761
755d2218
CW
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
673a394b 768 offset = args->offset;
05394f39 769 obj->dirty = 1;
673a394b 770
67d5a50c
ID
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
2db76d7c 773 struct page *page = sg_page_iter_page(&sg_iter);
58642885 774 int partial_cacheline_write;
e5281ccd 775
9da3da66
CW
776 if (remain <= 0)
777 break;
778
40123c1f
EA
779 /* Operation in this page
780 *
40123c1f 781 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
782 * page_length = bytes to copy for this page
783 */
c8cbbb8b 784 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 789
58642885
DV
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
8c59967c
DV
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
d174bd64
DV
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
e244a443
DV
806
807 hit_slowpath = 1;
e244a443 808 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
40123c1f 813
e244a443 814 mutex_lock(&dev->struct_mutex);
755d2218 815
e244a443 816next_page:
e5281ccd
CW
817 set_page_dirty(page);
818 mark_page_accessed(page);
e5281ccd 819
755d2218 820 if (ret)
8c59967c 821 goto out;
8c59967c 822
40123c1f 823 remain -= page_length;
8c59967c 824 user_data += page_length;
40123c1f 825 offset += page_length;
673a394b
EA
826 }
827
fbd5a26d 828out:
755d2218
CW
829 i915_gem_object_unpin_pages(obj);
830
e244a443 831 if (hit_slowpath) {
8dcf015e
DV
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
e244a443 841 }
8c59967c 842 }
673a394b 843
58642885 844 if (needs_clflush_after)
e76e9aeb 845 i915_gem_chipset_flush(dev);
58642885 846
40123c1f 847 return ret;
673a394b
EA
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 857 struct drm_file *file)
673a394b
EA
858{
859 struct drm_i915_gem_pwrite *args = data;
05394f39 860 struct drm_i915_gem_object *obj;
51311d0a
CW
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
2bb4629a 867 to_user_ptr(args->data_ptr),
51311d0a
CW
868 args->size))
869 return -EFAULT;
870
d330a953 871 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
673a394b 877
fbd5a26d 878 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 879 if (ret)
fbd5a26d 880 return ret;
1d7cfea1 881
05394f39 882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 883 if (&obj->base == NULL) {
1d7cfea1
CW
884 ret = -ENOENT;
885 goto unlock;
fbd5a26d 886 }
673a394b 887
7dcd2499 888 /* Bounds check destination. */
05394f39
CW
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
ce9d419d 891 ret = -EINVAL;
35b62a89 892 goto out;
ce9d419d
CW
893 }
894
1286ff73
DV
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
db53a302
CW
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
935aaa69 905 ret = -EFAULT;
673a394b
EA
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
5c0480f2 912 if (obj->phys_obj) {
fbd5a26d 913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
914 goto out;
915 }
916
2c22569b
CW
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
fbd5a26d 920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
fbd5a26d 924 }
673a394b 925
86a1ee26 926 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 928
35b62a89 929out:
05394f39 930 drm_gem_object_unreference(&obj->base);
1d7cfea1 931unlock:
fbd5a26d 932 mutex_unlock(&dev->struct_mutex);
673a394b
EA
933 return ret;
934}
935
b361237b 936int
33196ded 937i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
938 bool interruptible)
939{
1f83fee0 940 if (i915_reset_in_progress(error)) {
b361237b
CW
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
1f83fee0
DV
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
b361237b
CW
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
1823521d 968 if (seqno == ring->outstanding_lazy_seqno)
0025c077 969 ret = i915_add_request(ring, NULL);
b361237b
CW
970
971 return ret;
972}
973
094f9a54
CW
974static void fake_irq(unsigned long data)
975{
976 wake_up_process((struct task_struct *)data);
977}
978
979static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981{
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983}
984
b29c19b6
CW
985static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986{
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991}
992
b361237b
CW
993/**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
f69061be 997 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
f69061be
DV
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
b361237b
CW
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1012 unsigned reset_counter,
b29c19b6
CW
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
b361237b 1016{
3d13ef2e
DL
1017 struct drm_device *dev = ring->dev;
1018 drm_i915_private_t *dev_priv = dev->dev_private;
168c3f21
MK
1019 const bool irq_test_in_progress =
1020 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1021 struct timespec before, now;
1022 DEFINE_WAIT(wait);
47e9766d 1023 unsigned long timeout_expire;
b361237b
CW
1024 int ret;
1025
c67a470b
PZ
1026 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1027
b361237b
CW
1028 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1029 return 0;
1030
47e9766d 1031 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1032
3d13ef2e 1033 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1034 gen6_rps_boost(dev_priv);
1035 if (file_priv)
1036 mod_delayed_work(dev_priv->wq,
1037 &file_priv->mm.idle_work,
1038 msecs_to_jiffies(100));
1039 }
1040
168c3f21 1041 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1042 return -ENODEV;
1043
094f9a54
CW
1044 /* Record current time in case interrupted by signal, or wedged */
1045 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1046 getrawmonotonic(&before);
094f9a54
CW
1047 for (;;) {
1048 struct timer_list timer;
b361237b 1049
094f9a54
CW
1050 prepare_to_wait(&ring->irq_queue, &wait,
1051 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1052
f69061be
DV
1053 /* We need to check whether any gpu reset happened in between
1054 * the caller grabbing the seqno and now ... */
094f9a54
CW
1055 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1056 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1057 * is truely gone. */
1058 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1059 if (ret == 0)
1060 ret = -EAGAIN;
1061 break;
1062 }
f69061be 1063
094f9a54
CW
1064 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1065 ret = 0;
1066 break;
1067 }
b361237b 1068
094f9a54
CW
1069 if (interruptible && signal_pending(current)) {
1070 ret = -ERESTARTSYS;
1071 break;
1072 }
1073
47e9766d 1074 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1075 ret = -ETIME;
1076 break;
1077 }
1078
1079 timer.function = NULL;
1080 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1081 unsigned long expire;
1082
094f9a54 1083 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1084 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1085 mod_timer(&timer, expire);
1086 }
1087
5035c275 1088 io_schedule();
094f9a54 1089
094f9a54
CW
1090 if (timer.function) {
1091 del_singleshot_timer_sync(&timer);
1092 destroy_timer_on_stack(&timer);
1093 }
1094 }
b361237b 1095 getrawmonotonic(&now);
094f9a54 1096 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1097
168c3f21
MK
1098 if (!irq_test_in_progress)
1099 ring->irq_put(ring);
094f9a54
CW
1100
1101 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1102
1103 if (timeout) {
1104 struct timespec sleep_time = timespec_sub(now, before);
1105 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1106 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1107 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1108 }
1109
094f9a54 1110 return ret;
b361237b
CW
1111}
1112
1113/**
1114 * Waits for a sequence number to be signaled, and cleans up the
1115 * request and object lists appropriately for that event.
1116 */
1117int
1118i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1119{
1120 struct drm_device *dev = ring->dev;
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1122 bool interruptible = dev_priv->mm.interruptible;
1123 int ret;
1124
1125 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1126 BUG_ON(seqno == 0);
1127
33196ded 1128 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1129 if (ret)
1130 return ret;
1131
1132 ret = i915_gem_check_olr(ring, seqno);
1133 if (ret)
1134 return ret;
1135
f69061be
DV
1136 return __wait_seqno(ring, seqno,
1137 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1138 interruptible, NULL, NULL);
b361237b
CW
1139}
1140
d26e3af8
CW
1141static int
1142i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1143 struct intel_ring_buffer *ring)
1144{
1145 i915_gem_retire_requests_ring(ring);
1146
1147 /* Manually manage the write flush as we may have not yet
1148 * retired the buffer.
1149 *
1150 * Note that the last_write_seqno is always the earlier of
1151 * the two (read/write) seqno, so if we haved successfully waited,
1152 * we know we have passed the last write.
1153 */
1154 obj->last_write_seqno = 0;
1155 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1156
1157 return 0;
1158}
1159
b361237b
CW
1160/**
1161 * Ensures that all rendering to the object has completed and the object is
1162 * safe to unbind from the GTT or access from the CPU.
1163 */
1164static __must_check int
1165i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1166 bool readonly)
1167{
1168 struct intel_ring_buffer *ring = obj->ring;
1169 u32 seqno;
1170 int ret;
1171
1172 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1173 if (seqno == 0)
1174 return 0;
1175
1176 ret = i915_wait_seqno(ring, seqno);
1177 if (ret)
1178 return ret;
1179
d26e3af8 1180 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1181}
1182
3236f57a
CW
1183/* A nonblocking variant of the above wait. This is a highly dangerous routine
1184 * as the object state may change during this call.
1185 */
1186static __must_check int
1187i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
b29c19b6 1188 struct drm_file *file,
3236f57a
CW
1189 bool readonly)
1190{
1191 struct drm_device *dev = obj->base.dev;
1192 struct drm_i915_private *dev_priv = dev->dev_private;
1193 struct intel_ring_buffer *ring = obj->ring;
f69061be 1194 unsigned reset_counter;
3236f57a
CW
1195 u32 seqno;
1196 int ret;
1197
1198 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1199 BUG_ON(!dev_priv->mm.interruptible);
1200
1201 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1202 if (seqno == 0)
1203 return 0;
1204
33196ded 1205 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1206 if (ret)
1207 return ret;
1208
1209 ret = i915_gem_check_olr(ring, seqno);
1210 if (ret)
1211 return ret;
1212
f69061be 1213 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1214 mutex_unlock(&dev->struct_mutex);
b29c19b6 1215 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
3236f57a 1216 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1217 if (ret)
1218 return ret;
3236f57a 1219
d26e3af8 1220 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1221}
1222
673a394b 1223/**
2ef7eeaa
EA
1224 * Called when user space prepares to use an object with the CPU, either
1225 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1226 */
1227int
1228i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1229 struct drm_file *file)
673a394b
EA
1230{
1231 struct drm_i915_gem_set_domain *args = data;
05394f39 1232 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1233 uint32_t read_domains = args->read_domains;
1234 uint32_t write_domain = args->write_domain;
673a394b
EA
1235 int ret;
1236
2ef7eeaa 1237 /* Only handle setting domains to types used by the CPU. */
21d509e3 1238 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1239 return -EINVAL;
1240
21d509e3 1241 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1242 return -EINVAL;
1243
1244 /* Having something in the write domain implies it's in the read
1245 * domain, and only that read domain. Enforce that in the request.
1246 */
1247 if (write_domain != 0 && read_domains != write_domain)
1248 return -EINVAL;
1249
76c1dec1 1250 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1251 if (ret)
76c1dec1 1252 return ret;
1d7cfea1 1253
05394f39 1254 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1255 if (&obj->base == NULL) {
1d7cfea1
CW
1256 ret = -ENOENT;
1257 goto unlock;
76c1dec1 1258 }
673a394b 1259
3236f57a
CW
1260 /* Try to flush the object off the GPU without holding the lock.
1261 * We will repeat the flush holding the lock in the normal manner
1262 * to catch cases where we are gazumped.
1263 */
b29c19b6 1264 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
3236f57a
CW
1265 if (ret)
1266 goto unref;
1267
2ef7eeaa
EA
1268 if (read_domains & I915_GEM_DOMAIN_GTT) {
1269 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1270
1271 /* Silently promote "you're not bound, there was nothing to do"
1272 * to success, since the client was just asking us to
1273 * make sure everything was done.
1274 */
1275 if (ret == -EINVAL)
1276 ret = 0;
2ef7eeaa 1277 } else {
e47c68e9 1278 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1279 }
1280
3236f57a 1281unref:
05394f39 1282 drm_gem_object_unreference(&obj->base);
1d7cfea1 1283unlock:
673a394b
EA
1284 mutex_unlock(&dev->struct_mutex);
1285 return ret;
1286}
1287
1288/**
1289 * Called when user space has done writes to this buffer
1290 */
1291int
1292i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1293 struct drm_file *file)
673a394b
EA
1294{
1295 struct drm_i915_gem_sw_finish *args = data;
05394f39 1296 struct drm_i915_gem_object *obj;
673a394b
EA
1297 int ret = 0;
1298
76c1dec1 1299 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1300 if (ret)
76c1dec1 1301 return ret;
1d7cfea1 1302
05394f39 1303 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1304 if (&obj->base == NULL) {
1d7cfea1
CW
1305 ret = -ENOENT;
1306 goto unlock;
673a394b
EA
1307 }
1308
673a394b 1309 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1310 if (obj->pin_display)
1311 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1312
05394f39 1313 drm_gem_object_unreference(&obj->base);
1d7cfea1 1314unlock:
673a394b
EA
1315 mutex_unlock(&dev->struct_mutex);
1316 return ret;
1317}
1318
1319/**
1320 * Maps the contents of an object, returning the address it is mapped
1321 * into.
1322 *
1323 * While the mapping holds a reference on the contents of the object, it doesn't
1324 * imply a ref on the object itself.
1325 */
1326int
1327i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1328 struct drm_file *file)
673a394b
EA
1329{
1330 struct drm_i915_gem_mmap *args = data;
1331 struct drm_gem_object *obj;
673a394b
EA
1332 unsigned long addr;
1333
05394f39 1334 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1335 if (obj == NULL)
bf79cb91 1336 return -ENOENT;
673a394b 1337
1286ff73
DV
1338 /* prime objects have no backing filp to GEM mmap
1339 * pages from.
1340 */
1341 if (!obj->filp) {
1342 drm_gem_object_unreference_unlocked(obj);
1343 return -EINVAL;
1344 }
1345
6be5ceb0 1346 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1347 PROT_READ | PROT_WRITE, MAP_SHARED,
1348 args->offset);
bc9025bd 1349 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1350 if (IS_ERR((void *)addr))
1351 return addr;
1352
1353 args->addr_ptr = (uint64_t) addr;
1354
1355 return 0;
1356}
1357
de151cf6
JB
1358/**
1359 * i915_gem_fault - fault a page into the GTT
1360 * vma: VMA in question
1361 * vmf: fault info
1362 *
1363 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1364 * from userspace. The fault handler takes care of binding the object to
1365 * the GTT (if needed), allocating and programming a fence register (again,
1366 * only if needed based on whether the old reg is still valid or the object
1367 * is tiled) and inserting a new PTE into the faulting process.
1368 *
1369 * Note that the faulting process may involve evicting existing objects
1370 * from the GTT and/or fence registers to make room. So performance may
1371 * suffer if the GTT working set is large or there are few fence registers
1372 * left.
1373 */
1374int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1375{
05394f39
CW
1376 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1377 struct drm_device *dev = obj->base.dev;
7d1c4804 1378 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1379 pgoff_t page_offset;
1380 unsigned long pfn;
1381 int ret = 0;
0f973f27 1382 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1383
f65c9168
PZ
1384 intel_runtime_pm_get(dev_priv);
1385
de151cf6
JB
1386 /* We don't use vmf->pgoff since that has the fake offset */
1387 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1388 PAGE_SHIFT;
1389
d9bc7e9f
CW
1390 ret = i915_mutex_lock_interruptible(dev);
1391 if (ret)
1392 goto out;
a00b10c3 1393
db53a302
CW
1394 trace_i915_gem_object_fault(obj, page_offset, true, write);
1395
eb119bd6
CW
1396 /* Access to snoopable pages through the GTT is incoherent. */
1397 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1398 ret = -EINVAL;
1399 goto unlock;
1400 }
1401
d9bc7e9f 1402 /* Now bind it into the GTT if needed */
c37e2204 1403 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1404 if (ret)
1405 goto unlock;
4a684a41 1406
c9839303
CW
1407 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1408 if (ret)
1409 goto unpin;
74898d7e 1410
06d98131 1411 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1412 if (ret)
c9839303 1413 goto unpin;
7d1c4804 1414
6299f992
CW
1415 obj->fault_mappable = true;
1416
f343c5f6
BW
1417 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1418 pfn >>= PAGE_SHIFT;
1419 pfn += page_offset;
de151cf6
JB
1420
1421 /* Finally, remap it using the new GTT offset */
1422 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1423unpin:
d7f46fc4 1424 i915_gem_object_ggtt_unpin(obj);
c715089f 1425unlock:
de151cf6 1426 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1427out:
de151cf6 1428 switch (ret) {
d9bc7e9f 1429 case -EIO:
a9340cca
DV
1430 /* If this -EIO is due to a gpu hang, give the reset code a
1431 * chance to clean up the mess. Otherwise return the proper
1432 * SIGBUS. */
f65c9168
PZ
1433 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1434 ret = VM_FAULT_SIGBUS;
1435 break;
1436 }
045e769a 1437 case -EAGAIN:
571c608d
DV
1438 /*
1439 * EAGAIN means the gpu is hung and we'll wait for the error
1440 * handler to reset everything when re-faulting in
1441 * i915_mutex_lock_interruptible.
d9bc7e9f 1442 */
c715089f
CW
1443 case 0:
1444 case -ERESTARTSYS:
bed636ab 1445 case -EINTR:
e79e0fe3
DR
1446 case -EBUSY:
1447 /*
1448 * EBUSY is ok: this just means that another thread
1449 * already did the job.
