i915: Add a Kconfig option to turn on i915.preliminary_hw_support by default
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39 39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
41 bool force);
07fe0b12
BW
42static __must_check int
43i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
44 struct i915_address_space *vm,
45 unsigned alignment,
46 bool map_and_fenceable,
47 bool nonblocking);
05394f39
CW
48static int i915_gem_phys_pwrite(struct drm_device *dev,
49 struct drm_i915_gem_object *obj,
71acb5eb 50 struct drm_i915_gem_pwrite *args,
05394f39 51 struct drm_file *file);
673a394b 52
61050808
CW
53static void i915_gem_write_fence(struct drm_device *dev, int reg,
54 struct drm_i915_gem_object *obj);
55static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
56 struct drm_i915_fence_reg *fence,
57 bool enable);
58
17250b71 59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 60 struct shrink_control *sc);
6c085a72
CW
61static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 63static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
79e53945
JB
162int
163i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
79e53945 165{
93d18799 166 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 167 struct drm_i915_gem_init *args = data;
2021746e 168
7bb6fb8d
DV
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
2021746e
CW
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
79e53945 175
f534bc0b
DV
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
79e53945 180 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
93d18799 183 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
184 mutex_unlock(&dev->struct_mutex);
185
2021746e 186 return 0;
673a394b
EA
187}
188
5a125c3c
EA
189int
190i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 191 struct drm_file *file)
5a125c3c 192{
73aa808f 193 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 194 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
5a125c3c 197
6299f992 198 pinned = 0;
73aa808f 199 mutex_lock(&dev->struct_mutex);
35c20a60 200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 201 if (obj->pin_count)
f343c5f6 202 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 203 mutex_unlock(&dev->struct_mutex);
5a125c3c 204
853ba5d2 205 args->aper_size = dev_priv->gtt.base.total;
0206e353 206 args->aper_available_size = args->aper_size - pinned;
6299f992 207
5a125c3c
EA
208 return 0;
209}
210
42dcedd4
CW
211void *i915_gem_object_alloc(struct drm_device *dev)
212{
213 struct drm_i915_private *dev_priv = dev->dev_private;
214 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
215}
216
217void i915_gem_object_free(struct drm_i915_gem_object *obj)
218{
219 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
220 kmem_cache_free(dev_priv->slab, obj);
221}
222
ff72145b
DA
223static int
224i915_gem_create(struct drm_file *file,
225 struct drm_device *dev,
226 uint64_t size,
227 uint32_t *handle_p)
673a394b 228{
05394f39 229 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
230 int ret;
231 u32 handle;
673a394b 232
ff72145b 233 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
234 if (size == 0)
235 return -EINVAL;
673a394b
EA
236
237 /* Allocate the new object */
ff72145b 238 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
239 if (obj == NULL)
240 return -ENOMEM;
241
05394f39 242 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 243 /* drop reference from allocate - handle holds it now */
d861e338
DV
244 drm_gem_object_unreference_unlocked(&obj->base);
245 if (ret)
246 return ret;
202f2fef 247
ff72145b 248 *handle_p = handle;
673a394b
EA
249 return 0;
250}
251
ff72145b
DA
252int
253i915_gem_dumb_create(struct drm_file *file,
254 struct drm_device *dev,
255 struct drm_mode_create_dumb *args)
256{
257 /* have to work out size/pitch and return them */
ed0291fd 258 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
259 args->size = args->pitch * args->height;
260 return i915_gem_create(file, dev,
261 args->size, &args->handle);
262}
263
264int i915_gem_dumb_destroy(struct drm_file *file,
265 struct drm_device *dev,
266 uint32_t handle)
267{
268 return drm_gem_handle_delete(file, handle);
269}
270
271/**
272 * Creates a new mm object and returns a handle to it.
273 */
274int
275i915_gem_create_ioctl(struct drm_device *dev, void *data,
276 struct drm_file *file)
277{
278 struct drm_i915_gem_create *args = data;
63ed2cb2 279
ff72145b
DA
280 return i915_gem_create(file, dev,
281 args->size, &args->handle);
282}
283
8461d226
DV
284static inline int
285__copy_to_user_swizzled(char __user *cpu_vaddr,
286 const char *gpu_vaddr, int gpu_offset,
287 int length)
288{
289 int ret, cpu_offset = 0;
290
291 while (length > 0) {
292 int cacheline_end = ALIGN(gpu_offset + 1, 64);
293 int this_length = min(cacheline_end - gpu_offset, length);
294 int swizzled_gpu_offset = gpu_offset ^ 64;
295
296 ret = __copy_to_user(cpu_vaddr + cpu_offset,
297 gpu_vaddr + swizzled_gpu_offset,
298 this_length);
299 if (ret)
300 return ret + length;
301
302 cpu_offset += this_length;
303 gpu_offset += this_length;
304 length -= this_length;
305 }
306
307 return 0;
308}
309
8c59967c 310static inline int
4f0c7cfb
BW
311__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
312 const char __user *cpu_vaddr,
8c59967c
DV
313 int length)
314{
315 int ret, cpu_offset = 0;
316
317 while (length > 0) {
318 int cacheline_end = ALIGN(gpu_offset + 1, 64);
319 int this_length = min(cacheline_end - gpu_offset, length);
320 int swizzled_gpu_offset = gpu_offset ^ 64;
321
322 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
323 cpu_vaddr + cpu_offset,
324 this_length);
325 if (ret)
326 return ret + length;
327
328 cpu_offset += this_length;
329 gpu_offset += this_length;
330 length -= this_length;
331 }
332
333 return 0;
334}
335
d174bd64
DV
336/* Per-page copy function for the shmem pread fastpath.
337 * Flushes invalid cachelines before reading the target if
338 * needs_clflush is set. */
eb01459f 339static int
d174bd64
DV
340shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
341 char __user *user_data,
342 bool page_do_bit17_swizzling, bool needs_clflush)
343{
344 char *vaddr;
345 int ret;
346
e7e58eb5 347 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
348 return -EINVAL;
349
350 vaddr = kmap_atomic(page);
351 if (needs_clflush)
352 drm_clflush_virt_range(vaddr + shmem_page_offset,
353 page_length);
354 ret = __copy_to_user_inatomic(user_data,
355 vaddr + shmem_page_offset,
356 page_length);
357 kunmap_atomic(vaddr);
358
f60d7f0c 359 return ret ? -EFAULT : 0;
d174bd64
DV
360}
361
23c18c71
DV
362static void
363shmem_clflush_swizzled_range(char *addr, unsigned long length,
364 bool swizzled)
365{
e7e58eb5 366 if (unlikely(swizzled)) {
23c18c71
DV
367 unsigned long start = (unsigned long) addr;
368 unsigned long end = (unsigned long) addr + length;
369
370 /* For swizzling simply ensure that we always flush both
371 * channels. Lame, but simple and it works. Swizzled
372 * pwrite/pread is far from a hotpath - current userspace
373 * doesn't use it at all. */
374 start = round_down(start, 128);
375 end = round_up(end, 128);
376
377 drm_clflush_virt_range((void *)start, end - start);
378 } else {
379 drm_clflush_virt_range(addr, length);
380 }
381
382}
383
d174bd64
DV
384/* Only difference to the fast-path function is that this can handle bit17
385 * and uses non-atomic copy and kmap functions. */
386static int
387shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
388 char __user *user_data,
389 bool page_do_bit17_swizzling, bool needs_clflush)
390{
391 char *vaddr;
392 int ret;
393
394 vaddr = kmap(page);
395 if (needs_clflush)
23c18c71
DV
396 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
397 page_length,
398 page_do_bit17_swizzling);
d174bd64
DV
399
400 if (page_do_bit17_swizzling)
401 ret = __copy_to_user_swizzled(user_data,
402 vaddr, shmem_page_offset,
403 page_length);
404 else
405 ret = __copy_to_user(user_data,
406 vaddr + shmem_page_offset,
407 page_length);
408 kunmap(page);
409
f60d7f0c 410 return ret ? - EFAULT : 0;
d174bd64
DV
411}
412
eb01459f 413static int
dbf7bff0
DV
414i915_gem_shmem_pread(struct drm_device *dev,
415 struct drm_i915_gem_object *obj,
416 struct drm_i915_gem_pread *args,
417 struct drm_file *file)
eb01459f 418{
8461d226 419 char __user *user_data;
eb01459f 420 ssize_t remain;
8461d226 421 loff_t offset;
eb2c0c81 422 int shmem_page_offset, page_length, ret = 0;
8461d226 423 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 424 int prefaulted = 0;
8489731c 425 int needs_clflush = 0;
67d5a50c 426 struct sg_page_iter sg_iter;
eb01459f 427
2bb4629a 428 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
429 remain = args->size;
430
8461d226 431 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 432
8489731c
DV
433 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
434 /* If we're not in the cpu read domain, set ourself into the gtt
435 * read domain and manually flush cachelines (if required). This
436 * optimizes for the case when the gpu will dirty the data
437 * anyway again before the next pread happens. */
c76ce038 438 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
9843877d 439 if (i915_gem_obj_bound_any(obj)) {
6c085a72
CW
440 ret = i915_gem_object_set_to_gtt_domain(obj, false);
441 if (ret)
442 return ret;
443 }
8489731c 444 }
eb01459f 445
f60d7f0c
CW
446 ret = i915_gem_object_get_pages(obj);
447 if (ret)
448 return ret;
449
450 i915_gem_object_pin_pages(obj);
451
8461d226 452 offset = args->offset;
eb01459f 453
67d5a50c
ID
454 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
455 offset >> PAGE_SHIFT) {
2db76d7c 456 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
457
458 if (remain <= 0)
459 break;
460
eb01459f
EA
461 /* Operation in this page
462 *
eb01459f 463 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
464 * page_length = bytes to copy for this page
465 */
c8cbbb8b 466 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
467 page_length = remain;
468 if ((shmem_page_offset + page_length) > PAGE_SIZE)
469 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 470
8461d226
DV
471 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
472 (page_to_phys(page) & (1 << 17)) != 0;
473
d174bd64
DV
474 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
475 user_data, page_do_bit17_swizzling,
476 needs_clflush);
477 if (ret == 0)
478 goto next_page;
dbf7bff0 479
dbf7bff0
DV
480 mutex_unlock(&dev->struct_mutex);
481
0b74b508 482 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 483 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
484 /* Userspace is tricking us, but we've already clobbered
485 * its pages with the prefault and promised to write the
486 * data up to the first fault. Hence ignore any errors
487 * and just continue. */
488 (void)ret;
489 prefaulted = 1;
490 }
eb01459f 491
d174bd64
DV
492 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
493 user_data, page_do_bit17_swizzling,
494 needs_clflush);
eb01459f 495
dbf7bff0 496 mutex_lock(&dev->struct_mutex);
f60d7f0c 497
dbf7bff0 498next_page:
e5281ccd 499 mark_page_accessed(page);
e5281ccd 500
f60d7f0c 501 if (ret)
8461d226 502 goto out;
8461d226 503
eb01459f 504 remain -= page_length;
8461d226 505 user_data += page_length;
eb01459f
EA
506 offset += page_length;
507 }
508
4f27b75d 509out:
f60d7f0c
CW
510 i915_gem_object_unpin_pages(obj);
511
eb01459f
EA
512 return ret;
513}
514
673a394b
EA
515/**
516 * Reads data from the object referenced by handle.
517 *
518 * On error, the contents of *data are undefined.
519 */
520int
521i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 522 struct drm_file *file)
673a394b
EA
523{
524 struct drm_i915_gem_pread *args = data;
05394f39 525 struct drm_i915_gem_object *obj;
35b62a89 526 int ret = 0;
673a394b 527
51311d0a
CW
528 if (args->size == 0)
529 return 0;
530
531 if (!access_ok(VERIFY_WRITE,
2bb4629a 532 to_user_ptr(args->data_ptr),
51311d0a
CW
533 args->size))
534 return -EFAULT;
535
4f27b75d 536 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 537 if (ret)
4f27b75d 538 return ret;
673a394b 539
05394f39 540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 541 if (&obj->base == NULL) {
1d7cfea1
CW
542 ret = -ENOENT;
543 goto unlock;
4f27b75d 544 }
673a394b 545
7dcd2499 546 /* Bounds check source. */
05394f39
CW
547 if (args->offset > obj->base.size ||
548 args->size > obj->base.size - args->offset) {
ce9d419d 549 ret = -EINVAL;
35b62a89 550 goto out;
ce9d419d
CW
551 }
552
1286ff73
DV
553 /* prime objects have no backing filp to GEM pread/pwrite
554 * pages from.
555 */
556 if (!obj->base.filp) {
557 ret = -EINVAL;
558 goto out;
559 }
560
db53a302
CW
561 trace_i915_gem_object_pread(obj, args->offset, args->size);
562
dbf7bff0 563 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 564
35b62a89 565out:
05394f39 566 drm_gem_object_unreference(&obj->base);
1d7cfea1 567unlock:
4f27b75d 568 mutex_unlock(&dev->struct_mutex);
eb01459f 569 return ret;
673a394b
EA
570}
571
0839ccb8
KP
572/* This is the fast write path which cannot handle
573 * page faults in the source data
9b7530cc 574 */
0839ccb8
KP
575
576static inline int
577fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
580 int length)
9b7530cc 581{
4f0c7cfb
BW
582 void __iomem *vaddr_atomic;
583 void *vaddr;
0839ccb8 584 unsigned long unwritten;
9b7530cc 585
3e4d3af5 586 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
587 /* We can use the cpu mem copy function because this is X86. */
588 vaddr = (void __force*)vaddr_atomic + page_offset;
589 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 590 user_data, length);
3e4d3af5 591 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 592 return unwritten;
0839ccb8
KP
593}
594
3de09aa3
EA
595/**
596 * This is the fast pwrite path, where we copy the data directly from the
597 * user into the GTT, uncached.
598 */
673a394b 599static int
05394f39
CW
600i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601 struct drm_i915_gem_object *obj,
3de09aa3 602 struct drm_i915_gem_pwrite *args,
05394f39 603 struct drm_file *file)
673a394b 604{
0839ccb8 605 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 606 ssize_t remain;
0839ccb8 607 loff_t offset, page_base;
673a394b 608 char __user *user_data;
935aaa69
DV
609 int page_offset, page_length, ret;
610
c37e2204 611 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
612 if (ret)
613 goto out;
614
615 ret = i915_gem_object_set_to_gtt_domain(obj, true);
616 if (ret)
617 goto out_unpin;
618
619 ret = i915_gem_object_put_fence(obj);
620 if (ret)
621 goto out_unpin;
673a394b 622
2bb4629a 623 user_data = to_user_ptr(args->data_ptr);
673a394b 624 remain = args->size;
673a394b 625
f343c5f6 626 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
627
628 while (remain > 0) {
629 /* Operation in this page
630 *
0839ccb8
KP
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
673a394b 634 */
c8cbbb8b
CW
635 page_base = offset & PAGE_MASK;
636 page_offset = offset_in_page(offset);
0839ccb8
KP
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
640
0839ccb8 641 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
642 * source page isn't available. Return the error and we'll
643 * retry in the slow path.
0839ccb8 644 */
5d4545ae 645 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
646 page_offset, user_data, page_length)) {
647 ret = -EFAULT;
648 goto out_unpin;
649 }
673a394b 650
0839ccb8
KP
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
673a394b 654 }
673a394b 655
935aaa69
DV
656out_unpin:
657 i915_gem_object_unpin(obj);
658out:
3de09aa3 659 return ret;
673a394b
EA
660}
661
d174bd64
DV
662/* Per-page copy function for the shmem pwrite fastpath.
663 * Flushes invalid cachelines before writing to the target if
664 * needs_clflush_before is set and flushes out any written cachelines after
665 * writing if needs_clflush is set. */
3043c60c 666static int
d174bd64
DV
667shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668 char __user *user_data,
669 bool page_do_bit17_swizzling,
670 bool needs_clflush_before,
671 bool needs_clflush_after)
673a394b 672{
d174bd64 673 char *vaddr;
673a394b 674 int ret;
3de09aa3 675
e7e58eb5 676 if (unlikely(page_do_bit17_swizzling))
d174bd64 677 return -EINVAL;
3de09aa3 678
d174bd64
DV
679 vaddr = kmap_atomic(page);
680 if (needs_clflush_before)
681 drm_clflush_virt_range(vaddr + shmem_page_offset,
682 page_length);
683 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684 user_data,
685 page_length);
686 if (needs_clflush_after)
687 drm_clflush_virt_range(vaddr + shmem_page_offset,
688 page_length);
689 kunmap_atomic(vaddr);
3de09aa3 690
755d2218 691 return ret ? -EFAULT : 0;
3de09aa3
EA
692}
693
d174bd64
DV
694/* Only difference to the fast-path function is that this can handle bit17
695 * and uses non-atomic copy and kmap functions. */
3043c60c 696static int
d174bd64
DV
697shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698 char __user *user_data,
699 bool page_do_bit17_swizzling,
700 bool needs_clflush_before,
701 bool needs_clflush_after)
673a394b 702{
d174bd64
DV
703 char *vaddr;
704 int ret;
e5281ccd 705
d174bd64 706 vaddr = kmap(page);
e7e58eb5 707 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
708 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709 page_length,
710 page_do_bit17_swizzling);
d174bd64
DV
711 if (page_do_bit17_swizzling)
712 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
713 user_data,
714 page_length);
d174bd64
DV
715 else
716 ret = __copy_from_user(vaddr + shmem_page_offset,
717 user_data,
718 page_length);
719 if (needs_clflush_after)
23c18c71
DV
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
d174bd64 723 kunmap(page);
40123c1f 724
755d2218 725 return ret ? -EFAULT : 0;
40123c1f
EA
726}
727
40123c1f 728static int
e244a443
DV
729i915_gem_shmem_pwrite(struct drm_device *dev,
730 struct drm_i915_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file)
40123c1f 733{
40123c1f 734 ssize_t remain;
8c59967c
DV
735 loff_t offset;
736 char __user *user_data;
eb2c0c81 737 int shmem_page_offset, page_length, ret = 0;
8c59967c 738 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 739 int hit_slowpath = 0;
58642885
DV
740 int needs_clflush_after = 0;
741 int needs_clflush_before = 0;
67d5a50c 742 struct sg_page_iter sg_iter;
40123c1f 743
2bb4629a 744 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
745 remain = args->size;
746
8c59967c 747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 748
58642885
DV
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
2c22569b 754 needs_clflush_after = cpu_write_needs_clflush(obj);
9843877d 755 if (i915_gem_obj_bound_any(obj)) {
6c085a72
CW
756 ret = i915_gem_object_set_to_gtt_domain(obj, true);
757 if (ret)
758 return ret;
759 }
58642885 760 }
c76ce038
CW
761 /* Same trick applies to invalidate partially written cachelines read
762 * before writing. */
763 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
764 needs_clflush_before =
765 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 766
755d2218
CW
767 ret = i915_gem_object_get_pages(obj);
768 if (ret)
769 return ret;
770
771 i915_gem_object_pin_pages(obj);
772
673a394b 773 offset = args->offset;
05394f39 774 obj->dirty = 1;
673a394b 775
67d5a50c
ID
776 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
777 offset >> PAGE_SHIFT) {
2db76d7c 778 struct page *page = sg_page_iter_page(&sg_iter);
58642885 779 int partial_cacheline_write;
e5281ccd 780
9da3da66
CW
781 if (remain <= 0)
782 break;
783
40123c1f
EA
784 /* Operation in this page
785 *
40123c1f 786 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
787 * page_length = bytes to copy for this page
788 */
c8cbbb8b 789 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
790
791 page_length = remain;
792 if ((shmem_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 794
58642885
DV
795 /* If we don't overwrite a cacheline completely we need to be
796 * careful to have up-to-date data by first clflushing. Don't
797 * overcomplicate things and flush the entire patch. */
798 partial_cacheline_write = needs_clflush_before &&
799 ((shmem_page_offset | page_length)
800 & (boot_cpu_data.x86_clflush_size - 1));
801
8c59967c
DV
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
d174bd64
DV
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
e244a443
DV
811
812 hit_slowpath = 1;
e244a443 813 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
814 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815 user_data, page_do_bit17_swizzling,
816 partial_cacheline_write,
817 needs_clflush_after);
40123c1f 818
e244a443 819 mutex_lock(&dev->struct_mutex);
755d2218 820
e244a443 821next_page:
e5281ccd
CW
822 set_page_dirty(page);
823 mark_page_accessed(page);
e5281ccd 824
755d2218 825 if (ret)
8c59967c 826 goto out;
8c59967c 827
40123c1f 828 remain -= page_length;
8c59967c 829 user_data += page_length;
40123c1f 830 offset += page_length;
673a394b
EA
831 }
832
fbd5a26d 833out:
755d2218
CW
834 i915_gem_object_unpin_pages(obj);
835
e244a443 836 if (hit_slowpath) {
8dcf015e
DV
837 /*
838 * Fixup: Flush cpu caches in case we didn't flush the dirty
839 * cachelines in-line while writing and the object moved
840 * out of the cpu write domain while we've dropped the lock.
