vmscan: change shrink_slab() interfaces by passing shrink_control
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
88241785 38static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
05394f39 46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
47static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
d9e86c0e
CW
50static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39
CW
55 struct drm_file *file);
56static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 57
17250b71
CW
58static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
21dd3734
CW
78static int
79i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
21dd3734
CW
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
30dbf0c0
CW
104}
105
54cf91dc 106int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 107{
76c1dec1
CW
108 int ret;
109
21dd3734 110 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
23bc5982 118 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
119 return 0;
120}
30dbf0c0 121
7d1c4804 122static inline bool
05394f39 123i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 124{
05394f39 125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
126}
127
2021746e
CW
128void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
673a394b
EA
132{
133 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 134
bee4a186 135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 136
bee4a186
CW
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
73aa808f 140 dev_priv->mm.gtt_total = end - start;
fb7d516a 141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 145}
673a394b 146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945
JB
150{
151 struct drm_i915_gem_init *args = data;
2021746e
CW
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
79e53945
JB
156
157 mutex_lock(&dev->struct_mutex);
2021746e 158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
159 mutex_unlock(&dev->struct_mutex);
160
2021746e 161 return 0;
673a394b
EA
162}
163
5a125c3c
EA
164int
165i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 166 struct drm_file *file)
5a125c3c 167{
73aa808f 168 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 169 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
5a125c3c
EA
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
6299f992 176 pinned = 0;
73aa808f 177 mutex_lock(&dev->struct_mutex);
6299f992
CW
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
73aa808f 180 mutex_unlock(&dev->struct_mutex);
5a125c3c 181
6299f992
CW
182 args->aper_size = dev_priv->mm.gtt_total;
183 args->aper_available_size = args->aper_size -pinned;
184
5a125c3c
EA
185 return 0;
186}
187
ff72145b
DA
188static int
189i915_gem_create(struct drm_file *file,
190 struct drm_device *dev,
191 uint64_t size,
192 uint32_t *handle_p)
673a394b 193{
05394f39 194 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
195 int ret;
196 u32 handle;
673a394b 197
ff72145b 198 size = roundup(size, PAGE_SIZE);
673a394b
EA
199
200 /* Allocate the new object */
ff72145b 201 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
202 if (obj == NULL)
203 return -ENOMEM;
204
05394f39 205 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 206 if (ret) {
05394f39
CW
207 drm_gem_object_release(&obj->base);
208 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 209 kfree(obj);
673a394b 210 return ret;
1dfd9754 211 }
673a394b 212
202f2fef 213 /* drop reference from allocate - handle holds it now */
05394f39 214 drm_gem_object_unreference(&obj->base);
202f2fef
CW
215 trace_i915_gem_object_create(obj);
216
ff72145b 217 *handle_p = handle;
673a394b
EA
218 return 0;
219}
220
ff72145b
DA
221int
222i915_gem_dumb_create(struct drm_file *file,
223 struct drm_device *dev,
224 struct drm_mode_create_dumb *args)
225{
226 /* have to work out size/pitch and return them */
ed0291fd 227 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
228 args->size = args->pitch * args->height;
229 return i915_gem_create(file, dev,
230 args->size, &args->handle);
231}
232
233int i915_gem_dumb_destroy(struct drm_file *file,
234 struct drm_device *dev,
235 uint32_t handle)
236{
237 return drm_gem_handle_delete(file, handle);
238}
239
240/**
241 * Creates a new mm object and returns a handle to it.
242 */
243int
244i915_gem_create_ioctl(struct drm_device *dev, void *data,
245 struct drm_file *file)
246{
247 struct drm_i915_gem_create *args = data;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250}
251
05394f39 252static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 253{
05394f39 254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 257 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
258}
259
99a03df5 260static inline void
40123c1f
EA
261slow_shmem_copy(struct page *dst_page,
262 int dst_offset,
263 struct page *src_page,
264 int src_offset,
265 int length)
266{
267 char *dst_vaddr, *src_vaddr;
268
99a03df5
CW
269 dst_vaddr = kmap(dst_page);
270 src_vaddr = kmap(src_page);
40123c1f
EA
271
272 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
273
99a03df5
CW
274 kunmap(src_page);
275 kunmap(dst_page);
40123c1f
EA
276}
277
99a03df5 278static inline void
280b713b
EA
279slow_shmem_bit17_copy(struct page *gpu_page,
280 int gpu_offset,
281 struct page *cpu_page,
282 int cpu_offset,
283 int length,
284 int is_read)
285{
286 char *gpu_vaddr, *cpu_vaddr;
287
288 /* Use the unswizzled path if this page isn't affected. */
289 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
290 if (is_read)
291 return slow_shmem_copy(cpu_page, cpu_offset,
292 gpu_page, gpu_offset, length);
293 else
294 return slow_shmem_copy(gpu_page, gpu_offset,
295 cpu_page, cpu_offset, length);
296 }
297
99a03df5
CW
298 gpu_vaddr = kmap(gpu_page);
299 cpu_vaddr = kmap(cpu_page);
280b713b
EA
300
301 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
302 * XORing with the other bits (A9 for Y, A9 and A10 for X)
303 */
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 if (is_read) {
310 memcpy(cpu_vaddr + cpu_offset,
311 gpu_vaddr + swizzled_gpu_offset,
312 this_length);
313 } else {
314 memcpy(gpu_vaddr + swizzled_gpu_offset,
315 cpu_vaddr + cpu_offset,
316 this_length);
317 }
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
321 }
322
99a03df5
CW
323 kunmap(cpu_page);
324 kunmap(gpu_page);
280b713b
EA
325}
326
eb01459f
EA
327/**
328 * This is the fast shmem pread path, which attempts to copy_from_user directly
329 * from the backing pages of the object to the user's address space. On a
330 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
331 */
332static int
05394f39
CW
333i915_gem_shmem_pread_fast(struct drm_device *dev,
334 struct drm_i915_gem_object *obj,
eb01459f 335 struct drm_i915_gem_pread *args,
05394f39 336 struct drm_file *file)
eb01459f 337{
05394f39 338 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 339 ssize_t remain;
e5281ccd 340 loff_t offset;
eb01459f
EA
341 char __user *user_data;
342 int page_offset, page_length;
eb01459f
EA
343
344 user_data = (char __user *) (uintptr_t) args->data_ptr;
345 remain = args->size;
346
eb01459f
EA
347 offset = args->offset;
348
349 while (remain > 0) {
e5281ccd
CW
350 struct page *page;
351 char *vaddr;
352 int ret;
353
eb01459f
EA
354 /* Operation in this page
355 *
eb01459f
EA
356 * page_offset = offset within page
357 * page_length = bytes to copy for this page
358 */
eb01459f
EA
359 page_offset = offset & (PAGE_SIZE-1);
360 page_length = remain;
361 if ((page_offset + remain) > PAGE_SIZE)
362 page_length = PAGE_SIZE - page_offset;
363
e5281ccd
CW
364 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
365 GFP_HIGHUSER | __GFP_RECLAIMABLE);
366 if (IS_ERR(page))
367 return PTR_ERR(page);
368
369 vaddr = kmap_atomic(page);
370 ret = __copy_to_user_inatomic(user_data,
371 vaddr + page_offset,
372 page_length);
373 kunmap_atomic(vaddr);
374
375 mark_page_accessed(page);
376 page_cache_release(page);
377 if (ret)
4f27b75d 378 return -EFAULT;
eb01459f
EA
379
380 remain -= page_length;
381 user_data += page_length;
382 offset += page_length;
383 }
384
4f27b75d 385 return 0;
eb01459f
EA
386}
387
388/**
389 * This is the fallback shmem pread path, which allocates temporary storage
390 * in kernel space to copy_to_user into outside of the struct_mutex, so we
391 * can copy out of the object's backing pages while holding the struct mutex
392 * and not take page faults.
393 */
394static int
05394f39
CW
395i915_gem_shmem_pread_slow(struct drm_device *dev,
396 struct drm_i915_gem_object *obj,
eb01459f 397 struct drm_i915_gem_pread *args,
05394f39 398 struct drm_file *file)
eb01459f 399{
05394f39 400 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
401 struct mm_struct *mm = current->mm;
402 struct page **user_pages;
403 ssize_t remain;
404 loff_t offset, pinned_pages, i;
405 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
406 int shmem_page_offset;
407 int data_page_index, data_page_offset;
eb01459f
EA
408 int page_length;
409 int ret;
410 uint64_t data_ptr = args->data_ptr;
280b713b 411 int do_bit17_swizzling;
eb01459f
EA
412
413 remain = args->size;
414
415 /* Pin the user pages containing the data. We can't fault while
416 * holding the struct mutex, yet we want to hold it while
417 * dereferencing the user data.
418 */
419 first_data_page = data_ptr / PAGE_SIZE;
420 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 num_pages = last_data_page - first_data_page + 1;
422
4f27b75d 423 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
424 if (user_pages == NULL)
425 return -ENOMEM;
426
4f27b75d 427 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
428 down_read(&mm->mmap_sem);
429 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 430 num_pages, 1, 0, user_pages, NULL);
eb01459f 431 up_read(&mm->mmap_sem);
4f27b75d 432 mutex_lock(&dev->struct_mutex);
eb01459f
EA
433 if (pinned_pages < num_pages) {
434 ret = -EFAULT;
4f27b75d 435 goto out;
eb01459f
EA
436 }
437
4f27b75d
CW
438 ret = i915_gem_object_set_cpu_read_domain_range(obj,
439 args->offset,
440 args->size);
07f73f69 441 if (ret)
4f27b75d 442 goto out;
eb01459f 443
4f27b75d 444 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 445
eb01459f
EA
446 offset = args->offset;
447
448 while (remain > 0) {
e5281ccd
CW
449 struct page *page;
450
eb01459f
EA
451 /* Operation in this page
452 *
eb01459f
EA
453 * shmem_page_offset = offset within page in shmem file
454 * data_page_index = page number in get_user_pages return
455 * data_page_offset = offset with data_page_index page.
456 * page_length = bytes to copy for this page
457 */
eb01459f
EA
458 shmem_page_offset = offset & ~PAGE_MASK;
459 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460 data_page_offset = data_ptr & ~PAGE_MASK;
461
462 page_length = remain;
463 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - shmem_page_offset;
465 if ((data_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - data_page_offset;
467
e5281ccd
CW
468 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
469 GFP_HIGHUSER | __GFP_RECLAIMABLE);
470 if (IS_ERR(page))
471 return PTR_ERR(page);
472
280b713b 473 if (do_bit17_swizzling) {
e5281ccd 474 slow_shmem_bit17_copy(page,
280b713b 475 shmem_page_offset,
99a03df5
CW
476 user_pages[data_page_index],
477 data_page_offset,
478 page_length,
479 1);
480 } else {
481 slow_shmem_copy(user_pages[data_page_index],
482 data_page_offset,
e5281ccd 483 page,
99a03df5
CW
484 shmem_page_offset,
485 page_length);
280b713b 486 }
eb01459f 487
e5281ccd
CW
488 mark_page_accessed(page);
489 page_cache_release(page);
490
eb01459f
EA
491 remain -= page_length;
492 data_ptr += page_length;
493 offset += page_length;
494 }
495
4f27b75d 496out:
eb01459f
EA
497 for (i = 0; i < pinned_pages; i++) {
498 SetPageDirty(user_pages[i]);
e5281ccd 499 mark_page_accessed(user_pages[i]);
eb01459f
EA
500 page_cache_release(user_pages[i]);
501 }
8e7d2b2c 502 drm_free_large(user_pages);
eb01459f
EA
503
504 return ret;
505}
506
673a394b
EA
507/**
508 * Reads data from the object referenced by handle.
509 *
510 * On error, the contents of *data are undefined.
511 */
512int
513i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 514 struct drm_file *file)
673a394b
EA
515{
516 struct drm_i915_gem_pread *args = data;
05394f39 517 struct drm_i915_gem_object *obj;
35b62a89 518 int ret = 0;
673a394b 519
51311d0a
CW
520 if (args->size == 0)
521 return 0;
522
523 if (!access_ok(VERIFY_WRITE,
524 (char __user *)(uintptr_t)args->data_ptr,
525 args->size))
526 return -EFAULT;
527
528 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
529 args->size);
530 if (ret)
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
db53a302
CW
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
4f27b75d
CW
552 ret = i915_gem_object_set_cpu_read_domain_range(obj,
553 args->offset,
554 args->size);
555 if (ret)
e5281ccd 556 goto out;
4f27b75d
CW
557
558 ret = -EFAULT;
559 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 560 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 561 if (ret == -EFAULT)
05394f39 562 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 563
35b62a89 564out:
05394f39 565 drm_gem_object_unreference(&obj->base);
1d7cfea1 566unlock:
4f27b75d 567 mutex_unlock(&dev->struct_mutex);
eb01459f 568 return ret;
673a394b
EA
569}
570
0839ccb8
KP
571/* This is the fast write path which cannot handle
572 * page faults in the source data
9b7530cc 573 */
0839ccb8
KP
574
575static inline int
576fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
9b7530cc 580{
9b7530cc 581 char *vaddr_atomic;
0839ccb8 582 unsigned long unwritten;
9b7530cc 583
3e4d3af5 584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
585 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
586 user_data, length);
3e4d3af5 587 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 588 return unwritten;
0839ccb8
KP
589}
590
591/* Here's the write path which can sleep for
592 * page faults
593 */
594
ab34c226 595static inline void
3de09aa3
EA
596slow_kernel_write(struct io_mapping *mapping,
597 loff_t gtt_base, int gtt_offset,
598 struct page *user_page, int user_offset,
599 int length)
0839ccb8 600{
ab34c226
CW
601 char __iomem *dst_vaddr;
602 char *src_vaddr;
0839ccb8 603
ab34c226
CW
604 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
605 src_vaddr = kmap(user_page);
606
607 memcpy_toio(dst_vaddr + gtt_offset,
608 src_vaddr + user_offset,
609 length);
610
611 kunmap(user_page);
612 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
613}
614
3de09aa3
EA
615/**
616 * This is the fast pwrite path, where we copy the data directly from the
617 * user into the GTT, uncached.
618 */
673a394b 619static int
05394f39
CW
620i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621 struct drm_i915_gem_object *obj,
3de09aa3 622 struct drm_i915_gem_pwrite *args,
05394f39 623 struct drm_file *file)
673a394b 624{
0839ccb8 625 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 626 ssize_t remain;
0839ccb8 627 loff_t offset, page_base;
673a394b 628 char __user *user_data;
0839ccb8 629 int page_offset, page_length;
673a394b
EA
630
631 user_data = (char __user *) (uintptr_t) args->data_ptr;
632 remain = args->size;
673a394b 633
05394f39 634 offset = obj->gtt_offset + args->offset;
673a394b
EA
635
636 while (remain > 0) {
637 /* Operation in this page
638 *
0839ccb8
KP
639 * page_base = page offset within aperture
640 * page_offset = offset within page
641 * page_length = bytes to copy for this page
673a394b 642 */
0839ccb8
KP
643 page_base = (offset & ~(PAGE_SIZE-1));
644 page_offset = offset & (PAGE_SIZE-1);
645 page_length = remain;
646 if ((page_offset + remain) > PAGE_SIZE)
647 page_length = PAGE_SIZE - page_offset;
648
0839ccb8 649 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
650 * source page isn't available. Return the error and we'll
651 * retry in the slow path.
0839ccb8 652 */
fbd5a26d
CW
653 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
654 page_offset, user_data, page_length))
655
656 return -EFAULT;
673a394b 657
0839ccb8
KP
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
673a394b 661 }
673a394b 662
fbd5a26d 663 return 0;
673a394b
EA
664}
665
3de09aa3
EA
666/**
667 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668 * the memory and maps it using kmap_atomic for copying.