1450 */
f65c9168
PZ
1451 ret = VM_FAULT_NOPAGE;
1452 break;
de151cf6 1453 case -ENOMEM:
f65c9168
PZ
1454 ret = VM_FAULT_OOM;
1455 break;
a7c2e1aa 1456 case -ENOSPC:
45d67817 1457 case -EFAULT:
f65c9168
PZ
1458 ret = VM_FAULT_SIGBUS;
1459 break;
de151cf6 1460 default:
a7c2e1aa 1461 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1462 ret = VM_FAULT_SIGBUS;
1463 break;
de151cf6 1464 }
f65c9168
PZ
1465
1466 intel_runtime_pm_put(dev_priv);
1467 return ret;
de151cf6
JB
1468}
1469
48018a57
PZ
1470void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1471{
1472 struct i915_vma *vma;
1473
1474 /*
1475 * Only the global gtt is relevant for gtt memory mappings, so restrict
1476 * list traversal to objects bound into the global address space. Note
1477 * that the active list should be empty, but better safe than sorry.
1478 */
1479 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1480 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1481 i915_gem_release_mmap(vma->obj);
1482 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1483 i915_gem_release_mmap(vma->obj);
1484}
1485
901782b2
CW
1486/**
1487 * i915_gem_release_mmap - remove physical page mappings
1488 * @obj: obj in question
1489 *
af901ca1 1490 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1491 * relinquish ownership of the pages back to the system.
1492 *
1493 * It is vital that we remove the page mapping if we have mapped a tiled
1494 * object through the GTT and then lose the fence register due to
1495 * resource pressure. Similarly if the object has been moved out of the
1496 * aperture, than pages mapped into userspace must be revoked. Removing the
1497 * mapping will then trigger a page fault on the next user access, allowing
1498 * fixup by i915_gem_fault().
1499 */
d05ca301 1500void
05394f39 1501i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1502{
6299f992
CW
1503 if (!obj->fault_mappable)
1504 return;
901782b2 1505
51335df9 1506 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1507 obj->fault_mappable = false;
901782b2
CW
1508}
1509
0fa87796 1510uint32_t
e28f8711 1511i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1512{
e28f8711 1513 uint32_t gtt_size;
92b88aeb
CW
1514
1515 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1516 tiling_mode == I915_TILING_NONE)
1517 return size;
92b88aeb
CW
1518
1519 /* Previous chips need a power-of-two fence region when tiling */
1520 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1521 gtt_size = 1024*1024;
92b88aeb 1522 else
e28f8711 1523 gtt_size = 512*1024;
92b88aeb 1524
e28f8711
CW
1525 while (gtt_size < size)
1526 gtt_size <<= 1;
92b88aeb 1527
e28f8711 1528 return gtt_size;
92b88aeb
CW
1529}
1530
de151cf6
JB
1531/**
1532 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1533 * @obj: object to check
1534 *
1535 * Return the required GTT alignment for an object, taking into account
5e783301 1536 * potential fence register mapping.
de151cf6 1537 */
d865110c
ID
1538uint32_t
1539i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1540 int tiling_mode, bool fenced)
de151cf6 1541{
de151cf6
JB
1542 /*
1543 * Minimum alignment is 4k (GTT page size), but might be greater
1544 * if a fence register is needed for the object.
1545 */
d865110c 1546 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1547 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1548 return 4096;
1549
a00b10c3
CW
1550 /*
1551 * Previous chips need to be aligned to the size of the smallest
1552 * fence register that can contain the object.
1553 */
e28f8711 1554 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1555}
1556
d8cb5086
CW
1557static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1558{
1559 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1560 int ret;
1561
0de23977 1562 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1563 return 0;
1564
da494d7c
DV
1565 dev_priv->mm.shrinker_no_lock_stealing = true;
1566
d8cb5086
CW
1567 ret = drm_gem_create_mmap_offset(&obj->base);
1568 if (ret != -ENOSPC)
da494d7c 1569 goto out;
d8cb5086
CW
1570
1571 /* Badly fragmented mmap space? The only way we can recover
1572 * space is by destroying unwanted objects. We can't randomly release
1573 * mmap_offsets as userspace expects them to be persistent for the
1574 * lifetime of the objects. The closest we can is to release the
1575 * offsets on purgeable objects by truncating it and marking it purged,
1576 * which prevents userspace from ever using that object again.
1577 */
1578 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1579 ret = drm_gem_create_mmap_offset(&obj->base);
1580 if (ret != -ENOSPC)
da494d7c 1581 goto out;
d8cb5086
CW
1582
1583 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1584 ret = drm_gem_create_mmap_offset(&obj->base);
1585out:
1586 dev_priv->mm.shrinker_no_lock_stealing = false;
1587
1588 return ret;
d8cb5086
CW
1589}
1590
1591static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1592{
d8cb5086
CW
1593 drm_gem_free_mmap_offset(&obj->base);
1594}
1595
de151cf6 1596int
ff72145b
DA
1597i915_gem_mmap_gtt(struct drm_file *file,
1598 struct drm_device *dev,
1599 uint32_t handle,
1600 uint64_t *offset)
de151cf6 1601{
da761a6e 1602 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1603 struct drm_i915_gem_object *obj;
de151cf6
JB
1604 int ret;
1605
76c1dec1 1606 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1607 if (ret)
76c1dec1 1608 return ret;
de151cf6 1609
ff72145b 1610 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1611 if (&obj->base == NULL) {
1d7cfea1
CW
1612 ret = -ENOENT;
1613 goto unlock;
1614 }
de151cf6 1615
5d4545ae 1616 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1617 ret = -E2BIG;
ff56b0bc 1618 goto out;
da761a6e
CW
1619 }
1620
05394f39 1621 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1622 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1623 ret = -EFAULT;
1d7cfea1 1624 goto out;
ab18282d
CW
1625 }
1626
d8cb5086
CW
1627 ret = i915_gem_object_create_mmap_offset(obj);
1628 if (ret)
1629 goto out;
de151cf6 1630
0de23977 1631 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1632
1d7cfea1 1633out:
05394f39 1634 drm_gem_object_unreference(&obj->base);
1d7cfea1 1635unlock:
de151cf6 1636 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1637 return ret;
de151cf6
JB
1638}
1639
ff72145b
DA
1640/**
1641 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1642 * @dev: DRM device
1643 * @data: GTT mapping ioctl data
1644 * @file: GEM object info
1645 *
1646 * Simply returns the fake offset to userspace so it can mmap it.
1647 * The mmap call will end up in drm_gem_mmap(), which will set things
1648 * up so we can get faults in the handler above.
1649 *
1650 * The fault handler will take care of binding the object into the GTT
1651 * (since it may have been evicted to make room for something), allocating
1652 * a fence register, and mapping the appropriate aperture address into
1653 * userspace.
1654 */
1655int
1656i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1657 struct drm_file *file)
1658{
1659 struct drm_i915_gem_mmap_gtt *args = data;
1660
ff72145b
DA
1661 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1662}
1663
225067ee
DV
1664/* Immediately discard the backing storage */
1665static void
1666i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1667{
e5281ccd 1668 struct inode *inode;
e5281ccd 1669
4d6294bf 1670 i915_gem_object_free_mmap_offset(obj);
1286ff73 1671
4d6294bf
CW
1672 if (obj->base.filp == NULL)
1673 return;
e5281ccd 1674
225067ee
DV
1675 /* Our goal here is to return as much of the memory as
1676 * is possible back to the system as we are called from OOM.
1677 * To do this we must instruct the shmfs to drop all of its
1678 * backing pages, *now*.
1679 */
496ad9aa 1680 inode = file_inode(obj->base.filp);
225067ee 1681 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1682
225067ee
DV
1683 obj->madv = __I915_MADV_PURGED;
1684}
e5281ccd 1685
225067ee
DV
1686static inline int
1687i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1688{
1689 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1690}
1691
5cdf5881 1692static void
05394f39 1693i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1694{
90797e6d
ID
1695 struct sg_page_iter sg_iter;
1696 int ret;
1286ff73 1697
05394f39 1698 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1699
6c085a72
CW
1700 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1701 if (ret) {
1702 /* In the event of a disaster, abandon all caches and
1703 * hope for the best.
1704 */
1705 WARN_ON(ret != -EIO);
2c22569b 1706 i915_gem_clflush_object(obj, true);
6c085a72
CW
1707 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1708 }
1709
6dacfd2f 1710 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1711 i915_gem_object_save_bit_17_swizzle(obj);
1712
05394f39
CW
1713 if (obj->madv == I915_MADV_DONTNEED)
1714 obj->dirty = 0;
3ef94daa 1715
90797e6d 1716 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1717 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1718
05394f39 1719 if (obj->dirty)
9da3da66 1720 set_page_dirty(page);
3ef94daa 1721
05394f39 1722 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1723 mark_page_accessed(page);
3ef94daa 1724
9da3da66 1725 page_cache_release(page);
3ef94daa 1726 }
05394f39 1727 obj->dirty = 0;
673a394b 1728
9da3da66
CW
1729 sg_free_table(obj->pages);
1730 kfree(obj->pages);
37e680a1 1731}
6c085a72 1732
dd624afd 1733int
37e680a1
CW
1734i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1735{
1736 const struct drm_i915_gem_object_ops *ops = obj->ops;
1737
2f745ad3 1738 if (obj->pages == NULL)
37e680a1
CW
1739 return 0;
1740
a5570178
CW
1741 if (obj->pages_pin_count)
1742 return -EBUSY;
1743
9843877d 1744 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1745
a2165e31
CW
1746 /* ->put_pages might need to allocate memory for the bit17 swizzle
1747 * array, hence protect them from being reaped by removing them from gtt
1748 * lists early. */
35c20a60 1749 list_del(&obj->global_list);
a2165e31 1750
37e680a1 1751 ops->put_pages(obj);
05394f39 1752 obj->pages = NULL;
37e680a1 1753
6c085a72
CW
1754 if (i915_gem_object_is_purgeable(obj))
1755 i915_gem_object_truncate(obj);
1756
1757 return 0;
1758}
1759
d9973b43 1760static unsigned long
93927ca5
DV
1761__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1762 bool purgeable_only)
6c085a72 1763{
57094f82 1764 struct list_head still_bound_list;
6c085a72 1765 struct drm_i915_gem_object *obj, *next;
d9973b43 1766 unsigned long count = 0;
6c085a72
CW
1767
1768 list_for_each_entry_safe(obj, next,
1769 &dev_priv->mm.unbound_list,
35c20a60 1770 global_list) {
93927ca5 1771 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1772 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1773 count += obj->base.size >> PAGE_SHIFT;
1774 if (count >= target)
1775 return count;
1776 }
1777 }
1778
57094f82
CW
1779 /*
1780 * As we may completely rewrite the bound list whilst unbinding
1781 * (due to retiring requests) we have to strictly process only
1782 * one element of the list at the time, and recheck the list
1783 * on every iteration.
1784 */
1785 INIT_LIST_HEAD(&still_bound_list);
1786 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1787 struct i915_vma *vma, *v;
80dcfdbd 1788
57094f82
CW
1789 obj = list_first_entry(&dev_priv->mm.bound_list,
1790 typeof(*obj), global_list);
1791 list_move_tail(&obj->global_list, &still_bound_list);
1792
80dcfdbd
BW
1793 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1794 continue;
1795
57094f82
CW
1796 /*
1797 * Hold a reference whilst we unbind this object, as we may
1798 * end up waiting for and retiring requests. This might
1799 * release the final reference (held by the active list)
1800 * and result in the object being freed from under us.
1801 * in this object being freed.
1802 *
1803 * Note 1: Shrinking the bound list is special since only active
1804 * (and hence bound objects) can contain such limbo objects, so
1805 * we don't need special tricks for shrinking the unbound list.
1806 * The only other place where we have to be careful with active
1807 * objects suddenly disappearing due to retiring requests is the
1808 * eviction code.
1809 *
1810 * Note 2: Even though the bound list doesn't hold a reference
1811 * to the object we can safely grab one here: The final object
1812 * unreferencing and the bound_list are both protected by the
1813 * dev->struct_mutex and so we won't ever be able to observe an
1814 * object on the bound_list with a reference count equals 0.
1815 */
1816 drm_gem_object_reference(&obj->base);
1817
07fe0b12
BW
1818 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1819 if (i915_vma_unbind(vma))
1820 break;
80dcfdbd 1821
57094f82 1822 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1823 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1824
1825 drm_gem_object_unreference(&obj->base);
6c085a72 1826 }
57094f82 1827 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1828
1829 return count;
1830}
1831
d9973b43 1832static unsigned long
93927ca5
DV
1833i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1834{
1835 return __i915_gem_shrink(dev_priv, target, true);
1836}
1837
d9973b43 1838static unsigned long
6c085a72
CW
1839i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1840{
1841 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1842 long freed = 0;
6c085a72
CW
1843
1844 i915_gem_evict_everything(dev_priv->dev);
1845
35c20a60 1846 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1847 global_list) {
d9973b43 1848 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1849 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1850 }
1851 return freed;
225067ee
DV
1852}
1853
37e680a1 1854static int
6c085a72 1855i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1856{
6c085a72 1857 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1858 int page_count, i;
1859 struct address_space *mapping;
9da3da66
CW
1860 struct sg_table *st;
1861 struct scatterlist *sg;
90797e6d 1862 struct sg_page_iter sg_iter;
e5281ccd 1863 struct page *page;
90797e6d 1864 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1865 gfp_t gfp;
e5281ccd 1866
6c085a72
CW
1867 /* Assert that the object is not currently in any GPU domain. As it
1868 * wasn't in the GTT, there shouldn't be any way it could have been in
1869 * a GPU cache
1870 */
1871 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1872 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1873
9da3da66
CW
1874 st = kmalloc(sizeof(*st), GFP_KERNEL);
1875 if (st == NULL)
1876 return -ENOMEM;
1877
05394f39 1878 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1879 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1880 kfree(st);
e5281ccd 1881 return -ENOMEM;
9da3da66 1882 }
e5281ccd 1883
9da3da66
CW
1884 /* Get the list of pages out of our struct file. They'll be pinned
1885 * at this point until we release them.
1886 *
1887 * Fail silently without starting the shrinker
1888 */
496ad9aa 1889 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1890 gfp = mapping_gfp_mask(mapping);
caf49191 1891 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1892 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1893 sg = st->sgl;
1894 st->nents = 0;
1895 for (i = 0; i < page_count; i++) {
6c085a72
CW
1896 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1897 if (IS_ERR(page)) {
1898 i915_gem_purge(dev_priv, page_count);
1899 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1900 }
1901 if (IS_ERR(page)) {
1902 /* We've tried hard to allocate the memory by reaping
1903 * our own buffer, now let the real VM do its job and
1904 * go down in flames if truly OOM.
1905 */
caf49191 1906 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1907 gfp |= __GFP_IO | __GFP_WAIT;
1908
1909 i915_gem_shrink_all(dev_priv);
1910 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1911 if (IS_ERR(page))
1912 goto err_pages;
1913
caf49191 1914 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1915 gfp &= ~(__GFP_IO | __GFP_WAIT);
1916 }
426729dc
KRW
1917#ifdef CONFIG_SWIOTLB
1918 if (swiotlb_nr_tbl()) {
1919 st->nents++;
1920 sg_set_page(sg, page, PAGE_SIZE, 0);
1921 sg = sg_next(sg);
1922 continue;
1923 }
1924#endif
90797e6d
ID
1925 if (!i || page_to_pfn(page) != last_pfn + 1) {
1926 if (i)
1927 sg = sg_next(sg);
1928 st->nents++;
1929 sg_set_page(sg, page, PAGE_SIZE, 0);
1930 } else {
1931 sg->length += PAGE_SIZE;
1932 }
1933 last_pfn = page_to_pfn(page);
3bbbe706
DV
1934
1935 /* Check that the i965g/gm workaround works. */
1936 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1937 }
426729dc
KRW
1938#ifdef CONFIG_SWIOTLB
1939 if (!swiotlb_nr_tbl())
1940#endif
1941 sg_mark_end(sg);
74ce6b6c
CW
1942 obj->pages = st;
1943
6dacfd2f 1944 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1945 i915_gem_object_do_bit_17_swizzle(obj);
1946
1947 return 0;
1948
1949err_pages:
90797e6d
ID
1950 sg_mark_end(sg);
1951 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1952 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1953 sg_free_table(st);
1954 kfree(st);
e5281ccd 1955 return PTR_ERR(page);
673a394b
EA
1956}
1957
37e680a1
CW
1958/* Ensure that the associated pages are gathered from the backing storage
1959 * and pinned into our object. i915_gem_object_get_pages() may be called
1960 * multiple times before they are released by a single call to
1961 * i915_gem_object_put_pages() - once the pages are no longer referenced
1962 * either as a result of memory pressure (reaping pages under the shrinker)
1963 * or as the object is itself released.
