drm/i915: Use ring->flush() instead of MI_FLUSH
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
31169714
CW
61static LIST_HEAD(shrink_list);
62static DEFINE_SPINLOCK(shrink_list_lock);
63
7d1c4804
CW
64static inline bool
65i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
66{
67 return obj_priv->gtt_space &&
68 !obj_priv->active &&
69 obj_priv->pin_count == 0;
70}
71
79e53945
JB
72int i915_gem_do_init(struct drm_device *dev, unsigned long start,
73 unsigned long end)
673a394b
EA
74{
75 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 76
79e53945
JB
77 if (start >= end ||
78 (start & (PAGE_SIZE - 1)) != 0 ||
79 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
80 return -EINVAL;
81 }
82
79e53945
JB
83 drm_mm_init(&dev_priv->mm.gtt_space, start,
84 end - start);
673a394b 85
79e53945
JB
86 dev->gtt_total = (uint32_t) (end - start);
87
88 return 0;
89}
673a394b 90
79e53945
JB
91int
92i915_gem_init_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
94{
95 struct drm_i915_gem_init *args = data;
96 int ret;
97
98 mutex_lock(&dev->struct_mutex);
99 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
100 mutex_unlock(&dev->struct_mutex);
101
79e53945 102 return ret;
673a394b
EA
103}
104
5a125c3c
EA
105int
106i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
107 struct drm_file *file_priv)
108{
5a125c3c 109 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
110
111 if (!(dev->driver->driver_features & DRIVER_GEM))
112 return -ENODEV;
113
114 args->aper_size = dev->gtt_total;
2678d9d6
KP
115 args->aper_available_size = (args->aper_size -
116 atomic_read(&dev->pin_memory));
5a125c3c
EA
117
118 return 0;
119}
120
673a394b
EA
121
122/**
123 * Creates a new mm object and returns a handle to it.
124 */
125int
126i915_gem_create_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file_priv)
128{
129 struct drm_i915_gem_create *args = data;
130 struct drm_gem_object *obj;
a1a2d1d3
PP
131 int ret;
132 u32 handle;
673a394b
EA
133
134 args->size = roundup(args->size, PAGE_SIZE);
135
136 /* Allocate the new object */
ac52bc56 137 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
138 if (obj == NULL)
139 return -ENOMEM;
140
141 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
142 if (ret) {
143 drm_gem_object_unreference_unlocked(obj);
673a394b 144 return ret;
1dfd9754 145 }
673a394b 146
1dfd9754
CW
147 /* Sink the floating reference from kref_init(handlecount) */
148 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 149
1dfd9754 150 args->handle = handle;
673a394b
EA
151 return 0;
152}
153
eb01459f
EA
154static inline int
155fast_shmem_read(struct page **pages,
156 loff_t page_base, int page_offset,
157 char __user *data,
158 int length)
159{
160 char __iomem *vaddr;
2bc43b5c 161 int unwritten;
eb01459f
EA
162
163 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
164 if (vaddr == NULL)
165 return -ENOMEM;
2bc43b5c 166 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
167 kunmap_atomic(vaddr, KM_USER0);
168
2bc43b5c
FM
169 if (unwritten)
170 return -EFAULT;
171
172 return 0;
eb01459f
EA
173}
174
280b713b
EA
175static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
176{
177 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 178 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
179
180 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
181 obj_priv->tiling_mode != I915_TILING_NONE;
182}
183
99a03df5 184static inline void
40123c1f
EA
185slow_shmem_copy(struct page *dst_page,
186 int dst_offset,
187 struct page *src_page,
188 int src_offset,
189 int length)
190{
191 char *dst_vaddr, *src_vaddr;
192
99a03df5
CW
193 dst_vaddr = kmap(dst_page);
194 src_vaddr = kmap(src_page);
40123c1f
EA
195
196 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
197
99a03df5
CW
198 kunmap(src_page);
199 kunmap(dst_page);
40123c1f
EA
200}
201
99a03df5 202static inline void
280b713b
EA
203slow_shmem_bit17_copy(struct page *gpu_page,
204 int gpu_offset,
205 struct page *cpu_page,
206 int cpu_offset,
207 int length,
208 int is_read)
209{
210 char *gpu_vaddr, *cpu_vaddr;
211
212 /* Use the unswizzled path if this page isn't affected. */
213 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
214 if (is_read)
215 return slow_shmem_copy(cpu_page, cpu_offset,
216 gpu_page, gpu_offset, length);
217 else
218 return slow_shmem_copy(gpu_page, gpu_offset,
219 cpu_page, cpu_offset, length);
220 }
221
99a03df5
CW
222 gpu_vaddr = kmap(gpu_page);
223 cpu_vaddr = kmap(cpu_page);
280b713b
EA
224
225 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226 * XORing with the other bits (A9 for Y, A9 and A10 for X)
227 */
228 while (length > 0) {
229 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230 int this_length = min(cacheline_end - gpu_offset, length);
231 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233 if (is_read) {
234 memcpy(cpu_vaddr + cpu_offset,
235 gpu_vaddr + swizzled_gpu_offset,
236 this_length);
237 } else {
238 memcpy(gpu_vaddr + swizzled_gpu_offset,
239 cpu_vaddr + cpu_offset,
240 this_length);
241 }
242 cpu_offset += this_length;
243 gpu_offset += this_length;
244 length -= this_length;
245 }
246
99a03df5
CW
247 kunmap(cpu_page);
248 kunmap(gpu_page);
280b713b
EA
249}
250
eb01459f
EA
251/**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256static int
257i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260{
23010e43 261 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
4bdadb97 273 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
23010e43 282 obj_priv = to_intel_bo(obj);
eb01459f
EA
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309fail_put_pages:
310 i915_gem_object_put_pages(obj);
311fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315}
316
07f73f69
CW
317static int
318i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
319{
320 int ret;
321
4bdadb97 322 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
323
324 /* If we've insufficient memory to map in the pages, attempt
325 * to make some space by throwing out some old buffers.
326 */
327 if (ret == -ENOMEM) {
328 struct drm_device *dev = obj->dev;
07f73f69 329
0108a3ed
DV
330 ret = i915_gem_evict_something(dev, obj->size,
331 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
332 if (ret)
333 return ret;
334
4bdadb97 335 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
336 }
337
338 return ret;
339}
340
eb01459f
EA
341/**
342 * This is the fallback shmem pread path, which allocates temporary storage
343 * in kernel space to copy_to_user into outside of the struct_mutex, so we
344 * can copy out of the object's backing pages while holding the struct mutex
345 * and not take page faults.
346 */
347static int
348i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
349 struct drm_i915_gem_pread *args,
350 struct drm_file *file_priv)
351{
23010e43 352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
353 struct mm_struct *mm = current->mm;
354 struct page **user_pages;
355 ssize_t remain;
356 loff_t offset, pinned_pages, i;
357 loff_t first_data_page, last_data_page, num_pages;
358 int shmem_page_index, shmem_page_offset;
359 int data_page_index, data_page_offset;
360 int page_length;
361 int ret;
362 uint64_t data_ptr = args->data_ptr;
280b713b 363 int do_bit17_swizzling;
eb01459f
EA
364
365 remain = args->size;
366
367 /* Pin the user pages containing the data. We can't fault while
368 * holding the struct mutex, yet we want to hold it while
369 * dereferencing the user data.