669 *
670 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
672 */
3043c60c 673static int
05394f39
CW
674i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 struct drm_i915_gem_object *obj,
3de09aa3 676 struct drm_i915_gem_pwrite *args,
05394f39 677 struct drm_file *file)
673a394b 678{
3de09aa3
EA
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t gtt_page_base, offset;
682 loff_t first_data_page, last_data_page, num_pages;
683 loff_t pinned_pages, i;
684 struct page **user_pages;
685 struct mm_struct *mm = current->mm;
686 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 687 int ret;
3de09aa3
EA
688 uint64_t data_ptr = args->data_ptr;
689
690 remain = args->size;
691
692 /* Pin the user pages containing the data. We can't fault while
693 * holding the struct mutex, and all of the pwrite implementations
694 * want to hold it while dereferencing the user data.
695 */
696 first_data_page = data_ptr / PAGE_SIZE;
697 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 num_pages = last_data_page - first_data_page + 1;
699
fbd5a26d 700 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
701 if (user_pages == NULL)
702 return -ENOMEM;
703
fbd5a26d 704 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
705 down_read(&mm->mmap_sem);
706 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 num_pages, 0, 0, user_pages, NULL);
708 up_read(&mm->mmap_sem);
fbd5a26d 709 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
710 if (pinned_pages < num_pages) {
711 ret = -EFAULT;
712 goto out_unpin_pages;
713 }
673a394b 714
d9e86c0e
CW
715 ret = i915_gem_object_set_to_gtt_domain(obj, true);
716 if (ret)
717 goto out_unpin_pages;
718
719 ret = i915_gem_object_put_fence(obj);
3de09aa3 720 if (ret)
fbd5a26d 721 goto out_unpin_pages;
3de09aa3 722
05394f39 723 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * gtt_page_base = page offset within aperture
729 * gtt_page_offset = offset within page in aperture
730 * data_page_index = page number in get_user_pages return
731 * data_page_offset = offset with data_page_index page.
732 * page_length = bytes to copy for this page
733 */
734 gtt_page_base = offset & PAGE_MASK;
735 gtt_page_offset = offset & ~PAGE_MASK;
736 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737 data_page_offset = data_ptr & ~PAGE_MASK;
738
739 page_length = remain;
740 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - gtt_page_offset;
742 if ((data_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - data_page_offset;
744
ab34c226
CW
745 slow_kernel_write(dev_priv->mm.gtt_mapping,
746 gtt_page_base, gtt_page_offset,
747 user_pages[data_page_index],
748 data_page_offset,
749 page_length);
3de09aa3
EA
750
751 remain -= page_length;
752 offset += page_length;
753 data_ptr += page_length;
754 }
755
3de09aa3
EA
756out_unpin_pages:
757 for (i = 0; i < pinned_pages; i++)
758 page_cache_release(user_pages[i]);
8e7d2b2c 759 drm_free_large(user_pages);
3de09aa3
EA
760
761 return ret;
762}
763
40123c1f
EA
764/**
765 * This is the fast shmem pwrite path, which attempts to directly
766 * copy_from_user into the kmapped pages backing the object.
767 */
3043c60c 768static int
05394f39
CW
769i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 struct drm_i915_gem_object *obj,
40123c1f 771 struct drm_i915_gem_pwrite *args,
05394f39 772 struct drm_file *file)
673a394b 773{
05394f39 774 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 775 ssize_t remain;
e5281ccd 776 loff_t offset;
40123c1f
EA
777 char __user *user_data;
778 int page_offset, page_length;
40123c1f
EA
779
780 user_data = (char __user *) (uintptr_t) args->data_ptr;
781 remain = args->size;
673a394b 782
40123c1f 783 offset = args->offset;
05394f39 784 obj->dirty = 1;
40123c1f
EA
785
786 while (remain > 0) {
e5281ccd
CW
787 struct page *page;
788 char *vaddr;
789 int ret;
790
40123c1f
EA
791 /* Operation in this page
792 *
40123c1f
EA
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
40123c1f
EA
796 page_offset = offset & (PAGE_SIZE-1);
797 page_length = remain;
798 if ((page_offset + remain) > PAGE_SIZE)
799 page_length = PAGE_SIZE - page_offset;
800
e5281ccd
CW
801 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
802 GFP_HIGHUSER | __GFP_RECLAIMABLE);
803 if (IS_ERR(page))
804 return PTR_ERR(page);
805
806 vaddr = kmap_atomic(page, KM_USER0);
807 ret = __copy_from_user_inatomic(vaddr + page_offset,
808 user_data,
809 page_length);
810 kunmap_atomic(vaddr, KM_USER0);
811
812 set_page_dirty(page);
813 mark_page_accessed(page);
814 page_cache_release(page);
815
816 /* If we get a fault while copying data, then (presumably) our
817 * source page isn't available. Return the error and we'll
818 * retry in the slow path.
819 */
820 if (ret)
fbd5a26d 821 return -EFAULT;
40123c1f
EA
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
fbd5a26d 828 return 0;
40123c1f
EA
829}
830
831/**
832 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
833 * the memory and maps it using kmap_atomic for copying.
834 *
835 * This avoids taking mmap_sem for faulting on the user's address while the
836 * struct_mutex is held.
837 */
838static int
05394f39
CW
839i915_gem_shmem_pwrite_slow(struct drm_device *dev,
840 struct drm_i915_gem_object *obj,
40123c1f 841 struct drm_i915_gem_pwrite *args,
05394f39 842 struct drm_file *file)
40123c1f 843{
05394f39 844 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
845 struct mm_struct *mm = current->mm;
846 struct page **user_pages;
847 ssize_t remain;
848 loff_t offset, pinned_pages, i;
849 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 850 int shmem_page_offset;
40123c1f
EA
851 int data_page_index, data_page_offset;
852 int page_length;
853 int ret;
854 uint64_t data_ptr = args->data_ptr;
280b713b 855 int do_bit17_swizzling;
40123c1f
EA
856
857 remain = args->size;
858
859 /* Pin the user pages containing the data. We can't fault while
860 * holding the struct mutex, and all of the pwrite implementations
861 * want to hold it while dereferencing the user data.
862 */
863 first_data_page = data_ptr / PAGE_SIZE;
864 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
865 num_pages = last_data_page - first_data_page + 1;
866
4f27b75d 867 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
868 if (user_pages == NULL)
869 return -ENOMEM;
870
fbd5a26d 871 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
872 down_read(&mm->mmap_sem);
873 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
874 num_pages, 0, 0, user_pages, NULL);
875 up_read(&mm->mmap_sem);
fbd5a26d 876 mutex_lock(&dev->struct_mutex);
40123c1f
EA
877 if (pinned_pages < num_pages) {
878 ret = -EFAULT;
fbd5a26d 879 goto out;
673a394b
EA
880 }
881
fbd5a26d 882 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 883 if (ret)
fbd5a26d 884 goto out;
40123c1f 885
fbd5a26d 886 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 887
673a394b 888 offset = args->offset;
05394f39 889 obj->dirty = 1;
673a394b 890
40123c1f 891 while (remain > 0) {
e5281ccd
CW
892 struct page *page;
893
40123c1f
EA
894 /* Operation in this page
895 *
40123c1f
EA
896 * shmem_page_offset = offset within page in shmem file
897 * data_page_index = page number in get_user_pages return
898 * data_page_offset = offset with data_page_index page.
899 * page_length = bytes to copy for this page
900 */
40123c1f
EA
901 shmem_page_offset = offset & ~PAGE_MASK;
902 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
903 data_page_offset = data_ptr & ~PAGE_MASK;
904
905 page_length = remain;
906 if ((shmem_page_offset + page_length) > PAGE_SIZE)
907 page_length = PAGE_SIZE - shmem_page_offset;
908 if ((data_page_offset + page_length) > PAGE_SIZE)
909 page_length = PAGE_SIZE - data_page_offset;
910
e5281ccd
CW
911 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
912 GFP_HIGHUSER | __GFP_RECLAIMABLE);
913 if (IS_ERR(page)) {
914 ret = PTR_ERR(page);
915 goto out;
916 }
917
280b713b 918 if (do_bit17_swizzling) {
e5281ccd 919 slow_shmem_bit17_copy(page,
280b713b
EA
920 shmem_page_offset,
921 user_pages[data_page_index],
922 data_page_offset,
99a03df5
CW
923 page_length,
924 0);
925 } else {
e5281ccd 926 slow_shmem_copy(page,
99a03df5
CW
927 shmem_page_offset,
928 user_pages[data_page_index],
929 data_page_offset,
930 page_length);
280b713b 931 }
40123c1f 932
e5281ccd
CW
933 set_page_dirty(page);
934 mark_page_accessed(page);
935 page_cache_release(page);
936
40123c1f
EA
937 remain -= page_length;
938 data_ptr += page_length;
939 offset += page_length;
673a394b
EA
940 }
941
fbd5a26d 942out:
40123c1f
EA
943 for (i = 0; i < pinned_pages; i++)
944 page_cache_release(user_pages[i]);
8e7d2b2c 945 drm_free_large(user_pages);
673a394b 946
40123c1f 947 return ret;
673a394b
EA
948}
949
950/**
951 * Writes data to the object referenced by handle.
952 *
953 * On error, the contents of the buffer that were to be modified are undefined.
954 */
955int
956i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 957 struct drm_file *file)
673a394b
EA
958{
959 struct drm_i915_gem_pwrite *args = data;
05394f39 960 struct drm_i915_gem_object *obj;
51311d0a
CW
961 int ret;
962
963 if (args->size == 0)
964 return 0;
965
966 if (!access_ok(VERIFY_READ,
967 (char __user *)(uintptr_t)args->data_ptr,
968 args->size))
969 return -EFAULT;
970
971 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
972 args->size);
973 if (ret)
974 return -EFAULT;
673a394b 975
fbd5a26d 976 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 977 if (ret)
fbd5a26d 978 return ret;
1d7cfea1 979
05394f39 980 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 981 if (&obj->base == NULL) {
1d7cfea1
CW
982 ret = -ENOENT;
983 goto unlock;
fbd5a26d 984 }
673a394b 985
7dcd2499 986 /* Bounds check destination. */
05394f39
CW
987 if (args->offset > obj->base.size ||
988 args->size > obj->base.size - args->offset) {
ce9d419d 989 ret = -EINVAL;
35b62a89 990 goto out;
ce9d419d
CW
991 }
992
db53a302
CW
993 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
994
673a394b
EA
995 /* We can only do the GTT pwrite on untiled buffers, as otherwise
996 * it would end up going through the fenced access, and we'll get
997 * different detiling behavior between reading and writing.
998 * pread/pwrite currently are reading and writing from the CPU
999 * perspective, requiring manual detiling by the client.
1000 */
05394f39 1001 if (obj->phys_obj)
fbd5a26d 1002 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 1003 else if (obj->gtt_space &&
05394f39 1004 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1005 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1006 if (ret)
1007 goto out;
1008
d9e86c0e
CW
1009 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1010 if (ret)
1011 goto out_unpin;
1012
1013 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
1014 if (ret)
1015 goto out_unpin;
1016
1017 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1018 if (ret == -EFAULT)
1019 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1020
1021out_unpin:
1022 i915_gem_object_unpin(obj);
40123c1f 1023 } else {
fbd5a26d
CW
1024 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1025 if (ret)
e5281ccd 1026 goto out;
673a394b 1027
fbd5a26d
CW
1028 ret = -EFAULT;
1029 if (!i915_gem_object_needs_bit17_swizzle(obj))
1030 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1031 if (ret == -EFAULT)
1032 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1033 }
673a394b 1034
35b62a89 1035out:
05394f39 1036 drm_gem_object_unreference(&obj->base);
1d7cfea1 1037unlock:
fbd5a26d 1038 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1039 return ret;
1040}
1041
1042/**
2ef7eeaa
EA
1043 * Called when user space prepares to use an object with the CPU, either
1044 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1045 */
1046int
1047i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1048 struct drm_file *file)
673a394b
EA
1049{
1050 struct drm_i915_gem_set_domain *args = data;
05394f39 1051 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1052 uint32_t read_domains = args->read_domains;
1053 uint32_t write_domain = args->write_domain;
673a394b
EA
1054 int ret;
1055
1056 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 return -ENODEV;
1058
2ef7eeaa 1059 /* Only handle setting domains to types used by the CPU. */
21d509e3 1060 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1061 return -EINVAL;
1062
21d509e3 1063 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1064 return -EINVAL;
1065
1066 /* Having something in the write domain implies it's in the read
1067 * domain, and only that read domain. Enforce that in the request.
1068 */
1069 if (write_domain != 0 && read_domains != write_domain)
1070 return -EINVAL;
1071
76c1dec1 1072 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1073 if (ret)
76c1dec1 1074 return ret;
1d7cfea1 1075
05394f39 1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1077 if (&obj->base == NULL) {
1d7cfea1
CW
1078 ret = -ENOENT;
1079 goto unlock;
76c1dec1 1080 }
673a394b 1081
2ef7eeaa
EA
1082 if (read_domains & I915_GEM_DOMAIN_GTT) {
1083 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1084
1085 /* Silently promote "you're not bound, there was nothing to do"
1086 * to success, since the client was just asking us to
1087 * make sure everything was done.
1088 */
1089 if (ret == -EINVAL)
1090 ret = 0;
2ef7eeaa 1091 } else {
e47c68e9 1092 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1093 }
1094
05394f39 1095 drm_gem_object_unreference(&obj->base);
1d7cfea1 1096unlock:
673a394b
EA
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1099}
1100
1101/**
1102 * Called when user space has done writes to this buffer
1103 */
1104int
1105i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1106 struct drm_file *file)
673a394b
EA
1107{
1108 struct drm_i915_gem_sw_finish *args = data;
05394f39 1109 struct drm_i915_gem_object *obj;
673a394b
EA
1110 int ret = 0;
1111
1112 if (!(dev->driver->driver_features & DRIVER_GEM))
1113 return -ENODEV;
1114
76c1dec1 1115 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1116 if (ret)
76c1dec1 1117 return ret;
1d7cfea1 1118
05394f39 1119 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1120 if (&obj->base == NULL) {
1d7cfea1
CW
1121 ret = -ENOENT;
1122 goto unlock;
673a394b
EA
1123 }
1124
673a394b 1125 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1126 if (obj->pin_count)
e47c68e9
EA
1127 i915_gem_object_flush_cpu_write_domain(obj);
1128
05394f39 1129 drm_gem_object_unreference(&obj->base);
1d7cfea1 1130unlock:
673a394b
EA
1131 mutex_unlock(&dev->struct_mutex);
1132 return ret;
1133}
1134
1135/**
1136 * Maps the contents of an object, returning the address it is mapped
1137 * into.
1138 *
1139 * While the mapping holds a reference on the contents of the object, it doesn't
1140 * imply a ref on the object itself.
1141 */
1142int
1143i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1144 struct drm_file *file)
673a394b 1145{
da761a6e 1146 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1147 struct drm_i915_gem_mmap *args = data;
1148 struct drm_gem_object *obj;
673a394b
EA
1149 unsigned long addr;
1150
1151 if (!(dev->driver->driver_features & DRIVER_GEM))
1152 return -ENODEV;
1153
05394f39 1154 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1155 if (obj == NULL)
bf79cb91 1156 return -ENOENT;
673a394b 1157
da761a6e
CW
1158 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1159 drm_gem_object_unreference_unlocked(obj);
1160 return -E2BIG;
1161 }
1162
673a394b
EA
1163 down_write(&current->mm->mmap_sem);
1164 addr = do_mmap(obj->filp, 0, args->size,
1165 PROT_READ | PROT_WRITE, MAP_SHARED,
1166 args->offset);
1167 up_write(&current->mm->mmap_sem);
bc9025bd 1168 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1169 if (IS_ERR((void *)addr))
1170 return addr;
1171
1172 args->addr_ptr = (uint64_t) addr;
1173
1174 return 0;
1175}
1176
de151cf6
JB
1177/**
1178 * i915_gem_fault - fault a page into the GTT
1179 * vma: VMA in question
1180 * vmf: fault info
1181 *
1182 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1183 * from userspace. The fault handler takes care of binding the object to
1184 * the GTT (if needed), allocating and programming a fence register (again,
1185 * only if needed based on whether the old reg is still valid or the object
1186 * is tiled) and inserting a new PTE into the faulting process.