1964 */
1965int
1966i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1967{
1968 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1969 const struct drm_i915_gem_object_ops *ops = obj->ops;
1970 int ret;
1971
2f745ad3 1972 if (obj->pages)
37e680a1
CW
1973 return 0;
1974
43e28f09 1975 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1976 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 1977 return -EFAULT;
43e28f09
CW
1978 }
1979
a5570178
CW
1980 BUG_ON(obj->pages_pin_count);
1981
37e680a1
CW
1982 ret = ops->get_pages(obj);
1983 if (ret)
1984 return ret;
1985
35c20a60 1986 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1987 return 0;
673a394b
EA
1988}
1989
e2d05a8b 1990static void
05394f39 1991i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1992 struct intel_ring_buffer *ring)
673a394b 1993{
05394f39 1994 struct drm_device *dev = obj->base.dev;
69dc4987 1995 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1996 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1997
852835f3 1998 BUG_ON(ring == NULL);
02978ff5
CW
1999 if (obj->ring != ring && obj->last_write_seqno) {
2000 /* Keep the seqno relative to the current ring */
2001 obj->last_write_seqno = seqno;
2002 }
05394f39 2003 obj->ring = ring;
673a394b
EA
2004
2005 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2006 if (!obj->active) {
2007 drm_gem_object_reference(&obj->base);
2008 obj->active = 1;
673a394b 2009 }
e35a41de 2010
05394f39 2011 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2012
0201f1ec 2013 obj->last_read_seqno = seqno;
caea7476 2014
7dd49065 2015 if (obj->fenced_gpu_access) {
caea7476 2016 obj->last_fenced_seqno = seqno;
caea7476 2017
7dd49065
CW
2018 /* Bump MRU to take account of the delayed flush */
2019 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2020 struct drm_i915_fence_reg *reg;
2021
2022 reg = &dev_priv->fence_regs[obj->fence_reg];
2023 list_move_tail(&reg->lru_list,
2024 &dev_priv->mm.fence_list);
2025 }
caea7476
CW
2026 }
2027}
2028
e2d05a8b
BW
2029void i915_vma_move_to_active(struct i915_vma *vma,
2030 struct intel_ring_buffer *ring)
2031{
2032 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2033 return i915_gem_object_move_to_active(vma->obj, ring);
2034}
2035
caea7476 2036static void
caea7476 2037i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2038{
ca191b13 2039 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2040 struct i915_address_space *vm;
2041 struct i915_vma *vma;
ce44b0ea 2042
65ce3027 2043 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2044 BUG_ON(!obj->active);
caea7476 2045
feb822cf
BW
2046 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2047 vma = i915_gem_obj_to_vma(obj, vm);
2048 if (vma && !list_empty(&vma->mm_list))
2049 list_move_tail(&vma->mm_list, &vm->inactive_list);
2050 }
caea7476 2051
65ce3027 2052 list_del_init(&obj->ring_list);
caea7476
CW
2053 obj->ring = NULL;
2054
65ce3027
CW
2055 obj->last_read_seqno = 0;
2056 obj->last_write_seqno = 0;
2057 obj->base.write_domain = 0;
2058
2059 obj->last_fenced_seqno = 0;
caea7476 2060 obj->fenced_gpu_access = false;
caea7476
CW
2061
2062 obj->active = 0;
2063 drm_gem_object_unreference(&obj->base);
2064
2065 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2066}
673a394b 2067
9d773091 2068static int
fca26bb4 2069i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2070{
9d773091
CW
2071 struct drm_i915_private *dev_priv = dev->dev_private;
2072 struct intel_ring_buffer *ring;
2073 int ret, i, j;
53d227f2 2074
107f27a5 2075 /* Carefully retire all requests without writing to the rings */
9d773091 2076 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2077 ret = intel_ring_idle(ring);
2078 if (ret)
2079 return ret;
9d773091 2080 }
9d773091 2081 i915_gem_retire_requests(dev);
107f27a5
CW
2082
2083 /* Finally reset hw state */
9d773091 2084 for_each_ring(ring, dev_priv, i) {
fca26bb4 2085 intel_ring_init_seqno(ring, seqno);
498d2ac1 2086
9d773091
CW
2087 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2088 ring->sync_seqno[j] = 0;
2089 }
53d227f2 2090
9d773091 2091 return 0;
53d227f2
DV
2092}
2093
fca26bb4
MK
2094int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2095{
2096 struct drm_i915_private *dev_priv = dev->dev_private;
2097 int ret;
2098
2099 if (seqno == 0)
2100 return -EINVAL;
2101
2102 /* HWS page needs to be set less than what we
2103 * will inject to ring
2104 */
2105 ret = i915_gem_init_seqno(dev, seqno - 1);
2106 if (ret)
2107 return ret;
2108
2109 /* Carefully set the last_seqno value so that wrap
2110 * detection still works
2111 */
2112 dev_priv->next_seqno = seqno;
2113 dev_priv->last_seqno = seqno - 1;
2114 if (dev_priv->last_seqno == 0)
2115 dev_priv->last_seqno--;
2116
2117 return 0;
2118}
2119
9d773091
CW
2120int
2121i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2122{
9d773091
CW
2123 struct drm_i915_private *dev_priv = dev->dev_private;
2124
2125 /* reserve 0 for non-seqno */
2126 if (dev_priv->next_seqno == 0) {
fca26bb4 2127 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2128 if (ret)
2129 return ret;
53d227f2 2130
9d773091
CW
2131 dev_priv->next_seqno = 1;
2132 }
53d227f2 2133
f72b3435 2134 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2135 return 0;
53d227f2
DV
2136}
2137
0025c077
MK
2138int __i915_add_request(struct intel_ring_buffer *ring,
2139 struct drm_file *file,
7d736f4f 2140 struct drm_i915_gem_object *obj,
0025c077 2141 u32 *out_seqno)
673a394b 2142{
db53a302 2143 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2144 struct drm_i915_gem_request *request;
7d736f4f 2145 u32 request_ring_position, request_start;
673a394b 2146 int was_empty;
3cce469c
CW
2147 int ret;
2148
7d736f4f 2149 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2150 /*
2151 * Emit any outstanding flushes - execbuf can fail to emit the flush
2152 * after having emitted the batchbuffer command. Hence we need to fix
2153 * things up similar to emitting the lazy request. The difference here
2154 * is that the flush _must_ happen before the next request, no matter
2155 * what.
2156 */
a7b9761d
CW
2157 ret = intel_ring_flush_all_caches(ring);
2158 if (ret)
2159 return ret;
cc889e0f 2160
3c0e234c
CW
2161 request = ring->preallocated_lazy_request;
2162 if (WARN_ON(request == NULL))
acb868d3 2163 return -ENOMEM;
cc889e0f 2164
a71d8d94
CW
2165 /* Record the position of the start of the request so that
2166 * should we detect the updated seqno part-way through the
2167 * GPU processing the request, we never over-estimate the
2168 * position of the head.
2169 */
2170 request_ring_position = intel_ring_get_tail(ring);
2171
9d773091 2172 ret = ring->add_request(ring);
3c0e234c 2173 if (ret)
3bb73aba 2174 return ret;
673a394b 2175
9d773091 2176 request->seqno = intel_ring_get_seqno(ring);
852835f3 2177 request->ring = ring;
7d736f4f 2178 request->head = request_start;
a71d8d94 2179 request->tail = request_ring_position;
7d736f4f
MK
2180
2181 /* Whilst this request exists, batch_obj will be on the
2182 * active_list, and so will hold the active reference. Only when this
2183 * request is retired will the the batch_obj be moved onto the
2184 * inactive_list and lose its active reference. Hence we do not need
2185 * to explicitly hold another reference here.
2186 */
9a7e0c2a 2187 request->batch_obj = obj;
0e50e96b 2188
9a7e0c2a
CW
2189 /* Hold a reference to the current context so that we can inspect
2190 * it later in case a hangcheck error event fires.
2191 */
2192 request->ctx = ring->last_context;
0e50e96b
MK
2193 if (request->ctx)
2194 i915_gem_context_reference(request->ctx);
2195
673a394b 2196 request->emitted_jiffies = jiffies;
852835f3
ZN
2197 was_empty = list_empty(&ring->request_list);
2198 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2199 request->file_priv = NULL;
852835f3 2200
db53a302
CW
2201 if (file) {
2202 struct drm_i915_file_private *file_priv = file->driver_priv;
2203
1c25595f 2204 spin_lock(&file_priv->mm.lock);
f787a5f5 2205 request->file_priv = file_priv;
b962442e 2206 list_add_tail(&request->client_list,
f787a5f5 2207 &file_priv->mm.request_list);
1c25595f 2208 spin_unlock(&file_priv->mm.lock);
b962442e 2209 }
673a394b 2210
9d773091 2211 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2212 ring->outstanding_lazy_seqno = 0;
3c0e234c 2213 ring->preallocated_lazy_request = NULL;
db53a302 2214
db1b76ca 2215 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2216 i915_queue_hangcheck(ring->dev);
2217
f047e395 2218 if (was_empty) {
b29c19b6 2219 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
b3b079db 2220 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2221 &dev_priv->mm.retire_work,
2222 round_jiffies_up_relative(HZ));
f047e395
CW
2223 intel_mark_busy(dev_priv->dev);
2224 }
f65d9421 2225 }
cc889e0f 2226
acb868d3 2227 if (out_seqno)
9d773091 2228 *out_seqno = request->seqno;
3cce469c 2229 return 0;
673a394b
EA
2230}
2231
f787a5f5
CW
2232static inline void
2233i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2234{
1c25595f 2235 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2236
1c25595f
CW
2237 if (!file_priv)
2238 return;
1c5d22f7 2239
1c25595f 2240 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2241 list_del(&request->client_list);
2242 request->file_priv = NULL;
1c25595f 2243 spin_unlock(&file_priv->mm.lock);
673a394b 2244}
673a394b 2245
939fd762 2246static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
44e2c070 2247 const struct i915_hw_context *ctx)
be62acb4 2248{
44e2c070 2249 unsigned long elapsed;
be62acb4 2250
44e2c070
MK
2251 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2252
2253 if (ctx->hang_stats.banned)
be62acb4
MK
2254 return true;
2255
2256 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
3fac8978
MK
2257 if (dev_priv->gpu_error.stop_rings == 0 &&
2258 i915_gem_context_is_default(ctx)) {
2259 DRM_ERROR("gpu hanging too fast, banning!\n");
2260 } else {
2261 DRM_DEBUG("context hanging too fast, banning!\n");
2262 }
2263
be62acb4
MK
2264 return true;
2265 }
2266
2267 return false;
2268}
2269
939fd762
MK
2270static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2271 struct i915_hw_context *ctx,
b6b0fac0 2272 const bool guilty)
aa60c664 2273{
44e2c070
MK
2274 struct i915_ctx_hang_stats *hs;
2275
2276 if (WARN_ON(!ctx))
2277 return;
aa60c664 2278
44e2c070
MK
2279 hs = &ctx->hang_stats;
2280
2281 if (guilty) {
939fd762 2282 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2283 hs->batch_active++;
2284 hs->guilty_ts = get_seconds();
2285 } else {
2286 hs->batch_pending++;
aa60c664
MK
2287 }
2288}
2289
0e50e96b
MK
2290static void i915_gem_free_request(struct drm_i915_gem_request *request)
2291{
2292 list_del(&request->list);
2293 i915_gem_request_remove_from_client(request);
2294
2295 if (request->ctx)
2296 i915_gem_context_unreference(request->ctx);
2297
2298 kfree(request);
2299}
2300
b6b0fac0
MK
2301static struct drm_i915_gem_request *
2302i915_gem_find_first_non_complete(struct intel_ring_buffer *ring)
9375e446 2303{
4db080f9 2304 struct drm_i915_gem_request *request;
b6b0fac0 2305 const u32 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2306
2307 list_for_each_entry(request, &ring->request_list, list) {
2308 if (i915_seqno_passed(completed_seqno, request->seqno))
2309 continue;
aa60c664 2310
b6b0fac0 2311 return request;
4db080f9 2312 }
b6b0fac0
MK
2313
2314 return NULL;
2315}
2316
2317static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2318 struct intel_ring_buffer *ring)
2319{
2320 struct drm_i915_gem_request *request;
2321 bool ring_hung;
2322
2323 request = i915_gem_find_first_non_complete(ring);
2324
2325 if (request == NULL)
2326 return;
2327
2328 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2329
939fd762 2330 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2331
2332 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2333 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2334}
aa60c664 2335
4db080f9
CW
2336static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2337 struct intel_ring_buffer *ring)
2338{
dfaae392 2339 while (!list_empty(&ring->active_list)) {
05394f39 2340 struct drm_i915_gem_object *obj;
9375e446 2341
05394f39
CW
2342 obj = list_first_entry(&ring->active_list,
2343 struct drm_i915_gem_object,
2344 ring_list);
9375e446 2345
05394f39 2346 i915_gem_object_move_to_inactive(obj);
673a394b 2347 }
1d62beea
BW
2348
2349 /*
2350 * We must free the requests after all the corresponding objects have
2351 * been moved off active lists. Which is the same order as the normal
2352 * retire_requests function does. This is important if object hold
2353 * implicit references on things like e.g. ppgtt address spaces through
2354 * the request.
2355 */
2356 while (!list_empty(&ring->request_list)) {
2357 struct drm_i915_gem_request *request;
2358
2359 request = list_first_entry(&ring->request_list,
2360 struct drm_i915_gem_request,
2361 list);
2362
2363 i915_gem_free_request(request);
2364 }
673a394b
EA
2365}
2366
19b2dbde 2367void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2368{
2369 struct drm_i915_private *dev_priv = dev->dev_private;
2370 int i;
2371
4b9de737 2372 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2373 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2374
94a335db
DV
2375 /*
2376 * Commit delayed tiling changes if we have an object still
2377 * attached to the fence, otherwise just clear the fence.
2378 */
2379 if (reg->obj) {
2380 i915_gem_object_update_fence(reg->obj, reg,
2381 reg->obj->tiling_mode);
2382 } else {
2383 i915_gem_write_fence(dev, i, NULL);
2384 }
312817a3
CW
2385 }
2386}
2387
069efc1d 2388void i915_gem_reset(struct drm_device *dev)
673a394b 2389{
77f01230 2390 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2391 struct intel_ring_buffer *ring;
1ec14ad3 2392 int i;
673a394b 2393
4db080f9
CW
2394 /*
2395 * Before we free the objects from the requests, we need to inspect
2396 * them for finding the guilty party. As the requests only borrow
2397 * their reference to the objects, the inspection must be done first.
2398 */
2399 for_each_ring(ring, dev_priv, i)
2400 i915_gem_reset_ring_status(dev_priv, ring);
2401
b4519513 2402 for_each_ring(ring, dev_priv, i)
4db080f9 2403 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2404
3d57e5bd
BW
2405 i915_gem_cleanup_ringbuffer(dev);
2406
acce9ffa
BW
2407 i915_gem_context_reset(dev);
2408
19b2dbde 2409 i915_gem_restore_fences(dev);
673a394b
EA
2410}
2411
2412/**
2413 * This function clears the request list as sequence numbers are passed.
2414 */
a71d8d94 2415void
db53a302 2416i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2417{
673a394b
EA
2418 uint32_t seqno;
2419
db53a302 2420 if (list_empty(&ring->request_list))
6c0594a3
KW
2421 return;
2422
db53a302 2423 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2424
b2eadbc8 2425 seqno = ring->get_seqno(ring, true);
1ec14ad3 2426
e9103038
CW
2427 /* Move any buffers on the active list that are no longer referenced
2428 * by the ringbuffer to the flushing/inactive lists as appropriate,
2429 * before we free the context associated with the requests.
