drm/i915: Split i915_gem_flush_ring() into seperate invalidate/flush funcs
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
8c59967c 58static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 59
61050808
CW
60static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61{
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
5d82e3e6 68 obj->fence_dirty = false;
61050808
CW
69 obj->fence_reg = I915_FENCE_REG_NONE;
70}
71
73aa808f
CW
72/* some bookkeeping */
73static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78}
79
80static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82{
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85}
86
21dd3734
CW
87static int
88i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
89{
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
0a6759c6
DV
98 /*
99 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
100 * userspace. If it takes that long something really bad is going on and
101 * we should simply try to bail out and fail as gracefully as possible.
102 */
103 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
104 if (ret == 0) {
105 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
106 return -EIO;
107 } else if (ret < 0) {
30dbf0c0 108 return ret;
0a6759c6 109 }
30dbf0c0 110
21dd3734
CW
111 if (atomic_read(&dev_priv->mm.wedged)) {
112 /* GPU is hung, bump the completion count to account for
113 * the token we just consumed so that we never hit zero and
114 * end up waiting upon a subsequent completion event that
115 * will never happen.
116 */
117 spin_lock_irqsave(&x->wait.lock, flags);
118 x->done++;
119 spin_unlock_irqrestore(&x->wait.lock, flags);
120 }
121 return 0;
30dbf0c0
CW
122}
123
54cf91dc 124int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 125{
76c1dec1
CW
126 int ret;
127
21dd3734 128 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
23bc5982 136 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
137 return 0;
138}
30dbf0c0 139
7d1c4804 140static inline bool
05394f39 141i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 142{
1b50247a 143 return !obj->active;
7d1c4804
CW
144}
145
79e53945
JB
146int
147i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
79e53945
JB
149{
150 struct drm_i915_gem_init *args = data;
2021746e 151
7bb6fb8d
DV
152 if (drm_core_check_feature(dev, DRIVER_MODESET))
153 return -ENODEV;
154
2021746e
CW
155 if (args->gtt_start >= args->gtt_end ||
156 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
157 return -EINVAL;
79e53945 158
f534bc0b
DV
159 /* GEM with user mode setting was never supported on ilk and later. */
160 if (INTEL_INFO(dev)->gen >= 5)
161 return -ENODEV;
162
79e53945 163 mutex_lock(&dev->struct_mutex);
644ec02b
DV
164 i915_gem_init_global_gtt(dev, args->gtt_start,
165 args->gtt_end, args->gtt_end);
673a394b
EA
166 mutex_unlock(&dev->struct_mutex);
167
2021746e 168 return 0;
673a394b
EA
169}
170
5a125c3c
EA
171int
172i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 173 struct drm_file *file)
5a125c3c 174{
73aa808f 175 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 176 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
5a125c3c 179
6299f992 180 pinned = 0;
73aa808f 181 mutex_lock(&dev->struct_mutex);
1b50247a
CW
182 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
73aa808f 185 mutex_unlock(&dev->struct_mutex);
5a125c3c 186
6299f992 187 args->aper_size = dev_priv->mm.gtt_total;
0206e353 188 args->aper_available_size = args->aper_size - pinned;
6299f992 189
5a125c3c
EA
190 return 0;
191}
192
ff72145b
DA
193static int
194i915_gem_create(struct drm_file *file,
195 struct drm_device *dev,
196 uint64_t size,
197 uint32_t *handle_p)
673a394b 198{
05394f39 199 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
200 int ret;
201 u32 handle;
673a394b 202
ff72145b 203 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
204 if (size == 0)
205 return -EINVAL;
673a394b
EA
206
207 /* Allocate the new object */
ff72145b 208 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
209 if (obj == NULL)
210 return -ENOMEM;
211
05394f39 212 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 213 if (ret) {
05394f39
CW
214 drm_gem_object_release(&obj->base);
215 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 216 kfree(obj);
673a394b 217 return ret;
1dfd9754 218 }
673a394b 219
202f2fef 220 /* drop reference from allocate - handle holds it now */
05394f39 221 drm_gem_object_unreference(&obj->base);
202f2fef
CW
222 trace_i915_gem_object_create(obj);
223
ff72145b 224 *handle_p = handle;
673a394b
EA
225 return 0;
226}
227
ff72145b
DA
228int
229i915_gem_dumb_create(struct drm_file *file,
230 struct drm_device *dev,
231 struct drm_mode_create_dumb *args)
232{
233 /* have to work out size/pitch and return them */
ed0291fd 234 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
235 args->size = args->pitch * args->height;
236 return i915_gem_create(file, dev,
237 args->size, &args->handle);
238}
239
240int i915_gem_dumb_destroy(struct drm_file *file,
241 struct drm_device *dev,
242 uint32_t handle)
243{
244 return drm_gem_handle_delete(file, handle);
245}
246
247/**
248 * Creates a new mm object and returns a handle to it.
249 */
250int
251i915_gem_create_ioctl(struct drm_device *dev, void *data,
252 struct drm_file *file)
253{
254 struct drm_i915_gem_create *args = data;
63ed2cb2 255
ff72145b
DA
256 return i915_gem_create(file, dev,
257 args->size, &args->handle);
258}
259
05394f39 260static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 261{
05394f39 262 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
263
264 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 265 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
266}
267
8461d226
DV
268static inline int
269__copy_to_user_swizzled(char __user *cpu_vaddr,
270 const char *gpu_vaddr, int gpu_offset,
271 int length)
272{
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_to_user(cpu_vaddr + cpu_offset,
281 gpu_vaddr + swizzled_gpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292}
293
8c59967c 294static inline int
4f0c7cfb
BW
295__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
296 const char __user *cpu_vaddr,
8c59967c
DV
297 int length)
298{
299 int ret, cpu_offset = 0;
300
301 while (length > 0) {
302 int cacheline_end = ALIGN(gpu_offset + 1, 64);
303 int this_length = min(cacheline_end - gpu_offset, length);
304 int swizzled_gpu_offset = gpu_offset ^ 64;
305
306 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
307 cpu_vaddr + cpu_offset,
308 this_length);
309 if (ret)
310 return ret + length;
311
312 cpu_offset += this_length;
313 gpu_offset += this_length;
314 length -= this_length;
315 }
316
317 return 0;
318}
319
d174bd64
DV
320/* Per-page copy function for the shmem pread fastpath.
321 * Flushes invalid cachelines before reading the target if
322 * needs_clflush is set. */
eb01459f 323static int
d174bd64
DV
324shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
325 char __user *user_data,
326 bool page_do_bit17_swizzling, bool needs_clflush)
327{
328 char *vaddr;
329 int ret;
330
e7e58eb5 331 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
332 return -EINVAL;
333
334 vaddr = kmap_atomic(page);
335 if (needs_clflush)
336 drm_clflush_virt_range(vaddr + shmem_page_offset,
337 page_length);
338 ret = __copy_to_user_inatomic(user_data,
339 vaddr + shmem_page_offset,
340 page_length);
341 kunmap_atomic(vaddr);
342
343 return ret;
344}
345
23c18c71
DV
346static void
347shmem_clflush_swizzled_range(char *addr, unsigned long length,
348 bool swizzled)
349{
e7e58eb5 350 if (unlikely(swizzled)) {
23c18c71
DV
351 unsigned long start = (unsigned long) addr;
352 unsigned long end = (unsigned long) addr + length;
353
354 /* For swizzling simply ensure that we always flush both
355 * channels. Lame, but simple and it works. Swizzled
356 * pwrite/pread is far from a hotpath - current userspace
357 * doesn't use it at all. */
358 start = round_down(start, 128);
359 end = round_up(end, 128);
360
361 drm_clflush_virt_range((void *)start, end - start);
362 } else {
363 drm_clflush_virt_range(addr, length);
364 }
365
366}
367
d174bd64
DV
368/* Only difference to the fast-path function is that this can handle bit17
369 * and uses non-atomic copy and kmap functions. */
370static int
371shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
372 char __user *user_data,
373 bool page_do_bit17_swizzling, bool needs_clflush)
374{
375 char *vaddr;
376 int ret;
377
378 vaddr = kmap(page);
379 if (needs_clflush)
23c18c71
DV
380 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
381 page_length,
382 page_do_bit17_swizzling);
d174bd64
DV
383
384 if (page_do_bit17_swizzling)
385 ret = __copy_to_user_swizzled(user_data,
386 vaddr, shmem_page_offset,
387 page_length);
388 else
389 ret = __copy_to_user(user_data,
390 vaddr + shmem_page_offset,
391 page_length);
392 kunmap(page);
393
394 return ret;
395}
396
eb01459f 397static int
dbf7bff0
DV
398i915_gem_shmem_pread(struct drm_device *dev,
399 struct drm_i915_gem_object *obj,
400 struct drm_i915_gem_pread *args,
401 struct drm_file *file)
eb01459f 402{
05394f39 403 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 404 char __user *user_data;
eb01459f 405 ssize_t remain;
8461d226 406 loff_t offset;
eb2c0c81 407 int shmem_page_offset, page_length, ret = 0;
8461d226 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 409 int hit_slowpath = 0;
96d79b52 410 int prefaulted = 0;
8489731c 411 int needs_clflush = 0;
692a576b 412 int release_page;
eb01459f 413
8461d226 414 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
415 remain = args->size;
416
8461d226 417 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 418
8489731c
DV
419 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
420 /* If we're not in the cpu read domain, set ourself into the gtt
421 * read domain and manually flush cachelines (if required). This
422 * optimizes for the case when the gpu will dirty the data
423 * anyway again before the next pread happens. */
424 if (obj->cache_level == I915_CACHE_NONE)
425 needs_clflush = 1;
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
eb01459f 430
8461d226 431 offset = args->offset;
eb01459f
EA
432
433 while (remain > 0) {
e5281ccd
CW
434 struct page *page;
435
eb01459f
EA
436 /* Operation in this page
437 *
eb01459f 438 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
439 * page_length = bytes to copy for this page
440 */
c8cbbb8b 441 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
442 page_length = remain;
443 if ((shmem_page_offset + page_length) > PAGE_SIZE)
444 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 445
692a576b
DV
446 if (obj->pages) {
447 page = obj->pages[offset >> PAGE_SHIFT];
448 release_page = 0;
449 } else {
450 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
451 if (IS_ERR(page)) {
452 ret = PTR_ERR(page);
453 goto out;
454 }
455 release_page = 1;
b65552f0 456 }
e5281ccd 457
8461d226
DV
458 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
459 (page_to_phys(page) & (1 << 17)) != 0;
460
d174bd64
DV
461 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
462 user_data, page_do_bit17_swizzling,
463 needs_clflush);
464 if (ret == 0)
465 goto next_page;
dbf7bff0
DV
466
467 hit_slowpath = 1;
692a576b 468 page_cache_get(page);
dbf7bff0
DV
469 mutex_unlock(&dev->struct_mutex);
470
96d79b52 471 if (!prefaulted) {
f56f821f 472 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
473 /* Userspace is tricking us, but we've already clobbered
474 * its pages with the prefault and promised to write the
475 * data up to the first fault. Hence ignore any errors
476 * and just continue. */
477 (void)ret;
478 prefaulted = 1;
479 }
eb01459f 480
d174bd64
DV
481 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
482 user_data, page_do_bit17_swizzling,
483 needs_clflush);
eb01459f 484
dbf7bff0 485 mutex_lock(&dev->struct_mutex);
e5281ccd 486 page_cache_release(page);
dbf7bff0 487next_page:
e5281ccd 488 mark_page_accessed(page);
692a576b
DV
489 if (release_page)
490 page_cache_release(page);
e5281ccd 491
8461d226
DV
492 if (ret) {
493 ret = -EFAULT;
494 goto out;
495 }
496
eb01459f 497 remain -= page_length;
8461d226 498 user_data += page_length;
eb01459f
EA
499 offset += page_length;
500 }
501
4f27b75d 502out:
dbf7bff0
DV
503 if (hit_slowpath) {
504 /* Fixup: Kill any reinstated backing storage pages */
505 if (obj->madv == __I915_MADV_PURGED)
506 i915_gem_object_truncate(obj);
507 }
eb01459f
EA
508
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 (char __user *)(uintptr_t)args->data_ptr,
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_object_pin(obj, 0, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b
EA
619
620 user_data = (char __user *) (uintptr_t) args->data_ptr;
621 remain = args->size;
673a394b 622
05394f39 623 offset = obj->gtt_offset + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
fbd5a26d 642 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69
DV
653out_unpin:
654 i915_gem_object_unpin(obj);
655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3
EA
687
688 return ret;
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
d174bd64 722 return ret;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
05394f39 731 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 732 ssize_t remain;
8c59967c
DV
733 loff_t offset;
734 char __user *user_data;
eb2c0c81 735 int shmem_page_offset, page_length, ret = 0;
8c59967c 736 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 737 int hit_slowpath = 0;
58642885
DV
738 int needs_clflush_after = 0;
739 int needs_clflush_before = 0;
692a576b 740 int release_page;
40123c1f 741
8c59967c 742 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
743 remain = args->size;
744
8c59967c 745 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 746
58642885
DV
747 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
748 /* If we're not in the cpu write domain, set ourself into the gtt
749 * write domain and manually flush cachelines (if required). This
750 * optimizes for the case when the gpu will use the data
751 * right away and we therefore have to clflush anyway. */
752 if (obj->cache_level == I915_CACHE_NONE)
753 needs_clflush_after = 1;
754 ret = i915_gem_object_set_to_gtt_domain(obj, true);
755 if (ret)
756 return ret;
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
673a394b 764 offset = args->offset;
05394f39 765 obj->dirty = 1;
673a394b 766
40123c1f 767 while (remain > 0) {
e5281ccd 768 struct page *page;
58642885 769 int partial_cacheline_write;
e5281ccd 770
40123c1f
EA
771 /* Operation in this page
772 *
40123c1f 773 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
774 * page_length = bytes to copy for this page
775 */
c8cbbb8b 776 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 781
58642885
DV
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
692a576b
DV
789 if (obj->pages) {
790 page = obj->pages[offset >> PAGE_SHIFT];
791 release_page = 0;
792 } else {
793 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
794 if (IS_ERR(page)) {
795 ret = PTR_ERR(page);
796 goto out;
797 }
798 release_page = 1;
e5281ccd
CW
799 }
800
8c59967c
DV
801 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
802 (page_to_phys(page) & (1 << 17)) != 0;
803
d174bd64
DV
804 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
805 user_data, page_do_bit17_swizzling,
806 partial_cacheline_write,
807 needs_clflush_after);
808 if (ret == 0)
809 goto next_page;
e244a443
DV
810
811 hit_slowpath = 1;
692a576b 812 page_cache_get(page);
e244a443
DV
813 mutex_unlock(&dev->struct_mutex);
814
d174bd64
DV
815 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 partial_cacheline_write,
818 needs_clflush_after);
40123c1f 819
e244a443 820 mutex_lock(&dev->struct_mutex);
692a576b 821 page_cache_release(page);
e244a443 822next_page:
e5281ccd
CW
823 set_page_dirty(page);
824 mark_page_accessed(page);
692a576b
DV
825 if (release_page)
826 page_cache_release(page);
e5281ccd 827
8c59967c
DV
828 if (ret) {
829 ret = -EFAULT;
830 goto out;
831 }
832
40123c1f 833 remain -= page_length;
8c59967c 834 user_data += page_length;
40123c1f 835 offset += page_length;
673a394b
EA
836 }
837
fbd5a26d 838out:
e244a443
DV
839 if (hit_slowpath) {
840 /* Fixup: Kill any reinstated backing storage pages */
841 if (obj->madv == __I915_MADV_PURGED)
842 i915_gem_object_truncate(obj);
843 /* and flush dirty cachelines in case the object isn't in the cpu write
844 * domain anymore. */
845 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
846 i915_gem_clflush_object(obj);
847 intel_gtt_chipset_flush();
848 }
8c59967c 849 }
673a394b 850
58642885
DV
851 if (needs_clflush_after)
852 intel_gtt_chipset_flush();
853
40123c1f 854 return ret;
673a394b
EA
855}
856
857/**
858 * Writes data to the object referenced by handle.
