drm/i915: Reduce hangcheck frequency
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
ba3d8d74 51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
52static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
53 unsigned alignment);
de151cf6 54static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
55static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
56 struct drm_i915_gem_pwrite *args,
57 struct drm_file *file_priv);
be72615b 58static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 59
31169714
CW
60static LIST_HEAD(shrink_list);
61static DEFINE_SPINLOCK(shrink_list_lock);
62
7d1c4804
CW
63static inline bool
64i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
65{
66 return obj_priv->gtt_space &&
67 !obj_priv->active &&
68 obj_priv->pin_count == 0;
69}
70
79e53945
JB
71int i915_gem_do_init(struct drm_device *dev, unsigned long start,
72 unsigned long end)
673a394b
EA
73{
74 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 75
79e53945
JB
76 if (start >= end ||
77 (start & (PAGE_SIZE - 1)) != 0 ||
78 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
79 return -EINVAL;
80 }
81
79e53945
JB
82 drm_mm_init(&dev_priv->mm.gtt_space, start,
83 end - start);
673a394b 84
79e53945
JB
85 dev->gtt_total = (uint32_t) (end - start);
86
87 return 0;
88}
673a394b 89
79e53945
JB
90int
91i915_gem_init_ioctl(struct drm_device *dev, void *data,
92 struct drm_file *file_priv)
93{
94 struct drm_i915_gem_init *args = data;
95 int ret;
96
97 mutex_lock(&dev->struct_mutex);
98 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
99 mutex_unlock(&dev->struct_mutex);
100
79e53945 101 return ret;
673a394b
EA
102}
103
5a125c3c
EA
104int
105i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
106 struct drm_file *file_priv)
107{
5a125c3c 108 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
109
110 if (!(dev->driver->driver_features & DRIVER_GEM))
111 return -ENODEV;
112
113 args->aper_size = dev->gtt_total;
2678d9d6
KP
114 args->aper_available_size = (args->aper_size -
115 atomic_read(&dev->pin_memory));
5a125c3c
EA
116
117 return 0;
118}
119
673a394b
EA
120
121/**
122 * Creates a new mm object and returns a handle to it.
123 */
124int
125i915_gem_create_ioctl(struct drm_device *dev, void *data,
126 struct drm_file *file_priv)
127{
128 struct drm_i915_gem_create *args = data;
129 struct drm_gem_object *obj;
a1a2d1d3
PP
130 int ret;
131 u32 handle;
673a394b
EA
132
133 args->size = roundup(args->size, PAGE_SIZE);
134
135 /* Allocate the new object */
ac52bc56 136 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
137 if (obj == NULL)
138 return -ENOMEM;
139
140 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
141 if (ret) {
142 drm_gem_object_unreference_unlocked(obj);
673a394b 143 return ret;
1dfd9754 144 }
673a394b 145
1dfd9754
CW
146 /* Sink the floating reference from kref_init(handlecount) */
147 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 148
1dfd9754 149 args->handle = handle;
673a394b
EA
150 return 0;
151}
152
eb01459f
EA
153static inline int
154fast_shmem_read(struct page **pages,
155 loff_t page_base, int page_offset,
156 char __user *data,
157 int length)
158{
159 char __iomem *vaddr;
2bc43b5c 160 int unwritten;
eb01459f
EA
161
162 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
163 if (vaddr == NULL)
164 return -ENOMEM;
2bc43b5c 165 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
166 kunmap_atomic(vaddr, KM_USER0);
167
2bc43b5c
FM
168 if (unwritten)
169 return -EFAULT;
170
171 return 0;
eb01459f
EA
172}
173
280b713b
EA
174static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
175{
176 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 177 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
178
179 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
180 obj_priv->tiling_mode != I915_TILING_NONE;
181}
182
99a03df5 183static inline void
40123c1f
EA
184slow_shmem_copy(struct page *dst_page,
185 int dst_offset,
186 struct page *src_page,
187 int src_offset,
188 int length)
189{
190 char *dst_vaddr, *src_vaddr;
191
99a03df5
CW
192 dst_vaddr = kmap(dst_page);
193 src_vaddr = kmap(src_page);
40123c1f
EA
194
195 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
196
99a03df5
CW
197 kunmap(src_page);
198 kunmap(dst_page);
40123c1f
EA
199}
200
99a03df5 201static inline void
280b713b
EA
202slow_shmem_bit17_copy(struct page *gpu_page,
203 int gpu_offset,
204 struct page *cpu_page,
205 int cpu_offset,
206 int length,
207 int is_read)
208{
209 char *gpu_vaddr, *cpu_vaddr;
210
211 /* Use the unswizzled path if this page isn't affected. */
212 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
213 if (is_read)
214 return slow_shmem_copy(cpu_page, cpu_offset,
215 gpu_page, gpu_offset, length);
216 else
217 return slow_shmem_copy(gpu_page, gpu_offset,
218 cpu_page, cpu_offset, length);
219 }
220
99a03df5
CW
221 gpu_vaddr = kmap(gpu_page);
222 cpu_vaddr = kmap(cpu_page);
280b713b
EA
223
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
226 */
227 while (length > 0) {
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232 if (is_read) {
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
235 this_length);
236 } else {
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
239 this_length);
240 }
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
244 }
245
99a03df5
CW
246 kunmap(cpu_page);
247 kunmap(gpu_page);
280b713b
EA
248}
249
eb01459f
EA
250/**
251 * This is the fast shmem pread path, which attempts to copy_from_user directly
252 * from the backing pages of the object to the user's address space. On a
253 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
254 */
255static int
256i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
257 struct drm_i915_gem_pread *args,
258 struct drm_file *file_priv)
259{
23010e43 260 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
261 ssize_t remain;
262 loff_t offset, page_base;
263 char __user *user_data;
264 int page_offset, page_length;
265 int ret;
266
267 user_data = (char __user *) (uintptr_t) args->data_ptr;
268 remain = args->size;
269
270 mutex_lock(&dev->struct_mutex);
271
4bdadb97 272 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
273 if (ret != 0)
274 goto fail_unlock;
275
276 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
277 args->size);
278 if (ret != 0)
279 goto fail_put_pages;
280
23010e43 281 obj_priv = to_intel_bo(obj);
eb01459f
EA
282 offset = args->offset;
283
284 while (remain > 0) {
285 /* Operation in this page
286 *
287 * page_base = page offset within aperture
288 * page_offset = offset within page
289 * page_length = bytes to copy for this page
290 */
291 page_base = (offset & ~(PAGE_SIZE-1));
292 page_offset = offset & (PAGE_SIZE-1);
293 page_length = remain;
294 if ((page_offset + remain) > PAGE_SIZE)
295 page_length = PAGE_SIZE - page_offset;
296
297 ret = fast_shmem_read(obj_priv->pages,
298 page_base, page_offset,
299 user_data, page_length);
300 if (ret)
301 goto fail_put_pages;
302
303 remain -= page_length;
304 user_data += page_length;
305 offset += page_length;
306 }
307
308fail_put_pages:
309 i915_gem_object_put_pages(obj);
310fail_unlock:
311 mutex_unlock(&dev->struct_mutex);
312
313 return ret;
314}
315
07f73f69
CW
316static int
317i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
318{
319 int ret;
320
4bdadb97 321 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
322
323 /* If we've insufficient memory to map in the pages, attempt
324 * to make some space by throwing out some old buffers.
325 */
326 if (ret == -ENOMEM) {
327 struct drm_device *dev = obj->dev;
07f73f69 328
0108a3ed
DV
329 ret = i915_gem_evict_something(dev, obj->size,
330 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
331 if (ret)
332 return ret;
333
4bdadb97 334 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
335 }
336
337 return ret;
338}
339
eb01459f
EA
340/**
341 * This is the fallback shmem pread path, which allocates temporary storage
342 * in kernel space to copy_to_user into outside of the struct_mutex, so we
343 * can copy out of the object's backing pages while holding the struct mutex
344 * and not take page faults.
345 */
346static int
347i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
348 struct drm_i915_gem_pread *args,
349 struct drm_file *file_priv)
350{
23010e43 351 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
352 struct mm_struct *mm = current->mm;
353 struct page **user_pages;
354 ssize_t remain;
355 loff_t offset, pinned_pages, i;
356 loff_t first_data_page, last_data_page, num_pages;
357 int shmem_page_index, shmem_page_offset;
358 int data_page_index, data_page_offset;
359 int page_length;
360 int ret;
361 uint64_t data_ptr = args->data_ptr;
280b713b 362 int do_bit17_swizzling;
eb01459f
EA
363
364 remain = args->size;
365
366 /* Pin the user pages containing the data. We can't fault while
367 * holding the struct mutex, yet we want to hold it while
368 * dereferencing the user data.
369 */
370 first_data_page = data_ptr / PAGE_SIZE;
371 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
372 num_pages = last_data_page - first_data_page + 1;
373
8e7d2b2c 374 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
375 if (user_pages == NULL)
376 return -ENOMEM;
377
378 down_read(&mm->mmap_sem);
379 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 380 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
381 up_read(&mm->mmap_sem);
382 if (pinned_pages < num_pages) {
383 ret = -EFAULT;
384 goto fail_put_user_pages;
385 }
386
280b713b
EA
387 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
388
eb01459f
EA
389 mutex_lock(&dev->struct_mutex);
390
07f73f69
CW
391 ret = i915_gem_object_get_pages_or_evict(obj);
392 if (ret)
eb01459f
EA
393 goto fail_unlock;
394
395 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
396 args->size);
397 if (ret != 0)
398 goto fail_put_pages;
399
23010e43 400 obj_priv = to_intel_bo(obj);
eb01459f
EA
401 offset = args->offset;
402
403 while (remain > 0) {
404 /* Operation in this page
405 *
406 * shmem_page_index = page number within shmem file
407 * shmem_page_offset = offset within page in shmem file
408 * data_page_index = page number in get_user_pages return
409 * data_page_offset = offset with data_page_index page.
410 * page_length = bytes to copy for this page
411 */
412 shmem_page_index = offset / PAGE_SIZE;
413 shmem_page_offset = offset & ~PAGE_MASK;
414 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
415 data_page_offset = data_ptr & ~PAGE_MASK;
416
417 page_length = remain;
418 if ((shmem_page_offset + page_length) > PAGE_SIZE)
419 page_length = PAGE_SIZE - shmem_page_offset;
420 if ((data_page_offset + page_length) > PAGE_SIZE)
421 page_length = PAGE_SIZE - data_page_offset;
422
280b713b 423 if (do_bit17_swizzling) {
99a03df5 424 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 425 shmem_page_offset,
99a03df5
CW
426 user_pages[data_page_index],
427 data_page_offset,
428 page_length,
429 1);
430 } else {
431 slow_shmem_copy(user_pages[data_page_index],
432 data_page_offset,
433 obj_priv->pages[shmem_page_index],
434 shmem_page_offset,
435 page_length);
280b713b 436 }
eb01459f
EA
437
438 remain -= page_length;
439 data_ptr += page_length;
440 offset += page_length;
441 }
442
443fail_put_pages:
444 i915_gem_object_put_pages(obj);
445fail_unlock:
446 mutex_unlock(&dev->struct_mutex);
447fail_put_user_pages:
448 for (i = 0; i < pinned_pages; i++) {
449 SetPageDirty(user_pages[i]);
450 page_cache_release(user_pages[i]);
451 }
8e7d2b2c 452 drm_free_large(user_pages);
eb01459f
EA
453
454 return ret;
455}
456
673a394b
EA
457/**
458 * Reads data from the object referenced by handle.
459 *
460 * On error, the contents of *data are undefined.
461 */
462int
463i915_gem_pread_ioctl(struct drm_device *dev, void *data,
464 struct drm_file *file_priv)
465{
466 struct drm_i915_gem_pread *args = data;
467 struct drm_gem_object *obj;
468 struct drm_i915_gem_object *obj_priv;
673a394b
EA
469 int ret;
470
471 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
472 if (obj == NULL)
bf79cb91 473 return -ENOENT;
23010e43 474 obj_priv = to_intel_bo(obj);
673a394b
EA
475
476 /* Bounds check source.
477 *
478 * XXX: This could use review for overflow issues...
479 */
480 if (args->offset > obj->size || args->size > obj->size ||
481 args->offset + args->size > obj->size) {
bc9025bd 482 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
483 return -EINVAL;
484 }
485
280b713b 486 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 487 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
488 } else {
489 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
490 if (ret != 0)
491 ret = i915_gem_shmem_pread_slow(dev, obj, args,
492 file_priv);
493 }
673a394b 494
bc9025bd 495 drm_gem_object_unreference_unlocked(obj);
673a394b 496
eb01459f 497 return ret;
673a394b
EA
498}
499
0839ccb8
KP
500/* This is the fast write path which cannot handle
501 * page faults in the source data
9b7530cc 502 */
0839ccb8
KP
503
504static inline int
505fast_user_write(struct io_mapping *mapping,
506 loff_t page_base, int page_offset,
507 char __user *user_data,
508 int length)
9b7530cc 509{
9b7530cc 510 char *vaddr_atomic;
0839ccb8 511 unsigned long unwritten;
9b7530cc 512
fca3ec01 513 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
514 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
515 user_data, length);
fca3ec01 516 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
517 if (unwritten)
518 return -EFAULT;
519 return 0;
520}
521
522/* Here's the write path which can sleep for
523 * page faults
524 */
525
ab34c226 526static inline void
3de09aa3
EA
527slow_kernel_write(struct io_mapping *mapping,
528 loff_t gtt_base, int gtt_offset,
529 struct page *user_page, int user_offset,
530 int length)
0839ccb8 531{
ab34c226
CW
532 char __iomem *dst_vaddr;
533 char *src_vaddr;
0839ccb8 534
ab34c226
CW
535 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
536 src_vaddr = kmap(user_page);
537
538 memcpy_toio(dst_vaddr + gtt_offset,
539 src_vaddr + user_offset,
540 length);
541
542 kunmap(user_page);
543 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
544}
545
40123c1f
EA
546static inline int
547fast_shmem_write(struct page **pages,
548 loff_t page_base, int page_offset,
549 char __user *data,
550 int length)
551{
552 char __iomem *vaddr;
d0088775 553 unsigned long unwritten;
40123c1f
EA
554
555 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
556 if (vaddr == NULL)
557 return -ENOMEM;
d0088775 558 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
559 kunmap_atomic(vaddr, KM_USER0);
560
d0088775
DA
561 if (unwritten)
562 return -EFAULT;
40123c1f
EA
563 return 0;
564}
565
3de09aa3
EA
566/**
567 * This is the fast pwrite path, where we copy the data directly from the
568 * user into the GTT, uncached.
569 */
673a394b 570static int
3de09aa3
EA
571i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
572 struct drm_i915_gem_pwrite *args,
573 struct drm_file *file_priv)
673a394b 574{
23010e43 575 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 576 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 577 ssize_t remain;
0839ccb8 578 loff_t offset, page_base;
673a394b 579 char __user *user_data;
0839ccb8
KP
580 int page_offset, page_length;
581 int ret;
673a394b
EA
582
583 user_data = (char __user *) (uintptr_t) args->data_ptr;
584 remain = args->size;
585 if (!access_ok(VERIFY_READ, user_data, remain))
586 return -EFAULT;
587
588
589 mutex_lock(&dev->struct_mutex);
590 ret = i915_gem_object_pin(obj, 0);
591 if (ret) {
592 mutex_unlock(&dev->struct_mutex);
593 return ret;
594 }
2ef7eeaa 595 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
596 if (ret)
597 goto fail;
598
23010e43 599 obj_priv = to_intel_bo(obj);
673a394b 600 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
601
602 while (remain > 0) {
603 /* Operation in this page
604 *
0839ccb8
KP
605 * page_base = page offset within aperture
606 * page_offset = offset within page
607 * page_length = bytes to copy for this page
673a394b 608 */
0839ccb8
KP
609 page_base = (offset & ~(PAGE_SIZE-1));
610 page_offset = offset & (PAGE_SIZE-1);
611 page_length = remain;
612 if ((page_offset + remain) > PAGE_SIZE)
613 page_length = PAGE_SIZE - page_offset;
614
615 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
616 page_offset, user_data, page_length);
617
618 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
619 * source page isn't available. Return the error and we'll
620 * retry in the slow path.
0839ccb8 621 */
3de09aa3
EA
622 if (ret)
623 goto fail;
673a394b 624
0839ccb8
KP
625 remain -= page_length;
626 user_data += page_length;
627 offset += page_length;
673a394b 628 }
673a394b
EA
629
630fail:
631 i915_gem_object_unpin(obj);
632 mutex_unlock(&dev->struct_mutex);
633
634 return ret;
635}
636
3de09aa3
EA
637/**
638 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
639 * the memory and maps it using kmap_atomic for copying.
640 *
641 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
642 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
643 */
3043c60c 644static int
3de09aa3
EA
645i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
646 struct drm_i915_gem_pwrite *args,
647 struct drm_file *file_priv)
673a394b 648{
23010e43 649 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
650 drm_i915_private_t *dev_priv = dev->dev_private;
651 ssize_t remain;
652 loff_t gtt_page_base, offset;
653 loff_t first_data_page, last_data_page, num_pages;
654 loff_t pinned_pages, i;
655 struct page **user_pages;
656 struct mm_struct *mm = current->mm;
657 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 658 int ret;
3de09aa3
EA
659 uint64_t data_ptr = args->data_ptr;
660
661 remain = args->size;
662
663 /* Pin the user pages containing the data. We can't fault while
664 * holding the struct mutex, and all of the pwrite implementations
665 * want to hold it while dereferencing the user data.
666 */
667 first_data_page = data_ptr / PAGE_SIZE;
668 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
669 num_pages = last_data_page - first_data_page + 1;
670
8e7d2b2c 671 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
672 if (user_pages == NULL)
673 return -ENOMEM;
674
675 down_read(&mm->mmap_sem);
676 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
677 num_pages, 0, 0, user_pages, NULL);
678 up_read(&mm->mmap_sem);
679 if (pinned_pages < num_pages) {
680 ret = -EFAULT;
681 goto out_unpin_pages;
682 }
673a394b
EA
683
684 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
685 ret = i915_gem_object_pin(obj, 0);
686 if (ret)
687 goto out_unlock;
688
689 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
690 if (ret)
691 goto out_unpin_object;
692
23010e43 693 obj_priv = to_intel_bo(obj);
3de09aa3
EA
694 offset = obj_priv->gtt_offset + args->offset;
695
696 while (remain > 0) {
697 /* Operation in this page
698 *
699 * gtt_page_base = page offset within aperture
700 * gtt_page_offset = offset within page in aperture
701 * data_page_index = page number in get_user_pages return
702 * data_page_offset = offset with data_page_index page.
703 * page_length = bytes to copy for this page
704 */
705 gtt_page_base = offset & PAGE_MASK;
706 gtt_page_offset = offset & ~PAGE_MASK;
707 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
708 data_page_offset = data_ptr & ~PAGE_MASK;
709
710 page_length = remain;
711 if ((gtt_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - gtt_page_offset;
713 if ((data_page_offset + page_length) > PAGE_SIZE)
714 page_length = PAGE_SIZE - data_page_offset;
715
ab34c226
CW
716 slow_kernel_write(dev_priv->mm.gtt_mapping,
717 gtt_page_base, gtt_page_offset,
718 user_pages[data_page_index],
719 data_page_offset,
720 page_length);
3de09aa3
EA
721
722 remain -= page_length;
723 offset += page_length;
724 data_ptr += page_length;
725 }
726
727out_unpin_object:
728 i915_gem_object_unpin(obj);
729out_unlock:
730 mutex_unlock(&dev->struct_mutex);
731out_unpin_pages:
732 for (i = 0; i < pinned_pages; i++)
733 page_cache_release(user_pages[i]);
8e7d2b2c 734 drm_free_large(user_pages);
3de09aa3
EA
735
736 return ret;
737}
738
40123c1f
EA
739/**
740 * This is the fast shmem pwrite path, which attempts to directly
741 * copy_from_user into the kmapped pages backing the object.