370 */
371 first_data_page = data_ptr / PAGE_SIZE;
372 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
373 num_pages = last_data_page - first_data_page + 1;
374
8e7d2b2c 375 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
376 if (user_pages == NULL)
377 return -ENOMEM;
378
379 down_read(&mm->mmap_sem);
380 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 381 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
382 up_read(&mm->mmap_sem);
383 if (pinned_pages < num_pages) {
384 ret = -EFAULT;
385 goto fail_put_user_pages;
386 }
387
280b713b
EA
388 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
389
eb01459f
EA
390 mutex_lock(&dev->struct_mutex);
391
07f73f69
CW
392 ret = i915_gem_object_get_pages_or_evict(obj);
393 if (ret)
eb01459f
EA
394 goto fail_unlock;
395
396 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
397 args->size);
398 if (ret != 0)
399 goto fail_put_pages;
400
23010e43 401 obj_priv = to_intel_bo(obj);
eb01459f
EA
402 offset = args->offset;
403
404 while (remain > 0) {
405 /* Operation in this page
406 *
407 * shmem_page_index = page number within shmem file
408 * shmem_page_offset = offset within page in shmem file
409 * data_page_index = page number in get_user_pages return
410 * data_page_offset = offset with data_page_index page.
411 * page_length = bytes to copy for this page
412 */
413 shmem_page_index = offset / PAGE_SIZE;
414 shmem_page_offset = offset & ~PAGE_MASK;
415 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
416 data_page_offset = data_ptr & ~PAGE_MASK;
417
418 page_length = remain;
419 if ((shmem_page_offset + page_length) > PAGE_SIZE)
420 page_length = PAGE_SIZE - shmem_page_offset;
421 if ((data_page_offset + page_length) > PAGE_SIZE)
422 page_length = PAGE_SIZE - data_page_offset;
423
280b713b 424 if (do_bit17_swizzling) {
99a03df5 425 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 426 shmem_page_offset,
99a03df5
CW
427 user_pages[data_page_index],
428 data_page_offset,
429 page_length,
430 1);
431 } else {
432 slow_shmem_copy(user_pages[data_page_index],
433 data_page_offset,
434 obj_priv->pages[shmem_page_index],
435 shmem_page_offset,
436 page_length);
280b713b 437 }
eb01459f
EA
438
439 remain -= page_length;
440 data_ptr += page_length;
441 offset += page_length;
442 }
443
444fail_put_pages:
445 i915_gem_object_put_pages(obj);
446fail_unlock:
447 mutex_unlock(&dev->struct_mutex);
448fail_put_user_pages:
449 for (i = 0; i < pinned_pages; i++) {
450 SetPageDirty(user_pages[i]);
451 page_cache_release(user_pages[i]);
452 }
8e7d2b2c 453 drm_free_large(user_pages);
eb01459f
EA
454
455 return ret;
456}
457
673a394b
EA
458/**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463int
464i915_gem_pread_ioctl(struct drm_device *dev, void *data,
465 struct drm_file *file_priv)
466{
467 struct drm_i915_gem_pread *args = data;
468 struct drm_gem_object *obj;
469 struct drm_i915_gem_object *obj_priv;
673a394b
EA
470 int ret;
471
472 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
473 if (obj == NULL)
bf79cb91 474 return -ENOENT;
23010e43 475 obj_priv = to_intel_bo(obj);
673a394b
EA
476
477 /* Bounds check source.
478 *
479 * XXX: This could use review for overflow issues...
480 */
481 if (args->offset > obj->size || args->size > obj->size ||
482 args->offset + args->size > obj->size) {
bc9025bd 483 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
484 return -EINVAL;
485 }
486
280b713b 487 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 488 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
489 } else {
490 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
491 if (ret != 0)
492 ret = i915_gem_shmem_pread_slow(dev, obj, args,
493 file_priv);
494 }
673a394b 495
bc9025bd 496 drm_gem_object_unreference_unlocked(obj);
673a394b 497
eb01459f 498 return ret;
673a394b
EA
499}
500
0839ccb8
KP
501/* This is the fast write path which cannot handle
502 * page faults in the source data
9b7530cc 503 */
0839ccb8
KP
504
505static inline int
506fast_user_write(struct io_mapping *mapping,
507 loff_t page_base, int page_offset,
508 char __user *user_data,
509 int length)
9b7530cc 510{
9b7530cc 511 char *vaddr_atomic;
0839ccb8 512 unsigned long unwritten;
9b7530cc 513
fca3ec01 514 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
515 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
516 user_data, length);
fca3ec01 517 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
518 if (unwritten)
519 return -EFAULT;
520 return 0;
521}
522
523/* Here's the write path which can sleep for
524 * page faults
525 */
526
ab34c226 527static inline void
3de09aa3
EA
528slow_kernel_write(struct io_mapping *mapping,
529 loff_t gtt_base, int gtt_offset,
530 struct page *user_page, int user_offset,
531 int length)
0839ccb8 532{
ab34c226
CW
533 char __iomem *dst_vaddr;
534 char *src_vaddr;
0839ccb8 535
ab34c226
CW
536 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
537 src_vaddr = kmap(user_page);
538
539 memcpy_toio(dst_vaddr + gtt_offset,
540 src_vaddr + user_offset,
541 length);
542
543 kunmap(user_page);
544 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
545}
546
40123c1f
EA
547static inline int
548fast_shmem_write(struct page **pages,
549 loff_t page_base, int page_offset,
550 char __user *data,
551 int length)
552{
553 char __iomem *vaddr;
d0088775 554 unsigned long unwritten;
40123c1f
EA
555
556 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
557 if (vaddr == NULL)
558 return -ENOMEM;
d0088775 559 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
560 kunmap_atomic(vaddr, KM_USER0);
561
d0088775
DA
562 if (unwritten)
563 return -EFAULT;
40123c1f
EA
564 return 0;
565}
566
3de09aa3
EA
567/**
568 * This is the fast pwrite path, where we copy the data directly from the
569 * user into the GTT, uncached.
570 */
673a394b 571static int
3de09aa3
EA
572i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file_priv)
673a394b 575{
23010e43 576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 577 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 578 ssize_t remain;
0839ccb8 579 loff_t offset, page_base;
673a394b 580 char __user *user_data;
0839ccb8
KP
581 int page_offset, page_length;
582 int ret;
673a394b
EA
583
584 user_data = (char __user *) (uintptr_t) args->data_ptr;
585 remain = args->size;
586 if (!access_ok(VERIFY_READ, user_data, remain))
587 return -EFAULT;
588
589
590 mutex_lock(&dev->struct_mutex);
591 ret = i915_gem_object_pin(obj, 0);
592 if (ret) {
593 mutex_unlock(&dev->struct_mutex);
594 return ret;
595 }
2ef7eeaa 596 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
597 if (ret)
598 goto fail;
599
23010e43 600 obj_priv = to_intel_bo(obj);
673a394b 601 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
602
603 while (remain > 0) {
604 /* Operation in this page
605 *
0839ccb8
KP
606 * page_base = page offset within aperture
607 * page_offset = offset within page
608 * page_length = bytes to copy for this page
673a394b 609 */
0839ccb8
KP
610 page_base = (offset & ~(PAGE_SIZE-1));
611 page_offset = offset & (PAGE_SIZE-1);
612 page_length = remain;
613 if ((page_offset + remain) > PAGE_SIZE)
614 page_length = PAGE_SIZE - page_offset;
615
616 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
617 page_offset, user_data, page_length);
618
619 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
620 * source page isn't available. Return the error and we'll
621 * retry in the slow path.