841 */
842 if (!needs_clflush_after &&
843 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
844 if (i915_gem_clflush_object(obj, obj->pin_display))
845 i915_gem_chipset_flush(dev);
e244a443 846 }
8c59967c 847 }
673a394b 848
58642885 849 if (needs_clflush_after)
e76e9aeb 850 i915_gem_chipset_flush(dev);
58642885 851
40123c1f 852 return ret;
673a394b
EA
853}
854
855/**
856 * Writes data to the object referenced by handle.
857 *
858 * On error, the contents of the buffer that were to be modified are undefined.
859 */
860int
861i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 862 struct drm_file *file)
673a394b
EA
863{
864 struct drm_i915_gem_pwrite *args = data;
05394f39 865 struct drm_i915_gem_object *obj;
51311d0a
CW
866 int ret;
867
868 if (args->size == 0)
869 return 0;
870
871 if (!access_ok(VERIFY_READ,
2bb4629a 872 to_user_ptr(args->data_ptr),
51311d0a
CW
873 args->size))
874 return -EFAULT;
875
0b74b508
XZ
876 if (likely(!i915_prefault_disable)) {
877 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
878 args->size);
879 if (ret)
880 return -EFAULT;
881 }
673a394b 882
fbd5a26d 883 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 884 if (ret)
fbd5a26d 885 return ret;
1d7cfea1 886
05394f39 887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 888 if (&obj->base == NULL) {
1d7cfea1
CW
889 ret = -ENOENT;
890 goto unlock;
fbd5a26d 891 }
673a394b 892
7dcd2499 893 /* Bounds check destination. */
05394f39
CW
894 if (args->offset > obj->base.size ||
895 args->size > obj->base.size - args->offset) {
ce9d419d 896 ret = -EINVAL;
35b62a89 897 goto out;
ce9d419d
CW
898 }
899
1286ff73
DV
900 /* prime objects have no backing filp to GEM pread/pwrite
901 * pages from.
902 */
903 if (!obj->base.filp) {
904 ret = -EINVAL;
905 goto out;
906 }
907
db53a302
CW
908 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
935aaa69 910 ret = -EFAULT;
673a394b
EA
911 /* We can only do the GTT pwrite on untiled buffers, as otherwise
912 * it would end up going through the fenced access, and we'll get
913 * different detiling behavior between reading and writing.
914 * pread/pwrite currently are reading and writing from the CPU
915 * perspective, requiring manual detiling by the client.
916 */
5c0480f2 917 if (obj->phys_obj) {
fbd5a26d 918 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
919 goto out;
920 }
921
2c22569b
CW
922 if (obj->tiling_mode == I915_TILING_NONE &&
923 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
924 cpu_write_needs_clflush(obj)) {
fbd5a26d 925 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
926 /* Note that the gtt paths might fail with non-page-backed user
927 * pointers (e.g. gtt mappings when moving data between
928 * textures). Fallback to the shmem path in that case. */
fbd5a26d 929 }
673a394b 930
86a1ee26 931 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 932 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 933
35b62a89 934out:
05394f39 935 drm_gem_object_unreference(&obj->base);
1d7cfea1 936unlock:
fbd5a26d 937 mutex_unlock(&dev->struct_mutex);
673a394b
EA
938 return ret;
939}
940
b361237b 941int
33196ded 942i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
943 bool interruptible)
944{
1f83fee0 945 if (i915_reset_in_progress(error)) {
b361237b
CW
946 /* Non-interruptible callers can't handle -EAGAIN, hence return
947 * -EIO unconditionally for these. */
948 if (!interruptible)
949 return -EIO;
950
1f83fee0
DV
951 /* Recovery complete, but the reset failed ... */
952 if (i915_terminally_wedged(error))
b361237b
CW
953 return -EIO;
954
955 return -EAGAIN;
956 }
957
958 return 0;
959}
960
961/*
962 * Compare seqno against outstanding lazy request. Emit a request if they are
963 * equal.
964 */
965static int
966i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
967{
968 int ret;
969
970 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
971
972 ret = 0;
973 if (seqno == ring->outstanding_lazy_request)
0025c077 974 ret = i915_add_request(ring, NULL);
b361237b
CW
975
976 return ret;
977}
978
979/**
980 * __wait_seqno - wait until execution of seqno has finished
981 * @ring: the ring expected to report seqno
982 * @seqno: duh!
f69061be 983 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
984 * @interruptible: do an interruptible wait (normally yes)
985 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
986 *
f69061be
DV
987 * Note: It is of utmost importance that the passed in seqno and reset_counter
988 * values have been read by the caller in an smp safe manner. Where read-side
989 * locks are involved, it is sufficient to read the reset_counter before
990 * unlocking the lock that protects the seqno. For lockless tricks, the
991 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
992 * inserted.
993 *
b361237b
CW
994 * Returns 0 if the seqno was found within the alloted time. Else returns the
995 * errno with remaining time filled in timeout argument.
996 */
997static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 998 unsigned reset_counter,
b361237b
CW
999 bool interruptible, struct timespec *timeout)
1000{
1001 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1002 struct timespec before, now, wait_time={1,0};
1003 unsigned long timeout_jiffies;
1004 long end;
1005 bool wait_forever = true;
1006 int ret;
1007
1008 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1009 return 0;
1010
1011 trace_i915_gem_request_wait_begin(ring, seqno);
1012
1013 if (timeout != NULL) {
1014 wait_time = *timeout;
1015 wait_forever = false;
1016 }
1017
e054cc39 1018 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1019
1020 if (WARN_ON(!ring->irq_get(ring)))
1021 return -ENODEV;
1022
1023 /* Record current time in case interrupted by signal, or wedged * */
1024 getrawmonotonic(&before);
1025
1026#define EXIT_COND \
1027 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1028 i915_reset_in_progress(&dev_priv->gpu_error) || \
1029 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
f69061be
DV
1039 /* We need to check whether any gpu reset happened in between
1040 * the caller grabbing the seqno and now ... */
1041 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1042 end = -EAGAIN;
1043
1044 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1045 * gone. */
33196ded 1046 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1047 if (ret)
1048 end = ret;
1049 } while (end == 0 && wait_forever);
1050
1051 getrawmonotonic(&now);
1052
1053 ring->irq_put(ring);
1054 trace_i915_gem_request_wait_end(ring, seqno);
1055#undef EXIT_COND
1056
1057 if (timeout) {
1058 struct timespec sleep_time = timespec_sub(now, before);
1059 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1060 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1061 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1062 }
1063
1064 switch (end) {
1065 case -EIO:
1066 case -EAGAIN: /* Wedged */
1067 case -ERESTARTSYS: /* Signal */
1068 return (int)end;
1069 case 0: /* Timeout */
b361237b
CW
1070 return -ETIME;
1071 default: /* Completed */
1072 WARN_ON(end < 0); /* We're not aware of other errors */
1073 return 0;
1074 }
1075}
1076
1077/**
1078 * Waits for a sequence number to be signaled, and cleans up the
1079 * request and object lists appropriately for that event.
1080 */
1081int
1082i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1083{
1084 struct drm_device *dev = ring->dev;
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086 bool interruptible = dev_priv->mm.interruptible;
1087 int ret;
1088
1089 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1090 BUG_ON(seqno == 0);
1091
33196ded 1092 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1093 if (ret)
1094 return ret;
1095
1096 ret = i915_gem_check_olr(ring, seqno);
1097 if (ret)
1098 return ret;
1099
f69061be
DV
1100 return __wait_seqno(ring, seqno,
1101 atomic_read(&dev_priv->gpu_error.reset_counter),
1102 interruptible, NULL);
b361237b
CW
1103}
1104
d26e3af8
CW
1105static int
1106i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1107 struct intel_ring_buffer *ring)
1108{
1109 i915_gem_retire_requests_ring(ring);
1110
1111 /* Manually manage the write flush as we may have not yet
1112 * retired the buffer.
1113 *
1114 * Note that the last_write_seqno is always the earlier of
1115 * the two (read/write) seqno, so if we haved successfully waited,
1116 * we know we have passed the last write.
1117 */
1118 obj->last_write_seqno = 0;
1119 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1120
1121 return 0;
1122}
1123
b361237b
CW
1124/**
1125 * Ensures that all rendering to the object has completed and the object is
1126 * safe to unbind from the GTT or access from the CPU.
1127 */
1128static __must_check int
1129i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1130 bool readonly)
1131{
1132 struct intel_ring_buffer *ring = obj->ring;
1133 u32 seqno;
1134 int ret;
1135
1136 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1137 if (seqno == 0)
1138 return 0;
1139
1140 ret = i915_wait_seqno(ring, seqno);
1141 if (ret)
1142 return ret;
1143
d26e3af8 1144 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1145}
1146
3236f57a
CW
1147/* A nonblocking variant of the above wait. This is a highly dangerous routine
1148 * as the object state may change during this call.
1149 */
1150static __must_check int
1151i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1152 bool readonly)
1153{
1154 struct drm_device *dev = obj->base.dev;
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 struct intel_ring_buffer *ring = obj->ring;
f69061be 1157 unsigned reset_counter;
3236f57a
CW
1158 u32 seqno;
1159 int ret;
1160
1161 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1162 BUG_ON(!dev_priv->mm.interruptible);
1163
1164 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1165 if (seqno == 0)
1166 return 0;
1167
33196ded 1168 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1169 if (ret)
1170 return ret;
1171
1172 ret = i915_gem_check_olr(ring, seqno);
1173 if (ret)
1174 return ret;
1175
f69061be 1176 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1177 mutex_unlock(&dev->struct_mutex);
f69061be 1178 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1179 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1180 if (ret)
1181 return ret;
3236f57a 1182
d26e3af8 1183 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1184}
1185
673a394b 1186/**
2ef7eeaa
EA
1187 * Called when user space prepares to use an object with the CPU, either
1188 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1189 */
1190int
1191i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1192 struct drm_file *file)
673a394b
EA
1193{
1194 struct drm_i915_gem_set_domain *args = data;
05394f39 1195 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1196 uint32_t read_domains = args->read_domains;
1197 uint32_t write_domain = args->write_domain;
673a394b
EA
1198 int ret;
1199
2ef7eeaa 1200 /* Only handle setting domains to types used by the CPU. */
21d509e3 1201 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1202 return -EINVAL;
1203
21d509e3 1204 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1205 return -EINVAL;
1206
1207 /* Having something in the write domain implies it's in the read
1208 * domain, and only that read domain. Enforce that in the request.
1209 */
1210 if (write_domain != 0 && read_domains != write_domain)
1211 return -EINVAL;
1212
76c1dec1 1213 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1214 if (ret)
76c1dec1 1215 return ret;
1d7cfea1 1216
05394f39 1217 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1218 if (&obj->base == NULL) {
1d7cfea1
CW
1219 ret = -ENOENT;
1220 goto unlock;
76c1dec1 1221 }
673a394b 1222
3236f57a
CW
1223 /* Try to flush the object off the GPU without holding the lock.
1224 * We will repeat the flush holding the lock in the normal manner
1225 * to catch cases where we are gazumped.
1226 */
1227 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1228 if (ret)
1229 goto unref;
1230
2ef7eeaa
EA
1231 if (read_domains & I915_GEM_DOMAIN_GTT) {
1232 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1233
1234 /* Silently promote "you're not bound, there was nothing to do"
1235 * to success, since the client was just asking us to
1236 * make sure everything was done.
1237 */
1238 if (ret == -EINVAL)
1239 ret = 0;
2ef7eeaa 1240 } else {
e47c68e9 1241 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1242 }
1243
3236f57a 1244unref:
05394f39 1245 drm_gem_object_unreference(&obj->base);
1d7cfea1 1246unlock:
673a394b
EA
1247 mutex_unlock(&dev->struct_mutex);
1248 return ret;
1249}
1250
1251/**
1252 * Called when user space has done writes to this buffer
1253 */
1254int
1255i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1256 struct drm_file *file)
673a394b
EA
1257{
1258 struct drm_i915_gem_sw_finish *args = data;
05394f39 1259 struct drm_i915_gem_object *obj;
673a394b
EA
1260 int ret = 0;
1261
76c1dec1 1262 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1263 if (ret)
76c1dec1 1264 return ret;
1d7cfea1 1265
05394f39 1266 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1267 if (&obj->base == NULL) {
1d7cfea1
CW
1268 ret = -ENOENT;
1269 goto unlock;
673a394b
EA
1270 }
1271
673a394b 1272 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1273 if (obj->pin_display)
1274 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1275
05394f39 1276 drm_gem_object_unreference(&obj->base);
1d7cfea1 1277unlock:
673a394b
EA
1278 mutex_unlock(&dev->struct_mutex);
1279 return ret;
1280}
1281
1282/**
1283 * Maps the contents of an object, returning the address it is mapped
1284 * into.
1285 *
1286 * While the mapping holds a reference on the contents of the object, it doesn't
1287 * imply a ref on the object itself.
1288 */
1289int
1290i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1291 struct drm_file *file)
673a394b
EA
1292{
1293 struct drm_i915_gem_mmap *args = data;
1294 struct drm_gem_object *obj;
673a394b
EA
1295 unsigned long addr;
1296
05394f39 1297 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1298 if (obj == NULL)
bf79cb91 1299 return -ENOENT;
673a394b 1300
1286ff73
DV
1301 /* prime objects have no backing filp to GEM mmap
1302 * pages from.
1303 */
1304 if (!obj->filp) {
1305 drm_gem_object_unreference_unlocked(obj);
1306 return -EINVAL;
1307 }
1308
6be5ceb0 1309 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1310 PROT_READ | PROT_WRITE, MAP_SHARED,
1311 args->offset);
bc9025bd 1312 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1313 if (IS_ERR((void *)addr))
1314 return addr;
1315
1316 args->addr_ptr = (uint64_t) addr;
1317
1318 return 0;
1319}
1320
de151cf6
JB
1321/**
1322 * i915_gem_fault - fault a page into the GTT
1323 * vma: VMA in question
1324 * vmf: fault info
1325 *
1326 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1327 * from userspace. The fault handler takes care of binding the object to
1328 * the GTT (if needed), allocating and programming a fence register (again,
1329 * only if needed based on whether the old reg is still valid or the object
1330 * is tiled) and inserting a new PTE into the faulting process.
1331 *
1332 * Note that the faulting process may involve evicting existing objects
1333 * from the GTT and/or fence registers to make room. So performance may
1334 * suffer if the GTT working set is large or there are few fence registers
1335 * left.
1336 */
1337int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1338{
05394f39
CW
1339 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1340 struct drm_device *dev = obj->base.dev;
7d1c4804 1341 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1342 pgoff_t page_offset;
1343 unsigned long pfn;
1344 int ret = 0;
0f973f27 1345 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1346
1347 /* We don't use vmf->pgoff since that has the fake offset */
1348 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1349 PAGE_SHIFT;
1350
d9bc7e9f
CW
1351 ret = i915_mutex_lock_interruptible(dev);
1352 if (ret)
1353 goto out;
a00b10c3 1354
db53a302
CW
1355 trace_i915_gem_object_fault(obj, page_offset, true, write);
1356
eb119bd6
CW
1357 /* Access to snoopable pages through the GTT is incoherent. */
1358 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1359 ret = -EINVAL;
1360 goto unlock;
1361 }
1362
d9bc7e9f 1363 /* Now bind it into the GTT if needed */
c37e2204 1364 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1365 if (ret)
1366 goto unlock;
4a684a41 1367
c9839303
CW
1368 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1369 if (ret)
1370 goto unpin;
74898d7e 1371
06d98131 1372 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1373 if (ret)
c9839303 1374 goto unpin;
7d1c4804 1375
6299f992
CW
1376 obj->fault_mappable = true;
1377
f343c5f6
BW
1378 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1379 pfn >>= PAGE_SHIFT;
1380 pfn += page_offset;
de151cf6
JB
1381
1382 /* Finally, remap it using the new GTT offset */
1383 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1384unpin:
1385 i915_gem_object_unpin(obj);
c715089f 1386unlock:
de151cf6 1387 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1388out:
de151cf6 1389 switch (ret) {
d9bc7e9f 1390 case -EIO:
a9340cca
DV
1391 /* If this -EIO is due to a gpu hang, give the reset code a
1392 * chance to clean up the mess. Otherwise return the proper
1393 * SIGBUS. */
1f83fee0 1394 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1395 return VM_FAULT_SIGBUS;
045e769a 1396 case -EAGAIN:
d9bc7e9f
CW
1397 /* Give the error handler a chance to run and move the
1398 * objects off the GPU active list. Next time we service the
1399 * fault, we should be able to transition the page into the
1400 * GTT without touching the GPU (and so avoid further
1401 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1402 * with coherency, just lost writes.