742 */
3043c60c 743static int
40123c1f
EA
744i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
745 struct drm_i915_gem_pwrite *args,
746 struct drm_file *file_priv)
673a394b 747{
23010e43 748 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
749 ssize_t remain;
750 loff_t offset, page_base;
751 char __user *user_data;
752 int page_offset, page_length;
673a394b 753 int ret;
40123c1f
EA
754
755 user_data = (char __user *) (uintptr_t) args->data_ptr;
756 remain = args->size;
673a394b
EA
757
758 mutex_lock(&dev->struct_mutex);
759
4bdadb97 760 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
761 if (ret != 0)
762 goto fail_unlock;
673a394b 763
e47c68e9 764 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
765 if (ret != 0)
766 goto fail_put_pages;
767
23010e43 768 obj_priv = to_intel_bo(obj);
40123c1f
EA
769 offset = args->offset;
770 obj_priv->dirty = 1;
771
772 while (remain > 0) {
773 /* Operation in this page
774 *
775 * page_base = page offset within aperture
776 * page_offset = offset within page
777 * page_length = bytes to copy for this page
778 */
779 page_base = (offset & ~(PAGE_SIZE-1));
780 page_offset = offset & (PAGE_SIZE-1);
781 page_length = remain;
782 if ((page_offset + remain) > PAGE_SIZE)
783 page_length = PAGE_SIZE - page_offset;
784
785 ret = fast_shmem_write(obj_priv->pages,
786 page_base, page_offset,
787 user_data, page_length);
788 if (ret)
789 goto fail_put_pages;
790
791 remain -= page_length;
792 user_data += page_length;
793 offset += page_length;
794 }
795
796fail_put_pages:
797 i915_gem_object_put_pages(obj);
798fail_unlock:
799 mutex_unlock(&dev->struct_mutex);
800
801 return ret;
802}
803
804/**
805 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
806 * the memory and maps it using kmap_atomic for copying.
807 *
808 * This avoids taking mmap_sem for faulting on the user's address while the
809 * struct_mutex is held.
810 */
811static int
812i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
813 struct drm_i915_gem_pwrite *args,
814 struct drm_file *file_priv)
815{
23010e43 816 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
817 struct mm_struct *mm = current->mm;
818 struct page **user_pages;
819 ssize_t remain;
820 loff_t offset, pinned_pages, i;
821 loff_t first_data_page, last_data_page, num_pages;
822 int shmem_page_index, shmem_page_offset;
823 int data_page_index, data_page_offset;
824 int page_length;
825 int ret;
826 uint64_t data_ptr = args->data_ptr;
280b713b 827 int do_bit17_swizzling;
40123c1f
EA
828
829 remain = args->size;
830
831 /* Pin the user pages containing the data. We can't fault while
832 * holding the struct mutex, and all of the pwrite implementations
833 * want to hold it while dereferencing the user data.
834 */
835 first_data_page = data_ptr / PAGE_SIZE;
836 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
837 num_pages = last_data_page - first_data_page + 1;
838
8e7d2b2c 839 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
840 if (user_pages == NULL)
841 return -ENOMEM;
842
843 down_read(&mm->mmap_sem);
844 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
845 num_pages, 0, 0, user_pages, NULL);
846 up_read(&mm->mmap_sem);
847 if (pinned_pages < num_pages) {
848 ret = -EFAULT;
849 goto fail_put_user_pages;
673a394b
EA
850 }
851
280b713b
EA
852 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
853
40123c1f
EA
854 mutex_lock(&dev->struct_mutex);
855
07f73f69
CW
856 ret = i915_gem_object_get_pages_or_evict(obj);
857 if (ret)
40123c1f
EA
858 goto fail_unlock;
859
860 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
861 if (ret != 0)
862 goto fail_put_pages;
863
23010e43 864 obj_priv = to_intel_bo(obj);
673a394b 865 offset = args->offset;
40123c1f 866 obj_priv->dirty = 1;
673a394b 867
40123c1f
EA
868 while (remain > 0) {
869 /* Operation in this page
870 *
871 * shmem_page_index = page number within shmem file
872 * shmem_page_offset = offset within page in shmem file
873 * data_page_index = page number in get_user_pages return
874 * data_page_offset = offset with data_page_index page.
875 * page_length = bytes to copy for this page
876 */
877 shmem_page_index = offset / PAGE_SIZE;
878 shmem_page_offset = offset & ~PAGE_MASK;
879 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
880 data_page_offset = data_ptr & ~PAGE_MASK;
881
882 page_length = remain;
883 if ((shmem_page_offset + page_length) > PAGE_SIZE)
884 page_length = PAGE_SIZE - shmem_page_offset;
885 if ((data_page_offset + page_length) > PAGE_SIZE)
886 page_length = PAGE_SIZE - data_page_offset;
887
280b713b 888 if (do_bit17_swizzling) {
99a03df5 889 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
890 shmem_page_offset,
891 user_pages[data_page_index],
892 data_page_offset,
99a03df5
CW
893 page_length,
894 0);
895 } else {
896 slow_shmem_copy(obj_priv->pages[shmem_page_index],
897 shmem_page_offset,
898 user_pages[data_page_index],
899 data_page_offset,
900 page_length);
280b713b 901 }
40123c1f
EA
902
903 remain -= page_length;
904 data_ptr += page_length;
905 offset += page_length;
673a394b
EA
906 }
907
40123c1f
EA
908fail_put_pages:
909 i915_gem_object_put_pages(obj);
910fail_unlock:
673a394b 911 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
912fail_put_user_pages:
913 for (i = 0; i < pinned_pages; i++)
914 page_cache_release(user_pages[i]);
8e7d2b2c 915 drm_free_large(user_pages);
673a394b 916
40123c1f 917 return ret;
673a394b
EA
918}
919
920/**
921 * Writes data to the object referenced by handle.
922 *
923 * On error, the contents of the buffer that were to be modified are undefined.
924 */
925int
926i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
927 struct drm_file *file_priv)
928{
929 struct drm_i915_gem_pwrite *args = data;
930 struct drm_gem_object *obj;
931 struct drm_i915_gem_object *obj_priv;
932 int ret = 0;
933
934 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
935 if (obj == NULL)
bf79cb91 936 return -ENOENT;
23010e43 937 obj_priv = to_intel_bo(obj);
673a394b
EA
938
939 /* Bounds check destination.
940 *
941 * XXX: This could use review for overflow issues...
942 */
943 if (args->offset > obj->size || args->size > obj->size ||
944 args->offset + args->size > obj->size) {
bc9025bd 945 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
946 return -EINVAL;
947 }
948
949 /* We can only do the GTT pwrite on untiled buffers, as otherwise
950 * it would end up going through the fenced access, and we'll get
951 * different detiling behavior between reading and writing.
952 * pread/pwrite currently are reading and writing from the CPU
953 * perspective, requiring manual detiling by the client.
954 */
71acb5eb
DA
955 if (obj_priv->phys_obj)
956 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
957 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
958 dev->gtt_total != 0 &&
959 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
960 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
961 if (ret == -EFAULT) {
962 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
963 file_priv);
964 }
280b713b
EA
965 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
966 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
967 } else {
968 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
969 if (ret == -EFAULT) {
970 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
971 file_priv);
972 }
973 }
673a394b
EA
974
975#if WATCH_PWRITE
976 if (ret)
977 DRM_INFO("pwrite failed %d\n", ret);
978#endif
979
bc9025bd 980 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
981
982 return ret;
983}
984
985/**
2ef7eeaa
EA
986 * Called when user space prepares to use an object with the CPU, either
987 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
988 */
989int
990i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
991 struct drm_file *file_priv)
992{
a09ba7fa 993 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
994 struct drm_i915_gem_set_domain *args = data;
995 struct drm_gem_object *obj;
652c393a 996 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
997 uint32_t read_domains = args->read_domains;
998 uint32_t write_domain = args->write_domain;
673a394b
EA
999 int ret;
1000
1001 if (!(dev->driver->driver_features & DRIVER_GEM))
1002 return -ENODEV;
1003
2ef7eeaa 1004 /* Only handle setting domains to types used by the CPU. */
21d509e3 1005 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1006 return -EINVAL;
1007
21d509e3 1008 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1009 return -EINVAL;
1010
1011 /* Having something in the write domain implies it's in the read
1012 * domain, and only that read domain. Enforce that in the request.
1013 */
1014 if (write_domain != 0 && read_domains != write_domain)
1015 return -EINVAL;
1016
673a394b
EA
1017 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1018 if (obj == NULL)
bf79cb91 1019 return -ENOENT;
23010e43 1020 obj_priv = to_intel_bo(obj);
673a394b
EA
1021
1022 mutex_lock(&dev->struct_mutex);
652c393a
JB
1023
1024 intel_mark_busy(dev, obj);
1025
673a394b 1026#if WATCH_BUF
cfd43c02 1027 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1028 obj, obj->size, read_domains, write_domain);
673a394b 1029#endif
2ef7eeaa
EA
1030 if (read_domains & I915_GEM_DOMAIN_GTT) {
1031 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1032
a09ba7fa
EA
1033 /* Update the LRU on the fence for the CPU access that's
1034 * about to occur.
1035 */
1036 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1037 struct drm_i915_fence_reg *reg =
1038 &dev_priv->fence_regs[obj_priv->fence_reg];
1039 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1040 &dev_priv->mm.fence_list);
1041 }
1042
02354392
EA
1043 /* Silently promote "you're not bound, there was nothing to do"
1044 * to success, since the client was just asking us to
1045 * make sure everything was done.
1046 */
1047 if (ret == -EINVAL)
1048 ret = 0;
2ef7eeaa 1049 } else {
e47c68e9 1050 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1051 }
1052
7d1c4804
CW
1053
1054 /* Maintain LRU order of "inactive" objects */
1055 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1056 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1057
673a394b
EA
1058 drm_gem_object_unreference(obj);
1059 mutex_unlock(&dev->struct_mutex);
1060 return ret;
1061}
1062
1063/**
1064 * Called when user space has done writes to this buffer
1065 */
1066int
1067i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1068 struct drm_file *file_priv)
1069{
1070 struct drm_i915_gem_sw_finish *args = data;
1071 struct drm_gem_object *obj;
1072 struct drm_i915_gem_object *obj_priv;
1073 int ret = 0;
1074
1075 if (!(dev->driver->driver_features & DRIVER_GEM))
1076 return -ENODEV;
1077
1078 mutex_lock(&dev->struct_mutex);
1079 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1080 if (obj == NULL) {
1081 mutex_unlock(&dev->struct_mutex);
bf79cb91 1082 return -ENOENT;
673a394b
EA
1083 }
1084
1085#if WATCH_BUF
cfd43c02 1086 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1087 __func__, args->handle, obj, obj->size);
1088#endif
23010e43 1089 obj_priv = to_intel_bo(obj);
673a394b
EA
1090
1091 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1092 if (obj_priv->pin_count)
1093 i915_gem_object_flush_cpu_write_domain(obj);
1094
673a394b
EA
1095 drm_gem_object_unreference(obj);
1096 mutex_unlock(&dev->struct_mutex);
1097 return ret;
1098}
1099
1100/**
1101 * Maps the contents of an object, returning the address it is mapped
1102 * into.
1103 *
1104 * While the mapping holds a reference on the contents of the object, it doesn't
1105 * imply a ref on the object itself.
1106 */
1107int
1108i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1109 struct drm_file *file_priv)
1110{
1111 struct drm_i915_gem_mmap *args = data;
1112 struct drm_gem_object *obj;
1113 loff_t offset;
1114 unsigned long addr;
1115
1116 if (!(dev->driver->driver_features & DRIVER_GEM))
1117 return -ENODEV;
1118
1119 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1120 if (obj == NULL)
bf79cb91 1121 return -ENOENT;
673a394b
EA
1122
1123 offset = args->offset;
1124
1125 down_write(&current->mm->mmap_sem);
1126 addr = do_mmap(obj->filp, 0, args->size,
1127 PROT_READ | PROT_WRITE, MAP_SHARED,
1128 args->offset);
1129 up_write(&current->mm->mmap_sem);
bc9025bd 1130 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1131 if (IS_ERR((void *)addr))
1132 return addr;
1133
1134 args->addr_ptr = (uint64_t) addr;
1135
1136 return 0;
1137}
1138
de151cf6
JB
1139/**
1140 * i915_gem_fault - fault a page into the GTT
1141 * vma: VMA in question
1142 * vmf: fault info
1143 *
1144 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1145 * from userspace. The fault handler takes care of binding the object to
1146 * the GTT (if needed), allocating and programming a fence register (again,
1147 * only if needed based on whether the old reg is still valid or the object
1148 * is tiled) and inserting a new PTE into the faulting process.
1149 *
1150 * Note that the faulting process may involve evicting existing objects
1151 * from the GTT and/or fence registers to make room. So performance may
1152 * suffer if the GTT working set is large or there are few fence registers
1153 * left.
1154 */
1155int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1156{
1157 struct drm_gem_object *obj = vma->vm_private_data;
1158 struct drm_device *dev = obj->dev;
7d1c4804 1159 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1160 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1161 pgoff_t page_offset;
1162 unsigned long pfn;
1163 int ret = 0;
0f973f27 1164 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1165
1166 /* We don't use vmf->pgoff since that has the fake offset */
1167 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1168 PAGE_SHIFT;
1169
1170 /* Now bind it into the GTT if needed */
1171 mutex_lock(&dev->struct_mutex);
1172 if (!obj_priv->gtt_space) {
e67b8ce1 1173 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1174 if (ret)
1175 goto unlock;
07f4f3e8 1176
07f4f3e8 1177 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1178 if (ret)
1179 goto unlock;
de151cf6
JB
1180 }
1181
1182 /* Need a new fence register? */
a09ba7fa 1183 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1184 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1185 if (ret)
1186 goto unlock;
d9ddcb96 1187 }
de151cf6 1188
7d1c4804
CW
1189 if (i915_gem_object_is_inactive(obj_priv))
1190 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1191
de151cf6
JB
1192 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1193 page_offset;
1194
1195 /* Finally, remap it using the new GTT offset */
1196 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1197unlock:
de151cf6
JB
1198 mutex_unlock(&dev->struct_mutex);
1199
1200 switch (ret) {
c715089f
CW
1201 case 0:
1202 case -ERESTARTSYS:
1203 return VM_FAULT_NOPAGE;
de151cf6
JB
1204 case -ENOMEM:
1205 case -EAGAIN:
1206 return VM_FAULT_OOM;
de151cf6 1207 default:
c715089f 1208 return VM_FAULT_SIGBUS;
de151cf6
JB
1209 }
1210}
1211
1212/**
1213 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1214 * @obj: obj in question
1215 *
1216 * GEM memory mapping works by handing back to userspace a fake mmap offset
1217 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1218 * up the object based on the offset and sets up the various memory mapping
1219 * structures.
1220 *
1221 * This routine allocates and attaches a fake offset for @obj.
1222 */
1223static int
1224i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1225{
1226 struct drm_device *dev = obj->dev;
1227 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1229 struct drm_map_list *list;
f77d390c 1230 struct drm_local_map *map;
de151cf6
JB
1231 int ret = 0;
1232
1233 /* Set the object up for mmap'ing */
1234 list = &obj->map_list;
9a298b2a 1235 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1236 if (!list->map)
1237 return -ENOMEM;
1238
1239 map = list->map;
1240 map->type = _DRM_GEM;
1241 map->size = obj->size;
1242 map->handle = obj;
1243
1244 /* Get a DRM GEM mmap offset allocated... */
1245 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1246 obj->size / PAGE_SIZE, 0, 0);
1247 if (!list->file_offset_node) {
1248 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1249 ret = -ENOMEM;
1250 goto out_free_list;
1251 }
1252
1253 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1254 obj->size / PAGE_SIZE, 0);
1255 if (!list->file_offset_node) {
1256 ret = -ENOMEM;
1257 goto out_free_list;
1258 }
1259
1260 list->hash.key = list->file_offset_node->start;
1261 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1262 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1263 ret = -ENOMEM;
de151cf6
JB
1264 goto out_free_mm;
1265 }
1266
1267 /* By now we should be all set, any drm_mmap request on the offset
1268 * below will get to our mmap & fault handler */
1269 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1270
1271 return 0;
1272
1273out_free_mm:
1274 drm_mm_put_block(list->file_offset_node);
1275out_free_list:
9a298b2a 1276 kfree(list->map);
de151cf6
JB
1277
1278 return ret;
1279}
1280
901782b2
CW
1281/**
1282 * i915_gem_release_mmap - remove physical page mappings
1283 * @obj: obj in question
1284 *
af901ca1 1285 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1286 * relinquish ownership of the pages back to the system.
1287 *
1288 * It is vital that we remove the page mapping if we have mapped a tiled
1289 * object through the GTT and then lose the fence register due to
1290 * resource pressure. Similarly if the object has been moved out of the
1291 * aperture, than pages mapped into userspace must be revoked. Removing the
1292 * mapping will then trigger a page fault on the next user access, allowing
1293 * fixup by i915_gem_fault().
1294 */
d05ca301 1295void
901782b2
CW
1296i915_gem_release_mmap(struct drm_gem_object *obj)
1297{
1298 struct drm_device *dev = obj->dev;
23010e43 1299 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1300
1301 if (dev->dev_mapping)
1302 unmap_mapping_range(dev->dev_mapping,
1303 obj_priv->mmap_offset, obj->size, 1);
1304}
1305
ab00b3e5
JB
1306static void
1307i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1308{
1309 struct drm_device *dev = obj->dev;
23010e43 1310 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_map_list *list;
1313
1314 list = &obj->map_list;
1315 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1316
1317 if (list->file_offset_node) {
1318 drm_mm_put_block(list->file_offset_node);
1319 list->file_offset_node = NULL;
1320 }
1321
1322 if (list->map) {
9a298b2a 1323 kfree(list->map);
ab00b3e5
JB
1324 list->map = NULL;
1325 }
1326
1327 obj_priv->mmap_offset = 0;
1328}
1329
de151cf6
JB
1330/**
1331 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1332 * @obj: object to check
1333 *
1334 * Return the required GTT alignment for an object, taking into account
1335 * potential fence register mapping if needed.
1336 */
1337static uint32_t
1338i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1339{
1340 struct drm_device *dev = obj->dev;
23010e43 1341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1342 int start, i;
1343
1344 /*
1345 * Minimum alignment is 4k (GTT page size), but might be greater
1346 * if a fence register is needed for the object.
1347 */
1348 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1349 return 4096;
1350
1351 /*
1352 * Previous chips need to be aligned to the size of the smallest
1353 * fence register that can contain the object.
1354 */
1355 if (IS_I9XX(dev))
1356 start = 1024*1024;
1357 else
1358 start = 512*1024;
1359
1360 for (i = start; i < obj->size; i <<= 1)
1361 ;
1362
1363 return i;
1364}
1365
1366/**
1367 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1368 * @dev: DRM device
1369 * @data: GTT mapping ioctl data
1370 * @file_priv: GEM object info
1371 *
1372 * Simply returns the fake offset to userspace so it can mmap it.