0839ccb8 622 */
3de09aa3
EA
623 if (ret)
624 goto fail;
673a394b 625
0839ccb8
KP
626 remain -= page_length;
627 user_data += page_length;
628 offset += page_length;
673a394b 629 }
673a394b
EA
630
631fail:
632 i915_gem_object_unpin(obj);
633 mutex_unlock(&dev->struct_mutex);
634
635 return ret;
636}
637
3de09aa3
EA
638/**
639 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
640 * the memory and maps it using kmap_atomic for copying.
641 *
642 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
643 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
644 */
3043c60c 645static int
3de09aa3
EA
646i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
647 struct drm_i915_gem_pwrite *args,
648 struct drm_file *file_priv)
673a394b 649{
23010e43 650 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
651 drm_i915_private_t *dev_priv = dev->dev_private;
652 ssize_t remain;
653 loff_t gtt_page_base, offset;
654 loff_t first_data_page, last_data_page, num_pages;
655 loff_t pinned_pages, i;
656 struct page **user_pages;
657 struct mm_struct *mm = current->mm;
658 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 659 int ret;
3de09aa3
EA
660 uint64_t data_ptr = args->data_ptr;
661
662 remain = args->size;
663
664 /* Pin the user pages containing the data. We can't fault while
665 * holding the struct mutex, and all of the pwrite implementations
666 * want to hold it while dereferencing the user data.
667 */
668 first_data_page = data_ptr / PAGE_SIZE;
669 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
670 num_pages = last_data_page - first_data_page + 1;
671
8e7d2b2c 672 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
673 if (user_pages == NULL)
674 return -ENOMEM;
675
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
680 if (pinned_pages < num_pages) {
681 ret = -EFAULT;
682 goto out_unpin_pages;
683 }
673a394b
EA
684
685 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
686 ret = i915_gem_object_pin(obj, 0);
687 if (ret)
688 goto out_unlock;
689
690 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
691 if (ret)
692 goto out_unpin_object;
693
23010e43 694 obj_priv = to_intel_bo(obj);
3de09aa3
EA
695 offset = obj_priv->gtt_offset + args->offset;
696
697 while (remain > 0) {
698 /* Operation in this page
699 *
700 * gtt_page_base = page offset within aperture
701 * gtt_page_offset = offset within page in aperture
702 * data_page_index = page number in get_user_pages return
703 * data_page_offset = offset with data_page_index page.
704 * page_length = bytes to copy for this page
705 */
706 gtt_page_base = offset & PAGE_MASK;
707 gtt_page_offset = offset & ~PAGE_MASK;
708 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
709 data_page_offset = data_ptr & ~PAGE_MASK;
710
711 page_length = remain;
712 if ((gtt_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - gtt_page_offset;
714 if ((data_page_offset + page_length) > PAGE_SIZE)
715 page_length = PAGE_SIZE - data_page_offset;
716
ab34c226
CW
717 slow_kernel_write(dev_priv->mm.gtt_mapping,
718 gtt_page_base, gtt_page_offset,
719 user_pages[data_page_index],
720 data_page_offset,
721 page_length);
3de09aa3
EA
722
723 remain -= page_length;
724 offset += page_length;
725 data_ptr += page_length;
726 }
727
728out_unpin_object:
729 i915_gem_object_unpin(obj);
730out_unlock:
731 mutex_unlock(&dev->struct_mutex);
732out_unpin_pages:
733 for (i = 0; i < pinned_pages; i++)
734 page_cache_release(user_pages[i]);
8e7d2b2c 735 drm_free_large(user_pages);
3de09aa3
EA
736
737 return ret;
738}
739
40123c1f
EA
740/**
741 * This is the fast shmem pwrite path, which attempts to directly
742 * copy_from_user into the kmapped pages backing the object.
743 */
3043c60c 744static int
40123c1f
EA
745i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
746 struct drm_i915_gem_pwrite *args,
747 struct drm_file *file_priv)
673a394b 748{
23010e43 749 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
750 ssize_t remain;
751 loff_t offset, page_base;
752 char __user *user_data;
753 int page_offset, page_length;
673a394b 754 int ret;
40123c1f
EA
755
756 user_data = (char __user *) (uintptr_t) args->data_ptr;
757 remain = args->size;
673a394b
EA
758
759 mutex_lock(&dev->struct_mutex);
760
4bdadb97 761 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
762 if (ret != 0)
763 goto fail_unlock;
673a394b 764
e47c68e9 765 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
766 if (ret != 0)
767 goto fail_put_pages;
768
23010e43 769 obj_priv = to_intel_bo(obj);
40123c1f
EA
770 offset = args->offset;
771 obj_priv->dirty = 1;
772
773 while (remain > 0) {
774 /* Operation in this page
775 *
776 * page_base = page offset within aperture
777 * page_offset = offset within page
778 * page_length = bytes to copy for this page
779 */
780 page_base = (offset & ~(PAGE_SIZE-1));
781 page_offset = offset & (PAGE_SIZE-1);
782 page_length = remain;
783 if ((page_offset + remain) > PAGE_SIZE)
784 page_length = PAGE_SIZE - page_offset;
785
786 ret = fast_shmem_write(obj_priv->pages,
787 page_base, page_offset,
788 user_data, page_length);
789 if (ret)
790 goto fail_put_pages;
791
792 remain -= page_length;
793 user_data += page_length;
794 offset += page_length;
795 }
796
797fail_put_pages:
798 i915_gem_object_put_pages(obj);
799fail_unlock:
800 mutex_unlock(&dev->struct_mutex);
801
802 return ret;
803}
804
805/**
806 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
807 * the memory and maps it using kmap_atomic for copying.
808 *
809 * This avoids taking mmap_sem for faulting on the user's address while the
810 * struct_mutex is held.
811 */
812static int
813i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file_priv)
816{
23010e43 817 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
818 struct mm_struct *mm = current->mm;
819 struct page **user_pages;
820 ssize_t remain;
821 loff_t offset, pinned_pages, i;
822 loff_t first_data_page, last_data_page, num_pages;
823 int shmem_page_index, shmem_page_offset;
824 int data_page_index, data_page_offset;
825 int page_length;
826 int ret;
827 uint64_t data_ptr = args->data_ptr;
280b713b 828 int do_bit17_swizzling;
40123c1f
EA
829
830 remain = args->size;
831
832 /* Pin the user pages containing the data. We can't fault while
833 * holding the struct mutex, and all of the pwrite implementations
834 * want to hold it while dereferencing the user data.