859 *
860 * On error, the contents of the buffer that were to be modified are undefined.
861 */
862int
863i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 864 struct drm_file *file)
673a394b
EA
865{
866 struct drm_i915_gem_pwrite *args = data;
05394f39 867 struct drm_i915_gem_object *obj;
51311d0a
CW
868 int ret;
869
870 if (args->size == 0)
871 return 0;
872
873 if (!access_ok(VERIFY_READ,
874 (char __user *)(uintptr_t)args->data_ptr,
875 args->size))
876 return -EFAULT;
877
f56f821f
DV
878 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
879 args->size);
51311d0a
CW
880 if (ret)
881 return -EFAULT;
673a394b 882
fbd5a26d 883 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 884 if (ret)
fbd5a26d 885 return ret;
1d7cfea1 886
05394f39 887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 888 if (&obj->base == NULL) {
1d7cfea1
CW
889 ret = -ENOENT;
890 goto unlock;
fbd5a26d 891 }
673a394b 892
7dcd2499 893 /* Bounds check destination. */
05394f39
CW
894 if (args->offset > obj->base.size ||
895 args->size > obj->base.size - args->offset) {
ce9d419d 896 ret = -EINVAL;
35b62a89 897 goto out;
ce9d419d
CW
898 }
899
1286ff73
DV
900 /* prime objects have no backing filp to GEM pread/pwrite
901 * pages from.
902 */
903 if (!obj->base.filp) {
904 ret = -EINVAL;
905 goto out;
906 }
907
db53a302
CW
908 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
935aaa69 910 ret = -EFAULT;
673a394b
EA
911 /* We can only do the GTT pwrite on untiled buffers, as otherwise
912 * it would end up going through the fenced access, and we'll get
913 * different detiling behavior between reading and writing.
914 * pread/pwrite currently are reading and writing from the CPU
915 * perspective, requiring manual detiling by the client.
916 */
5c0480f2 917 if (obj->phys_obj) {
fbd5a26d 918 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
919 goto out;
920 }
921
922 if (obj->gtt_space &&
3ae53783 923 obj->cache_level == I915_CACHE_NONE &&
c07496fa 924 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 925 obj->map_and_fenceable &&
5c0480f2 926 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 927 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
928 /* Note that the gtt paths might fail with non-page-backed user
929 * pointers (e.g. gtt mappings when moving data between
930 * textures). Fallback to the shmem path in that case. */
fbd5a26d 931 }
673a394b 932
5c0480f2 933 if (ret == -EFAULT)
935aaa69 934 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 935
35b62a89 936out:
05394f39 937 drm_gem_object_unreference(&obj->base);
1d7cfea1 938unlock:
fbd5a26d 939 mutex_unlock(&dev->struct_mutex);
673a394b
EA
940 return ret;
941}
942
943/**
2ef7eeaa
EA
944 * Called when user space prepares to use an object with the CPU, either
945 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
946 */
947int
948i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 949 struct drm_file *file)
673a394b
EA
950{
951 struct drm_i915_gem_set_domain *args = data;
05394f39 952 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
953 uint32_t read_domains = args->read_domains;
954 uint32_t write_domain = args->write_domain;
673a394b
EA
955 int ret;
956
2ef7eeaa 957 /* Only handle setting domains to types used by the CPU. */
21d509e3 958 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
959 return -EINVAL;
960
21d509e3 961 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
962 return -EINVAL;
963
964 /* Having something in the write domain implies it's in the read
965 * domain, and only that read domain. Enforce that in the request.
966 */
967 if (write_domain != 0 && read_domains != write_domain)
968 return -EINVAL;
969
76c1dec1 970 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 971 if (ret)
76c1dec1 972 return ret;
1d7cfea1 973
05394f39 974 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 975 if (&obj->base == NULL) {
1d7cfea1
CW
976 ret = -ENOENT;
977 goto unlock;
76c1dec1 978 }
673a394b 979
2ef7eeaa
EA
980 if (read_domains & I915_GEM_DOMAIN_GTT) {
981 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
982
983 /* Silently promote "you're not bound, there was nothing to do"
984 * to success, since the client was just asking us to
985 * make sure everything was done.
986 */
987 if (ret == -EINVAL)
988 ret = 0;
2ef7eeaa 989 } else {
e47c68e9 990 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
991 }
992
05394f39 993 drm_gem_object_unreference(&obj->base);
1d7cfea1 994unlock:
673a394b
EA
995 mutex_unlock(&dev->struct_mutex);
996 return ret;
997}
998
999/**
1000 * Called when user space has done writes to this buffer
1001 */
1002int
1003i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1004 struct drm_file *file)
673a394b
EA
1005{
1006 struct drm_i915_gem_sw_finish *args = data;
05394f39 1007 struct drm_i915_gem_object *obj;
673a394b
EA
1008 int ret = 0;
1009
76c1dec1 1010 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1011 if (ret)
76c1dec1 1012 return ret;
1d7cfea1 1013
05394f39 1014 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1015 if (&obj->base == NULL) {
1d7cfea1
CW
1016 ret = -ENOENT;
1017 goto unlock;
673a394b
EA
1018 }
1019
673a394b 1020 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1021 if (obj->pin_count)
e47c68e9
EA
1022 i915_gem_object_flush_cpu_write_domain(obj);
1023
05394f39 1024 drm_gem_object_unreference(&obj->base);
1d7cfea1 1025unlock:
673a394b
EA
1026 mutex_unlock(&dev->struct_mutex);
1027 return ret;
1028}
1029
1030/**
1031 * Maps the contents of an object, returning the address it is mapped
1032 * into.
1033 *
1034 * While the mapping holds a reference on the contents of the object, it doesn't
1035 * imply a ref on the object itself.
1036 */
1037int
1038i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1039 struct drm_file *file)
673a394b
EA
1040{
1041 struct drm_i915_gem_mmap *args = data;
1042 struct drm_gem_object *obj;
673a394b
EA
1043 unsigned long addr;
1044
05394f39 1045 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1046 if (obj == NULL)
bf79cb91 1047 return -ENOENT;
673a394b 1048
1286ff73
DV
1049 /* prime objects have no backing filp to GEM mmap
1050 * pages from.
1051 */
1052 if (!obj->filp) {
1053 drm_gem_object_unreference_unlocked(obj);
1054 return -EINVAL;
1055 }
1056
6be5ceb0 1057 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1058 PROT_READ | PROT_WRITE, MAP_SHARED,
1059 args->offset);
bc9025bd 1060 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1061 if (IS_ERR((void *)addr))
1062 return addr;
1063
1064 args->addr_ptr = (uint64_t) addr;
1065
1066 return 0;
1067}
1068
de151cf6
JB
1069/**
1070 * i915_gem_fault - fault a page into the GTT
1071 * vma: VMA in question
1072 * vmf: fault info
1073 *
1074 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1075 * from userspace. The fault handler takes care of binding the object to
1076 * the GTT (if needed), allocating and programming a fence register (again,
1077 * only if needed based on whether the old reg is still valid or the object
1078 * is tiled) and inserting a new PTE into the faulting process.
1079 *
1080 * Note that the faulting process may involve evicting existing objects
1081 * from the GTT and/or fence registers to make room. So performance may
1082 * suffer if the GTT working set is large or there are few fence registers
1083 * left.
1084 */
1085int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1086{
05394f39
CW
1087 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1088 struct drm_device *dev = obj->base.dev;
7d1c4804 1089 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1090 pgoff_t page_offset;
1091 unsigned long pfn;
1092 int ret = 0;
0f973f27 1093 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1094
1095 /* We don't use vmf->pgoff since that has the fake offset */
1096 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1097 PAGE_SHIFT;
1098
d9bc7e9f
CW
1099 ret = i915_mutex_lock_interruptible(dev);
1100 if (ret)
1101 goto out;
a00b10c3 1102
db53a302
CW
1103 trace_i915_gem_object_fault(obj, page_offset, true, write);
1104
d9bc7e9f 1105 /* Now bind it into the GTT if needed */
919926ae
CW
1106 if (!obj->map_and_fenceable) {
1107 ret = i915_gem_object_unbind(obj);
1108 if (ret)
1109 goto unlock;
a00b10c3 1110 }
05394f39 1111 if (!obj->gtt_space) {
75e9e915 1112 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1113 if (ret)
1114 goto unlock;
de151cf6 1115
e92d03bf
EA
1116 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1117 if (ret)
1118 goto unlock;
1119 }
4a684a41 1120
74898d7e
DV
1121 if (!obj->has_global_gtt_mapping)
1122 i915_gem_gtt_bind_object(obj, obj->cache_level);
1123
06d98131 1124 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1125 if (ret)
1126 goto unlock;
de151cf6 1127
05394f39
CW
1128 if (i915_gem_object_is_inactive(obj))
1129 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1130
6299f992
CW
1131 obj->fault_mappable = true;
1132
dd2757f8 1133 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1134 page_offset;
1135
1136 /* Finally, remap it using the new GTT offset */
1137 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1138unlock:
de151cf6 1139 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1140out:
de151cf6 1141 switch (ret) {
d9bc7e9f 1142 case -EIO:
a9340cca
DV
1143 /* If this -EIO is due to a gpu hang, give the reset code a
1144 * chance to clean up the mess. Otherwise return the proper
1145 * SIGBUS. */
1146 if (!atomic_read(&dev_priv->mm.wedged))
1147 return VM_FAULT_SIGBUS;
045e769a 1148 case -EAGAIN:
d9bc7e9f
CW
1149 /* Give the error handler a chance to run and move the
1150 * objects off the GPU active list. Next time we service the
1151 * fault, we should be able to transition the page into the
1152 * GTT without touching the GPU (and so avoid further
1153 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1154 * with coherency, just lost writes.
1155 */
045e769a 1156 set_need_resched();
c715089f
CW
1157 case 0:
1158 case -ERESTARTSYS:
bed636ab 1159 case -EINTR:
c715089f 1160 return VM_FAULT_NOPAGE;
de151cf6 1161 case -ENOMEM:
de151cf6 1162 return VM_FAULT_OOM;
de151cf6 1163 default:
c715089f 1164 return VM_FAULT_SIGBUS;
de151cf6
JB
1165 }
1166}
1167
901782b2
CW
1168/**
1169 * i915_gem_release_mmap - remove physical page mappings
1170 * @obj: obj in question
1171 *
af901ca1 1172 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1173 * relinquish ownership of the pages back to the system.
1174 *
1175 * It is vital that we remove the page mapping if we have mapped a tiled
1176 * object through the GTT and then lose the fence register due to
1177 * resource pressure. Similarly if the object has been moved out of the
1178 * aperture, than pages mapped into userspace must be revoked. Removing the
1179 * mapping will then trigger a page fault on the next user access, allowing
1180 * fixup by i915_gem_fault().
1181 */
d05ca301 1182void
05394f39 1183i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1184{
6299f992
CW
1185 if (!obj->fault_mappable)
1186 return;
901782b2 1187
f6e47884
CW
1188 if (obj->base.dev->dev_mapping)
1189 unmap_mapping_range(obj->base.dev->dev_mapping,
1190 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1191 obj->base.size, 1);
fb7d516a 1192
6299f992 1193 obj->fault_mappable = false;
901782b2
CW
1194}
1195
92b88aeb 1196static uint32_t
e28f8711 1197i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1198{
e28f8711 1199 uint32_t gtt_size;
92b88aeb
CW
1200
1201 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1202 tiling_mode == I915_TILING_NONE)
1203 return size;
92b88aeb
CW
1204
1205 /* Previous chips need a power-of-two fence region when tiling */
1206 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1207 gtt_size = 1024*1024;
92b88aeb 1208 else
e28f8711 1209 gtt_size = 512*1024;
92b88aeb 1210
e28f8711
CW
1211 while (gtt_size < size)
1212 gtt_size <<= 1;
92b88aeb 1213
e28f8711 1214 return gtt_size;
92b88aeb
CW
1215}
1216
de151cf6
JB
1217/**
1218 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1219 * @obj: object to check
1220 *
1221 * Return the required GTT alignment for an object, taking into account
5e783301 1222 * potential fence register mapping.
de151cf6
JB
1223 */
1224static uint32_t
e28f8711
CW
1225i915_gem_get_gtt_alignment(struct drm_device *dev,
1226 uint32_t size,
1227 int tiling_mode)
de151cf6 1228{
de151cf6
JB
1229 /*
1230 * Minimum alignment is 4k (GTT page size), but might be greater
1231 * if a fence register is needed for the object.
1232 */
a00b10c3 1233 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1234 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1235 return 4096;
1236
a00b10c3
CW
1237 /*
1238 * Previous chips need to be aligned to the size of the smallest
1239 * fence register that can contain the object.
1240 */
e28f8711 1241 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1242}
1243
5e783301
DV
1244/**
1245 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1246 * unfenced object
e28f8711
CW
1247 * @dev: the device
1248 * @size: size of the object
1249 * @tiling_mode: tiling mode of the object
5e783301
DV
1250 *
1251 * Return the required GTT alignment for an object, only taking into account
1252 * unfenced tiled surface requirements.
1253 */
467cffba 1254uint32_t
e28f8711
CW
1255i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1256 uint32_t size,
1257 int tiling_mode)
5e783301 1258{
5e783301
DV
1259 /*
1260 * Minimum alignment is 4k (GTT page size) for sane hw.
1261 */
1262 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1263 tiling_mode == I915_TILING_NONE)
5e783301
DV
1264 return 4096;
1265
e28f8711
CW
1266 /* Previous hardware however needs to be aligned to a power-of-two
1267 * tile height. The simplest method for determining this is to reuse
1268 * the power-of-tile object size.