1187 *
1188 * Note that the faulting process may involve evicting existing objects
1189 * from the GTT and/or fence registers to make room. So performance may
1190 * suffer if the GTT working set is large or there are few fence registers
1191 * left.
1192 */
1193int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1194{
05394f39
CW
1195 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1196 struct drm_device *dev = obj->base.dev;
7d1c4804 1197 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1198 pgoff_t page_offset;
1199 unsigned long pfn;
1200 int ret = 0;
0f973f27 1201 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1202
1203 /* We don't use vmf->pgoff since that has the fake offset */
1204 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1205 PAGE_SHIFT;
1206
d9bc7e9f
CW
1207 ret = i915_mutex_lock_interruptible(dev);
1208 if (ret)
1209 goto out;
a00b10c3 1210
db53a302
CW
1211 trace_i915_gem_object_fault(obj, page_offset, true, write);
1212
d9bc7e9f 1213 /* Now bind it into the GTT if needed */
919926ae
CW
1214 if (!obj->map_and_fenceable) {
1215 ret = i915_gem_object_unbind(obj);
1216 if (ret)
1217 goto unlock;
a00b10c3 1218 }
05394f39 1219 if (!obj->gtt_space) {
75e9e915 1220 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1221 if (ret)
1222 goto unlock;
de151cf6
JB
1223 }
1224
4a684a41
CW
1225 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1226 if (ret)
1227 goto unlock;
1228
d9e86c0e
CW
1229 if (obj->tiling_mode == I915_TILING_NONE)
1230 ret = i915_gem_object_put_fence(obj);
1231 else
ce453d81 1232 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1233 if (ret)
1234 goto unlock;
de151cf6 1235
05394f39
CW
1236 if (i915_gem_object_is_inactive(obj))
1237 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1238
6299f992
CW
1239 obj->fault_mappable = true;
1240
05394f39 1241 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1242 page_offset;
1243
1244 /* Finally, remap it using the new GTT offset */
1245 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1246unlock:
de151cf6 1247 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1248out:
de151cf6 1249 switch (ret) {
d9bc7e9f 1250 case -EIO:
045e769a 1251 case -EAGAIN:
d9bc7e9f
CW
1252 /* Give the error handler a chance to run and move the
1253 * objects off the GPU active list. Next time we service the
1254 * fault, we should be able to transition the page into the
1255 * GTT without touching the GPU (and so avoid further
1256 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1257 * with coherency, just lost writes.
1258 */
045e769a 1259 set_need_resched();
c715089f
CW
1260 case 0:
1261 case -ERESTARTSYS:
bed636ab 1262 case -EINTR:
c715089f 1263 return VM_FAULT_NOPAGE;
de151cf6 1264 case -ENOMEM:
de151cf6 1265 return VM_FAULT_OOM;
de151cf6 1266 default:
c715089f 1267 return VM_FAULT_SIGBUS;
de151cf6
JB
1268 }
1269}
1270
1271/**
1272 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1273 * @obj: obj in question
1274 *
1275 * GEM memory mapping works by handing back to userspace a fake mmap offset
1276 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1277 * up the object based on the offset and sets up the various memory mapping
1278 * structures.
1279 *
1280 * This routine allocates and attaches a fake offset for @obj.
1281 */
1282static int
05394f39 1283i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1284{
05394f39 1285 struct drm_device *dev = obj->base.dev;
de151cf6 1286 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1287 struct drm_map_list *list;
f77d390c 1288 struct drm_local_map *map;
de151cf6
JB
1289 int ret = 0;
1290
1291 /* Set the object up for mmap'ing */
05394f39 1292 list = &obj->base.map_list;
9a298b2a 1293 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1294 if (!list->map)
1295 return -ENOMEM;
1296
1297 map = list->map;
1298 map->type = _DRM_GEM;
05394f39 1299 map->size = obj->base.size;
de151cf6
JB
1300 map->handle = obj;
1301
1302 /* Get a DRM GEM mmap offset allocated... */
1303 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1304 obj->base.size / PAGE_SIZE,
1305 0, 0);
de151cf6 1306 if (!list->file_offset_node) {
05394f39
CW
1307 DRM_ERROR("failed to allocate offset for bo %d\n",
1308 obj->base.name);
9e0ae534 1309 ret = -ENOSPC;
de151cf6
JB
1310 goto out_free_list;
1311 }
1312
1313 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1314 obj->base.size / PAGE_SIZE,
1315 0);
de151cf6
JB
1316 if (!list->file_offset_node) {
1317 ret = -ENOMEM;
1318 goto out_free_list;
1319 }
1320
1321 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1322 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1323 if (ret) {
de151cf6
JB
1324 DRM_ERROR("failed to add to map hash\n");
1325 goto out_free_mm;
1326 }
1327
de151cf6
JB
1328 return 0;
1329
1330out_free_mm:
1331 drm_mm_put_block(list->file_offset_node);
1332out_free_list:
9a298b2a 1333 kfree(list->map);
39a01d1f 1334 list->map = NULL;
de151cf6
JB
1335
1336 return ret;
1337}
1338
901782b2
CW
1339/**
1340 * i915_gem_release_mmap - remove physical page mappings
1341 * @obj: obj in question
1342 *
af901ca1 1343 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1344 * relinquish ownership of the pages back to the system.
1345 *
1346 * It is vital that we remove the page mapping if we have mapped a tiled
1347 * object through the GTT and then lose the fence register due to
1348 * resource pressure. Similarly if the object has been moved out of the
1349 * aperture, than pages mapped into userspace must be revoked. Removing the
1350 * mapping will then trigger a page fault on the next user access, allowing
1351 * fixup by i915_gem_fault().
1352 */
d05ca301 1353void
05394f39 1354i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1355{
6299f992
CW
1356 if (!obj->fault_mappable)
1357 return;
901782b2 1358
f6e47884
CW
1359 if (obj->base.dev->dev_mapping)
1360 unmap_mapping_range(obj->base.dev->dev_mapping,
1361 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1362 obj->base.size, 1);
fb7d516a 1363
6299f992 1364 obj->fault_mappable = false;
901782b2
CW
1365}
1366
ab00b3e5 1367static void
05394f39 1368i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1369{
05394f39 1370 struct drm_device *dev = obj->base.dev;
ab00b3e5 1371 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1372 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1373
ab00b3e5 1374 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1375 drm_mm_put_block(list->file_offset_node);
1376 kfree(list->map);
1377 list->map = NULL;
ab00b3e5
JB
1378}
1379
92b88aeb
CW
1380static uint32_t
1381i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1382{
1383 struct drm_device *dev = obj->base.dev;
1384 uint32_t size;
1385
1386 if (INTEL_INFO(dev)->gen >= 4 ||
1387 obj->tiling_mode == I915_TILING_NONE)
1388 return obj->base.size;
1389
1390 /* Previous chips need a power-of-two fence region when tiling */
1391 if (INTEL_INFO(dev)->gen == 3)
1392 size = 1024*1024;
1393 else
1394 size = 512*1024;
1395
1396 while (size < obj->base.size)
1397 size <<= 1;
1398
1399 return size;
1400}
1401
de151cf6
JB
1402/**
1403 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1404 * @obj: object to check
1405 *
1406 * Return the required GTT alignment for an object, taking into account
5e783301 1407 * potential fence register mapping.
de151cf6
JB
1408 */
1409static uint32_t
05394f39 1410i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1411{
05394f39 1412 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1413
1414 /*
1415 * Minimum alignment is 4k (GTT page size), but might be greater
1416 * if a fence register is needed for the object.
1417 */
a00b10c3 1418 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1419 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1420 return 4096;
1421
a00b10c3
CW
1422 /*
1423 * Previous chips need to be aligned to the size of the smallest
1424 * fence register that can contain the object.
1425 */
05394f39 1426 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1427}
1428
5e783301
DV
1429/**
1430 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1431 * unfenced object
1432 * @obj: object to check
1433 *
1434 * Return the required GTT alignment for an object, only taking into account
1435 * unfenced tiled surface requirements.
1436 */
467cffba 1437uint32_t
05394f39 1438i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1439{
05394f39 1440 struct drm_device *dev = obj->base.dev;
5e783301
DV
1441 int tile_height;
1442
1443 /*
1444 * Minimum alignment is 4k (GTT page size) for sane hw.
1445 */
1446 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1447 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1448 return 4096;
1449
1450 /*
1451 * Older chips need unfenced tiled buffers to be aligned to the left
1452 * edge of an even tile row (where tile rows are counted as if the bo is
1453 * placed in a fenced gtt region).
1454 */
1455 if (IS_GEN2(dev) ||
05394f39 1456 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
5e783301
DV
1457 tile_height = 32;
1458 else
1459 tile_height = 8;
1460
05394f39 1461 return tile_height * obj->stride * 2;
5e783301
DV
1462}
1463
de151cf6 1464int
ff72145b
DA
1465i915_gem_mmap_gtt(struct drm_file *file,
1466 struct drm_device *dev,
1467 uint32_t handle,
1468 uint64_t *offset)
de151cf6 1469{
da761a6e 1470 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1471 struct drm_i915_gem_object *obj;
de151cf6
JB
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
76c1dec1 1477 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1478 if (ret)
76c1dec1 1479 return ret;
de151cf6 1480
ff72145b 1481 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1482 if (&obj->base == NULL) {
1d7cfea1
CW
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
de151cf6 1486
05394f39 1487 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1488 ret = -E2BIG;
1489 goto unlock;
1490 }
1491
05394f39 1492 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1493 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1494 ret = -EINVAL;
1495 goto out;
ab18282d
CW
1496 }
1497
05394f39 1498 if (!obj->base.map_list.map) {
de151cf6 1499 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1500 if (ret)
1501 goto out;
de151cf6
JB
1502 }
1503
ff72145b 1504 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1505
1d7cfea1 1506out:
05394f39 1507 drm_gem_object_unreference(&obj->base);
1d7cfea1 1508unlock:
de151cf6 1509 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1510 return ret;
de151cf6
JB
1511}
1512
ff72145b
DA
1513/**
1514 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1515 * @dev: DRM device
1516 * @data: GTT mapping ioctl data
1517 * @file: GEM object info
1518 *
1519 * Simply returns the fake offset to userspace so it can mmap it.
1520 * The mmap call will end up in drm_gem_mmap(), which will set things
1521 * up so we can get faults in the handler above.
1522 *
1523 * The fault handler will take care of binding the object into the GTT
1524 * (since it may have been evicted to make room for something), allocating
1525 * a fence register, and mapping the appropriate aperture address into
1526 * userspace.
1527 */
1528int
1529i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1530 struct drm_file *file)
1531{
1532 struct drm_i915_gem_mmap_gtt *args = data;
1533
1534 if (!(dev->driver->driver_features & DRIVER_GEM))
1535 return -ENODEV;
1536
1537 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1538}
1539
1540
e5281ccd 1541static int
05394f39 1542i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1543 gfp_t gfpmask)
1544{
e5281ccd
CW
1545 int page_count, i;
1546 struct address_space *mapping;
1547 struct inode *inode;
1548 struct page *page;
1549
1550 /* Get the list of pages out of our struct file. They'll be pinned
1551 * at this point until we release them.
1552 */
05394f39
CW
1553 page_count = obj->base.size / PAGE_SIZE;
1554 BUG_ON(obj->pages != NULL);
1555 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1556 if (obj->pages == NULL)
e5281ccd
CW
1557 return -ENOMEM;
1558
05394f39 1559 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1560 mapping = inode->i_mapping;
1561 for (i = 0; i < page_count; i++) {
1562 page = read_cache_page_gfp(mapping, i,
1563 GFP_HIGHUSER |
1564 __GFP_COLD |
1565 __GFP_RECLAIMABLE |
1566 gfpmask);
1567 if (IS_ERR(page))
1568 goto err_pages;
1569
05394f39 1570 obj->pages[i] = page;
e5281ccd
CW
1571 }
1572
05394f39 1573 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1574 i915_gem_object_do_bit_17_swizzle(obj);
1575
1576 return 0;
1577
1578err_pages:
1579 while (i--)
05394f39 1580 page_cache_release(obj->pages[i]);
e5281ccd 1581
05394f39
CW
1582 drm_free_large(obj->pages);
1583 obj->pages = NULL;
e5281ccd
CW
1584 return PTR_ERR(page);
1585}
1586
5cdf5881 1587static void
05394f39 1588i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1589{
05394f39 1590 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1591 int i;
1592
05394f39 1593 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1594
05394f39 1595 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1596 i915_gem_object_save_bit_17_swizzle(obj);
1597
05394f39
CW
1598 if (obj->madv == I915_MADV_DONTNEED)
1599 obj->dirty = 0;
3ef94daa
CW
1600
1601 for (i = 0; i < page_count; i++) {
05394f39
CW
1602 if (obj->dirty)
1603 set_page_dirty(obj->pages[i]);
3ef94daa 1604
05394f39
CW
1605 if (obj->madv == I915_MADV_WILLNEED)
1606 mark_page_accessed(obj->pages[i]);
3ef94daa 1607
05394f39 1608 page_cache_release(obj->pages[i]);
3ef94daa 1609 }
05394f39 1610 obj->dirty = 0;
673a394b 1611
05394f39
CW
1612 drm_free_large(obj->pages);
1613 obj->pages = NULL;
673a394b
EA
1614}
1615
54cf91dc 1616void
05394f39 1617i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1618 struct intel_ring_buffer *ring,
1619 u32 seqno)
673a394b 1620{
05394f39 1621 struct drm_device *dev = obj->base.dev;
69dc4987 1622 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1623
852835f3 1624 BUG_ON(ring == NULL);
05394f39 1625 obj->ring = ring;
673a394b
EA
1626
1627 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1628 if (!obj->active) {
1629 drm_gem_object_reference(&obj->base);
1630 obj->active = 1;
673a394b 1631 }
e35a41de 1632
673a394b 1633 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1634 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1635 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1636
05394f39 1637 obj->last_rendering_seqno = seqno;
caea7476
CW
1638 if (obj->fenced_gpu_access) {
1639 struct drm_i915_fence_reg *reg;
1640
1641 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1642
1643 obj->last_fenced_seqno = seqno;
1644 obj->last_fenced_ring = ring;
1645
1646 reg = &dev_priv->fence_regs[obj->fence_reg];
1647 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1648 }
1649}
1650
1651static void
1652i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1653{
1654 list_del_init(&obj->ring_list);
1655 obj->last_rendering_seqno = 0;
673a394b
EA
1656}
1657
ce44b0ea 1658static void
05394f39 1659i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1660{
05394f39 1661 struct drm_device *dev = obj->base.dev;
ce44b0ea 1662 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1663
05394f39
CW
1664 BUG_ON(!obj->active);
1665 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1666
1667 i915_gem_object_move_off_active(obj);
1668}
1669
1670static void
1671i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1672{
1673 struct drm_device *dev = obj->base.dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675
1676 if (obj->pin_count != 0)
1677 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1678 else
1679 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1680
1681 BUG_ON(!list_empty(&obj->gpu_write_list));
1682 BUG_ON(!obj->active);
1683 obj->ring = NULL;
1684
1685 i915_gem_object_move_off_active(obj);
1686 obj->fenced_gpu_access = false;
caea7476
CW
1687
1688 obj->active = 0;
87ca9c8a 1689 obj->pending_gpu_write = false;
caea7476
CW
1690 drm_gem_object_unreference(&obj->base);
1691
1692 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1693}
673a394b 1694
963b4836
CW
1695/* Immediately discard the backing storage */
1696static void
05394f39 1697i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1698{
bb6baf76 1699 struct inode *inode;
963b4836 1700
ae9fed6b
CW
1701 /* Our goal here is to return as much of the memory as
1702 * is possible back to the system as we are called from OOM.