2430 */
2431 while (!list_empty(&ring->active_list)) {
2432 struct drm_i915_gem_object *obj;
2433
2434 obj = list_first_entry(&ring->active_list,
2435 struct drm_i915_gem_object,
2436 ring_list);
2437
2438 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2439 break;
2440
2441 i915_gem_object_move_to_inactive(obj);
2442 }
2443
2444
852835f3 2445 while (!list_empty(&ring->request_list)) {
673a394b 2446 struct drm_i915_gem_request *request;
673a394b 2447
852835f3 2448 request = list_first_entry(&ring->request_list,
673a394b
EA
2449 struct drm_i915_gem_request,
2450 list);
673a394b 2451
dfaae392 2452 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2453 break;
2454
db53a302 2455 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2456 /* We know the GPU must have read the request to have
2457 * sent us the seqno + interrupt, so use the position
2458 * of tail of the request to update the last known position
2459 * of the GPU head.
2460 */
2461 ring->last_retired_head = request->tail;
b84d5f0c 2462
0e50e96b 2463 i915_gem_free_request(request);
b84d5f0c 2464 }
673a394b 2465
db53a302
CW
2466 if (unlikely(ring->trace_irq_seqno &&
2467 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2468 ring->irq_put(ring);
db53a302 2469 ring->trace_irq_seqno = 0;
9d34e5db 2470 }
23bc5982 2471
db53a302 2472 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2473}
2474
b29c19b6 2475bool
b09a1fec
CW
2476i915_gem_retire_requests(struct drm_device *dev)
2477{
2478 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2479 struct intel_ring_buffer *ring;
b29c19b6 2480 bool idle = true;
1ec14ad3 2481 int i;
b09a1fec 2482
b29c19b6 2483 for_each_ring(ring, dev_priv, i) {
b4519513 2484 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2485 idle &= list_empty(&ring->request_list);
2486 }
2487
2488 if (idle)
2489 mod_delayed_work(dev_priv->wq,
2490 &dev_priv->mm.idle_work,
2491 msecs_to_jiffies(100));
2492
2493 return idle;
b09a1fec
CW
2494}
2495
75ef9da2 2496static void
673a394b
EA
2497i915_gem_retire_work_handler(struct work_struct *work)
2498{
b29c19b6
CW
2499 struct drm_i915_private *dev_priv =
2500 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2501 struct drm_device *dev = dev_priv->dev;
0a58705b 2502 bool idle;
673a394b 2503
891b48cf 2504 /* Come back later if the device is busy... */
b29c19b6
CW
2505 idle = false;
2506 if (mutex_trylock(&dev->struct_mutex)) {
2507 idle = i915_gem_retire_requests(dev);
2508 mutex_unlock(&dev->struct_mutex);
673a394b 2509 }
b29c19b6 2510 if (!idle)
bcb45086
CW
2511 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2512 round_jiffies_up_relative(HZ));
b29c19b6 2513}
0a58705b 2514
b29c19b6
CW
2515static void
2516i915_gem_idle_work_handler(struct work_struct *work)
2517{
2518 struct drm_i915_private *dev_priv =
2519 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2520
2521 intel_mark_idle(dev_priv->dev);
673a394b
EA
2522}
2523
30dfebf3
DV
2524/**
2525 * Ensures that an object will eventually get non-busy by flushing any required
2526 * write domains, emitting any outstanding lazy request and retiring and
2527 * completed requests.
2528 */
2529static int
2530i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2531{
2532 int ret;
2533
2534 if (obj->active) {
0201f1ec 2535 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2536 if (ret)
2537 return ret;
2538
30dfebf3
DV
2539 i915_gem_retire_requests_ring(obj->ring);
2540 }
2541
2542 return 0;
2543}
2544
23ba4fd0
BW
2545/**
2546 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2547 * @DRM_IOCTL_ARGS: standard ioctl arguments
2548 *
2549 * Returns 0 if successful, else an error is returned with the remaining time in
2550 * the timeout parameter.
2551 * -ETIME: object is still busy after timeout
2552 * -ERESTARTSYS: signal interrupted the wait
2553 * -ENONENT: object doesn't exist
2554 * Also possible, but rare:
2555 * -EAGAIN: GPU wedged
2556 * -ENOMEM: damn
2557 * -ENODEV: Internal IRQ fail
2558 * -E?: The add request failed
2559 *
2560 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2561 * non-zero timeout parameter the wait ioctl will wait for the given number of
2562 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2563 * without holding struct_mutex the object may become re-busied before this
2564 * function completes. A similar but shorter * race condition exists in the busy
2565 * ioctl
2566 */
2567int
2568i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2569{
f69061be 2570 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2571 struct drm_i915_gem_wait *args = data;
2572 struct drm_i915_gem_object *obj;
2573 struct intel_ring_buffer *ring = NULL;
eac1f14f 2574 struct timespec timeout_stack, *timeout = NULL;
f69061be 2575 unsigned reset_counter;
23ba4fd0
BW
2576 u32 seqno = 0;
2577 int ret = 0;
2578
eac1f14f
BW
2579 if (args->timeout_ns >= 0) {
2580 timeout_stack = ns_to_timespec(args->timeout_ns);
2581 timeout = &timeout_stack;
2582 }
23ba4fd0
BW
2583
2584 ret = i915_mutex_lock_interruptible(dev);
2585 if (ret)
2586 return ret;
2587
2588 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2589 if (&obj->base == NULL) {
2590 mutex_unlock(&dev->struct_mutex);
2591 return -ENOENT;
2592 }
2593
30dfebf3
DV
2594 /* Need to make sure the object gets inactive eventually. */
2595 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2596 if (ret)
2597 goto out;
2598
2599 if (obj->active) {
0201f1ec 2600 seqno = obj->last_read_seqno;
23ba4fd0
BW
2601 ring = obj->ring;
2602 }
2603
2604 if (seqno == 0)
2605 goto out;
2606
23ba4fd0
BW
2607 /* Do this after OLR check to make sure we make forward progress polling
2608 * on this IOCTL with a 0 timeout (like busy ioctl)
2609 */
2610 if (!args->timeout_ns) {
2611 ret = -ETIME;
2612 goto out;
2613 }
2614
2615 drm_gem_object_unreference(&obj->base);
f69061be 2616 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2617 mutex_unlock(&dev->struct_mutex);
2618
b29c19b6 2619 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2620 if (timeout)
eac1f14f 2621 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2622 return ret;
2623
2624out:
2625 drm_gem_object_unreference(&obj->base);
2626 mutex_unlock(&dev->struct_mutex);
2627 return ret;
2628}
2629
5816d648
BW
2630/**
2631 * i915_gem_object_sync - sync an object to a ring.
2632 *
2633 * @obj: object which may be in use on another ring.
2634 * @to: ring we wish to use the object on. May be NULL.
2635 *
2636 * This code is meant to abstract object synchronization with the GPU.
2637 * Calling with NULL implies synchronizing the object with the CPU
2638 * rather than a particular GPU ring.
2639 *
2640 * Returns 0 if successful, else propagates up the lower layer error.
2641 */
2911a35b
BW
2642int
2643i915_gem_object_sync(struct drm_i915_gem_object *obj,
2644 struct intel_ring_buffer *to)
2645{
2646 struct intel_ring_buffer *from = obj->ring;
2647 u32 seqno;
2648 int ret, idx;
2649
2650 if (from == NULL || to == from)
2651 return 0;
2652
5816d648 2653 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2654 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2655
2656 idx = intel_ring_sync_index(from, to);
2657
0201f1ec 2658 seqno = obj->last_read_seqno;
2911a35b
BW
2659 if (seqno <= from->sync_seqno[idx])
2660 return 0;
2661
b4aca010
BW
2662 ret = i915_gem_check_olr(obj->ring, seqno);
2663 if (ret)
2664 return ret;
2911a35b 2665
b52b89da 2666 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2667 ret = to->sync_to(to, from, seqno);
e3a5a225 2668 if (!ret)
7b01e260
MK
2669 /* We use last_read_seqno because sync_to()
2670 * might have just caused seqno wrap under
2671 * the radar.
2672 */
2673 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2674
e3a5a225 2675 return ret;
2911a35b
BW
2676}
2677
b5ffc9bc
CW
2678static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2679{
2680 u32 old_write_domain, old_read_domains;
2681
b5ffc9bc
CW
2682 /* Force a pagefault for domain tracking on next user access */
2683 i915_gem_release_mmap(obj);
2684
b97c3d9c
KP
2685 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2686 return;
2687
97c809fd
CW
2688 /* Wait for any direct GTT access to complete */
2689 mb();
2690
b5ffc9bc
CW
2691 old_read_domains = obj->base.read_domains;
2692 old_write_domain = obj->base.write_domain;
2693
2694 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2695 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2696
2697 trace_i915_gem_object_change_domain(obj,
2698 old_read_domains,
2699 old_write_domain);
2700}
2701
07fe0b12 2702int i915_vma_unbind(struct i915_vma *vma)
673a394b 2703{
07fe0b12 2704 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2705 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2706 int ret;
673a394b 2707
07fe0b12 2708 if (list_empty(&vma->vma_link))
673a394b
EA
2709 return 0;
2710
0ff501cb
DV
2711 if (!drm_mm_node_allocated(&vma->node)) {
2712 i915_gem_vma_destroy(vma);
2713
2714 return 0;
2715 }
433544bd 2716
d7f46fc4 2717 if (vma->pin_count)
31d8d651 2718 return -EBUSY;
673a394b 2719
c4670ad0
CW
2720 BUG_ON(obj->pages == NULL);
2721
a8198eea 2722 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2723 if (ret)
a8198eea
CW
2724 return ret;
2725 /* Continue on if we fail due to EIO, the GPU is hung so we
2726 * should be safe and we need to cleanup or else we might
2727 * cause memory corruption through use-after-free.
2728 */
2729
b5ffc9bc 2730 i915_gem_object_finish_gtt(obj);
5323fd04 2731
96b47b65 2732 /* release the fence reg _after_ flushing */
d9e86c0e 2733 ret = i915_gem_object_put_fence(obj);
1488fc08 2734 if (ret)
d9e86c0e 2735 return ret;
96b47b65 2736
07fe0b12 2737 trace_i915_vma_unbind(vma);
db53a302 2738
6f65e29a
BW
2739 vma->unbind_vma(vma);
2740
74163907 2741 i915_gem_gtt_finish_object(obj);
7bddb01f 2742
ca191b13 2743 list_del(&vma->mm_list);
75e9e915 2744 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2745 if (i915_is_ggtt(vma->vm))
2746 obj->map_and_fenceable = true;
673a394b 2747
2f633156
BW
2748 drm_mm_remove_node(&vma->node);
2749 i915_gem_vma_destroy(vma);
2750
2751 /* Since the unbound list is global, only move to that list if
b93dab6e 2752 * no more VMAs exist. */
2f633156
BW
2753 if (list_empty(&obj->vma_list))
2754 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2755
70903c3b
CW
2756 /* And finally now the object is completely decoupled from this vma,
2757 * we can drop its hold on the backing storage and allow it to be
2758 * reaped by the shrinker.
2759 */
2760 i915_gem_object_unpin_pages(obj);
2761
88241785 2762 return 0;
54cf91dc
CW
2763}
2764
07fe0b12
BW
2765/**
2766 * Unbinds an object from the global GTT aperture.
2767 */
2768int
2769i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2770{
2771 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2772 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2773
58e73e15 2774 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2775 return 0;
2776
d7f46fc4 2777 if (i915_gem_obj_to_ggtt(obj)->pin_count)
07fe0b12
BW
2778 return -EBUSY;
2779
2780 BUG_ON(obj->pages == NULL);
2781
2782 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2783}
2784
b2da9fe5 2785int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2786{
2787 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2788 struct intel_ring_buffer *ring;
1ec14ad3 2789 int ret, i;
4df2faf4 2790
4df2faf4 2791 /* Flush everything onto the inactive list. */
b4519513 2792 for_each_ring(ring, dev_priv, i) {
41bde553 2793 ret = i915_switch_context(ring, NULL, ring->default_context);
b6c7488d
BW
2794 if (ret)
2795 return ret;
2796
3e960501 2797 ret = intel_ring_idle(ring);
1ec14ad3
CW
2798 if (ret)
2799 return ret;
2800 }
4df2faf4 2801
8a1a49f9 2802 return 0;
4df2faf4
DV
2803}
2804
9ce079e4
CW
2805static void i965_write_fence_reg(struct drm_device *dev, int reg,
2806 struct drm_i915_gem_object *obj)
de151cf6 2807{
de151cf6 2808 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2809 int fence_reg;
2810 int fence_pitch_shift;
de151cf6 2811
56c844e5
ID
2812 if (INTEL_INFO(dev)->gen >= 6) {
2813 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2814 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2815 } else {
2816 fence_reg = FENCE_REG_965_0;
2817 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2818 }
2819
d18b9619
CW
2820 fence_reg += reg * 8;
2821
2822 /* To w/a incoherency with non-atomic 64-bit register updates,
2823 * we split the 64-bit update into two 32-bit writes. In order
2824 * for a partial fence not to be evaluated between writes, we
2825 * precede the update with write to turn off the fence register,
2826 * and only enable the fence as the last step.
2827 *
2828 * For extra levels of paranoia, we make sure each step lands
2829 * before applying the next step.
2830 */
2831 I915_WRITE(fence_reg, 0);
2832 POSTING_READ(fence_reg);
2833
9ce079e4 2834 if (obj) {
f343c5f6 2835 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2836 uint64_t val;
de151cf6 2837
f343c5f6 2838 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2839 0xfffff000) << 32;
f343c5f6 2840 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2841 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2842 if (obj->tiling_mode == I915_TILING_Y)
2843 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2844 val |= I965_FENCE_REG_VALID;
c6642782 2845
d18b9619
CW
2846 I915_WRITE(fence_reg + 4, val >> 32);
2847 POSTING_READ(fence_reg + 4);
2848
2849 I915_WRITE(fence_reg + 0, val);
2850 POSTING_READ(fence_reg);
2851 } else {
2852 I915_WRITE(fence_reg + 4, 0);
2853 POSTING_READ(fence_reg + 4);
2854 }
de151cf6
JB
2855}
2856
9ce079e4
CW
2857static void i915_write_fence_reg(struct drm_device *dev, int reg,
2858 struct drm_i915_gem_object *obj)
de151cf6 2859{
de151cf6 2860 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2861 u32 val;
de151cf6 2862
9ce079e4 2863 if (obj) {
f343c5f6 2864 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2865 int pitch_val;
2866 int tile_width;
c6642782 2867
f343c5f6 2868 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2869 (size & -size) != size ||
f343c5f6
BW
2870 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2871 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2872 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2873
9ce079e4
CW
2874 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2875 tile_width = 128;
2876 else
2877 tile_width = 512;
2878
2879 /* Note: pitch better be a power of two tile widths */
2880 pitch_val = obj->stride / tile_width;
2881 pitch_val = ffs(pitch_val) - 1;
2882
f343c5f6 2883 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2884 if (obj->tiling_mode == I915_TILING_Y)
2885 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2886 val |= I915_FENCE_SIZE_BITS(size);
2887 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2888 val |= I830_FENCE_REG_VALID;
2889 } else
2890 val = 0;
2891
2892 if (reg < 8)
2893 reg = FENCE_REG_830_0 + reg * 4;
2894 else
2895 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2896
2897 I915_WRITE(reg, val);
2898 POSTING_READ(reg);
de151cf6
JB
2899}
2900
9ce079e4
CW
2901static void i830_write_fence_reg(struct drm_device *dev, int reg,
2902 struct drm_i915_gem_object *obj)
de151cf6 2903{
de151cf6 2904 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2905 uint32_t val;
de151cf6 2906
9ce079e4 2907 if (obj) {
f343c5f6 2908 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2909 uint32_t pitch_val;
de151cf6 2910
f343c5f6 2911 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2912 (size & -size) != size ||
f343c5f6
BW
2913 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2914 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2915 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2916
9ce079e4
CW
2917 pitch_val = obj->stride / 128;
2918 pitch_val = ffs(pitch_val) - 1;
de151cf6 2919
f343c5f6 2920 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2921 if (obj->tiling_mode == I915_TILING_Y)
2922 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2923 val |= I830_FENCE_SIZE_BITS(size);
2924 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2925 val |= I830_FENCE_REG_VALID;
2926 } else
2927 val = 0;
c6642782 2928
9ce079e4
CW
2929 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2930 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2931}
2932
d0a57789
CW
2933inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2934{
2935 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2936}
2937
9ce079e4
CW
2938static void i915_gem_write_fence(struct drm_device *dev, int reg,
2939 struct drm_i915_gem_object *obj)
2940{
d0a57789
CW
2941 struct drm_i915_private *dev_priv = dev->dev_private;
2942
2943 /* Ensure that all CPU reads are completed before installing a fence
2944 * and all writes before removing the fence.