5e783301 1269 */
e28f8711 1270 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1271}
1272
de151cf6 1273int
ff72145b
DA
1274i915_gem_mmap_gtt(struct drm_file *file,
1275 struct drm_device *dev,
1276 uint32_t handle,
1277 uint64_t *offset)
de151cf6 1278{
da761a6e 1279 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1280 struct drm_i915_gem_object *obj;
de151cf6
JB
1281 int ret;
1282
76c1dec1 1283 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1284 if (ret)
76c1dec1 1285 return ret;
de151cf6 1286
ff72145b 1287 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1288 if (&obj->base == NULL) {
1d7cfea1
CW
1289 ret = -ENOENT;
1290 goto unlock;
1291 }
de151cf6 1292
05394f39 1293 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1294 ret = -E2BIG;
ff56b0bc 1295 goto out;
da761a6e
CW
1296 }
1297
05394f39 1298 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1299 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1300 ret = -EINVAL;
1301 goto out;
ab18282d
CW
1302 }
1303
05394f39 1304 if (!obj->base.map_list.map) {
b464e9a2 1305 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1306 if (ret)
1307 goto out;
de151cf6
JB
1308 }
1309
ff72145b 1310 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1311
1d7cfea1 1312out:
05394f39 1313 drm_gem_object_unreference(&obj->base);
1d7cfea1 1314unlock:
de151cf6 1315 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1316 return ret;
de151cf6
JB
1317}
1318
ff72145b
DA
1319/**
1320 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1321 * @dev: DRM device
1322 * @data: GTT mapping ioctl data
1323 * @file: GEM object info
1324 *
1325 * Simply returns the fake offset to userspace so it can mmap it.
1326 * The mmap call will end up in drm_gem_mmap(), which will set things
1327 * up so we can get faults in the handler above.
1328 *
1329 * The fault handler will take care of binding the object into the GTT
1330 * (since it may have been evicted to make room for something), allocating
1331 * a fence register, and mapping the appropriate aperture address into
1332 * userspace.
1333 */
1334int
1335i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1336 struct drm_file *file)
1337{
1338 struct drm_i915_gem_mmap_gtt *args = data;
1339
ff72145b
DA
1340 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1341}
1342
1286ff73 1343int
05394f39 1344i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1345 gfp_t gfpmask)
1346{
e5281ccd
CW
1347 int page_count, i;
1348 struct address_space *mapping;
1349 struct inode *inode;
1350 struct page *page;
1351
1286ff73
DV
1352 if (obj->pages || obj->sg_table)
1353 return 0;
1354
e5281ccd
CW
1355 /* Get the list of pages out of our struct file. They'll be pinned
1356 * at this point until we release them.
1357 */
05394f39
CW
1358 page_count = obj->base.size / PAGE_SIZE;
1359 BUG_ON(obj->pages != NULL);
1360 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1361 if (obj->pages == NULL)
e5281ccd
CW
1362 return -ENOMEM;
1363
05394f39 1364 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1365 mapping = inode->i_mapping;
5949eac4
HD
1366 gfpmask |= mapping_gfp_mask(mapping);
1367
e5281ccd 1368 for (i = 0; i < page_count; i++) {
5949eac4 1369 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1370 if (IS_ERR(page))
1371 goto err_pages;
1372
05394f39 1373 obj->pages[i] = page;
e5281ccd
CW
1374 }
1375
6dacfd2f 1376 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1377 i915_gem_object_do_bit_17_swizzle(obj);
1378
1379 return 0;
1380
1381err_pages:
1382 while (i--)
05394f39 1383 page_cache_release(obj->pages[i]);
e5281ccd 1384
05394f39
CW
1385 drm_free_large(obj->pages);
1386 obj->pages = NULL;
e5281ccd
CW
1387 return PTR_ERR(page);
1388}
1389
5cdf5881 1390static void
05394f39 1391i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1392{
05394f39 1393 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1394 int i;
1395
1286ff73
DV
1396 if (!obj->pages)
1397 return;
1398
05394f39 1399 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1400
6dacfd2f 1401 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1402 i915_gem_object_save_bit_17_swizzle(obj);
1403
05394f39
CW
1404 if (obj->madv == I915_MADV_DONTNEED)
1405 obj->dirty = 0;
3ef94daa
CW
1406
1407 for (i = 0; i < page_count; i++) {
05394f39
CW
1408 if (obj->dirty)
1409 set_page_dirty(obj->pages[i]);
3ef94daa 1410
05394f39
CW
1411 if (obj->madv == I915_MADV_WILLNEED)
1412 mark_page_accessed(obj->pages[i]);
3ef94daa 1413
05394f39 1414 page_cache_release(obj->pages[i]);
3ef94daa 1415 }
05394f39 1416 obj->dirty = 0;
673a394b 1417
05394f39
CW
1418 drm_free_large(obj->pages);
1419 obj->pages = NULL;
673a394b
EA
1420}
1421
54cf91dc 1422void
05394f39 1423i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1424 struct intel_ring_buffer *ring,
1425 u32 seqno)
673a394b 1426{
05394f39 1427 struct drm_device *dev = obj->base.dev;
69dc4987 1428 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1429
852835f3 1430 BUG_ON(ring == NULL);
05394f39 1431 obj->ring = ring;
673a394b
EA
1432
1433 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1434 if (!obj->active) {
1435 drm_gem_object_reference(&obj->base);
1436 obj->active = 1;
673a394b 1437 }
e35a41de 1438
673a394b 1439 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1440 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1441 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1442
0201f1ec 1443 obj->last_read_seqno = seqno;
caea7476 1444
7dd49065 1445 if (obj->fenced_gpu_access) {
caea7476 1446 obj->last_fenced_seqno = seqno;
caea7476 1447
7dd49065
CW
1448 /* Bump MRU to take account of the delayed flush */
1449 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1450 struct drm_i915_fence_reg *reg;
1451
1452 reg = &dev_priv->fence_regs[obj->fence_reg];
1453 list_move_tail(&reg->lru_list,
1454 &dev_priv->mm.fence_list);
1455 }
caea7476
CW
1456 }
1457}
1458
caea7476
CW
1459static void
1460i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1461{
1462 struct drm_device *dev = obj->base.dev;
1463 struct drm_i915_private *dev_priv = dev->dev_private;
1464
1b50247a 1465 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1466
65ce3027 1467 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
caea7476 1468 BUG_ON(!obj->active);
65ce3027
CW
1469
1470 list_del_init(&obj->ring_list);
caea7476
CW
1471 obj->ring = NULL;
1472
65ce3027
CW
1473 obj->last_read_seqno = 0;
1474 obj->last_write_seqno = 0;
1475 obj->base.write_domain = 0;
1476
1477 obj->last_fenced_seqno = 0;
caea7476 1478 obj->fenced_gpu_access = false;
caea7476
CW
1479
1480 obj->active = 0;
1481 drm_gem_object_unreference(&obj->base);
1482
1483 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1484}
673a394b 1485
963b4836
CW
1486/* Immediately discard the backing storage */
1487static void
05394f39 1488i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1489{
bb6baf76 1490 struct inode *inode;
963b4836 1491
ae9fed6b
CW
1492 /* Our goal here is to return as much of the memory as
1493 * is possible back to the system as we are called from OOM.
1494 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1495 * backing pages, *now*.
ae9fed6b 1496 */
05394f39 1497 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1498 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1499
a14917ee
CW
1500 if (obj->base.map_list.map)
1501 drm_gem_free_mmap_offset(&obj->base);
1502
05394f39 1503 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1504}
1505
1506static inline int
05394f39 1507i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1508{
05394f39 1509 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1510}
1511
53d227f2
DV
1512static u32
1513i915_gem_get_seqno(struct drm_device *dev)
1514{
1515 drm_i915_private_t *dev_priv = dev->dev_private;
1516 u32 seqno = dev_priv->next_seqno;
1517
1518 /* reserve 0 for non-seqno */
1519 if (++dev_priv->next_seqno == 0)
1520 dev_priv->next_seqno = 1;
1521
1522 return seqno;
1523}
1524
1525u32
1526i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1527{
1528 if (ring->outstanding_lazy_request == 0)
1529 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1530
1531 return ring->outstanding_lazy_request;
1532}
1533
3cce469c 1534int
db53a302 1535i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1536 struct drm_file *file,
db53a302 1537 struct drm_i915_gem_request *request)
673a394b 1538{
db53a302 1539 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1540 uint32_t seqno;
a71d8d94 1541 u32 request_ring_position;
673a394b 1542 int was_empty;
3cce469c
CW
1543 int ret;
1544
cc889e0f
DV
1545 /*
1546 * Emit any outstanding flushes - execbuf can fail to emit the flush
1547 * after having emitted the batchbuffer command. Hence we need to fix
1548 * things up similar to emitting the lazy request. The difference here
1549 * is that the flush _must_ happen before the next request, no matter
1550 * what.
1551 */
a7b9761d
CW
1552 ret = intel_ring_flush_all_caches(ring);
1553 if (ret)
1554 return ret;
cc889e0f 1555
3bb73aba
CW
1556 if (request == NULL) {
1557 request = kmalloc(sizeof(*request), GFP_KERNEL);
1558 if (request == NULL)
1559 return -ENOMEM;
1560 }
1561
53d227f2 1562 seqno = i915_gem_next_request_seqno(ring);
673a394b 1563
a71d8d94
CW
1564 /* Record the position of the start of the request so that
1565 * should we detect the updated seqno part-way through the
1566 * GPU processing the request, we never over-estimate the
1567 * position of the head.
1568 */
1569 request_ring_position = intel_ring_get_tail(ring);
1570
3cce469c 1571 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1572 if (ret) {
1573 kfree(request);
1574 return ret;
1575 }
673a394b 1576
db53a302 1577 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1578
1579 request->seqno = seqno;
852835f3 1580 request->ring = ring;
a71d8d94 1581 request->tail = request_ring_position;
673a394b 1582 request->emitted_jiffies = jiffies;
852835f3
ZN
1583 was_empty = list_empty(&ring->request_list);
1584 list_add_tail(&request->list, &ring->request_list);
3bb73aba 1585 request->file_priv = NULL;
852835f3 1586
db53a302
CW
1587 if (file) {
1588 struct drm_i915_file_private *file_priv = file->driver_priv;
1589
1c25595f 1590 spin_lock(&file_priv->mm.lock);
f787a5f5 1591 request->file_priv = file_priv;
b962442e 1592 list_add_tail(&request->client_list,
f787a5f5 1593 &file_priv->mm.request_list);
1c25595f 1594 spin_unlock(&file_priv->mm.lock);
b962442e 1595 }
673a394b 1596
5391d0cf 1597 ring->outstanding_lazy_request = 0;
db53a302 1598
f65d9421 1599 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1600 if (i915_enable_hangcheck) {
1601 mod_timer(&dev_priv->hangcheck_timer,
1602 jiffies +
1603 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1604 }
f65d9421 1605 if (was_empty)
b3b079db
CW
1606 queue_delayed_work(dev_priv->wq,
1607 &dev_priv->mm.retire_work, HZ);
f65d9421 1608 }
cc889e0f 1609
3cce469c 1610 return 0;
673a394b
EA
1611}
1612
f787a5f5
CW
1613static inline void
1614i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1615{
1c25595f 1616 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1617
1c25595f
CW
1618 if (!file_priv)
1619 return;
1c5d22f7 1620
1c25595f 1621 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1622 if (request->file_priv) {
1623 list_del(&request->client_list);
1624 request->file_priv = NULL;
1625 }
1c25595f 1626 spin_unlock(&file_priv->mm.lock);
673a394b 1627}
673a394b 1628
dfaae392
CW
1629static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1630 struct intel_ring_buffer *ring)
9375e446 1631{
dfaae392
CW
1632 while (!list_empty(&ring->request_list)) {
1633 struct drm_i915_gem_request *request;
673a394b 1634
dfaae392
CW
1635 request = list_first_entry(&ring->request_list,
1636 struct drm_i915_gem_request,
1637 list);
de151cf6 1638
dfaae392 1639 list_del(&request->list);
f787a5f5 1640 i915_gem_request_remove_from_client(request);
dfaae392
CW
1641 kfree(request);
1642 }
673a394b 1643
dfaae392 1644 while (!list_empty(&ring->active_list)) {
05394f39 1645 struct drm_i915_gem_object *obj;
9375e446 1646
05394f39
CW
1647 obj = list_first_entry(&ring->active_list,
1648 struct drm_i915_gem_object,
1649 ring_list);
9375e446 1650
05394f39 1651 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1652 }
1653}
1654
312817a3
CW
1655static void i915_gem_reset_fences(struct drm_device *dev)
1656{
1657 struct drm_i915_private *dev_priv = dev->dev_private;
1658 int i;
1659
4b9de737 1660 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1661 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1662
ada726c7 1663 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1664
ada726c7
CW
1665 if (reg->obj)
1666 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1667
ada726c7
CW
1668 reg->pin_count = 0;
1669 reg->obj = NULL;
1670 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1671 }
ada726c7
CW
1672
1673 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1674}
1675
069efc1d 1676void i915_gem_reset(struct drm_device *dev)
673a394b 1677{
77f01230 1678 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1679 struct drm_i915_gem_object *obj;
b4519513 1680 struct intel_ring_buffer *ring;
1ec14ad3 1681 int i;
673a394b 1682
b4519513
CW
1683 for_each_ring(ring, dev_priv, i)
1684 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 1685
dfaae392
CW
1686 /* Move everything out of the GPU domains to ensure we do any
1687 * necessary invalidation upon reuse.
1688 */
05394f39 1689 list_for_each_entry(obj,
77f01230 1690 &dev_priv->mm.inactive_list,
69dc4987 1691 mm_list)
77f01230 1692 {
05394f39 1693 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1694 }
069efc1d
CW
1695
1696 /* The fence registers are invalidated so clear them out */
312817a3 1697 i915_gem_reset_fences(dev);
673a394b
EA
1698}
1699
1700/**
1701 * This function clears the request list as sequence numbers are passed.
1702 */
a71d8d94 1703void
db53a302 1704i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1705{
673a394b 1706 uint32_t seqno;
1ec14ad3 1707 int i;
673a394b 1708
db53a302 1709 if (list_empty(&ring->request_list))
6c0594a3
KW
1710 return;
1711
db53a302 1712 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1713
78501eac 1714 seqno = ring->get_seqno(ring);
1ec14ad3 1715
076e2c0e 1716 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1717 if (seqno >= ring->sync_seqno[i])
1718 ring->sync_seqno[i] = 0;
1719
852835f3 1720 while (!list_empty(&ring->request_list)) {
673a394b 1721 struct drm_i915_gem_request *request;
673a394b 1722
852835f3 1723 request = list_first_entry(&ring->request_list,
673a394b
EA
1724 struct drm_i915_gem_request,
1725 list);
673a394b 1726
dfaae392 1727 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1728 break;
1729
db53a302 1730 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1731 /* We know the GPU must have read the request to have
1732 * sent us the seqno + interrupt, so use the position
1733 * of tail of the request to update the last known position
1734 * of the GPU head.
1735 */
1736 ring->last_retired_head = request->tail;
b84d5f0c
CW
1737
1738 list_del(&request->list);
f787a5f5 1739 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1740 kfree(request);
1741 }
673a394b 1742
b84d5f0c
CW
1743 /* Move any buffers on the active list that are no longer referenced
1744 * by the ringbuffer to the flushing/inactive lists as appropriate.