1373 * The mmap call will end up in drm_gem_mmap(), which will set things
1374 * up so we can get faults in the handler above.
1375 *
1376 * The fault handler will take care of binding the object into the GTT
1377 * (since it may have been evicted to make room for something), allocating
1378 * a fence register, and mapping the appropriate aperture address into
1379 * userspace.
1380 */
1381int
1382i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1383 struct drm_file *file_priv)
1384{
1385 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1386 struct drm_gem_object *obj;
1387 struct drm_i915_gem_object *obj_priv;
1388 int ret;
1389
1390 if (!(dev->driver->driver_features & DRIVER_GEM))
1391 return -ENODEV;
1392
1393 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1394 if (obj == NULL)
bf79cb91 1395 return -ENOENT;
de151cf6
JB
1396
1397 mutex_lock(&dev->struct_mutex);
1398
23010e43 1399 obj_priv = to_intel_bo(obj);
de151cf6 1400
ab18282d
CW
1401 if (obj_priv->madv != I915_MADV_WILLNEED) {
1402 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1403 drm_gem_object_unreference(obj);
1404 mutex_unlock(&dev->struct_mutex);
1405 return -EINVAL;
1406 }
1407
1408
de151cf6
JB
1409 if (!obj_priv->mmap_offset) {
1410 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1411 if (ret) {
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
de151cf6 1414 return ret;
13af1062 1415 }
de151cf6
JB
1416 }
1417
1418 args->offset = obj_priv->mmap_offset;
1419
de151cf6
JB
1420 /*
1421 * Pull it into the GTT so that we have a page list (makes the
1422 * initial fault faster and any subsequent flushing possible).
1423 */
1424 if (!obj_priv->agp_mem) {
e67b8ce1 1425 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1426 if (ret) {
1427 drm_gem_object_unreference(obj);
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
de151cf6
JB
1431 }
1432
1433 drm_gem_object_unreference(obj);
1434 mutex_unlock(&dev->struct_mutex);
1435
1436 return 0;
1437}
1438
6911a9b8 1439void
856fa198 1440i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1441{
23010e43 1442 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1443 int page_count = obj->size / PAGE_SIZE;
1444 int i;
1445
856fa198 1446 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1447 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1448
856fa198
EA
1449 if (--obj_priv->pages_refcount != 0)
1450 return;
673a394b 1451
280b713b
EA
1452 if (obj_priv->tiling_mode != I915_TILING_NONE)
1453 i915_gem_object_save_bit_17_swizzle(obj);
1454
3ef94daa 1455 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1456 obj_priv->dirty = 0;
3ef94daa
CW
1457
1458 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1459 if (obj_priv->dirty)
1460 set_page_dirty(obj_priv->pages[i]);
1461
1462 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1463 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1464
1465 page_cache_release(obj_priv->pages[i]);
1466 }
673a394b
EA
1467 obj_priv->dirty = 0;
1468
8e7d2b2c 1469 drm_free_large(obj_priv->pages);
856fa198 1470 obj_priv->pages = NULL;
673a394b
EA
1471}
1472
e35a41de 1473static uint32_t
a6910434
DV
1474i915_gem_next_request_seqno(struct drm_device *dev,
1475 struct intel_ring_buffer *ring)
e35a41de
DV
1476{
1477 drm_i915_private_t *dev_priv = dev->dev_private;
1478
a6910434
DV
1479 ring->outstanding_lazy_request = true;
1480
e35a41de
DV
1481 return dev_priv->next_seqno;
1482}
1483
673a394b 1484static void
617dbe27 1485i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1486 struct intel_ring_buffer *ring)
673a394b
EA
1487{
1488 struct drm_device *dev = obj->dev;
23010e43 1489 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
617dbe27
DV
1490 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1491
852835f3
ZN
1492 BUG_ON(ring == NULL);
1493 obj_priv->ring = ring;
673a394b
EA
1494
1495 /* Add a reference if we're newly entering the active list. */
1496 if (!obj_priv->active) {
1497 drm_gem_object_reference(obj);
1498 obj_priv->active = 1;
1499 }
e35a41de 1500
673a394b 1501 /* Move from whatever list we were on to the tail of execution. */
852835f3 1502 list_move_tail(&obj_priv->list, &ring->active_list);
ce44b0ea 1503 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1504}
1505
ce44b0ea
EA
1506static void
1507i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508{
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1511 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1512
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1516}
673a394b 1517
963b4836
CW
1518/* Immediately discard the backing storage */
1519static void
1520i915_gem_object_truncate(struct drm_gem_object *obj)
1521{
23010e43 1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1523 struct inode *inode;
963b4836 1524
ae9fed6b
CW
1525 /* Our goal here is to return as much of the memory as
1526 * is possible back to the system as we are called from OOM.
1527 * To do this we must instruct the shmfs to drop all of its
1528 * backing pages, *now*. Here we mirror the actions taken
1529 * when by shmem_delete_inode() to release the backing store.
1530 */
bb6baf76 1531 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1532 truncate_inode_pages(inode->i_mapping, 0);
1533 if (inode->i_op->truncate_range)
1534 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1535
1536 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1537}
1538
1539static inline int
1540i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1541{
1542 return obj_priv->madv == I915_MADV_DONTNEED;
1543}
1544
673a394b
EA
1545static void
1546i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1547{
1548 struct drm_device *dev = obj->dev;
1549 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1550 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1551
1552 i915_verify_inactive(dev, __FILE__, __LINE__);
1553 if (obj_priv->pin_count != 0)
1554 list_del_init(&obj_priv->list);
1555 else
1556 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1557
99fcb766
DV
1558 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1559
ce44b0ea 1560 obj_priv->last_rendering_seqno = 0;
852835f3 1561 obj_priv->ring = NULL;
673a394b
EA
1562 if (obj_priv->active) {
1563 obj_priv->active = 0;
1564 drm_gem_object_unreference(obj);
1565 }
1566 i915_verify_inactive(dev, __FILE__, __LINE__);
1567}
1568
8a1a49f9 1569void
63560396 1570i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1571 uint32_t flush_domains,
852835f3 1572 struct intel_ring_buffer *ring)
63560396
DV
1573{
1574 drm_i915_private_t *dev_priv = dev->dev_private;
1575 struct drm_i915_gem_object *obj_priv, *next;
1576
1577 list_for_each_entry_safe(obj_priv, next,
1578 &dev_priv->mm.gpu_write_list,
1579 gpu_write_list) {
a8089e84 1580 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1581
1582 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1583 obj->write_domain &&
1584 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1585 uint32_t old_write_domain = obj->write_domain;
1586
1587 obj->write_domain = 0;
1588 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1589 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1590
1591 /* update the fence lru list */
007cc8ac
DV
1592 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1593 struct drm_i915_fence_reg *reg =
1594 &dev_priv->fence_regs[obj_priv->fence_reg];
1595 list_move_tail(&reg->lru_list,
63560396 1596 &dev_priv->mm.fence_list);
007cc8ac 1597 }
63560396
DV
1598
1599 trace_i915_gem_object_change_domain(obj,
1600 obj->read_domains,
1601 old_write_domain);
1602 }
1603 }
1604}
8187a2b7 1605
5a5a0c64 1606uint32_t
8a1a49f9
DV
1607i915_add_request(struct drm_device *dev,
1608 struct drm_file *file_priv,
8dc5d147 1609 struct drm_i915_gem_request *request,
8a1a49f9 1610 struct intel_ring_buffer *ring)
673a394b
EA
1611{
1612 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1613 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1614 uint32_t seqno;
1615 int was_empty;
673a394b 1616
b962442e
EA
1617 if (file_priv != NULL)
1618 i915_file_priv = file_priv->driver_priv;
1619
8dc5d147
CW
1620 if (request == NULL) {
1621 request = kzalloc(sizeof(*request), GFP_KERNEL);
1622 if (request == NULL)
1623 return 0;
1624 }
673a394b 1625
8a1a49f9 1626 seqno = ring->add_request(dev, ring, file_priv, 0);
673a394b
EA
1627
1628 request->seqno = seqno;
852835f3 1629 request->ring = ring;
673a394b 1630 request->emitted_jiffies = jiffies;
852835f3
ZN
1631 was_empty = list_empty(&ring->request_list);
1632 list_add_tail(&request->list, &ring->request_list);
1633
b962442e
EA
1634 if (i915_file_priv) {
1635 list_add_tail(&request->client_list,
1636 &i915_file_priv->mm.request_list);
1637 } else {
1638 INIT_LIST_HEAD(&request->client_list);
1639 }
673a394b 1640
f65d9421 1641 if (!dev_priv->mm.suspended) {
b3b079db
CW
1642 mod_timer(&dev_priv->hangcheck_timer,
1643 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1644 if (was_empty)
b3b079db
CW
1645 queue_delayed_work(dev_priv->wq,
1646 &dev_priv->mm.retire_work, HZ);
f65d9421 1647 }
673a394b
EA
1648 return seqno;
1649}
1650
1651/**
1652 * Command execution barrier
1653 *
1654 * Ensures that all commands in the ring are finished
1655 * before signalling the CPU
1656 */
8a1a49f9 1657static void
852835f3 1658i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1659{
673a394b 1660 uint32_t flush_domains = 0;
673a394b
EA
1661
1662 /* The sampler always gets flushed on i965 (sigh) */
1663 if (IS_I965G(dev))
1664 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1665
1666 ring->flush(dev, ring,
1667 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1668}
1669
1670/**
1671 * Moves buffers associated only with the given active seqno from the active
1672 * to inactive list, potentially freeing them.
1673 */
1674static void
1675i915_gem_retire_request(struct drm_device *dev,
1676 struct drm_i915_gem_request *request)
1677{
1c5d22f7
CW
1678 trace_i915_gem_request_retire(dev, request->seqno);
1679
673a394b
EA
1680 /* Move any buffers on the active list that are no longer referenced
1681 * by the ringbuffer to the flushing/inactive lists as appropriate.
1682 */
852835f3 1683 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1684 struct drm_gem_object *obj;
1685 struct drm_i915_gem_object *obj_priv;
1686
852835f3 1687 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1688 struct drm_i915_gem_object,
1689 list);
a8089e84 1690 obj = &obj_priv->base;
673a394b
EA
1691
1692 /* If the seqno being retired doesn't match the oldest in the
1693 * list, then the oldest in the list must still be newer than
1694 * this seqno.
1695 */
1696 if (obj_priv->last_rendering_seqno != request->seqno)
de227ef0 1697 return;
de151cf6 1698
673a394b
EA
1699#if WATCH_LRU
1700 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1701 __func__, request->seqno, obj);
1702#endif
1703
ce44b0ea
EA
1704 if (obj->write_domain != 0)
1705 i915_gem_object_move_to_flushing(obj);
de227ef0 1706 else
673a394b 1707 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1708 }
1709}
1710
1711/**
1712 * Returns true if seq1 is later than seq2.
1713 */
22be1724 1714bool
673a394b
EA
1715i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1716{
1717 return (int32_t)(seq1 - seq2) >= 0;
1718}
1719
1720uint32_t
852835f3 1721i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1722 struct intel_ring_buffer *ring)
673a394b 1723{
852835f3 1724 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1725}
1726
1727/**
1728 * This function clears the request list as sequence numbers are passed.
1729 */
b09a1fec
CW
1730static void
1731i915_gem_retire_requests_ring(struct drm_device *dev,
1732 struct intel_ring_buffer *ring)
673a394b
EA
1733{
1734 drm_i915_private_t *dev_priv = dev->dev_private;
1735 uint32_t seqno;
1736
8187a2b7 1737 if (!ring->status_page.page_addr
852835f3 1738 || list_empty(&ring->request_list))
6c0594a3
KW
1739 return;
1740
852835f3 1741 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1742
852835f3 1743 while (!list_empty(&ring->request_list)) {
673a394b
EA
1744 struct drm_i915_gem_request *request;
1745 uint32_t retiring_seqno;
1746
852835f3 1747 request = list_first_entry(&ring->request_list,
673a394b
EA
1748 struct drm_i915_gem_request,
1749 list);
1750 retiring_seqno = request->seqno;
1751
1752 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1753 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1754 i915_gem_retire_request(dev, request);
1755
1756 list_del(&request->list);
b962442e 1757 list_del(&request->client_list);
9a298b2a 1758 kfree(request);
673a394b
EA
1759 } else
1760 break;
1761 }
9d34e5db
CW
1762
1763 if (unlikely (dev_priv->trace_irq_seqno &&
1764 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1765
1766 ring->user_irq_put(dev, ring);
9d34e5db
CW
1767 dev_priv->trace_irq_seqno = 0;
1768 }
673a394b
EA
1769}
1770
b09a1fec
CW
1771void
1772i915_gem_retire_requests(struct drm_device *dev)
1773{
1774 drm_i915_private_t *dev_priv = dev->dev_private;
1775
be72615b
CW
1776 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1777 struct drm_i915_gem_object *obj_priv, *tmp;
1778
1779 /* We must be careful that during unbind() we do not
1780 * accidentally infinitely recurse into retire requests.
1781 * Currently:
1782 * retire -> free -> unbind -> wait -> retire_ring
1783 */
1784 list_for_each_entry_safe(obj_priv, tmp,
1785 &dev_priv->mm.deferred_free_list,
1786 list)
1787 i915_gem_free_object_tail(&obj_priv->base);
1788 }
1789
b09a1fec
CW
1790 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1791 if (HAS_BSD(dev))
1792 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1793}
1794
75ef9da2 1795static void
673a394b
EA
1796i915_gem_retire_work_handler(struct work_struct *work)
1797{
1798 drm_i915_private_t *dev_priv;
1799 struct drm_device *dev;
1800
1801 dev_priv = container_of(work, drm_i915_private_t,
1802 mm.retire_work.work);
1803 dev = dev_priv->dev;
1804
1805 mutex_lock(&dev->struct_mutex);
b09a1fec 1806 i915_gem_retire_requests(dev);
d1b851fc 1807
6dbe2772 1808 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1809 (!list_empty(&dev_priv->render_ring.request_list) ||
1810 (HAS_BSD(dev) &&
1811 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1812 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1813 mutex_unlock(&dev->struct_mutex);
1814}
1815
5a5a0c64 1816int
852835f3 1817i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1818 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1819{
1820 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1821 u32 ier;
673a394b
EA
1822 int ret = 0;
1823
1824 BUG_ON(seqno == 0);
1825
e35a41de 1826 if (seqno == dev_priv->next_seqno) {
8dc5d147 1827 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1828 if (seqno == 0)
1829 return -ENOMEM;
1830 }
1831
ba1234d1 1832 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1833 return -EIO;
1834
852835f3 1835 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1836 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1837 ier = I915_READ(DEIER) | I915_READ(GTIER);
1838 else
1839 ier = I915_READ(IER);
802c7eb6
JB
1840 if (!ier) {
1841 DRM_ERROR("something (likely vbetool) disabled "
1842 "interrupts, re-enabling\n");
1843 i915_driver_irq_preinstall(dev);
1844 i915_driver_irq_postinstall(dev);
1845 }
1846
1c5d22f7
CW
1847 trace_i915_gem_request_wait_begin(dev, seqno);
1848
852835f3 1849 ring->waiting_gem_seqno = seqno;
8187a2b7 1850 ring->user_irq_get(dev, ring);
48764bf4 1851 if (interruptible)
852835f3
ZN
1852 ret = wait_event_interruptible(ring->irq_queue,
1853 i915_seqno_passed(
1854 ring->get_gem_seqno(dev, ring), seqno)
1855 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1856 else
852835f3
ZN
1857 wait_event(ring->irq_queue,
1858 i915_seqno_passed(
1859 ring->get_gem_seqno(dev, ring), seqno)
1860 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1861
8187a2b7 1862 ring->user_irq_put(dev, ring);
852835f3 1863 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1864
1865 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1866 }
ba1234d1 1867 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1868 ret = -EIO;
1869
1870 if (ret && ret != -ERESTARTSYS)
8bff917c
DV
1871 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1872 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1873 dev_priv->next_seqno);
673a394b
EA
1874
1875 /* Directly dispatch request retiring. While we have the work queue
1876 * to handle this, the waiter on a request often wants an associated
1877 * buffer to have made it to the inactive list, and we would need
1878 * a separate wait queue to handle that.
1879 */
1880 if (ret == 0)
b09a1fec 1881 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1882
1883 return ret;
1884}
1885
48764bf4
DV
1886/**
1887 * Waits for a sequence number to be signaled, and cleans up the
1888 * request and object lists appropriately for that event.
1889 */
1890static int
852835f3
ZN
1891i915_wait_request(struct drm_device *dev, uint32_t seqno,
1892 struct intel_ring_buffer *ring)
48764bf4 1893{
852835f3 1894 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1895}
1896
8187a2b7
ZN
1897static void
1898i915_gem_flush(struct drm_device *dev,
1899 uint32_t invalidate_domains,
1900 uint32_t flush_domains)
1901{
1902 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 1903
8187a2b7
ZN
1904 if (flush_domains & I915_GEM_DOMAIN_CPU)
1905 drm_agp_chipset_flush(dev);
8bff917c 1906
8187a2b7
ZN
1907 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1908 invalidate_domains,
1909 flush_domains);
d1b851fc
ZN
1910
1911 if (HAS_BSD(dev))
1912 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1913 invalidate_domains,
1914 flush_domains);
8187a2b7
ZN
1915}
1916
673a394b
EA
1917/**
1918 * Ensures that all rendering to the object has completed and the object is
1919 * safe to unbind from the GTT or access from the CPU.
1920 */
1921static int
ba3d8d74 1922i915_gem_object_wait_rendering(struct drm_gem_object *obj)
673a394b
EA
1923{
1924 struct drm_device *dev = obj->dev;
23010e43 1925 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1926 int ret;
1927
e47c68e9
EA
1928 /* This function only exists to support waiting for existing rendering,
1929 * not for emitting required flushes.
673a394b 1930 */
e47c68e9 1931 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1932
1933 /* If there is rendering queued on the buffer being evicted, wait for
1934 * it.
1935 */
1936 if (obj_priv->active) {
1937#if WATCH_BUF
1938 DRM_INFO("%s: object %p wait for seqno %08x\n",
1939 __func__, obj, obj_priv->last_rendering_seqno);
1940#endif
ba3d8d74
DV
1941 ret = i915_wait_request(dev,
1942 obj_priv->last_rendering_seqno,
1943 obj_priv->ring);
673a394b
EA
1944 if (ret != 0)
1945 return ret;
1946 }
1947
1948 return 0;
1949}
1950
1951/**
1952 * Unbinds an object from the GTT aperture.
1953 */
0f973f27 1954int
673a394b
EA
1955i915_gem_object_unbind(struct drm_gem_object *obj)
1956{
1957 struct drm_device *dev = obj->dev;
23010e43 1958 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1959 int ret = 0;
1960
1961#if WATCH_BUF
1962 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1963 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1964#endif
1965 if (obj_priv->gtt_space == NULL)
1966 return 0;
1967
1968 if (obj_priv->pin_count != 0) {
1969 DRM_ERROR("Attempting to unbind pinned buffer\n");
1970 return -EINVAL;
1971 }
1972
5323fd04
EA
1973 /* blow away mappings if mapped through GTT */
1974 i915_gem_release_mmap(obj);
1975
673a394b
EA
1976 /* Move the object to the CPU domain to ensure that
1977 * any possible CPU writes while it's not in the GTT
1978 * are flushed when we go to remap it. This will
1979 * also ensure that all pending GPU writes are finished
1980 * before we unbind.