1403 */
045e769a 1404 set_need_resched();
c715089f
CW
1405 case 0:
1406 case -ERESTARTSYS:
bed636ab 1407 case -EINTR:
e79e0fe3
DR
1408 case -EBUSY:
1409 /*
1410 * EBUSY is ok: this just means that another thread
1411 * already did the job.
1412 */
c715089f 1413 return VM_FAULT_NOPAGE;
de151cf6 1414 case -ENOMEM:
de151cf6 1415 return VM_FAULT_OOM;
a7c2e1aa
DV
1416 case -ENOSPC:
1417 return VM_FAULT_SIGBUS;
de151cf6 1418 default:
a7c2e1aa 1419 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1420 return VM_FAULT_SIGBUS;
de151cf6
JB
1421 }
1422}
1423
901782b2
CW
1424/**
1425 * i915_gem_release_mmap - remove physical page mappings
1426 * @obj: obj in question
1427 *
af901ca1 1428 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1429 * relinquish ownership of the pages back to the system.
1430 *
1431 * It is vital that we remove the page mapping if we have mapped a tiled
1432 * object through the GTT and then lose the fence register due to
1433 * resource pressure. Similarly if the object has been moved out of the
1434 * aperture, than pages mapped into userspace must be revoked. Removing the
1435 * mapping will then trigger a page fault on the next user access, allowing
1436 * fixup by i915_gem_fault().
1437 */
d05ca301 1438void
05394f39 1439i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1440{
6299f992
CW
1441 if (!obj->fault_mappable)
1442 return;
901782b2 1443
f6e47884
CW
1444 if (obj->base.dev->dev_mapping)
1445 unmap_mapping_range(obj->base.dev->dev_mapping,
1446 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1447 obj->base.size, 1);
fb7d516a 1448
6299f992 1449 obj->fault_mappable = false;
901782b2
CW
1450}
1451
0fa87796 1452uint32_t
e28f8711 1453i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1454{
e28f8711 1455 uint32_t gtt_size;
92b88aeb
CW
1456
1457 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1458 tiling_mode == I915_TILING_NONE)
1459 return size;
92b88aeb
CW
1460
1461 /* Previous chips need a power-of-two fence region when tiling */
1462 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1463 gtt_size = 1024*1024;
92b88aeb 1464 else
e28f8711 1465 gtt_size = 512*1024;
92b88aeb 1466
e28f8711
CW
1467 while (gtt_size < size)
1468 gtt_size <<= 1;
92b88aeb 1469
e28f8711 1470 return gtt_size;
92b88aeb
CW
1471}
1472
de151cf6
JB
1473/**
1474 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1475 * @obj: object to check
1476 *
1477 * Return the required GTT alignment for an object, taking into account
5e783301 1478 * potential fence register mapping.
de151cf6 1479 */
d865110c
ID
1480uint32_t
1481i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1482 int tiling_mode, bool fenced)
de151cf6 1483{
de151cf6
JB
1484 /*
1485 * Minimum alignment is 4k (GTT page size), but might be greater
1486 * if a fence register is needed for the object.
1487 */
d865110c 1488 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1489 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1490 return 4096;
1491
a00b10c3
CW
1492 /*
1493 * Previous chips need to be aligned to the size of the smallest
1494 * fence register that can contain the object.
1495 */
e28f8711 1496 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1497}
1498
d8cb5086
CW
1499static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1500{
1501 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1502 int ret;
1503
1504 if (obj->base.map_list.map)
1505 return 0;
1506
da494d7c
DV
1507 dev_priv->mm.shrinker_no_lock_stealing = true;
1508
d8cb5086
CW
1509 ret = drm_gem_create_mmap_offset(&obj->base);
1510 if (ret != -ENOSPC)
da494d7c 1511 goto out;
d8cb5086
CW
1512
1513 /* Badly fragmented mmap space? The only way we can recover
1514 * space is by destroying unwanted objects. We can't randomly release
1515 * mmap_offsets as userspace expects them to be persistent for the
1516 * lifetime of the objects. The closest we can is to release the
1517 * offsets on purgeable objects by truncating it and marking it purged,
1518 * which prevents userspace from ever using that object again.
1519 */
1520 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1521 ret = drm_gem_create_mmap_offset(&obj->base);
1522 if (ret != -ENOSPC)
da494d7c 1523 goto out;
d8cb5086
CW
1524
1525 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1526 ret = drm_gem_create_mmap_offset(&obj->base);
1527out:
1528 dev_priv->mm.shrinker_no_lock_stealing = false;
1529
1530 return ret;
d8cb5086
CW
1531}
1532
1533static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1534{
1535 if (!obj->base.map_list.map)
1536 return;
1537
1538 drm_gem_free_mmap_offset(&obj->base);
1539}
1540
de151cf6 1541int
ff72145b
DA
1542i915_gem_mmap_gtt(struct drm_file *file,
1543 struct drm_device *dev,
1544 uint32_t handle,
1545 uint64_t *offset)
de151cf6 1546{
da761a6e 1547 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1548 struct drm_i915_gem_object *obj;
de151cf6
JB
1549 int ret;
1550
76c1dec1 1551 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1552 if (ret)
76c1dec1 1553 return ret;
de151cf6 1554
ff72145b 1555 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1556 if (&obj->base == NULL) {
1d7cfea1
CW
1557 ret = -ENOENT;
1558 goto unlock;
1559 }
de151cf6 1560
5d4545ae 1561 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1562 ret = -E2BIG;
ff56b0bc 1563 goto out;
da761a6e
CW
1564 }
1565
05394f39 1566 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1567 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1568 ret = -EINVAL;
1569 goto out;
ab18282d
CW
1570 }
1571
d8cb5086
CW
1572 ret = i915_gem_object_create_mmap_offset(obj);
1573 if (ret)
1574 goto out;
de151cf6 1575
ff72145b 1576 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1577
1d7cfea1 1578out:
05394f39 1579 drm_gem_object_unreference(&obj->base);
1d7cfea1 1580unlock:
de151cf6 1581 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1582 return ret;
de151cf6
JB
1583}
1584
ff72145b
DA
1585/**
1586 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1587 * @dev: DRM device
1588 * @data: GTT mapping ioctl data
1589 * @file: GEM object info
1590 *
1591 * Simply returns the fake offset to userspace so it can mmap it.
1592 * The mmap call will end up in drm_gem_mmap(), which will set things
1593 * up so we can get faults in the handler above.
1594 *
1595 * The fault handler will take care of binding the object into the GTT
1596 * (since it may have been evicted to make room for something), allocating
1597 * a fence register, and mapping the appropriate aperture address into
1598 * userspace.
1599 */
1600int
1601i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1602 struct drm_file *file)
1603{
1604 struct drm_i915_gem_mmap_gtt *args = data;
1605
ff72145b
DA
1606 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1607}
1608
225067ee
DV
1609/* Immediately discard the backing storage */
1610static void
1611i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1612{
e5281ccd 1613 struct inode *inode;
e5281ccd 1614
4d6294bf 1615 i915_gem_object_free_mmap_offset(obj);
1286ff73 1616
4d6294bf
CW
1617 if (obj->base.filp == NULL)
1618 return;
e5281ccd 1619
225067ee
DV
1620 /* Our goal here is to return as much of the memory as
1621 * is possible back to the system as we are called from OOM.
1622 * To do this we must instruct the shmfs to drop all of its
1623 * backing pages, *now*.
1624 */
496ad9aa 1625 inode = file_inode(obj->base.filp);
225067ee 1626 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1627
225067ee
DV
1628 obj->madv = __I915_MADV_PURGED;
1629}
e5281ccd 1630
225067ee
DV
1631static inline int
1632i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1633{
1634 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1635}
1636
5cdf5881 1637static void
05394f39 1638i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1639{
90797e6d
ID
1640 struct sg_page_iter sg_iter;
1641 int ret;
1286ff73 1642
05394f39 1643 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1644
6c085a72
CW
1645 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1646 if (ret) {
1647 /* In the event of a disaster, abandon all caches and
1648 * hope for the best.
1649 */
1650 WARN_ON(ret != -EIO);
2c22569b 1651 i915_gem_clflush_object(obj, true);
6c085a72
CW
1652 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1653 }
1654
6dacfd2f 1655 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1656 i915_gem_object_save_bit_17_swizzle(obj);
1657
05394f39
CW
1658 if (obj->madv == I915_MADV_DONTNEED)
1659 obj->dirty = 0;
3ef94daa 1660
90797e6d 1661 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1662 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1663
05394f39 1664 if (obj->dirty)
9da3da66 1665 set_page_dirty(page);
3ef94daa 1666
05394f39 1667 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1668 mark_page_accessed(page);
3ef94daa 1669
9da3da66 1670 page_cache_release(page);
3ef94daa 1671 }
05394f39 1672 obj->dirty = 0;
673a394b 1673
9da3da66
CW
1674 sg_free_table(obj->pages);
1675 kfree(obj->pages);
37e680a1 1676}
6c085a72 1677
dd624afd 1678int
37e680a1
CW
1679i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1680{
1681 const struct drm_i915_gem_object_ops *ops = obj->ops;
1682
2f745ad3 1683 if (obj->pages == NULL)
37e680a1
CW
1684 return 0;
1685
a5570178
CW
1686 if (obj->pages_pin_count)
1687 return -EBUSY;
1688
9843877d 1689 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1690
a2165e31
CW
1691 /* ->put_pages might need to allocate memory for the bit17 swizzle
1692 * array, hence protect them from being reaped by removing them from gtt
1693 * lists early. */
35c20a60 1694 list_del(&obj->global_list);
a2165e31 1695
37e680a1 1696 ops->put_pages(obj);
05394f39 1697 obj->pages = NULL;
37e680a1 1698
6c085a72
CW
1699 if (i915_gem_object_is_purgeable(obj))
1700 i915_gem_object_truncate(obj);
1701
1702 return 0;
1703}
1704
1705static long
93927ca5
DV
1706__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1707 bool purgeable_only)
6c085a72
CW
1708{
1709 struct drm_i915_gem_object *obj, *next;
1710 long count = 0;
1711
1712 list_for_each_entry_safe(obj, next,
1713 &dev_priv->mm.unbound_list,
35c20a60 1714 global_list) {
93927ca5 1715 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1716 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1717 count += obj->base.size >> PAGE_SHIFT;
1718 if (count >= target)
1719 return count;
1720 }
1721 }
1722
07fe0b12
BW
1723 list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1724 global_list) {
1725 struct i915_vma *vma, *v;
80dcfdbd
BW
1726
1727 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1728 continue;
1729
07fe0b12
BW
1730 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1731 if (i915_vma_unbind(vma))
1732 break;
80dcfdbd
BW
1733
1734 if (!i915_gem_object_put_pages(obj)) {
6c085a72
CW
1735 count += obj->base.size >> PAGE_SHIFT;
1736 if (count >= target)
1737 return count;
1738 }
1739 }
1740
1741 return count;
1742}
1743
93927ca5
DV
1744static long
1745i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1746{
1747 return __i915_gem_shrink(dev_priv, target, true);
1748}
1749
6c085a72
CW
1750static void
1751i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1752{
1753 struct drm_i915_gem_object *obj, *next;
1754
1755 i915_gem_evict_everything(dev_priv->dev);
1756
35c20a60
BW
1757 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1758 global_list)
37e680a1 1759 i915_gem_object_put_pages(obj);
225067ee
DV
1760}
1761
37e680a1 1762static int
6c085a72 1763i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1764{
6c085a72 1765 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1766 int page_count, i;
1767 struct address_space *mapping;
9da3da66
CW
1768 struct sg_table *st;
1769 struct scatterlist *sg;
90797e6d 1770 struct sg_page_iter sg_iter;
e5281ccd 1771 struct page *page;
90797e6d 1772 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1773 gfp_t gfp;
e5281ccd 1774
6c085a72
CW
1775 /* Assert that the object is not currently in any GPU domain. As it
1776 * wasn't in the GTT, there shouldn't be any way it could have been in
1777 * a GPU cache
1778 */
1779 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1780 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1781
9da3da66
CW
1782 st = kmalloc(sizeof(*st), GFP_KERNEL);
1783 if (st == NULL)
1784 return -ENOMEM;
1785
05394f39 1786 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1787 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1788 sg_free_table(st);
1789 kfree(st);
e5281ccd 1790 return -ENOMEM;
9da3da66 1791 }
e5281ccd 1792
9da3da66
CW
1793 /* Get the list of pages out of our struct file. They'll be pinned
1794 * at this point until we release them.
1795 *
1796 * Fail silently without starting the shrinker
1797 */
496ad9aa 1798 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1799 gfp = mapping_gfp_mask(mapping);
caf49191 1800 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1801 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1802 sg = st->sgl;
1803 st->nents = 0;
1804 for (i = 0; i < page_count; i++) {
6c085a72
CW
1805 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806 if (IS_ERR(page)) {
1807 i915_gem_purge(dev_priv, page_count);
1808 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809 }
1810 if (IS_ERR(page)) {
1811 /* We've tried hard to allocate the memory by reaping
1812 * our own buffer, now let the real VM do its job and
1813 * go down in flames if truly OOM.
1814 */
caf49191 1815 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1816 gfp |= __GFP_IO | __GFP_WAIT;
1817
1818 i915_gem_shrink_all(dev_priv);
1819 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1820 if (IS_ERR(page))
1821 goto err_pages;
1822
caf49191 1823 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1824 gfp &= ~(__GFP_IO | __GFP_WAIT);
1825 }
1625e7e5
KRW
1826#ifdef CONFIG_SWIOTLB
1827 if (swiotlb_nr_tbl()) {
1828 st->nents++;
1829 sg_set_page(sg, page, PAGE_SIZE, 0);
1830 sg = sg_next(sg);
1831 continue;
1832 }
1833#endif
90797e6d
ID
1834 if (!i || page_to_pfn(page) != last_pfn + 1) {
1835 if (i)
1836 sg = sg_next(sg);
1837 st->nents++;
1838 sg_set_page(sg, page, PAGE_SIZE, 0);
1839 } else {
1840 sg->length += PAGE_SIZE;
1841 }
1842 last_pfn = page_to_pfn(page);
e5281ccd 1843 }
1625e7e5
KRW
1844#ifdef CONFIG_SWIOTLB
1845 if (!swiotlb_nr_tbl())
1846#endif
1847 sg_mark_end(sg);
74ce6b6c
CW
1848 obj->pages = st;
1849
6dacfd2f 1850 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1851 i915_gem_object_do_bit_17_swizzle(obj);
1852
1853 return 0;
1854
1855err_pages:
90797e6d
ID
1856 sg_mark_end(sg);
1857 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1858 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1859 sg_free_table(st);
1860 kfree(st);
e5281ccd 1861 return PTR_ERR(page);
673a394b
EA
1862}
1863
37e680a1
CW
1864/* Ensure that the associated pages are gathered from the backing storage
1865 * and pinned into our object. i915_gem_object_get_pages() may be called
1866 * multiple times before they are released by a single call to
1867 * i915_gem_object_put_pages() - once the pages are no longer referenced
1868 * either as a result of memory pressure (reaping pages under the shrinker)
1869 * or as the object is itself released.