1745 */
1746 while (!list_empty(&ring->active_list)) {
05394f39 1747 struct drm_i915_gem_object *obj;
b84d5f0c 1748
0206e353 1749 obj = list_first_entry(&ring->active_list,
05394f39
CW
1750 struct drm_i915_gem_object,
1751 ring_list);
673a394b 1752
0201f1ec 1753 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 1754 break;
b84d5f0c 1755
65ce3027 1756 i915_gem_object_move_to_inactive(obj);
673a394b 1757 }
9d34e5db 1758
db53a302
CW
1759 if (unlikely(ring->trace_irq_seqno &&
1760 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1761 ring->irq_put(ring);
db53a302 1762 ring->trace_irq_seqno = 0;
9d34e5db 1763 }
23bc5982 1764
db53a302 1765 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1766}
1767
b09a1fec
CW
1768void
1769i915_gem_retire_requests(struct drm_device *dev)
1770{
1771 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 1772 struct intel_ring_buffer *ring;
1ec14ad3 1773 int i;
b09a1fec 1774
b4519513
CW
1775 for_each_ring(ring, dev_priv, i)
1776 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
1777}
1778
75ef9da2 1779static void
673a394b
EA
1780i915_gem_retire_work_handler(struct work_struct *work)
1781{
1782 drm_i915_private_t *dev_priv;
1783 struct drm_device *dev;
b4519513 1784 struct intel_ring_buffer *ring;
0a58705b
CW
1785 bool idle;
1786 int i;
673a394b
EA
1787
1788 dev_priv = container_of(work, drm_i915_private_t,
1789 mm.retire_work.work);
1790 dev = dev_priv->dev;
1791
891b48cf
CW
1792 /* Come back later if the device is busy... */
1793 if (!mutex_trylock(&dev->struct_mutex)) {
1794 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1795 return;
1796 }
1797
b09a1fec 1798 i915_gem_retire_requests(dev);
d1b851fc 1799
0a58705b
CW
1800 /* Send a periodic flush down the ring so we don't hold onto GEM
1801 * objects indefinitely.
1802 */
1803 idle = true;
b4519513 1804 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
1805 if (ring->gpu_caches_dirty)
1806 i915_add_request(ring, NULL, NULL);
0a58705b
CW
1807
1808 idle &= list_empty(&ring->request_list);
1809 }
1810
1811 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1812 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1813
673a394b
EA
1814 mutex_unlock(&dev->struct_mutex);
1815}
1816
d6b2c790
DV
1817int
1818i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1819 bool interruptible)
b4aca010 1820{
b4aca010
BW
1821 if (atomic_read(&dev_priv->mm.wedged)) {
1822 struct completion *x = &dev_priv->error_completion;
1823 bool recovery_complete;
1824 unsigned long flags;
1825
1826 /* Give the error handler a chance to run. */
1827 spin_lock_irqsave(&x->wait.lock, flags);
1828 recovery_complete = x->done > 0;
1829 spin_unlock_irqrestore(&x->wait.lock, flags);
1830
d6b2c790
DV
1831 /* Non-interruptible callers can't handle -EAGAIN, hence return
1832 * -EIO unconditionally for these. */
1833 if (!interruptible)
1834 return -EIO;
1835
1836 /* Recovery complete, but still wedged means reset failure. */
1837 if (recovery_complete)
1838 return -EIO;
1839
1840 return -EAGAIN;
b4aca010
BW
1841 }
1842
1843 return 0;
1844}
1845
1846/*
1847 * Compare seqno against outstanding lazy request. Emit a request if they are
1848 * equal.
1849 */
1850static int
1851i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1852{
3bb73aba 1853 int ret;
b4aca010
BW
1854
1855 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1856
3bb73aba
CW
1857 ret = 0;
1858 if (seqno == ring->outstanding_lazy_request)
1859 ret = i915_add_request(ring, NULL, NULL);
b4aca010
BW
1860
1861 return ret;
1862}
1863
5c81fe85
BW
1864/**
1865 * __wait_seqno - wait until execution of seqno has finished
1866 * @ring: the ring expected to report seqno
1867 * @seqno: duh!
1868 * @interruptible: do an interruptible wait (normally yes)
1869 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1870 *
1871 * Returns 0 if the seqno was found within the alloted time. Else returns the
1872 * errno with remaining time filled in timeout argument.
1873 */
604dd3ec 1874static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
5c81fe85 1875 bool interruptible, struct timespec *timeout)
604dd3ec
BW
1876{
1877 drm_i915_private_t *dev_priv = ring->dev->dev_private;
5c81fe85
BW
1878 struct timespec before, now, wait_time={1,0};
1879 unsigned long timeout_jiffies;
1880 long end;
1881 bool wait_forever = true;
d6b2c790 1882 int ret;
604dd3ec
BW
1883
1884 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1885 return 0;
1886
1887 trace_i915_gem_request_wait_begin(ring, seqno);
5c81fe85
BW
1888
1889 if (timeout != NULL) {
1890 wait_time = *timeout;
1891 wait_forever = false;
1892 }
1893
1894 timeout_jiffies = timespec_to_jiffies(&wait_time);
1895
604dd3ec
BW
1896 if (WARN_ON(!ring->irq_get(ring)))
1897 return -ENODEV;
1898
5c81fe85
BW
1899 /* Record current time in case interrupted by signal, or wedged * */
1900 getrawmonotonic(&before);
1901
604dd3ec
BW
1902#define EXIT_COND \
1903 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1904 atomic_read(&dev_priv->mm.wedged))
5c81fe85
BW
1905 do {
1906 if (interruptible)
1907 end = wait_event_interruptible_timeout(ring->irq_queue,
1908 EXIT_COND,
1909 timeout_jiffies);
1910 else
1911 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1912 timeout_jiffies);
604dd3ec 1913
d6b2c790
DV
1914 ret = i915_gem_check_wedge(dev_priv, interruptible);
1915 if (ret)
1916 end = ret;
5c81fe85
BW
1917 } while (end == 0 && wait_forever);
1918
1919 getrawmonotonic(&now);
604dd3ec
BW
1920
1921 ring->irq_put(ring);
1922 trace_i915_gem_request_wait_end(ring, seqno);
1923#undef EXIT_COND
1924
5c81fe85
BW
1925 if (timeout) {
1926 struct timespec sleep_time = timespec_sub(now, before);
1927 *timeout = timespec_sub(*timeout, sleep_time);
1928 }
1929
1930 switch (end) {
eeef9b38 1931 case -EIO:
5c81fe85
BW
1932 case -EAGAIN: /* Wedged */
1933 case -ERESTARTSYS: /* Signal */
1934 return (int)end;
1935 case 0: /* Timeout */
1936 if (timeout)
1937 set_normalized_timespec(timeout, 0, 0);
1938 return -ETIME;
1939 default: /* Completed */
1940 WARN_ON(end < 0); /* We're not aware of other errors */
1941 return 0;
1942 }
604dd3ec
BW
1943}
1944
db53a302
CW
1945/**
1946 * Waits for a sequence number to be signaled, and cleans up the
1947 * request and object lists appropriately for that event.
1948 */
5a5a0c64 1949int
199b2bc2 1950i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
673a394b 1951{
db53a302 1952 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1953 int ret = 0;
1954
1955 BUG_ON(seqno == 0);
1956
d6b2c790 1957 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
b4aca010
BW
1958 if (ret)
1959 return ret;
3cce469c 1960
b4aca010
BW
1961 ret = i915_gem_check_olr(ring, seqno);
1962 if (ret)
1963 return ret;
ffed1d09 1964
5c81fe85 1965 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
673a394b 1966
673a394b
EA
1967 return ret;
1968}
1969
673a394b
EA
1970/**
1971 * Ensures that all rendering to the object has completed and the object is
1972 * safe to unbind from the GTT or access from the CPU.
1973 */
0201f1ec
CW
1974static __must_check int
1975i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1976 bool readonly)
673a394b 1977{
0201f1ec 1978 u32 seqno;
673a394b
EA
1979 int ret;
1980
673a394b
EA
1981 /* If there is rendering queued on the buffer being evicted, wait for
1982 * it.
1983 */
0201f1ec
CW
1984 if (readonly)
1985 seqno = obj->last_write_seqno;
1986 else
1987 seqno = obj->last_read_seqno;
1988 if (seqno == 0)
1989 return 0;
1990
1991 ret = i915_wait_seqno(obj->ring, seqno);
1992 if (ret)
1993 return ret;
1994
1995 /* Manually manage the write flush as we may have not yet retired
1996 * the buffer.
1997 */
1998 if (obj->last_write_seqno &&
1999 i915_seqno_passed(seqno, obj->last_write_seqno)) {
2000 obj->last_write_seqno = 0;
2001 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
673a394b
EA
2002 }
2003
0201f1ec 2004 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
2005 return 0;
2006}
2007
30dfebf3
DV
2008/**
2009 * Ensures that an object will eventually get non-busy by flushing any required
2010 * write domains, emitting any outstanding lazy request and retiring and
2011 * completed requests.
2012 */
2013static int
2014i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2015{
2016 int ret;
2017
2018 if (obj->active) {
0201f1ec 2019 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2020 if (ret)
2021 return ret;
0201f1ec 2022
30dfebf3
DV
2023 i915_gem_retire_requests_ring(obj->ring);
2024 }
2025
2026 return 0;
2027}
2028
23ba4fd0
BW
2029/**
2030 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2031 * @DRM_IOCTL_ARGS: standard ioctl arguments
2032 *
2033 * Returns 0 if successful, else an error is returned with the remaining time in
2034 * the timeout parameter.
2035 * -ETIME: object is still busy after timeout
2036 * -ERESTARTSYS: signal interrupted the wait
2037 * -ENONENT: object doesn't exist
2038 * Also possible, but rare:
2039 * -EAGAIN: GPU wedged
2040 * -ENOMEM: damn
2041 * -ENODEV: Internal IRQ fail
2042 * -E?: The add request failed
2043 *
2044 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2045 * non-zero timeout parameter the wait ioctl will wait for the given number of
2046 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2047 * without holding struct_mutex the object may become re-busied before this
2048 * function completes. A similar but shorter * race condition exists in the busy
2049 * ioctl
2050 */
2051int
2052i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2053{
2054 struct drm_i915_gem_wait *args = data;
2055 struct drm_i915_gem_object *obj;
2056 struct intel_ring_buffer *ring = NULL;
eac1f14f 2057 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2058 u32 seqno = 0;
2059 int ret = 0;
2060
eac1f14f
BW
2061 if (args->timeout_ns >= 0) {
2062 timeout_stack = ns_to_timespec(args->timeout_ns);
2063 timeout = &timeout_stack;
2064 }
23ba4fd0
BW
2065
2066 ret = i915_mutex_lock_interruptible(dev);
2067 if (ret)
2068 return ret;
2069
2070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2071 if (&obj->base == NULL) {
2072 mutex_unlock(&dev->struct_mutex);
2073 return -ENOENT;
2074 }
2075
30dfebf3
DV
2076 /* Need to make sure the object gets inactive eventually. */
2077 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2078 if (ret)
2079 goto out;
2080
2081 if (obj->active) {
0201f1ec 2082 seqno = obj->last_read_seqno;
23ba4fd0
BW
2083 ring = obj->ring;
2084 }
2085
2086 if (seqno == 0)
2087 goto out;
2088
23ba4fd0
BW
2089 /* Do this after OLR check to make sure we make forward progress polling
2090 * on this IOCTL with a 0 timeout (like busy ioctl)
2091 */
2092 if (!args->timeout_ns) {
2093 ret = -ETIME;
2094 goto out;
2095 }
2096
2097 drm_gem_object_unreference(&obj->base);
2098 mutex_unlock(&dev->struct_mutex);
2099
eac1f14f
BW
2100 ret = __wait_seqno(ring, seqno, true, timeout);
2101 if (timeout) {
2102 WARN_ON(!timespec_valid(timeout));
2103 args->timeout_ns = timespec_to_ns(timeout);
2104 }
23ba4fd0
BW
2105 return ret;
2106
2107out:
2108 drm_gem_object_unreference(&obj->base);
2109 mutex_unlock(&dev->struct_mutex);
2110 return ret;
2111}
2112
5816d648
BW
2113/**
2114 * i915_gem_object_sync - sync an object to a ring.
2115 *
2116 * @obj: object which may be in use on another ring.
2117 * @to: ring we wish to use the object on. May be NULL.
2118 *
2119 * This code is meant to abstract object synchronization with the GPU.
2120 * Calling with NULL implies synchronizing the object with the CPU
2121 * rather than a particular GPU ring.
2122 *
2123 * Returns 0 if successful, else propagates up the lower layer error.
2124 */
2911a35b
BW
2125int
2126i915_gem_object_sync(struct drm_i915_gem_object *obj,
2127 struct intel_ring_buffer *to)
2128{
2129 struct intel_ring_buffer *from = obj->ring;
2130 u32 seqno;
2131 int ret, idx;
2132
2133 if (from == NULL || to == from)
2134 return 0;
2135
5816d648 2136 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2137 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2138
2139 idx = intel_ring_sync_index(from, to);
2140
0201f1ec 2141 seqno = obj->last_read_seqno;
2911a35b
BW
2142 if (seqno <= from->sync_seqno[idx])
2143 return 0;
2144
b4aca010
BW
2145 ret = i915_gem_check_olr(obj->ring, seqno);
2146 if (ret)
2147 return ret;
2911a35b 2148
1500f7ea 2149 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2150 if (!ret)
2151 from->sync_seqno[idx] = seqno;
2911a35b 2152
e3a5a225 2153 return ret;
2911a35b
BW
2154}
2155
b5ffc9bc
CW
2156static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2157{
2158 u32 old_write_domain, old_read_domains;
2159
b5ffc9bc
CW
2160 /* Act a barrier for all accesses through the GTT */
2161 mb();
2162
2163 /* Force a pagefault for domain tracking on next user access */
2164 i915_gem_release_mmap(obj);
2165
b97c3d9c
KP
2166 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2167 return;
2168
b5ffc9bc
CW
2169 old_read_domains = obj->base.read_domains;
2170 old_write_domain = obj->base.write_domain;
2171
2172 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2173 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2174
2175 trace_i915_gem_object_change_domain(obj,
2176 old_read_domains,
2177 old_write_domain);
2178}
2179
673a394b
EA
2180/**
2181 * Unbinds an object from the GTT aperture.
2182 */
0f973f27 2183int
05394f39 2184i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2185{
7bddb01f 2186 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2187 int ret = 0;
2188
05394f39 2189 if (obj->gtt_space == NULL)
673a394b
EA
2190 return 0;
2191
31d8d651
CW
2192 if (obj->pin_count)
2193 return -EBUSY;
673a394b 2194
a8198eea 2195 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2196 if (ret)
a8198eea
CW
2197 return ret;
2198 /* Continue on if we fail due to EIO, the GPU is hung so we
2199 * should be safe and we need to cleanup or else we might
2200 * cause memory corruption through use-after-free.