2945 */
2946 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2947 mb();
2948
94a335db
DV
2949 WARN(obj && (!obj->stride || !obj->tiling_mode),
2950 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2951 obj->stride, obj->tiling_mode);
2952
9ce079e4 2953 switch (INTEL_INFO(dev)->gen) {
5ab31333 2954 case 8:
9ce079e4 2955 case 7:
56c844e5 2956 case 6:
9ce079e4
CW
2957 case 5:
2958 case 4: i965_write_fence_reg(dev, reg, obj); break;
2959 case 3: i915_write_fence_reg(dev, reg, obj); break;
2960 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2961 default: BUG();
9ce079e4 2962 }
d0a57789
CW
2963
2964 /* And similarly be paranoid that no direct access to this region
2965 * is reordered to before the fence is installed.
2966 */
2967 if (i915_gem_object_needs_mb(obj))
2968 mb();
de151cf6
JB
2969}
2970
61050808
CW
2971static inline int fence_number(struct drm_i915_private *dev_priv,
2972 struct drm_i915_fence_reg *fence)
2973{
2974 return fence - dev_priv->fence_regs;
2975}
2976
2977static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2978 struct drm_i915_fence_reg *fence,
2979 bool enable)
2980{
2dc8aae0 2981 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2982 int reg = fence_number(dev_priv, fence);
2983
2984 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2985
2986 if (enable) {
46a0b638 2987 obj->fence_reg = reg;
61050808
CW
2988 fence->obj = obj;
2989 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2990 } else {
2991 obj->fence_reg = I915_FENCE_REG_NONE;
2992 fence->obj = NULL;
2993 list_del_init(&fence->lru_list);
2994 }
94a335db 2995 obj->fence_dirty = false;
61050808
CW
2996}
2997
d9e86c0e 2998static int
d0a57789 2999i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3000{
1c293ea3 3001 if (obj->last_fenced_seqno) {
86d5bc37 3002 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3003 if (ret)
3004 return ret;
d9e86c0e
CW
3005
3006 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3007 }
3008
86d5bc37 3009 obj->fenced_gpu_access = false;
d9e86c0e
CW
3010 return 0;
3011}
3012
3013int
3014i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3015{
61050808 3016 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3017 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3018 int ret;
3019
d0a57789 3020 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3021 if (ret)
3022 return ret;
3023
61050808
CW
3024 if (obj->fence_reg == I915_FENCE_REG_NONE)
3025 return 0;
d9e86c0e 3026
f9c513e9
CW
3027 fence = &dev_priv->fence_regs[obj->fence_reg];
3028
61050808 3029 i915_gem_object_fence_lost(obj);
f9c513e9 3030 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3031
3032 return 0;
3033}
3034
3035static struct drm_i915_fence_reg *
a360bb1a 3036i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3037{
ae3db24a 3038 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3039 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3040 int i;
ae3db24a
DV
3041
3042 /* First try to find a free reg */
d9e86c0e 3043 avail = NULL;
ae3db24a
DV
3044 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3045 reg = &dev_priv->fence_regs[i];
3046 if (!reg->obj)
d9e86c0e 3047 return reg;
ae3db24a 3048
1690e1eb 3049 if (!reg->pin_count)
d9e86c0e 3050 avail = reg;
ae3db24a
DV
3051 }
3052
d9e86c0e 3053 if (avail == NULL)
5dce5b93 3054 goto deadlock;
ae3db24a
DV
3055
3056 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3057 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3058 if (reg->pin_count)
ae3db24a
DV
3059 continue;
3060
8fe301ad 3061 return reg;
ae3db24a
DV
3062 }
3063
5dce5b93
CW
3064deadlock:
3065 /* Wait for completion of pending flips which consume fences */
3066 if (intel_has_pending_fb_unpin(dev))
3067 return ERR_PTR(-EAGAIN);
3068
3069 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3070}
3071
de151cf6 3072/**
9a5a53b3 3073 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3074 * @obj: object to map through a fence reg
3075 *
3076 * When mapping objects through the GTT, userspace wants to be able to write
3077 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3078 * This function walks the fence regs looking for a free one for @obj,
3079 * stealing one if it can't find any.
3080 *
3081 * It then sets up the reg based on the object's properties: address, pitch
3082 * and tiling format.
9a5a53b3
CW
3083 *
3084 * For an untiled surface, this removes any existing fence.
de151cf6 3085 */
8c4b8c3f 3086int
06d98131 3087i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3088{
05394f39 3089 struct drm_device *dev = obj->base.dev;
79e53945 3090 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3091 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3092 struct drm_i915_fence_reg *reg;
ae3db24a 3093 int ret;
de151cf6 3094
14415745
CW
3095 /* Have we updated the tiling parameters upon the object and so
3096 * will need to serialise the write to the associated fence register?
3097 */
5d82e3e6 3098 if (obj->fence_dirty) {
d0a57789 3099 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3100 if (ret)
3101 return ret;
3102 }
9a5a53b3 3103
d9e86c0e 3104 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3105 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3106 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3107 if (!obj->fence_dirty) {
14415745
CW
3108 list_move_tail(&reg->lru_list,
3109 &dev_priv->mm.fence_list);
3110 return 0;
3111 }
3112 } else if (enable) {
3113 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3114 if (IS_ERR(reg))
3115 return PTR_ERR(reg);
d9e86c0e 3116
14415745
CW
3117 if (reg->obj) {
3118 struct drm_i915_gem_object *old = reg->obj;
3119
d0a57789 3120 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3121 if (ret)
3122 return ret;
3123
14415745 3124 i915_gem_object_fence_lost(old);
29c5a587 3125 }
14415745 3126 } else
a09ba7fa 3127 return 0;
a09ba7fa 3128
14415745 3129 i915_gem_object_update_fence(obj, reg, enable);
14415745 3130
9ce079e4 3131 return 0;
de151cf6
JB
3132}
3133
42d6ab48
CW
3134static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3135 struct drm_mm_node *gtt_space,
3136 unsigned long cache_level)
3137{
3138 struct drm_mm_node *other;
3139
3140 /* On non-LLC machines we have to be careful when putting differing
3141 * types of snoopable memory together to avoid the prefetcher
4239ca77 3142 * crossing memory domains and dying.
42d6ab48
CW
3143 */
3144 if (HAS_LLC(dev))
3145 return true;
3146
c6cfb325 3147 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3148 return true;
3149
3150 if (list_empty(&gtt_space->node_list))
3151 return true;
3152
3153 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3154 if (other->allocated && !other->hole_follows && other->color != cache_level)
3155 return false;
3156
3157 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3158 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3159 return false;
3160
3161 return true;
3162}
3163
3164static void i915_gem_verify_gtt(struct drm_device *dev)
3165{
3166#if WATCH_GTT
3167 struct drm_i915_private *dev_priv = dev->dev_private;
3168 struct drm_i915_gem_object *obj;
3169 int err = 0;
3170
35c20a60 3171 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3172 if (obj->gtt_space == NULL) {
3173 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3174 err++;
3175 continue;
3176 }
3177
3178 if (obj->cache_level != obj->gtt_space->color) {
3179 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3180 i915_gem_obj_ggtt_offset(obj),
3181 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3182 obj->cache_level,
3183 obj->gtt_space->color);
3184 err++;
3185 continue;
3186 }
3187
3188 if (!i915_gem_valid_gtt_space(dev,
3189 obj->gtt_space,
3190 obj->cache_level)) {
3191 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3192 i915_gem_obj_ggtt_offset(obj),
3193 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3194 obj->cache_level);
3195 err++;
3196 continue;
3197 }
3198 }
3199
3200 WARN_ON(err);
3201#endif
3202}
3203
673a394b
EA
3204/**
3205 * Finds free space in the GTT aperture and binds the object there.
3206 */
3207static int
07fe0b12
BW
3208i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3209 struct i915_address_space *vm,
3210 unsigned alignment,
3211 bool map_and_fenceable,
3212 bool nonblocking)
673a394b 3213{
05394f39 3214 struct drm_device *dev = obj->base.dev;
673a394b 3215 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3216 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3217 size_t gtt_max =
3218 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3219 struct i915_vma *vma;
07f73f69 3220 int ret;
673a394b 3221
e28f8711
CW
3222 fence_size = i915_gem_get_gtt_size(dev,
3223 obj->base.size,
3224 obj->tiling_mode);
3225 fence_alignment = i915_gem_get_gtt_alignment(dev,
3226 obj->base.size,
d865110c 3227 obj->tiling_mode, true);
e28f8711 3228 unfenced_alignment =
d865110c 3229 i915_gem_get_gtt_alignment(dev,
e28f8711 3230 obj->base.size,
d865110c 3231 obj->tiling_mode, false);
a00b10c3 3232
673a394b 3233 if (alignment == 0)
5e783301
DV
3234 alignment = map_and_fenceable ? fence_alignment :
3235 unfenced_alignment;
75e9e915 3236 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
bd9b6a4e 3237 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
673a394b
EA
3238 return -EINVAL;
3239 }
3240
05394f39 3241 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3242
654fc607
CW
3243 /* If the object is bigger than the entire aperture, reject it early
3244 * before evicting everything in a vain attempt to find space.
3245 */
0a9ae0d7 3246 if (obj->base.size > gtt_max) {
bd9b6a4e 3247 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3248 obj->base.size,
3249 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3250 gtt_max);
654fc607
CW
3251 return -E2BIG;
3252 }
3253
37e680a1 3254 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3255 if (ret)
3256 return ret;
3257
fbdda6fb
CW
3258 i915_gem_object_pin_pages(obj);
3259
accfef2e 3260 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3261 if (IS_ERR(vma)) {
bc6bc15b
DV
3262 ret = PTR_ERR(vma);
3263 goto err_unpin;
2f633156
BW
3264 }
3265
0a9ae0d7 3266search_free:
07fe0b12 3267 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3268 size, alignment,
31e5d7c6
DH
3269 obj->cache_level, 0, gtt_max,
3270 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3271 if (ret) {
f6cd1f15 3272 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3273 obj->cache_level,
86a1ee26
CW
3274 map_and_fenceable,
3275 nonblocking);
dc9dd7a2
CW
3276 if (ret == 0)
3277 goto search_free;
9731129c 3278
bc6bc15b 3279 goto err_free_vma;
673a394b 3280 }
2f633156 3281 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3282 obj->cache_level))) {
2f633156 3283 ret = -EINVAL;
bc6bc15b 3284 goto err_remove_node;
673a394b
EA
3285 }
3286
74163907 3287 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3288 if (ret)
bc6bc15b 3289 goto err_remove_node;
673a394b 3290
35c20a60 3291 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3292 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3293
4bd561b3
BW
3294 if (i915_is_ggtt(vm)) {
3295 bool mappable, fenceable;
a00b10c3 3296
49987099
DV
3297 fenceable = (vma->node.size == fence_size &&
3298 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3299
49987099
DV
3300 mappable = (vma->node.start + obj->base.size <=
3301 dev_priv->gtt.mappable_end);
a00b10c3 3302
5cacaac7 3303 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3304 }
75e9e915 3305
7ace7ef2 3306 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3307
07fe0b12 3308 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3309 i915_gem_verify_gtt(dev);
673a394b 3310 return 0;
2f633156 3311
bc6bc15b 3312err_remove_node:
6286ef9b 3313 drm_mm_remove_node(&vma->node);
bc6bc15b 3314err_free_vma:
2f633156 3315 i915_gem_vma_destroy(vma);
bc6bc15b 3316err_unpin:
2f633156 3317 i915_gem_object_unpin_pages(obj);
2f633156 3318 return ret;
673a394b
EA
3319}
3320
000433b6 3321bool
2c22569b
CW
3322i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3323 bool force)
673a394b 3324{
673a394b
EA
3325 /* If we don't have a page list set up, then we're not pinned
3326 * to GPU, and we can ignore the cache flush because it'll happen
3327 * again at bind time.
3328 */
05394f39 3329 if (obj->pages == NULL)
000433b6 3330 return false;
673a394b 3331
769ce464
ID
3332 /*
3333 * Stolen memory is always coherent with the GPU as it is explicitly
3334 * marked as wc by the system, or the system is cache-coherent.
3335 */
3336 if (obj->stolen)
000433b6 3337 return false;
769ce464 3338
9c23f7fc
CW
3339 /* If the GPU is snooping the contents of the CPU cache,
3340 * we do not need to manually clear the CPU cache lines. However,
3341 * the caches are only snooped when the render cache is
3342 * flushed/invalidated. As we always have to emit invalidations
3343 * and flushes when moving into and out of the RENDER domain, correct
3344 * snooping behaviour occurs naturally as the result of our domain
3345 * tracking.
3346 */
2c22569b 3347 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3348 return false;
9c23f7fc 3349
1c5d22f7 3350 trace_i915_gem_object_clflush(obj);
9da3da66 3351 drm_clflush_sg(obj->pages);
000433b6
CW
3352
3353 return true;
e47c68e9
EA
3354}
3355
3356/** Flushes the GTT write domain for the object if it's dirty. */
3357static void
05394f39 3358i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3359{
1c5d22f7
CW
3360 uint32_t old_write_domain;
3361
05394f39 3362 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3363 return;
3364
63256ec5 3365 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3366 * to it immediately go to main memory as far as we know, so there's
3367 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3368 *
3369 * However, we do have to enforce the order so that all writes through
3370 * the GTT land before any writes to the device, such as updates to
3371 * the GATT itself.
e47c68e9 3372 */
63256ec5
CW
3373 wmb();
3374
05394f39
CW
3375 old_write_domain = obj->base.write_domain;
3376 obj->base.write_domain = 0;
1c5d22f7
CW
3377
3378 trace_i915_gem_object_change_domain(obj,
05394f39 3379 obj->base.read_domains,
1c5d22f7 3380 old_write_domain);
e47c68e9
EA
3381}
3382
3383/** Flushes the CPU write domain for the object if it's dirty. */
3384static void
2c22569b
CW
3385i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3386 bool force)
e47c68e9 3387{
1c5d22f7 3388 uint32_t old_write_domain;
e47c68e9 3389
05394f39 3390 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3391 return;
3392
000433b6
CW
3393 if (i915_gem_clflush_object(obj, force))
3394 i915_gem_chipset_flush(obj->base.dev);
3395
05394f39
CW
3396 old_write_domain = obj->base.write_domain;
3397 obj->base.write_domain = 0;
1c5d22f7
CW
3398
3399 trace_i915_gem_object_change_domain(obj,
05394f39 3400 obj->base.read_domains,
1c5d22f7 3401 old_write_domain);
e47c68e9
EA
3402}
3403
2ef7eeaa
EA
3404/**
3405 * Moves a single object to the GTT read, and possibly write domain.
3406 *
3407 * This function returns when the move is complete, including waiting on
3408 * flushes to occur.
3409 */
79e53945 3410int
2021746e 3411i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3412{
8325a09d 3413 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3414 uint32_t old_write_domain, old_read_domains;
e47c68e9 3415 int ret;
2ef7eeaa 3416
02354392 3417 /* Not valid to be called on unbound objects. */
9843877d 3418 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3419 return -EINVAL;
3420
8d7e3de1
CW
3421 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3422 return 0;
3423
0201f1ec 3424 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3425 if (ret)
3426 return ret;
3427
2c22569b 3428 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3429
d0a57789
CW
3430 /* Serialise direct access to this object with the barriers for
3431 * coherent writes from the GPU, by effectively invalidating the
3432 * GTT domain upon first access.
3433 */
3434 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3435 mb();
3436
05394f39
CW
3437 old_write_domain = obj->base.write_domain;
3438 old_read_domains = obj->base.read_domains;
1c5d22f7 3439
e47c68e9
EA
3440 /* It should now be out of any other write domains, and we can update
3441 * the domain values for our changes.