1870 */
1871int
1872i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1873{
1874 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1875 const struct drm_i915_gem_object_ops *ops = obj->ops;
1876 int ret;
1877
2f745ad3 1878 if (obj->pages)
37e680a1
CW
1879 return 0;
1880
43e28f09
CW
1881 if (obj->madv != I915_MADV_WILLNEED) {
1882 DRM_ERROR("Attempting to obtain a purgeable object\n");
1883 return -EINVAL;
1884 }
1885
a5570178
CW
1886 BUG_ON(obj->pages_pin_count);
1887
37e680a1
CW
1888 ret = ops->get_pages(obj);
1889 if (ret)
1890 return ret;
1891
35c20a60 1892 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1893 return 0;
673a394b
EA
1894}
1895
54cf91dc 1896void
05394f39 1897i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1898 struct intel_ring_buffer *ring)
673a394b 1899{
05394f39 1900 struct drm_device *dev = obj->base.dev;
69dc4987 1901 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1902 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1903
852835f3 1904 BUG_ON(ring == NULL);
02978ff5
CW
1905 if (obj->ring != ring && obj->last_write_seqno) {
1906 /* Keep the seqno relative to the current ring */
1907 obj->last_write_seqno = seqno;
1908 }
05394f39 1909 obj->ring = ring;
673a394b
EA
1910
1911 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1912 if (!obj->active) {
1913 drm_gem_object_reference(&obj->base);
1914 obj->active = 1;
673a394b 1915 }
e35a41de 1916
05394f39 1917 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1918
0201f1ec 1919 obj->last_read_seqno = seqno;
caea7476 1920
7dd49065 1921 if (obj->fenced_gpu_access) {
caea7476 1922 obj->last_fenced_seqno = seqno;
caea7476 1923
7dd49065
CW
1924 /* Bump MRU to take account of the delayed flush */
1925 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1926 struct drm_i915_fence_reg *reg;
1927
1928 reg = &dev_priv->fence_regs[obj->fence_reg];
1929 list_move_tail(&reg->lru_list,
1930 &dev_priv->mm.fence_list);
1931 }
caea7476
CW
1932 }
1933}
1934
1935static void
caea7476 1936i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1937{
ca191b13
BW
1938 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1939 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1940 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
ce44b0ea 1941
65ce3027 1942 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1943 BUG_ON(!obj->active);
caea7476 1944
ca191b13 1945 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
caea7476 1946
65ce3027 1947 list_del_init(&obj->ring_list);
caea7476
CW
1948 obj->ring = NULL;
1949
65ce3027
CW
1950 obj->last_read_seqno = 0;
1951 obj->last_write_seqno = 0;
1952 obj->base.write_domain = 0;
1953
1954 obj->last_fenced_seqno = 0;
caea7476 1955 obj->fenced_gpu_access = false;
caea7476
CW
1956
1957 obj->active = 0;
1958 drm_gem_object_unreference(&obj->base);
1959
1960 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1961}
673a394b 1962
9d773091 1963static int
fca26bb4 1964i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1965{
9d773091
CW
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 struct intel_ring_buffer *ring;
1968 int ret, i, j;
53d227f2 1969
107f27a5 1970 /* Carefully retire all requests without writing to the rings */
9d773091 1971 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1972 ret = intel_ring_idle(ring);
1973 if (ret)
1974 return ret;
9d773091 1975 }
9d773091 1976 i915_gem_retire_requests(dev);
107f27a5
CW
1977
1978 /* Finally reset hw state */
9d773091 1979 for_each_ring(ring, dev_priv, i) {
fca26bb4 1980 intel_ring_init_seqno(ring, seqno);
498d2ac1 1981
9d773091
CW
1982 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1983 ring->sync_seqno[j] = 0;
1984 }
53d227f2 1985
9d773091 1986 return 0;
53d227f2
DV
1987}
1988
fca26bb4
MK
1989int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1990{
1991 struct drm_i915_private *dev_priv = dev->dev_private;
1992 int ret;
1993
1994 if (seqno == 0)
1995 return -EINVAL;
1996
1997 /* HWS page needs to be set less than what we
1998 * will inject to ring
1999 */
2000 ret = i915_gem_init_seqno(dev, seqno - 1);
2001 if (ret)
2002 return ret;
2003
2004 /* Carefully set the last_seqno value so that wrap
2005 * detection still works
2006 */
2007 dev_priv->next_seqno = seqno;
2008 dev_priv->last_seqno = seqno - 1;
2009 if (dev_priv->last_seqno == 0)
2010 dev_priv->last_seqno--;
2011
2012 return 0;
2013}
2014
9d773091
CW
2015int
2016i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2017{
9d773091
CW
2018 struct drm_i915_private *dev_priv = dev->dev_private;
2019
2020 /* reserve 0 for non-seqno */
2021 if (dev_priv->next_seqno == 0) {
fca26bb4 2022 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2023 if (ret)
2024 return ret;
53d227f2 2025
9d773091
CW
2026 dev_priv->next_seqno = 1;
2027 }
53d227f2 2028
f72b3435 2029 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2030 return 0;
53d227f2
DV
2031}
2032
0025c077
MK
2033int __i915_add_request(struct intel_ring_buffer *ring,
2034 struct drm_file *file,
7d736f4f 2035 struct drm_i915_gem_object *obj,
0025c077 2036 u32 *out_seqno)
673a394b 2037{
db53a302 2038 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2039 struct drm_i915_gem_request *request;
7d736f4f 2040 u32 request_ring_position, request_start;
673a394b 2041 int was_empty;
3cce469c
CW
2042 int ret;
2043
7d736f4f 2044 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2045 /*
2046 * Emit any outstanding flushes - execbuf can fail to emit the flush
2047 * after having emitted the batchbuffer command. Hence we need to fix
2048 * things up similar to emitting the lazy request. The difference here
2049 * is that the flush _must_ happen before the next request, no matter
2050 * what.
2051 */
a7b9761d
CW
2052 ret = intel_ring_flush_all_caches(ring);
2053 if (ret)
2054 return ret;
cc889e0f 2055
acb868d3
CW
2056 request = kmalloc(sizeof(*request), GFP_KERNEL);
2057 if (request == NULL)
2058 return -ENOMEM;
cc889e0f 2059
673a394b 2060
a71d8d94
CW
2061 /* Record the position of the start of the request so that
2062 * should we detect the updated seqno part-way through the
2063 * GPU processing the request, we never over-estimate the
2064 * position of the head.
2065 */
2066 request_ring_position = intel_ring_get_tail(ring);
2067
9d773091 2068 ret = ring->add_request(ring);
3bb73aba
CW
2069 if (ret) {
2070 kfree(request);
2071 return ret;
2072 }
673a394b 2073
9d773091 2074 request->seqno = intel_ring_get_seqno(ring);
852835f3 2075 request->ring = ring;
7d736f4f 2076 request->head = request_start;
a71d8d94 2077 request->tail = request_ring_position;
0e50e96b 2078 request->ctx = ring->last_context;
7d736f4f
MK
2079 request->batch_obj = obj;
2080
2081 /* Whilst this request exists, batch_obj will be on the
2082 * active_list, and so will hold the active reference. Only when this
2083 * request is retired will the the batch_obj be moved onto the
2084 * inactive_list and lose its active reference. Hence we do not need
2085 * to explicitly hold another reference here.
2086 */
0e50e96b
MK
2087
2088 if (request->ctx)
2089 i915_gem_context_reference(request->ctx);
2090
673a394b 2091 request->emitted_jiffies = jiffies;
852835f3
ZN
2092 was_empty = list_empty(&ring->request_list);
2093 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2094 request->file_priv = NULL;
852835f3 2095
db53a302
CW
2096 if (file) {
2097 struct drm_i915_file_private *file_priv = file->driver_priv;
2098
1c25595f 2099 spin_lock(&file_priv->mm.lock);
f787a5f5 2100 request->file_priv = file_priv;
b962442e 2101 list_add_tail(&request->client_list,
f787a5f5 2102 &file_priv->mm.request_list);
1c25595f 2103 spin_unlock(&file_priv->mm.lock);
b962442e 2104 }
673a394b 2105
9d773091 2106 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2107 ring->outstanding_lazy_request = 0;
db53a302 2108
db1b76ca 2109 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2110 i915_queue_hangcheck(ring->dev);
2111
f047e395 2112 if (was_empty) {
b3b079db 2113 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2114 &dev_priv->mm.retire_work,
2115 round_jiffies_up_relative(HZ));
f047e395
CW
2116 intel_mark_busy(dev_priv->dev);
2117 }
f65d9421 2118 }
cc889e0f 2119
acb868d3 2120 if (out_seqno)
9d773091 2121 *out_seqno = request->seqno;
3cce469c 2122 return 0;
673a394b
EA
2123}
2124
f787a5f5
CW
2125static inline void
2126i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2127{
1c25595f 2128 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2129
1c25595f
CW
2130 if (!file_priv)
2131 return;
1c5d22f7 2132
1c25595f 2133 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2134 if (request->file_priv) {
2135 list_del(&request->client_list);
2136 request->file_priv = NULL;
2137 }
1c25595f 2138 spin_unlock(&file_priv->mm.lock);
673a394b 2139}
673a394b 2140
d1ccbb5d
BW
2141static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2142 struct i915_address_space *vm)
aa60c664 2143{
d1ccbb5d
BW
2144 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2145 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2146 return true;
2147
2148 return false;
2149}
2150
2151static bool i915_head_inside_request(const u32 acthd_unmasked,
2152 const u32 request_start,
2153 const u32 request_end)
2154{
2155 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2156
2157 if (request_start < request_end) {
2158 if (acthd >= request_start && acthd < request_end)
2159 return true;
2160 } else if (request_start > request_end) {
2161 if (acthd >= request_start || acthd < request_end)
2162 return true;
2163 }
2164
2165 return false;
2166}
2167
d1ccbb5d
BW
2168static struct i915_address_space *
2169request_to_vm(struct drm_i915_gem_request *request)
2170{
2171 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2172 struct i915_address_space *vm;
2173
2174 vm = &dev_priv->gtt.base;
2175
2176 return vm;
2177}
2178
aa60c664
MK
2179static bool i915_request_guilty(struct drm_i915_gem_request *request,
2180 const u32 acthd, bool *inside)
2181{
2182 /* There is a possibility that unmasked head address
2183 * pointing inside the ring, matches the batch_obj address range.
2184 * However this is extremely unlikely.
2185 */
aa60c664 2186 if (request->batch_obj) {
d1ccbb5d
BW
2187 if (i915_head_inside_object(acthd, request->batch_obj,
2188 request_to_vm(request))) {
aa60c664
MK
2189 *inside = true;
2190 return true;
2191 }
2192 }
2193
2194 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2195 *inside = false;
2196 return true;
2197 }
2198
2199 return false;
2200}
2201
2202static void i915_set_reset_status(struct intel_ring_buffer *ring,
2203 struct drm_i915_gem_request *request,
2204 u32 acthd)
2205{
2206 struct i915_ctx_hang_stats *hs = NULL;
2207 bool inside, guilty;
d1ccbb5d 2208 unsigned long offset = 0;
aa60c664
MK
2209
2210 /* Innocent until proven guilty */
2211 guilty = false;
2212
d1ccbb5d
BW
2213 if (request->batch_obj)
2214 offset = i915_gem_obj_offset(request->batch_obj,
2215 request_to_vm(request));
2216
f2f4d82f 2217 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2218 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2219 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2220 ring->name,
2221 inside ? "inside" : "flushing",
d1ccbb5d 2222 offset,
aa60c664
MK
2223 request->ctx ? request->ctx->id : 0,
2224 acthd);
2225
2226 guilty = true;
2227 }
2228
2229 /* If contexts are disabled or this is the default context, use
2230 * file_priv->reset_state
2231 */
2232 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2233 hs = &request->ctx->hang_stats;
2234 else if (request->file_priv)
2235 hs = &request->file_priv->hang_stats;
2236
2237 if (hs) {
2238 if (guilty)
2239 hs->batch_active++;
2240 else
2241 hs->batch_pending++;
2242 }
2243}
2244
0e50e96b
MK
2245static void i915_gem_free_request(struct drm_i915_gem_request *request)
2246{
2247 list_del(&request->list);
2248 i915_gem_request_remove_from_client(request);
2249
2250 if (request->ctx)
2251 i915_gem_context_unreference(request->ctx);
2252
2253 kfree(request);
2254}
2255
dfaae392
CW
2256static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2257 struct intel_ring_buffer *ring)
9375e446 2258{
aa60c664
MK
2259 u32 completed_seqno;
2260 u32 acthd;
2261
2262 acthd = intel_ring_get_active_head(ring);
2263 completed_seqno = ring->get_seqno(ring, false);
2264
dfaae392
CW
2265 while (!list_empty(&ring->request_list)) {
2266 struct drm_i915_gem_request *request;
673a394b 2267
dfaae392
CW
2268 request = list_first_entry(&ring->request_list,
2269 struct drm_i915_gem_request,
2270 list);
de151cf6 2271
aa60c664
MK
2272 if (request->seqno > completed_seqno)
2273 i915_set_reset_status(ring, request, acthd);
2274
0e50e96b 2275 i915_gem_free_request(request);
dfaae392 2276 }
673a394b 2277
dfaae392 2278 while (!list_empty(&ring->active_list)) {
05394f39 2279 struct drm_i915_gem_object *obj;
9375e446 2280
05394f39
CW
2281 obj = list_first_entry(&ring->active_list,
2282 struct drm_i915_gem_object,
2283 ring_list);
9375e446 2284
05394f39 2285 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2286 }
2287}
2288
19b2dbde 2289void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2290{
2291 struct drm_i915_private *dev_priv = dev->dev_private;
2292 int i;
2293
4b9de737 2294 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2295 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2296
94a335db
DV
2297 /*
2298 * Commit delayed tiling changes if we have an object still
2299 * attached to the fence, otherwise just clear the fence.
2300 */
2301 if (reg->obj) {
2302 i915_gem_object_update_fence(reg->obj, reg,
2303 reg->obj->tiling_mode);
2304 } else {
2305 i915_gem_write_fence(dev, i, NULL);
2306 }
312817a3
CW
2307 }
2308}
2309
069efc1d 2310void i915_gem_reset(struct drm_device *dev)
673a394b 2311{
77f01230 2312 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2313 struct intel_ring_buffer *ring;
1ec14ad3 2314 int i;
673a394b 2315
b4519513
CW
2316 for_each_ring(ring, dev_priv, i)
2317 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2318
19b2dbde 2319 i915_gem_restore_fences(dev);
673a394b
EA
2320}
2321
2322/**
2323 * This function clears the request list as sequence numbers are passed.
2324 */
a71d8d94 2325void
db53a302 2326i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2327{
673a394b
EA
2328 uint32_t seqno;
2329
db53a302 2330 if (list_empty(&ring->request_list))
6c0594a3
KW
2331 return;
2332
db53a302 2333 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2334
b2eadbc8 2335 seqno = ring->get_seqno(ring, true);
1ec14ad3 2336
852835f3 2337 while (!list_empty(&ring->request_list)) {
673a394b 2338 struct drm_i915_gem_request *request;
673a394b 2339
852835f3 2340 request = list_first_entry(&ring->request_list,
673a394b
EA
2341 struct drm_i915_gem_request,
2342 list);
673a394b 2343
dfaae392 2344 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2345 break;
2346
db53a302 2347 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2348 /* We know the GPU must have read the request to have
2349 * sent us the seqno + interrupt, so use the position
2350 * of tail of the request to update the last known position
2351 * of the GPU head.
2352 */
2353 ring->last_retired_head = request->tail;
b84d5f0c 2354
0e50e96b 2355 i915_gem_free_request(request);
b84d5f0c 2356 }
673a394b 2357
b84d5f0c
CW
2358 /* Move any buffers on the active list that are no longer referenced
2359 * by the ringbuffer to the flushing/inactive lists as appropriate.
2360 */
2361 while (!list_empty(&ring->active_list)) {
05394f39 2362 struct drm_i915_gem_object *obj;
b84d5f0c 2363
0206e353 2364 obj = list_first_entry(&ring->active_list,
05394f39
CW
2365 struct drm_i915_gem_object,
2366 ring_list);
673a394b 2367
0201f1ec 2368 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2369 break;
b84d5f0c 2370
65ce3027 2371 i915_gem_object_move_to_inactive(obj);
673a394b 2372 }
9d34e5db 2373
db53a302
CW
2374 if (unlikely(ring->trace_irq_seqno &&
2375 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2376 ring->irq_put(ring);
db53a302 2377 ring->trace_irq_seqno = 0;
9d34e5db 2378 }
23bc5982 2379
db53a302 2380 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2381}
2382
b09a1fec
CW
2383void
2384i915_gem_retire_requests(struct drm_device *dev)
2385{
2386 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2387 struct intel_ring_buffer *ring;
1ec14ad3 2388 int i;
b09a1fec 2389
b4519513
CW
2390 for_each_ring(ring, dev_priv, i)
2391 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2392}
2393
75ef9da2 2394static void
673a394b
EA
2395i915_gem_retire_work_handler(struct work_struct *work)
2396{
2397 drm_i915_private_t *dev_priv;
2398 struct drm_device *dev;
b4519513 2399 struct intel_ring_buffer *ring;
0a58705b
CW
2400 bool idle;
2401 int i;
673a394b
EA
2402
2403 dev_priv = container_of(work, drm_i915_private_t,
2404 mm.retire_work.work);
2405 dev = dev_priv->dev;
2406
891b48cf
CW
2407 /* Come back later if the device is busy... */
2408 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2409 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2410 round_jiffies_up_relative(HZ));
891b48cf
CW
2411 return;
2412 }
673a394b 2413
b09a1fec 2414 i915_gem_retire_requests(dev);
673a394b 2415
0a58705b
CW
2416 /* Send a periodic flush down the ring so we don't hold onto GEM
2417 * objects indefinitely.
673a394b 2418 */
0a58705b 2419 idle = true;
b4519513 2420 for_each_ring(ring, dev_priv, i) {
3bb73aba 2421 if (ring->gpu_caches_dirty)
0025c077 2422 i915_add_request(ring, NULL);
0a58705b
CW
2423
2424 idle &= list_empty(&ring->request_list);
673a394b
EA
2425 }
2426
db1b76ca 2427 if (!dev_priv->ums.mm_suspended && !idle)
bcb45086
CW
2428 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2429 round_jiffies_up_relative(HZ));
f047e395
CW
2430 if (idle)
2431 intel_mark_idle(dev);
0a58705b 2432
673a394b 2433 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2434}
2435
30dfebf3
DV
2436/**
2437 * Ensures that an object will eventually get non-busy by flushing any required
2438 * write domains, emitting any outstanding lazy request and retiring and
2439 * completed requests.
2440 */
2441static int
2442i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2443{
2444 int ret;
2445
2446 if (obj->active) {
0201f1ec 2447 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2448 if (ret)
2449 return ret;
2450
30dfebf3
DV
2451 i915_gem_retire_requests_ring(obj->ring);
2452 }
2453
2454 return 0;
2455}
2456
23ba4fd0
BW
2457/**
2458 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2459 * @DRM_IOCTL_ARGS: standard ioctl arguments
2460 *
2461 * Returns 0 if successful, else an error is returned with the remaining time in
2462 * the timeout parameter.
2463 * -ETIME: object is still busy after timeout
2464 * -ERESTARTSYS: signal interrupted the wait
2465 * -ENONENT: object doesn't exist
2466 * Also possible, but rare:
2467 * -EAGAIN: GPU wedged
2468 * -ENOMEM: damn
2469 * -ENODEV: Internal IRQ fail
2470 * -E?: The add request failed
2471 *
2472 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2473 * non-zero timeout parameter the wait ioctl will wait for the given number of
2474 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2475 * without holding struct_mutex the object may become re-busied before this
2476 * function completes. A similar but shorter * race condition exists in the busy
2477 * ioctl
2478 */
2479int
2480i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2481{
f69061be 2482 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2483 struct drm_i915_gem_wait *args = data;
2484 struct drm_i915_gem_object *obj;
2485 struct intel_ring_buffer *ring = NULL;
eac1f14f 2486 struct timespec timeout_stack, *timeout = NULL;
f69061be 2487 unsigned reset_counter;
23ba4fd0
BW
2488 u32 seqno = 0;
2489 int ret = 0;
2490
eac1f14f
BW
2491 if (args->timeout_ns >= 0) {
2492 timeout_stack = ns_to_timespec(args->timeout_ns);
2493 timeout = &timeout_stack;
2494 }
23ba4fd0
BW
2495
2496 ret = i915_mutex_lock_interruptible(dev);
2497 if (ret)
2498 return ret;
2499
2500 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2501 if (&obj->base == NULL) {
2502 mutex_unlock(&dev->struct_mutex);
2503 return -ENOENT;
2504 }
2505
30dfebf3
DV
2506 /* Need to make sure the object gets inactive eventually. */
2507 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2508 if (ret)
2509 goto out;
2510
2511 if (obj->active) {
0201f1ec 2512 seqno = obj->last_read_seqno;
23ba4fd0
BW
2513 ring = obj->ring;
2514 }
2515
2516 if (seqno == 0)
2517 goto out;
2518
23ba4fd0
BW
2519 /* Do this after OLR check to make sure we make forward progress polling
2520 * on this IOCTL with a 0 timeout (like busy ioctl)
2521 */
2522 if (!args->timeout_ns) {
2523 ret = -ETIME;
2524 goto out;
2525 }
2526
2527 drm_gem_object_unreference(&obj->base);
f69061be 2528 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2529 mutex_unlock(&dev->struct_mutex);
2530
f69061be 2531 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2532 if (timeout)
eac1f14f 2533 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2534 return ret;
2535
2536out:
2537 drm_gem_object_unreference(&obj->base);
2538 mutex_unlock(&dev->struct_mutex);
2539 return ret;
2540}
2541
5816d648
BW
2542/**
2543 * i915_gem_object_sync - sync an object to a ring.