2201 */
2202
b5ffc9bc 2203 i915_gem_object_finish_gtt(obj);
5323fd04 2204
673a394b
EA
2205 /* Move the object to the CPU domain to ensure that
2206 * any possible CPU writes while it's not in the GTT
a8198eea 2207 * are flushed when we go to remap it.
673a394b 2208 */
a8198eea
CW
2209 if (ret == 0)
2210 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2211 if (ret == -ERESTARTSYS)
673a394b 2212 return ret;
812ed492 2213 if (ret) {
a8198eea
CW
2214 /* In the event of a disaster, abandon all caches and
2215 * hope for the best.
2216 */
812ed492 2217 i915_gem_clflush_object(obj);
05394f39 2218 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2219 }
673a394b 2220
96b47b65 2221 /* release the fence reg _after_ flushing */
d9e86c0e 2222 ret = i915_gem_object_put_fence(obj);
1488fc08 2223 if (ret)
d9e86c0e 2224 return ret;
96b47b65 2225
db53a302
CW
2226 trace_i915_gem_object_unbind(obj);
2227
74898d7e
DV
2228 if (obj->has_global_gtt_mapping)
2229 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2230 if (obj->has_aliasing_ppgtt_mapping) {
2231 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2232 obj->has_aliasing_ppgtt_mapping = 0;
2233 }
74163907 2234 i915_gem_gtt_finish_object(obj);
7bddb01f 2235
e5281ccd 2236 i915_gem_object_put_pages_gtt(obj);
673a394b 2237
6299f992 2238 list_del_init(&obj->gtt_list);
05394f39 2239 list_del_init(&obj->mm_list);
75e9e915 2240 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2241 obj->map_and_fenceable = true;
673a394b 2242
05394f39
CW
2243 drm_mm_put_block(obj->gtt_space);
2244 obj->gtt_space = NULL;
2245 obj->gtt_offset = 0;
673a394b 2246
05394f39 2247 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2248 i915_gem_object_truncate(obj);
2249
8dc1775d 2250 return ret;
673a394b
EA
2251}
2252
b2da9fe5 2253static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2254{
69c2fc89 2255 if (list_empty(&ring->active_list))
64193406
CW
2256 return 0;
2257
199b2bc2 2258 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2259}
2260
b2da9fe5 2261int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2262{
2263 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2264 struct intel_ring_buffer *ring;
1ec14ad3 2265 int ret, i;
4df2faf4 2266
4df2faf4 2267 /* Flush everything onto the inactive list. */
b4519513
CW
2268 for_each_ring(ring, dev_priv, i) {
2269 ret = i915_ring_idle(ring);
1ec14ad3
CW
2270 if (ret)
2271 return ret;
b4519513 2272
f2ef6eb1
BW
2273 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2274 if (ret)
2275 return ret;
1ec14ad3 2276 }
4df2faf4 2277
8a1a49f9 2278 return 0;
4df2faf4
DV
2279}
2280
9ce079e4
CW
2281static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2282 struct drm_i915_gem_object *obj)
4e901fdc 2283{
4e901fdc 2284 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2285 uint64_t val;
2286
9ce079e4
CW
2287 if (obj) {
2288 u32 size = obj->gtt_space->size;
4e901fdc 2289
9ce079e4
CW
2290 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2291 0xfffff000) << 32;
2292 val |= obj->gtt_offset & 0xfffff000;
2293 val |= (uint64_t)((obj->stride / 128) - 1) <<
2294 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2295
9ce079e4
CW
2296 if (obj->tiling_mode == I915_TILING_Y)
2297 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2298 val |= I965_FENCE_REG_VALID;
2299 } else
2300 val = 0;
c6642782 2301
9ce079e4
CW
2302 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2303 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2304}
2305
9ce079e4
CW
2306static void i965_write_fence_reg(struct drm_device *dev, int reg,
2307 struct drm_i915_gem_object *obj)
de151cf6 2308{
de151cf6 2309 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2310 uint64_t val;
2311
9ce079e4
CW
2312 if (obj) {
2313 u32 size = obj->gtt_space->size;
de151cf6 2314
9ce079e4
CW
2315 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2316 0xfffff000) << 32;
2317 val |= obj->gtt_offset & 0xfffff000;
2318 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2319 if (obj->tiling_mode == I915_TILING_Y)
2320 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2321 val |= I965_FENCE_REG_VALID;
2322 } else
2323 val = 0;
c6642782 2324
9ce079e4
CW
2325 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2326 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2327}
2328
9ce079e4
CW
2329static void i915_write_fence_reg(struct drm_device *dev, int reg,
2330 struct drm_i915_gem_object *obj)
de151cf6 2331{
de151cf6 2332 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2333 u32 val;
de151cf6 2334
9ce079e4
CW
2335 if (obj) {
2336 u32 size = obj->gtt_space->size;
2337 int pitch_val;
2338 int tile_width;
c6642782 2339
9ce079e4
CW
2340 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2341 (size & -size) != size ||
2342 (obj->gtt_offset & (size - 1)),
2343 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2344 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2345
9ce079e4
CW
2346 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2347 tile_width = 128;
2348 else
2349 tile_width = 512;
2350
2351 /* Note: pitch better be a power of two tile widths */
2352 pitch_val = obj->stride / tile_width;
2353 pitch_val = ffs(pitch_val) - 1;
2354
2355 val = obj->gtt_offset;
2356 if (obj->tiling_mode == I915_TILING_Y)
2357 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2358 val |= I915_FENCE_SIZE_BITS(size);
2359 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2360 val |= I830_FENCE_REG_VALID;
2361 } else
2362 val = 0;
2363
2364 if (reg < 8)
2365 reg = FENCE_REG_830_0 + reg * 4;
2366 else
2367 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2368
2369 I915_WRITE(reg, val);
2370 POSTING_READ(reg);
de151cf6
JB
2371}
2372
9ce079e4
CW
2373static void i830_write_fence_reg(struct drm_device *dev, int reg,
2374 struct drm_i915_gem_object *obj)
de151cf6 2375{
de151cf6 2376 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2377 uint32_t val;
de151cf6 2378
9ce079e4
CW
2379 if (obj) {
2380 u32 size = obj->gtt_space->size;
2381 uint32_t pitch_val;
de151cf6 2382
9ce079e4
CW
2383 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2384 (size & -size) != size ||
2385 (obj->gtt_offset & (size - 1)),
2386 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2387 obj->gtt_offset, size);
e76a16de 2388
9ce079e4
CW
2389 pitch_val = obj->stride / 128;
2390 pitch_val = ffs(pitch_val) - 1;
de151cf6 2391
9ce079e4
CW
2392 val = obj->gtt_offset;
2393 if (obj->tiling_mode == I915_TILING_Y)
2394 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2395 val |= I830_FENCE_SIZE_BITS(size);
2396 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2397 val |= I830_FENCE_REG_VALID;
2398 } else
2399 val = 0;
c6642782 2400
9ce079e4
CW
2401 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2402 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2403}
2404
2405static void i915_gem_write_fence(struct drm_device *dev, int reg,
2406 struct drm_i915_gem_object *obj)
2407{
2408 switch (INTEL_INFO(dev)->gen) {
2409 case 7:
2410 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2411 case 5:
2412 case 4: i965_write_fence_reg(dev, reg, obj); break;
2413 case 3: i915_write_fence_reg(dev, reg, obj); break;
2414 case 2: i830_write_fence_reg(dev, reg, obj); break;
2415 default: break;
2416 }
de151cf6
JB
2417}
2418
61050808
CW
2419static inline int fence_number(struct drm_i915_private *dev_priv,
2420 struct drm_i915_fence_reg *fence)
2421{
2422 return fence - dev_priv->fence_regs;
2423}
2424
2425static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2426 struct drm_i915_fence_reg *fence,
2427 bool enable)
2428{
2429 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2430 int reg = fence_number(dev_priv, fence);
2431
2432 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2433
2434 if (enable) {
2435 obj->fence_reg = reg;
2436 fence->obj = obj;
2437 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2438 } else {
2439 obj->fence_reg = I915_FENCE_REG_NONE;
2440 fence->obj = NULL;
2441 list_del_init(&fence->lru_list);
2442 }
2443}
2444
d9e86c0e 2445static int
a360bb1a 2446i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2447{
1c293ea3 2448 if (obj->last_fenced_seqno) {
86d5bc37 2449 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2450 if (ret)
2451 return ret;
d9e86c0e
CW
2452
2453 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2454 }
2455
63256ec5
CW
2456 /* Ensure that all CPU reads are completed before installing a fence
2457 * and all writes before removing the fence.
2458 */
2459 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2460 mb();
2461
86d5bc37 2462 obj->fenced_gpu_access = false;
d9e86c0e
CW
2463 return 0;
2464}
2465
2466int
2467i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2468{
61050808 2469 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2470 int ret;
2471
a360bb1a 2472 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2473 if (ret)
2474 return ret;
2475
61050808
CW
2476 if (obj->fence_reg == I915_FENCE_REG_NONE)
2477 return 0;
d9e86c0e 2478
61050808
CW
2479 i915_gem_object_update_fence(obj,
2480 &dev_priv->fence_regs[obj->fence_reg],
2481 false);
2482 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2483
2484 return 0;
2485}
2486
2487static struct drm_i915_fence_reg *
a360bb1a 2488i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2489{
ae3db24a 2490 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2491 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2492 int i;
ae3db24a
DV
2493
2494 /* First try to find a free reg */
d9e86c0e 2495 avail = NULL;
ae3db24a
DV
2496 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2497 reg = &dev_priv->fence_regs[i];
2498 if (!reg->obj)
d9e86c0e 2499 return reg;
ae3db24a 2500
1690e1eb 2501 if (!reg->pin_count)
d9e86c0e 2502 avail = reg;
ae3db24a
DV
2503 }
2504
d9e86c0e
CW
2505 if (avail == NULL)
2506 return NULL;
ae3db24a
DV
2507
2508 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2509 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2510 if (reg->pin_count)
ae3db24a
DV
2511 continue;
2512
8fe301ad 2513 return reg;
ae3db24a
DV
2514 }
2515
8fe301ad 2516 return NULL;
ae3db24a
DV
2517}
2518
de151cf6 2519/**
9a5a53b3 2520 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2521 * @obj: object to map through a fence reg
2522 *
2523 * When mapping objects through the GTT, userspace wants to be able to write
2524 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2525 * This function walks the fence regs looking for a free one for @obj,
2526 * stealing one if it can't find any.
2527 *
2528 * It then sets up the reg based on the object's properties: address, pitch
2529 * and tiling format.
9a5a53b3
CW
2530 *
2531 * For an untiled surface, this removes any existing fence.
de151cf6 2532 */
8c4b8c3f 2533int
06d98131 2534i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2535{
05394f39 2536 struct drm_device *dev = obj->base.dev;
79e53945 2537 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2538 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2539 struct drm_i915_fence_reg *reg;
ae3db24a 2540 int ret;
de151cf6 2541
14415745
CW
2542 /* Have we updated the tiling parameters upon the object and so
2543 * will need to serialise the write to the associated fence register?
2544 */
5d82e3e6 2545 if (obj->fence_dirty) {
14415745
CW
2546 ret = i915_gem_object_flush_fence(obj);
2547 if (ret)
2548 return ret;
2549 }
9a5a53b3 2550
d9e86c0e 2551 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2552 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2553 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2554 if (!obj->fence_dirty) {
14415745
CW
2555 list_move_tail(&reg->lru_list,
2556 &dev_priv->mm.fence_list);
2557 return 0;
2558 }
2559 } else if (enable) {
2560 reg = i915_find_fence_reg(dev);
2561 if (reg == NULL)
2562 return -EDEADLK;
d9e86c0e 2563
14415745
CW
2564 if (reg->obj) {
2565 struct drm_i915_gem_object *old = reg->obj;
2566
2567 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2568 if (ret)
2569 return ret;
2570
14415745 2571 i915_gem_object_fence_lost(old);
29c5a587 2572 }
14415745 2573 } else
a09ba7fa 2574 return 0;
a09ba7fa 2575
14415745 2576 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2577 obj->fence_dirty = false;
14415745 2578
9ce079e4 2579 return 0;
de151cf6
JB
2580}
2581
673a394b
EA
2582/**
2583 * Finds free space in the GTT aperture and binds the object there.
2584 */
2585static int
05394f39 2586i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2587 unsigned alignment,
75e9e915 2588 bool map_and_fenceable)
673a394b 2589{
05394f39 2590 struct drm_device *dev = obj->base.dev;
673a394b 2591 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2592 struct drm_mm_node *free_space;
a00b10c3 2593 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2594 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2595 bool mappable, fenceable;
07f73f69 2596 int ret;
673a394b 2597
05394f39 2598 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2599 DRM_ERROR("Attempting to bind a purgeable object\n");
2600 return -EINVAL;
2601 }
2602
e28f8711
CW
2603 fence_size = i915_gem_get_gtt_size(dev,
2604 obj->base.size,
2605 obj->tiling_mode);
2606 fence_alignment = i915_gem_get_gtt_alignment(dev,
2607 obj->base.size,
2608 obj->tiling_mode);
2609 unfenced_alignment =
2610 i915_gem_get_unfenced_gtt_alignment(dev,
2611 obj->base.size,
2612 obj->tiling_mode);
a00b10c3 2613
673a394b 2614 if (alignment == 0)
5e783301
DV
2615 alignment = map_and_fenceable ? fence_alignment :
2616 unfenced_alignment;
75e9e915 2617 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2618 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2619 return -EINVAL;
2620 }
2621
05394f39 2622 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2623
654fc607
CW
2624 /* If the object is bigger than the entire aperture, reject it early
2625 * before evicting everything in a vain attempt to find space.
2626 */
05394f39 2627 if (obj->base.size >
75e9e915 2628 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2629 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2630 return -E2BIG;
2631 }
2632
673a394b 2633 search_free:
75e9e915 2634 if (map_and_fenceable)
920afa77
DV
2635 free_space =
2636 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
6b9d89b4
CW
2637 size, alignment,
2638 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2639 0);
2640 else
2641 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2642 size, alignment, 0);
920afa77
DV
2643
2644 if (free_space != NULL) {
75e9e915 2645 if (map_and_fenceable)
05394f39 2646 obj->gtt_space =
920afa77 2647 drm_mm_get_block_range_generic(free_space,
a00b10c3 2648 size, alignment, 0,
6b9d89b4 2649 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2650 0);
2651 else
05394f39 2652 obj->gtt_space =
a00b10c3 2653 drm_mm_get_block(free_space, size, alignment);
920afa77 2654 }
05394f39 2655 if (obj->gtt_space == NULL) {
673a394b
EA
2656 /* If the gtt is empty and we're still having trouble
2657 * fitting our object in, we're out of memory.