3442 */
05394f39
CW
3443 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3444 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3445 if (write) {
05394f39
CW
3446 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3447 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3448 obj->dirty = 1;
2ef7eeaa
EA
3449 }
3450
1c5d22f7
CW
3451 trace_i915_gem_object_change_domain(obj,
3452 old_read_domains,
3453 old_write_domain);
3454
8325a09d 3455 /* And bump the LRU for this access */
ca191b13 3456 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3457 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3458 if (vma)
3459 list_move_tail(&vma->mm_list,
3460 &dev_priv->gtt.base.inactive_list);
3461
3462 }
8325a09d 3463
e47c68e9
EA
3464 return 0;
3465}
3466
e4ffd173
CW
3467int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3468 enum i915_cache_level cache_level)
3469{
7bddb01f 3470 struct drm_device *dev = obj->base.dev;
3089c6f2 3471 struct i915_vma *vma;
e4ffd173
CW
3472 int ret;
3473
3474 if (obj->cache_level == cache_level)
3475 return 0;
3476
d7f46fc4 3477 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3478 DRM_DEBUG("can not change the cache level of pinned objects\n");
3479 return -EBUSY;
3480 }
3481
3089c6f2
BW
3482 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3483 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3484 ret = i915_vma_unbind(vma);
3089c6f2
BW
3485 if (ret)
3486 return ret;
3487
3488 break;
3489 }
42d6ab48
CW
3490 }
3491
3089c6f2 3492 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3493 ret = i915_gem_object_finish_gpu(obj);
3494 if (ret)
3495 return ret;
3496
3497 i915_gem_object_finish_gtt(obj);
3498
3499 /* Before SandyBridge, you could not use tiling or fence
3500 * registers with snooped memory, so relinquish any fences
3501 * currently pointing to our region in the aperture.
3502 */
42d6ab48 3503 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3504 ret = i915_gem_object_put_fence(obj);
3505 if (ret)
3506 return ret;
3507 }
3508
6f65e29a
BW
3509 list_for_each_entry(vma, &obj->vma_list, vma_link)
3510 vma->bind_vma(vma, cache_level, 0);
e4ffd173
CW
3511 }
3512
2c22569b
CW
3513 list_for_each_entry(vma, &obj->vma_list, vma_link)
3514 vma->node.color = cache_level;
3515 obj->cache_level = cache_level;
3516
3517 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3518 u32 old_read_domains, old_write_domain;
3519
3520 /* If we're coming from LLC cached, then we haven't
3521 * actually been tracking whether the data is in the
3522 * CPU cache or not, since we only allow one bit set
3523 * in obj->write_domain and have been skipping the clflushes.
3524 * Just set it to the CPU cache for now.
3525 */
3526 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3527
3528 old_read_domains = obj->base.read_domains;
3529 old_write_domain = obj->base.write_domain;
3530
3531 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3532 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3533
3534 trace_i915_gem_object_change_domain(obj,
3535 old_read_domains,
3536 old_write_domain);
3537 }
3538
42d6ab48 3539 i915_gem_verify_gtt(dev);
e4ffd173
CW
3540 return 0;
3541}
3542
199adf40
BW
3543int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3544 struct drm_file *file)
e6994aee 3545{
199adf40 3546 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3547 struct drm_i915_gem_object *obj;
3548 int ret;
3549
3550 ret = i915_mutex_lock_interruptible(dev);
3551 if (ret)
3552 return ret;
3553
3554 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3555 if (&obj->base == NULL) {
3556 ret = -ENOENT;
3557 goto unlock;
3558 }
3559
651d794f
CW
3560 switch (obj->cache_level) {
3561 case I915_CACHE_LLC:
3562 case I915_CACHE_L3_LLC:
3563 args->caching = I915_CACHING_CACHED;
3564 break;
3565
4257d3ba
CW
3566 case I915_CACHE_WT:
3567 args->caching = I915_CACHING_DISPLAY;
3568 break;
3569
651d794f
CW
3570 default:
3571 args->caching = I915_CACHING_NONE;
3572 break;
3573 }
e6994aee
CW
3574
3575 drm_gem_object_unreference(&obj->base);
3576unlock:
3577 mutex_unlock(&dev->struct_mutex);
3578 return ret;
3579}
3580
199adf40
BW
3581int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3582 struct drm_file *file)
e6994aee 3583{
199adf40 3584 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3585 struct drm_i915_gem_object *obj;
3586 enum i915_cache_level level;
3587 int ret;
3588
199adf40
BW
3589 switch (args->caching) {
3590 case I915_CACHING_NONE:
e6994aee
CW
3591 level = I915_CACHE_NONE;
3592 break;
199adf40 3593 case I915_CACHING_CACHED:
e6994aee
CW
3594 level = I915_CACHE_LLC;
3595 break;
4257d3ba
CW
3596 case I915_CACHING_DISPLAY:
3597 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3598 break;
e6994aee
CW
3599 default:
3600 return -EINVAL;
3601 }
3602
3bc2913e
BW
3603 ret = i915_mutex_lock_interruptible(dev);
3604 if (ret)
3605 return ret;
3606
e6994aee
CW
3607 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3608 if (&obj->base == NULL) {
3609 ret = -ENOENT;
3610 goto unlock;
3611 }
3612
3613 ret = i915_gem_object_set_cache_level(obj, level);
3614
3615 drm_gem_object_unreference(&obj->base);
3616unlock:
3617 mutex_unlock(&dev->struct_mutex);
3618 return ret;
3619}
3620
cc98b413
CW
3621static bool is_pin_display(struct drm_i915_gem_object *obj)
3622{
3623 /* There are 3 sources that pin objects:
3624 * 1. The display engine (scanouts, sprites, cursors);
3625 * 2. Reservations for execbuffer;
3626 * 3. The user.
3627 *
3628 * We can ignore reservations as we hold the struct_mutex and
3629 * are only called outside of the reservation path. The user
3630 * can only increment pin_count once, and so if after
3631 * subtracting the potential reference by the user, any pin_count
3632 * remains, it must be due to another use by the display engine.
3633 */
d7f46fc4 3634 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
cc98b413
CW
3635}
3636
b9241ea3 3637/*
2da3b9b9
CW
3638 * Prepare buffer for display plane (scanout, cursors, etc).
3639 * Can be called from an uninterruptible phase (modesetting) and allows
3640 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3641 */
3642int
2da3b9b9
CW
3643i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3644 u32 alignment,
919926ae 3645 struct intel_ring_buffer *pipelined)
b9241ea3 3646{
2da3b9b9 3647 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3648 int ret;
3649
0be73284 3650 if (pipelined != obj->ring) {
2911a35b
BW
3651 ret = i915_gem_object_sync(obj, pipelined);
3652 if (ret)
b9241ea3
ZW
3653 return ret;
3654 }
3655
cc98b413
CW
3656 /* Mark the pin_display early so that we account for the
3657 * display coherency whilst setting up the cache domains.
3658 */
3659 obj->pin_display = true;
3660
a7ef0640
EA
3661 /* The display engine is not coherent with the LLC cache on gen6. As
3662 * a result, we make sure that the pinning that is about to occur is
3663 * done with uncached PTEs. This is lowest common denominator for all
3664 * chipsets.
3665 *
3666 * However for gen6+, we could do better by using the GFDT bit instead
3667 * of uncaching, which would allow us to flush all the LLC-cached data
3668 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3669 */
651d794f
CW
3670 ret = i915_gem_object_set_cache_level(obj,
3671 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3672 if (ret)
cc98b413 3673 goto err_unpin_display;
a7ef0640 3674
2da3b9b9
CW
3675 /* As the user may map the buffer once pinned in the display plane
3676 * (e.g. libkms for the bootup splash), we have to ensure that we
3677 * always use map_and_fenceable for all scanout buffers.
3678 */
c37e2204 3679 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3680 if (ret)
cc98b413 3681 goto err_unpin_display;
2da3b9b9 3682
2c22569b 3683 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3684
2da3b9b9 3685 old_write_domain = obj->base.write_domain;
05394f39 3686 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3687
3688 /* It should now be out of any other write domains, and we can update
3689 * the domain values for our changes.
3690 */
e5f1d962 3691 obj->base.write_domain = 0;
05394f39 3692 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3693
3694 trace_i915_gem_object_change_domain(obj,
3695 old_read_domains,
2da3b9b9 3696 old_write_domain);
b9241ea3
ZW
3697
3698 return 0;
cc98b413
CW
3699
3700err_unpin_display:
3701 obj->pin_display = is_pin_display(obj);
3702 return ret;
3703}
3704
3705void
3706i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3707{
d7f46fc4 3708 i915_gem_object_ggtt_unpin(obj);
cc98b413 3709 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3710}
3711
85345517 3712int
a8198eea 3713i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3714{
88241785
CW
3715 int ret;
3716
a8198eea 3717 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3718 return 0;
3719
0201f1ec 3720 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3721 if (ret)
3722 return ret;
3723
a8198eea
CW
3724 /* Ensure that we invalidate the GPU's caches and TLBs. */
3725 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3726 return 0;
85345517
CW
3727}
3728
e47c68e9
EA
3729/**
3730 * Moves a single object to the CPU read, and possibly write domain.
3731 *
3732 * This function returns when the move is complete, including waiting on
3733 * flushes to occur.
3734 */
dabdfe02 3735int
919926ae 3736i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3737{
1c5d22f7 3738 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3739 int ret;
3740
8d7e3de1
CW
3741 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3742 return 0;
3743
0201f1ec 3744 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3745 if (ret)
3746 return ret;
3747
e47c68e9 3748 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3749
05394f39
CW
3750 old_write_domain = obj->base.write_domain;
3751 old_read_domains = obj->base.read_domains;
1c5d22f7 3752
e47c68e9 3753 /* Flush the CPU cache if it's still invalid. */
05394f39 3754 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3755 i915_gem_clflush_object(obj, false);
2ef7eeaa 3756
05394f39 3757 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3758 }
3759
3760 /* It should now be out of any other write domains, and we can update
3761 * the domain values for our changes.
3762 */
05394f39 3763 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3764
3765 /* If we're writing through the CPU, then the GPU read domains will
3766 * need to be invalidated at next use.
3767 */
3768 if (write) {
05394f39
CW
3769 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3770 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3771 }
2ef7eeaa 3772
1c5d22f7
CW
3773 trace_i915_gem_object_change_domain(obj,
3774 old_read_domains,
3775 old_write_domain);
3776
2ef7eeaa
EA
3777 return 0;
3778}
3779
673a394b
EA
3780/* Throttle our rendering by waiting until the ring has completed our requests
3781 * emitted over 20 msec ago.
3782 *
b962442e
EA
3783 * Note that if we were to use the current jiffies each time around the loop,
3784 * we wouldn't escape the function with any frames outstanding if the time to
3785 * render a frame was over 20ms.
3786 *
673a394b
EA
3787 * This should get us reasonable parallelism between CPU and GPU but also
3788 * relatively low latency when blocking on a particular request to finish.
3789 */
40a5f0de 3790static int
f787a5f5 3791i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3792{
f787a5f5
CW
3793 struct drm_i915_private *dev_priv = dev->dev_private;
3794 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3795 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3796 struct drm_i915_gem_request *request;
3797 struct intel_ring_buffer *ring = NULL;
f69061be 3798 unsigned reset_counter;
f787a5f5
CW
3799 u32 seqno = 0;
3800 int ret;
93533c29 3801
308887aa
DV
3802 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3803 if (ret)
3804 return ret;
3805
3806 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3807 if (ret)
3808 return ret;
e110e8d6 3809
1c25595f 3810 spin_lock(&file_priv->mm.lock);
f787a5f5 3811 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3812 if (time_after_eq(request->emitted_jiffies, recent_enough))
3813 break;
40a5f0de 3814
f787a5f5
CW
3815 ring = request->ring;
3816 seqno = request->seqno;
b962442e 3817 }
f69061be 3818 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3819 spin_unlock(&file_priv->mm.lock);
40a5f0de 3820
f787a5f5
CW
3821 if (seqno == 0)
3822 return 0;
2bc43b5c 3823
b29c19b6 3824 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3825 if (ret == 0)
3826 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3827
3828 return ret;
3829}
3830
673a394b 3831int
05394f39 3832i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3833 struct i915_address_space *vm,
05394f39 3834 uint32_t alignment,
86a1ee26
CW
3835 bool map_and_fenceable,
3836 bool nonblocking)
673a394b 3837{
6f65e29a 3838 const u32 flags = map_and_fenceable ? GLOBAL_BIND : 0;
07fe0b12 3839 struct i915_vma *vma;
673a394b
EA
3840 int ret;
3841
07fe0b12
BW
3842 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3843
3844 vma = i915_gem_obj_to_vma(obj, vm);
3845
3846 if (vma) {
d7f46fc4
BW
3847 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3848 return -EBUSY;
3849
07fe0b12
BW
3850 if ((alignment &&
3851 vma->node.start & (alignment - 1)) ||
05394f39 3852 (map_and_fenceable && !obj->map_and_fenceable)) {
d7f46fc4 3853 WARN(vma->pin_count,
ae7d49d8 3854 "bo is already pinned with incorrect alignment:"
f343c5f6 3855 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3856 " obj->map_and_fenceable=%d\n",
07fe0b12 3857 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3858 map_and_fenceable,
05394f39 3859 obj->map_and_fenceable);
07fe0b12 3860 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3861 if (ret)
3862 return ret;
3863 }
3864 }
3865
07fe0b12 3866 if (!i915_gem_obj_bound(obj, vm)) {
07fe0b12
BW
3867 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3868 map_and_fenceable,
3869 nonblocking);
9731129c 3870 if (ret)
673a394b 3871 return ret;
8742267a 3872
22c344e9 3873 }
76446cac 3874
6f65e29a
BW
3875 vma = i915_gem_obj_to_vma(obj, vm);
3876
3877 vma->bind_vma(vma, obj->cache_level, flags);
74898d7e 3878
d7f46fc4 3879 i915_gem_obj_to_vma(obj, vm)->pin_count++;
6299f992 3880 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3881
3882 return 0;
3883}
3884
3885void
d7f46fc4 3886i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3887{
d7f46fc4 3888 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3889
d7f46fc4
BW
3890 BUG_ON(!vma);
3891 BUG_ON(vma->pin_count == 0);
3892 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3893
3894 if (--vma->pin_count == 0)
6299f992 3895 obj->pin_mappable = false;
673a394b
EA
3896}
3897
3898int
3899i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3900 struct drm_file *file)
673a394b
EA
3901{
3902 struct drm_i915_gem_pin *args = data;
05394f39 3903 struct drm_i915_gem_object *obj;
673a394b
EA
3904 int ret;
3905
02f6bccc
DV
3906 if (INTEL_INFO(dev)->gen >= 6)
3907 return -ENODEV;
3908
1d7cfea1
CW
3909 ret = i915_mutex_lock_interruptible(dev);
3910 if (ret)
3911 return ret;
673a394b 3912
05394f39 3913 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3914 if (&obj->base == NULL) {
1d7cfea1
CW
3915 ret = -ENOENT;
3916 goto unlock;
673a394b 3917 }
673a394b 3918
05394f39 3919 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 3920 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 3921 ret = -EFAULT;
1d7cfea1 3922 goto out;
3ef94daa
CW
3923 }
3924
05394f39 3925 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 3926 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 3927 args->handle);
1d7cfea1
CW
3928 ret = -EINVAL;
3929 goto out;
79e53945
JB
3930 }
3931
aa5f8021
DV
3932 if (obj->user_pin_count == ULONG_MAX) {
3933 ret = -EBUSY;
3934 goto out;
3935 }
3936
93be8788 3937 if (obj->user_pin_count == 0) {
c37e2204 3938 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3939 if (ret)
3940 goto out;
673a394b
EA
3941 }
3942
93be8788
CW
3943 obj->user_pin_count++;
3944 obj->pin_filp = file;
3945
f343c5f6 3946 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3947out:
05394f39 3948 drm_gem_object_unreference(&obj->base);
1d7cfea1 3949unlock:
673a394b 3950 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3951 return ret;
673a394b
EA
3952}
3953
3954int
3955i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3956 struct drm_file *file)
673a394b
EA
3957{
3958 struct drm_i915_gem_pin *args = data;
05394f39 3959 struct drm_i915_gem_object *obj;
76c1dec1 3960 int ret;
673a394b 3961
1d7cfea1
CW
3962 ret = i915_mutex_lock_interruptible(dev);
3963 if (ret)
3964 return ret;
673a394b 3965
05394f39 3966 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3967 if (&obj->base == NULL) {
1d7cfea1
CW
3968 ret = -ENOENT;
3969 goto unlock;
673a394b 3970 }
76c1dec1 3971
05394f39 3972 if (obj->pin_filp != file) {
bd9b6a4e 3973 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 3974 args->handle);
1d7cfea1
CW
3975 ret = -EINVAL;
3976 goto out;
79e53945 3977 }
05394f39
CW
3978 obj->user_pin_count--;
3979 if (obj->user_pin_count == 0) {
3980 obj->pin_filp = NULL;
d7f46fc4 3981 i915_gem_object_ggtt_unpin(obj);
79e53945 3982 }
673a394b 3983
1d7cfea1 3984out:
05394f39 3985 drm_gem_object_unreference(&obj->base);
1d7cfea1 3986unlock:
673a394b 3987 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3988 return ret;
673a394b
EA
3989}
3990
3991int
3992i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3993 struct drm_file *file)
673a394b
EA
3994{
3995 struct drm_i915_gem_busy *args = data;
05394f39 3996 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3997 int ret;
3998
76c1dec1 3999 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4000 if (ret)
76c1dec1 4001 return ret;
673a394b 4002
05394f39 4003 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4004 if (&obj->base == NULL) {
1d7cfea1
CW
4005 ret = -ENOENT;
4006 goto unlock;
673a394b 4007 }
d1b851fc 4008
0be555b6
CW
4009 /* Count all active objects as busy, even if they are currently not used
4010 * by the gpu. Users of this interface expect objects to eventually
4011 * become non-busy without any further actions, therefore emit any
4012 * necessary flushes here.