1981 */
e47c68e9 1982 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1983 if (ret == -ERESTARTSYS)
673a394b 1984 return ret;
8dc1775d
CW
1985 /* Continue on if we fail due to EIO, the GPU is hung so we
1986 * should be safe and we need to cleanup or else we might
1987 * cause memory corruption through use-after-free.
1988 */
673a394b 1989
96b47b65
DV
1990 /* release the fence reg _after_ flushing */
1991 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1992 i915_gem_clear_fence_reg(obj);
1993
673a394b
EA
1994 if (obj_priv->agp_mem != NULL) {
1995 drm_unbind_agp(obj_priv->agp_mem);
1996 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1997 obj_priv->agp_mem = NULL;
1998 }
1999
856fa198 2000 i915_gem_object_put_pages(obj);
a32808c0 2001 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2002
2003 if (obj_priv->gtt_space) {
2004 atomic_dec(&dev->gtt_count);
2005 atomic_sub(obj->size, &dev->gtt_memory);
2006
2007 drm_mm_put_block(obj_priv->gtt_space);
2008 obj_priv->gtt_space = NULL;
2009 }
2010
2011 /* Remove ourselves from the LRU list if present. */
2012 if (!list_empty(&obj_priv->list))
2013 list_del_init(&obj_priv->list);
2014
963b4836
CW
2015 if (i915_gem_object_is_purgeable(obj_priv))
2016 i915_gem_object_truncate(obj);
2017
1c5d22f7
CW
2018 trace_i915_gem_object_unbind(obj);
2019
8dc1775d 2020 return ret;
673a394b
EA
2021}
2022
b47eb4a2 2023int
4df2faf4
DV
2024i915_gpu_idle(struct drm_device *dev)
2025{
2026 drm_i915_private_t *dev_priv = dev->dev_private;
2027 bool lists_empty;
852835f3 2028 int ret;
4df2faf4 2029
d1b851fc
ZN
2030 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2031 list_empty(&dev_priv->render_ring.active_list) &&
2032 (!HAS_BSD(dev) ||
2033 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2034 if (lists_empty)
2035 return 0;
2036
2037 /* Flush everything onto the inactive list. */
2038 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4fc6ee76
DV
2039
2040 ret = i915_wait_request(dev,
2041 i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
2042 &dev_priv->render_ring);
8a1a49f9
DV
2043 if (ret)
2044 return ret;
d1b851fc
ZN
2045
2046 if (HAS_BSD(dev)) {
4fc6ee76
DV
2047 ret = i915_wait_request(dev,
2048 i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
2049 &dev_priv->bsd_ring);
d1b851fc
ZN
2050 if (ret)
2051 return ret;
2052 }
2053
8a1a49f9 2054 return 0;
4df2faf4
DV
2055}
2056
6911a9b8 2057int
4bdadb97
CW
2058i915_gem_object_get_pages(struct drm_gem_object *obj,
2059 gfp_t gfpmask)
673a394b 2060{
23010e43 2061 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2062 int page_count, i;
2063 struct address_space *mapping;
2064 struct inode *inode;
2065 struct page *page;
673a394b 2066
778c3544
DV
2067 BUG_ON(obj_priv->pages_refcount
2068 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2069
856fa198 2070 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2071 return 0;
2072
2073 /* Get the list of pages out of our struct file. They'll be pinned
2074 * at this point until we release them.
2075 */
2076 page_count = obj->size / PAGE_SIZE;
856fa198 2077 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2078 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2079 if (obj_priv->pages == NULL) {
856fa198 2080 obj_priv->pages_refcount--;
673a394b
EA
2081 return -ENOMEM;
2082 }
2083
2084 inode = obj->filp->f_path.dentry->d_inode;
2085 mapping = inode->i_mapping;
2086 for (i = 0; i < page_count; i++) {
4bdadb97 2087 page = read_cache_page_gfp(mapping, i,
985b823b 2088 GFP_HIGHUSER |
4bdadb97 2089 __GFP_COLD |
cd9f040d 2090 __GFP_RECLAIMABLE |
4bdadb97 2091 gfpmask);
1f2b1013
CW
2092 if (IS_ERR(page))
2093 goto err_pages;
2094
856fa198 2095 obj_priv->pages[i] = page;
673a394b 2096 }
280b713b
EA
2097
2098 if (obj_priv->tiling_mode != I915_TILING_NONE)
2099 i915_gem_object_do_bit_17_swizzle(obj);
2100
673a394b 2101 return 0;
1f2b1013
CW
2102
2103err_pages:
2104 while (i--)
2105 page_cache_release(obj_priv->pages[i]);
2106
2107 drm_free_large(obj_priv->pages);
2108 obj_priv->pages = NULL;
2109 obj_priv->pages_refcount--;
2110 return PTR_ERR(page);
673a394b
EA
2111}
2112
4e901fdc
EA
2113static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2114{
2115 struct drm_gem_object *obj = reg->obj;
2116 struct drm_device *dev = obj->dev;
2117 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2118 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2119 int regnum = obj_priv->fence_reg;
2120 uint64_t val;
2121
2122 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2123 0xfffff000) << 32;
2124 val |= obj_priv->gtt_offset & 0xfffff000;
2125 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2126 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2127
2128 if (obj_priv->tiling_mode == I915_TILING_Y)
2129 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2130 val |= I965_FENCE_REG_VALID;
2131
2132 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2133}
2134
de151cf6
JB
2135static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2136{
2137 struct drm_gem_object *obj = reg->obj;
2138 struct drm_device *dev = obj->dev;
2139 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2140 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2141 int regnum = obj_priv->fence_reg;
2142 uint64_t val;
2143
2144 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2145 0xfffff000) << 32;
2146 val |= obj_priv->gtt_offset & 0xfffff000;
2147 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2148 if (obj_priv->tiling_mode == I915_TILING_Y)
2149 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2150 val |= I965_FENCE_REG_VALID;
2151
2152 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2153}
2154
2155static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2156{
2157 struct drm_gem_object *obj = reg->obj;
2158 struct drm_device *dev = obj->dev;
2159 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2160 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2161 int regnum = obj_priv->fence_reg;
0f973f27 2162 int tile_width;
dc529a4f 2163 uint32_t fence_reg, val;
de151cf6
JB
2164 uint32_t pitch_val;
2165
2166 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2167 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2168 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2169 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2170 return;
2171 }
2172
0f973f27
JB
2173 if (obj_priv->tiling_mode == I915_TILING_Y &&
2174 HAS_128_BYTE_Y_TILING(dev))
2175 tile_width = 128;
de151cf6 2176 else
0f973f27
JB
2177 tile_width = 512;
2178
2179 /* Note: pitch better be a power of two tile widths */
2180 pitch_val = obj_priv->stride / tile_width;
2181 pitch_val = ffs(pitch_val) - 1;
de151cf6 2182
c36a2a6d
DV
2183 if (obj_priv->tiling_mode == I915_TILING_Y &&
2184 HAS_128_BYTE_Y_TILING(dev))
2185 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2186 else
2187 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2188
de151cf6
JB
2189 val = obj_priv->gtt_offset;
2190 if (obj_priv->tiling_mode == I915_TILING_Y)
2191 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2192 val |= I915_FENCE_SIZE_BITS(obj->size);
2193 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2194 val |= I830_FENCE_REG_VALID;
2195
dc529a4f
EA
2196 if (regnum < 8)
2197 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2198 else
2199 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2200 I915_WRITE(fence_reg, val);
de151cf6
JB
2201}
2202
2203static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2204{
2205 struct drm_gem_object *obj = reg->obj;
2206 struct drm_device *dev = obj->dev;
2207 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2208 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2209 int regnum = obj_priv->fence_reg;
2210 uint32_t val;
2211 uint32_t pitch_val;
8d7773a3 2212 uint32_t fence_size_bits;
de151cf6 2213
8d7773a3 2214 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2215 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2216 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2217 __func__, obj_priv->gtt_offset);
de151cf6
JB
2218 return;
2219 }
2220
e76a16de
EA
2221 pitch_val = obj_priv->stride / 128;
2222 pitch_val = ffs(pitch_val) - 1;
2223 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2224
de151cf6
JB
2225 val = obj_priv->gtt_offset;
2226 if (obj_priv->tiling_mode == I915_TILING_Y)
2227 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2228 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2229 WARN_ON(fence_size_bits & ~0x00000f00);
2230 val |= fence_size_bits;
de151cf6
JB
2231 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2232 val |= I830_FENCE_REG_VALID;
2233
2234 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2235}
2236
ae3db24a
DV
2237static int i915_find_fence_reg(struct drm_device *dev)
2238{
2239 struct drm_i915_fence_reg *reg = NULL;
2240 struct drm_i915_gem_object *obj_priv = NULL;
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 struct drm_gem_object *obj = NULL;
2243 int i, avail, ret;
2244
2245 /* First try to find a free reg */
2246 avail = 0;
2247 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2248 reg = &dev_priv->fence_regs[i];
2249 if (!reg->obj)
2250 return i;
2251
23010e43 2252 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2253 if (!obj_priv->pin_count)
2254 avail++;
2255 }
2256
2257 if (avail == 0)
2258 return -ENOSPC;
2259
2260 /* None available, try to steal one or wait for a user to finish */
2261 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2262 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2263 lru_list) {
2264 obj = reg->obj;
2265 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2266
2267 if (obj_priv->pin_count)
2268 continue;
2269
2270 /* found one! */
2271 i = obj_priv->fence_reg;
2272 break;
2273 }
2274
2275 BUG_ON(i == I915_FENCE_REG_NONE);
2276
2277 /* We only have a reference on obj from the active list. put_fence_reg
2278 * might drop that one, causing a use-after-free in it. So hold a
2279 * private reference to obj like the other callers of put_fence_reg
2280 * (set_tiling ioctl) do. */
2281 drm_gem_object_reference(obj);
2282 ret = i915_gem_object_put_fence_reg(obj);
2283 drm_gem_object_unreference(obj);
2284 if (ret != 0)
2285 return ret;
2286
2287 return i;
2288}
2289
de151cf6
JB
2290/**
2291 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2292 * @obj: object to map through a fence reg
2293 *
2294 * When mapping objects through the GTT, userspace wants to be able to write
2295 * to them without having to worry about swizzling if the object is tiled.
2296 *
2297 * This function walks the fence regs looking for a free one for @obj,
2298 * stealing one if it can't find any.
2299 *
2300 * It then sets up the reg based on the object's properties: address, pitch
2301 * and tiling format.
2302 */
8c4b8c3f
CW
2303int
2304i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2305{
2306 struct drm_device *dev = obj->dev;
79e53945 2307 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2308 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2309 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2310 int ret;
de151cf6 2311
a09ba7fa
EA
2312 /* Just update our place in the LRU if our fence is getting used. */
2313 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2314 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2315 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2316 return 0;
2317 }
2318
de151cf6
JB
2319 switch (obj_priv->tiling_mode) {
2320 case I915_TILING_NONE:
2321 WARN(1, "allocating a fence for non-tiled object?\n");
2322 break;
2323 case I915_TILING_X:
0f973f27
JB
2324 if (!obj_priv->stride)
2325 return -EINVAL;
2326 WARN((obj_priv->stride & (512 - 1)),
2327 "object 0x%08x is X tiled but has non-512B pitch\n",
2328 obj_priv->gtt_offset);
de151cf6
JB
2329 break;
2330 case I915_TILING_Y:
0f973f27
JB
2331 if (!obj_priv->stride)
2332 return -EINVAL;
2333 WARN((obj_priv->stride & (128 - 1)),
2334 "object 0x%08x is Y tiled but has non-128B pitch\n",
2335 obj_priv->gtt_offset);
de151cf6
JB
2336 break;
2337 }
2338
ae3db24a
DV
2339 ret = i915_find_fence_reg(dev);
2340 if (ret < 0)
2341 return ret;
de151cf6 2342
ae3db24a
DV
2343 obj_priv->fence_reg = ret;
2344 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2345 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2346
de151cf6
JB
2347 reg->obj = obj;
2348
4e901fdc
EA
2349 if (IS_GEN6(dev))
2350 sandybridge_write_fence_reg(reg);
2351 else if (IS_I965G(dev))
de151cf6
JB
2352 i965_write_fence_reg(reg);
2353 else if (IS_I9XX(dev))
2354 i915_write_fence_reg(reg);
2355 else
2356 i830_write_fence_reg(reg);
d9ddcb96 2357
ae3db24a
DV
2358 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2359 obj_priv->tiling_mode);
1c5d22f7 2360
d9ddcb96 2361 return 0;
de151cf6
JB
2362}
2363
2364/**
2365 * i915_gem_clear_fence_reg - clear out fence register info
2366 * @obj: object to clear
2367 *
2368 * Zeroes out the fence register itself and clears out the associated
2369 * data structures in dev_priv and obj_priv.
2370 */
2371static void
2372i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2373{
2374 struct drm_device *dev = obj->dev;
79e53945 2375 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2376 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2377 struct drm_i915_fence_reg *reg =
2378 &dev_priv->fence_regs[obj_priv->fence_reg];
de151cf6 2379
4e901fdc
EA
2380 if (IS_GEN6(dev)) {
2381 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2382 (obj_priv->fence_reg * 8), 0);
2383 } else if (IS_I965G(dev)) {
de151cf6 2384 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2385 } else {
dc529a4f
EA
2386 uint32_t fence_reg;
2387
2388 if (obj_priv->fence_reg < 8)
2389 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2390 else
2391 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2392 8) * 4;
2393
2394 I915_WRITE(fence_reg, 0);
2395 }
de151cf6 2396
007cc8ac 2397 reg->obj = NULL;
de151cf6 2398 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2399 list_del_init(&reg->lru_list);
de151cf6
JB
2400}
2401
52dc7d32
CW
2402/**
2403 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2404 * to the buffer to finish, and then resets the fence register.
2405 * @obj: tiled object holding a fence register.
2406 *
2407 * Zeroes out the fence register itself and clears out the associated
2408 * data structures in dev_priv and obj_priv.
2409 */
2410int
2411i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2412{
2413 struct drm_device *dev = obj->dev;
23010e43 2414 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2415
2416 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2417 return 0;
2418
10ae9bd2
DV
2419 /* If we've changed tiling, GTT-mappings of the object
2420 * need to re-fault to ensure that the correct fence register
2421 * setup is in place.
2422 */
2423 i915_gem_release_mmap(obj);
2424
52dc7d32
CW
2425 /* On the i915, GPU access to tiled buffers is via a fence,
2426 * therefore we must wait for any outstanding access to complete
2427 * before clearing the fence.
2428 */
2429 if (!IS_I965G(dev)) {
2430 int ret;
2431
ba3d8d74 2432 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
52dc7d32
CW
2433 if (ret != 0)
2434 return ret;
2435 }
2436
4a726612 2437 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2438 i915_gem_clear_fence_reg (obj);
2439
2440 return 0;
2441}
2442
673a394b
EA
2443/**
2444 * Finds free space in the GTT aperture and binds the object there.
2445 */
2446static int
2447i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2448{
2449 struct drm_device *dev = obj->dev;
2450 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2451 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2452 struct drm_mm_node *free_space;
4bdadb97 2453 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2454 int ret;
673a394b 2455
bb6baf76 2456 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2457 DRM_ERROR("Attempting to bind a purgeable object\n");
2458 return -EINVAL;
2459 }
2460
673a394b 2461 if (alignment == 0)
0f973f27 2462 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2463 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2464 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2465 return -EINVAL;
2466 }
2467
654fc607
CW
2468 /* If the object is bigger than the entire aperture, reject it early
2469 * before evicting everything in a vain attempt to find space.
2470 */
2471 if (obj->size > dev->gtt_total) {
2472 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2473 return -E2BIG;
2474 }
2475
673a394b
EA
2476 search_free:
2477 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2478 obj->size, alignment, 0);
2479 if (free_space != NULL) {
2480 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2481 alignment);
db3307a9 2482 if (obj_priv->gtt_space != NULL)
673a394b 2483 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2484 }
2485 if (obj_priv->gtt_space == NULL) {
2486 /* If the gtt is empty and we're still having trouble
2487 * fitting our object in, we're out of memory.
2488 */
2489#if WATCH_LRU
2490 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2491#endif
0108a3ed 2492 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2493 if (ret)
673a394b 2494 return ret;
9731129c 2495
673a394b
EA
2496 goto search_free;
2497 }
2498
2499#if WATCH_BUF
cfd43c02 2500 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2501 obj->size, obj_priv->gtt_offset);
2502#endif
4bdadb97 2503 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2504 if (ret) {
2505 drm_mm_put_block(obj_priv->gtt_space);
2506 obj_priv->gtt_space = NULL;
07f73f69
CW
2507
2508 if (ret == -ENOMEM) {
2509 /* first try to clear up some space from the GTT */
0108a3ed
DV
2510 ret = i915_gem_evict_something(dev, obj->size,
2511 alignment);
07f73f69 2512 if (ret) {
07f73f69 2513 /* now try to shrink everyone else */
4bdadb97
CW
2514 if (gfpmask) {
2515 gfpmask = 0;
2516 goto search_free;
07f73f69
CW
2517 }
2518
2519 return ret;
2520 }
2521
2522 goto search_free;
2523 }
2524
673a394b
EA
2525 return ret;
2526 }
2527
673a394b
EA
2528 /* Create an AGP memory structure pointing at our pages, and bind it
2529 * into the GTT.
2530 */
2531 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2532 obj_priv->pages,
07f73f69 2533 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2534 obj_priv->gtt_offset,
2535 obj_priv->agp_type);
673a394b 2536 if (obj_priv->agp_mem == NULL) {
856fa198 2537 i915_gem_object_put_pages(obj);
673a394b
EA
2538 drm_mm_put_block(obj_priv->gtt_space);
2539 obj_priv->gtt_space = NULL;
07f73f69 2540
0108a3ed 2541 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2542 if (ret)
07f73f69 2543 return ret;
07f73f69
CW
2544
2545 goto search_free;
673a394b
EA
2546 }
2547 atomic_inc(&dev->gtt_count);
2548 atomic_add(obj->size, &dev->gtt_memory);
2549
bf1a1092
CW
2550 /* keep track of bounds object by adding it to the inactive list */
2551 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2552
673a394b
EA
2553 /* Assert that the object is not currently in any GPU domain. As it
2554 * wasn't in the GTT, there shouldn't be any way it could have been in
2555 * a GPU cache
2556 */
21d509e3
CW
2557 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2558 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2559
1c5d22f7
CW
2560 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2561
673a394b
EA
2562 return 0;
2563}
2564
2565void
2566i915_gem_clflush_object(struct drm_gem_object *obj)
2567{
23010e43 2568 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2569
2570 /* If we don't have a page list set up, then we're not pinned
2571 * to GPU, and we can ignore the cache flush because it'll happen
2572 * again at bind time.