2658 */
75e9e915
DV
2659 ret = i915_gem_evict_something(dev, size, alignment,
2660 map_and_fenceable);
9731129c 2661 if (ret)
673a394b 2662 return ret;
9731129c 2663
673a394b
EA
2664 goto search_free;
2665 }
2666
e5281ccd 2667 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2668 if (ret) {
05394f39
CW
2669 drm_mm_put_block(obj->gtt_space);
2670 obj->gtt_space = NULL;
07f73f69
CW
2671
2672 if (ret == -ENOMEM) {
809b6334
CW
2673 /* first try to reclaim some memory by clearing the GTT */
2674 ret = i915_gem_evict_everything(dev, false);
07f73f69 2675 if (ret) {
07f73f69 2676 /* now try to shrink everyone else */
4bdadb97
CW
2677 if (gfpmask) {
2678 gfpmask = 0;
2679 goto search_free;
07f73f69
CW
2680 }
2681
809b6334 2682 return -ENOMEM;
07f73f69
CW
2683 }
2684
2685 goto search_free;
2686 }
2687
673a394b
EA
2688 return ret;
2689 }
2690
74163907 2691 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2692 if (ret) {
e5281ccd 2693 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2694 drm_mm_put_block(obj->gtt_space);
2695 obj->gtt_space = NULL;
07f73f69 2696
809b6334 2697 if (i915_gem_evict_everything(dev, false))
07f73f69 2698 return ret;
07f73f69
CW
2699
2700 goto search_free;
673a394b 2701 }
673a394b 2702
0ebb9829
DV
2703 if (!dev_priv->mm.aliasing_ppgtt)
2704 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2705
6299f992 2706 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2707 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2708
673a394b
EA
2709 /* Assert that the object is not currently in any GPU domain. As it
2710 * wasn't in the GTT, there shouldn't be any way it could have been in
2711 * a GPU cache
2712 */
05394f39
CW
2713 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2714 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2715
6299f992 2716 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2717
75e9e915 2718 fenceable =
05394f39 2719 obj->gtt_space->size == fence_size &&
0206e353 2720 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2721
75e9e915 2722 mappable =
05394f39 2723 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2724
05394f39 2725 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2726
db53a302 2727 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2728 return 0;
2729}
2730
2731void
05394f39 2732i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2733{
673a394b
EA
2734 /* If we don't have a page list set up, then we're not pinned
2735 * to GPU, and we can ignore the cache flush because it'll happen
2736 * again at bind time.
2737 */
05394f39 2738 if (obj->pages == NULL)
673a394b
EA
2739 return;
2740
9c23f7fc
CW
2741 /* If the GPU is snooping the contents of the CPU cache,
2742 * we do not need to manually clear the CPU cache lines. However,
2743 * the caches are only snooped when the render cache is
2744 * flushed/invalidated. As we always have to emit invalidations
2745 * and flushes when moving into and out of the RENDER domain, correct
2746 * snooping behaviour occurs naturally as the result of our domain
2747 * tracking.
2748 */
2749 if (obj->cache_level != I915_CACHE_NONE)
2750 return;
2751
1c5d22f7 2752 trace_i915_gem_object_clflush(obj);
cfa16a0d 2753
05394f39 2754 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2755}
2756
e47c68e9
EA
2757/** Flushes the GTT write domain for the object if it's dirty. */
2758static void
05394f39 2759i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2760{
1c5d22f7
CW
2761 uint32_t old_write_domain;
2762
05394f39 2763 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2764 return;
2765
63256ec5 2766 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2767 * to it immediately go to main memory as far as we know, so there's
2768 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2769 *
2770 * However, we do have to enforce the order so that all writes through
2771 * the GTT land before any writes to the device, such as updates to
2772 * the GATT itself.
e47c68e9 2773 */
63256ec5
CW
2774 wmb();
2775
05394f39
CW
2776 old_write_domain = obj->base.write_domain;
2777 obj->base.write_domain = 0;
1c5d22f7
CW
2778
2779 trace_i915_gem_object_change_domain(obj,
05394f39 2780 obj->base.read_domains,
1c5d22f7 2781 old_write_domain);
e47c68e9
EA
2782}
2783
2784/** Flushes the CPU write domain for the object if it's dirty. */
2785static void
05394f39 2786i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2787{
1c5d22f7 2788 uint32_t old_write_domain;
e47c68e9 2789
05394f39 2790 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2791 return;
2792
2793 i915_gem_clflush_object(obj);
40ce6575 2794 intel_gtt_chipset_flush();
05394f39
CW
2795 old_write_domain = obj->base.write_domain;
2796 obj->base.write_domain = 0;
1c5d22f7
CW
2797
2798 trace_i915_gem_object_change_domain(obj,
05394f39 2799 obj->base.read_domains,
1c5d22f7 2800 old_write_domain);
e47c68e9
EA
2801}
2802
2ef7eeaa
EA
2803/**
2804 * Moves a single object to the GTT read, and possibly write domain.
2805 *
2806 * This function returns when the move is complete, including waiting on
2807 * flushes to occur.
2808 */
79e53945 2809int
2021746e 2810i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2811{
8325a09d 2812 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2813 uint32_t old_write_domain, old_read_domains;
e47c68e9 2814 int ret;
2ef7eeaa 2815
02354392 2816 /* Not valid to be called on unbound objects. */
05394f39 2817 if (obj->gtt_space == NULL)
02354392
EA
2818 return -EINVAL;
2819
8d7e3de1
CW
2820 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2821 return 0;
2822
0201f1ec
CW
2823 ret = i915_gem_object_wait_rendering(obj, !write);
2824 if (ret)
2825 return ret;
2dafb1e0 2826
7213342d 2827 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2828
05394f39
CW
2829 old_write_domain = obj->base.write_domain;
2830 old_read_domains = obj->base.read_domains;
1c5d22f7 2831
e47c68e9
EA
2832 /* It should now be out of any other write domains, and we can update
2833 * the domain values for our changes.
2834 */
05394f39
CW
2835 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2836 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2837 if (write) {
05394f39
CW
2838 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2839 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2840 obj->dirty = 1;
2ef7eeaa
EA
2841 }
2842
1c5d22f7
CW
2843 trace_i915_gem_object_change_domain(obj,
2844 old_read_domains,
2845 old_write_domain);
2846
8325a09d
CW
2847 /* And bump the LRU for this access */
2848 if (i915_gem_object_is_inactive(obj))
2849 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2850
e47c68e9
EA
2851 return 0;
2852}
2853
e4ffd173
CW
2854int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2855 enum i915_cache_level cache_level)
2856{
7bddb01f
DV
2857 struct drm_device *dev = obj->base.dev;
2858 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2859 int ret;
2860
2861 if (obj->cache_level == cache_level)
2862 return 0;
2863
2864 if (obj->pin_count) {
2865 DRM_DEBUG("can not change the cache level of pinned objects\n");
2866 return -EBUSY;
2867 }
2868
2869 if (obj->gtt_space) {
2870 ret = i915_gem_object_finish_gpu(obj);
2871 if (ret)
2872 return ret;
2873
2874 i915_gem_object_finish_gtt(obj);
2875
2876 /* Before SandyBridge, you could not use tiling or fence
2877 * registers with snooped memory, so relinquish any fences
2878 * currently pointing to our region in the aperture.
2879 */
2880 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2881 ret = i915_gem_object_put_fence(obj);
2882 if (ret)
2883 return ret;
2884 }
2885
74898d7e
DV
2886 if (obj->has_global_gtt_mapping)
2887 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2888 if (obj->has_aliasing_ppgtt_mapping)
2889 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2890 obj, cache_level);
e4ffd173
CW
2891 }
2892
2893 if (cache_level == I915_CACHE_NONE) {
2894 u32 old_read_domains, old_write_domain;
2895
2896 /* If we're coming from LLC cached, then we haven't
2897 * actually been tracking whether the data is in the
2898 * CPU cache or not, since we only allow one bit set
2899 * in obj->write_domain and have been skipping the clflushes.
2900 * Just set it to the CPU cache for now.
2901 */
2902 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2903 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2904
2905 old_read_domains = obj->base.read_domains;
2906 old_write_domain = obj->base.write_domain;
2907
2908 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2909 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2910
2911 trace_i915_gem_object_change_domain(obj,
2912 old_read_domains,
2913 old_write_domain);
2914 }
2915
2916 obj->cache_level = cache_level;
2917 return 0;
2918}
2919
b9241ea3 2920/*
2da3b9b9
CW
2921 * Prepare buffer for display plane (scanout, cursors, etc).
2922 * Can be called from an uninterruptible phase (modesetting) and allows
2923 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2924 */
2925int
2da3b9b9
CW
2926i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2927 u32 alignment,
919926ae 2928 struct intel_ring_buffer *pipelined)
b9241ea3 2929{
2da3b9b9 2930 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2931 int ret;
2932
0be73284 2933 if (pipelined != obj->ring) {
2911a35b
BW
2934 ret = i915_gem_object_sync(obj, pipelined);
2935 if (ret)
b9241ea3
ZW
2936 return ret;
2937 }
2938
a7ef0640
EA
2939 /* The display engine is not coherent with the LLC cache on gen6. As
2940 * a result, we make sure that the pinning that is about to occur is
2941 * done with uncached PTEs. This is lowest common denominator for all
2942 * chipsets.
2943 *
2944 * However for gen6+, we could do better by using the GFDT bit instead
2945 * of uncaching, which would allow us to flush all the LLC-cached data
2946 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2947 */
2948 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2949 if (ret)
2950 return ret;
2951
2da3b9b9
CW
2952 /* As the user may map the buffer once pinned in the display plane
2953 * (e.g. libkms for the bootup splash), we have to ensure that we
2954 * always use map_and_fenceable for all scanout buffers.
2955 */
2956 ret = i915_gem_object_pin(obj, alignment, true);
2957 if (ret)
2958 return ret;
2959
b118c1e3
CW
2960 i915_gem_object_flush_cpu_write_domain(obj);
2961
2da3b9b9 2962 old_write_domain = obj->base.write_domain;
05394f39 2963 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2964
2965 /* It should now be out of any other write domains, and we can update
2966 * the domain values for our changes.
2967 */
e5f1d962 2968 obj->base.write_domain = 0;
05394f39 2969 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2970
2971 trace_i915_gem_object_change_domain(obj,
2972 old_read_domains,
2da3b9b9 2973 old_write_domain);
b9241ea3
ZW
2974
2975 return 0;
2976}
2977
85345517 2978int
a8198eea 2979i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2980{
88241785
CW
2981 int ret;
2982
a8198eea 2983 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2984 return 0;
2985
0201f1ec 2986 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
2987 if (ret)
2988 return ret;
2989
a8198eea
CW
2990 /* Ensure that we invalidate the GPU's caches and TLBs. */
2991 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 2992 return 0;
85345517
CW
2993}
2994
e47c68e9
EA
2995/**
2996 * Moves a single object to the CPU read, and possibly write domain.
2997 *
2998 * This function returns when the move is complete, including waiting on
2999 * flushes to occur.
3000 */
dabdfe02 3001int
919926ae 3002i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3003{
1c5d22f7 3004 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3005 int ret;
3006
8d7e3de1
CW
3007 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3008 return 0;
3009
0201f1ec
CW
3010 ret = i915_gem_object_wait_rendering(obj, !write);
3011 if (ret)
3012 return ret;
2ef7eeaa 3013
e47c68e9 3014 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3015
05394f39
CW
3016 old_write_domain = obj->base.write_domain;
3017 old_read_domains = obj->base.read_domains;
1c5d22f7 3018
e47c68e9 3019 /* Flush the CPU cache if it's still invalid. */
05394f39 3020 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3021 i915_gem_clflush_object(obj);
2ef7eeaa 3022
05394f39 3023 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3024 }
3025
3026 /* It should now be out of any other write domains, and we can update
3027 * the domain values for our changes.
3028 */
05394f39 3029 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3030
3031 /* If we're writing through the CPU, then the GPU read domains will
3032 * need to be invalidated at next use.
3033 */
3034 if (write) {
05394f39
CW
3035 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3036 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3037 }
2ef7eeaa 3038
1c5d22f7
CW
3039 trace_i915_gem_object_change_domain(obj,
3040 old_read_domains,
3041 old_write_domain);
3042
2ef7eeaa
EA
3043 return 0;
3044}
3045
673a394b
EA
3046/* Throttle our rendering by waiting until the ring has completed our requests
3047 * emitted over 20 msec ago.
3048 *
b962442e
EA
3049 * Note that if we were to use the current jiffies each time around the loop,
3050 * we wouldn't escape the function with any frames outstanding if the time to
3051 * render a frame was over 20ms.
3052 *
673a394b
EA
3053 * This should get us reasonable parallelism between CPU and GPU but also
3054 * relatively low latency when blocking on a particular request to finish.