1703 * To do this we must instruct the shmfs to drop all of its
1704 * backing pages, *now*. Here we mirror the actions taken
1705 * when by shmem_delete_inode() to release the backing store.
1706 */
05394f39 1707 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1708 truncate_inode_pages(inode->i_mapping, 0);
1709 if (inode->i_op->truncate_range)
1710 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1711
05394f39 1712 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1713}
1714
1715static inline int
05394f39 1716i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1717{
05394f39 1718 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1719}
1720
63560396 1721static void
db53a302
CW
1722i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1723 uint32_t flush_domains)
63560396 1724{
05394f39 1725 struct drm_i915_gem_object *obj, *next;
63560396 1726
05394f39 1727 list_for_each_entry_safe(obj, next,
64193406 1728 &ring->gpu_write_list,
63560396 1729 gpu_write_list) {
05394f39
CW
1730 if (obj->base.write_domain & flush_domains) {
1731 uint32_t old_write_domain = obj->base.write_domain;
63560396 1732
05394f39
CW
1733 obj->base.write_domain = 0;
1734 list_del_init(&obj->gpu_write_list);
1ec14ad3 1735 i915_gem_object_move_to_active(obj, ring,
db53a302 1736 i915_gem_next_request_seqno(ring));
63560396 1737
63560396 1738 trace_i915_gem_object_change_domain(obj,
05394f39 1739 obj->base.read_domains,
63560396
DV
1740 old_write_domain);
1741 }
1742 }
1743}
8187a2b7 1744
3cce469c 1745int
db53a302 1746i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1747 struct drm_file *file,
db53a302 1748 struct drm_i915_gem_request *request)
673a394b 1749{
db53a302 1750 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1751 uint32_t seqno;
1752 int was_empty;
3cce469c
CW
1753 int ret;
1754
1755 BUG_ON(request == NULL);
673a394b 1756
3cce469c
CW
1757 ret = ring->add_request(ring, &seqno);
1758 if (ret)
1759 return ret;
673a394b 1760
db53a302 1761 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1762
1763 request->seqno = seqno;
852835f3 1764 request->ring = ring;
673a394b 1765 request->emitted_jiffies = jiffies;
852835f3
ZN
1766 was_empty = list_empty(&ring->request_list);
1767 list_add_tail(&request->list, &ring->request_list);
1768
db53a302
CW
1769 if (file) {
1770 struct drm_i915_file_private *file_priv = file->driver_priv;
1771
1c25595f 1772 spin_lock(&file_priv->mm.lock);
f787a5f5 1773 request->file_priv = file_priv;
b962442e 1774 list_add_tail(&request->client_list,
f787a5f5 1775 &file_priv->mm.request_list);
1c25595f 1776 spin_unlock(&file_priv->mm.lock);
b962442e 1777 }
673a394b 1778
db53a302
CW
1779 ring->outstanding_lazy_request = false;
1780
f65d9421 1781 if (!dev_priv->mm.suspended) {
b3b079db
CW
1782 mod_timer(&dev_priv->hangcheck_timer,
1783 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1784 if (was_empty)
b3b079db
CW
1785 queue_delayed_work(dev_priv->wq,
1786 &dev_priv->mm.retire_work, HZ);
f65d9421 1787 }
3cce469c 1788 return 0;
673a394b
EA
1789}
1790
f787a5f5
CW
1791static inline void
1792i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1793{
1c25595f 1794 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1795
1c25595f
CW
1796 if (!file_priv)
1797 return;
1c5d22f7 1798
1c25595f 1799 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1800 if (request->file_priv) {
1801 list_del(&request->client_list);
1802 request->file_priv = NULL;
1803 }
1c25595f 1804 spin_unlock(&file_priv->mm.lock);
673a394b 1805}
673a394b 1806
dfaae392
CW
1807static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1808 struct intel_ring_buffer *ring)
9375e446 1809{
dfaae392
CW
1810 while (!list_empty(&ring->request_list)) {
1811 struct drm_i915_gem_request *request;
673a394b 1812
dfaae392
CW
1813 request = list_first_entry(&ring->request_list,
1814 struct drm_i915_gem_request,
1815 list);
de151cf6 1816
dfaae392 1817 list_del(&request->list);
f787a5f5 1818 i915_gem_request_remove_from_client(request);
dfaae392
CW
1819 kfree(request);
1820 }
673a394b 1821
dfaae392 1822 while (!list_empty(&ring->active_list)) {
05394f39 1823 struct drm_i915_gem_object *obj;
9375e446 1824
05394f39
CW
1825 obj = list_first_entry(&ring->active_list,
1826 struct drm_i915_gem_object,
1827 ring_list);
9375e446 1828
05394f39
CW
1829 obj->base.write_domain = 0;
1830 list_del_init(&obj->gpu_write_list);
1831 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1832 }
1833}
1834
312817a3
CW
1835static void i915_gem_reset_fences(struct drm_device *dev)
1836{
1837 struct drm_i915_private *dev_priv = dev->dev_private;
1838 int i;
1839
1840 for (i = 0; i < 16; i++) {
1841 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1842 struct drm_i915_gem_object *obj = reg->obj;
1843
1844 if (!obj)
1845 continue;
1846
1847 if (obj->tiling_mode)
1848 i915_gem_release_mmap(obj);
1849
d9e86c0e
CW
1850 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1851 reg->obj->fenced_gpu_access = false;
1852 reg->obj->last_fenced_seqno = 0;
1853 reg->obj->last_fenced_ring = NULL;
1854 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1855 }
1856}
1857
069efc1d 1858void i915_gem_reset(struct drm_device *dev)
673a394b 1859{
77f01230 1860 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1861 struct drm_i915_gem_object *obj;
1ec14ad3 1862 int i;
673a394b 1863
1ec14ad3
CW
1864 for (i = 0; i < I915_NUM_RINGS; i++)
1865 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1866
1867 /* Remove anything from the flushing lists. The GPU cache is likely
1868 * to be lost on reset along with the data, so simply move the
1869 * lost bo to the inactive list.
1870 */
1871 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1872 obj= list_first_entry(&dev_priv->mm.flushing_list,
1873 struct drm_i915_gem_object,
1874 mm_list);
dfaae392 1875
05394f39
CW
1876 obj->base.write_domain = 0;
1877 list_del_init(&obj->gpu_write_list);
1878 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1879 }
1880
1881 /* Move everything out of the GPU domains to ensure we do any
1882 * necessary invalidation upon reuse.
1883 */
05394f39 1884 list_for_each_entry(obj,
77f01230 1885 &dev_priv->mm.inactive_list,
69dc4987 1886 mm_list)
77f01230 1887 {
05394f39 1888 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1889 }
069efc1d
CW
1890
1891 /* The fence registers are invalidated so clear them out */
312817a3 1892 i915_gem_reset_fences(dev);
673a394b
EA
1893}
1894
1895/**
1896 * This function clears the request list as sequence numbers are passed.
1897 */
b09a1fec 1898static void
db53a302 1899i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1900{
673a394b 1901 uint32_t seqno;
1ec14ad3 1902 int i;
673a394b 1903
db53a302 1904 if (list_empty(&ring->request_list))
6c0594a3
KW
1905 return;
1906
db53a302 1907 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1908
78501eac 1909 seqno = ring->get_seqno(ring);
1ec14ad3 1910
076e2c0e 1911 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1912 if (seqno >= ring->sync_seqno[i])
1913 ring->sync_seqno[i] = 0;
1914
852835f3 1915 while (!list_empty(&ring->request_list)) {
673a394b 1916 struct drm_i915_gem_request *request;
673a394b 1917
852835f3 1918 request = list_first_entry(&ring->request_list,
673a394b
EA
1919 struct drm_i915_gem_request,
1920 list);
673a394b 1921
dfaae392 1922 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1923 break;
1924
db53a302 1925 trace_i915_gem_request_retire(ring, request->seqno);
b84d5f0c
CW
1926
1927 list_del(&request->list);
f787a5f5 1928 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1929 kfree(request);
1930 }
673a394b 1931
b84d5f0c
CW
1932 /* Move any buffers on the active list that are no longer referenced
1933 * by the ringbuffer to the flushing/inactive lists as appropriate.
1934 */
1935 while (!list_empty(&ring->active_list)) {
05394f39 1936 struct drm_i915_gem_object *obj;
b84d5f0c 1937
05394f39
CW
1938 obj= list_first_entry(&ring->active_list,
1939 struct drm_i915_gem_object,
1940 ring_list);
673a394b 1941
05394f39 1942 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1943 break;
b84d5f0c 1944
05394f39 1945 if (obj->base.write_domain != 0)
b84d5f0c
CW
1946 i915_gem_object_move_to_flushing(obj);
1947 else
1948 i915_gem_object_move_to_inactive(obj);
673a394b 1949 }
9d34e5db 1950
db53a302
CW
1951 if (unlikely(ring->trace_irq_seqno &&
1952 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1953 ring->irq_put(ring);
db53a302 1954 ring->trace_irq_seqno = 0;
9d34e5db 1955 }
23bc5982 1956
db53a302 1957 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1958}
1959
b09a1fec
CW
1960void
1961i915_gem_retire_requests(struct drm_device *dev)
1962{
1963 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1964 int i;
b09a1fec 1965
be72615b 1966 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1967 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1968
1969 /* We must be careful that during unbind() we do not
1970 * accidentally infinitely recurse into retire requests.
1971 * Currently:
1972 * retire -> free -> unbind -> wait -> retire_ring
1973 */
05394f39 1974 list_for_each_entry_safe(obj, next,
be72615b 1975 &dev_priv->mm.deferred_free_list,
69dc4987 1976 mm_list)
05394f39 1977 i915_gem_free_object_tail(obj);
be72615b
CW
1978 }
1979
1ec14ad3 1980 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1981 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1982}
1983
75ef9da2 1984static void
673a394b
EA
1985i915_gem_retire_work_handler(struct work_struct *work)
1986{
1987 drm_i915_private_t *dev_priv;
1988 struct drm_device *dev;
0a58705b
CW
1989 bool idle;
1990 int i;
673a394b
EA
1991
1992 dev_priv = container_of(work, drm_i915_private_t,
1993 mm.retire_work.work);
1994 dev = dev_priv->dev;
1995
891b48cf
CW
1996 /* Come back later if the device is busy... */
1997 if (!mutex_trylock(&dev->struct_mutex)) {
1998 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1999 return;
2000 }
2001
b09a1fec 2002 i915_gem_retire_requests(dev);
d1b851fc 2003
0a58705b
CW
2004 /* Send a periodic flush down the ring so we don't hold onto GEM
2005 * objects indefinitely.
2006 */
2007 idle = true;
2008 for (i = 0; i < I915_NUM_RINGS; i++) {
2009 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2010
2011 if (!list_empty(&ring->gpu_write_list)) {
2012 struct drm_i915_gem_request *request;
2013 int ret;
2014
db53a302
CW
2015 ret = i915_gem_flush_ring(ring,
2016 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
2017 request = kzalloc(sizeof(*request), GFP_KERNEL);
2018 if (ret || request == NULL ||
db53a302 2019 i915_add_request(ring, NULL, request))
0a58705b
CW
2020 kfree(request);
2021 }
2022
2023 idle &= list_empty(&ring->request_list);
2024 }
2025
2026 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 2027 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 2028
673a394b
EA
2029 mutex_unlock(&dev->struct_mutex);
2030}
2031
db53a302
CW
2032/**
2033 * Waits for a sequence number to be signaled, and cleans up the
2034 * request and object lists appropriately for that event.
2035 */
5a5a0c64 2036int
db53a302 2037i915_wait_request(struct intel_ring_buffer *ring,
ce453d81 2038 uint32_t seqno)
673a394b 2039{
db53a302 2040 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 2041 u32 ier;
673a394b
EA
2042 int ret = 0;
2043
2044 BUG_ON(seqno == 0);
2045
d9bc7e9f
CW
2046 if (atomic_read(&dev_priv->mm.wedged)) {
2047 struct completion *x = &dev_priv->error_completion;
2048 bool recovery_complete;
2049 unsigned long flags;
2050
2051 /* Give the error handler a chance to run. */
2052 spin_lock_irqsave(&x->wait.lock, flags);
2053 recovery_complete = x->done > 0;
2054 spin_unlock_irqrestore(&x->wait.lock, flags);
2055
2056 return recovery_complete ? -EIO : -EAGAIN;
2057 }
30dbf0c0 2058
5d97eb69 2059 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2060 struct drm_i915_gem_request *request;
2061
2062 request = kzalloc(sizeof(*request), GFP_KERNEL);
2063 if (request == NULL)
e35a41de 2064 return -ENOMEM;
3cce469c 2065
db53a302 2066 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
2067 if (ret) {
2068 kfree(request);
2069 return ret;
2070 }
2071
2072 seqno = request->seqno;
e35a41de 2073 }
ffed1d09 2074
78501eac 2075 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 2076 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
2077 ier = I915_READ(DEIER) | I915_READ(GTIER);
2078 else
2079 ier = I915_READ(IER);
802c7eb6
JB
2080 if (!ier) {
2081 DRM_ERROR("something (likely vbetool) disabled "
2082 "interrupts, re-enabling\n");
db53a302
CW
2083 i915_driver_irq_preinstall(ring->dev);
2084 i915_driver_irq_postinstall(ring->dev);
802c7eb6
JB
2085 }
2086
db53a302 2087 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 2088
b2223497 2089 ring->waiting_seqno = seqno;
b13c2b96 2090 if (ring->irq_get(ring)) {
ce453d81 2091 if (dev_priv->mm.interruptible)
b13c2b96
CW
2092 ret = wait_event_interruptible(ring->irq_queue,
2093 i915_seqno_passed(ring->get_seqno(ring), seqno)
2094 || atomic_read(&dev_priv->mm.wedged));
2095 else
2096 wait_event(ring->irq_queue,
2097 i915_seqno_passed(ring->get_seqno(ring), seqno)
2098 || atomic_read(&dev_priv->mm.wedged));
2099
2100 ring->irq_put(ring);
b5ba177d
CW
2101 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2102 seqno) ||
2103 atomic_read(&dev_priv->mm.wedged), 3000))
2104 ret = -EBUSY;
b2223497 2105 ring->waiting_seqno = 0;
1c5d22f7 2106
db53a302 2107 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 2108 }
ba1234d1 2109 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2110 ret = -EAGAIN;
673a394b
EA
2111
2112 if (ret && ret != -ERESTARTSYS)
8bff917c 2113 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2114 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2115 dev_priv->next_seqno);
673a394b
EA
2116
2117 /* Directly dispatch request retiring. While we have the work queue
2118 * to handle this, the waiter on a request often wants an associated
2119 * buffer to have made it to the inactive list, and we would need
2120 * a separate wait queue to handle that.
2121 */
2122 if (ret == 0)
db53a302 2123 i915_gem_retire_requests_ring(ring);
673a394b
EA
2124
2125 return ret;
2126}
2127
673a394b
EA
2128/**
2129 * Ensures that all rendering to the object has completed and the object is
2130 * safe to unbind from the GTT or access from the CPU.
2131 */
54cf91dc 2132int
ce453d81 2133i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2134{
673a394b
EA
2135 int ret;
2136
e47c68e9
EA
2137 /* This function only exists to support waiting for existing rendering,
2138 * not for emitting required flushes.
673a394b 2139 */
05394f39 2140 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2141
2142 /* If there is rendering queued on the buffer being evicted, wait for
2143 * it.
2144 */
05394f39 2145 if (obj->active) {
ce453d81 2146 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2cf34d7b 2147 if (ret)
673a394b
EA
2148 return ret;
2149 }
2150
2151 return 0;
2152}
2153
2154/**
2155 * Unbinds an object from the GTT aperture.