2573 */
856fa198 2574 if (obj_priv->pages == NULL)
673a394b
EA
2575 return;
2576
1c5d22f7 2577 trace_i915_gem_object_clflush(obj);
cfa16a0d 2578
856fa198 2579 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2580}
2581
e47c68e9 2582/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2583static int
ba3d8d74
DV
2584i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2585 bool pipelined)
e47c68e9
EA
2586{
2587 struct drm_device *dev = obj->dev;
1c5d22f7 2588 uint32_t old_write_domain;
e47c68e9
EA
2589
2590 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2591 return 0;
e47c68e9
EA
2592
2593 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2594 old_write_domain = obj->write_domain;
e47c68e9 2595 i915_gem_flush(dev, 0, obj->write_domain);
1c5d22f7
CW
2596
2597 trace_i915_gem_object_change_domain(obj,
2598 obj->read_domains,
2599 old_write_domain);
ba3d8d74
DV
2600
2601 if (pipelined)
2602 return 0;
2603
2604 return i915_gem_object_wait_rendering(obj);
e47c68e9
EA
2605}
2606
2607/** Flushes the GTT write domain for the object if it's dirty. */
2608static void
2609i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2610{
1c5d22f7
CW
2611 uint32_t old_write_domain;
2612
e47c68e9
EA
2613 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2614 return;
2615
2616 /* No actual flushing is required for the GTT write domain. Writes
2617 * to it immediately go to main memory as far as we know, so there's
2618 * no chipset flush. It also doesn't land in render cache.
2619 */
1c5d22f7 2620 old_write_domain = obj->write_domain;
e47c68e9 2621 obj->write_domain = 0;
1c5d22f7
CW
2622
2623 trace_i915_gem_object_change_domain(obj,
2624 obj->read_domains,
2625 old_write_domain);
e47c68e9
EA
2626}
2627
2628/** Flushes the CPU write domain for the object if it's dirty. */
2629static void
2630i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2631{
2632 struct drm_device *dev = obj->dev;
1c5d22f7 2633 uint32_t old_write_domain;
e47c68e9
EA
2634
2635 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2636 return;
2637
2638 i915_gem_clflush_object(obj);
2639 drm_agp_chipset_flush(dev);
1c5d22f7 2640 old_write_domain = obj->write_domain;
e47c68e9 2641 obj->write_domain = 0;
1c5d22f7
CW
2642
2643 trace_i915_gem_object_change_domain(obj,
2644 obj->read_domains,
2645 old_write_domain);
e47c68e9
EA
2646}
2647
2dafb1e0 2648int
6b95a207
KH
2649i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2650{
2dafb1e0
CW
2651 int ret = 0;
2652
6b95a207
KH
2653 switch (obj->write_domain) {
2654 case I915_GEM_DOMAIN_GTT:
2655 i915_gem_object_flush_gtt_write_domain(obj);
2656 break;
2657 case I915_GEM_DOMAIN_CPU:
2658 i915_gem_object_flush_cpu_write_domain(obj);
2659 break;
2660 default:
ba3d8d74 2661 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
6b95a207
KH
2662 break;
2663 }
2dafb1e0
CW
2664
2665 return ret;
6b95a207
KH
2666}
2667
2ef7eeaa
EA
2668/**
2669 * Moves a single object to the GTT read, and possibly write domain.
2670 *
2671 * This function returns when the move is complete, including waiting on
2672 * flushes to occur.
2673 */
79e53945 2674int
2ef7eeaa
EA
2675i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2676{
23010e43 2677 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2678 uint32_t old_write_domain, old_read_domains;
e47c68e9 2679 int ret;
2ef7eeaa 2680
02354392
EA
2681 /* Not valid to be called on unbound objects. */
2682 if (obj_priv->gtt_space == NULL)
2683 return -EINVAL;
2684
ba3d8d74 2685 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2686 if (ret != 0)
2687 return ret;
2688
1c5d22f7
CW
2689 old_write_domain = obj->write_domain;
2690 old_read_domains = obj->read_domains;
2691
e47c68e9
EA
2692 /* If we're writing through the GTT domain, then CPU and GPU caches
2693 * will need to be invalidated at next use.
2ef7eeaa 2694 */
ba3d8d74
DV
2695 if (write) {
2696 ret = i915_gem_object_wait_rendering(obj);
2697 if (ret)
2698 return ret;
2699
e47c68e9 2700 obj->read_domains &= I915_GEM_DOMAIN_GTT;
ba3d8d74 2701 }
2ef7eeaa 2702
e47c68e9 2703 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2704
e47c68e9
EA
2705 /* It should now be out of any other write domains, and we can update
2706 * the domain values for our changes.
2707 */
2708 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2709 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2710 if (write) {
2711 obj->write_domain = I915_GEM_DOMAIN_GTT;
2712 obj_priv->dirty = 1;
2ef7eeaa
EA
2713 }
2714
1c5d22f7
CW
2715 trace_i915_gem_object_change_domain(obj,
2716 old_read_domains,
2717 old_write_domain);
2718
e47c68e9
EA
2719 return 0;
2720}
2721
b9241ea3
ZW
2722/*
2723 * Prepare buffer for display plane. Use uninterruptible for possible flush
2724 * wait, as in modesetting process we're not supposed to be interrupted.
2725 */
2726int
2727i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2728{
23010e43 2729 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2730 uint32_t old_read_domains;
b9241ea3
ZW
2731 int ret;
2732
2733 /* Not valid to be called on unbound objects. */
2734 if (obj_priv->gtt_space == NULL)
2735 return -EINVAL;
2736
ba3d8d74 2737 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
e35a41de
DV
2738 if (ret != 0)
2739 return ret;
b9241ea3 2740
b118c1e3
CW
2741 i915_gem_object_flush_cpu_write_domain(obj);
2742
b9241ea3 2743 old_read_domains = obj->read_domains;
b118c1e3 2744 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2745
2746 trace_i915_gem_object_change_domain(obj,
2747 old_read_domains,
ba3d8d74 2748 obj->write_domain);
b9241ea3
ZW
2749
2750 return 0;
2751}
2752
e47c68e9
EA
2753/**
2754 * Moves a single object to the CPU read, and possibly write domain.
2755 *
2756 * This function returns when the move is complete, including waiting on
2757 * flushes to occur.
2758 */
2759static int
2760i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2761{
1c5d22f7 2762 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2763 int ret;
2764
ba3d8d74 2765 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2766 if (ret != 0)
2767 return ret;
2ef7eeaa 2768
e47c68e9 2769 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2770
e47c68e9
EA
2771 /* If we have a partially-valid cache of the object in the CPU,
2772 * finish invalidating it and free the per-page flags.
2ef7eeaa 2773 */
e47c68e9 2774 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2775
1c5d22f7
CW
2776 old_write_domain = obj->write_domain;
2777 old_read_domains = obj->read_domains;
2778
e47c68e9
EA
2779 /* Flush the CPU cache if it's still invalid. */
2780 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2781 i915_gem_clflush_object(obj);
2ef7eeaa 2782
e47c68e9 2783 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2784 }
2785
2786 /* It should now be out of any other write domains, and we can update
2787 * the domain values for our changes.
2788 */
e47c68e9
EA
2789 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2790
2791 /* If we're writing through the CPU, then the GPU read domains will
2792 * need to be invalidated at next use.
2793 */
2794 if (write) {
ba3d8d74
DV
2795 ret = i915_gem_object_wait_rendering(obj);
2796 if (ret)
2797 return ret;
2798
e47c68e9
EA
2799 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2800 obj->write_domain = I915_GEM_DOMAIN_CPU;
2801 }
2ef7eeaa 2802
1c5d22f7
CW
2803 trace_i915_gem_object_change_domain(obj,
2804 old_read_domains,
2805 old_write_domain);
2806
2ef7eeaa
EA
2807 return 0;
2808}
2809
673a394b
EA
2810/*
2811 * Set the next domain for the specified object. This
2812 * may not actually perform the necessary flushing/invaliding though,
2813 * as that may want to be batched with other set_domain operations
2814 *
2815 * This is (we hope) the only really tricky part of gem. The goal
2816 * is fairly simple -- track which caches hold bits of the object
2817 * and make sure they remain coherent. A few concrete examples may
2818 * help to explain how it works. For shorthand, we use the notation
2819 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2820 * a pair of read and write domain masks.
2821 *
2822 * Case 1: the batch buffer
2823 *
2824 * 1. Allocated
2825 * 2. Written by CPU
2826 * 3. Mapped to GTT
2827 * 4. Read by GPU
2828 * 5. Unmapped from GTT
2829 * 6. Freed
2830 *
2831 * Let's take these a step at a time
2832 *
2833 * 1. Allocated
2834 * Pages allocated from the kernel may still have
2835 * cache contents, so we set them to (CPU, CPU) always.
2836 * 2. Written by CPU (using pwrite)
2837 * The pwrite function calls set_domain (CPU, CPU) and
2838 * this function does nothing (as nothing changes)
2839 * 3. Mapped by GTT
2840 * This function asserts that the object is not
2841 * currently in any GPU-based read or write domains
2842 * 4. Read by GPU
2843 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2844 * As write_domain is zero, this function adds in the
2845 * current read domains (CPU+COMMAND, 0).
2846 * flush_domains is set to CPU.
2847 * invalidate_domains is set to COMMAND
2848 * clflush is run to get data out of the CPU caches
2849 * then i915_dev_set_domain calls i915_gem_flush to
2850 * emit an MI_FLUSH and drm_agp_chipset_flush
2851 * 5. Unmapped from GTT
2852 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2853 * flush_domains and invalidate_domains end up both zero
2854 * so no flushing/invalidating happens
2855 * 6. Freed
2856 * yay, done
2857 *
2858 * Case 2: The shared render buffer
2859 *
2860 * 1. Allocated
2861 * 2. Mapped to GTT
2862 * 3. Read/written by GPU
2863 * 4. set_domain to (CPU,CPU)
2864 * 5. Read/written by CPU
2865 * 6. Read/written by GPU
2866 *
2867 * 1. Allocated
2868 * Same as last example, (CPU, CPU)
2869 * 2. Mapped to GTT
2870 * Nothing changes (assertions find that it is not in the GPU)
2871 * 3. Read/written by GPU
2872 * execbuffer calls set_domain (RENDER, RENDER)
2873 * flush_domains gets CPU
2874 * invalidate_domains gets GPU
2875 * clflush (obj)
2876 * MI_FLUSH and drm_agp_chipset_flush
2877 * 4. set_domain (CPU, CPU)
2878 * flush_domains gets GPU
2879 * invalidate_domains gets CPU
2880 * wait_rendering (obj) to make sure all drawing is complete.
2881 * This will include an MI_FLUSH to get the data from GPU
2882 * to memory
2883 * clflush (obj) to invalidate the CPU cache
2884 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2885 * 5. Read/written by CPU
2886 * cache lines are loaded and dirtied
2887 * 6. Read written by GPU
2888 * Same as last GPU access
2889 *
2890 * Case 3: The constant buffer
2891 *
2892 * 1. Allocated
2893 * 2. Written by CPU
2894 * 3. Read by GPU
2895 * 4. Updated (written) by CPU again
2896 * 5. Read by GPU
2897 *
2898 * 1. Allocated
2899 * (CPU, CPU)
2900 * 2. Written by CPU
2901 * (CPU, CPU)
2902 * 3. Read by GPU
2903 * (CPU+RENDER, 0)
2904 * flush_domains = CPU
2905 * invalidate_domains = RENDER
2906 * clflush (obj)
2907 * MI_FLUSH
2908 * drm_agp_chipset_flush
2909 * 4. Updated (written) by CPU again
2910 * (CPU, CPU)
2911 * flush_domains = 0 (no previous write domain)
2912 * invalidate_domains = 0 (no new read domains)
2913 * 5. Read by GPU
2914 * (CPU+RENDER, 0)
2915 * flush_domains = CPU
2916 * invalidate_domains = RENDER
2917 * clflush (obj)
2918 * MI_FLUSH
2919 * drm_agp_chipset_flush
2920 */
c0d90829 2921static void
8b0e378a 2922i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2923{
2924 struct drm_device *dev = obj->dev;
23010e43 2925 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2926 uint32_t invalidate_domains = 0;
2927 uint32_t flush_domains = 0;
1c5d22f7 2928 uint32_t old_read_domains;
e47c68e9 2929
8b0e378a
EA
2930 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2931 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2932
652c393a
JB
2933 intel_mark_busy(dev, obj);
2934
673a394b
EA
2935#if WATCH_BUF
2936 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2937 __func__, obj,
8b0e378a
EA
2938 obj->read_domains, obj->pending_read_domains,
2939 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2940#endif
2941 /*
2942 * If the object isn't moving to a new write domain,
2943 * let the object stay in multiple read domains
2944 */
8b0e378a
EA
2945 if (obj->pending_write_domain == 0)
2946 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2947 else
2948 obj_priv->dirty = 1;
2949
2950 /*
2951 * Flush the current write domain if
2952 * the new read domains don't match. Invalidate
2953 * any read domains which differ from the old
2954 * write domain
2955 */
8b0e378a
EA
2956 if (obj->write_domain &&
2957 obj->write_domain != obj->pending_read_domains) {
673a394b 2958 flush_domains |= obj->write_domain;
8b0e378a
EA
2959 invalidate_domains |=
2960 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2961 }
2962 /*
2963 * Invalidate any read caches which may have
2964 * stale data. That is, any new read domains.
2965 */
8b0e378a 2966 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2967 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2968#if WATCH_BUF
2969 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2970 __func__, flush_domains, invalidate_domains);
2971#endif
673a394b
EA
2972 i915_gem_clflush_object(obj);
2973 }
2974
1c5d22f7
CW
2975 old_read_domains = obj->read_domains;
2976
efbeed96
EA
2977 /* The actual obj->write_domain will be updated with
2978 * pending_write_domain after we emit the accumulated flush for all
2979 * of our domain changes in execbuffers (which clears objects'
2980 * write_domains). So if we have a current write domain that we
2981 * aren't changing, set pending_write_domain to that.
2982 */
2983 if (flush_domains == 0 && obj->pending_write_domain == 0)
2984 obj->pending_write_domain = obj->write_domain;
8b0e378a 2985 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2986
2987 dev->invalidate_domains |= invalidate_domains;
2988 dev->flush_domains |= flush_domains;
2989#if WATCH_BUF
2990 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2991 __func__,
2992 obj->read_domains, obj->write_domain,
2993 dev->invalidate_domains, dev->flush_domains);
2994#endif
1c5d22f7
CW
2995
2996 trace_i915_gem_object_change_domain(obj,
2997 old_read_domains,
2998 obj->write_domain);
673a394b
EA
2999}
3000
3001/**
e47c68e9 3002 * Moves the object from a partially CPU read to a full one.
673a394b 3003 *
e47c68e9
EA
3004 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3005 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3006 */
e47c68e9
EA
3007static void
3008i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3009{
23010e43 3010 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3011
e47c68e9
EA
3012 if (!obj_priv->page_cpu_valid)
3013 return;
3014
3015 /* If we're partially in the CPU read domain, finish moving it in.
3016 */
3017 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3018 int i;
3019
3020 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3021 if (obj_priv->page_cpu_valid[i])
3022 continue;
856fa198 3023 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3024 }
e47c68e9
EA
3025 }
3026
3027 /* Free the page_cpu_valid mappings which are now stale, whether
3028 * or not we've got I915_GEM_DOMAIN_CPU.
3029 */
9a298b2a 3030 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3031 obj_priv->page_cpu_valid = NULL;
3032}
3033
3034/**
3035 * Set the CPU read domain on a range of the object.
3036 *
3037 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3038 * not entirely valid. The page_cpu_valid member of the object flags which
3039 * pages have been flushed, and will be respected by
3040 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3041 * of the whole object.
3042 *
3043 * This function returns when the move is complete, including waiting on
3044 * flushes to occur.
3045 */
3046static int
3047i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3048 uint64_t offset, uint64_t size)
3049{
23010e43 3050 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3051 uint32_t old_read_domains;
e47c68e9 3052 int i, ret;
673a394b 3053
e47c68e9
EA
3054 if (offset == 0 && size == obj->size)
3055 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3056
ba3d8d74 3057 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3058 if (ret != 0)
6a47baa6 3059 return ret;
e47c68e9
EA
3060 i915_gem_object_flush_gtt_write_domain(obj);
3061
3062 /* If we're already fully in the CPU read domain, we're done. */
3063 if (obj_priv->page_cpu_valid == NULL &&
3064 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3065 return 0;
673a394b 3066
e47c68e9
EA
3067 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3068 * newly adding I915_GEM_DOMAIN_CPU
3069 */
673a394b 3070 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3071 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3072 GFP_KERNEL);
e47c68e9
EA
3073 if (obj_priv->page_cpu_valid == NULL)
3074 return -ENOMEM;
3075 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3076 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3077
3078 /* Flush the cache on any pages that are still invalid from the CPU's
3079 * perspective.
3080 */
e47c68e9
EA
3081 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3082 i++) {
673a394b
EA
3083 if (obj_priv->page_cpu_valid[i])
3084 continue;
3085
856fa198 3086 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3087
3088 obj_priv->page_cpu_valid[i] = 1;
3089 }
3090
e47c68e9
EA
3091 /* It should now be out of any other write domains, and we can update
3092 * the domain values for our changes.
3093 */
3094 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3095
1c5d22f7 3096 old_read_domains = obj->read_domains;
e47c68e9
EA
3097 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3098
1c5d22f7
CW
3099 trace_i915_gem_object_change_domain(obj,
3100 old_read_domains,
3101 obj->write_domain);
3102
673a394b
EA
3103 return 0;
3104}
3105
673a394b
EA
3106/**
3107 * Pin an object to the GTT and evaluate the relocations landing in it.
3108 */
3109static int
3110i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3111 struct drm_file *file_priv,
76446cac 3112 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3113 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3114{
3115 struct drm_device *dev = obj->dev;
0839ccb8 3116 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3117 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3118 int i, ret;
0839ccb8 3119 void __iomem *reloc_page;
76446cac
JB
3120 bool need_fence;
3121
3122 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3123 obj_priv->tiling_mode != I915_TILING_NONE;
3124
3125 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3126 if (need_fence &&
3127 !i915_gem_object_fence_offset_ok(obj,
3128 obj_priv->tiling_mode)) {
3129 ret = i915_gem_object_unbind(obj);
3130 if (ret)
3131 return ret;
3132 }
673a394b
EA
3133
3134 /* Choose the GTT offset for our buffer and put it there. */
3135 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3136 if (ret)
3137 return ret;
3138
76446cac
JB
3139 /*
3140 * Pre-965 chips need a fence register set up in order to
3141 * properly handle blits to/from tiled surfaces.
3142 */
3143 if (need_fence) {
3144 ret = i915_gem_object_get_fence_reg(obj);
3145 if (ret != 0) {
76446cac
JB
3146 i915_gem_object_unpin(obj);
3147 return ret;
3148 }
3149 }
3150
673a394b
EA
3151 entry->offset = obj_priv->gtt_offset;
3152
673a394b
EA
3153 /* Apply the relocations, using the GTT aperture to avoid cache
3154 * flushing requirements.
3155 */
3156 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3157 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3158 struct drm_gem_object *target_obj;
3159 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3160 uint32_t reloc_val, reloc_offset;
3161 uint32_t __iomem *reloc_entry;
673a394b 3162
673a394b 3163 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3164 reloc->target_handle);
673a394b
EA
3165 if (target_obj == NULL) {
3166 i915_gem_object_unpin(obj);
bf79cb91 3167 return -ENOENT;
673a394b 3168 }
23010e43 3169 target_obj_priv = to_intel_bo(target_obj);
673a394b 3170
8542a0bb
CW
3171#if WATCH_RELOC
3172 DRM_INFO("%s: obj %p offset %08x target %d "
3173 "read %08x write %08x gtt %08x "
3174 "presumed %08x delta %08x\n",
3175 __func__,
3176 obj,
3177 (int) reloc->offset,
3178 (int) reloc->target_handle,
3179 (int) reloc->read_domains,
3180 (int) reloc->write_domain,
3181 (int) target_obj_priv->gtt_offset,
3182 (int) reloc->presumed_offset,
3183 reloc->delta);
3184#endif
3185
673a394b
EA
3186 /* The target buffer should have appeared before us in the
3187 * exec_object list, so it should have a GTT space bound by now.