3055 */
40a5f0de 3056static int
f787a5f5 3057i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3058{
f787a5f5
CW
3059 struct drm_i915_private *dev_priv = dev->dev_private;
3060 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3061 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3062 struct drm_i915_gem_request *request;
3063 struct intel_ring_buffer *ring = NULL;
3064 u32 seqno = 0;
3065 int ret;
93533c29 3066
e110e8d6
CW
3067 if (atomic_read(&dev_priv->mm.wedged))
3068 return -EIO;
3069
1c25595f 3070 spin_lock(&file_priv->mm.lock);
f787a5f5 3071 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3072 if (time_after_eq(request->emitted_jiffies, recent_enough))
3073 break;
40a5f0de 3074
f787a5f5
CW
3075 ring = request->ring;
3076 seqno = request->seqno;
b962442e 3077 }
1c25595f 3078 spin_unlock(&file_priv->mm.lock);
40a5f0de 3079
f787a5f5
CW
3080 if (seqno == 0)
3081 return 0;
2bc43b5c 3082
5c81fe85 3083 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3084 if (ret == 0)
3085 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3086
3087 return ret;
3088}
3089
673a394b 3090int
05394f39
CW
3091i915_gem_object_pin(struct drm_i915_gem_object *obj,
3092 uint32_t alignment,
75e9e915 3093 bool map_and_fenceable)
673a394b 3094{
673a394b
EA
3095 int ret;
3096
05394f39 3097 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3098
05394f39
CW
3099 if (obj->gtt_space != NULL) {
3100 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3101 (map_and_fenceable && !obj->map_and_fenceable)) {
3102 WARN(obj->pin_count,
ae7d49d8 3103 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3104 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3105 " obj->map_and_fenceable=%d\n",
05394f39 3106 obj->gtt_offset, alignment,
75e9e915 3107 map_and_fenceable,
05394f39 3108 obj->map_and_fenceable);
ac0c6b5a
CW
3109 ret = i915_gem_object_unbind(obj);
3110 if (ret)
3111 return ret;
3112 }
3113 }
3114
05394f39 3115 if (obj->gtt_space == NULL) {
a00b10c3 3116 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3117 map_and_fenceable);
9731129c 3118 if (ret)
673a394b 3119 return ret;
22c344e9 3120 }
76446cac 3121
74898d7e
DV
3122 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3123 i915_gem_gtt_bind_object(obj, obj->cache_level);
3124
1b50247a 3125 obj->pin_count++;
6299f992 3126 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3127
3128 return 0;
3129}
3130
3131void
05394f39 3132i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3133{
05394f39
CW
3134 BUG_ON(obj->pin_count == 0);
3135 BUG_ON(obj->gtt_space == NULL);
673a394b 3136
1b50247a 3137 if (--obj->pin_count == 0)
6299f992 3138 obj->pin_mappable = false;
673a394b
EA
3139}
3140
3141int
3142i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3143 struct drm_file *file)
673a394b
EA
3144{
3145 struct drm_i915_gem_pin *args = data;
05394f39 3146 struct drm_i915_gem_object *obj;
673a394b
EA
3147 int ret;
3148
1d7cfea1
CW
3149 ret = i915_mutex_lock_interruptible(dev);
3150 if (ret)
3151 return ret;
673a394b 3152
05394f39 3153 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3154 if (&obj->base == NULL) {
1d7cfea1
CW
3155 ret = -ENOENT;
3156 goto unlock;
673a394b 3157 }
673a394b 3158
05394f39 3159 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3160 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3161 ret = -EINVAL;
3162 goto out;
3ef94daa
CW
3163 }
3164
05394f39 3165 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3166 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3167 args->handle);
1d7cfea1
CW
3168 ret = -EINVAL;
3169 goto out;
79e53945
JB
3170 }
3171
05394f39
CW
3172 obj->user_pin_count++;
3173 obj->pin_filp = file;
3174 if (obj->user_pin_count == 1) {
75e9e915 3175 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3176 if (ret)
3177 goto out;
673a394b
EA
3178 }
3179
3180 /* XXX - flush the CPU caches for pinned objects
3181 * as the X server doesn't manage domains yet
3182 */
e47c68e9 3183 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3184 args->offset = obj->gtt_offset;
1d7cfea1 3185out:
05394f39 3186 drm_gem_object_unreference(&obj->base);
1d7cfea1 3187unlock:
673a394b 3188 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3189 return ret;
673a394b
EA
3190}
3191
3192int
3193i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3194 struct drm_file *file)
673a394b
EA
3195{
3196 struct drm_i915_gem_pin *args = data;
05394f39 3197 struct drm_i915_gem_object *obj;
76c1dec1 3198 int ret;
673a394b 3199
1d7cfea1
CW
3200 ret = i915_mutex_lock_interruptible(dev);
3201 if (ret)
3202 return ret;
673a394b 3203
05394f39 3204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3205 if (&obj->base == NULL) {
1d7cfea1
CW
3206 ret = -ENOENT;
3207 goto unlock;
673a394b 3208 }
76c1dec1 3209
05394f39 3210 if (obj->pin_filp != file) {
79e53945
JB
3211 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3212 args->handle);
1d7cfea1
CW
3213 ret = -EINVAL;
3214 goto out;
79e53945 3215 }
05394f39
CW
3216 obj->user_pin_count--;
3217 if (obj->user_pin_count == 0) {
3218 obj->pin_filp = NULL;
79e53945
JB
3219 i915_gem_object_unpin(obj);
3220 }
673a394b 3221
1d7cfea1 3222out:
05394f39 3223 drm_gem_object_unreference(&obj->base);
1d7cfea1 3224unlock:
673a394b 3225 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3226 return ret;
673a394b
EA
3227}
3228
3229int
3230i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3231 struct drm_file *file)
673a394b
EA
3232{
3233 struct drm_i915_gem_busy *args = data;
05394f39 3234 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3235 int ret;
3236
76c1dec1 3237 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3238 if (ret)
76c1dec1 3239 return ret;
673a394b 3240
05394f39 3241 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3242 if (&obj->base == NULL) {
1d7cfea1
CW
3243 ret = -ENOENT;
3244 goto unlock;
673a394b 3245 }
d1b851fc 3246
0be555b6
CW
3247 /* Count all active objects as busy, even if they are currently not used
3248 * by the gpu. Users of this interface expect objects to eventually
3249 * become non-busy without any further actions, therefore emit any
3250 * necessary flushes here.
c4de0a5d 3251 */
30dfebf3 3252 ret = i915_gem_object_flush_active(obj);
0be555b6 3253
30dfebf3 3254 args->busy = obj->active;
e9808edd
CW
3255 if (obj->ring) {
3256 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3257 args->busy |= intel_ring_flag(obj->ring) << 16;
3258 }
673a394b 3259
05394f39 3260 drm_gem_object_unreference(&obj->base);
1d7cfea1 3261unlock:
673a394b 3262 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3263 return ret;
673a394b
EA
3264}
3265
3266int
3267i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3268 struct drm_file *file_priv)
3269{
0206e353 3270 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3271}
3272
3ef94daa
CW
3273int
3274i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3275 struct drm_file *file_priv)
3276{
3277 struct drm_i915_gem_madvise *args = data;
05394f39 3278 struct drm_i915_gem_object *obj;
76c1dec1 3279 int ret;
3ef94daa
CW
3280
3281 switch (args->madv) {
3282 case I915_MADV_DONTNEED:
3283 case I915_MADV_WILLNEED:
3284 break;
3285 default:
3286 return -EINVAL;
3287 }
3288
1d7cfea1
CW
3289 ret = i915_mutex_lock_interruptible(dev);
3290 if (ret)
3291 return ret;
3292
05394f39 3293 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3294 if (&obj->base == NULL) {
1d7cfea1
CW
3295 ret = -ENOENT;
3296 goto unlock;
3ef94daa 3297 }
3ef94daa 3298
05394f39 3299 if (obj->pin_count) {
1d7cfea1
CW
3300 ret = -EINVAL;
3301 goto out;
3ef94daa
CW
3302 }
3303
05394f39
CW
3304 if (obj->madv != __I915_MADV_PURGED)
3305 obj->madv = args->madv;
3ef94daa 3306
2d7ef395 3307 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3308 if (i915_gem_object_is_purgeable(obj) &&
3309 obj->gtt_space == NULL)
2d7ef395
CW
3310 i915_gem_object_truncate(obj);
3311
05394f39 3312 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3313
1d7cfea1 3314out:
05394f39 3315 drm_gem_object_unreference(&obj->base);
1d7cfea1 3316unlock:
3ef94daa 3317 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3318 return ret;
3ef94daa
CW
3319}
3320
05394f39
CW
3321struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3322 size_t size)
ac52bc56 3323{
73aa808f 3324 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3325 struct drm_i915_gem_object *obj;
5949eac4 3326 struct address_space *mapping;
bed1ea95 3327 u32 mask;
ac52bc56 3328
c397b908
DV
3329 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3330 if (obj == NULL)
3331 return NULL;
673a394b 3332
c397b908
DV
3333 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3334 kfree(obj);
3335 return NULL;
3336 }
673a394b 3337
bed1ea95
CW
3338 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3339 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3340 /* 965gm cannot relocate objects above 4GiB. */
3341 mask &= ~__GFP_HIGHMEM;
3342 mask |= __GFP_DMA32;
3343 }
3344
5949eac4 3345 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3346 mapping_set_gfp_mask(mapping, mask);
5949eac4 3347
73aa808f
CW
3348 i915_gem_info_add_obj(dev_priv, size);
3349
c397b908
DV
3350 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3351 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3352
3d29b842
ED
3353 if (HAS_LLC(dev)) {
3354 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3355 * cache) for about a 10% performance improvement
3356 * compared to uncached. Graphics requests other than
3357 * display scanout are coherent with the CPU in
3358 * accessing this cache. This means in this mode we
3359 * don't need to clflush on the CPU side, and on the
3360 * GPU side we only need to flush internal caches to
3361 * get data visible to the CPU.
3362 *
3363 * However, we maintain the display planes as UC, and so
3364 * need to rebind when first used as such.
3365 */
3366 obj->cache_level = I915_CACHE_LLC;
3367 } else
3368 obj->cache_level = I915_CACHE_NONE;
3369
62b8b215 3370 obj->base.driver_private = NULL;
c397b908 3371 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3372 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3373 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3374 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3375 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3376 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3377 /* Avoid an unnecessary call to unbind on the first bind. */
3378 obj->map_and_fenceable = true;
de151cf6 3379
05394f39 3380 return obj;
c397b908
DV
3381}
3382
3383int i915_gem_init_object(struct drm_gem_object *obj)
3384{
3385 BUG();
de151cf6 3386
673a394b
EA
3387 return 0;
3388}
3389
1488fc08 3390void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3391{
1488fc08 3392 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3393 struct drm_device *dev = obj->base.dev;
be72615b 3394 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3395
26e12f89
CW
3396 trace_i915_gem_object_destroy(obj);
3397
1286ff73
DV
3398 if (gem_obj->import_attach)
3399 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3400
1488fc08
CW
3401 if (obj->phys_obj)
3402 i915_gem_detach_phys_object(dev, obj);
3403
3404 obj->pin_count = 0;
3405 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3406 bool was_interruptible;
3407
3408 was_interruptible = dev_priv->mm.interruptible;
3409 dev_priv->mm.interruptible = false;
3410
3411 WARN_ON(i915_gem_object_unbind(obj));
3412
3413 dev_priv->mm.interruptible = was_interruptible;
3414 }
3415
05394f39 3416 if (obj->base.map_list.map)
b464e9a2 3417 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3418
05394f39
CW
3419 drm_gem_object_release(&obj->base);
3420 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3421
05394f39
CW
3422 kfree(obj->bit_17);
3423 kfree(obj);
673a394b
EA
3424}
3425
29105ccc
CW
3426int
3427i915_gem_idle(struct drm_device *dev)
3428{
3429 drm_i915_private_t *dev_priv = dev->dev_private;
3430 int ret;
28dfe52a 3431
29105ccc 3432 mutex_lock(&dev->struct_mutex);
1c5d22f7 3433
87acb0a5 3434 if (dev_priv->mm.suspended) {
29105ccc
CW
3435 mutex_unlock(&dev->struct_mutex);
3436 return 0;
28dfe52a
EA
3437 }
3438
b2da9fe5 3439 ret = i915_gpu_idle(dev);
6dbe2772
KP
3440 if (ret) {
3441 mutex_unlock(&dev->struct_mutex);
673a394b 3442 return ret;
6dbe2772 3443 }
b2da9fe5 3444 i915_gem_retire_requests(dev);
673a394b 3445
29105ccc 3446 /* Under UMS, be paranoid and evict. */
a39d7efc
CW
3447 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3448 i915_gem_evict_everything(dev, false);
29105ccc 3449
312817a3
CW
3450 i915_gem_reset_fences(dev);
3451
29105ccc
CW
3452 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3453 * We need to replace this with a semaphore, or something.
3454 * And not confound mm.suspended!
3455 */
3456 dev_priv->mm.suspended = 1;
bc0c7f14 3457 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3458
3459 i915_kernel_lost_context(dev);
6dbe2772 3460 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3461
6dbe2772
KP
3462 mutex_unlock(&dev->struct_mutex);
3463
29105ccc
CW
3464 /* Cancel the retire work handler, which should be idle now. */
3465 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3466
673a394b
EA
3467 return 0;
3468}
3469
b9524a1e
BW
3470void i915_gem_l3_remap(struct drm_device *dev)
3471{
3472 drm_i915_private_t *dev_priv = dev->dev_private;
3473 u32 misccpctl;
3474 int i;
3475
3476 if (!IS_IVYBRIDGE(dev))
3477 return;
3478
3479 if (!dev_priv->mm.l3_remap_info)
3480 return;
3481
3482 misccpctl = I915_READ(GEN7_MISCCPCTL);
3483 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3484 POSTING_READ(GEN7_MISCCPCTL);
3485
3486 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3487 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3488 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3489 DRM_DEBUG("0x%x was already programmed to %x\n",
3490 GEN7_L3LOG_BASE + i, remap);
3491 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3492 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3493 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3494 }
3495
3496 /* Make sure all the writes land before disabling dop clock gating */
3497 POSTING_READ(GEN7_L3LOG_BASE);
3498
3499 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3500}
3501
f691e2f4
DV
3502void i915_gem_init_swizzling(struct drm_device *dev)
3503{
3504 drm_i915_private_t *dev_priv = dev->dev_private;
3505
11782b02 3506 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3507 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3508 return;
3509
3510 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3511 DISP_TILE_SURFACE_SWIZZLING);
3512
11782b02
DV
3513 if (IS_GEN5(dev))
3514 return;
3515
f691e2f4
DV
3516 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3517 if (IS_GEN6(dev))
6b26c86d 3518 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3519 else
6b26c86d 3520 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3521}
e21af88d
DV
3522
3523void i915_gem_init_ppgtt(struct drm_device *dev)
3524{
3525 drm_i915_private_t *dev_priv = dev->dev_private;
3526 uint32_t pd_offset;
3527 struct intel_ring_buffer *ring;
55a254ac
DV
3528 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3529 uint32_t __iomem *pd_addr;
3530 uint32_t pd_entry;
e21af88d
DV
3531 int i;
3532
3533 if (!dev_priv->mm.aliasing_ppgtt)
3534 return;
3535
55a254ac
DV
3536
3537 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3538 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3539 dma_addr_t pt_addr;
3540
3541 if (dev_priv->mm.gtt->needs_dmar)
3542 pt_addr = ppgtt->pt_dma_addr[i];
3543 else
3544 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3545
3546 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3547 pd_entry |= GEN6_PDE_VALID;
3548
3549 writel(pd_entry, pd_addr + i);
3550 }
3551 readl(pd_addr);
3552
3553 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3554 pd_offset /= 64; /* in cachelines, */
3555 pd_offset <<= 16;
3556
3557 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3558 uint32_t ecochk, gab_ctl, ecobits;
3559
3560 ecobits = I915_READ(GAC_ECO_BITS);
3561 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3562
3563 gab_ctl = I915_READ(GAB_CTL);
3564 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3565
3566 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3567 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3568 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3569 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3570 } else if (INTEL_INFO(dev)->gen >= 7) {
3571 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3572 /* GFX_MODE is per-ring on gen7+ */
3573 }
3574
b4519513 3575 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3576 if (INTEL_INFO(dev)->gen >= 7)
3577 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3578 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3579
3580 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3581 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3582 }
3583}
3584
67b1b571
CW
3585static bool
3586intel_enable_blt(struct drm_device *dev)
3587{
3588 if (!HAS_BLT(dev))
3589 return false;
3590
3591 /* The blitter was dysfunctional on early prototypes */
3592 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3593 DRM_INFO("BLT not supported on this pre-production hardware;"
3594 " graphics performance will be degraded.\n");
3595 return false;
3596 }
3597
3598 return true;
3599}
3600
8187a2b7 3601int
f691e2f4 3602i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3603{
3604 drm_i915_private_t *dev_priv = dev->dev_private;
3605 int ret;
68f95ba9 3606
8ecd1a66
DV
3607 if (!intel_enable_gtt())
3608 return -EIO;
3609
b9524a1e
BW
3610 i915_gem_l3_remap(dev);
3611
f691e2f4
DV
3612 i915_gem_init_swizzling(dev);
3613
5c1143bb 3614 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3615 if (ret)
b6913e4b 3616 return ret;
68f95ba9
CW
3617
3618 if (HAS_BSD(dev)) {
5c1143bb 3619 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3620 if (ret)
3621 goto cleanup_render_ring;
d1b851fc 3622 }
68f95ba9 3623
67b1b571 3624 if (intel_enable_blt(dev)) {
549f7365
CW
3625 ret = intel_init_blt_ring_buffer(dev);
3626 if (ret)
3627 goto cleanup_bsd_ring;
3628 }
3629
6f392d54
CW
3630 dev_priv->next_seqno = 1;
3631
254f965c
BW
3632 /*
3633 * XXX: There was some w/a described somewhere suggesting loading
3634 * contexts before PPGTT.