2156 */
0f973f27 2157int
05394f39 2158i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2159{
673a394b
EA
2160 int ret = 0;
2161
05394f39 2162 if (obj->gtt_space == NULL)
673a394b
EA
2163 return 0;
2164
05394f39 2165 if (obj->pin_count != 0) {
673a394b
EA
2166 DRM_ERROR("Attempting to unbind pinned buffer\n");
2167 return -EINVAL;
2168 }
2169
5323fd04
EA
2170 /* blow away mappings if mapped through GTT */
2171 i915_gem_release_mmap(obj);
2172
673a394b
EA
2173 /* Move the object to the CPU domain to ensure that
2174 * any possible CPU writes while it's not in the GTT
2175 * are flushed when we go to remap it. This will
2176 * also ensure that all pending GPU writes are finished
2177 * before we unbind.
2178 */
e47c68e9 2179 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2180 if (ret == -ERESTARTSYS)
673a394b 2181 return ret;
8dc1775d
CW
2182 /* Continue on if we fail due to EIO, the GPU is hung so we
2183 * should be safe and we need to cleanup or else we might
2184 * cause memory corruption through use-after-free.
2185 */
812ed492
CW
2186 if (ret) {
2187 i915_gem_clflush_object(obj);
05394f39 2188 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2189 }
673a394b 2190
96b47b65 2191 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2192 ret = i915_gem_object_put_fence(obj);
2193 if (ret == -ERESTARTSYS)
2194 return ret;
96b47b65 2195
db53a302
CW
2196 trace_i915_gem_object_unbind(obj);
2197
7c2e6fdf 2198 i915_gem_gtt_unbind_object(obj);
e5281ccd 2199 i915_gem_object_put_pages_gtt(obj);
673a394b 2200
6299f992 2201 list_del_init(&obj->gtt_list);
05394f39 2202 list_del_init(&obj->mm_list);
75e9e915 2203 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2204 obj->map_and_fenceable = true;
673a394b 2205
05394f39
CW
2206 drm_mm_put_block(obj->gtt_space);
2207 obj->gtt_space = NULL;
2208 obj->gtt_offset = 0;
673a394b 2209
05394f39 2210 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2211 i915_gem_object_truncate(obj);
2212
8dc1775d 2213 return ret;
673a394b
EA
2214}
2215
88241785 2216int
db53a302 2217i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2218 uint32_t invalidate_domains,
2219 uint32_t flush_domains)
2220{
88241785
CW
2221 int ret;
2222
36d527de
CW
2223 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2224 return 0;
2225
db53a302
CW
2226 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2227
88241785
CW
2228 ret = ring->flush(ring, invalidate_domains, flush_domains);
2229 if (ret)
2230 return ret;
2231
36d527de
CW
2232 if (flush_domains & I915_GEM_GPU_DOMAINS)
2233 i915_gem_process_flushing_list(ring, flush_domains);
2234
88241785 2235 return 0;
54cf91dc
CW
2236}
2237
db53a302 2238static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2239{
88241785
CW
2240 int ret;
2241
395b70be 2242 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2243 return 0;
2244
88241785 2245 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2246 ret = i915_gem_flush_ring(ring,
0ac74c6b 2247 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2248 if (ret)
2249 return ret;
2250 }
2251
ce453d81 2252 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2253}
2254
b47eb4a2 2255int
4df2faf4
DV
2256i915_gpu_idle(struct drm_device *dev)
2257{
2258 drm_i915_private_t *dev_priv = dev->dev_private;
2259 bool lists_empty;
1ec14ad3 2260 int ret, i;
4df2faf4 2261
d1b851fc 2262 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2263 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2264 if (lists_empty)
2265 return 0;
2266
2267 /* Flush everything onto the inactive list. */
1ec14ad3 2268 for (i = 0; i < I915_NUM_RINGS; i++) {
db53a302 2269 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2270 if (ret)
2271 return ret;
2272 }
4df2faf4 2273
8a1a49f9 2274 return 0;
4df2faf4
DV
2275}
2276
c6642782
DV
2277static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2278 struct intel_ring_buffer *pipelined)
4e901fdc 2279{
05394f39 2280 struct drm_device *dev = obj->base.dev;
4e901fdc 2281 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2282 u32 size = obj->gtt_space->size;
2283 int regnum = obj->fence_reg;
4e901fdc
EA
2284 uint64_t val;
2285
05394f39 2286 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2287 0xfffff000) << 32;
05394f39
CW
2288 val |= obj->gtt_offset & 0xfffff000;
2289 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2290 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2291
05394f39 2292 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2293 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2294 val |= I965_FENCE_REG_VALID;
2295
c6642782
DV
2296 if (pipelined) {
2297 int ret = intel_ring_begin(pipelined, 6);
2298 if (ret)
2299 return ret;
2300
2301 intel_ring_emit(pipelined, MI_NOOP);
2302 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2303 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2304 intel_ring_emit(pipelined, (u32)val);
2305 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2306 intel_ring_emit(pipelined, (u32)(val >> 32));
2307 intel_ring_advance(pipelined);
2308 } else
2309 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2310
2311 return 0;
4e901fdc
EA
2312}
2313
c6642782
DV
2314static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2315 struct intel_ring_buffer *pipelined)
de151cf6 2316{
05394f39 2317 struct drm_device *dev = obj->base.dev;
de151cf6 2318 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2319 u32 size = obj->gtt_space->size;
2320 int regnum = obj->fence_reg;
de151cf6
JB
2321 uint64_t val;
2322
05394f39 2323 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2324 0xfffff000) << 32;
05394f39
CW
2325 val |= obj->gtt_offset & 0xfffff000;
2326 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2327 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2328 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2329 val |= I965_FENCE_REG_VALID;
2330
c6642782
DV
2331 if (pipelined) {
2332 int ret = intel_ring_begin(pipelined, 6);
2333 if (ret)
2334 return ret;
2335
2336 intel_ring_emit(pipelined, MI_NOOP);
2337 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2338 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2339 intel_ring_emit(pipelined, (u32)val);
2340 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2341 intel_ring_emit(pipelined, (u32)(val >> 32));
2342 intel_ring_advance(pipelined);
2343 } else
2344 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2345
2346 return 0;
de151cf6
JB
2347}
2348
c6642782
DV
2349static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2350 struct intel_ring_buffer *pipelined)
de151cf6 2351{
05394f39 2352 struct drm_device *dev = obj->base.dev;
de151cf6 2353 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2354 u32 size = obj->gtt_space->size;
c6642782 2355 u32 fence_reg, val, pitch_val;
0f973f27 2356 int tile_width;
de151cf6 2357
c6642782
DV
2358 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2359 (size & -size) != size ||
2360 (obj->gtt_offset & (size - 1)),
2361 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2362 obj->gtt_offset, obj->map_and_fenceable, size))
2363 return -EINVAL;
de151cf6 2364
c6642782 2365 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2366 tile_width = 128;
de151cf6 2367 else
0f973f27
JB
2368 tile_width = 512;
2369
2370 /* Note: pitch better be a power of two tile widths */
05394f39 2371 pitch_val = obj->stride / tile_width;
0f973f27 2372 pitch_val = ffs(pitch_val) - 1;
de151cf6 2373
05394f39
CW
2374 val = obj->gtt_offset;
2375 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2376 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2377 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2378 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2379 val |= I830_FENCE_REG_VALID;
2380
05394f39 2381 fence_reg = obj->fence_reg;
a00b10c3
CW
2382 if (fence_reg < 8)
2383 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2384 else
a00b10c3 2385 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2386
2387 if (pipelined) {
2388 int ret = intel_ring_begin(pipelined, 4);
2389 if (ret)
2390 return ret;
2391
2392 intel_ring_emit(pipelined, MI_NOOP);
2393 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2394 intel_ring_emit(pipelined, fence_reg);
2395 intel_ring_emit(pipelined, val);
2396 intel_ring_advance(pipelined);
2397 } else
2398 I915_WRITE(fence_reg, val);
2399
2400 return 0;
de151cf6
JB
2401}
2402
c6642782
DV
2403static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2404 struct intel_ring_buffer *pipelined)
de151cf6 2405{
05394f39 2406 struct drm_device *dev = obj->base.dev;
de151cf6 2407 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2408 u32 size = obj->gtt_space->size;
2409 int regnum = obj->fence_reg;
de151cf6
JB
2410 uint32_t val;
2411 uint32_t pitch_val;
2412
c6642782
DV
2413 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2414 (size & -size) != size ||
2415 (obj->gtt_offset & (size - 1)),
2416 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2417 obj->gtt_offset, size))
2418 return -EINVAL;
de151cf6 2419
05394f39 2420 pitch_val = obj->stride / 128;
e76a16de 2421 pitch_val = ffs(pitch_val) - 1;
e76a16de 2422
05394f39
CW
2423 val = obj->gtt_offset;
2424 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2425 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2426 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2427 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2428 val |= I830_FENCE_REG_VALID;
2429
c6642782
DV
2430 if (pipelined) {
2431 int ret = intel_ring_begin(pipelined, 4);
2432 if (ret)
2433 return ret;
2434
2435 intel_ring_emit(pipelined, MI_NOOP);
2436 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2437 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2438 intel_ring_emit(pipelined, val);
2439 intel_ring_advance(pipelined);
2440 } else
2441 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2442
2443 return 0;
de151cf6
JB
2444}
2445
d9e86c0e
CW
2446static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2447{
2448 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2449}
2450
2451static int
2452i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2453 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2454{
2455 int ret;
2456
2457 if (obj->fenced_gpu_access) {
88241785 2458 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2459 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2460 0, obj->base.write_domain);
2461 if (ret)
2462 return ret;
2463 }
d9e86c0e
CW
2464
2465 obj->fenced_gpu_access = false;
2466 }
2467
2468 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2469 if (!ring_passed_seqno(obj->last_fenced_ring,
2470 obj->last_fenced_seqno)) {
db53a302 2471 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2472 obj->last_fenced_seqno);
d9e86c0e
CW
2473 if (ret)
2474 return ret;
2475 }
2476
2477 obj->last_fenced_seqno = 0;
2478 obj->last_fenced_ring = NULL;
2479 }
2480
63256ec5
CW
2481 /* Ensure that all CPU reads are completed before installing a fence
2482 * and all writes before removing the fence.
2483 */
2484 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2485 mb();
2486
d9e86c0e
CW
2487 return 0;
2488}
2489
2490int
2491i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2492{
2493 int ret;
2494
2495 if (obj->tiling_mode)
2496 i915_gem_release_mmap(obj);
2497
ce453d81 2498 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2499 if (ret)
2500 return ret;
2501
2502 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2503 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2504 i915_gem_clear_fence_reg(obj->base.dev,
2505 &dev_priv->fence_regs[obj->fence_reg]);
2506
2507 obj->fence_reg = I915_FENCE_REG_NONE;
2508 }
2509
2510 return 0;
2511}
2512
2513static struct drm_i915_fence_reg *
2514i915_find_fence_reg(struct drm_device *dev,
2515 struct intel_ring_buffer *pipelined)
ae3db24a 2516{
ae3db24a 2517 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2518 struct drm_i915_fence_reg *reg, *first, *avail;
2519 int i;
ae3db24a
DV
2520
2521 /* First try to find a free reg */
d9e86c0e 2522 avail = NULL;
ae3db24a
DV
2523 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2524 reg = &dev_priv->fence_regs[i];
2525 if (!reg->obj)
d9e86c0e 2526 return reg;
ae3db24a 2527
05394f39 2528 if (!reg->obj->pin_count)
d9e86c0e 2529 avail = reg;
ae3db24a
DV
2530 }
2531
d9e86c0e
CW
2532 if (avail == NULL)
2533 return NULL;
ae3db24a
DV
2534
2535 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2536 avail = first = NULL;
2537 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2538 if (reg->obj->pin_count)
ae3db24a
DV
2539 continue;
2540
d9e86c0e
CW
2541 if (first == NULL)
2542 first = reg;
2543
2544 if (!pipelined ||
2545 !reg->obj->last_fenced_ring ||
2546 reg->obj->last_fenced_ring == pipelined) {
2547 avail = reg;
2548 break;
2549 }
ae3db24a
DV
2550 }
2551
d9e86c0e
CW
2552 if (avail == NULL)
2553 avail = first;
ae3db24a 2554
a00b10c3 2555 return avail;
ae3db24a
DV
2556}
2557
de151cf6 2558/**
d9e86c0e 2559 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2560 * @obj: object to map through a fence reg
d9e86c0e
CW
2561 * @pipelined: ring on which to queue the change, or NULL for CPU access
2562 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2563 *
2564 * When mapping objects through the GTT, userspace wants to be able to write
2565 * to them without having to worry about swizzling if the object is tiled.
2566 *
2567 * This function walks the fence regs looking for a free one for @obj,
2568 * stealing one if it can't find any.
2569 *
2570 * It then sets up the reg based on the object's properties: address, pitch
2571 * and tiling format.
2572 */
8c4b8c3f 2573int
d9e86c0e 2574i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2575 struct intel_ring_buffer *pipelined)
de151cf6 2576{
05394f39 2577 struct drm_device *dev = obj->base.dev;
79e53945 2578 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2579 struct drm_i915_fence_reg *reg;
ae3db24a 2580 int ret;
de151cf6 2581
6bda10d1
CW
2582 /* XXX disable pipelining. There are bugs. Shocking. */
2583 pipelined = NULL;
2584
d9e86c0e 2585 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2586 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2587 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2588 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2589
29c5a587
CW
2590 if (obj->tiling_changed) {
2591 ret = i915_gem_object_flush_fence(obj, pipelined);
2592 if (ret)
2593 return ret;
2594
2595 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2596 pipelined = NULL;
2597
2598 if (pipelined) {
2599 reg->setup_seqno =
2600 i915_gem_next_request_seqno(pipelined);
2601 obj->last_fenced_seqno = reg->setup_seqno;
2602 obj->last_fenced_ring = pipelined;
2603 }
2604
2605 goto update;
2606 }
d9e86c0e
CW
2607
2608 if (!pipelined) {
2609 if (reg->setup_seqno) {
2610 if (!ring_passed_seqno(obj->last_fenced_ring,
2611 reg->setup_seqno)) {
db53a302 2612 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2613 reg->setup_seqno);
d9e86c0e
CW
2614 if (ret)
2615 return ret;
2616 }
2617
2618 reg->setup_seqno = 0;
2619 }
2620 } else if (obj->last_fenced_ring &&
2621 obj->last_fenced_ring != pipelined) {
ce453d81 2622 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2623 if (ret)
2624 return ret;
d9e86c0e
CW
2625 }
2626
a09ba7fa
EA
2627 return 0;
2628 }
2629
d9e86c0e
CW
2630 reg = i915_find_fence_reg(dev, pipelined);
2631 if (reg == NULL)
2632 return -ENOSPC;
de151cf6 2633
ce453d81 2634 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2635 if (ret)
ae3db24a 2636 return ret;
de151cf6 2637
d9e86c0e
CW
2638 if (reg->obj) {
2639 struct drm_i915_gem_object *old = reg->obj;
2640
2641 drm_gem_object_reference(&old->base);
2642
2643 if (old->tiling_mode)
2644 i915_gem_release_mmap(old);
2645
ce453d81 2646 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2647 if (ret) {
2648 drm_gem_object_unreference(&old->base);
2649 return ret;
2650 }
2651
2652 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2653 pipelined = NULL;
2654
2655 old->fence_reg = I915_FENCE_REG_NONE;
2656 old->last_fenced_ring = pipelined;
2657 old->last_fenced_seqno =
db53a302 2658 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2659
2660 drm_gem_object_unreference(&old->base);
2661 } else if (obj->last_fenced_seqno == 0)
2662 pipelined = NULL;
a09ba7fa 2663
de151cf6 2664 reg->obj = obj;
d9e86c0e
CW
2665 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2666 obj->fence_reg = reg - dev_priv->fence_regs;
2667 obj->last_fenced_ring = pipelined;
de151cf6 2668
d9e86c0e 2669 reg->setup_seqno =
db53a302 2670 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2671 obj->last_fenced_seqno = reg->setup_seqno;
2672
2673update:
2674 obj->tiling_changed = false;
e259befd 2675 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2676 case 7:
e259befd 2677 case 6:
c6642782 2678 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2679 break;
2680 case 5:
2681 case 4:
c6642782 2682 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2683 break;
2684 case 3:
c6642782 2685 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2686 break;
2687 case 2:
c6642782 2688 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2689 break;
2690 }
d9ddcb96 2691
c6642782 2692 return ret;
de151cf6
JB
2693}
2694
2695/**
2696 * i915_gem_clear_fence_reg - clear out fence register info
2697 * @obj: object to clear
2698 *
2699 * Zeroes out the fence register itself and clears out the associated
05394f39 2700 * data structures in dev_priv and obj.
de151cf6
JB
2701 */
2702static void
d9e86c0e
CW
2703i915_gem_clear_fence_reg(struct drm_device *dev,
2704 struct drm_i915_fence_reg *reg)
de151cf6 2705{
79e53945 2706 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2707 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2708
e259befd 2709 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2710 case 7:
e259befd 2711 case 6:
d9e86c0e 2712 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2713 break;
2714 case 5:
2715 case 4:
d9e86c0e 2716 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2717 break;
2718 case 3:
d9e86c0e
CW
2719 if (fence_reg >= 8)
2720 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2721 else
e259befd 2722 case 2:
d9e86c0e 2723 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2724
2725 I915_WRITE(fence_reg, 0);
e259befd 2726 break;
dc529a4f 2727 }
de151cf6 2728
007cc8ac 2729 list_del_init(&reg->lru_list);
d9e86c0e
CW
2730 reg->obj = NULL;
2731 reg->setup_seqno = 0;
52dc7d32
CW
2732}
2733
673a394b
EA
2734/**
2735 * Finds free space in the GTT aperture and binds the object there.