2544 *
2545 * @obj: object which may be in use on another ring.
2546 * @to: ring we wish to use the object on. May be NULL.
2547 *
2548 * This code is meant to abstract object synchronization with the GPU.
2549 * Calling with NULL implies synchronizing the object with the CPU
2550 * rather than a particular GPU ring.
2551 *
2552 * Returns 0 if successful, else propagates up the lower layer error.
2553 */
2911a35b
BW
2554int
2555i915_gem_object_sync(struct drm_i915_gem_object *obj,
2556 struct intel_ring_buffer *to)
2557{
2558 struct intel_ring_buffer *from = obj->ring;
2559 u32 seqno;
2560 int ret, idx;
2561
2562 if (from == NULL || to == from)
2563 return 0;
2564
5816d648 2565 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2566 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2567
2568 idx = intel_ring_sync_index(from, to);
2569
0201f1ec 2570 seqno = obj->last_read_seqno;
2911a35b
BW
2571 if (seqno <= from->sync_seqno[idx])
2572 return 0;
2573
b4aca010
BW
2574 ret = i915_gem_check_olr(obj->ring, seqno);
2575 if (ret)
2576 return ret;
2911a35b 2577
1500f7ea 2578 ret = to->sync_to(to, from, seqno);
e3a5a225 2579 if (!ret)
7b01e260
MK
2580 /* We use last_read_seqno because sync_to()
2581 * might have just caused seqno wrap under
2582 * the radar.
2583 */
2584 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2585
e3a5a225 2586 return ret;
2911a35b
BW
2587}
2588
b5ffc9bc
CW
2589static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2590{
2591 u32 old_write_domain, old_read_domains;
2592
b5ffc9bc
CW
2593 /* Force a pagefault for domain tracking on next user access */
2594 i915_gem_release_mmap(obj);
2595
b97c3d9c
KP
2596 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2597 return;
2598
97c809fd
CW
2599 /* Wait for any direct GTT access to complete */
2600 mb();
2601
b5ffc9bc
CW
2602 old_read_domains = obj->base.read_domains;
2603 old_write_domain = obj->base.write_domain;
2604
2605 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2606 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2607
2608 trace_i915_gem_object_change_domain(obj,
2609 old_read_domains,
2610 old_write_domain);
2611}
2612
07fe0b12 2613int i915_vma_unbind(struct i915_vma *vma)
673a394b 2614{
07fe0b12 2615 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2616 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2617 int ret;
673a394b 2618
07fe0b12 2619 if (list_empty(&vma->vma_link))
673a394b
EA
2620 return 0;
2621
433544bd
BW
2622 if (!drm_mm_node_allocated(&vma->node))
2623 goto destroy;
2624
31d8d651
CW
2625 if (obj->pin_count)
2626 return -EBUSY;
673a394b 2627
c4670ad0
CW
2628 BUG_ON(obj->pages == NULL);
2629
a8198eea 2630 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2631 if (ret)
a8198eea
CW
2632 return ret;
2633 /* Continue on if we fail due to EIO, the GPU is hung so we
2634 * should be safe and we need to cleanup or else we might
2635 * cause memory corruption through use-after-free.
2636 */
2637
b5ffc9bc 2638 i915_gem_object_finish_gtt(obj);
5323fd04 2639
96b47b65 2640 /* release the fence reg _after_ flushing */
d9e86c0e 2641 ret = i915_gem_object_put_fence(obj);
1488fc08 2642 if (ret)
d9e86c0e 2643 return ret;
96b47b65 2644
07fe0b12 2645 trace_i915_vma_unbind(vma);
db53a302 2646
74898d7e
DV
2647 if (obj->has_global_gtt_mapping)
2648 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2649 if (obj->has_aliasing_ppgtt_mapping) {
2650 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2651 obj->has_aliasing_ppgtt_mapping = 0;
2652 }
74163907 2653 i915_gem_gtt_finish_object(obj);
401c29f6 2654 i915_gem_object_unpin_pages(obj);
7bddb01f 2655
ca191b13 2656 list_del(&vma->mm_list);
75e9e915 2657 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2658 if (i915_is_ggtt(vma->vm))
2659 obj->map_and_fenceable = true;
673a394b 2660
2f633156 2661 drm_mm_remove_node(&vma->node);
433544bd
BW
2662
2663destroy:
2f633156
BW
2664 i915_gem_vma_destroy(vma);
2665
2666 /* Since the unbound list is global, only move to that list if
2667 * no more VMAs exist.
2668 * NB: Until we have real VMAs there will only ever be one */
2669 WARN_ON(!list_empty(&obj->vma_list));
2670 if (list_empty(&obj->vma_list))
2671 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2672
88241785 2673 return 0;
54cf91dc
CW
2674}
2675
07fe0b12
BW
2676/**
2677 * Unbinds an object from the global GTT aperture.
2678 */
2679int
2680i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2681{
2682 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2683 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2684
58e73e15 2685 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2686 return 0;
2687
2688 if (obj->pin_count)
2689 return -EBUSY;
2690
2691 BUG_ON(obj->pages == NULL);
2692
2693 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2694}
2695
b2da9fe5 2696int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2697{
2698 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2699 struct intel_ring_buffer *ring;
1ec14ad3 2700 int ret, i;
4df2faf4 2701
4df2faf4 2702 /* Flush everything onto the inactive list. */
b4519513 2703 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2704 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2705 if (ret)
2706 return ret;
2707
3e960501 2708 ret = intel_ring_idle(ring);
1ec14ad3
CW
2709 if (ret)
2710 return ret;
2711 }
4df2faf4 2712
8a1a49f9 2713 return 0;
4df2faf4
DV
2714}
2715
9ce079e4
CW
2716static void i965_write_fence_reg(struct drm_device *dev, int reg,
2717 struct drm_i915_gem_object *obj)
de151cf6 2718{
de151cf6 2719 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2720 int fence_reg;
2721 int fence_pitch_shift;
de151cf6 2722
56c844e5
ID
2723 if (INTEL_INFO(dev)->gen >= 6) {
2724 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2725 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2726 } else {
2727 fence_reg = FENCE_REG_965_0;
2728 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2729 }
2730
d18b9619
CW
2731 fence_reg += reg * 8;
2732
2733 /* To w/a incoherency with non-atomic 64-bit register updates,
2734 * we split the 64-bit update into two 32-bit writes. In order
2735 * for a partial fence not to be evaluated between writes, we
2736 * precede the update with write to turn off the fence register,
2737 * and only enable the fence as the last step.
2738 *
2739 * For extra levels of paranoia, we make sure each step lands
2740 * before applying the next step.
2741 */
2742 I915_WRITE(fence_reg, 0);
2743 POSTING_READ(fence_reg);
2744
9ce079e4 2745 if (obj) {
f343c5f6 2746 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2747 uint64_t val;
de151cf6 2748
f343c5f6 2749 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2750 0xfffff000) << 32;
f343c5f6 2751 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2752 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2753 if (obj->tiling_mode == I915_TILING_Y)
2754 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2755 val |= I965_FENCE_REG_VALID;
c6642782 2756
d18b9619
CW
2757 I915_WRITE(fence_reg + 4, val >> 32);
2758 POSTING_READ(fence_reg + 4);
2759
2760 I915_WRITE(fence_reg + 0, val);
2761 POSTING_READ(fence_reg);
2762 } else {
2763 I915_WRITE(fence_reg + 4, 0);
2764 POSTING_READ(fence_reg + 4);
2765 }
de151cf6
JB
2766}
2767
9ce079e4
CW
2768static void i915_write_fence_reg(struct drm_device *dev, int reg,
2769 struct drm_i915_gem_object *obj)
de151cf6 2770{
de151cf6 2771 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2772 u32 val;
de151cf6 2773
9ce079e4 2774 if (obj) {
f343c5f6 2775 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2776 int pitch_val;
2777 int tile_width;
c6642782 2778
f343c5f6 2779 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2780 (size & -size) != size ||
f343c5f6
BW
2781 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2782 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2783 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2784
9ce079e4
CW
2785 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2786 tile_width = 128;
2787 else
2788 tile_width = 512;
2789
2790 /* Note: pitch better be a power of two tile widths */
2791 pitch_val = obj->stride / tile_width;
2792 pitch_val = ffs(pitch_val) - 1;
2793
f343c5f6 2794 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2795 if (obj->tiling_mode == I915_TILING_Y)
2796 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2797 val |= I915_FENCE_SIZE_BITS(size);
2798 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2799 val |= I830_FENCE_REG_VALID;
2800 } else
2801 val = 0;
2802
2803 if (reg < 8)
2804 reg = FENCE_REG_830_0 + reg * 4;
2805 else
2806 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2807
2808 I915_WRITE(reg, val);
2809 POSTING_READ(reg);
de151cf6
JB
2810}
2811
9ce079e4
CW
2812static void i830_write_fence_reg(struct drm_device *dev, int reg,
2813 struct drm_i915_gem_object *obj)
de151cf6 2814{
de151cf6 2815 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2816 uint32_t val;
de151cf6 2817
9ce079e4 2818 if (obj) {
f343c5f6 2819 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2820 uint32_t pitch_val;
de151cf6 2821
f343c5f6 2822 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2823 (size & -size) != size ||
f343c5f6
BW
2824 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2825 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2826 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2827
9ce079e4
CW
2828 pitch_val = obj->stride / 128;
2829 pitch_val = ffs(pitch_val) - 1;
de151cf6 2830
f343c5f6 2831 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2832 if (obj->tiling_mode == I915_TILING_Y)
2833 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2834 val |= I830_FENCE_SIZE_BITS(size);
2835 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2836 val |= I830_FENCE_REG_VALID;
2837 } else
2838 val = 0;
c6642782 2839
9ce079e4
CW
2840 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2841 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2842}
2843
d0a57789
CW
2844inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2845{
2846 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2847}
2848
9ce079e4
CW
2849static void i915_gem_write_fence(struct drm_device *dev, int reg,
2850 struct drm_i915_gem_object *obj)
2851{
d0a57789
CW
2852 struct drm_i915_private *dev_priv = dev->dev_private;
2853
2854 /* Ensure that all CPU reads are completed before installing a fence
2855 * and all writes before removing the fence.
2856 */
2857 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2858 mb();
2859
94a335db
DV
2860 WARN(obj && (!obj->stride || !obj->tiling_mode),
2861 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2862 obj->stride, obj->tiling_mode);
2863
9ce079e4
CW
2864 switch (INTEL_INFO(dev)->gen) {
2865 case 7:
56c844e5 2866 case 6:
9ce079e4
CW
2867 case 5:
2868 case 4: i965_write_fence_reg(dev, reg, obj); break;
2869 case 3: i915_write_fence_reg(dev, reg, obj); break;
2870 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2871 default: BUG();
9ce079e4 2872 }
d0a57789
CW
2873
2874 /* And similarly be paranoid that no direct access to this region
2875 * is reordered to before the fence is installed.
2876 */
2877 if (i915_gem_object_needs_mb(obj))
2878 mb();
de151cf6
JB
2879}
2880
61050808
CW
2881static inline int fence_number(struct drm_i915_private *dev_priv,
2882 struct drm_i915_fence_reg *fence)
2883{
2884 return fence - dev_priv->fence_regs;
2885}
2886
2887static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2888 struct drm_i915_fence_reg *fence,
2889 bool enable)
2890{
2dc8aae0 2891 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2892 int reg = fence_number(dev_priv, fence);
2893
2894 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2895
2896 if (enable) {
46a0b638 2897 obj->fence_reg = reg;
61050808
CW
2898 fence->obj = obj;
2899 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2900 } else {
2901 obj->fence_reg = I915_FENCE_REG_NONE;
2902 fence->obj = NULL;
2903 list_del_init(&fence->lru_list);
2904 }
94a335db 2905 obj->fence_dirty = false;
61050808
CW
2906}
2907
d9e86c0e 2908static int
d0a57789 2909i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2910{
1c293ea3 2911 if (obj->last_fenced_seqno) {
86d5bc37 2912 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2913 if (ret)
2914 return ret;
d9e86c0e
CW
2915
2916 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2917 }
2918
86d5bc37 2919 obj->fenced_gpu_access = false;
d9e86c0e
CW
2920 return 0;
2921}
2922
2923int
2924i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2925{
61050808 2926 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2927 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2928 int ret;
2929
d0a57789 2930 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2931 if (ret)
2932 return ret;
2933
61050808
CW
2934 if (obj->fence_reg == I915_FENCE_REG_NONE)
2935 return 0;
d9e86c0e 2936
f9c513e9
CW
2937 fence = &dev_priv->fence_regs[obj->fence_reg];
2938
61050808 2939 i915_gem_object_fence_lost(obj);
f9c513e9 2940 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2941
2942 return 0;
2943}
2944
2945static struct drm_i915_fence_reg *
a360bb1a 2946i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2947{
ae3db24a 2948 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2949 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2950 int i;
ae3db24a
DV
2951
2952 /* First try to find a free reg */
d9e86c0e 2953 avail = NULL;
ae3db24a
DV
2954 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2955 reg = &dev_priv->fence_regs[i];
2956 if (!reg->obj)
d9e86c0e 2957 return reg;
ae3db24a 2958
1690e1eb 2959 if (!reg->pin_count)
d9e86c0e 2960 avail = reg;
ae3db24a
DV
2961 }
2962
d9e86c0e
CW
2963 if (avail == NULL)
2964 return NULL;
ae3db24a
DV
2965
2966 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2967 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2968 if (reg->pin_count)
ae3db24a
DV
2969 continue;
2970
8fe301ad 2971 return reg;
ae3db24a
DV
2972 }
2973
8fe301ad 2974 return NULL;
ae3db24a
DV
2975}
2976
de151cf6 2977/**
9a5a53b3 2978 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2979 * @obj: object to map through a fence reg
2980 *
2981 * When mapping objects through the GTT, userspace wants to be able to write
2982 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2983 * This function walks the fence regs looking for a free one for @obj,
2984 * stealing one if it can't find any.
2985 *
2986 * It then sets up the reg based on the object's properties: address, pitch
2987 * and tiling format.
9a5a53b3
CW
2988 *
2989 * For an untiled surface, this removes any existing fence.
de151cf6 2990 */
8c4b8c3f 2991int
06d98131 2992i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2993{
05394f39 2994 struct drm_device *dev = obj->base.dev;
79e53945 2995 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2996 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2997 struct drm_i915_fence_reg *reg;
ae3db24a 2998 int ret;
de151cf6 2999
14415745
CW
3000 /* Have we updated the tiling parameters upon the object and so
3001 * will need to serialise the write to the associated fence register?
3002 */
5d82e3e6 3003 if (obj->fence_dirty) {
d0a57789 3004 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3005 if (ret)
3006 return ret;
3007 }
9a5a53b3 3008
d9e86c0e 3009 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3010 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3011 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3012 if (!obj->fence_dirty) {
14415745
CW
3013 list_move_tail(&reg->lru_list,
3014 &dev_priv->mm.fence_list);
3015 return 0;
3016 }
3017 } else if (enable) {
3018 reg = i915_find_fence_reg(dev);
3019 if (reg == NULL)
3020 return -EDEADLK;
d9e86c0e 3021
14415745
CW
3022 if (reg->obj) {
3023 struct drm_i915_gem_object *old = reg->obj;
3024
d0a57789 3025 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3026 if (ret)
3027 return ret;
3028
14415745 3029 i915_gem_object_fence_lost(old);
29c5a587 3030 }
14415745 3031 } else
a09ba7fa 3032 return 0;
a09ba7fa 3033
14415745 3034 i915_gem_object_update_fence(obj, reg, enable);
14415745 3035
9ce079e4 3036 return 0;
de151cf6
JB
3037}
3038
42d6ab48
CW
3039static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3040 struct drm_mm_node *gtt_space,
3041 unsigned long cache_level)
3042{
3043 struct drm_mm_node *other;
3044
3045 /* On non-LLC machines we have to be careful when putting differing
3046 * types of snoopable memory together to avoid the prefetcher
4239ca77 3047 * crossing memory domains and dying.
42d6ab48
CW
3048 */
3049 if (HAS_LLC(dev))
3050 return true;
3051
c6cfb325 3052 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3053 return true;
3054
3055 if (list_empty(&gtt_space->node_list))
3056 return true;
3057
3058 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3059 if (other->allocated && !other->hole_follows && other->color != cache_level)
3060 return false;
3061
3062 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3063 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3064 return false;
3065
3066 return true;
3067}
3068
3069static void i915_gem_verify_gtt(struct drm_device *dev)
3070{
3071#if WATCH_GTT
3072 struct drm_i915_private *dev_priv = dev->dev_private;
3073 struct drm_i915_gem_object *obj;
3074 int err = 0;
3075
35c20a60 3076 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3077 if (obj->gtt_space == NULL) {
3078 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3079 err++;
3080 continue;
3081 }
3082
3083 if (obj->cache_level != obj->gtt_space->color) {
3084 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3085 i915_gem_obj_ggtt_offset(obj),
3086 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3087 obj->cache_level,
3088 obj->gtt_space->color);
3089 err++;
3090 continue;
3091 }
3092
3093 if (!i915_gem_valid_gtt_space(dev,
3094 obj->gtt_space,
3095 obj->cache_level)) {
3096 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3097 i915_gem_obj_ggtt_offset(obj),
3098 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3099 obj->cache_level);
3100 err++;
3101 continue;
3102 }
3103 }
3104
3105 WARN_ON(err);
3106#endif
3107}
3108
673a394b
EA
3109/**
3110 * Finds free space in the GTT aperture and binds the object there.