3635 */
3636 i915_gem_context_init(dev);
e21af88d
DV
3637 i915_gem_init_ppgtt(dev);
3638
68f95ba9
CW
3639 return 0;
3640
549f7365 3641cleanup_bsd_ring:
1ec14ad3 3642 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3643cleanup_render_ring:
1ec14ad3 3644 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3645 return ret;
3646}
3647
1070a42b
CW
3648static bool
3649intel_enable_ppgtt(struct drm_device *dev)
3650{
3651 if (i915_enable_ppgtt >= 0)
3652 return i915_enable_ppgtt;
3653
3654#ifdef CONFIG_INTEL_IOMMU
3655 /* Disable ppgtt on SNB if VT-d is on. */
3656 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3657 return false;
3658#endif
3659
3660 return true;
3661}
3662
3663int i915_gem_init(struct drm_device *dev)
3664{
3665 struct drm_i915_private *dev_priv = dev->dev_private;
3666 unsigned long gtt_size, mappable_size;
3667 int ret;
3668
3669 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3670 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3671
3672 mutex_lock(&dev->struct_mutex);
3673 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3674 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3675 * aperture accordingly when using aliasing ppgtt. */
3676 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3677
3678 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3679
3680 ret = i915_gem_init_aliasing_ppgtt(dev);
3681 if (ret) {
3682 mutex_unlock(&dev->struct_mutex);
3683 return ret;
3684 }
3685 } else {
3686 /* Let GEM Manage all of the aperture.
3687 *
3688 * However, leave one page at the end still bound to the scratch
3689 * page. There are a number of places where the hardware
3690 * apparently prefetches past the end of the object, and we've
3691 * seen multiple hangs with the GPU head pointer stuck in a
3692 * batchbuffer bound at the last page of the aperture. One page
3693 * should be enough to keep any prefetching inside of the
3694 * aperture.
3695 */
3696 i915_gem_init_global_gtt(dev, 0, mappable_size,
3697 gtt_size);
3698 }
3699
3700 ret = i915_gem_init_hw(dev);
3701 mutex_unlock(&dev->struct_mutex);
3702 if (ret) {
3703 i915_gem_cleanup_aliasing_ppgtt(dev);
3704 return ret;
3705 }
3706
53ca26ca
DV
3707 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3708 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3709 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3710 return 0;
3711}
3712
8187a2b7
ZN
3713void
3714i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3715{
3716 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3717 struct intel_ring_buffer *ring;
1ec14ad3 3718 int i;
8187a2b7 3719
b4519513
CW
3720 for_each_ring(ring, dev_priv, i)
3721 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3722}
3723
673a394b
EA
3724int
3725i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3726 struct drm_file *file_priv)
3727{
3728 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3729 int ret;
673a394b 3730
79e53945
JB
3731 if (drm_core_check_feature(dev, DRIVER_MODESET))
3732 return 0;
3733
ba1234d1 3734 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3735 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3736 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3737 }
3738
673a394b 3739 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3740 dev_priv->mm.suspended = 0;
3741
f691e2f4 3742 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3743 if (ret != 0) {
3744 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3745 return ret;
d816f6ac 3746 }
9bb2d6f9 3747
69dc4987 3748 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 3749 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 3750 mutex_unlock(&dev->struct_mutex);
dbb19d30 3751
5f35308b
CW
3752 ret = drm_irq_install(dev);
3753 if (ret)
3754 goto cleanup_ringbuffer;
dbb19d30 3755
673a394b 3756 return 0;
5f35308b
CW
3757
3758cleanup_ringbuffer:
3759 mutex_lock(&dev->struct_mutex);
3760 i915_gem_cleanup_ringbuffer(dev);
3761 dev_priv->mm.suspended = 1;
3762 mutex_unlock(&dev->struct_mutex);
3763
3764 return ret;
673a394b
EA
3765}
3766
3767int
3768i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3769 struct drm_file *file_priv)
3770{
79e53945
JB
3771 if (drm_core_check_feature(dev, DRIVER_MODESET))
3772 return 0;
3773
dbb19d30 3774 drm_irq_uninstall(dev);
e6890f6f 3775 return i915_gem_idle(dev);
673a394b
EA
3776}
3777
3778void
3779i915_gem_lastclose(struct drm_device *dev)
3780{
3781 int ret;
673a394b 3782
e806b495
EA
3783 if (drm_core_check_feature(dev, DRIVER_MODESET))
3784 return;
3785
6dbe2772
KP
3786 ret = i915_gem_idle(dev);
3787 if (ret)
3788 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3789}
3790
64193406
CW
3791static void
3792init_ring_lists(struct intel_ring_buffer *ring)
3793{
3794 INIT_LIST_HEAD(&ring->active_list);
3795 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
3796}
3797
673a394b
EA
3798void
3799i915_gem_load(struct drm_device *dev)
3800{
b5aa8a0f 3801 int i;
673a394b
EA
3802 drm_i915_private_t *dev_priv = dev->dev_private;
3803
69dc4987 3804 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 3805 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 3806 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
93a37f20 3807 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3808 for (i = 0; i < I915_NUM_RINGS; i++)
3809 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3810 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3811 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3812 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3813 i915_gem_retire_work_handler);
30dbf0c0 3814 init_completion(&dev_priv->error_completion);
31169714 3815
94400120
DA
3816 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3817 if (IS_GEN3(dev)) {
50743298
DV
3818 I915_WRITE(MI_ARB_STATE,
3819 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
3820 }
3821
72bfa19c
CW
3822 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3823
de151cf6 3824 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3825 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3826 dev_priv->fence_reg_start = 3;
de151cf6 3827
a6c45cf0 3828 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3829 dev_priv->num_fence_regs = 16;
3830 else
3831 dev_priv->num_fence_regs = 8;
3832
b5aa8a0f 3833 /* Initialize fence registers to zero */
ada726c7 3834 i915_gem_reset_fences(dev);
10ed13e4 3835
673a394b 3836 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3837 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3838
ce453d81
CW
3839 dev_priv->mm.interruptible = true;
3840
17250b71
CW
3841 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3842 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3843 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3844}
71acb5eb
DA
3845
3846/*
3847 * Create a physically contiguous memory object for this object
3848 * e.g. for cursor + overlay regs
3849 */
995b6762
CW
3850static int i915_gem_init_phys_object(struct drm_device *dev,
3851 int id, int size, int align)
71acb5eb
DA
3852{
3853 drm_i915_private_t *dev_priv = dev->dev_private;
3854 struct drm_i915_gem_phys_object *phys_obj;
3855 int ret;
3856
3857 if (dev_priv->mm.phys_objs[id - 1] || !size)
3858 return 0;
3859
9a298b2a 3860 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3861 if (!phys_obj)
3862 return -ENOMEM;
3863
3864 phys_obj->id = id;
3865
6eeefaf3 3866 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3867 if (!phys_obj->handle) {
3868 ret = -ENOMEM;
3869 goto kfree_obj;
3870 }
3871#ifdef CONFIG_X86
3872 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3873#endif
3874
3875 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3876
3877 return 0;
3878kfree_obj:
9a298b2a 3879 kfree(phys_obj);
71acb5eb
DA
3880 return ret;
3881}
3882
995b6762 3883static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3884{
3885 drm_i915_private_t *dev_priv = dev->dev_private;
3886 struct drm_i915_gem_phys_object *phys_obj;
3887
3888 if (!dev_priv->mm.phys_objs[id - 1])
3889 return;
3890
3891 phys_obj = dev_priv->mm.phys_objs[id - 1];
3892 if (phys_obj->cur_obj) {
3893 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3894 }
3895
3896#ifdef CONFIG_X86
3897 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3898#endif
3899 drm_pci_free(dev, phys_obj->handle);
3900 kfree(phys_obj);
3901 dev_priv->mm.phys_objs[id - 1] = NULL;
3902}
3903
3904void i915_gem_free_all_phys_object(struct drm_device *dev)
3905{
3906 int i;
3907
260883c8 3908 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3909 i915_gem_free_phys_object(dev, i);
3910}
3911
3912void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3913 struct drm_i915_gem_object *obj)
71acb5eb 3914{
05394f39 3915 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3916 char *vaddr;
71acb5eb 3917 int i;
71acb5eb
DA
3918 int page_count;
3919
05394f39 3920 if (!obj->phys_obj)
71acb5eb 3921 return;
05394f39 3922 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3923
05394f39 3924 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3925 for (i = 0; i < page_count; i++) {
5949eac4 3926 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3927 if (!IS_ERR(page)) {
3928 char *dst = kmap_atomic(page);
3929 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3930 kunmap_atomic(dst);
3931
3932 drm_clflush_pages(&page, 1);
3933
3934 set_page_dirty(page);
3935 mark_page_accessed(page);
3936 page_cache_release(page);
3937 }
71acb5eb 3938 }
40ce6575 3939 intel_gtt_chipset_flush();
d78b47b9 3940
05394f39
CW
3941 obj->phys_obj->cur_obj = NULL;
3942 obj->phys_obj = NULL;
71acb5eb
DA
3943}
3944
3945int
3946i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3947 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3948 int id,
3949 int align)
71acb5eb 3950{
05394f39 3951 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3952 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3953 int ret = 0;
3954 int page_count;
3955 int i;
3956
3957 if (id > I915_MAX_PHYS_OBJECT)
3958 return -EINVAL;
3959
05394f39
CW
3960 if (obj->phys_obj) {
3961 if (obj->phys_obj->id == id)
71acb5eb
DA
3962 return 0;
3963 i915_gem_detach_phys_object(dev, obj);
3964 }
3965
71acb5eb
DA
3966 /* create a new object */
3967 if (!dev_priv->mm.phys_objs[id - 1]) {
3968 ret = i915_gem_init_phys_object(dev, id,
05394f39 3969 obj->base.size, align);
71acb5eb 3970 if (ret) {
05394f39
CW
3971 DRM_ERROR("failed to init phys object %d size: %zu\n",
3972 id, obj->base.size);
e5281ccd 3973 return ret;
71acb5eb
DA
3974 }
3975 }
3976
3977 /* bind to the object */
05394f39
CW
3978 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3979 obj->phys_obj->cur_obj = obj;
71acb5eb 3980
05394f39 3981 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3982
3983 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3984 struct page *page;
3985 char *dst, *src;
3986
5949eac4 3987 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3988 if (IS_ERR(page))
3989 return PTR_ERR(page);
71acb5eb 3990
ff75b9bc 3991 src = kmap_atomic(page);
05394f39 3992 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3993 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3994 kunmap_atomic(src);
71acb5eb 3995
e5281ccd
CW
3996 mark_page_accessed(page);
3997 page_cache_release(page);
3998 }
d78b47b9 3999
71acb5eb 4000 return 0;
71acb5eb
DA
4001}
4002
4003static int
05394f39
CW
4004i915_gem_phys_pwrite(struct drm_device *dev,
4005 struct drm_i915_gem_object *obj,
71acb5eb
DA
4006 struct drm_i915_gem_pwrite *args,
4007 struct drm_file *file_priv)
4008{
05394f39 4009 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4010 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4011
b47b30cc
CW
4012 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4013 unsigned long unwritten;
4014
4015 /* The physical object once assigned is fixed for the lifetime
4016 * of the obj, so we can safely drop the lock and continue
4017 * to access vaddr.
4018 */
4019 mutex_unlock(&dev->struct_mutex);
4020 unwritten = copy_from_user(vaddr, user_data, args->size);
4021 mutex_lock(&dev->struct_mutex);
4022 if (unwritten)
4023 return -EFAULT;
4024 }
71acb5eb 4025
40ce6575 4026 intel_gtt_chipset_flush();
71acb5eb
DA
4027 return 0;
4028}
b962442e 4029
f787a5f5 4030void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4031{
f787a5f5 4032 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4033
4034 /* Clean up our request list when the client is going away, so that
4035 * later retire_requests won't dereference our soon-to-be-gone
4036 * file_priv.
4037 */
1c25595f 4038 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4039 while (!list_empty(&file_priv->mm.request_list)) {
4040 struct drm_i915_gem_request *request;
4041
4042 request = list_first_entry(&file_priv->mm.request_list,
4043 struct drm_i915_gem_request,
4044 client_list);
4045 list_del(&request->client_list);
4046 request->file_priv = NULL;
4047 }
1c25595f 4048 spin_unlock(&file_priv->mm.lock);
b962442e 4049}
31169714 4050
1637ef41
CW
4051static int
4052i915_gpu_is_active(struct drm_device *dev)
4053{
4054 drm_i915_private_t *dev_priv = dev->dev_private;
65ce3027 4055 return !list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4056}
4057
31169714 4058static int
1495f230 4059i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4060{
17250b71
CW
4061 struct drm_i915_private *dev_priv =
4062 container_of(shrinker,
4063 struct drm_i915_private,
4064 mm.inactive_shrinker);
4065 struct drm_device *dev = dev_priv->dev;
4066 struct drm_i915_gem_object *obj, *next;
1495f230 4067 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4068 int cnt;
4069
4070 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4071 return 0;
31169714
CW
4072
4073 /* "fast-path" to count number of available objects */
4074 if (nr_to_scan == 0) {
17250b71
CW
4075 cnt = 0;
4076 list_for_each_entry(obj,
4077 &dev_priv->mm.inactive_list,
4078 mm_list)
4079 cnt++;
4080 mutex_unlock(&dev->struct_mutex);
4081 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4082 }
4083
1637ef41 4084rescan:
31169714 4085 /* first scan for clean buffers */
17250b71 4086 i915_gem_retire_requests(dev);
31169714 4087
17250b71
CW
4088 list_for_each_entry_safe(obj, next,
4089 &dev_priv->mm.inactive_list,
4090 mm_list) {
4091 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4092 if (i915_gem_object_unbind(obj) == 0 &&
4093 --nr_to_scan == 0)
17250b71 4094 break;
31169714 4095 }
31169714
CW
4096 }
4097
4098 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4099 cnt = 0;
4100 list_for_each_entry_safe(obj, next,
4101 &dev_priv->mm.inactive_list,
4102 mm_list) {
2021746e
CW
4103 if (nr_to_scan &&
4104 i915_gem_object_unbind(obj) == 0)
17250b71 4105 nr_to_scan--;
2021746e 4106 else
17250b71
CW
4107 cnt++;
4108 }
4109
4110 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4111 /*
4112 * We are desperate for pages, so as a last resort, wait
4113 * for the GPU to finish and discard whatever we can.
4114 * This has a dramatic impact to reduce the number of
4115 * OOM-killer events whilst running the GPU aggressively.
4116 */
b2da9fe5 4117 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4118 goto rescan;
4119 }
17250b71
CW
4120 mutex_unlock(&dev->struct_mutex);
4121 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4122}
This page took 0.890175 seconds and 5 git commands to generate.