2736 */
2737static int
05394f39 2738i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2739 unsigned alignment,
75e9e915 2740 bool map_and_fenceable)
673a394b 2741{
05394f39 2742 struct drm_device *dev = obj->base.dev;
673a394b 2743 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2744 struct drm_mm_node *free_space;
a00b10c3 2745 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2746 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2747 bool mappable, fenceable;
07f73f69 2748 int ret;
673a394b 2749
05394f39 2750 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2751 DRM_ERROR("Attempting to bind a purgeable object\n");
2752 return -EINVAL;
2753 }
2754
05394f39
CW
2755 fence_size = i915_gem_get_gtt_size(obj);
2756 fence_alignment = i915_gem_get_gtt_alignment(obj);
2757 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2758
673a394b 2759 if (alignment == 0)
5e783301
DV
2760 alignment = map_and_fenceable ? fence_alignment :
2761 unfenced_alignment;
75e9e915 2762 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2763 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2764 return -EINVAL;
2765 }
2766
05394f39 2767 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2768
654fc607
CW
2769 /* If the object is bigger than the entire aperture, reject it early
2770 * before evicting everything in a vain attempt to find space.
2771 */
05394f39 2772 if (obj->base.size >
75e9e915 2773 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2774 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2775 return -E2BIG;
2776 }
2777
673a394b 2778 search_free:
75e9e915 2779 if (map_and_fenceable)
920afa77
DV
2780 free_space =
2781 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2782 size, alignment, 0,
920afa77
DV
2783 dev_priv->mm.gtt_mappable_end,
2784 0);
2785 else
2786 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2787 size, alignment, 0);
920afa77
DV
2788
2789 if (free_space != NULL) {
75e9e915 2790 if (map_and_fenceable)
05394f39 2791 obj->gtt_space =
920afa77 2792 drm_mm_get_block_range_generic(free_space,
a00b10c3 2793 size, alignment, 0,
920afa77
DV
2794 dev_priv->mm.gtt_mappable_end,
2795 0);
2796 else
05394f39 2797 obj->gtt_space =
a00b10c3 2798 drm_mm_get_block(free_space, size, alignment);
920afa77 2799 }
05394f39 2800 if (obj->gtt_space == NULL) {
673a394b
EA
2801 /* If the gtt is empty and we're still having trouble
2802 * fitting our object in, we're out of memory.
2803 */
75e9e915
DV
2804 ret = i915_gem_evict_something(dev, size, alignment,
2805 map_and_fenceable);
9731129c 2806 if (ret)
673a394b 2807 return ret;
9731129c 2808
673a394b
EA
2809 goto search_free;
2810 }
2811
e5281ccd 2812 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2813 if (ret) {
05394f39
CW
2814 drm_mm_put_block(obj->gtt_space);
2815 obj->gtt_space = NULL;
07f73f69
CW
2816
2817 if (ret == -ENOMEM) {
809b6334
CW
2818 /* first try to reclaim some memory by clearing the GTT */
2819 ret = i915_gem_evict_everything(dev, false);
07f73f69 2820 if (ret) {
07f73f69 2821 /* now try to shrink everyone else */
4bdadb97
CW
2822 if (gfpmask) {
2823 gfpmask = 0;
2824 goto search_free;
07f73f69
CW
2825 }
2826
809b6334 2827 return -ENOMEM;
07f73f69
CW
2828 }
2829
2830 goto search_free;
2831 }
2832
673a394b
EA
2833 return ret;
2834 }
2835
7c2e6fdf
DV
2836 ret = i915_gem_gtt_bind_object(obj);
2837 if (ret) {
e5281ccd 2838 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2839 drm_mm_put_block(obj->gtt_space);
2840 obj->gtt_space = NULL;
07f73f69 2841
809b6334 2842 if (i915_gem_evict_everything(dev, false))
07f73f69 2843 return ret;
07f73f69
CW
2844
2845 goto search_free;
673a394b 2846 }
673a394b 2847
6299f992 2848 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2849 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2850
673a394b
EA
2851 /* Assert that the object is not currently in any GPU domain. As it
2852 * wasn't in the GTT, there shouldn't be any way it could have been in
2853 * a GPU cache
2854 */
05394f39
CW
2855 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2856 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2857
6299f992 2858 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2859
75e9e915 2860 fenceable =
05394f39
CW
2861 obj->gtt_space->size == fence_size &&
2862 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2863
75e9e915 2864 mappable =
05394f39 2865 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2866
05394f39 2867 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2868
db53a302 2869 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2870 return 0;
2871}
2872
2873void
05394f39 2874i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2875{
673a394b
EA
2876 /* If we don't have a page list set up, then we're not pinned
2877 * to GPU, and we can ignore the cache flush because it'll happen
2878 * again at bind time.
2879 */
05394f39 2880 if (obj->pages == NULL)
673a394b
EA
2881 return;
2882
9c23f7fc
CW
2883 /* If the GPU is snooping the contents of the CPU cache,
2884 * we do not need to manually clear the CPU cache lines. However,
2885 * the caches are only snooped when the render cache is
2886 * flushed/invalidated. As we always have to emit invalidations
2887 * and flushes when moving into and out of the RENDER domain, correct
2888 * snooping behaviour occurs naturally as the result of our domain
2889 * tracking.
2890 */
2891 if (obj->cache_level != I915_CACHE_NONE)
2892 return;
2893
1c5d22f7 2894 trace_i915_gem_object_clflush(obj);
cfa16a0d 2895
05394f39 2896 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2897}
2898
e47c68e9 2899/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2900static int
3619df03 2901i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2902{
05394f39 2903 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2904 return 0;
e47c68e9
EA
2905
2906 /* Queue the GPU write cache flushing we need. */
db53a302 2907 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2908}
2909
2910/** Flushes the GTT write domain for the object if it's dirty. */
2911static void
05394f39 2912i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2913{
1c5d22f7
CW
2914 uint32_t old_write_domain;
2915
05394f39 2916 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2917 return;
2918
63256ec5 2919 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2920 * to it immediately go to main memory as far as we know, so there's
2921 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2922 *
2923 * However, we do have to enforce the order so that all writes through
2924 * the GTT land before any writes to the device, such as updates to
2925 * the GATT itself.
e47c68e9 2926 */
63256ec5
CW
2927 wmb();
2928
4a684a41
CW
2929 i915_gem_release_mmap(obj);
2930
05394f39
CW
2931 old_write_domain = obj->base.write_domain;
2932 obj->base.write_domain = 0;
1c5d22f7
CW
2933
2934 trace_i915_gem_object_change_domain(obj,
05394f39 2935 obj->base.read_domains,
1c5d22f7 2936 old_write_domain);
e47c68e9
EA
2937}
2938
2939/** Flushes the CPU write domain for the object if it's dirty. */
2940static void
05394f39 2941i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2942{
1c5d22f7 2943 uint32_t old_write_domain;
e47c68e9 2944
05394f39 2945 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2946 return;
2947
2948 i915_gem_clflush_object(obj);
40ce6575 2949 intel_gtt_chipset_flush();
05394f39
CW
2950 old_write_domain = obj->base.write_domain;
2951 obj->base.write_domain = 0;
1c5d22f7
CW
2952
2953 trace_i915_gem_object_change_domain(obj,
05394f39 2954 obj->base.read_domains,
1c5d22f7 2955 old_write_domain);
e47c68e9
EA
2956}
2957
2ef7eeaa
EA
2958/**
2959 * Moves a single object to the GTT read, and possibly write domain.
2960 *
2961 * This function returns when the move is complete, including waiting on
2962 * flushes to occur.
2963 */
79e53945 2964int
2021746e 2965i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2966{
1c5d22f7 2967 uint32_t old_write_domain, old_read_domains;
e47c68e9 2968 int ret;
2ef7eeaa 2969
02354392 2970 /* Not valid to be called on unbound objects. */
05394f39 2971 if (obj->gtt_space == NULL)
02354392
EA
2972 return -EINVAL;
2973
8d7e3de1
CW
2974 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2975 return 0;
2976
88241785
CW
2977 ret = i915_gem_object_flush_gpu_write_domain(obj);
2978 if (ret)
2979 return ret;
2980
87ca9c8a 2981 if (obj->pending_gpu_write || write) {
ce453d81 2982 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2983 if (ret)
2984 return ret;
2985 }
2dafb1e0 2986
7213342d 2987 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2988
05394f39
CW
2989 old_write_domain = obj->base.write_domain;
2990 old_read_domains = obj->base.read_domains;
1c5d22f7 2991
e47c68e9
EA
2992 /* It should now be out of any other write domains, and we can update
2993 * the domain values for our changes.
2994 */
05394f39
CW
2995 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2996 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2997 if (write) {
05394f39
CW
2998 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2999 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3000 obj->dirty = 1;
2ef7eeaa
EA
3001 }
3002
1c5d22f7
CW
3003 trace_i915_gem_object_change_domain(obj,
3004 old_read_domains,
3005 old_write_domain);
3006
e47c68e9
EA
3007 return 0;
3008}
3009
b9241ea3
ZW
3010/*
3011 * Prepare buffer for display plane. Use uninterruptible for possible flush
3012 * wait, as in modesetting process we're not supposed to be interrupted.
3013 */
3014int
05394f39 3015i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 3016 struct intel_ring_buffer *pipelined)
b9241ea3 3017{
ba3d8d74 3018 uint32_t old_read_domains;
b9241ea3
ZW
3019 int ret;
3020
3021 /* Not valid to be called on unbound objects. */
05394f39 3022 if (obj->gtt_space == NULL)
b9241ea3
ZW
3023 return -EINVAL;
3024
88241785
CW
3025 ret = i915_gem_object_flush_gpu_write_domain(obj);
3026 if (ret)
3027 return ret;
3028
b9241ea3 3029
ced270fa 3030 /* Currently, we are always called from an non-interruptible context. */
0be73284 3031 if (pipelined != obj->ring) {
ce453d81 3032 ret = i915_gem_object_wait_rendering(obj);
ced270fa 3033 if (ret)
b9241ea3
ZW
3034 return ret;
3035 }
3036
b118c1e3
CW
3037 i915_gem_object_flush_cpu_write_domain(obj);
3038
05394f39
CW
3039 old_read_domains = obj->base.read_domains;
3040 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3041
3042 trace_i915_gem_object_change_domain(obj,
3043 old_read_domains,
05394f39 3044 obj->base.write_domain);
b9241ea3
ZW
3045
3046 return 0;
3047}
3048
85345517 3049int
ce453d81 3050i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
85345517 3051{
88241785
CW
3052 int ret;
3053
85345517
CW
3054 if (!obj->active)
3055 return 0;
3056
88241785 3057 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3058 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3059 if (ret)
3060 return ret;
3061 }
85345517 3062
ce453d81 3063 return i915_gem_object_wait_rendering(obj);
85345517
CW
3064}
3065
e47c68e9
EA
3066/**
3067 * Moves a single object to the CPU read, and possibly write domain.
3068 *
3069 * This function returns when the move is complete, including waiting on
3070 * flushes to occur.
3071 */
3072static int
919926ae 3073i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3074{
1c5d22f7 3075 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3076 int ret;
3077
8d7e3de1
CW
3078 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3079 return 0;
3080
88241785
CW
3081 ret = i915_gem_object_flush_gpu_write_domain(obj);
3082 if (ret)
3083 return ret;
3084
ce453d81 3085 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3086 if (ret)
e47c68e9 3087 return ret;
2ef7eeaa 3088
e47c68e9 3089 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3090
e47c68e9
EA
3091 /* If we have a partially-valid cache of the object in the CPU,
3092 * finish invalidating it and free the per-page flags.
2ef7eeaa 3093 */
e47c68e9 3094 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3095
05394f39
CW
3096 old_write_domain = obj->base.write_domain;
3097 old_read_domains = obj->base.read_domains;
1c5d22f7 3098
e47c68e9 3099 /* Flush the CPU cache if it's still invalid. */
05394f39 3100 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3101 i915_gem_clflush_object(obj);
2ef7eeaa 3102
05394f39 3103 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3104 }
3105
3106 /* It should now be out of any other write domains, and we can update
3107 * the domain values for our changes.
3108 */
05394f39 3109 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3110
3111 /* If we're writing through the CPU, then the GPU read domains will
3112 * need to be invalidated at next use.
3113 */
3114 if (write) {
05394f39
CW
3115 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3116 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3117 }
2ef7eeaa 3118
1c5d22f7
CW
3119 trace_i915_gem_object_change_domain(obj,
3120 old_read_domains,
3121 old_write_domain);
3122
2ef7eeaa
EA
3123 return 0;
3124}
3125
673a394b 3126/**
e47c68e9 3127 * Moves the object from a partially CPU read to a full one.
673a394b 3128 *
e47c68e9
EA
3129 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3130 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3131 */
e47c68e9 3132static void
05394f39 3133i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3134{
05394f39 3135 if (!obj->page_cpu_valid)
e47c68e9
EA
3136 return;
3137
3138 /* If we're partially in the CPU read domain, finish moving it in.
3139 */
05394f39 3140 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3141 int i;
3142
05394f39
CW
3143 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3144 if (obj->page_cpu_valid[i])
e47c68e9 3145 continue;
05394f39 3146 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3147 }
e47c68e9
EA
3148 }
3149
3150 /* Free the page_cpu_valid mappings which are now stale, whether
3151 * or not we've got I915_GEM_DOMAIN_CPU.
3152 */
05394f39
CW
3153 kfree(obj->page_cpu_valid);
3154 obj->page_cpu_valid = NULL;
e47c68e9
EA
3155}
3156
3157/**
3158 * Set the CPU read domain on a range of the object.
3159 *
3160 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3161 * not entirely valid. The page_cpu_valid member of the object flags which
3162 * pages have been flushed, and will be respected by
3163 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3164 * of the whole object.
3165 *
3166 * This function returns when the move is complete, including waiting on
3167 * flushes to occur.