3111 */
3112static int
07fe0b12
BW
3113i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3114 struct i915_address_space *vm,
3115 unsigned alignment,
3116 bool map_and_fenceable,
3117 bool nonblocking)
673a394b 3118{
05394f39 3119 struct drm_device *dev = obj->base.dev;
673a394b 3120 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3121 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3122 size_t gtt_max =
3123 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3124 struct i915_vma *vma;
07f73f69 3125 int ret;
673a394b 3126
2f633156
BW
3127 if (WARN_ON(!list_empty(&obj->vma_list)))
3128 return -EBUSY;
3129
e28f8711
CW
3130 fence_size = i915_gem_get_gtt_size(dev,
3131 obj->base.size,
3132 obj->tiling_mode);
3133 fence_alignment = i915_gem_get_gtt_alignment(dev,
3134 obj->base.size,
d865110c 3135 obj->tiling_mode, true);
e28f8711 3136 unfenced_alignment =
d865110c 3137 i915_gem_get_gtt_alignment(dev,
e28f8711 3138 obj->base.size,
d865110c 3139 obj->tiling_mode, false);
a00b10c3 3140
673a394b 3141 if (alignment == 0)
5e783301
DV
3142 alignment = map_and_fenceable ? fence_alignment :
3143 unfenced_alignment;
75e9e915 3144 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3145 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3146 return -EINVAL;
3147 }
3148
05394f39 3149 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3150
654fc607
CW
3151 /* If the object is bigger than the entire aperture, reject it early
3152 * before evicting everything in a vain attempt to find space.
3153 */
0a9ae0d7 3154 if (obj->base.size > gtt_max) {
3765f304 3155 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3156 obj->base.size,
3157 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3158 gtt_max);
654fc607
CW
3159 return -E2BIG;
3160 }
3161
37e680a1 3162 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3163 if (ret)
3164 return ret;
3165
fbdda6fb
CW
3166 i915_gem_object_pin_pages(obj);
3167
07fe0b12
BW
3168 /* FIXME: For now we only ever use 1 VMA per object */
3169 BUG_ON(!i915_is_ggtt(vm));
3170 WARN_ON(!list_empty(&obj->vma_list));
3171
3172 vma = i915_gem_vma_create(obj, vm);
db473b36 3173 if (IS_ERR(vma)) {
bc6bc15b
DV
3174 ret = PTR_ERR(vma);
3175 goto err_unpin;
2f633156
BW
3176 }
3177
0a9ae0d7 3178search_free:
07fe0b12 3179 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7
BW
3180 size, alignment,
3181 obj->cache_level, 0, gtt_max);
dc9dd7a2 3182 if (ret) {
f6cd1f15 3183 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3184 obj->cache_level,
86a1ee26
CW
3185 map_and_fenceable,
3186 nonblocking);
dc9dd7a2
CW
3187 if (ret == 0)
3188 goto search_free;
9731129c 3189
bc6bc15b 3190 goto err_free_vma;
673a394b 3191 }
2f633156 3192 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3193 obj->cache_level))) {
2f633156 3194 ret = -EINVAL;
bc6bc15b 3195 goto err_remove_node;
673a394b
EA
3196 }
3197
74163907 3198 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3199 if (ret)
bc6bc15b 3200 goto err_remove_node;
673a394b 3201
35c20a60 3202 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3203 list_add_tail(&vma->mm_list, &vm->inactive_list);
07fe0b12 3204
4bd561b3
BW
3205 if (i915_is_ggtt(vm)) {
3206 bool mappable, fenceable;
a00b10c3 3207
49987099
DV
3208 fenceable = (vma->node.size == fence_size &&
3209 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3210
49987099
DV
3211 mappable = (vma->node.start + obj->base.size <=
3212 dev_priv->gtt.mappable_end);
a00b10c3 3213
5cacaac7 3214 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3215 }
75e9e915 3216
7ace7ef2
BW
3217 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3218
07fe0b12 3219 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3220 i915_gem_verify_gtt(dev);
673a394b 3221 return 0;
2f633156 3222
bc6bc15b 3223err_remove_node:
6286ef9b 3224 drm_mm_remove_node(&vma->node);
bc6bc15b 3225err_free_vma:
2f633156 3226 i915_gem_vma_destroy(vma);
bc6bc15b 3227err_unpin:
2f633156 3228 i915_gem_object_unpin_pages(obj);
2f633156 3229 return ret;
673a394b
EA
3230}
3231
000433b6 3232bool
2c22569b
CW
3233i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3234 bool force)
673a394b 3235{
673a394b
EA
3236 /* If we don't have a page list set up, then we're not pinned
3237 * to GPU, and we can ignore the cache flush because it'll happen
3238 * again at bind time.
3239 */
05394f39 3240 if (obj->pages == NULL)
000433b6 3241 return false;
673a394b 3242
769ce464
ID
3243 /*
3244 * Stolen memory is always coherent with the GPU as it is explicitly
3245 * marked as wc by the system, or the system is cache-coherent.
3246 */
3247 if (obj->stolen)
000433b6 3248 return false;
769ce464 3249
9c23f7fc
CW
3250 /* If the GPU is snooping the contents of the CPU cache,
3251 * we do not need to manually clear the CPU cache lines. However,
3252 * the caches are only snooped when the render cache is
3253 * flushed/invalidated. As we always have to emit invalidations
3254 * and flushes when moving into and out of the RENDER domain, correct
3255 * snooping behaviour occurs naturally as the result of our domain
3256 * tracking.
3257 */
2c22569b 3258 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3259 return false;
9c23f7fc 3260
1c5d22f7 3261 trace_i915_gem_object_clflush(obj);
9da3da66 3262 drm_clflush_sg(obj->pages);
000433b6
CW
3263
3264 return true;
e47c68e9
EA
3265}
3266
3267/** Flushes the GTT write domain for the object if it's dirty. */
3268static void
05394f39 3269i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3270{
1c5d22f7
CW
3271 uint32_t old_write_domain;
3272
05394f39 3273 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3274 return;
3275
63256ec5 3276 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3277 * to it immediately go to main memory as far as we know, so there's
3278 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3279 *
3280 * However, we do have to enforce the order so that all writes through
3281 * the GTT land before any writes to the device, such as updates to
3282 * the GATT itself.
e47c68e9 3283 */
63256ec5
CW
3284 wmb();
3285
05394f39
CW
3286 old_write_domain = obj->base.write_domain;
3287 obj->base.write_domain = 0;
1c5d22f7
CW
3288
3289 trace_i915_gem_object_change_domain(obj,
05394f39 3290 obj->base.read_domains,
1c5d22f7 3291 old_write_domain);
e47c68e9
EA
3292}
3293
3294/** Flushes the CPU write domain for the object if it's dirty. */
3295static void
2c22569b
CW
3296i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3297 bool force)
e47c68e9 3298{
1c5d22f7 3299 uint32_t old_write_domain;
e47c68e9 3300
05394f39 3301 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3302 return;
3303
000433b6
CW
3304 if (i915_gem_clflush_object(obj, force))
3305 i915_gem_chipset_flush(obj->base.dev);
3306
05394f39
CW
3307 old_write_domain = obj->base.write_domain;
3308 obj->base.write_domain = 0;
1c5d22f7
CW
3309
3310 trace_i915_gem_object_change_domain(obj,
05394f39 3311 obj->base.read_domains,
1c5d22f7 3312 old_write_domain);
e47c68e9
EA
3313}
3314
2ef7eeaa
EA
3315/**
3316 * Moves a single object to the GTT read, and possibly write domain.
3317 *
3318 * This function returns when the move is complete, including waiting on
3319 * flushes to occur.
3320 */
79e53945 3321int
2021746e 3322i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3323{
8325a09d 3324 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3325 uint32_t old_write_domain, old_read_domains;
e47c68e9 3326 int ret;
2ef7eeaa 3327
02354392 3328 /* Not valid to be called on unbound objects. */
9843877d 3329 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3330 return -EINVAL;
3331
8d7e3de1
CW
3332 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3333 return 0;
3334
0201f1ec 3335 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3336 if (ret)
3337 return ret;
3338
2c22569b 3339 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3340
d0a57789
CW
3341 /* Serialise direct access to this object with the barriers for
3342 * coherent writes from the GPU, by effectively invalidating the
3343 * GTT domain upon first access.
3344 */
3345 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3346 mb();
3347
05394f39
CW
3348 old_write_domain = obj->base.write_domain;
3349 old_read_domains = obj->base.read_domains;
1c5d22f7 3350
e47c68e9
EA
3351 /* It should now be out of any other write domains, and we can update
3352 * the domain values for our changes.
3353 */
05394f39
CW
3354 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3355 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3356 if (write) {
05394f39
CW
3357 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3358 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3359 obj->dirty = 1;
2ef7eeaa
EA
3360 }
3361
1c5d22f7
CW
3362 trace_i915_gem_object_change_domain(obj,
3363 old_read_domains,
3364 old_write_domain);
3365
8325a09d 3366 /* And bump the LRU for this access */
ca191b13
BW
3367 if (i915_gem_object_is_inactive(obj)) {
3368 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3369 &dev_priv->gtt.base);
3370 if (vma)
3371 list_move_tail(&vma->mm_list,
3372 &dev_priv->gtt.base.inactive_list);
3373
3374 }
8325a09d 3375
e47c68e9
EA
3376 return 0;
3377}
3378
e4ffd173
CW
3379int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3380 enum i915_cache_level cache_level)
3381{
7bddb01f
DV
3382 struct drm_device *dev = obj->base.dev;
3383 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3384 struct i915_vma *vma;
e4ffd173
CW
3385 int ret;
3386
3387 if (obj->cache_level == cache_level)
3388 return 0;
3389
3390 if (obj->pin_count) {
3391 DRM_DEBUG("can not change the cache level of pinned objects\n");
3392 return -EBUSY;
3393 }
3394
3089c6f2
BW
3395 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3396 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3397 ret = i915_vma_unbind(vma);
3089c6f2
BW
3398 if (ret)
3399 return ret;
3400
3401 break;
3402 }
42d6ab48
CW
3403 }
3404
3089c6f2 3405 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3406 ret = i915_gem_object_finish_gpu(obj);
3407 if (ret)
3408 return ret;
3409
3410 i915_gem_object_finish_gtt(obj);
3411
3412 /* Before SandyBridge, you could not use tiling or fence
3413 * registers with snooped memory, so relinquish any fences
3414 * currently pointing to our region in the aperture.
3415 */
42d6ab48 3416 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3417 ret = i915_gem_object_put_fence(obj);
3418 if (ret)
3419 return ret;
3420 }
3421
74898d7e
DV
3422 if (obj->has_global_gtt_mapping)
3423 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3424 if (obj->has_aliasing_ppgtt_mapping)
3425 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3426 obj, cache_level);
e4ffd173
CW
3427 }
3428
2c22569b
CW
3429 list_for_each_entry(vma, &obj->vma_list, vma_link)
3430 vma->node.color = cache_level;
3431 obj->cache_level = cache_level;
3432
3433 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3434 u32 old_read_domains, old_write_domain;
3435
3436 /* If we're coming from LLC cached, then we haven't
3437 * actually been tracking whether the data is in the
3438 * CPU cache or not, since we only allow one bit set
3439 * in obj->write_domain and have been skipping the clflushes.
3440 * Just set it to the CPU cache for now.
3441 */
3442 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3443
3444 old_read_domains = obj->base.read_domains;
3445 old_write_domain = obj->base.write_domain;
3446
3447 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3448 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3449
3450 trace_i915_gem_object_change_domain(obj,
3451 old_read_domains,
3452 old_write_domain);
3453 }
3454
42d6ab48 3455 i915_gem_verify_gtt(dev);
e4ffd173
CW
3456 return 0;
3457}
3458
199adf40
BW
3459int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3460 struct drm_file *file)
e6994aee 3461{
199adf40 3462 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3463 struct drm_i915_gem_object *obj;
3464 int ret;
3465
3466 ret = i915_mutex_lock_interruptible(dev);
3467 if (ret)
3468 return ret;
3469
3470 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3471 if (&obj->base == NULL) {
3472 ret = -ENOENT;
3473 goto unlock;
3474 }
3475
651d794f
CW
3476 switch (obj->cache_level) {
3477 case I915_CACHE_LLC:
3478 case I915_CACHE_L3_LLC:
3479 args->caching = I915_CACHING_CACHED;
3480 break;
3481
4257d3ba
CW
3482 case I915_CACHE_WT:
3483 args->caching = I915_CACHING_DISPLAY;
3484 break;
3485
651d794f
CW
3486 default:
3487 args->caching = I915_CACHING_NONE;
3488 break;
3489 }
e6994aee
CW
3490
3491 drm_gem_object_unreference(&obj->base);
3492unlock:
3493 mutex_unlock(&dev->struct_mutex);
3494 return ret;
3495}
3496
199adf40
BW
3497int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3498 struct drm_file *file)
e6994aee 3499{
199adf40 3500 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3501 struct drm_i915_gem_object *obj;
3502 enum i915_cache_level level;
3503 int ret;
3504
199adf40
BW
3505 switch (args->caching) {
3506 case I915_CACHING_NONE:
e6994aee
CW
3507 level = I915_CACHE_NONE;
3508 break;
199adf40 3509 case I915_CACHING_CACHED:
e6994aee
CW
3510 level = I915_CACHE_LLC;
3511 break;
4257d3ba
CW
3512 case I915_CACHING_DISPLAY:
3513 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3514 break;
e6994aee
CW
3515 default:
3516 return -EINVAL;
3517 }
3518
3bc2913e
BW
3519 ret = i915_mutex_lock_interruptible(dev);
3520 if (ret)
3521 return ret;
3522
e6994aee
CW
3523 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3524 if (&obj->base == NULL) {
3525 ret = -ENOENT;
3526 goto unlock;
3527 }
3528
3529 ret = i915_gem_object_set_cache_level(obj, level);
3530
3531 drm_gem_object_unreference(&obj->base);
3532unlock:
3533 mutex_unlock(&dev->struct_mutex);
3534 return ret;
3535}
3536
cc98b413
CW
3537static bool is_pin_display(struct drm_i915_gem_object *obj)
3538{
3539 /* There are 3 sources that pin objects:
3540 * 1. The display engine (scanouts, sprites, cursors);
3541 * 2. Reservations for execbuffer;
3542 * 3. The user.
3543 *
3544 * We can ignore reservations as we hold the struct_mutex and
3545 * are only called outside of the reservation path. The user
3546 * can only increment pin_count once, and so if after
3547 * subtracting the potential reference by the user, any pin_count
3548 * remains, it must be due to another use by the display engine.
3549 */
3550 return obj->pin_count - !!obj->user_pin_count;
3551}
3552
b9241ea3 3553/*
2da3b9b9
CW
3554 * Prepare buffer for display plane (scanout, cursors, etc).
3555 * Can be called from an uninterruptible phase (modesetting) and allows
3556 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3557 */
3558int
2da3b9b9
CW
3559i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3560 u32 alignment,
919926ae 3561 struct intel_ring_buffer *pipelined)
b9241ea3 3562{
2da3b9b9 3563 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3564 int ret;
3565
0be73284 3566 if (pipelined != obj->ring) {
2911a35b
BW
3567 ret = i915_gem_object_sync(obj, pipelined);
3568 if (ret)
b9241ea3
ZW
3569 return ret;
3570 }
3571
cc98b413
CW
3572 /* Mark the pin_display early so that we account for the
3573 * display coherency whilst setting up the cache domains.
3574 */
3575 obj->pin_display = true;
3576
a7ef0640
EA
3577 /* The display engine is not coherent with the LLC cache on gen6. As
3578 * a result, we make sure that the pinning that is about to occur is
3579 * done with uncached PTEs. This is lowest common denominator for all
3580 * chipsets.
3581 *
3582 * However for gen6+, we could do better by using the GFDT bit instead
3583 * of uncaching, which would allow us to flush all the LLC-cached data
3584 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3585 */
651d794f
CW
3586 ret = i915_gem_object_set_cache_level(obj,
3587 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3588 if (ret)
cc98b413 3589 goto err_unpin_display;
a7ef0640 3590
2da3b9b9
CW
3591 /* As the user may map the buffer once pinned in the display plane
3592 * (e.g. libkms for the bootup splash), we have to ensure that we
3593 * always use map_and_fenceable for all scanout buffers.
3594 */
c37e2204 3595 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3596 if (ret)
cc98b413 3597 goto err_unpin_display;
2da3b9b9 3598
2c22569b 3599 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3600
2da3b9b9 3601 old_write_domain = obj->base.write_domain;
05394f39 3602 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3603
3604 /* It should now be out of any other write domains, and we can update
3605 * the domain values for our changes.
3606 */
e5f1d962 3607 obj->base.write_domain = 0;
05394f39 3608 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3609
3610 trace_i915_gem_object_change_domain(obj,
3611 old_read_domains,
2da3b9b9 3612 old_write_domain);
b9241ea3
ZW
3613
3614 return 0;
cc98b413
CW
3615
3616err_unpin_display:
3617 obj->pin_display = is_pin_display(obj);
3618 return ret;
3619}
3620
3621void
3622i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3623{
3624 i915_gem_object_unpin(obj);
3625 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3626}
3627
85345517 3628int
a8198eea 3629i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3630{
88241785
CW
3631 int ret;
3632
a8198eea 3633 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3634 return 0;
3635
0201f1ec 3636 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3637 if (ret)
3638 return ret;
3639
a8198eea
CW
3640 /* Ensure that we invalidate the GPU's caches and TLBs. */
3641 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3642 return 0;
85345517
CW
3643}
3644
e47c68e9
EA
3645/**
3646 * Moves a single object to the CPU read, and possibly write domain.
3647 *
3648 * This function returns when the move is complete, including waiting on
3649 * flushes to occur.
3650 */
dabdfe02 3651int
919926ae 3652i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3653{
1c5d22f7 3654 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3655 int ret;
3656
8d7e3de1
CW
3657 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3658 return 0;
3659
0201f1ec 3660 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3661 if (ret)
3662 return ret;
3663
e47c68e9 3664 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3665
05394f39
CW
3666 old_write_domain = obj->base.write_domain;
3667 old_read_domains = obj->base.read_domains;
1c5d22f7 3668
e47c68e9 3669 /* Flush the CPU cache if it's still invalid. */
05394f39 3670 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3671 i915_gem_clflush_object(obj, false);
2ef7eeaa 3672
05394f39 3673 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3674 }
3675
3676 /* It should now be out of any other write domains, and we can update
3677 * the domain values for our changes.