835 */
836 first_data_page = data_ptr / PAGE_SIZE;
837 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838 num_pages = last_data_page - first_data_page + 1;
839
8e7d2b2c 840 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
841 if (user_pages == NULL)
842 return -ENOMEM;
843
844 down_read(&mm->mmap_sem);
845 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
846 num_pages, 0, 0, user_pages, NULL);
847 up_read(&mm->mmap_sem);
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
850 goto fail_put_user_pages;
673a394b
EA
851 }
852
280b713b
EA
853 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
854
40123c1f
EA
855 mutex_lock(&dev->struct_mutex);
856
07f73f69
CW
857 ret = i915_gem_object_get_pages_or_evict(obj);
858 if (ret)
40123c1f
EA
859 goto fail_unlock;
860
861 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
862 if (ret != 0)
863 goto fail_put_pages;
864
23010e43 865 obj_priv = to_intel_bo(obj);
673a394b 866 offset = args->offset;
40123c1f 867 obj_priv->dirty = 1;
673a394b 868
40123c1f
EA
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * shmem_page_index = page number within shmem file
873 * shmem_page_offset = offset within page in shmem file
874 * data_page_index = page number in get_user_pages return
875 * data_page_offset = offset with data_page_index page.
876 * page_length = bytes to copy for this page
877 */
878 shmem_page_index = offset / PAGE_SIZE;
879 shmem_page_offset = offset & ~PAGE_MASK;
880 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
881 data_page_offset = data_ptr & ~PAGE_MASK;
882
883 page_length = remain;
884 if ((shmem_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - shmem_page_offset;
886 if ((data_page_offset + page_length) > PAGE_SIZE)
887 page_length = PAGE_SIZE - data_page_offset;
888
280b713b 889 if (do_bit17_swizzling) {
99a03df5 890 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
99a03df5
CW
894 page_length,
895 0);
896 } else {
897 slow_shmem_copy(obj_priv->pages[shmem_page_index],
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
280b713b 902 }
40123c1f
EA
903
904 remain -= page_length;
905 data_ptr += page_length;
906 offset += page_length;
673a394b
EA
907 }
908
40123c1f
EA
909fail_put_pages:
910 i915_gem_object_put_pages(obj);
911fail_unlock:
673a394b 912 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
913fail_put_user_pages:
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
8e7d2b2c 916 drm_free_large(user_pages);
673a394b 917
40123c1f 918 return ret;
673a394b
EA
919}
920
921/**
922 * Writes data to the object referenced by handle.
923 *
924 * On error, the contents of the buffer that were to be modified are undefined.
925 */
926int
927i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
928 struct drm_file *file_priv)
929{
930 struct drm_i915_gem_pwrite *args = data;
931 struct drm_gem_object *obj;
932 struct drm_i915_gem_object *obj_priv;
933 int ret = 0;
934
935 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
936 if (obj == NULL)
bf79cb91 937 return -ENOENT;
23010e43 938 obj_priv = to_intel_bo(obj);
673a394b
EA
939
940 /* Bounds check destination.
941 *
942 * XXX: This could use review for overflow issues...
943 */
944 if (args->offset > obj->size || args->size > obj->size ||
945 args->offset + args->size > obj->size) {
bc9025bd 946 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
947 return -EINVAL;
948 }
949
950 /* We can only do the GTT pwrite on untiled buffers, as otherwise
951 * it would end up going through the fenced access, and we'll get
952 * different detiling behavior between reading and writing.
953 * pread/pwrite currently are reading and writing from the CPU
954 * perspective, requiring manual detiling by the client.
955 */
71acb5eb
DA
956 if (obj_priv->phys_obj)
957 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
958 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
959 dev->gtt_total != 0 &&
960 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
961 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
962 if (ret == -EFAULT) {
963 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
964 file_priv);
965 }
280b713b
EA
966 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
967 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
968 } else {
969 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
970 if (ret == -EFAULT) {
971 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
972 file_priv);
973 }
974 }
673a394b
EA
975
976#if WATCH_PWRITE
977 if (ret)
978 DRM_INFO("pwrite failed %d\n", ret);
979#endif
980
bc9025bd 981 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
982
983 return ret;
984}
985
986/**
2ef7eeaa
EA
987 * Called when user space prepares to use an object with the CPU, either
988 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
989 */
990int
991i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
992 struct drm_file *file_priv)
993{
a09ba7fa 994 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
995 struct drm_i915_gem_set_domain *args = data;
996 struct drm_gem_object *obj;
652c393a 997 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
998 uint32_t read_domains = args->read_domains;
999 uint32_t write_domain = args->write_domain;
673a394b
EA
1000 int ret;
1001
1002 if (!(dev->driver->driver_features & DRIVER_GEM))
1003 return -ENODEV;
1004
2ef7eeaa 1005 /* Only handle setting domains to types used by the CPU. */
21d509e3 1006 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1007 return -EINVAL;
1008
21d509e3 1009 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1010 return -EINVAL;
1011
1012 /* Having something in the write domain implies it's in the read
1013 * domain, and only that read domain. Enforce that in the request.
1014 */
1015 if (write_domain != 0 && read_domains != write_domain)
1016 return -EINVAL;
1017
673a394b
EA
1018 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1019 if (obj == NULL)
bf79cb91 1020 return -ENOENT;
23010e43 1021 obj_priv = to_intel_bo(obj);
673a394b
EA
1022
1023 mutex_lock(&dev->struct_mutex);
652c393a
JB
1024
1025 intel_mark_busy(dev, obj);
1026
673a394b 1027#if WATCH_BUF
cfd43c02 1028 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1029 obj, obj->size, read_domains, write_domain);
673a394b 1030#endif
2ef7eeaa
EA
1031 if (read_domains & I915_GEM_DOMAIN_GTT) {
1032 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1033
a09ba7fa
EA
1034 /* Update the LRU on the fence for the CPU access that's
1035 * about to occur.
1036 */
1037 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1038 struct drm_i915_fence_reg *reg =
1039 &dev_priv->fence_regs[obj_priv->fence_reg];
1040 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1041 &dev_priv->mm.fence_list);
1042 }
1043
02354392
EA
1044 /* Silently promote "you're not bound, there was nothing to do"
1045 * to success, since the client was just asking us to
1046 * make sure everything was done.