3168 */
3169static int
05394f39 3170i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3171 uint64_t offset, uint64_t size)
3172{
1c5d22f7 3173 uint32_t old_read_domains;
e47c68e9 3174 int i, ret;
673a394b 3175
05394f39 3176 if (offset == 0 && size == obj->base.size)
e47c68e9 3177 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3178
88241785
CW
3179 ret = i915_gem_object_flush_gpu_write_domain(obj);
3180 if (ret)
3181 return ret;
3182
ce453d81 3183 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3184 if (ret)
6a47baa6 3185 return ret;
de18a29e 3186
e47c68e9
EA
3187 i915_gem_object_flush_gtt_write_domain(obj);
3188
3189 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3190 if (obj->page_cpu_valid == NULL &&
3191 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3192 return 0;
673a394b 3193
e47c68e9
EA
3194 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3195 * newly adding I915_GEM_DOMAIN_CPU
3196 */
05394f39
CW
3197 if (obj->page_cpu_valid == NULL) {
3198 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3199 GFP_KERNEL);
3200 if (obj->page_cpu_valid == NULL)
e47c68e9 3201 return -ENOMEM;
05394f39
CW
3202 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3203 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3204
3205 /* Flush the cache on any pages that are still invalid from the CPU's
3206 * perspective.
3207 */
e47c68e9
EA
3208 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3209 i++) {
05394f39 3210 if (obj->page_cpu_valid[i])
673a394b
EA
3211 continue;
3212
05394f39 3213 drm_clflush_pages(obj->pages + i, 1);
673a394b 3214
05394f39 3215 obj->page_cpu_valid[i] = 1;
673a394b
EA
3216 }
3217
e47c68e9
EA
3218 /* It should now be out of any other write domains, and we can update
3219 * the domain values for our changes.
3220 */
05394f39 3221 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3222
05394f39
CW
3223 old_read_domains = obj->base.read_domains;
3224 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3225
1c5d22f7
CW
3226 trace_i915_gem_object_change_domain(obj,
3227 old_read_domains,
05394f39 3228 obj->base.write_domain);
1c5d22f7 3229
673a394b
EA
3230 return 0;
3231}
3232
673a394b
EA
3233/* Throttle our rendering by waiting until the ring has completed our requests
3234 * emitted over 20 msec ago.
3235 *
b962442e
EA
3236 * Note that if we were to use the current jiffies each time around the loop,
3237 * we wouldn't escape the function with any frames outstanding if the time to
3238 * render a frame was over 20ms.
3239 *
673a394b
EA
3240 * This should get us reasonable parallelism between CPU and GPU but also
3241 * relatively low latency when blocking on a particular request to finish.
3242 */
40a5f0de 3243static int
f787a5f5 3244i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3245{
f787a5f5
CW
3246 struct drm_i915_private *dev_priv = dev->dev_private;
3247 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3248 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3249 struct drm_i915_gem_request *request;
3250 struct intel_ring_buffer *ring = NULL;
3251 u32 seqno = 0;
3252 int ret;
93533c29 3253
e110e8d6
CW
3254 if (atomic_read(&dev_priv->mm.wedged))
3255 return -EIO;
3256
1c25595f 3257 spin_lock(&file_priv->mm.lock);
f787a5f5 3258 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3259 if (time_after_eq(request->emitted_jiffies, recent_enough))
3260 break;
40a5f0de 3261
f787a5f5
CW
3262 ring = request->ring;
3263 seqno = request->seqno;
b962442e 3264 }
1c25595f 3265 spin_unlock(&file_priv->mm.lock);
40a5f0de 3266
f787a5f5
CW
3267 if (seqno == 0)
3268 return 0;
2bc43b5c 3269
f787a5f5 3270 ret = 0;
78501eac 3271 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3272 /* And wait for the seqno passing without holding any locks and
3273 * causing extra latency for others. This is safe as the irq
3274 * generation is designed to be run atomically and so is
3275 * lockless.
3276 */
b13c2b96
CW
3277 if (ring->irq_get(ring)) {
3278 ret = wait_event_interruptible(ring->irq_queue,
3279 i915_seqno_passed(ring->get_seqno(ring), seqno)
3280 || atomic_read(&dev_priv->mm.wedged));
3281 ring->irq_put(ring);
40a5f0de 3282
b13c2b96
CW
3283 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3284 ret = -EIO;
3285 }
40a5f0de
EA
3286 }
3287
f787a5f5
CW
3288 if (ret == 0)
3289 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3290
3291 return ret;
3292}
3293
673a394b 3294int
05394f39
CW
3295i915_gem_object_pin(struct drm_i915_gem_object *obj,
3296 uint32_t alignment,
75e9e915 3297 bool map_and_fenceable)
673a394b 3298{
05394f39 3299 struct drm_device *dev = obj->base.dev;
f13d3f73 3300 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3301 int ret;
3302
05394f39 3303 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3304 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3305
05394f39
CW
3306 if (obj->gtt_space != NULL) {
3307 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3308 (map_and_fenceable && !obj->map_and_fenceable)) {
3309 WARN(obj->pin_count,
ae7d49d8 3310 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3311 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3312 " obj->map_and_fenceable=%d\n",
05394f39 3313 obj->gtt_offset, alignment,
75e9e915 3314 map_and_fenceable,
05394f39 3315 obj->map_and_fenceable);
ac0c6b5a
CW
3316 ret = i915_gem_object_unbind(obj);
3317 if (ret)
3318 return ret;
3319 }
3320 }
3321
05394f39 3322 if (obj->gtt_space == NULL) {
a00b10c3 3323 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3324 map_and_fenceable);
9731129c 3325 if (ret)
673a394b 3326 return ret;
22c344e9 3327 }
76446cac 3328
05394f39 3329 if (obj->pin_count++ == 0) {
05394f39
CW
3330 if (!obj->active)
3331 list_move_tail(&obj->mm_list,
f13d3f73 3332 &dev_priv->mm.pinned_list);
673a394b 3333 }
6299f992 3334 obj->pin_mappable |= map_and_fenceable;
673a394b 3335
23bc5982 3336 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3337 return 0;
3338}
3339
3340void
05394f39 3341i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3342{
05394f39 3343 struct drm_device *dev = obj->base.dev;
673a394b 3344 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3345
23bc5982 3346 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3347 BUG_ON(obj->pin_count == 0);
3348 BUG_ON(obj->gtt_space == NULL);
673a394b 3349
05394f39
CW
3350 if (--obj->pin_count == 0) {
3351 if (!obj->active)
3352 list_move_tail(&obj->mm_list,
673a394b 3353 &dev_priv->mm.inactive_list);
6299f992 3354 obj->pin_mappable = false;
673a394b 3355 }
23bc5982 3356 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3357}
3358
3359int
3360i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3361 struct drm_file *file)
673a394b
EA
3362{
3363 struct drm_i915_gem_pin *args = data;
05394f39 3364 struct drm_i915_gem_object *obj;
673a394b
EA
3365 int ret;
3366
1d7cfea1
CW
3367 ret = i915_mutex_lock_interruptible(dev);
3368 if (ret)
3369 return ret;
673a394b 3370
05394f39 3371 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3372 if (&obj->base == NULL) {
1d7cfea1
CW
3373 ret = -ENOENT;
3374 goto unlock;
673a394b 3375 }
673a394b 3376
05394f39 3377 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3378 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3379 ret = -EINVAL;
3380 goto out;
3ef94daa
CW
3381 }
3382
05394f39 3383 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3384 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3385 args->handle);
1d7cfea1
CW
3386 ret = -EINVAL;
3387 goto out;
79e53945
JB
3388 }
3389
05394f39
CW
3390 obj->user_pin_count++;
3391 obj->pin_filp = file;
3392 if (obj->user_pin_count == 1) {
75e9e915 3393 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3394 if (ret)
3395 goto out;
673a394b
EA
3396 }
3397
3398 /* XXX - flush the CPU caches for pinned objects
3399 * as the X server doesn't manage domains yet
3400 */
e47c68e9 3401 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3402 args->offset = obj->gtt_offset;
1d7cfea1 3403out:
05394f39 3404 drm_gem_object_unreference(&obj->base);
1d7cfea1 3405unlock:
673a394b 3406 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3407 return ret;
673a394b
EA
3408}
3409
3410int
3411i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3412 struct drm_file *file)
673a394b
EA
3413{
3414 struct drm_i915_gem_pin *args = data;
05394f39 3415 struct drm_i915_gem_object *obj;
76c1dec1 3416 int ret;
673a394b 3417
1d7cfea1
CW
3418 ret = i915_mutex_lock_interruptible(dev);
3419 if (ret)
3420 return ret;
673a394b 3421
05394f39 3422 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3423 if (&obj->base == NULL) {
1d7cfea1
CW
3424 ret = -ENOENT;
3425 goto unlock;
673a394b 3426 }
76c1dec1 3427
05394f39 3428 if (obj->pin_filp != file) {
79e53945
JB
3429 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3430 args->handle);
1d7cfea1
CW
3431 ret = -EINVAL;
3432 goto out;
79e53945 3433 }
05394f39
CW
3434 obj->user_pin_count--;
3435 if (obj->user_pin_count == 0) {
3436 obj->pin_filp = NULL;
79e53945
JB
3437 i915_gem_object_unpin(obj);
3438 }
673a394b 3439
1d7cfea1 3440out:
05394f39 3441 drm_gem_object_unreference(&obj->base);
1d7cfea1 3442unlock:
673a394b 3443 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3444 return ret;
673a394b
EA
3445}
3446
3447int
3448i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3449 struct drm_file *file)
673a394b
EA
3450{
3451 struct drm_i915_gem_busy *args = data;
05394f39 3452 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3453 int ret;
3454
76c1dec1 3455 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3456 if (ret)
76c1dec1 3457 return ret;
673a394b 3458
05394f39 3459 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3460 if (&obj->base == NULL) {
1d7cfea1
CW
3461 ret = -ENOENT;
3462 goto unlock;
673a394b 3463 }
d1b851fc 3464
0be555b6
CW
3465 /* Count all active objects as busy, even if they are currently not used
3466 * by the gpu. Users of this interface expect objects to eventually
3467 * become non-busy without any further actions, therefore emit any
3468 * necessary flushes here.
c4de0a5d 3469 */
05394f39 3470 args->busy = obj->active;
0be555b6
CW
3471 if (args->busy) {
3472 /* Unconditionally flush objects, even when the gpu still uses this
3473 * object. Userspace calling this function indicates that it wants to
3474 * use this buffer rather sooner than later, so issuing the required
3475 * flush earlier is beneficial.
3476 */
1a1c6976 3477 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3478 ret = i915_gem_flush_ring(obj->ring,
88241785 3479 0, obj->base.write_domain);
1a1c6976
CW
3480 } else if (obj->ring->outstanding_lazy_request ==
3481 obj->last_rendering_seqno) {
3482 struct drm_i915_gem_request *request;
3483
7a194876
CW
3484 /* This ring is not being cleared by active usage,
3485 * so emit a request to do so.
3486 */
1a1c6976
CW
3487 request = kzalloc(sizeof(*request), GFP_KERNEL);
3488 if (request)
db53a302 3489 ret = i915_add_request(obj->ring, NULL,request);
1a1c6976 3490 else
7a194876
CW
3491 ret = -ENOMEM;
3492 }
0be555b6
CW
3493
3494 /* Update the active list for the hardware's current position.
3495 * Otherwise this only updates on a delayed timer or when irqs
3496 * are actually unmasked, and our working set ends up being
3497 * larger than required.
3498 */
db53a302 3499 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3500
05394f39 3501 args->busy = obj->active;
0be555b6 3502 }
673a394b 3503
05394f39 3504 drm_gem_object_unreference(&obj->base);
1d7cfea1 3505unlock:
673a394b 3506 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3507 return ret;
673a394b
EA
3508}
3509
3510int
3511i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3512 struct drm_file *file_priv)
3513{
3514 return i915_gem_ring_throttle(dev, file_priv);
3515}
3516
3ef94daa
CW
3517int
3518i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3519 struct drm_file *file_priv)
3520{
3521 struct drm_i915_gem_madvise *args = data;
05394f39 3522 struct drm_i915_gem_object *obj;
76c1dec1 3523 int ret;
3ef94daa
CW
3524
3525 switch (args->madv) {
3526 case I915_MADV_DONTNEED:
3527 case I915_MADV_WILLNEED:
3528 break;
3529 default:
3530 return -EINVAL;
3531 }
3532
1d7cfea1
CW
3533 ret = i915_mutex_lock_interruptible(dev);
3534 if (ret)
3535 return ret;
3536
05394f39 3537 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3538 if (&obj->base == NULL) {
1d7cfea1
CW
3539 ret = -ENOENT;
3540 goto unlock;
3ef94daa 3541 }
3ef94daa 3542
05394f39 3543 if (obj->pin_count) {
1d7cfea1
CW
3544 ret = -EINVAL;
3545 goto out;
3ef94daa
CW
3546 }
3547
05394f39
CW
3548 if (obj->madv != __I915_MADV_PURGED)
3549 obj->madv = args->madv;
3ef94daa 3550
2d7ef395 3551 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3552 if (i915_gem_object_is_purgeable(obj) &&
3553 obj->gtt_space == NULL)
2d7ef395
CW
3554 i915_gem_object_truncate(obj);
3555
05394f39 3556 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3557
1d7cfea1 3558out:
05394f39 3559 drm_gem_object_unreference(&obj->base);
1d7cfea1 3560unlock:
3ef94daa 3561 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3562 return ret;
3ef94daa
CW
3563}
3564
05394f39
CW
3565struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3566 size_t size)
ac52bc56 3567{
73aa808f 3568 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3569 struct drm_i915_gem_object *obj;
ac52bc56 3570
c397b908
DV
3571 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3572 if (obj == NULL)
3573 return NULL;
673a394b 3574
c397b908
DV
3575 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3576 kfree(obj);
3577 return NULL;
3578 }
673a394b 3579
73aa808f
CW
3580 i915_gem_info_add_obj(dev_priv, size);
3581
c397b908
DV
3582 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3583 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3584
93dfb40c 3585 obj->cache_level = I915_CACHE_NONE;
62b8b215 3586 obj->base.driver_private = NULL;
c397b908 3587 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3588 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3589 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3590 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3591 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3592 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3593 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3594 /* Avoid an unnecessary call to unbind on the first bind. */
3595 obj->map_and_fenceable = true;
de151cf6 3596
05394f39 3597 return obj;
c397b908
DV
3598}
3599
3600int i915_gem_init_object(struct drm_gem_object *obj)
3601{
3602 BUG();
de151cf6 3603
673a394b
EA
3604 return 0;
3605}
3606
05394f39 3607static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3608{
05394f39 3609 struct drm_device *dev = obj->base.dev;
be72615b 3610 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3611 int ret;
673a394b 3612
be72615b
CW
3613 ret = i915_gem_object_unbind(obj);
3614 if (ret == -ERESTARTSYS) {
05394f39 3615 list_move(&obj->mm_list,
be72615b
CW
3616 &dev_priv->mm.deferred_free_list);
3617 return;
3618 }
673a394b 3619
26e12f89
CW
3620 trace_i915_gem_object_destroy(obj);
3621
05394f39 3622 if (obj->base.map_list.map)
7e616158 3623 i915_gem_free_mmap_offset(obj);
de151cf6 3624
05394f39
CW
3625 drm_gem_object_release(&obj->base);
3626 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3627
05394f39
CW
3628 kfree(obj->page_cpu_valid);
3629 kfree(obj->bit_17);
3630 kfree(obj);
673a394b
EA
3631}
3632
05394f39 3633void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3634{
05394f39
CW
3635 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3636 struct drm_device *dev = obj->base.dev;
be72615b 3637
05394f39 3638 while (obj->pin_count > 0)
be72615b
CW
3639 i915_gem_object_unpin(obj);
3640
05394f39 3641 if (obj->phys_obj)
be72615b
CW
3642 i915_gem_detach_phys_object(dev, obj);
3643
3644 i915_gem_free_object_tail(obj);
3645}
3646
29105ccc
CW
3647int
3648i915_gem_idle(struct drm_device *dev)
3649{
3650 drm_i915_private_t *dev_priv = dev->dev_private;
3651 int ret;
28dfe52a 3652
29105ccc 3653 mutex_lock(&dev->struct_mutex);
1c5d22f7 3654
87acb0a5 3655 if (dev_priv->mm.suspended) {
29105ccc
CW
3656 mutex_unlock(&dev->struct_mutex);
3657 return 0;
28dfe52a
EA
3658 }
3659
29105ccc 3660 ret = i915_gpu_idle(dev);
6dbe2772
KP
3661 if (ret) {
3662 mutex_unlock(&dev->struct_mutex);
673a394b 3663 return ret;
6dbe2772 3664 }
673a394b 3665
29105ccc
CW
3666 /* Under UMS, be paranoid and evict. */
3667 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3668 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3669 if (ret) {
3670 mutex_unlock(&dev->struct_mutex);
3671 return ret;
3672 }
3673 }
3674
312817a3
CW
3675 i915_gem_reset_fences(dev);
3676
29105ccc
CW
3677 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3678 * We need to replace this with a semaphore, or something.