3678 */
05394f39 3679 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3680
3681 /* If we're writing through the CPU, then the GPU read domains will
3682 * need to be invalidated at next use.
3683 */
3684 if (write) {
05394f39
CW
3685 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3686 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3687 }
2ef7eeaa 3688
1c5d22f7
CW
3689 trace_i915_gem_object_change_domain(obj,
3690 old_read_domains,
3691 old_write_domain);
3692
2ef7eeaa
EA
3693 return 0;
3694}
3695
673a394b
EA
3696/* Throttle our rendering by waiting until the ring has completed our requests
3697 * emitted over 20 msec ago.
3698 *
b962442e
EA
3699 * Note that if we were to use the current jiffies each time around the loop,
3700 * we wouldn't escape the function with any frames outstanding if the time to
3701 * render a frame was over 20ms.
3702 *
673a394b
EA
3703 * This should get us reasonable parallelism between CPU and GPU but also
3704 * relatively low latency when blocking on a particular request to finish.
3705 */
40a5f0de 3706static int
f787a5f5 3707i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3708{
f787a5f5
CW
3709 struct drm_i915_private *dev_priv = dev->dev_private;
3710 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3711 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3712 struct drm_i915_gem_request *request;
3713 struct intel_ring_buffer *ring = NULL;
f69061be 3714 unsigned reset_counter;
f787a5f5
CW
3715 u32 seqno = 0;
3716 int ret;
93533c29 3717
308887aa
DV
3718 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3719 if (ret)
3720 return ret;
3721
3722 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3723 if (ret)
3724 return ret;
e110e8d6 3725
1c25595f 3726 spin_lock(&file_priv->mm.lock);
f787a5f5 3727 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3728 if (time_after_eq(request->emitted_jiffies, recent_enough))
3729 break;
40a5f0de 3730
f787a5f5
CW
3731 ring = request->ring;
3732 seqno = request->seqno;
b962442e 3733 }
f69061be 3734 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3735 spin_unlock(&file_priv->mm.lock);
40a5f0de 3736
f787a5f5
CW
3737 if (seqno == 0)
3738 return 0;
2bc43b5c 3739
f69061be 3740 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3741 if (ret == 0)
3742 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3743
3744 return ret;
3745}
3746
673a394b 3747int
05394f39 3748i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3749 struct i915_address_space *vm,
05394f39 3750 uint32_t alignment,
86a1ee26
CW
3751 bool map_and_fenceable,
3752 bool nonblocking)
673a394b 3753{
07fe0b12 3754 struct i915_vma *vma;
673a394b
EA
3755 int ret;
3756
7e81a42e
CW
3757 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3758 return -EBUSY;
ac0c6b5a 3759
07fe0b12
BW
3760 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3761
3762 vma = i915_gem_obj_to_vma(obj, vm);
3763
3764 if (vma) {
3765 if ((alignment &&
3766 vma->node.start & (alignment - 1)) ||
05394f39
CW
3767 (map_and_fenceable && !obj->map_and_fenceable)) {
3768 WARN(obj->pin_count,
ae7d49d8 3769 "bo is already pinned with incorrect alignment:"
f343c5f6 3770 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3771 " obj->map_and_fenceable=%d\n",
07fe0b12 3772 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3773 map_and_fenceable,
05394f39 3774 obj->map_and_fenceable);
07fe0b12 3775 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3776 if (ret)
3777 return ret;
3778 }
3779 }
3780
07fe0b12 3781 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3782 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3783
07fe0b12
BW
3784 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3785 map_and_fenceable,
3786 nonblocking);
9731129c 3787 if (ret)
673a394b 3788 return ret;
8742267a
CW
3789
3790 if (!dev_priv->mm.aliasing_ppgtt)
3791 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3792 }
76446cac 3793
74898d7e
DV
3794 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3795 i915_gem_gtt_bind_object(obj, obj->cache_level);
3796
1b50247a 3797 obj->pin_count++;
6299f992 3798 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3799
3800 return 0;
3801}
3802
3803void
05394f39 3804i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3805{
05394f39 3806 BUG_ON(obj->pin_count == 0);
9843877d 3807 BUG_ON(!i915_gem_obj_bound_any(obj));
673a394b 3808
1b50247a 3809 if (--obj->pin_count == 0)
6299f992 3810 obj->pin_mappable = false;
673a394b
EA
3811}
3812
3813int
3814i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3815 struct drm_file *file)
673a394b
EA
3816{
3817 struct drm_i915_gem_pin *args = data;
05394f39 3818 struct drm_i915_gem_object *obj;
673a394b
EA
3819 int ret;
3820
1d7cfea1
CW
3821 ret = i915_mutex_lock_interruptible(dev);
3822 if (ret)
3823 return ret;
673a394b 3824
05394f39 3825 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3826 if (&obj->base == NULL) {
1d7cfea1
CW
3827 ret = -ENOENT;
3828 goto unlock;
673a394b 3829 }
673a394b 3830
05394f39 3831 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3832 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3833 ret = -EINVAL;
3834 goto out;
3ef94daa
CW
3835 }
3836
05394f39 3837 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3838 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3839 args->handle);
1d7cfea1
CW
3840 ret = -EINVAL;
3841 goto out;
79e53945
JB
3842 }
3843
93be8788 3844 if (obj->user_pin_count == 0) {
c37e2204 3845 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3846 if (ret)
3847 goto out;
673a394b
EA
3848 }
3849
93be8788
CW
3850 obj->user_pin_count++;
3851 obj->pin_filp = file;
3852
f343c5f6 3853 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3854out:
05394f39 3855 drm_gem_object_unreference(&obj->base);
1d7cfea1 3856unlock:
673a394b 3857 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3858 return ret;
673a394b
EA
3859}
3860
3861int
3862i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3863 struct drm_file *file)
673a394b
EA
3864{
3865 struct drm_i915_gem_pin *args = data;
05394f39 3866 struct drm_i915_gem_object *obj;
76c1dec1 3867 int ret;
673a394b 3868
1d7cfea1
CW
3869 ret = i915_mutex_lock_interruptible(dev);
3870 if (ret)
3871 return ret;
673a394b 3872
05394f39 3873 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3874 if (&obj->base == NULL) {
1d7cfea1
CW
3875 ret = -ENOENT;
3876 goto unlock;
673a394b 3877 }
76c1dec1 3878
05394f39 3879 if (obj->pin_filp != file) {
79e53945
JB
3880 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3881 args->handle);
1d7cfea1
CW
3882 ret = -EINVAL;
3883 goto out;
79e53945 3884 }
05394f39
CW
3885 obj->user_pin_count--;
3886 if (obj->user_pin_count == 0) {
3887 obj->pin_filp = NULL;
79e53945
JB
3888 i915_gem_object_unpin(obj);
3889 }
673a394b 3890
1d7cfea1 3891out:
05394f39 3892 drm_gem_object_unreference(&obj->base);
1d7cfea1 3893unlock:
673a394b 3894 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3895 return ret;
673a394b
EA
3896}
3897
3898int
3899i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3900 struct drm_file *file)
673a394b
EA
3901{
3902 struct drm_i915_gem_busy *args = data;
05394f39 3903 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3904 int ret;
3905
76c1dec1 3906 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3907 if (ret)
76c1dec1 3908 return ret;
673a394b 3909
05394f39 3910 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3911 if (&obj->base == NULL) {
1d7cfea1
CW
3912 ret = -ENOENT;
3913 goto unlock;
673a394b 3914 }
d1b851fc 3915
0be555b6
CW
3916 /* Count all active objects as busy, even if they are currently not used
3917 * by the gpu. Users of this interface expect objects to eventually
3918 * become non-busy without any further actions, therefore emit any
3919 * necessary flushes here.
c4de0a5d 3920 */
30dfebf3 3921 ret = i915_gem_object_flush_active(obj);
0be555b6 3922
30dfebf3 3923 args->busy = obj->active;
e9808edd
CW
3924 if (obj->ring) {
3925 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3926 args->busy |= intel_ring_flag(obj->ring) << 16;
3927 }
673a394b 3928
05394f39 3929 drm_gem_object_unreference(&obj->base);
1d7cfea1 3930unlock:
673a394b 3931 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3932 return ret;
673a394b
EA
3933}
3934
3935int
3936i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3937 struct drm_file *file_priv)
3938{
0206e353 3939 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3940}
3941
3ef94daa
CW
3942int
3943i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3944 struct drm_file *file_priv)
3945{
3946 struct drm_i915_gem_madvise *args = data;
05394f39 3947 struct drm_i915_gem_object *obj;
76c1dec1 3948 int ret;
3ef94daa
CW
3949
3950 switch (args->madv) {
3951 case I915_MADV_DONTNEED:
3952 case I915_MADV_WILLNEED:
3953 break;
3954 default:
3955 return -EINVAL;
3956 }
3957
1d7cfea1
CW
3958 ret = i915_mutex_lock_interruptible(dev);
3959 if (ret)
3960 return ret;
3961
05394f39 3962 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3963 if (&obj->base == NULL) {
1d7cfea1
CW
3964 ret = -ENOENT;
3965 goto unlock;
3ef94daa 3966 }
3ef94daa 3967
05394f39 3968 if (obj->pin_count) {
1d7cfea1
CW
3969 ret = -EINVAL;
3970 goto out;
3ef94daa
CW
3971 }
3972
05394f39
CW
3973 if (obj->madv != __I915_MADV_PURGED)
3974 obj->madv = args->madv;
3ef94daa 3975
6c085a72
CW
3976 /* if the object is no longer attached, discard its backing storage */
3977 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3978 i915_gem_object_truncate(obj);
3979
05394f39 3980 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3981
1d7cfea1 3982out:
05394f39 3983 drm_gem_object_unreference(&obj->base);
1d7cfea1 3984unlock:
3ef94daa 3985 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3986 return ret;
3ef94daa
CW
3987}
3988
37e680a1
CW
3989void i915_gem_object_init(struct drm_i915_gem_object *obj,
3990 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3991{
35c20a60 3992 INIT_LIST_HEAD(&obj->global_list);
0327d6ba
CW
3993 INIT_LIST_HEAD(&obj->ring_list);
3994 INIT_LIST_HEAD(&obj->exec_list);
2f633156 3995 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 3996
37e680a1
CW
3997 obj->ops = ops;
3998
0327d6ba
CW
3999 obj->fence_reg = I915_FENCE_REG_NONE;
4000 obj->madv = I915_MADV_WILLNEED;
4001 /* Avoid an unnecessary call to unbind on the first bind. */
4002 obj->map_and_fenceable = true;
4003
4004 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4005}
4006
37e680a1
CW
4007static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4008 .get_pages = i915_gem_object_get_pages_gtt,
4009 .put_pages = i915_gem_object_put_pages_gtt,
4010};
4011
05394f39
CW
4012struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4013 size_t size)
ac52bc56 4014{
c397b908 4015 struct drm_i915_gem_object *obj;
5949eac4 4016 struct address_space *mapping;
1a240d4d 4017 gfp_t mask;
ac52bc56 4018
42dcedd4 4019 obj = i915_gem_object_alloc(dev);
c397b908
DV
4020 if (obj == NULL)
4021 return NULL;
673a394b 4022
c397b908 4023 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4024 i915_gem_object_free(obj);
c397b908
DV
4025 return NULL;
4026 }
673a394b 4027
bed1ea95
CW
4028 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4029 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4030 /* 965gm cannot relocate objects above 4GiB. */
4031 mask &= ~__GFP_HIGHMEM;
4032 mask |= __GFP_DMA32;
4033 }
4034
496ad9aa 4035 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4036 mapping_set_gfp_mask(mapping, mask);
5949eac4 4037
37e680a1 4038 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4039
c397b908
DV
4040 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4041 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4042
3d29b842
ED
4043 if (HAS_LLC(dev)) {
4044 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4045 * cache) for about a 10% performance improvement
4046 * compared to uncached. Graphics requests other than
4047 * display scanout are coherent with the CPU in
4048 * accessing this cache. This means in this mode we
4049 * don't need to clflush on the CPU side, and on the
4050 * GPU side we only need to flush internal caches to
4051 * get data visible to the CPU.
4052 *
4053 * However, we maintain the display planes as UC, and so
4054 * need to rebind when first used as such.
4055 */
4056 obj->cache_level = I915_CACHE_LLC;
4057 } else
4058 obj->cache_level = I915_CACHE_NONE;
4059
d861e338
DV
4060 trace_i915_gem_object_create(obj);
4061
05394f39 4062 return obj;
c397b908
DV
4063}
4064
4065int i915_gem_init_object(struct drm_gem_object *obj)
4066{
4067 BUG();
de151cf6 4068
673a394b
EA
4069 return 0;
4070}
4071
1488fc08 4072void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4073{
1488fc08 4074 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4075 struct drm_device *dev = obj->base.dev;
be72615b 4076 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4077 struct i915_vma *vma, *next;
673a394b 4078
26e12f89
CW
4079 trace_i915_gem_object_destroy(obj);
4080
1488fc08
CW
4081 if (obj->phys_obj)
4082 i915_gem_detach_phys_object(dev, obj);
4083
4084 obj->pin_count = 0;
07fe0b12
BW
4085 /* NB: 0 or 1 elements */
4086 WARN_ON(!list_empty(&obj->vma_list) &&
4087 !list_is_singular(&obj->vma_list));
4088 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4089 int ret = i915_vma_unbind(vma);
4090 if (WARN_ON(ret == -ERESTARTSYS)) {
4091 bool was_interruptible;
1488fc08 4092
07fe0b12
BW
4093 was_interruptible = dev_priv->mm.interruptible;
4094 dev_priv->mm.interruptible = false;
1488fc08 4095
07fe0b12 4096 WARN_ON(i915_vma_unbind(vma));
1488fc08 4097
07fe0b12
BW
4098 dev_priv->mm.interruptible = was_interruptible;
4099 }
1488fc08
CW
4100 }
4101
1d64ae71
BW
4102 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4103 * before progressing. */
4104 if (obj->stolen)
4105 i915_gem_object_unpin_pages(obj);
4106
401c29f6
BW
4107 if (WARN_ON(obj->pages_pin_count))
4108 obj->pages_pin_count = 0;
37e680a1 4109 i915_gem_object_put_pages(obj);
d8cb5086 4110 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4111 i915_gem_object_release_stolen(obj);
de151cf6 4112
9da3da66
CW
4113 BUG_ON(obj->pages);
4114
2f745ad3
CW
4115 if (obj->base.import_attach)
4116 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4117
05394f39
CW
4118 drm_gem_object_release(&obj->base);
4119 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4120
05394f39 4121 kfree(obj->bit_17);
42dcedd4 4122 i915_gem_object_free(obj);
673a394b
EA
4123}
4124
2f633156
BW
4125struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4126 struct i915_address_space *vm)
4127{
4128 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4129 if (vma == NULL)
4130 return ERR_PTR(-ENOMEM);
4131
4132 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4133 INIT_LIST_HEAD(&vma->mm_list);
2f633156
BW
4134 vma->vm = vm;
4135 vma->obj = obj;
4136
8b9c2b94
BW
4137 /* Keep GGTT vmas first to make debug easier */
4138 if (i915_is_ggtt(vm))
4139 list_add(&vma->vma_link, &obj->vma_list);
4140 else
4141 list_add_tail(&vma->vma_link, &obj->vma_list);
4142
2f633156
BW
4143 return vma;
4144}
4145
4146void i915_gem_vma_destroy(struct i915_vma *vma)
4147{
4148 WARN_ON(vma->node.allocated);
8b9c2b94 4149 list_del(&vma->vma_link);
2f633156
BW
4150 kfree(vma);
4151}
4152
29105ccc
CW
4153int
4154i915_gem_idle(struct drm_device *dev)
4155{
4156 drm_i915_private_t *dev_priv = dev->dev_private;
4157 int ret;
28dfe52a 4158
db1b76ca 4159 if (dev_priv->ums.mm_suspended) {
29105ccc
CW
4160 mutex_unlock(&dev->struct_mutex);
4161 return 0;
28dfe52a
EA
4162 }
4163
b2da9fe5 4164 ret = i915_gpu_idle(dev);
6dbe2772
KP
4165 if (ret) {
4166 mutex_unlock(&dev->struct_mutex);
673a394b 4167 return ret;
6dbe2772 4168 }
b2da9fe5 4169 i915_gem_retire_requests(dev);
673a394b 4170
29105ccc 4171 /* Under UMS, be paranoid and evict. */
a39d7efc 4172 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4173 i915_gem_evict_everything(dev);
29105ccc 4174
99584db3 4175 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4176
4177 i915_kernel_lost_context(dev);
6dbe2772 4178 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4179
29105ccc
CW
4180 /* Cancel the retire work handler, which should be idle now. */
4181 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4182
673a394b
EA
4183 return 0;
4184}
4185
b9524a1e
BW
4186void i915_gem_l3_remap(struct drm_device *dev)
4187{
4188 drm_i915_private_t *dev_priv = dev->dev_private;
4189 u32 misccpctl;
4190 int i;
4191
eb32e458 4192 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
4193 return;
4194
a4da4fa4 4195 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
4196 return;
4197
4198 misccpctl = I915_READ(GEN7_MISCCPCTL);
4199 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4200 POSTING_READ(GEN7_MISCCPCTL);
4201
4202 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4203 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 4204 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4205 DRM_DEBUG("0x%x was already programmed to %x\n",
4206 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4207 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4208 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4209 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4210 }
4211
4212 /* Make sure all the writes land before disabling dop clock gating */
4213 POSTING_READ(GEN7_L3LOG_BASE);
4214
4215 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4216}
4217
f691e2f4
DV
4218void i915_gem_init_swizzling(struct drm_device *dev)
4219{
4220 drm_i915_private_t *dev_priv = dev->dev_private;
4221
11782b02 4222 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4223 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4224 return;
4225
4226 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4227 DISP_TILE_SURFACE_SWIZZLING);
4228
11782b02
DV
4229 if (IS_GEN5(dev))
4230 return;
4231
f691e2f4
DV
4232 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4233 if (IS_GEN6(dev))
6b26c86d 4234 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4235 else if (IS_GEN7(dev))
6b26c86d 4236 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4237 else
4238 BUG();
f691e2f4 4239}
e21af88d 4240
67b1b571
CW
4241static bool
4242intel_enable_blt(struct drm_device *dev)
4243{
4244 if (!HAS_BLT(dev))
4245 return false;
4246
4247 /* The blitter was dysfunctional on early prototypes */
4248 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4249 DRM_INFO("BLT not supported on this pre-production hardware;"
4250 " graphics performance will be degraded.\n");
4251 return false;
4252 }
4253
4254 return true;
4255}
4256
4fc7c971 4257static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4258{
4fc7c971 4259 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4260 int ret;
68f95ba9 4261
5c1143bb 4262 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4263 if (ret)
b6913e4b 4264 return ret;
68f95ba9
CW
4265
4266 if (HAS_BSD(dev)) {
5c1143bb 4267 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4268 if (ret)
4269 goto cleanup_render_ring;
d1b851fc 4270 }
68f95ba9 4271
67b1b571 4272 if (intel_enable_blt(dev)) {
549f7365
CW
4273 ret = intel_init_blt_ring_buffer(dev);
4274 if (ret)
4275 goto cleanup_bsd_ring;
4276 }
4277
9a8a2213
BW
4278 if (HAS_VEBOX(dev)) {
4279 ret = intel_init_vebox_ring_buffer(dev);
4280 if (ret)
4281 goto cleanup_blt_ring;
4282 }
4283
4284
99433931 4285 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4286 if (ret)
9a8a2213 4287 goto cleanup_vebox_ring;
4fc7c971
BW
4288
4289 return 0;
4290
9a8a2213
BW
4291cleanup_vebox_ring:
4292 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4293cleanup_blt_ring:
4294 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4295cleanup_bsd_ring:
4296 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4297cleanup_render_ring:
4298 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4299
4300 return ret;
4301}
4302
4303int
4304i915_gem_init_hw(struct drm_device *dev)
4305{
4306 drm_i915_private_t *dev_priv = dev->dev_private;
4307 int ret;
4308
4309 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4310 return -EIO;
4311
59124506 4312 if (dev_priv->ellc_size)
05e21cc4 4313 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4314
88a2b2a3
BW
4315 if (HAS_PCH_NOP(dev)) {
4316 u32 temp = I915_READ(GEN7_MSG_CTL);
4317 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4318 I915_WRITE(GEN7_MSG_CTL, temp);
4319 }
4320
4fc7c971
BW
4321 i915_gem_l3_remap(dev);
4322
4323 i915_gem_init_swizzling(dev);
4324
4325 ret = i915_gem_init_rings(dev);
99433931
MK
4326 if (ret)
4327 return ret;
4328
254f965c
BW
4329 /*
4330 * XXX: There was some w/a described somewhere suggesting loading
4331 * contexts before PPGTT.