3188 */
3189 if (target_obj_priv->gtt_space == NULL) {
3190 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3191 reloc->target_handle);
673a394b
EA
3192 drm_gem_object_unreference(target_obj);
3193 i915_gem_object_unpin(obj);
3194 return -EINVAL;
3195 }
3196
8542a0bb 3197 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3198 if (reloc->write_domain & (reloc->write_domain - 1)) {
3199 DRM_ERROR("reloc with multiple write domains: "
3200 "obj %p target %d offset %d "
3201 "read %08x write %08x",
3202 obj, reloc->target_handle,
3203 (int) reloc->offset,
3204 reloc->read_domains,
3205 reloc->write_domain);
3206 return -EINVAL;
3207 }
40a5f0de
EA
3208 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3209 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3210 DRM_ERROR("reloc with read/write CPU domains: "
3211 "obj %p target %d offset %d "
3212 "read %08x write %08x",
40a5f0de
EA
3213 obj, reloc->target_handle,
3214 (int) reloc->offset,
3215 reloc->read_domains,
3216 reloc->write_domain);
491152b8
CW
3217 drm_gem_object_unreference(target_obj);
3218 i915_gem_object_unpin(obj);
e47c68e9
EA
3219 return -EINVAL;
3220 }
40a5f0de
EA
3221 if (reloc->write_domain && target_obj->pending_write_domain &&
3222 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3223 DRM_ERROR("Write domain conflict: "
3224 "obj %p target %d offset %d "
3225 "new %08x old %08x\n",
40a5f0de
EA
3226 obj, reloc->target_handle,
3227 (int) reloc->offset,
3228 reloc->write_domain,
673a394b
EA
3229 target_obj->pending_write_domain);
3230 drm_gem_object_unreference(target_obj);
3231 i915_gem_object_unpin(obj);
3232 return -EINVAL;
3233 }
3234
40a5f0de
EA
3235 target_obj->pending_read_domains |= reloc->read_domains;
3236 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3237
3238 /* If the relocation already has the right value in it, no
3239 * more work needs to be done.
3240 */
40a5f0de 3241 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3242 drm_gem_object_unreference(target_obj);
3243 continue;
3244 }
3245
8542a0bb
CW
3246 /* Check that the relocation address is valid... */
3247 if (reloc->offset > obj->size - 4) {
3248 DRM_ERROR("Relocation beyond object bounds: "
3249 "obj %p target %d offset %d size %d.\n",
3250 obj, reloc->target_handle,
3251 (int) reloc->offset, (int) obj->size);
3252 drm_gem_object_unreference(target_obj);
3253 i915_gem_object_unpin(obj);
3254 return -EINVAL;
3255 }
3256 if (reloc->offset & 3) {
3257 DRM_ERROR("Relocation not 4-byte aligned: "
3258 "obj %p target %d offset %d.\n",
3259 obj, reloc->target_handle,
3260 (int) reloc->offset);
3261 drm_gem_object_unreference(target_obj);
3262 i915_gem_object_unpin(obj);
3263 return -EINVAL;
3264 }
3265
3266 /* and points to somewhere within the target object. */
3267 if (reloc->delta >= target_obj->size) {
3268 DRM_ERROR("Relocation beyond target object bounds: "
3269 "obj %p target %d delta %d size %d.\n",
3270 obj, reloc->target_handle,
3271 (int) reloc->delta, (int) target_obj->size);
3272 drm_gem_object_unreference(target_obj);
3273 i915_gem_object_unpin(obj);
3274 return -EINVAL;
3275 }
3276
2ef7eeaa
EA
3277 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3278 if (ret != 0) {
3279 drm_gem_object_unreference(target_obj);
3280 i915_gem_object_unpin(obj);
3281 return -EINVAL;
673a394b
EA
3282 }
3283
3284 /* Map the page containing the relocation we're going to
3285 * perform.
3286 */
40a5f0de 3287 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3288 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3289 (reloc_offset &
fca3ec01
CW
3290 ~(PAGE_SIZE - 1)),
3291 KM_USER0);
3043c60c 3292 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3293 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3294 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3295
3296#if WATCH_BUF
3297 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3298 obj, (unsigned int) reloc->offset,
673a394b
EA
3299 readl(reloc_entry), reloc_val);
3300#endif
3301 writel(reloc_val, reloc_entry);
fca3ec01 3302 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3303
40a5f0de
EA
3304 /* The updated presumed offset for this entry will be
3305 * copied back out to the user.
673a394b 3306 */
40a5f0de 3307 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3308
3309 drm_gem_object_unreference(target_obj);
3310 }
3311
673a394b
EA
3312#if WATCH_BUF
3313 if (0)
3314 i915_gem_dump_object(obj, 128, __func__, ~0);
3315#endif
3316 return 0;
3317}
3318
673a394b
EA
3319/* Throttle our rendering by waiting until the ring has completed our requests
3320 * emitted over 20 msec ago.
3321 *
b962442e
EA
3322 * Note that if we were to use the current jiffies each time around the loop,
3323 * we wouldn't escape the function with any frames outstanding if the time to
3324 * render a frame was over 20ms.
3325 *
673a394b
EA
3326 * This should get us reasonable parallelism between CPU and GPU but also
3327 * relatively low latency when blocking on a particular request to finish.
3328 */
3329static int
3330i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3331{
3332 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3333 int ret = 0;
b962442e 3334 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3335
3336 mutex_lock(&dev->struct_mutex);
b962442e
EA
3337 while (!list_empty(&i915_file_priv->mm.request_list)) {
3338 struct drm_i915_gem_request *request;
3339
3340 request = list_first_entry(&i915_file_priv->mm.request_list,
3341 struct drm_i915_gem_request,
3342 client_list);
3343
3344 if (time_after_eq(request->emitted_jiffies, recent_enough))
3345 break;
3346
852835f3 3347 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3348 if (ret != 0)
3349 break;
3350 }
673a394b 3351 mutex_unlock(&dev->struct_mutex);
b962442e 3352
673a394b
EA
3353 return ret;
3354}
3355
40a5f0de 3356static int
76446cac 3357i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3358 uint32_t buffer_count,
3359 struct drm_i915_gem_relocation_entry **relocs)
3360{
3361 uint32_t reloc_count = 0, reloc_index = 0, i;
3362 int ret;
3363
3364 *relocs = NULL;
3365 for (i = 0; i < buffer_count; i++) {
3366 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3367 return -EINVAL;
3368 reloc_count += exec_list[i].relocation_count;
3369 }
3370
8e7d2b2c 3371 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3372 if (*relocs == NULL) {
3373 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3374 return -ENOMEM;
76446cac 3375 }
40a5f0de
EA
3376
3377 for (i = 0; i < buffer_count; i++) {
3378 struct drm_i915_gem_relocation_entry __user *user_relocs;
3379
3380 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3381
3382 ret = copy_from_user(&(*relocs)[reloc_index],
3383 user_relocs,
3384 exec_list[i].relocation_count *
3385 sizeof(**relocs));
3386 if (ret != 0) {
8e7d2b2c 3387 drm_free_large(*relocs);
40a5f0de 3388 *relocs = NULL;
2bc43b5c 3389 return -EFAULT;
40a5f0de
EA
3390 }
3391
3392 reloc_index += exec_list[i].relocation_count;
3393 }
3394
2bc43b5c 3395 return 0;
40a5f0de
EA
3396}
3397
3398static int
76446cac 3399i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3400 uint32_t buffer_count,
3401 struct drm_i915_gem_relocation_entry *relocs)
3402{
3403 uint32_t reloc_count = 0, i;
2bc43b5c 3404 int ret = 0;
40a5f0de 3405
93533c29
CW
3406 if (relocs == NULL)
3407 return 0;
3408
40a5f0de
EA
3409 for (i = 0; i < buffer_count; i++) {
3410 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3411 int unwritten;
40a5f0de
EA
3412
3413 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3414
2bc43b5c
FM
3415 unwritten = copy_to_user(user_relocs,
3416 &relocs[reloc_count],
3417 exec_list[i].relocation_count *
3418 sizeof(*relocs));
3419
3420 if (unwritten) {
3421 ret = -EFAULT;
3422 goto err;
40a5f0de
EA
3423 }
3424
3425 reloc_count += exec_list[i].relocation_count;
3426 }
3427
2bc43b5c 3428err:
8e7d2b2c 3429 drm_free_large(relocs);
40a5f0de
EA
3430
3431 return ret;
3432}
3433
83d60795 3434static int
76446cac 3435i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3436 uint64_t exec_offset)
3437{
3438 uint32_t exec_start, exec_len;
3439
3440 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3441 exec_len = (uint32_t) exec->batch_len;
3442
3443 if ((exec_start | exec_len) & 0x7)
3444 return -EINVAL;
3445
3446 if (!exec_start)
3447 return -EINVAL;
3448
3449 return 0;
3450}
3451
6b95a207
KH
3452static int
3453i915_gem_wait_for_pending_flip(struct drm_device *dev,
3454 struct drm_gem_object **object_list,
3455 int count)
3456{
3457 drm_i915_private_t *dev_priv = dev->dev_private;
3458 struct drm_i915_gem_object *obj_priv;
3459 DEFINE_WAIT(wait);
3460 int i, ret = 0;
3461
3462 for (;;) {
3463 prepare_to_wait(&dev_priv->pending_flip_queue,
3464 &wait, TASK_INTERRUPTIBLE);
3465 for (i = 0; i < count; i++) {
23010e43 3466 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3467 if (atomic_read(&obj_priv->pending_flip) > 0)
3468 break;
3469 }
3470 if (i == count)
3471 break;
3472
3473 if (!signal_pending(current)) {
3474 mutex_unlock(&dev->struct_mutex);
3475 schedule();
3476 mutex_lock(&dev->struct_mutex);
3477 continue;
3478 }
3479 ret = -ERESTARTSYS;
3480 break;
3481 }
3482 finish_wait(&dev_priv->pending_flip_queue, &wait);
3483
3484 return ret;
3485}
3486
8dc5d147 3487static int
76446cac
JB
3488i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3489 struct drm_file *file_priv,
3490 struct drm_i915_gem_execbuffer2 *args,
3491 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3492{
3493 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3494 struct drm_gem_object **object_list = NULL;
3495 struct drm_gem_object *batch_obj;
b70d11da 3496 struct drm_i915_gem_object *obj_priv;
201361a5 3497 struct drm_clip_rect *cliprects = NULL;
93533c29 3498 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3499 struct drm_i915_gem_request *request = NULL;
76446cac 3500 int ret = 0, ret2, i, pinned = 0;
673a394b 3501 uint64_t exec_offset;
8a1a49f9 3502 uint32_t seqno, reloc_index;
6b95a207 3503 int pin_tries, flips;
673a394b 3504
852835f3
ZN
3505 struct intel_ring_buffer *ring = NULL;
3506
673a394b
EA
3507#if WATCH_EXEC
3508 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3509 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3510#endif
d1b851fc
ZN
3511 if (args->flags & I915_EXEC_BSD) {
3512 if (!HAS_BSD(dev)) {
3513 DRM_ERROR("execbuf with wrong flag\n");
3514 return -EINVAL;
3515 }
3516 ring = &dev_priv->bsd_ring;
3517 } else {
3518 ring = &dev_priv->render_ring;
3519 }
3520
4f481ed2
EA
3521 if (args->buffer_count < 1) {
3522 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3523 return -EINVAL;
3524 }
c8e0f93a 3525 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3526 if (object_list == NULL) {
3527 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3528 args->buffer_count);
3529 ret = -ENOMEM;
3530 goto pre_mutex_err;
3531 }
673a394b 3532
201361a5 3533 if (args->num_cliprects != 0) {
9a298b2a
EA
3534 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3535 GFP_KERNEL);
a40e8d31
OA
3536 if (cliprects == NULL) {
3537 ret = -ENOMEM;
201361a5 3538 goto pre_mutex_err;
a40e8d31 3539 }
201361a5
EA
3540
3541 ret = copy_from_user(cliprects,
3542 (struct drm_clip_rect __user *)
3543 (uintptr_t) args->cliprects_ptr,
3544 sizeof(*cliprects) * args->num_cliprects);
3545 if (ret != 0) {
3546 DRM_ERROR("copy %d cliprects failed: %d\n",
3547 args->num_cliprects, ret);
c877cdce 3548 ret = -EFAULT;
201361a5
EA
3549 goto pre_mutex_err;
3550 }
3551 }
3552
8dc5d147
CW
3553 request = kzalloc(sizeof(*request), GFP_KERNEL);
3554 if (request == NULL) {
3555 ret = -ENOMEM;
3556 goto pre_mutex_err;
3557 }
3558
40a5f0de
EA
3559 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3560 &relocs);
3561 if (ret != 0)
3562 goto pre_mutex_err;
3563
673a394b
EA
3564 mutex_lock(&dev->struct_mutex);
3565
3566 i915_verify_inactive(dev, __FILE__, __LINE__);
3567
ba1234d1 3568 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3569 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3570 ret = -EIO;
3571 goto pre_mutex_err;
673a394b
EA
3572 }
3573
3574 if (dev_priv->mm.suspended) {
673a394b 3575 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3576 ret = -EBUSY;
3577 goto pre_mutex_err;
673a394b
EA
3578 }
3579
ac94a962 3580 /* Look up object handles */
6b95a207 3581 flips = 0;
673a394b
EA
3582 for (i = 0; i < args->buffer_count; i++) {
3583 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3584 exec_list[i].handle);
3585 if (object_list[i] == NULL) {
3586 DRM_ERROR("Invalid object handle %d at index %d\n",
3587 exec_list[i].handle, i);
0ce907f8
CW
3588 /* prevent error path from reading uninitialized data */
3589 args->buffer_count = i + 1;
bf79cb91 3590 ret = -ENOENT;
673a394b
EA
3591 goto err;
3592 }
b70d11da 3593
23010e43 3594 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3595 if (obj_priv->in_execbuffer) {
3596 DRM_ERROR("Object %p appears more than once in object list\n",
3597 object_list[i]);
0ce907f8
CW
3598 /* prevent error path from reading uninitialized data */
3599 args->buffer_count = i + 1;
bf79cb91 3600 ret = -EINVAL;
b70d11da
KH
3601 goto err;
3602 }
3603 obj_priv->in_execbuffer = true;
6b95a207
KH
3604 flips += atomic_read(&obj_priv->pending_flip);
3605 }
3606
3607 if (flips > 0) {
3608 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3609 args->buffer_count);
3610 if (ret)
3611 goto err;
ac94a962 3612 }
673a394b 3613
ac94a962
KP
3614 /* Pin and relocate */
3615 for (pin_tries = 0; ; pin_tries++) {
3616 ret = 0;
40a5f0de
EA
3617 reloc_index = 0;
3618
ac94a962
KP
3619 for (i = 0; i < args->buffer_count; i++) {
3620 object_list[i]->pending_read_domains = 0;
3621 object_list[i]->pending_write_domain = 0;
3622 ret = i915_gem_object_pin_and_relocate(object_list[i],
3623 file_priv,
40a5f0de
EA
3624 &exec_list[i],
3625 &relocs[reloc_index]);
ac94a962
KP
3626 if (ret)
3627 break;
3628 pinned = i + 1;
40a5f0de 3629 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3630 }
3631 /* success */
3632 if (ret == 0)
3633 break;
3634
3635 /* error other than GTT full, or we've already tried again */
2939e1f5 3636 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3637 if (ret != -ERESTARTSYS) {
3638 unsigned long long total_size = 0;
3d1cc470
CW
3639 int num_fences = 0;
3640 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3641 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3642
07f73f69 3643 total_size += object_list[i]->size;
3d1cc470
CW
3644 num_fences +=
3645 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3646 obj_priv->tiling_mode != I915_TILING_NONE;
3647 }
3648 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3649 pinned+1, args->buffer_count,
3d1cc470
CW
3650 total_size, num_fences,
3651 ret);
07f73f69
CW
3652 DRM_ERROR("%d objects [%d pinned], "
3653 "%d object bytes [%d pinned], "
3654 "%d/%d gtt bytes\n",
3655 atomic_read(&dev->object_count),
3656 atomic_read(&dev->pin_count),
3657 atomic_read(&dev->object_memory),
3658 atomic_read(&dev->pin_memory),
3659 atomic_read(&dev->gtt_memory),
3660 dev->gtt_total);
3661 }
673a394b
EA
3662 goto err;
3663 }
ac94a962
KP
3664
3665 /* unpin all of our buffers */
3666 for (i = 0; i < pinned; i++)
3667 i915_gem_object_unpin(object_list[i]);
b1177636 3668 pinned = 0;
ac94a962
KP
3669
3670 /* evict everyone we can from the aperture */
3671 ret = i915_gem_evict_everything(dev);
07f73f69 3672 if (ret && ret != -ENOSPC)
ac94a962 3673 goto err;
673a394b
EA
3674 }
3675
3676 /* Set the pending read domains for the batch buffer to COMMAND */
3677 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3678 if (batch_obj->pending_write_domain) {
3679 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3680 ret = -EINVAL;
3681 goto err;
3682 }
3683 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3684
83d60795
CW
3685 /* Sanity check the batch buffer, prior to moving objects */
3686 exec_offset = exec_list[args->buffer_count - 1].offset;
3687 ret = i915_gem_check_execbuffer (args, exec_offset);
3688 if (ret != 0) {
3689 DRM_ERROR("execbuf with invalid offset/length\n");
3690 goto err;
3691 }
3692
673a394b
EA
3693 i915_verify_inactive(dev, __FILE__, __LINE__);
3694
646f0f6e
KP
3695 /* Zero the global flush/invalidate flags. These
3696 * will be modified as new domains are computed
3697 * for each object
3698 */
3699 dev->invalidate_domains = 0;
3700 dev->flush_domains = 0;
3701
673a394b
EA
3702 for (i = 0; i < args->buffer_count; i++) {
3703 struct drm_gem_object *obj = object_list[i];
673a394b 3704
646f0f6e 3705 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3706 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3707 }
3708
3709 i915_verify_inactive(dev, __FILE__, __LINE__);
3710
646f0f6e
KP
3711 if (dev->invalidate_domains | dev->flush_domains) {
3712#if WATCH_EXEC
3713 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3714 __func__,
3715 dev->invalidate_domains,
3716 dev->flush_domains);
3717#endif
3718 i915_gem_flush(dev,
3719 dev->invalidate_domains,
3720 dev->flush_domains);
a6910434
DV
3721 }
3722
3723 if (dev_priv->render_ring.outstanding_lazy_request) {
8dc5d147 3724 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
a6910434
DV
3725 dev_priv->render_ring.outstanding_lazy_request = false;
3726 }
3727 if (dev_priv->bsd_ring.outstanding_lazy_request) {
8dc5d147 3728 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
a6910434 3729 dev_priv->bsd_ring.outstanding_lazy_request = false;
646f0f6e 3730 }
673a394b 3731
efbeed96
EA
3732 for (i = 0; i < args->buffer_count; i++) {
3733 struct drm_gem_object *obj = object_list[i];
23010e43 3734 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3735 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3736
3737 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3738 if (obj->write_domain)
3739 list_move_tail(&obj_priv->gpu_write_list,
3740 &dev_priv->mm.gpu_write_list);
3741 else
3742 list_del_init(&obj_priv->gpu_write_list);
3743
1c5d22f7
CW
3744 trace_i915_gem_object_change_domain(obj,
3745 obj->read_domains,
3746 old_write_domain);
efbeed96
EA
3747 }
3748
673a394b
EA
3749 i915_verify_inactive(dev, __FILE__, __LINE__);
3750
3751#if WATCH_COHERENCY
3752 for (i = 0; i < args->buffer_count; i++) {
3753 i915_gem_object_check_coherency(object_list[i],
3754 exec_list[i].handle);
3755 }
3756#endif
3757
673a394b 3758#if WATCH_EXEC
6911a9b8 3759 i915_gem_dump_object(batch_obj,
673a394b
EA
3760 args->batch_len,
3761 __func__,
3762 ~0);
3763#endif
3764
673a394b 3765 /* Exec the batchbuffer */
852835f3
ZN
3766 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3767 cliprects, exec_offset);
673a394b
EA
3768 if (ret) {
3769 DRM_ERROR("dispatch failed %d\n", ret);
3770 goto err;
3771 }
3772
3773 /*
3774 * Ensure that the commands in the batch buffer are
3775 * finished before the interrupt fires
3776 */
8a1a49f9 3777 i915_retire_commands(dev, ring);
673a394b
EA
3778
3779 i915_verify_inactive(dev, __FILE__, __LINE__);
3780
617dbe27
DV
3781 for (i = 0; i < args->buffer_count; i++) {
3782 struct drm_gem_object *obj = object_list[i];
3783 obj_priv = to_intel_bo(obj);
3784
3785 i915_gem_object_move_to_active(obj, ring);
3786#if WATCH_LRU
3787 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3788#endif
3789 }
3790
673a394b
EA
3791 /*
3792 * Get a seqno representing the execution of the current buffer,
3793 * which we can wait on. We would like to mitigate these interrupts,
3794 * likely by only creating seqnos occasionally (so that we have
3795 * *some* interrupts representing completion of buffers that we can
3796 * wait on when trying to clear up gtt space).