3679 * And not confound mm.suspended!
3680 */
3681 dev_priv->mm.suspended = 1;
bc0c7f14 3682 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3683
3684 i915_kernel_lost_context(dev);
6dbe2772 3685 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3686
6dbe2772
KP
3687 mutex_unlock(&dev->struct_mutex);
3688
29105ccc
CW
3689 /* Cancel the retire work handler, which should be idle now. */
3690 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3691
673a394b
EA
3692 return 0;
3693}
3694
8187a2b7
ZN
3695int
3696i915_gem_init_ringbuffer(struct drm_device *dev)
3697{
3698 drm_i915_private_t *dev_priv = dev->dev_private;
3699 int ret;
68f95ba9 3700
5c1143bb 3701 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3702 if (ret)
b6913e4b 3703 return ret;
68f95ba9
CW
3704
3705 if (HAS_BSD(dev)) {
5c1143bb 3706 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3707 if (ret)
3708 goto cleanup_render_ring;
d1b851fc 3709 }
68f95ba9 3710
549f7365
CW
3711 if (HAS_BLT(dev)) {
3712 ret = intel_init_blt_ring_buffer(dev);
3713 if (ret)
3714 goto cleanup_bsd_ring;
3715 }
3716
6f392d54
CW
3717 dev_priv->next_seqno = 1;
3718
68f95ba9
CW
3719 return 0;
3720
549f7365 3721cleanup_bsd_ring:
1ec14ad3 3722 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3723cleanup_render_ring:
1ec14ad3 3724 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3725 return ret;
3726}
3727
3728void
3729i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3730{
3731 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3732 int i;
8187a2b7 3733
1ec14ad3
CW
3734 for (i = 0; i < I915_NUM_RINGS; i++)
3735 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3736}
3737
673a394b
EA
3738int
3739i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3740 struct drm_file *file_priv)
3741{
3742 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3743 int ret, i;
673a394b 3744
79e53945
JB
3745 if (drm_core_check_feature(dev, DRIVER_MODESET))
3746 return 0;
3747
ba1234d1 3748 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3749 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3750 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3751 }
3752
673a394b 3753 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3754 dev_priv->mm.suspended = 0;
3755
3756 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3757 if (ret != 0) {
3758 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3759 return ret;
d816f6ac 3760 }
9bb2d6f9 3761
69dc4987 3762 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3763 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3764 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3765 for (i = 0; i < I915_NUM_RINGS; i++) {
3766 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3767 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3768 }
673a394b 3769 mutex_unlock(&dev->struct_mutex);
dbb19d30 3770
5f35308b
CW
3771 ret = drm_irq_install(dev);
3772 if (ret)
3773 goto cleanup_ringbuffer;
dbb19d30 3774
673a394b 3775 return 0;
5f35308b
CW
3776
3777cleanup_ringbuffer:
3778 mutex_lock(&dev->struct_mutex);
3779 i915_gem_cleanup_ringbuffer(dev);
3780 dev_priv->mm.suspended = 1;
3781 mutex_unlock(&dev->struct_mutex);
3782
3783 return ret;
673a394b
EA
3784}
3785
3786int
3787i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3788 struct drm_file *file_priv)
3789{
79e53945
JB
3790 if (drm_core_check_feature(dev, DRIVER_MODESET))
3791 return 0;
3792
dbb19d30 3793 drm_irq_uninstall(dev);
e6890f6f 3794 return i915_gem_idle(dev);
673a394b
EA
3795}
3796
3797void
3798i915_gem_lastclose(struct drm_device *dev)
3799{
3800 int ret;
673a394b 3801
e806b495
EA
3802 if (drm_core_check_feature(dev, DRIVER_MODESET))
3803 return;
3804
6dbe2772
KP
3805 ret = i915_gem_idle(dev);
3806 if (ret)
3807 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3808}
3809
64193406
CW
3810static void
3811init_ring_lists(struct intel_ring_buffer *ring)
3812{
3813 INIT_LIST_HEAD(&ring->active_list);
3814 INIT_LIST_HEAD(&ring->request_list);
3815 INIT_LIST_HEAD(&ring->gpu_write_list);
3816}
3817
673a394b
EA
3818void
3819i915_gem_load(struct drm_device *dev)
3820{
b5aa8a0f 3821 int i;
673a394b
EA
3822 drm_i915_private_t *dev_priv = dev->dev_private;
3823
69dc4987 3824 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3825 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3826 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3827 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3828 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3829 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3830 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3831 for (i = 0; i < I915_NUM_RINGS; i++)
3832 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3833 for (i = 0; i < 16; i++)
3834 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3835 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3836 i915_gem_retire_work_handler);
30dbf0c0 3837 init_completion(&dev_priv->error_completion);
31169714 3838
94400120
DA
3839 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3840 if (IS_GEN3(dev)) {
3841 u32 tmp = I915_READ(MI_ARB_STATE);
3842 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3843 /* arb state is a masked write, so set bit + bit in mask */
3844 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3845 I915_WRITE(MI_ARB_STATE, tmp);
3846 }
3847 }
3848
72bfa19c
CW
3849 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3850
de151cf6 3851 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3852 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3853 dev_priv->fence_reg_start = 3;
de151cf6 3854
a6c45cf0 3855 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3856 dev_priv->num_fence_regs = 16;
3857 else
3858 dev_priv->num_fence_regs = 8;
3859
b5aa8a0f 3860 /* Initialize fence registers to zero */
10ed13e4
EA
3861 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3862 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3863 }
10ed13e4 3864
673a394b 3865 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3866 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3867
ce453d81
CW
3868 dev_priv->mm.interruptible = true;
3869
17250b71
CW
3870 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3871 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3872 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3873}
71acb5eb
DA
3874
3875/*
3876 * Create a physically contiguous memory object for this object
3877 * e.g. for cursor + overlay regs
3878 */
995b6762
CW
3879static int i915_gem_init_phys_object(struct drm_device *dev,
3880 int id, int size, int align)
71acb5eb
DA
3881{
3882 drm_i915_private_t *dev_priv = dev->dev_private;
3883 struct drm_i915_gem_phys_object *phys_obj;
3884 int ret;
3885
3886 if (dev_priv->mm.phys_objs[id - 1] || !size)
3887 return 0;
3888
9a298b2a 3889 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3890 if (!phys_obj)
3891 return -ENOMEM;
3892
3893 phys_obj->id = id;
3894
6eeefaf3 3895 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3896 if (!phys_obj->handle) {
3897 ret = -ENOMEM;
3898 goto kfree_obj;
3899 }
3900#ifdef CONFIG_X86
3901 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3902#endif
3903
3904 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3905
3906 return 0;
3907kfree_obj:
9a298b2a 3908 kfree(phys_obj);
71acb5eb
DA
3909 return ret;
3910}
3911
995b6762 3912static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3913{
3914 drm_i915_private_t *dev_priv = dev->dev_private;
3915 struct drm_i915_gem_phys_object *phys_obj;
3916
3917 if (!dev_priv->mm.phys_objs[id - 1])
3918 return;
3919
3920 phys_obj = dev_priv->mm.phys_objs[id - 1];
3921 if (phys_obj->cur_obj) {
3922 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3923 }
3924
3925#ifdef CONFIG_X86
3926 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3927#endif
3928 drm_pci_free(dev, phys_obj->handle);
3929 kfree(phys_obj);
3930 dev_priv->mm.phys_objs[id - 1] = NULL;
3931}
3932
3933void i915_gem_free_all_phys_object(struct drm_device *dev)
3934{
3935 int i;
3936
260883c8 3937 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3938 i915_gem_free_phys_object(dev, i);
3939}
3940
3941void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3942 struct drm_i915_gem_object *obj)
71acb5eb 3943{
05394f39 3944 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3945 char *vaddr;
71acb5eb 3946 int i;
71acb5eb
DA
3947 int page_count;
3948
05394f39 3949 if (!obj->phys_obj)
71acb5eb 3950 return;
05394f39 3951 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3952
05394f39 3953 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3954 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3955 struct page *page = read_cache_page_gfp(mapping, i,
3956 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3957 if (!IS_ERR(page)) {
3958 char *dst = kmap_atomic(page);
3959 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3960 kunmap_atomic(dst);
3961
3962 drm_clflush_pages(&page, 1);
3963
3964 set_page_dirty(page);
3965 mark_page_accessed(page);
3966 page_cache_release(page);
3967 }
71acb5eb 3968 }
40ce6575 3969 intel_gtt_chipset_flush();
d78b47b9 3970
05394f39
CW
3971 obj->phys_obj->cur_obj = NULL;
3972 obj->phys_obj = NULL;
71acb5eb
DA
3973}
3974
3975int
3976i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3977 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3978 int id,
3979 int align)
71acb5eb 3980{
05394f39 3981 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3982 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3983 int ret = 0;
3984 int page_count;
3985 int i;
3986
3987 if (id > I915_MAX_PHYS_OBJECT)
3988 return -EINVAL;
3989
05394f39
CW
3990 if (obj->phys_obj) {
3991 if (obj->phys_obj->id == id)
71acb5eb
DA
3992 return 0;
3993 i915_gem_detach_phys_object(dev, obj);
3994 }
3995
71acb5eb
DA
3996 /* create a new object */
3997 if (!dev_priv->mm.phys_objs[id - 1]) {
3998 ret = i915_gem_init_phys_object(dev, id,
05394f39 3999 obj->base.size, align);
71acb5eb 4000 if (ret) {
05394f39
CW
4001 DRM_ERROR("failed to init phys object %d size: %zu\n",
4002 id, obj->base.size);
e5281ccd 4003 return ret;
71acb5eb
DA
4004 }
4005 }
4006
4007 /* bind to the object */
05394f39
CW
4008 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4009 obj->phys_obj->cur_obj = obj;
71acb5eb 4010
05394f39 4011 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4012
4013 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4014 struct page *page;
4015 char *dst, *src;
4016
4017 page = read_cache_page_gfp(mapping, i,
4018 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4019 if (IS_ERR(page))
4020 return PTR_ERR(page);
71acb5eb 4021
ff75b9bc 4022 src = kmap_atomic(page);
05394f39 4023 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4024 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4025 kunmap_atomic(src);
71acb5eb 4026
e5281ccd
CW
4027 mark_page_accessed(page);
4028 page_cache_release(page);
4029 }
d78b47b9 4030
71acb5eb 4031 return 0;
71acb5eb
DA
4032}
4033
4034static int
05394f39
CW
4035i915_gem_phys_pwrite(struct drm_device *dev,
4036 struct drm_i915_gem_object *obj,
71acb5eb
DA
4037 struct drm_i915_gem_pwrite *args,
4038 struct drm_file *file_priv)
4039{
05394f39 4040 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4041 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4042
b47b30cc
CW
4043 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4044 unsigned long unwritten;
4045
4046 /* The physical object once assigned is fixed for the lifetime
4047 * of the obj, so we can safely drop the lock and continue
4048 * to access vaddr.
4049 */
4050 mutex_unlock(&dev->struct_mutex);
4051 unwritten = copy_from_user(vaddr, user_data, args->size);
4052 mutex_lock(&dev->struct_mutex);
4053 if (unwritten)
4054 return -EFAULT;
4055 }
71acb5eb 4056
40ce6575 4057 intel_gtt_chipset_flush();
71acb5eb
DA
4058 return 0;
4059}
b962442e 4060
f787a5f5 4061void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4062{
f787a5f5 4063 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4064
4065 /* Clean up our request list when the client is going away, so that
4066 * later retire_requests won't dereference our soon-to-be-gone
4067 * file_priv.
4068 */
1c25595f 4069 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4070 while (!list_empty(&file_priv->mm.request_list)) {
4071 struct drm_i915_gem_request *request;
4072
4073 request = list_first_entry(&file_priv->mm.request_list,
4074 struct drm_i915_gem_request,
4075 client_list);
4076 list_del(&request->client_list);
4077 request->file_priv = NULL;
4078 }
1c25595f 4079 spin_unlock(&file_priv->mm.lock);
b962442e 4080}
31169714 4081
1637ef41
CW
4082static int
4083i915_gpu_is_active(struct drm_device *dev)
4084{
4085 drm_i915_private_t *dev_priv = dev->dev_private;
4086 int lists_empty;
4087
1637ef41 4088 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4089 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4090
4091 return !lists_empty;
4092}
4093
31169714 4094static int
17250b71
CW
4095i915_gem_inactive_shrink(struct shrinker *shrinker,
4096 int nr_to_scan,
4097 gfp_t gfp_mask)
31169714 4098{
17250b71
CW
4099 struct drm_i915_private *dev_priv =
4100 container_of(shrinker,
4101 struct drm_i915_private,
4102 mm.inactive_shrinker);
4103 struct drm_device *dev = dev_priv->dev;
4104 struct drm_i915_gem_object *obj, *next;
4105 int cnt;
4106
4107 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4108 return 0;
31169714
CW
4109
4110 /* "fast-path" to count number of available objects */
4111 if (nr_to_scan == 0) {
17250b71
CW
4112 cnt = 0;
4113 list_for_each_entry(obj,
4114 &dev_priv->mm.inactive_list,
4115 mm_list)
4116 cnt++;
4117 mutex_unlock(&dev->struct_mutex);
4118 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4119 }
4120
1637ef41 4121rescan:
31169714 4122 /* first scan for clean buffers */
17250b71 4123 i915_gem_retire_requests(dev);
31169714 4124
17250b71
CW
4125 list_for_each_entry_safe(obj, next,
4126 &dev_priv->mm.inactive_list,
4127 mm_list) {
4128 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4129 if (i915_gem_object_unbind(obj) == 0 &&
4130 --nr_to_scan == 0)
17250b71 4131 break;
31169714 4132 }
31169714
CW
4133 }
4134
4135 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4136 cnt = 0;
4137 list_for_each_entry_safe(obj, next,
4138 &dev_priv->mm.inactive_list,
4139 mm_list) {
2021746e
CW
4140 if (nr_to_scan &&
4141 i915_gem_object_unbind(obj) == 0)
17250b71 4142 nr_to_scan--;
2021746e 4143 else
17250b71
CW
4144 cnt++;
4145 }
4146
4147 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4148 /*
4149 * We are desperate for pages, so as a last resort, wait
4150 * for the GPU to finish and discard whatever we can.
4151 * This has a dramatic impact to reduce the number of
4152 * OOM-killer events whilst running the GPU aggressively.
4153 */
17250b71 4154 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4155 goto rescan;
4156 }
17250b71
CW
4157 mutex_unlock(&dev->struct_mutex);
4158 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4159}
This page took 0.588456 seconds and 5 git commands to generate.