1047 */
1048 if (ret == -EINVAL)
1049 ret = 0;
2ef7eeaa 1050 } else {
e47c68e9 1051 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1052 }
1053
7d1c4804
CW
1054
1055 /* Maintain LRU order of "inactive" objects */
1056 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1057 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1058
673a394b
EA
1059 drm_gem_object_unreference(obj);
1060 mutex_unlock(&dev->struct_mutex);
1061 return ret;
1062}
1063
1064/**
1065 * Called when user space has done writes to this buffer
1066 */
1067int
1068i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1069 struct drm_file *file_priv)
1070{
1071 struct drm_i915_gem_sw_finish *args = data;
1072 struct drm_gem_object *obj;
1073 struct drm_i915_gem_object *obj_priv;
1074 int ret = 0;
1075
1076 if (!(dev->driver->driver_features & DRIVER_GEM))
1077 return -ENODEV;
1078
1079 mutex_lock(&dev->struct_mutex);
1080 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1081 if (obj == NULL) {
1082 mutex_unlock(&dev->struct_mutex);
bf79cb91 1083 return -ENOENT;
673a394b
EA
1084 }
1085
1086#if WATCH_BUF
cfd43c02 1087 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1088 __func__, args->handle, obj, obj->size);
1089#endif
23010e43 1090 obj_priv = to_intel_bo(obj);
673a394b
EA
1091
1092 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1093 if (obj_priv->pin_count)
1094 i915_gem_object_flush_cpu_write_domain(obj);
1095
673a394b
EA
1096 drm_gem_object_unreference(obj);
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1099}
1100
1101/**
1102 * Maps the contents of an object, returning the address it is mapped
1103 * into.
1104 *
1105 * While the mapping holds a reference on the contents of the object, it doesn't
1106 * imply a ref on the object itself.
1107 */
1108int
1109i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1110 struct drm_file *file_priv)
1111{
1112 struct drm_i915_gem_mmap *args = data;
1113 struct drm_gem_object *obj;
1114 loff_t offset;
1115 unsigned long addr;
1116
1117 if (!(dev->driver->driver_features & DRIVER_GEM))
1118 return -ENODEV;
1119
1120 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1121 if (obj == NULL)
bf79cb91 1122 return -ENOENT;
673a394b
EA
1123
1124 offset = args->offset;
1125
1126 down_write(&current->mm->mmap_sem);
1127 addr = do_mmap(obj->filp, 0, args->size,
1128 PROT_READ | PROT_WRITE, MAP_SHARED,
1129 args->offset);
1130 up_write(&current->mm->mmap_sem);
bc9025bd 1131 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1132 if (IS_ERR((void *)addr))
1133 return addr;
1134
1135 args->addr_ptr = (uint64_t) addr;
1136
1137 return 0;
1138}
1139
de151cf6
JB
1140/**
1141 * i915_gem_fault - fault a page into the GTT
1142 * vma: VMA in question
1143 * vmf: fault info
1144 *
1145 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1146 * from userspace. The fault handler takes care of binding the object to
1147 * the GTT (if needed), allocating and programming a fence register (again,
1148 * only if needed based on whether the old reg is still valid or the object
1149 * is tiled) and inserting a new PTE into the faulting process.
1150 *
1151 * Note that the faulting process may involve evicting existing objects
1152 * from the GTT and/or fence registers to make room. So performance may
1153 * suffer if the GTT working set is large or there are few fence registers
1154 * left.
1155 */
1156int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1157{
1158 struct drm_gem_object *obj = vma->vm_private_data;
1159 struct drm_device *dev = obj->dev;
7d1c4804 1160 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1161 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1162 pgoff_t page_offset;
1163 unsigned long pfn;
1164 int ret = 0;
0f973f27 1165 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1166
1167 /* We don't use vmf->pgoff since that has the fake offset */
1168 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1169 PAGE_SHIFT;
1170
1171 /* Now bind it into the GTT if needed */
1172 mutex_lock(&dev->struct_mutex);
1173 if (!obj_priv->gtt_space) {
e67b8ce1 1174 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1175 if (ret)
1176 goto unlock;
07f4f3e8 1177
07f4f3e8 1178 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1179 if (ret)
1180 goto unlock;
de151cf6
JB
1181 }
1182
1183 /* Need a new fence register? */
a09ba7fa 1184 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1185 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1186 if (ret)
1187 goto unlock;
d9ddcb96 1188 }
de151cf6 1189
7d1c4804
CW
1190 if (i915_gem_object_is_inactive(obj_priv))
1191 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1192
de151cf6
JB
1193 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1194 page_offset;
1195
1196 /* Finally, remap it using the new GTT offset */
1197 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1198unlock:
de151cf6
JB
1199 mutex_unlock(&dev->struct_mutex);
1200
1201 switch (ret) {
c715089f
CW
1202 case 0:
1203 case -ERESTARTSYS:
1204 return VM_FAULT_NOPAGE;
de151cf6
JB
1205 case -ENOMEM:
1206 case -EAGAIN:
1207 return VM_FAULT_OOM;
de151cf6 1208 default:
c715089f 1209 return VM_FAULT_SIGBUS;
de151cf6
JB
1210 }
1211}
1212
1213/**
1214 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1215 * @obj: obj in question
1216 *
1217 * GEM memory mapping works by handing back to userspace a fake mmap offset
1218 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1219 * up the object based on the offset and sets up the various memory mapping
1220 * structures.
1221 *
1222 * This routine allocates and attaches a fake offset for @obj.
1223 */
1224static int
1225i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1226{
1227 struct drm_device *dev = obj->dev;
1228 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1229 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1230 struct drm_map_list *list;
f77d390c 1231 struct drm_local_map *map;
de151cf6
JB
1232 int ret = 0;
1233
1234 /* Set the object up for mmap'ing */
1235 list = &obj->map_list;
9a298b2a 1236 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1237 if (!list->map)
1238 return -ENOMEM;
1239
1240 map = list->map;
1241 map->type = _DRM_GEM;
1242 map->size = obj->size;
1243 map->handle = obj;
1244
1245 /* Get a DRM GEM mmap offset allocated... */
1246 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1247 obj->size / PAGE_SIZE, 0, 0);
1248 if (!list->file_offset_node) {
1249 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1250 ret = -ENOMEM;
1251 goto out_free_list;
1252 }
1253
1254 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1255 obj->size / PAGE_SIZE, 0);
1256 if (!list->file_offset_node) {
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->hash.key = list->file_offset_node->start;
1262 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1263 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1264 ret = -ENOMEM;
de151cf6
JB
1265 goto out_free_mm;
1266 }
1267
1268 /* By now we should be all set, any drm_mmap request on the offset
1269 * below will get to our mmap & fault handler */
1270 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1271
1272 return 0;
1273
1274out_free_mm:
1275 drm_mm_put_block(list->file_offset_node);
1276out_free_list:
9a298b2a 1277 kfree(list->map);
de151cf6
JB
1278
1279 return ret;
1280}
1281
901782b2
CW
1282/**
1283 * i915_gem_release_mmap - remove physical page mappings
1284 * @obj: obj in question
1285 *
af901ca1 1286 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1287 * relinquish ownership of the pages back to the system.
1288 *
1289 * It is vital that we remove the page mapping if we have mapped a tiled
1290 * object through the GTT and then lose the fence register due to
1291 * resource pressure. Similarly if the object has been moved out of the
1292 * aperture, than pages mapped into userspace must be revoked. Removing the
1293 * mapping will then trigger a page fault on the next user access, allowing
1294 * fixup by i915_gem_fault().