c4de0a5d 4013 */
30dfebf3 4014 ret = i915_gem_object_flush_active(obj);
0be555b6 4015
30dfebf3 4016 args->busy = obj->active;
e9808edd
CW
4017 if (obj->ring) {
4018 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4019 args->busy |= intel_ring_flag(obj->ring) << 16;
4020 }
673a394b 4021
05394f39 4022 drm_gem_object_unreference(&obj->base);
1d7cfea1 4023unlock:
673a394b 4024 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4025 return ret;
673a394b
EA
4026}
4027
4028int
4029i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4030 struct drm_file *file_priv)
4031{
0206e353 4032 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4033}
4034
3ef94daa
CW
4035int
4036i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4037 struct drm_file *file_priv)
4038{
4039 struct drm_i915_gem_madvise *args = data;
05394f39 4040 struct drm_i915_gem_object *obj;
76c1dec1 4041 int ret;
3ef94daa
CW
4042
4043 switch (args->madv) {
4044 case I915_MADV_DONTNEED:
4045 case I915_MADV_WILLNEED:
4046 break;
4047 default:
4048 return -EINVAL;
4049 }
4050
1d7cfea1
CW
4051 ret = i915_mutex_lock_interruptible(dev);
4052 if (ret)
4053 return ret;
4054
05394f39 4055 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4056 if (&obj->base == NULL) {
1d7cfea1
CW
4057 ret = -ENOENT;
4058 goto unlock;
3ef94daa 4059 }
3ef94daa 4060
d7f46fc4 4061 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4062 ret = -EINVAL;
4063 goto out;
3ef94daa
CW
4064 }
4065
05394f39
CW
4066 if (obj->madv != __I915_MADV_PURGED)
4067 obj->madv = args->madv;
3ef94daa 4068
6c085a72
CW
4069 /* if the object is no longer attached, discard its backing storage */
4070 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4071 i915_gem_object_truncate(obj);
4072
05394f39 4073 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4074
1d7cfea1 4075out:
05394f39 4076 drm_gem_object_unreference(&obj->base);
1d7cfea1 4077unlock:
3ef94daa 4078 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4079 return ret;
3ef94daa
CW
4080}
4081
37e680a1
CW
4082void i915_gem_object_init(struct drm_i915_gem_object *obj,
4083 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4084{
35c20a60 4085 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4086 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4087 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4088 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4089
37e680a1
CW
4090 obj->ops = ops;
4091
0327d6ba
CW
4092 obj->fence_reg = I915_FENCE_REG_NONE;
4093 obj->madv = I915_MADV_WILLNEED;
4094 /* Avoid an unnecessary call to unbind on the first bind. */
4095 obj->map_and_fenceable = true;
4096
4097 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4098}
4099
37e680a1
CW
4100static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4101 .get_pages = i915_gem_object_get_pages_gtt,
4102 .put_pages = i915_gem_object_put_pages_gtt,
4103};
4104
05394f39
CW
4105struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4106 size_t size)
ac52bc56 4107{
c397b908 4108 struct drm_i915_gem_object *obj;
5949eac4 4109 struct address_space *mapping;
1a240d4d 4110 gfp_t mask;
ac52bc56 4111
42dcedd4 4112 obj = i915_gem_object_alloc(dev);
c397b908
DV
4113 if (obj == NULL)
4114 return NULL;
673a394b 4115
c397b908 4116 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4117 i915_gem_object_free(obj);
c397b908
DV
4118 return NULL;
4119 }
673a394b 4120
bed1ea95
CW
4121 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4122 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4123 /* 965gm cannot relocate objects above 4GiB. */
4124 mask &= ~__GFP_HIGHMEM;
4125 mask |= __GFP_DMA32;
4126 }
4127
496ad9aa 4128 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4129 mapping_set_gfp_mask(mapping, mask);
5949eac4 4130
37e680a1 4131 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4132
c397b908
DV
4133 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4134 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4135
3d29b842
ED
4136 if (HAS_LLC(dev)) {
4137 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4138 * cache) for about a 10% performance improvement
4139 * compared to uncached. Graphics requests other than
4140 * display scanout are coherent with the CPU in
4141 * accessing this cache. This means in this mode we
4142 * don't need to clflush on the CPU side, and on the
4143 * GPU side we only need to flush internal caches to
4144 * get data visible to the CPU.
4145 *
4146 * However, we maintain the display planes as UC, and so
4147 * need to rebind when first used as such.
4148 */
4149 obj->cache_level = I915_CACHE_LLC;
4150 } else
4151 obj->cache_level = I915_CACHE_NONE;
4152
d861e338
DV
4153 trace_i915_gem_object_create(obj);
4154
05394f39 4155 return obj;
c397b908
DV
4156}
4157
1488fc08 4158void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4159{
1488fc08 4160 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4161 struct drm_device *dev = obj->base.dev;
be72615b 4162 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4163 struct i915_vma *vma, *next;
673a394b 4164
f65c9168
PZ
4165 intel_runtime_pm_get(dev_priv);
4166
26e12f89
CW
4167 trace_i915_gem_object_destroy(obj);
4168
1488fc08
CW
4169 if (obj->phys_obj)
4170 i915_gem_detach_phys_object(dev, obj);
4171
07fe0b12 4172 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4173 int ret;
4174
4175 vma->pin_count = 0;
4176 ret = i915_vma_unbind(vma);
07fe0b12
BW
4177 if (WARN_ON(ret == -ERESTARTSYS)) {
4178 bool was_interruptible;
1488fc08 4179
07fe0b12
BW
4180 was_interruptible = dev_priv->mm.interruptible;
4181 dev_priv->mm.interruptible = false;
1488fc08 4182
07fe0b12 4183 WARN_ON(i915_vma_unbind(vma));
1488fc08 4184
07fe0b12
BW
4185 dev_priv->mm.interruptible = was_interruptible;
4186 }
1488fc08
CW
4187 }
4188
1d64ae71
BW
4189 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4190 * before progressing. */
4191 if (obj->stolen)
4192 i915_gem_object_unpin_pages(obj);
4193
401c29f6
BW
4194 if (WARN_ON(obj->pages_pin_count))
4195 obj->pages_pin_count = 0;
37e680a1 4196 i915_gem_object_put_pages(obj);
d8cb5086 4197 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4198 i915_gem_object_release_stolen(obj);
de151cf6 4199
9da3da66
CW
4200 BUG_ON(obj->pages);
4201
2f745ad3
CW
4202 if (obj->base.import_attach)
4203 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4204
05394f39
CW
4205 drm_gem_object_release(&obj->base);
4206 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4207
05394f39 4208 kfree(obj->bit_17);
42dcedd4 4209 i915_gem_object_free(obj);
f65c9168
PZ
4210
4211 intel_runtime_pm_put(dev_priv);
673a394b
EA
4212}
4213
e656a6cb 4214struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4215 struct i915_address_space *vm)
e656a6cb
DV
4216{
4217 struct i915_vma *vma;
4218 list_for_each_entry(vma, &obj->vma_list, vma_link)
4219 if (vma->vm == vm)
4220 return vma;
4221
4222 return NULL;
4223}
4224
2f633156
BW
4225void i915_gem_vma_destroy(struct i915_vma *vma)
4226{
4227 WARN_ON(vma->node.allocated);
aaa05667
CW
4228
4229 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4230 if (!list_empty(&vma->exec_list))
4231 return;
4232
8b9c2b94 4233 list_del(&vma->vma_link);
b93dab6e 4234
2f633156
BW
4235 kfree(vma);
4236}
4237
29105ccc 4238int
45c5f202 4239i915_gem_suspend(struct drm_device *dev)
29105ccc
CW
4240{
4241 drm_i915_private_t *dev_priv = dev->dev_private;
45c5f202 4242 int ret = 0;
28dfe52a 4243
45c5f202 4244 mutex_lock(&dev->struct_mutex);
f7403347 4245 if (dev_priv->ums.mm_suspended)
45c5f202 4246 goto err;
28dfe52a 4247
b2da9fe5 4248 ret = i915_gpu_idle(dev);
f7403347 4249 if (ret)
45c5f202 4250 goto err;
f7403347 4251
b2da9fe5 4252 i915_gem_retire_requests(dev);
673a394b 4253
29105ccc 4254 /* Under UMS, be paranoid and evict. */
a39d7efc 4255 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4256 i915_gem_evict_everything(dev);
29105ccc 4257
29105ccc 4258 i915_kernel_lost_context(dev);
6dbe2772 4259 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4260
45c5f202
CW
4261 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4262 * We need to replace this with a semaphore, or something.
4263 * And not confound ums.mm_suspended!
4264 */
4265 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4266 DRIVER_MODESET);
4267 mutex_unlock(&dev->struct_mutex);
4268
4269 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4270 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4271 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4272
673a394b 4273 return 0;
45c5f202
CW
4274
4275err:
4276 mutex_unlock(&dev->struct_mutex);
4277 return ret;
673a394b
EA
4278}
4279
c3787e2e 4280int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4281{
c3787e2e 4282 struct drm_device *dev = ring->dev;
b9524a1e 4283 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4284 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4285 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4286 int i, ret;
b9524a1e 4287
040d2baa 4288 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4289 return 0;
b9524a1e 4290
c3787e2e
BW
4291 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4292 if (ret)
4293 return ret;
b9524a1e 4294
c3787e2e
BW
4295 /*
4296 * Note: We do not worry about the concurrent register cacheline hang
4297 * here because no other code should access these registers other than
4298 * at initialization time.
4299 */
b9524a1e 4300 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4301 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4302 intel_ring_emit(ring, reg_base + i);
4303 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4304 }
4305
c3787e2e 4306 intel_ring_advance(ring);
b9524a1e 4307
c3787e2e 4308 return ret;
b9524a1e
BW
4309}
4310
f691e2f4
DV
4311void i915_gem_init_swizzling(struct drm_device *dev)
4312{
4313 drm_i915_private_t *dev_priv = dev->dev_private;
4314
11782b02 4315 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4316 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4317 return;
4318
4319 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4320 DISP_TILE_SURFACE_SWIZZLING);
4321
11782b02
DV
4322 if (IS_GEN5(dev))
4323 return;
4324
f691e2f4
DV
4325 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4326 if (IS_GEN6(dev))
6b26c86d 4327 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4328 else if (IS_GEN7(dev))
6b26c86d 4329 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4330 else if (IS_GEN8(dev))
4331 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4332 else
4333 BUG();
f691e2f4 4334}
e21af88d 4335
67b1b571
CW
4336static bool
4337intel_enable_blt(struct drm_device *dev)
4338{
4339 if (!HAS_BLT(dev))
4340 return false;
4341
4342 /* The blitter was dysfunctional on early prototypes */
4343 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4344 DRM_INFO("BLT not supported on this pre-production hardware;"
4345 " graphics performance will be degraded.\n");
4346 return false;
4347 }
4348
4349 return true;
4350}
4351
4fc7c971 4352static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4353{
4fc7c971 4354 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4355 int ret;
68f95ba9 4356
5c1143bb 4357 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4358 if (ret)
b6913e4b 4359 return ret;
68f95ba9
CW
4360
4361 if (HAS_BSD(dev)) {
5c1143bb 4362 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4363 if (ret)
4364 goto cleanup_render_ring;
d1b851fc 4365 }
68f95ba9 4366
67b1b571 4367 if (intel_enable_blt(dev)) {
549f7365
CW
4368 ret = intel_init_blt_ring_buffer(dev);
4369 if (ret)
4370 goto cleanup_bsd_ring;
4371 }
4372
9a8a2213
BW
4373 if (HAS_VEBOX(dev)) {
4374 ret = intel_init_vebox_ring_buffer(dev);
4375 if (ret)
4376 goto cleanup_blt_ring;
4377 }
4378
4379
99433931 4380 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4381 if (ret)
9a8a2213 4382 goto cleanup_vebox_ring;
4fc7c971
BW
4383
4384 return 0;
4385
9a8a2213
BW
4386cleanup_vebox_ring:
4387 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4388cleanup_blt_ring:
4389 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4390cleanup_bsd_ring:
4391 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4392cleanup_render_ring:
4393 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4394
4395 return ret;
4396}
4397
4398int
4399i915_gem_init_hw(struct drm_device *dev)
4400{
4401 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4402 int ret, i;
4fc7c971
BW
4403
4404 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4405 return -EIO;
4406
59124506 4407 if (dev_priv->ellc_size)
05e21cc4 4408 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4409
0bf21347
VS
4410 if (IS_HASWELL(dev))
4411 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4412 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4413
88a2b2a3 4414 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4415 if (IS_IVYBRIDGE(dev)) {
4416 u32 temp = I915_READ(GEN7_MSG_CTL);
4417 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4418 I915_WRITE(GEN7_MSG_CTL, temp);
4419 } else if (INTEL_INFO(dev)->gen >= 7) {
4420 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4421 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4422 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4423 }
88a2b2a3
BW
4424 }
4425
4fc7c971
BW
4426 i915_gem_init_swizzling(dev);
4427
4428 ret = i915_gem_init_rings(dev);
99433931
MK
4429 if (ret)
4430 return ret;
4431
c3787e2e
BW
4432 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4433 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4434
254f965c 4435 /*
2fa48d8d
BW
4436 * XXX: Contexts should only be initialized once. Doing a switch to the
4437 * default context switch however is something we'd like to do after
4438 * reset or thaw (the latter may not actually be necessary for HW, but
4439 * goes with our code better). Context switching requires rings (for
4440 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4441 */
2fa48d8d 4442 ret = i915_gem_context_enable(dev_priv);
8245be31 4443 if (ret) {
2fa48d8d
BW
4444 DRM_ERROR("Context enable failed %d\n", ret);
4445 goto err_out;
b7c36d25 4446 }
e21af88d 4447
68f95ba9 4448 return 0;
2fa48d8d
BW
4449
4450err_out:
4451 i915_gem_cleanup_ringbuffer(dev);
4452 return ret;
8187a2b7
ZN
4453}
4454
1070a42b
CW
4455int i915_gem_init(struct drm_device *dev)
4456{
4457 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4458 int ret;
4459
1070a42b 4460 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4461
4462 if (IS_VALLEYVIEW(dev)) {
4463 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4464 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4465 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4466 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4467 }
4468
d7e5008f 4469 i915_gem_init_global_gtt(dev);
d62b4892 4470
2fa48d8d 4471 ret = i915_gem_context_init(dev);
e3848694
MK
4472 if (ret) {
4473 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4474 return ret;
e3848694 4475 }
2fa48d8d 4476
1070a42b
CW
4477 ret = i915_gem_init_hw(dev);
4478 mutex_unlock(&dev->struct_mutex);
4479 if (ret) {
bdf4fd7e 4480 WARN_ON(dev_priv->mm.aliasing_ppgtt);
2fa48d8d 4481 i915_gem_context_fini(dev);
c39538a8 4482 drm_mm_takedown(&dev_priv->gtt.base.mm);
1070a42b
CW
4483 return ret;
4484 }
4485
53ca26ca
DV
4486 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4487 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4488 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4489 return 0;
4490}
4491
8187a2b7
ZN
4492void
4493i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4494{
4495 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4496 struct intel_ring_buffer *ring;
1ec14ad3 4497 int i;
8187a2b7 4498
b4519513
CW
4499 for_each_ring(ring, dev_priv, i)
4500 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4501}
4502
673a394b
EA
4503int
4504i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4505 struct drm_file *file_priv)
4506{
db1b76ca 4507 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4508 int ret;
673a394b 4509
79e53945
JB
4510 if (drm_core_check_feature(dev, DRIVER_MODESET))
4511 return 0;
4512
1f83fee0 4513 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4514 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4515 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4516 }
4517
673a394b 4518 mutex_lock(&dev->struct_mutex);
db1b76ca 4519 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4520
f691e2f4 4521 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4522 if (ret != 0) {