4332 */
4333 i915_gem_context_init(dev);
b7c36d25
BW
4334 if (dev_priv->mm.aliasing_ppgtt) {
4335 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4336 if (ret) {
4337 i915_gem_cleanup_aliasing_ppgtt(dev);
4338 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4339 }
4340 }
e21af88d 4341
68f95ba9 4342 return 0;
8187a2b7
ZN
4343}
4344
1070a42b
CW
4345int i915_gem_init(struct drm_device *dev)
4346{
4347 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4348 int ret;
4349
1070a42b 4350 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4351
4352 if (IS_VALLEYVIEW(dev)) {
4353 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4354 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4355 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4356 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4357 }
4358
d7e5008f 4359 i915_gem_init_global_gtt(dev);
d62b4892 4360
1070a42b
CW
4361 ret = i915_gem_init_hw(dev);
4362 mutex_unlock(&dev->struct_mutex);
4363 if (ret) {
4364 i915_gem_cleanup_aliasing_ppgtt(dev);
4365 return ret;
4366 }
4367
53ca26ca
DV
4368 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4369 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4370 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4371 return 0;
4372}
4373
8187a2b7
ZN
4374void
4375i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4376{
4377 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4378 struct intel_ring_buffer *ring;
1ec14ad3 4379 int i;
8187a2b7 4380
b4519513
CW
4381 for_each_ring(ring, dev_priv, i)
4382 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4383}
4384
673a394b
EA
4385int
4386i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4387 struct drm_file *file_priv)
4388{
db1b76ca 4389 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4390 int ret;
673a394b 4391
79e53945
JB
4392 if (drm_core_check_feature(dev, DRIVER_MODESET))
4393 return 0;
4394
1f83fee0 4395 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4396 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4397 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4398 }
4399
673a394b 4400 mutex_lock(&dev->struct_mutex);
db1b76ca 4401 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4402
f691e2f4 4403 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4404 if (ret != 0) {
4405 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4406 return ret;
d816f6ac 4407 }
9bb2d6f9 4408
5cef07e1 4409 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4410 mutex_unlock(&dev->struct_mutex);
dbb19d30 4411
5f35308b
CW
4412 ret = drm_irq_install(dev);
4413 if (ret)
4414 goto cleanup_ringbuffer;
dbb19d30 4415
673a394b 4416 return 0;
5f35308b
CW
4417
4418cleanup_ringbuffer:
4419 mutex_lock(&dev->struct_mutex);
4420 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4421 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4422 mutex_unlock(&dev->struct_mutex);
4423
4424 return ret;
673a394b
EA
4425}
4426
4427int
4428i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4429 struct drm_file *file_priv)
4430{
db1b76ca
DV
4431 struct drm_i915_private *dev_priv = dev->dev_private;
4432 int ret;
4433
79e53945
JB
4434 if (drm_core_check_feature(dev, DRIVER_MODESET))
4435 return 0;
4436
dbb19d30 4437 drm_irq_uninstall(dev);
db1b76ca
DV
4438
4439 mutex_lock(&dev->struct_mutex);
4440 ret = i915_gem_idle(dev);
4441
4442 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4443 * We need to replace this with a semaphore, or something.
4444 * And not confound ums.mm_suspended!
4445 */
4446 if (ret != 0)
4447 dev_priv->ums.mm_suspended = 1;
4448 mutex_unlock(&dev->struct_mutex);
4449
4450 return ret;
673a394b
EA
4451}
4452
4453void
4454i915_gem_lastclose(struct drm_device *dev)
4455{
4456 int ret;
673a394b 4457
e806b495
EA
4458 if (drm_core_check_feature(dev, DRIVER_MODESET))
4459 return;
4460
db1b76ca 4461 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4462 ret = i915_gem_idle(dev);
4463 if (ret)
4464 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4465 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4466}
4467
64193406
CW
4468static void
4469init_ring_lists(struct intel_ring_buffer *ring)
4470{
4471 INIT_LIST_HEAD(&ring->active_list);
4472 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4473}
4474
fc8c067e
BW
4475static void i915_init_vm(struct drm_i915_private *dev_priv,
4476 struct i915_address_space *vm)
4477{
4478 vm->dev = dev_priv->dev;
4479 INIT_LIST_HEAD(&vm->active_list);
4480 INIT_LIST_HEAD(&vm->inactive_list);
4481 INIT_LIST_HEAD(&vm->global_link);
4482 list_add(&vm->global_link, &dev_priv->vm_list);
4483}
4484
673a394b
EA
4485void
4486i915_gem_load(struct drm_device *dev)
4487{
4488 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4489 int i;
4490
4491 dev_priv->slab =
4492 kmem_cache_create("i915_gem_object",
4493 sizeof(struct drm_i915_gem_object), 0,
4494 SLAB_HWCACHE_ALIGN,
4495 NULL);
673a394b 4496
fc8c067e
BW
4497 INIT_LIST_HEAD(&dev_priv->vm_list);
4498 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4499
6c085a72
CW
4500 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4501 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4502 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4503 for (i = 0; i < I915_NUM_RINGS; i++)
4504 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4505 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4506 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4507 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4508 i915_gem_retire_work_handler);
1f83fee0 4509 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4510
94400120
DA
4511 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4512 if (IS_GEN3(dev)) {
50743298
DV
4513 I915_WRITE(MI_ARB_STATE,
4514 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4515 }
4516
72bfa19c
CW
4517 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4518
de151cf6 4519 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4520 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4521 dev_priv->fence_reg_start = 3;
de151cf6 4522
42b5aeab
VS
4523 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4524 dev_priv->num_fence_regs = 32;
4525 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4526 dev_priv->num_fence_regs = 16;
4527 else
4528 dev_priv->num_fence_regs = 8;
4529
b5aa8a0f 4530 /* Initialize fence registers to zero */
19b2dbde
CW
4531 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4532 i915_gem_restore_fences(dev);
10ed13e4 4533
673a394b 4534 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4535 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4536
ce453d81
CW
4537 dev_priv->mm.interruptible = true;
4538
17250b71
CW
4539 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4540 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4541 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4542}
71acb5eb
DA
4543
4544/*
4545 * Create a physically contiguous memory object for this object
4546 * e.g. for cursor + overlay regs
4547 */
995b6762
CW
4548static int i915_gem_init_phys_object(struct drm_device *dev,
4549 int id, int size, int align)
71acb5eb
DA
4550{
4551 drm_i915_private_t *dev_priv = dev->dev_private;
4552 struct drm_i915_gem_phys_object *phys_obj;
4553 int ret;
4554
4555 if (dev_priv->mm.phys_objs[id - 1] || !size)
4556 return 0;
4557
9a298b2a 4558 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4559 if (!phys_obj)
4560 return -ENOMEM;
4561
4562 phys_obj->id = id;
4563
6eeefaf3 4564 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4565 if (!phys_obj->handle) {
4566 ret = -ENOMEM;
4567 goto kfree_obj;
4568 }
4569#ifdef CONFIG_X86
4570 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4571#endif
4572
4573 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4574
4575 return 0;
4576kfree_obj:
9a298b2a 4577 kfree(phys_obj);
71acb5eb
DA
4578 return ret;
4579}
4580
995b6762 4581static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4582{
4583 drm_i915_private_t *dev_priv = dev->dev_private;
4584 struct drm_i915_gem_phys_object *phys_obj;
4585
4586 if (!dev_priv->mm.phys_objs[id - 1])
4587 return;
4588
4589 phys_obj = dev_priv->mm.phys_objs[id - 1];
4590 if (phys_obj->cur_obj) {
4591 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4592 }
4593
4594#ifdef CONFIG_X86
4595 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4596#endif
4597 drm_pci_free(dev, phys_obj->handle);
4598 kfree(phys_obj);
4599 dev_priv->mm.phys_objs[id - 1] = NULL;
4600}
4601
4602void i915_gem_free_all_phys_object(struct drm_device *dev)
4603{
4604 int i;
4605
260883c8 4606 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4607 i915_gem_free_phys_object(dev, i);
4608}
4609
4610void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4611 struct drm_i915_gem_object *obj)
71acb5eb 4612{
496ad9aa 4613 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4614 char *vaddr;
71acb5eb 4615 int i;
71acb5eb
DA
4616 int page_count;
4617
05394f39 4618 if (!obj->phys_obj)
71acb5eb 4619 return;
05394f39 4620 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4621
05394f39 4622 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4623 for (i = 0; i < page_count; i++) {
5949eac4 4624 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4625 if (!IS_ERR(page)) {
4626 char *dst = kmap_atomic(page);
4627 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4628 kunmap_atomic(dst);
4629
4630 drm_clflush_pages(&page, 1);
4631
4632 set_page_dirty(page);
4633 mark_page_accessed(page);
4634 page_cache_release(page);
4635 }
71acb5eb 4636 }
e76e9aeb 4637 i915_gem_chipset_flush(dev);
d78b47b9 4638
05394f39
CW
4639 obj->phys_obj->cur_obj = NULL;
4640 obj->phys_obj = NULL;
71acb5eb
DA
4641}
4642
4643int
4644i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4645 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4646 int id,
4647 int align)
71acb5eb 4648{
496ad9aa 4649 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4650 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4651 int ret = 0;
4652 int page_count;
4653 int i;
4654
4655 if (id > I915_MAX_PHYS_OBJECT)
4656 return -EINVAL;
4657
05394f39
CW
4658 if (obj->phys_obj) {
4659 if (obj->phys_obj->id == id)
71acb5eb
DA
4660 return 0;
4661 i915_gem_detach_phys_object(dev, obj);
4662 }
4663
71acb5eb
DA
4664 /* create a new object */
4665 if (!dev_priv->mm.phys_objs[id - 1]) {
4666 ret = i915_gem_init_phys_object(dev, id,
05394f39 4667 obj->base.size, align);
71acb5eb 4668 if (ret) {
05394f39
CW
4669 DRM_ERROR("failed to init phys object %d size: %zu\n",
4670 id, obj->base.size);
e5281ccd 4671 return ret;
71acb5eb
DA
4672 }
4673 }
4674
4675 /* bind to the object */
05394f39
CW
4676 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4677 obj->phys_obj->cur_obj = obj;
71acb5eb 4678
05394f39 4679 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4680
4681 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4682 struct page *page;
4683 char *dst, *src;
4684
5949eac4 4685 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4686 if (IS_ERR(page))
4687 return PTR_ERR(page);
71acb5eb 4688
ff75b9bc 4689 src = kmap_atomic(page);
05394f39 4690 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4691 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4692 kunmap_atomic(src);
71acb5eb 4693
e5281ccd
CW
4694 mark_page_accessed(page);
4695 page_cache_release(page);
4696 }
d78b47b9 4697
71acb5eb 4698 return 0;
71acb5eb
DA
4699}
4700
4701static int
05394f39
CW
4702i915_gem_phys_pwrite(struct drm_device *dev,
4703 struct drm_i915_gem_object *obj,
71acb5eb
DA
4704 struct drm_i915_gem_pwrite *args,
4705 struct drm_file *file_priv)
4706{
05394f39 4707 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4708 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4709
b47b30cc
CW
4710 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4711 unsigned long unwritten;
4712
4713 /* The physical object once assigned is fixed for the lifetime
4714 * of the obj, so we can safely drop the lock and continue
4715 * to access vaddr.
4716 */
4717 mutex_unlock(&dev->struct_mutex);
4718 unwritten = copy_from_user(vaddr, user_data, args->size);
4719 mutex_lock(&dev->struct_mutex);
4720 if (unwritten)
4721 return -EFAULT;
4722 }
71acb5eb 4723
e76e9aeb 4724 i915_gem_chipset_flush(dev);
71acb5eb
DA
4725 return 0;
4726}
b962442e 4727
f787a5f5 4728void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4729{
f787a5f5 4730 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4731
4732 /* Clean up our request list when the client is going away, so that
4733 * later retire_requests won't dereference our soon-to-be-gone
4734 * file_priv.
4735 */
1c25595f 4736 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4737 while (!list_empty(&file_priv->mm.request_list)) {
4738 struct drm_i915_gem_request *request;
4739
4740 request = list_first_entry(&file_priv->mm.request_list,
4741 struct drm_i915_gem_request,
4742 client_list);
4743 list_del(&request->client_list);
4744 request->file_priv = NULL;
4745 }
1c25595f 4746 spin_unlock(&file_priv->mm.lock);
b962442e 4747}
31169714 4748
5774506f
CW
4749static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4750{
4751 if (!mutex_is_locked(mutex))
4752 return false;
4753
4754#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4755 return mutex->owner == task;
4756#else
4757 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4758 return false;
4759#endif
4760}
4761
31169714 4762static int
1495f230 4763i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4764{
17250b71
CW
4765 struct drm_i915_private *dev_priv =
4766 container_of(shrinker,
4767 struct drm_i915_private,
4768 mm.inactive_shrinker);
4769 struct drm_device *dev = dev_priv->dev;
6c085a72 4770 struct drm_i915_gem_object *obj;
1495f230 4771 int nr_to_scan = sc->nr_to_scan;
5774506f 4772 bool unlock = true;
17250b71
CW
4773 int cnt;
4774
5774506f
CW
4775 if (!mutex_trylock(&dev->struct_mutex)) {
4776 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4777 return 0;
4778
677feac2
DV
4779 if (dev_priv->mm.shrinker_no_lock_stealing)
4780 return 0;
4781
5774506f
CW
4782 unlock = false;
4783 }
31169714 4784
6c085a72
CW
4785 if (nr_to_scan) {
4786 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4787 if (nr_to_scan > 0)
4788 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4789 false);
6c085a72
CW
4790 if (nr_to_scan > 0)
4791 i915_gem_shrink_all(dev_priv);
31169714
CW
4792 }
4793
17250b71 4794 cnt = 0;
35c20a60 4795 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178
CW
4796 if (obj->pages_pin_count == 0)
4797 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4798
4799 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4800 if (obj->active)
4801 continue;
4802
a5570178 4803 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4804 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578 4805 }
17250b71 4806
5774506f
CW
4807 if (unlock)
4808 mutex_unlock(&dev->struct_mutex);
6c085a72 4809 return cnt;
31169714 4810}
a70a3148
BW
4811
4812/* All the new VM stuff */
4813unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4814 struct i915_address_space *vm)
4815{
4816 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4817 struct i915_vma *vma;
4818
4819 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4820 vm = &dev_priv->gtt.base;
4821
4822 BUG_ON(list_empty(&o->vma_list));
4823 list_for_each_entry(vma, &o->vma_list, vma_link) {
4824 if (vma->vm == vm)
4825 return vma->node.start;
4826
4827 }
4828 return -1;
4829}
4830
4831bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4832 struct i915_address_space *vm)
4833{
4834 struct i915_vma *vma;
4835
4836 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4837 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4838 return true;
4839
4840 return false;
4841}
4842
4843bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4844{
4845 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4846 struct i915_address_space *vm;
4847
4848 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4849 if (i915_gem_obj_bound(o, vm))
4850 return true;
4851
4852 return false;
4853}
4854
4855unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4856 struct i915_address_space *vm)
4857{
4858 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4859 struct i915_vma *vma;
4860
4861 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4862 vm = &dev_priv->gtt.base;
4863
4864 BUG_ON(list_empty(&o->vma_list));
4865
4866 list_for_each_entry(vma, &o->vma_list, vma_link)
4867 if (vma->vm == vm)
4868 return vma->node.size;
4869
4870 return 0;
4871}
4872
4873struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4874 struct i915_address_space *vm)
4875{
4876 struct i915_vma *vma;
4877 list_for_each_entry(vma, &obj->vma_list, vma_link)
4878 if (vma->vm == vm)
4879 return vma;
4880
4881 return NULL;
4882}
This page took 0.962801 seconds and 5 git commands to generate.