1295 */
d05ca301 1296void
901782b2
CW
1297i915_gem_release_mmap(struct drm_gem_object *obj)
1298{
1299 struct drm_device *dev = obj->dev;
23010e43 1300 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1301
1302 if (dev->dev_mapping)
1303 unmap_mapping_range(dev->dev_mapping,
1304 obj_priv->mmap_offset, obj->size, 1);
1305}
1306
ab00b3e5
JB
1307static void
1308i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1309{
1310 struct drm_device *dev = obj->dev;
23010e43 1311 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1312 struct drm_gem_mm *mm = dev->mm_private;
1313 struct drm_map_list *list;
1314
1315 list = &obj->map_list;
1316 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1317
1318 if (list->file_offset_node) {
1319 drm_mm_put_block(list->file_offset_node);
1320 list->file_offset_node = NULL;
1321 }
1322
1323 if (list->map) {
9a298b2a 1324 kfree(list->map);
ab00b3e5
JB
1325 list->map = NULL;
1326 }
1327
1328 obj_priv->mmap_offset = 0;
1329}
1330
de151cf6
JB
1331/**
1332 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1333 * @obj: object to check
1334 *
1335 * Return the required GTT alignment for an object, taking into account
1336 * potential fence register mapping if needed.
1337 */
1338static uint32_t
1339i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1340{
1341 struct drm_device *dev = obj->dev;
23010e43 1342 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1343 int start, i;
1344
1345 /*
1346 * Minimum alignment is 4k (GTT page size), but might be greater
1347 * if a fence register is needed for the object.
1348 */
a6c45cf0 1349 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1350 return 4096;
1351
1352 /*
1353 * Previous chips need to be aligned to the size of the smallest
1354 * fence register that can contain the object.
1355 */
a6c45cf0 1356 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1357 start = 1024*1024;
1358 else
1359 start = 512*1024;
1360
1361 for (i = start; i < obj->size; i <<= 1)
1362 ;
1363
1364 return i;
1365}
1366
1367/**
1368 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1369 * @dev: DRM device
1370 * @data: GTT mapping ioctl data
1371 * @file_priv: GEM object info
1372 *
1373 * Simply returns the fake offset to userspace so it can mmap it.
1374 * The mmap call will end up in drm_gem_mmap(), which will set things
1375 * up so we can get faults in the handler above.
1376 *
1377 * The fault handler will take care of binding the object into the GTT
1378 * (since it may have been evicted to make room for something), allocating
1379 * a fence register, and mapping the appropriate aperture address into
1380 * userspace.
1381 */
1382int
1383i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1384 struct drm_file *file_priv)
1385{
1386 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1387 struct drm_gem_object *obj;
1388 struct drm_i915_gem_object *obj_priv;
1389 int ret;
1390
1391 if (!(dev->driver->driver_features & DRIVER_GEM))
1392 return -ENODEV;
1393
1394 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1395 if (obj == NULL)
bf79cb91 1396 return -ENOENT;
de151cf6
JB
1397
1398 mutex_lock(&dev->struct_mutex);
1399
23010e43 1400 obj_priv = to_intel_bo(obj);
de151cf6 1401
ab18282d
CW
1402 if (obj_priv->madv != I915_MADV_WILLNEED) {
1403 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1404 drm_gem_object_unreference(obj);
1405 mutex_unlock(&dev->struct_mutex);
1406 return -EINVAL;
1407 }
1408
1409
de151cf6
JB
1410 if (!obj_priv->mmap_offset) {
1411 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1412 if (ret) {
1413 drm_gem_object_unreference(obj);
1414 mutex_unlock(&dev->struct_mutex);
de151cf6 1415 return ret;
13af1062 1416 }
de151cf6
JB
1417 }
1418
1419 args->offset = obj_priv->mmap_offset;
1420
de151cf6
JB
1421 /*
1422 * Pull it into the GTT so that we have a page list (makes the
1423 * initial fault faster and any subsequent flushing possible).
1424 */
1425 if (!obj_priv->agp_mem) {
e67b8ce1 1426 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1427 if (ret) {
1428 drm_gem_object_unreference(obj);
1429 mutex_unlock(&dev->struct_mutex);
1430 return ret;
1431 }
de151cf6
JB
1432 }
1433
1434 drm_gem_object_unreference(obj);
1435 mutex_unlock(&dev->struct_mutex);
1436
1437 return 0;
1438}
1439
6911a9b8 1440void
856fa198 1441i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1442{
23010e43 1443 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1444 int page_count = obj->size / PAGE_SIZE;
1445 int i;
1446
856fa198 1447 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1448 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1449
856fa198
EA
1450 if (--obj_priv->pages_refcount != 0)
1451 return;
673a394b 1452
280b713b
EA
1453 if (obj_priv->tiling_mode != I915_TILING_NONE)
1454 i915_gem_object_save_bit_17_swizzle(obj);
1455
3ef94daa 1456 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1457 obj_priv->dirty = 0;
3ef94daa
CW
1458
1459 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1460 if (obj_priv->dirty)
1461 set_page_dirty(obj_priv->pages[i]);
1462
1463 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1464 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1465
1466 page_cache_release(obj_priv->pages[i]);
1467 }
673a394b
EA
1468 obj_priv->dirty = 0;
1469
8e7d2b2c 1470 drm_free_large(obj_priv->pages);
856fa198 1471 obj_priv->pages = NULL;
673a394b
EA
1472}
1473
e35a41de 1474static uint32_t
a6910434
DV
1475i915_gem_next_request_seqno(struct drm_device *dev,
1476 struct intel_ring_buffer *ring)
e35a41de
DV
1477{
1478 drm_i915_private_t *dev_priv = dev->dev_private;
1479
a6910434
DV
1480 ring->outstanding_lazy_request = true;
1481
e35a41de
DV
1482 return dev_priv->next_seqno;
1483}
1484
673a394b 1485static void
617dbe27 1486i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1487 struct intel_ring_buffer *ring)
673a394b
EA
1488{
1489 struct drm_device *dev = obj->dev;
23010e43 1490 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
617dbe27
DV
1491 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1492
852835f3
ZN
1493 BUG_ON(ring == NULL);
1494 obj_priv->ring = ring;
673a394b
EA
1495
1496 /* Add a reference if we're newly entering the active list. */
1497 if (!obj_priv->active) {
1498 drm_gem_object_reference(obj);
1499 obj_priv->active = 1;
1500 }
e35a41de 1501
673a394b 1502 /* Move from whatever list we were on to the tail of execution. */
852835f3 1503 list_move_tail(&obj_priv->list, &ring->active_list);
ce44b0ea 1504 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1505}
1506
ce44b0ea
EA
1507static void
1508i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1509{
1510 struct drm_device *dev = obj->dev;
1511 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1513
1514 BUG_ON(!obj_priv->active);
1515 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1516 obj_priv->last_rendering_seqno = 0;
1517}
673a394b 1518
963b4836
CW
1519/* Immediately discard the backing storage */
1520static void
1521i915_gem_object_truncate(struct drm_gem_object *obj)
1522{
23010e43 1523 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1524 struct inode *inode;
963b4836 1525
ae9fed6b
CW
1526 /* Our goal here is to return as much of the memory as
1527 * is possible back to the system as we are called from OOM.