4523 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4524 return ret;
d816f6ac 4525 }
9bb2d6f9 4526
5cef07e1 4527 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4528 mutex_unlock(&dev->struct_mutex);
dbb19d30 4529
5f35308b
CW
4530 ret = drm_irq_install(dev);
4531 if (ret)
4532 goto cleanup_ringbuffer;
dbb19d30 4533
673a394b 4534 return 0;
5f35308b
CW
4535
4536cleanup_ringbuffer:
4537 mutex_lock(&dev->struct_mutex);
4538 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4539 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4540 mutex_unlock(&dev->struct_mutex);
4541
4542 return ret;
673a394b
EA
4543}
4544
4545int
4546i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4547 struct drm_file *file_priv)
4548{
79e53945
JB
4549 if (drm_core_check_feature(dev, DRIVER_MODESET))
4550 return 0;
4551
dbb19d30 4552 drm_irq_uninstall(dev);
db1b76ca 4553
45c5f202 4554 return i915_gem_suspend(dev);
673a394b
EA
4555}
4556
4557void
4558i915_gem_lastclose(struct drm_device *dev)
4559{
4560 int ret;
673a394b 4561
e806b495
EA
4562 if (drm_core_check_feature(dev, DRIVER_MODESET))
4563 return;
4564
45c5f202 4565 ret = i915_gem_suspend(dev);
6dbe2772
KP
4566 if (ret)
4567 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4568}
4569
64193406
CW
4570static void
4571init_ring_lists(struct intel_ring_buffer *ring)
4572{
4573 INIT_LIST_HEAD(&ring->active_list);
4574 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4575}
4576
7e0d96bc
BW
4577void i915_init_vm(struct drm_i915_private *dev_priv,
4578 struct i915_address_space *vm)
fc8c067e 4579{
7e0d96bc
BW
4580 if (!i915_is_ggtt(vm))
4581 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4582 vm->dev = dev_priv->dev;
4583 INIT_LIST_HEAD(&vm->active_list);
4584 INIT_LIST_HEAD(&vm->inactive_list);
4585 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4586 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4587}
4588
673a394b
EA
4589void
4590i915_gem_load(struct drm_device *dev)
4591{
4592 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4593 int i;
4594
4595 dev_priv->slab =
4596 kmem_cache_create("i915_gem_object",
4597 sizeof(struct drm_i915_gem_object), 0,
4598 SLAB_HWCACHE_ALIGN,
4599 NULL);
673a394b 4600
fc8c067e
BW
4601 INIT_LIST_HEAD(&dev_priv->vm_list);
4602 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4603
a33afea5 4604 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4605 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4606 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4607 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4608 for (i = 0; i < I915_NUM_RINGS; i++)
4609 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4610 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4611 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4612 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4613 i915_gem_retire_work_handler);
b29c19b6
CW
4614 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4615 i915_gem_idle_work_handler);
1f83fee0 4616 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4617
94400120
DA
4618 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4619 if (IS_GEN3(dev)) {
50743298
DV
4620 I915_WRITE(MI_ARB_STATE,
4621 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4622 }
4623
72bfa19c
CW
4624 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4625
de151cf6 4626 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4627 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4628 dev_priv->fence_reg_start = 3;
de151cf6 4629
42b5aeab
VS
4630 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4631 dev_priv->num_fence_regs = 32;
4632 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4633 dev_priv->num_fence_regs = 16;
4634 else
4635 dev_priv->num_fence_regs = 8;
4636
b5aa8a0f 4637 /* Initialize fence registers to zero */
19b2dbde
CW
4638 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4639 i915_gem_restore_fences(dev);
10ed13e4 4640
673a394b 4641 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4642 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4643
ce453d81
CW
4644 dev_priv->mm.interruptible = true;
4645
7dc19d5a
DC
4646 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4647 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4648 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4649 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4650}
71acb5eb
DA
4651
4652/*
4653 * Create a physically contiguous memory object for this object
4654 * e.g. for cursor + overlay regs
4655 */
995b6762
CW
4656static int i915_gem_init_phys_object(struct drm_device *dev,
4657 int id, int size, int align)
71acb5eb
DA
4658{
4659 drm_i915_private_t *dev_priv = dev->dev_private;
4660 struct drm_i915_gem_phys_object *phys_obj;
4661 int ret;
4662
4663 if (dev_priv->mm.phys_objs[id - 1] || !size)
4664 return 0;
4665
b14c5679 4666 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4667 if (!phys_obj)
4668 return -ENOMEM;
4669
4670 phys_obj->id = id;
4671
6eeefaf3 4672 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4673 if (!phys_obj->handle) {
4674 ret = -ENOMEM;
4675 goto kfree_obj;
4676 }
4677#ifdef CONFIG_X86
4678 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4679#endif
4680
4681 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4682
4683 return 0;
4684kfree_obj:
9a298b2a 4685 kfree(phys_obj);
71acb5eb
DA
4686 return ret;
4687}
4688
995b6762 4689static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4690{
4691 drm_i915_private_t *dev_priv = dev->dev_private;
4692 struct drm_i915_gem_phys_object *phys_obj;
4693
4694 if (!dev_priv->mm.phys_objs[id - 1])
4695 return;
4696
4697 phys_obj = dev_priv->mm.phys_objs[id - 1];
4698 if (phys_obj->cur_obj) {
4699 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4700 }
4701
4702#ifdef CONFIG_X86
4703 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4704#endif
4705 drm_pci_free(dev, phys_obj->handle);
4706 kfree(phys_obj);
4707 dev_priv->mm.phys_objs[id - 1] = NULL;
4708}
4709
4710void i915_gem_free_all_phys_object(struct drm_device *dev)
4711{
4712 int i;
4713
260883c8 4714 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4715 i915_gem_free_phys_object(dev, i);
4716}
4717
4718void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4719 struct drm_i915_gem_object *obj)
71acb5eb 4720{
496ad9aa 4721 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4722 char *vaddr;
71acb5eb 4723 int i;
71acb5eb
DA
4724 int page_count;
4725
05394f39 4726 if (!obj->phys_obj)
71acb5eb 4727 return;
05394f39 4728 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4729
05394f39 4730 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4731 for (i = 0; i < page_count; i++) {
5949eac4 4732 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4733 if (!IS_ERR(page)) {
4734 char *dst = kmap_atomic(page);
4735 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4736 kunmap_atomic(dst);
4737
4738 drm_clflush_pages(&page, 1);
4739
4740 set_page_dirty(page);
4741 mark_page_accessed(page);
4742 page_cache_release(page);
4743 }
71acb5eb 4744 }
e76e9aeb 4745 i915_gem_chipset_flush(dev);
d78b47b9 4746
05394f39
CW
4747 obj->phys_obj->cur_obj = NULL;
4748 obj->phys_obj = NULL;
71acb5eb
DA
4749}
4750
4751int
4752i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4753 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4754 int id,
4755 int align)
71acb5eb 4756{
496ad9aa 4757 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4758 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4759 int ret = 0;
4760 int page_count;
4761 int i;
4762
4763 if (id > I915_MAX_PHYS_OBJECT)
4764 return -EINVAL;
4765
05394f39
CW
4766 if (obj->phys_obj) {
4767 if (obj->phys_obj->id == id)
71acb5eb
DA
4768 return 0;
4769 i915_gem_detach_phys_object(dev, obj);
4770 }
4771
71acb5eb
DA
4772 /* create a new object */
4773 if (!dev_priv->mm.phys_objs[id - 1]) {
4774 ret = i915_gem_init_phys_object(dev, id,
05394f39 4775 obj->base.size, align);
71acb5eb 4776 if (ret) {
05394f39
CW
4777 DRM_ERROR("failed to init phys object %d size: %zu\n",
4778 id, obj->base.size);
e5281ccd 4779 return ret;
71acb5eb
DA
4780 }
4781 }
4782
4783 /* bind to the object */
05394f39
CW
4784 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4785 obj->phys_obj->cur_obj = obj;
71acb5eb 4786
05394f39 4787 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4788
4789 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4790 struct page *page;
4791 char *dst, *src;
4792
5949eac4 4793 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4794 if (IS_ERR(page))
4795 return PTR_ERR(page);
71acb5eb 4796
ff75b9bc 4797 src = kmap_atomic(page);
05394f39 4798 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4799 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4800 kunmap_atomic(src);
71acb5eb 4801
e5281ccd
CW
4802 mark_page_accessed(page);
4803 page_cache_release(page);
4804 }
d78b47b9 4805
71acb5eb 4806 return 0;
71acb5eb
DA
4807}
4808
4809static int
05394f39
CW
4810i915_gem_phys_pwrite(struct drm_device *dev,
4811 struct drm_i915_gem_object *obj,
71acb5eb
DA
4812 struct drm_i915_gem_pwrite *args,
4813 struct drm_file *file_priv)
4814{
05394f39 4815 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4816 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4817
b47b30cc
CW
4818 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4819 unsigned long unwritten;
4820
4821 /* The physical object once assigned is fixed for the lifetime
4822 * of the obj, so we can safely drop the lock and continue
4823 * to access vaddr.
4824 */
4825 mutex_unlock(&dev->struct_mutex);
4826 unwritten = copy_from_user(vaddr, user_data, args->size);
4827 mutex_lock(&dev->struct_mutex);
4828 if (unwritten)
4829 return -EFAULT;
4830 }
71acb5eb 4831
e76e9aeb 4832 i915_gem_chipset_flush(dev);
71acb5eb
DA
4833 return 0;
4834}
b962442e 4835
f787a5f5 4836void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4837{
f787a5f5 4838 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4839
b29c19b6
CW
4840 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4841
b962442e
EA
4842 /* Clean up our request list when the client is going away, so that
4843 * later retire_requests won't dereference our soon-to-be-gone
4844 * file_priv.
4845 */
1c25595f 4846 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4847 while (!list_empty(&file_priv->mm.request_list)) {
4848 struct drm_i915_gem_request *request;
4849
4850 request = list_first_entry(&file_priv->mm.request_list,
4851 struct drm_i915_gem_request,
4852 client_list);
4853 list_del(&request->client_list);
4854 request->file_priv = NULL;
4855 }
1c25595f 4856 spin_unlock(&file_priv->mm.lock);
b962442e 4857}
31169714 4858
b29c19b6
CW
4859static void
4860i915_gem_file_idle_work_handler(struct work_struct *work)
4861{
4862 struct drm_i915_file_private *file_priv =
4863 container_of(work, typeof(*file_priv), mm.idle_work.work);
4864
4865 atomic_set(&file_priv->rps_wait_boost, false);
4866}
4867
4868int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4869{
4870 struct drm_i915_file_private *file_priv;
e422b888 4871 int ret;
b29c19b6
CW
4872
4873 DRM_DEBUG_DRIVER("\n");
4874
4875 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4876 if (!file_priv)
4877 return -ENOMEM;
4878
4879 file->driver_priv = file_priv;
4880 file_priv->dev_priv = dev->dev_private;
4881
4882 spin_lock_init(&file_priv->mm.lock);
4883 INIT_LIST_HEAD(&file_priv->mm.request_list);
4884 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4885 i915_gem_file_idle_work_handler);
4886
e422b888
BW
4887 ret = i915_gem_context_open(dev, file);
4888 if (ret)
4889 kfree(file_priv);
b29c19b6 4890
e422b888 4891 return ret;
b29c19b6
CW
4892}
4893
5774506f
CW
4894static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4895{
4896 if (!mutex_is_locked(mutex))
4897 return false;
4898
4899#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4900 return mutex->owner == task;
4901#else
4902 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4903 return false;
4904#endif
4905}
4906
7dc19d5a
DC
4907static unsigned long
4908i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4909{
17250b71
CW
4910 struct drm_i915_private *dev_priv =
4911 container_of(shrinker,
4912 struct drm_i915_private,
4913 mm.inactive_shrinker);
4914 struct drm_device *dev = dev_priv->dev;
6c085a72 4915 struct drm_i915_gem_object *obj;
5774506f 4916 bool unlock = true;
7dc19d5a 4917 unsigned long count;
17250b71 4918
5774506f
CW
4919 if (!mutex_trylock(&dev->struct_mutex)) {
4920 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4921 return 0;
5774506f 4922
677feac2 4923 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4924 return 0;
677feac2 4925
5774506f
CW
4926 unlock = false;
4927 }
31169714 4928
7dc19d5a 4929 count = 0;
35c20a60 4930 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4931 if (obj->pages_pin_count == 0)
7dc19d5a 4932 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4933
4934 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4935 if (obj->active)
4936 continue;
4937
d7f46fc4 4938 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
7dc19d5a 4939 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4940 }
17250b71 4941
5774506f
CW
4942 if (unlock)
4943 mutex_unlock(&dev->struct_mutex);
d9973b43 4944
7dc19d5a 4945 return count;
31169714 4946}
a70a3148
BW
4947
4948/* All the new VM stuff */
4949unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4950 struct i915_address_space *vm)
4951{
4952 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4953 struct i915_vma *vma;
4954
6f425321
BW
4955 if (!dev_priv->mm.aliasing_ppgtt ||
4956 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4957 vm = &dev_priv->gtt.base;
4958
4959 BUG_ON(list_empty(&o->vma_list));
4960 list_for_each_entry(vma, &o->vma_list, vma_link) {
4961 if (vma->vm == vm)
4962 return vma->node.start;
4963
4964 }
4965 return -1;
4966}
4967
4968bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4969 struct i915_address_space *vm)
4970{
4971 struct i915_vma *vma;
4972
4973 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4974 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4975 return true;
4976
4977 return false;
4978}
4979
4980bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4981{
5a1d5eb0 4982 struct i915_vma *vma;
a70a3148 4983
5a1d5eb0
CW
4984 list_for_each_entry(vma, &o->vma_list, vma_link)
4985 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
4986 return true;
4987
4988 return false;
4989}
4990
4991unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4992 struct i915_address_space *vm)
4993{
4994 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4995 struct i915_vma *vma;
4996
6f425321
BW
4997 if (!dev_priv->mm.aliasing_ppgtt ||
4998 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4999 vm = &dev_priv->gtt.base;
5000
5001 BUG_ON(list_empty(&o->vma_list));
5002
5003 list_for_each_entry(vma, &o->vma_list, vma_link)
5004 if (vma->vm == vm)
5005 return vma->node.size;
5006
5007 return 0;
5008}
5009
7dc19d5a
DC
5010static unsigned long
5011i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5012{
5013 struct drm_i915_private *dev_priv =
5014 container_of(shrinker,
5015 struct drm_i915_private,
5016 mm.inactive_shrinker);
5017 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5018 unsigned long freed;
5019 bool unlock = true;
5020
5021 if (!mutex_trylock(&dev->struct_mutex)) {
5022 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5023 return SHRINK_STOP;
7dc19d5a
DC
5024
5025 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5026 return SHRINK_STOP;
7dc19d5a
DC
5027
5028 unlock = false;
5029 }
5030
d9973b43
CW
5031 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5032 if (freed < sc->nr_to_scan)
5033 freed += __i915_gem_shrink(dev_priv,
5034 sc->nr_to_scan - freed,
5035 false);
5036 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5037 freed += i915_gem_shrink_all(dev_priv);
5038
5039 if (unlock)
5040 mutex_unlock(&dev->struct_mutex);
d9973b43 5041
7dc19d5a
DC
5042 return freed;
5043}
5c2abbea
BW
5044
5045struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5046{
5047 struct i915_vma *vma;
5048
5049 if (WARN_ON(list_empty(&obj->vma_list)))
5050 return NULL;
5051
5052 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5053 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5054 return NULL;
5055
5056 return vma;
5057}
This page took 0.966334 seconds and 5 git commands to generate.