3797 */
8dc5d147
CW
3798 seqno = i915_add_request(dev, file_priv, request, ring);
3799 request = NULL;
673a394b 3800
673a394b
EA
3801#if WATCH_LRU
3802 i915_dump_lru(dev, __func__);
3803#endif
3804
3805 i915_verify_inactive(dev, __FILE__, __LINE__);
3806
673a394b 3807err:
aad87dff
JL
3808 for (i = 0; i < pinned; i++)
3809 i915_gem_object_unpin(object_list[i]);
3810
b70d11da
KH
3811 for (i = 0; i < args->buffer_count; i++) {
3812 if (object_list[i]) {
23010e43 3813 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3814 obj_priv->in_execbuffer = false;
3815 }
aad87dff 3816 drm_gem_object_unreference(object_list[i]);
b70d11da 3817 }
673a394b 3818
673a394b
EA
3819 mutex_unlock(&dev->struct_mutex);
3820
93533c29 3821pre_mutex_err:
40a5f0de
EA
3822 /* Copy the updated relocations out regardless of current error
3823 * state. Failure to update the relocs would mean that the next
3824 * time userland calls execbuf, it would do so with presumed offset
3825 * state that didn't match the actual object state.
3826 */
3827 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3828 relocs);
3829 if (ret2 != 0) {
3830 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3831
3832 if (ret == 0)
3833 ret = ret2;
3834 }
3835
8e7d2b2c 3836 drm_free_large(object_list);
9a298b2a 3837 kfree(cliprects);
8dc5d147 3838 kfree(request);
673a394b
EA
3839
3840 return ret;
3841}
3842
76446cac
JB
3843/*
3844 * Legacy execbuffer just creates an exec2 list from the original exec object
3845 * list array and passes it to the real function.
3846 */
3847int
3848i915_gem_execbuffer(struct drm_device *dev, void *data,
3849 struct drm_file *file_priv)
3850{
3851 struct drm_i915_gem_execbuffer *args = data;
3852 struct drm_i915_gem_execbuffer2 exec2;
3853 struct drm_i915_gem_exec_object *exec_list = NULL;
3854 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3855 int ret, i;
3856
3857#if WATCH_EXEC
3858 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3859 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3860#endif
3861
3862 if (args->buffer_count < 1) {
3863 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3864 return -EINVAL;
3865 }
3866
3867 /* Copy in the exec list from userland */
3868 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3869 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3870 if (exec_list == NULL || exec2_list == NULL) {
3871 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3872 args->buffer_count);
3873 drm_free_large(exec_list);
3874 drm_free_large(exec2_list);
3875 return -ENOMEM;
3876 }
3877 ret = copy_from_user(exec_list,
3878 (struct drm_i915_relocation_entry __user *)
3879 (uintptr_t) args->buffers_ptr,
3880 sizeof(*exec_list) * args->buffer_count);
3881 if (ret != 0) {
3882 DRM_ERROR("copy %d exec entries failed %d\n",
3883 args->buffer_count, ret);
3884 drm_free_large(exec_list);
3885 drm_free_large(exec2_list);
3886 return -EFAULT;
3887 }
3888
3889 for (i = 0; i < args->buffer_count; i++) {
3890 exec2_list[i].handle = exec_list[i].handle;
3891 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3892 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3893 exec2_list[i].alignment = exec_list[i].alignment;
3894 exec2_list[i].offset = exec_list[i].offset;
3895 if (!IS_I965G(dev))
3896 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3897 else
3898 exec2_list[i].flags = 0;
3899 }
3900
3901 exec2.buffers_ptr = args->buffers_ptr;
3902 exec2.buffer_count = args->buffer_count;
3903 exec2.batch_start_offset = args->batch_start_offset;
3904 exec2.batch_len = args->batch_len;
3905 exec2.DR1 = args->DR1;
3906 exec2.DR4 = args->DR4;
3907 exec2.num_cliprects = args->num_cliprects;
3908 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3909 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3910
3911 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3912 if (!ret) {
3913 /* Copy the new buffer offsets back to the user's exec list. */
3914 for (i = 0; i < args->buffer_count; i++)
3915 exec_list[i].offset = exec2_list[i].offset;
3916 /* ... and back out to userspace */
3917 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3918 (uintptr_t) args->buffers_ptr,
3919 exec_list,
3920 sizeof(*exec_list) * args->buffer_count);
3921 if (ret) {
3922 ret = -EFAULT;
3923 DRM_ERROR("failed to copy %d exec entries "
3924 "back to user (%d)\n",
3925 args->buffer_count, ret);
3926 }
76446cac
JB
3927 }
3928
3929 drm_free_large(exec_list);
3930 drm_free_large(exec2_list);
3931 return ret;
3932}
3933
3934int
3935i915_gem_execbuffer2(struct drm_device *dev, void *data,
3936 struct drm_file *file_priv)
3937{
3938 struct drm_i915_gem_execbuffer2 *args = data;
3939 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3940 int ret;
3941
3942#if WATCH_EXEC
3943 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3944 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3945#endif
3946
3947 if (args->buffer_count < 1) {
3948 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3949 return -EINVAL;
3950 }
3951
3952 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3953 if (exec2_list == NULL) {
3954 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3955 args->buffer_count);
3956 return -ENOMEM;
3957 }
3958 ret = copy_from_user(exec2_list,
3959 (struct drm_i915_relocation_entry __user *)
3960 (uintptr_t) args->buffers_ptr,
3961 sizeof(*exec2_list) * args->buffer_count);
3962 if (ret != 0) {
3963 DRM_ERROR("copy %d exec entries failed %d\n",
3964 args->buffer_count, ret);
3965 drm_free_large(exec2_list);
3966 return -EFAULT;
3967 }
3968
3969 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3970 if (!ret) {
3971 /* Copy the new buffer offsets back to the user's exec list. */
3972 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3973 (uintptr_t) args->buffers_ptr,
3974 exec2_list,
3975 sizeof(*exec2_list) * args->buffer_count);
3976 if (ret) {
3977 ret = -EFAULT;
3978 DRM_ERROR("failed to copy %d exec entries "
3979 "back to user (%d)\n",
3980 args->buffer_count, ret);
3981 }
3982 }
3983
3984 drm_free_large(exec2_list);
3985 return ret;
3986}
3987
673a394b
EA
3988int
3989i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3990{
3991 struct drm_device *dev = obj->dev;
23010e43 3992 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3993 int ret;
3994
778c3544
DV
3995 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3996
673a394b 3997 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
3998
3999 if (obj_priv->gtt_space != NULL) {
4000 if (alignment == 0)
4001 alignment = i915_gem_get_gtt_alignment(obj);
4002 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4003 WARN(obj_priv->pin_count,
4004 "bo is already pinned with incorrect alignment:"
4005 " offset=%x, req.alignment=%x\n",
4006 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4007 ret = i915_gem_object_unbind(obj);
4008 if (ret)
4009 return ret;
4010 }
4011 }
4012
673a394b
EA
4013 if (obj_priv->gtt_space == NULL) {
4014 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4015 if (ret)
673a394b 4016 return ret;
22c344e9 4017 }
76446cac 4018
673a394b
EA
4019 obj_priv->pin_count++;
4020
4021 /* If the object is not active and not pending a flush,
4022 * remove it from the inactive list
4023 */
4024 if (obj_priv->pin_count == 1) {
4025 atomic_inc(&dev->pin_count);
4026 atomic_add(obj->size, &dev->pin_memory);
4027 if (!obj_priv->active &&
bf1a1092 4028 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4029 list_del_init(&obj_priv->list);
4030 }
4031 i915_verify_inactive(dev, __FILE__, __LINE__);
4032
4033 return 0;
4034}
4035
4036void
4037i915_gem_object_unpin(struct drm_gem_object *obj)
4038{
4039 struct drm_device *dev = obj->dev;
4040 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4041 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4042
4043 i915_verify_inactive(dev, __FILE__, __LINE__);
4044 obj_priv->pin_count--;
4045 BUG_ON(obj_priv->pin_count < 0);
4046 BUG_ON(obj_priv->gtt_space == NULL);
4047
4048 /* If the object is no longer pinned, and is
4049 * neither active nor being flushed, then stick it on
4050 * the inactive list
4051 */
4052 if (obj_priv->pin_count == 0) {
4053 if (!obj_priv->active &&
21d509e3 4054 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4055 list_move_tail(&obj_priv->list,
4056 &dev_priv->mm.inactive_list);
4057 atomic_dec(&dev->pin_count);
4058 atomic_sub(obj->size, &dev->pin_memory);
4059 }
4060 i915_verify_inactive(dev, __FILE__, __LINE__);
4061}
4062
4063int
4064i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4065 struct drm_file *file_priv)
4066{
4067 struct drm_i915_gem_pin *args = data;
4068 struct drm_gem_object *obj;
4069 struct drm_i915_gem_object *obj_priv;
4070 int ret;
4071
4072 mutex_lock(&dev->struct_mutex);
4073
4074 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4075 if (obj == NULL) {
4076 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4077 args->handle);
4078 mutex_unlock(&dev->struct_mutex);
bf79cb91 4079 return -ENOENT;
673a394b 4080 }
23010e43 4081 obj_priv = to_intel_bo(obj);
673a394b 4082
bb6baf76
CW
4083 if (obj_priv->madv != I915_MADV_WILLNEED) {
4084 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4085 drm_gem_object_unreference(obj);
4086 mutex_unlock(&dev->struct_mutex);
4087 return -EINVAL;
4088 }
4089
79e53945
JB
4090 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4091 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4092 args->handle);
96dec61d 4093 drm_gem_object_unreference(obj);
673a394b 4094 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4095 return -EINVAL;
4096 }
4097
4098 obj_priv->user_pin_count++;
4099 obj_priv->pin_filp = file_priv;
4100 if (obj_priv->user_pin_count == 1) {
4101 ret = i915_gem_object_pin(obj, args->alignment);
4102 if (ret != 0) {
4103 drm_gem_object_unreference(obj);
4104 mutex_unlock(&dev->struct_mutex);
4105 return ret;
4106 }
673a394b
EA
4107 }
4108
4109 /* XXX - flush the CPU caches for pinned objects
4110 * as the X server doesn't manage domains yet
4111 */
e47c68e9 4112 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4113 args->offset = obj_priv->gtt_offset;
4114 drm_gem_object_unreference(obj);
4115 mutex_unlock(&dev->struct_mutex);
4116
4117 return 0;
4118}
4119
4120int
4121i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4122 struct drm_file *file_priv)
4123{
4124 struct drm_i915_gem_pin *args = data;
4125 struct drm_gem_object *obj;
79e53945 4126 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4127
4128 mutex_lock(&dev->struct_mutex);
4129
4130 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4131 if (obj == NULL) {
4132 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4133 args->handle);
4134 mutex_unlock(&dev->struct_mutex);
bf79cb91 4135 return -ENOENT;
673a394b
EA
4136 }
4137
23010e43 4138 obj_priv = to_intel_bo(obj);
79e53945
JB
4139 if (obj_priv->pin_filp != file_priv) {
4140 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4141 args->handle);
4142 drm_gem_object_unreference(obj);
4143 mutex_unlock(&dev->struct_mutex);
4144 return -EINVAL;
4145 }
4146 obj_priv->user_pin_count--;
4147 if (obj_priv->user_pin_count == 0) {
4148 obj_priv->pin_filp = NULL;
4149 i915_gem_object_unpin(obj);
4150 }
673a394b
EA
4151
4152 drm_gem_object_unreference(obj);
4153 mutex_unlock(&dev->struct_mutex);
4154 return 0;
4155}
4156
4157int
4158i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4159 struct drm_file *file_priv)
4160{
4161 struct drm_i915_gem_busy *args = data;
4162 struct drm_gem_object *obj;
4163 struct drm_i915_gem_object *obj_priv;
4164
673a394b
EA
4165 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4166 if (obj == NULL) {
4167 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4168 args->handle);
bf79cb91 4169 return -ENOENT;
673a394b
EA
4170 }
4171
b1ce786c 4172 mutex_lock(&dev->struct_mutex);
d1b851fc 4173
0be555b6
CW
4174 /* Count all active objects as busy, even if they are currently not used
4175 * by the gpu. Users of this interface expect objects to eventually
4176 * become non-busy without any further actions, therefore emit any
4177 * necessary flushes here.
c4de0a5d 4178 */
0be555b6
CW
4179 obj_priv = to_intel_bo(obj);
4180 args->busy = obj_priv->active;
4181 if (args->busy) {
4182 /* Unconditionally flush objects, even when the gpu still uses this
4183 * object. Userspace calling this function indicates that it wants to
4184 * use this buffer rather sooner than later, so issuing the required
4185 * flush earlier is beneficial.
4186 */
4187 if (obj->write_domain) {
4188 i915_gem_flush(dev, 0, obj->write_domain);
8dc5d147 4189 (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
0be555b6
CW
4190 }
4191
4192 /* Update the active list for the hardware's current position.
4193 * Otherwise this only updates on a delayed timer or when irqs
4194 * are actually unmasked, and our working set ends up being
4195 * larger than required.
4196 */
4197 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4198
4199 args->busy = obj_priv->active;
4200 }
673a394b
EA
4201
4202 drm_gem_object_unreference(obj);
4203 mutex_unlock(&dev->struct_mutex);
4204 return 0;
4205}
4206
4207int
4208i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4209 struct drm_file *file_priv)
4210{
4211 return i915_gem_ring_throttle(dev, file_priv);
4212}
4213
3ef94daa
CW
4214int
4215i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4216 struct drm_file *file_priv)
4217{
4218 struct drm_i915_gem_madvise *args = data;
4219 struct drm_gem_object *obj;
4220 struct drm_i915_gem_object *obj_priv;
4221
4222 switch (args->madv) {
4223 case I915_MADV_DONTNEED:
4224 case I915_MADV_WILLNEED:
4225 break;
4226 default:
4227 return -EINVAL;
4228 }
4229
4230 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4231 if (obj == NULL) {
4232 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4233 args->handle);
bf79cb91 4234 return -ENOENT;
3ef94daa
CW
4235 }
4236
4237 mutex_lock(&dev->struct_mutex);
23010e43 4238 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4239
4240 if (obj_priv->pin_count) {
4241 drm_gem_object_unreference(obj);
4242 mutex_unlock(&dev->struct_mutex);
4243
4244 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4245 return -EINVAL;
4246 }
4247
bb6baf76
CW
4248 if (obj_priv->madv != __I915_MADV_PURGED)
4249 obj_priv->madv = args->madv;
3ef94daa 4250
2d7ef395
CW
4251 /* if the object is no longer bound, discard its backing storage */
4252 if (i915_gem_object_is_purgeable(obj_priv) &&
4253 obj_priv->gtt_space == NULL)
4254 i915_gem_object_truncate(obj);
4255
bb6baf76
CW
4256 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4257
3ef94daa
CW
4258 drm_gem_object_unreference(obj);
4259 mutex_unlock(&dev->struct_mutex);
4260
4261 return 0;
4262}
4263
ac52bc56
DV
4264struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4265 size_t size)
4266{
c397b908 4267 struct drm_i915_gem_object *obj;
ac52bc56 4268
c397b908
DV
4269 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4270 if (obj == NULL)
4271 return NULL;
673a394b 4272
c397b908
DV
4273 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4274 kfree(obj);
4275 return NULL;
4276 }
673a394b 4277
c397b908
DV
4278 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4279 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4280
c397b908 4281 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4282 obj->base.driver_private = NULL;
c397b908
DV
4283 obj->fence_reg = I915_FENCE_REG_NONE;
4284 INIT_LIST_HEAD(&obj->list);
4285 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4286 obj->madv = I915_MADV_WILLNEED;
de151cf6 4287
c397b908
DV
4288 trace_i915_gem_object_create(&obj->base);
4289
4290 return &obj->base;
4291}
4292
4293int i915_gem_init_object(struct drm_gem_object *obj)
4294{
4295 BUG();
de151cf6 4296
673a394b
EA
4297 return 0;
4298}
4299
be72615b 4300static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4301{
de151cf6 4302 struct drm_device *dev = obj->dev;
be72615b 4303 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4304 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4305 int ret;
673a394b 4306
be72615b
CW
4307 ret = i915_gem_object_unbind(obj);
4308 if (ret == -ERESTARTSYS) {
4309 list_move(&obj_priv->list,
4310 &dev_priv->mm.deferred_free_list);
4311 return;
4312 }
673a394b 4313
7e616158
CW
4314 if (obj_priv->mmap_offset)
4315 i915_gem_free_mmap_offset(obj);
de151cf6 4316
c397b908
DV
4317 drm_gem_object_release(obj);
4318
9a298b2a 4319 kfree(obj_priv->page_cpu_valid);
280b713b 4320 kfree(obj_priv->bit_17);
c397b908 4321 kfree(obj_priv);
673a394b
EA
4322}
4323
be72615b
CW
4324void i915_gem_free_object(struct drm_gem_object *obj)
4325{
4326 struct drm_device *dev = obj->dev;
4327 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4328
4329 trace_i915_gem_object_destroy(obj);
4330
4331 while (obj_priv->pin_count > 0)
4332 i915_gem_object_unpin(obj);
4333
4334 if (obj_priv->phys_obj)
4335 i915_gem_detach_phys_object(dev, obj);
4336
4337 i915_gem_free_object_tail(obj);
4338}
4339
29105ccc
CW
4340int
4341i915_gem_idle(struct drm_device *dev)
4342{
4343 drm_i915_private_t *dev_priv = dev->dev_private;
4344 int ret;
28dfe52a 4345
29105ccc 4346 mutex_lock(&dev->struct_mutex);
1c5d22f7 4347
8187a2b7 4348 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4349 (dev_priv->render_ring.gem_object == NULL) ||
4350 (HAS_BSD(dev) &&
4351 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4352 mutex_unlock(&dev->struct_mutex);
4353 return 0;
28dfe52a
EA
4354 }
4355
29105ccc 4356 ret = i915_gpu_idle(dev);
6dbe2772
KP
4357 if (ret) {
4358 mutex_unlock(&dev->struct_mutex);
673a394b 4359 return ret;
6dbe2772 4360 }
673a394b 4361
29105ccc
CW
4362 /* Under UMS, be paranoid and evict. */
4363 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4364 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4365 if (ret) {
4366 mutex_unlock(&dev->struct_mutex);
4367 return ret;
4368 }
4369 }
4370
4371 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4372 * We need to replace this with a semaphore, or something.