1528 * To do this we must instruct the shmfs to drop all of its
1529 * backing pages, *now*. Here we mirror the actions taken
1530 * when by shmem_delete_inode() to release the backing store.
1531 */
bb6baf76 1532 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1533 truncate_inode_pages(inode->i_mapping, 0);
1534 if (inode->i_op->truncate_range)
1535 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1536
1537 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1538}
1539
1540static inline int
1541i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1542{
1543 return obj_priv->madv == I915_MADV_DONTNEED;
1544}
1545
673a394b
EA
1546static void
1547i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1548{
1549 struct drm_device *dev = obj->dev;
1550 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1551 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1552
1553 i915_verify_inactive(dev, __FILE__, __LINE__);
1554 if (obj_priv->pin_count != 0)
1555 list_del_init(&obj_priv->list);
1556 else
1557 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1558
99fcb766
DV
1559 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1560
ce44b0ea 1561 obj_priv->last_rendering_seqno = 0;
852835f3 1562 obj_priv->ring = NULL;
673a394b
EA
1563 if (obj_priv->active) {
1564 obj_priv->active = 0;
1565 drm_gem_object_unreference(obj);
1566 }
1567 i915_verify_inactive(dev, __FILE__, __LINE__);
1568}
1569
9220434a 1570static void
63560396 1571i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1572 uint32_t flush_domains,
852835f3 1573 struct intel_ring_buffer *ring)
63560396
DV
1574{
1575 drm_i915_private_t *dev_priv = dev->dev_private;
1576 struct drm_i915_gem_object *obj_priv, *next;
1577
1578 list_for_each_entry_safe(obj_priv, next,
1579 &dev_priv->mm.gpu_write_list,
1580 gpu_write_list) {
a8089e84 1581 struct drm_gem_object *obj = &obj_priv->base;
63560396 1582
2b6efaa4
CW
1583 if (obj->write_domain & flush_domains &&
1584 obj_priv->ring == ring) {
63560396
DV
1585 uint32_t old_write_domain = obj->write_domain;
1586
1587 obj->write_domain = 0;
1588 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1589 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1590
1591 /* update the fence lru list */
007cc8ac
DV
1592 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1593 struct drm_i915_fence_reg *reg =
1594 &dev_priv->fence_regs[obj_priv->fence_reg];
1595 list_move_tail(&reg->lru_list,
63560396 1596 &dev_priv->mm.fence_list);
007cc8ac 1597 }
63560396
DV
1598
1599 trace_i915_gem_object_change_domain(obj,
1600 obj->read_domains,
1601 old_write_domain);
1602 }
1603 }
1604}
8187a2b7 1605
5a5a0c64 1606uint32_t
8a1a49f9
DV
1607i915_add_request(struct drm_device *dev,
1608 struct drm_file *file_priv,
8dc5d147 1609 struct drm_i915_gem_request *request,
8a1a49f9 1610 struct intel_ring_buffer *ring)
673a394b
EA
1611{
1612 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1613 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1614 uint32_t seqno;
1615 int was_empty;
673a394b 1616
b962442e
EA
1617 if (file_priv != NULL)
1618 i915_file_priv = file_priv->driver_priv;
1619
8dc5d147
CW
1620 if (request == NULL) {
1621 request = kzalloc(sizeof(*request), GFP_KERNEL);
1622 if (request == NULL)
1623 return 0;
1624 }
673a394b 1625
8a1a49f9 1626 seqno = ring->add_request(dev, ring, file_priv, 0);
673a394b
EA
1627
1628 request->seqno = seqno;
852835f3 1629 request->ring = ring;
673a394b 1630 request->emitted_jiffies = jiffies;
852835f3
ZN
1631 was_empty = list_empty(&ring->request_list);
1632 list_add_tail(&request->list, &ring->request_list);
1633
b962442e
EA
1634 if (i915_file_priv) {
1635 list_add_tail(&request->client_list,
1636 &i915_file_priv->mm.request_list);
1637 } else {
1638 INIT_LIST_HEAD(&request->client_list);
1639 }
673a394b 1640
f65d9421 1641 if (!dev_priv->mm.suspended) {
b3b079db
CW
1642 mod_timer(&dev_priv->hangcheck_timer,
1643 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1644 if (was_empty)
b3b079db
CW
1645 queue_delayed_work(dev_priv->wq,
1646 &dev_priv->mm.retire_work, HZ);
f65d9421 1647 }
673a394b
EA
1648 return seqno;
1649}
1650
1651/**
1652 * Command execution barrier
1653 *
1654 * Ensures that all commands in the ring are finished
1655 * before signalling the CPU
1656 */
8a1a49f9 1657static void
852835f3 1658i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1659{
673a394b 1660 uint32_t flush_domains = 0;
673a394b
EA
1661
1662 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1663 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1664 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1665
1666 ring->flush(dev, ring,
1667 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1668}
1669
673a394b
EA
1670/**
1671 * Returns true if seq1 is later than seq2.
1672 */
22be1724 1673bool
673a394b
EA
1674i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1675{
1676 return (int32_t)(seq1 - seq2) >= 0;
1677}
1678
1679uint32_t
852835f3 1680i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1681 struct intel_ring_buffer *ring)
673a394b 1682{
852835f3 1683 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1684}
1685
9375e446
CW
1686void i915_gem_reset_flushing_list(struct drm_device *dev)
1687{
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689
1690 while (!list_empty(&dev_priv->mm.flushing_list)) {
1691 struct drm_i915_gem_object *obj_priv;
1692
1693 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1694 struct drm_i915_gem_object,
1695 list);
1696
1697 obj_priv->base.write_domain = 0;
1698 i915_gem_object_move_to_inactive(&obj_priv->base);
1699 }
1700}
1701
77f01230
CW
1702void i915_gem_reset_inactive_gpu_domains(struct drm_device *dev)
1703{
1704 struct drm_i915_private *dev_priv = dev->dev_private;
1705 struct drm_i915_gem_object *obj_priv;
1706
1707 list_for_each_entry(obj_priv,
1708 &dev_priv->mm.inactive_list,
1709 list)
1710 {
1711 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1712 }
1713}
1714
673a394b
EA
1715/**
1716 * This function clears the request list as sequence numbers are passed.
1717 */
b09a1fec
CW
1718static void
1719i915_gem_retire_requests_ring(struct drm_device *dev,
1720 struct intel_ring_buffer *ring)
673a394b
EA
1721{
1722 drm_i915_private_t *dev_priv = dev->dev_private;
1723 uint32_t seqno;
b84d5f0c 1724 bool wedged;
673a394b 1725
b84d5f0c
CW
1726 if (!ring->status_page.page_addr ||
1727 list_empty(&ring->request_list))
6c0594a3
KW
1728 return;
1729
852835f3 1730 seqno = i915_get_gem_seqno(dev, ring);
b84d5f0c 1731 wedged = atomic_read(&dev_priv->mm.wedged);
673a394b 1732
852835f3 1733 while (!list_empty(&ring->request_list)) {
673a394b 1734 struct drm_i915_gem_request *request;
673a394b 1735
852835f3 1736 request = list_first_entry(&ring->request_list,
673a394b
EA
1737 struct drm_i915_gem_request,
1738 list);
673a394b 1739
b84d5f0c
CW
1740 if (!wedged && !i915_seqno_passed(seqno, request->seqno))
1741 break;
1742
1743 trace_i915_gem_request_retire(dev, request->seqno);
1744
1745 list_del(&request->list);
1746 list_del(&request->client_list);
1747 kfree(request);
1748 }
1749
1750 /* Move any buffers on the active list that are no longer referenced
1751 * by the ringbuffer to the flushing/inactive lists as appropriate.