4373 * And not confound mm.suspended!
4374 */
4375 dev_priv->mm.suspended = 1;
bc0c7f14 4376 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4377
4378 i915_kernel_lost_context(dev);
6dbe2772 4379 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4380
6dbe2772
KP
4381 mutex_unlock(&dev->struct_mutex);
4382
29105ccc
CW
4383 /* Cancel the retire work handler, which should be idle now. */
4384 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4385
673a394b
EA
4386 return 0;
4387}
4388
e552eb70
JB
4389/*
4390 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4391 * over cache flushing.
4392 */
8187a2b7 4393static int
e552eb70
JB
4394i915_gem_init_pipe_control(struct drm_device *dev)
4395{
4396 drm_i915_private_t *dev_priv = dev->dev_private;
4397 struct drm_gem_object *obj;
4398 struct drm_i915_gem_object *obj_priv;
4399 int ret;
4400
34dc4d44 4401 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4402 if (obj == NULL) {
4403 DRM_ERROR("Failed to allocate seqno page\n");
4404 ret = -ENOMEM;
4405 goto err;
4406 }
4407 obj_priv = to_intel_bo(obj);
4408 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4409
4410 ret = i915_gem_object_pin(obj, 4096);
4411 if (ret)
4412 goto err_unref;
4413
4414 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4415 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4416 if (dev_priv->seqno_page == NULL)
4417 goto err_unpin;
4418
4419 dev_priv->seqno_obj = obj;
4420 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4421
4422 return 0;
4423
4424err_unpin:
4425 i915_gem_object_unpin(obj);
4426err_unref:
4427 drm_gem_object_unreference(obj);
4428err:
4429 return ret;
4430}
4431
8187a2b7
ZN
4432
4433static void
e552eb70
JB
4434i915_gem_cleanup_pipe_control(struct drm_device *dev)
4435{
4436 drm_i915_private_t *dev_priv = dev->dev_private;
4437 struct drm_gem_object *obj;
4438 struct drm_i915_gem_object *obj_priv;
4439
4440 obj = dev_priv->seqno_obj;
4441 obj_priv = to_intel_bo(obj);
4442 kunmap(obj_priv->pages[0]);
4443 i915_gem_object_unpin(obj);
4444 drm_gem_object_unreference(obj);
4445 dev_priv->seqno_obj = NULL;
4446
4447 dev_priv->seqno_page = NULL;
673a394b
EA
4448}
4449
8187a2b7
ZN
4450int
4451i915_gem_init_ringbuffer(struct drm_device *dev)
4452{
4453 drm_i915_private_t *dev_priv = dev->dev_private;
4454 int ret;
68f95ba9 4455
8187a2b7 4456 dev_priv->render_ring = render_ring;
68f95ba9 4457
8187a2b7
ZN
4458 if (!I915_NEED_GFX_HWS(dev)) {
4459 dev_priv->render_ring.status_page.page_addr
4460 = dev_priv->status_page_dmah->vaddr;
4461 memset(dev_priv->render_ring.status_page.page_addr,
4462 0, PAGE_SIZE);
4463 }
68f95ba9 4464
8187a2b7
ZN
4465 if (HAS_PIPE_CONTROL(dev)) {
4466 ret = i915_gem_init_pipe_control(dev);
4467 if (ret)
4468 return ret;
4469 }
68f95ba9 4470
8187a2b7 4471 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4472 if (ret)
4473 goto cleanup_pipe_control;
4474
4475 if (HAS_BSD(dev)) {
d1b851fc
ZN
4476 dev_priv->bsd_ring = bsd_ring;
4477 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4478 if (ret)
4479 goto cleanup_render_ring;
d1b851fc 4480 }
68f95ba9 4481
6f392d54
CW
4482 dev_priv->next_seqno = 1;
4483
68f95ba9
CW
4484 return 0;
4485
4486cleanup_render_ring:
4487 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4488cleanup_pipe_control:
4489 if (HAS_PIPE_CONTROL(dev))
4490 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4491 return ret;
4492}
4493
4494void
4495i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4496{
4497 drm_i915_private_t *dev_priv = dev->dev_private;
4498
4499 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4500 if (HAS_BSD(dev))
4501 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4502 if (HAS_PIPE_CONTROL(dev))
4503 i915_gem_cleanup_pipe_control(dev);
4504}
4505
673a394b
EA
4506int
4507i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4508 struct drm_file *file_priv)
4509{
4510 drm_i915_private_t *dev_priv = dev->dev_private;
4511 int ret;
4512
79e53945
JB
4513 if (drm_core_check_feature(dev, DRIVER_MODESET))
4514 return 0;
4515
ba1234d1 4516 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4517 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4518 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4519 }
4520
673a394b 4521 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4522 dev_priv->mm.suspended = 0;
4523
4524 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4525 if (ret != 0) {
4526 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4527 return ret;
d816f6ac 4528 }
9bb2d6f9 4529
852835f3 4530 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4531 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4532 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4533 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4534 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4535 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4536 mutex_unlock(&dev->struct_mutex);
dbb19d30 4537
5f35308b
CW
4538 ret = drm_irq_install(dev);
4539 if (ret)
4540 goto cleanup_ringbuffer;
dbb19d30 4541
673a394b 4542 return 0;
5f35308b
CW
4543
4544cleanup_ringbuffer:
4545 mutex_lock(&dev->struct_mutex);
4546 i915_gem_cleanup_ringbuffer(dev);
4547 dev_priv->mm.suspended = 1;
4548 mutex_unlock(&dev->struct_mutex);
4549
4550 return ret;
673a394b
EA
4551}
4552
4553int
4554i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4555 struct drm_file *file_priv)
4556{
79e53945
JB
4557 if (drm_core_check_feature(dev, DRIVER_MODESET))
4558 return 0;
4559
dbb19d30 4560 drm_irq_uninstall(dev);
e6890f6f 4561 return i915_gem_idle(dev);
673a394b
EA
4562}
4563
4564void
4565i915_gem_lastclose(struct drm_device *dev)
4566{
4567 int ret;
673a394b 4568
e806b495
EA
4569 if (drm_core_check_feature(dev, DRIVER_MODESET))
4570 return;
4571
6dbe2772
KP
4572 ret = i915_gem_idle(dev);
4573 if (ret)
4574 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4575}
4576
4577void
4578i915_gem_load(struct drm_device *dev)
4579{
b5aa8a0f 4580 int i;
673a394b
EA
4581 drm_i915_private_t *dev_priv = dev->dev_private;
4582
673a394b 4583 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4584 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4585 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4586 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4587 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4588 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4589 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4590 if (HAS_BSD(dev)) {
4591 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4592 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4593 }
007cc8ac
DV
4594 for (i = 0; i < 16; i++)
4595 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4596 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4597 i915_gem_retire_work_handler);
31169714
CW
4598 spin_lock(&shrink_list_lock);
4599 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4600 spin_unlock(&shrink_list_lock);
4601
94400120
DA
4602 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4603 if (IS_GEN3(dev)) {
4604 u32 tmp = I915_READ(MI_ARB_STATE);
4605 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4606 /* arb state is a masked write, so set bit + bit in mask */
4607 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4608 I915_WRITE(MI_ARB_STATE, tmp);
4609 }
4610 }
4611
de151cf6 4612 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4613 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4614 dev_priv->fence_reg_start = 3;
de151cf6 4615
0f973f27 4616 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4617 dev_priv->num_fence_regs = 16;
4618 else
4619 dev_priv->num_fence_regs = 8;
4620
b5aa8a0f
GH
4621 /* Initialize fence registers to zero */
4622 if (IS_I965G(dev)) {
4623 for (i = 0; i < 16; i++)
4624 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4625 } else {
4626 for (i = 0; i < 8; i++)
4627 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4628 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4629 for (i = 0; i < 8; i++)
4630 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4631 }
673a394b 4632 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4633 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4634}
71acb5eb
DA
4635
4636/*
4637 * Create a physically contiguous memory object for this object
4638 * e.g. for cursor + overlay regs
4639 */
995b6762
CW
4640static int i915_gem_init_phys_object(struct drm_device *dev,
4641 int id, int size, int align)
71acb5eb
DA
4642{
4643 drm_i915_private_t *dev_priv = dev->dev_private;
4644 struct drm_i915_gem_phys_object *phys_obj;
4645 int ret;
4646
4647 if (dev_priv->mm.phys_objs[id - 1] || !size)
4648 return 0;
4649
9a298b2a 4650 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4651 if (!phys_obj)
4652 return -ENOMEM;
4653
4654 phys_obj->id = id;
4655
6eeefaf3 4656 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4657 if (!phys_obj->handle) {
4658 ret = -ENOMEM;
4659 goto kfree_obj;
4660 }
4661#ifdef CONFIG_X86
4662 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4663#endif
4664
4665 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4666
4667 return 0;
4668kfree_obj:
9a298b2a 4669 kfree(phys_obj);
71acb5eb
DA
4670 return ret;
4671}
4672
995b6762 4673static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4674{
4675 drm_i915_private_t *dev_priv = dev->dev_private;
4676 struct drm_i915_gem_phys_object *phys_obj;
4677
4678 if (!dev_priv->mm.phys_objs[id - 1])
4679 return;
4680
4681 phys_obj = dev_priv->mm.phys_objs[id - 1];
4682 if (phys_obj->cur_obj) {
4683 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4684 }
4685
4686#ifdef CONFIG_X86
4687 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4688#endif
4689 drm_pci_free(dev, phys_obj->handle);
4690 kfree(phys_obj);
4691 dev_priv->mm.phys_objs[id - 1] = NULL;
4692}
4693
4694void i915_gem_free_all_phys_object(struct drm_device *dev)
4695{
4696 int i;
4697
260883c8 4698 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4699 i915_gem_free_phys_object(dev, i);
4700}
4701
4702void i915_gem_detach_phys_object(struct drm_device *dev,
4703 struct drm_gem_object *obj)
4704{
4705 struct drm_i915_gem_object *obj_priv;
4706 int i;
4707 int ret;
4708 int page_count;
4709
23010e43 4710 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4711 if (!obj_priv->phys_obj)
4712 return;
4713
4bdadb97 4714 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4715 if (ret)
4716 goto out;
4717
4718 page_count = obj->size / PAGE_SIZE;
4719
4720 for (i = 0; i < page_count; i++) {
856fa198 4721 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4722 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4723
4724 memcpy(dst, src, PAGE_SIZE);
4725 kunmap_atomic(dst, KM_USER0);
4726 }
856fa198 4727 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4728 drm_agp_chipset_flush(dev);
d78b47b9
CW
4729
4730 i915_gem_object_put_pages(obj);
71acb5eb
DA
4731out:
4732 obj_priv->phys_obj->cur_obj = NULL;
4733 obj_priv->phys_obj = NULL;
4734}
4735
4736int
4737i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4738 struct drm_gem_object *obj,
4739 int id,
4740 int align)
71acb5eb
DA
4741{
4742 drm_i915_private_t *dev_priv = dev->dev_private;
4743 struct drm_i915_gem_object *obj_priv;
4744 int ret = 0;
4745 int page_count;
4746 int i;
4747
4748 if (id > I915_MAX_PHYS_OBJECT)
4749 return -EINVAL;
4750
23010e43 4751 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4752
4753 if (obj_priv->phys_obj) {
4754 if (obj_priv->phys_obj->id == id)
4755 return 0;
4756 i915_gem_detach_phys_object(dev, obj);
4757 }
4758
71acb5eb
DA
4759 /* create a new object */
4760 if (!dev_priv->mm.phys_objs[id - 1]) {
4761 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4762 obj->size, align);
71acb5eb 4763 if (ret) {
aeb565df 4764 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4765 goto out;
4766 }
4767 }
4768
4769 /* bind to the object */
4770 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4771 obj_priv->phys_obj->cur_obj = obj;
4772
4bdadb97 4773 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4774 if (ret) {
4775 DRM_ERROR("failed to get page list\n");
4776 goto out;
4777 }
4778
4779 page_count = obj->size / PAGE_SIZE;
4780
4781 for (i = 0; i < page_count; i++) {
856fa198 4782 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4783 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4784
4785 memcpy(dst, src, PAGE_SIZE);
4786 kunmap_atomic(src, KM_USER0);
4787 }
4788
d78b47b9
CW
4789 i915_gem_object_put_pages(obj);
4790
71acb5eb
DA
4791 return 0;
4792out:
4793 return ret;
4794}
4795
4796static int
4797i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4798 struct drm_i915_gem_pwrite *args,
4799 struct drm_file *file_priv)
4800{
23010e43 4801 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4802 void *obj_addr;
4803 int ret;
4804 char __user *user_data;
4805
4806 user_data = (char __user *) (uintptr_t) args->data_ptr;
4807 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4808
44d98a61 4809 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4810 ret = copy_from_user(obj_addr, user_data, args->size);
4811 if (ret)
4812 return -EFAULT;
4813
4814 drm_agp_chipset_flush(dev);
4815 return 0;
4816}
b962442e
EA
4817
4818void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4819{
4820 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4821
4822 /* Clean up our request list when the client is going away, so that
4823 * later retire_requests won't dereference our soon-to-be-gone
4824 * file_priv.
4825 */
4826 mutex_lock(&dev->struct_mutex);
4827 while (!list_empty(&i915_file_priv->mm.request_list))
4828 list_del_init(i915_file_priv->mm.request_list.next);
4829 mutex_unlock(&dev->struct_mutex);
4830}
31169714 4831
1637ef41
CW
4832static int
4833i915_gpu_is_active(struct drm_device *dev)
4834{
4835 drm_i915_private_t *dev_priv = dev->dev_private;
4836 int lists_empty;
4837
1637ef41 4838 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4839 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4840 if (HAS_BSD(dev))
4841 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4842
4843 return !lists_empty;
4844}
4845
31169714 4846static int
7f8275d0 4847i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4848{
4849 drm_i915_private_t *dev_priv, *next_dev;
4850 struct drm_i915_gem_object *obj_priv, *next_obj;
4851 int cnt = 0;
4852 int would_deadlock = 1;
4853
4854 /* "fast-path" to count number of available objects */
4855 if (nr_to_scan == 0) {
4856 spin_lock(&shrink_list_lock);
4857 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4858 struct drm_device *dev = dev_priv->dev;
4859
4860 if (mutex_trylock(&dev->struct_mutex)) {
4861 list_for_each_entry(obj_priv,
4862 &dev_priv->mm.inactive_list,
4863 list)
4864 cnt++;
4865 mutex_unlock(&dev->struct_mutex);
4866 }
4867 }
4868 spin_unlock(&shrink_list_lock);
4869
4870 return (cnt / 100) * sysctl_vfs_cache_pressure;
4871 }
4872
4873 spin_lock(&shrink_list_lock);
4874
1637ef41 4875rescan:
31169714
CW
4876 /* first scan for clean buffers */
4877 list_for_each_entry_safe(dev_priv, next_dev,
4878 &shrink_list, mm.shrink_list) {
4879 struct drm_device *dev = dev_priv->dev;
4880
4881 if (! mutex_trylock(&dev->struct_mutex))
4882 continue;
4883
4884 spin_unlock(&shrink_list_lock);
b09a1fec 4885 i915_gem_retire_requests(dev);
31169714
CW
4886
4887 list_for_each_entry_safe(obj_priv, next_obj,
4888 &dev_priv->mm.inactive_list,
4889 list) {
4890 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4891 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4892 if (--nr_to_scan <= 0)
4893 break;
4894 }
4895 }
4896
4897 spin_lock(&shrink_list_lock);
4898 mutex_unlock(&dev->struct_mutex);
4899
963b4836
CW
4900 would_deadlock = 0;
4901
31169714
CW
4902 if (nr_to_scan <= 0)
4903 break;
4904 }
4905
4906 /* second pass, evict/count anything still on the inactive list */
4907 list_for_each_entry_safe(dev_priv, next_dev,
4908 &shrink_list, mm.shrink_list) {
4909 struct drm_device *dev = dev_priv->dev;
4910
4911 if (! mutex_trylock(&dev->struct_mutex))
4912 continue;
4913
4914 spin_unlock(&shrink_list_lock);
4915
4916 list_for_each_entry_safe(obj_priv, next_obj,
4917 &dev_priv->mm.inactive_list,
4918 list) {
4919 if (nr_to_scan > 0) {
a8089e84 4920 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4921 nr_to_scan--;
4922 } else
4923 cnt++;
4924 }
4925
4926 spin_lock(&shrink_list_lock);
4927 mutex_unlock(&dev->struct_mutex);
4928
4929 would_deadlock = 0;
4930 }
4931
1637ef41
CW
4932 if (nr_to_scan) {
4933 int active = 0;
4934
4935 /*
4936 * We are desperate for pages, so as a last resort, wait
4937 * for the GPU to finish and discard whatever we can.
4938 * This has a dramatic impact to reduce the number of
4939 * OOM-killer events whilst running the GPU aggressively.
4940 */
4941 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4942 struct drm_device *dev = dev_priv->dev;
4943
4944 if (!mutex_trylock(&dev->struct_mutex))
4945 continue;
4946
4947 spin_unlock(&shrink_list_lock);
4948
4949 if (i915_gpu_is_active(dev)) {
4950 i915_gpu_idle(dev);
4951 active++;
4952 }
4953
4954 spin_lock(&shrink_list_lock);
4955 mutex_unlock(&dev->struct_mutex);
4956 }
4957
4958 if (active)
4959 goto rescan;
4960 }
4961
31169714
CW
4962 spin_unlock(&shrink_list_lock);
4963
4964 if (would_deadlock)
4965 return -1;
4966 else if (cnt > 0)
4967 return (cnt / 100) * sysctl_vfs_cache_pressure;
4968 else
4969 return 0;
4970}
4971
4972static struct shrinker shrinker = {
4973 .shrink = i915_gem_shrink,
4974 .seeks = DEFAULT_SEEKS,
4975};
4976
4977__init void
4978i915_gem_shrinker_init(void)
4979{
4980 register_shrinker(&shrinker);
4981}
4982
4983__exit void
4984i915_gem_shrinker_exit(void)
4985{
4986 unregister_shrinker(&shrinker);
4987}
This page took 0.552974 seconds and 5 git commands to generate.