1752 */
1753 while (!list_empty(&ring->active_list)) {
1754 struct drm_gem_object *obj;
1755 struct drm_i915_gem_object *obj_priv;
1756
1757 obj_priv = list_first_entry(&ring->active_list,
1758 struct drm_i915_gem_object,
1759 list);
673a394b 1760
b84d5f0c
CW
1761 if (!wedged &&
1762 !i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1763 break;
b84d5f0c
CW
1764
1765 obj = &obj_priv->base;
1766
1767#if WATCH_LRU
1768 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1769 __func__, request->seqno, obj);
1770#endif
1771
1772 if (obj->write_domain != 0)
1773 i915_gem_object_move_to_flushing(obj);
1774 else
1775 i915_gem_object_move_to_inactive(obj);
673a394b 1776 }
9d34e5db
CW
1777
1778 if (unlikely (dev_priv->trace_irq_seqno &&
1779 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7 1780 ring->user_irq_put(dev, ring);
9d34e5db
CW
1781 dev_priv->trace_irq_seqno = 0;
1782 }
673a394b
EA
1783}
1784
b09a1fec
CW
1785void
1786i915_gem_retire_requests(struct drm_device *dev)
1787{
1788 drm_i915_private_t *dev_priv = dev->dev_private;
1789
be72615b
CW
1790 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1791 struct drm_i915_gem_object *obj_priv, *tmp;
1792
1793 /* We must be careful that during unbind() we do not
1794 * accidentally infinitely recurse into retire requests.
1795 * Currently:
1796 * retire -> free -> unbind -> wait -> retire_ring
1797 */
1798 list_for_each_entry_safe(obj_priv, tmp,
1799 &dev_priv->mm.deferred_free_list,
1800 list)
1801 i915_gem_free_object_tail(&obj_priv->base);
1802 }
1803
b09a1fec
CW
1804 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1805 if (HAS_BSD(dev))
1806 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1807}
1808
75ef9da2 1809static void
673a394b
EA
1810i915_gem_retire_work_handler(struct work_struct *work)
1811{
1812 drm_i915_private_t *dev_priv;
1813 struct drm_device *dev;
1814
1815 dev_priv = container_of(work, drm_i915_private_t,
1816 mm.retire_work.work);
1817 dev = dev_priv->dev;
1818
1819 mutex_lock(&dev->struct_mutex);
b09a1fec 1820 i915_gem_retire_requests(dev);
d1b851fc 1821
6dbe2772 1822 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1823 (!list_empty(&dev_priv->render_ring.request_list) ||
1824 (HAS_BSD(dev) &&
1825 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1826 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1827 mutex_unlock(&dev->struct_mutex);
1828}
1829
5a5a0c64 1830int
852835f3 1831i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1832 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1833{
1834 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1835 u32 ier;
673a394b
EA
1836 int ret = 0;
1837
1838 BUG_ON(seqno == 0);
1839
e35a41de 1840 if (seqno == dev_priv->next_seqno) {
8dc5d147 1841 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1842 if (seqno == 0)
1843 return -ENOMEM;
1844 }
1845
ba1234d1 1846 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1847 return -EIO;
1848
852835f3 1849 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1850 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1851 ier = I915_READ(DEIER) | I915_READ(GTIER);
1852 else
1853 ier = I915_READ(IER);
802c7eb6
JB
1854 if (!ier) {
1855 DRM_ERROR("something (likely vbetool) disabled "
1856 "interrupts, re-enabling\n");
1857 i915_driver_irq_preinstall(dev);
1858 i915_driver_irq_postinstall(dev);
1859 }
1860
1c5d22f7
CW
1861 trace_i915_gem_request_wait_begin(dev, seqno);
1862
852835f3 1863 ring->waiting_gem_seqno = seqno;
8187a2b7 1864 ring->user_irq_get(dev, ring);
48764bf4 1865 if (interruptible)
852835f3
ZN
1866 ret = wait_event_interruptible(ring->irq_queue,
1867 i915_seqno_passed(
1868 ring->get_gem_seqno(dev, ring), seqno)
1869 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1870 else
852835f3
ZN
1871 wait_event(ring->irq_queue,
1872 i915_seqno_passed(
1873 ring->get_gem_seqno(dev, ring), seqno)
1874 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1875
8187a2b7 1876 ring->user_irq_put(dev, ring);
852835f3 1877 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1878
1879 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1880 }
ba1234d1 1881 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1882 ret = -EIO;
1883
1884 if (ret && ret != -ERESTARTSYS)
8bff917c
DV
1885 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1886 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1887 dev_priv->next_seqno);
673a394b
EA
1888
1889 /* Directly dispatch request retiring. While we have the work queue
1890 * to handle this, the waiter on a request often wants an associated
1891 * buffer to have made it to the inactive list, and we would need
1892 * a separate wait queue to handle that.
1893 */
1894 if (ret == 0)
b09a1fec 1895 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1896
1897 return ret;
1898}
1899
48764bf4
DV
1900/**
1901 * Waits for a sequence number to be signaled, and cleans up the
1902 * request and object lists appropriately for that event.
1903 */
1904static int
852835f3
ZN
1905i915_wait_request(struct drm_device *dev, uint32_t seqno,
1906 struct intel_ring_buffer *ring)
48764bf4 1907{
852835f3 1908 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1909}
1910
c7f9f9a8 1911void
9220434a
CW
1912i915_gem_flush_ring(struct drm_device *dev,
1913 struct intel_ring_buffer *ring,
1914 uint32_t invalidate_domains,
1915 uint32_t flush_domains)
1916{
1917 ring->flush(dev, ring, invalidate_domains, flush_domains);
1918 i915_gem_process_flushing_list(dev, flush_domains, ring);
1919}
1920
8187a2b7
ZN
1921static void
1922i915_gem_flush(struct drm_device *dev,
1923 uint32_t invalidate_domains,
9220434a
CW
1924 uint32_t flush_domains,
1925 uint32_t flush_rings)
8187a2b7
ZN
1926{
1927 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 1928
8187a2b7
ZN
1929 if (flush_domains & I915_GEM_DOMAIN_CPU)
1930 drm_agp_chipset_flush(dev);
8bff917c 1931
9220434a
CW
1932 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
1933 if (flush_rings & RING_RENDER)
1934 i915_gem_flush_ring(dev,
1935 &dev_priv->render_ring,
1936 invalidate_domains, flush_domains);
1937 if (flush_rings & RING_BSD)
1938 i915_gem_flush_ring(dev,
1939 &dev_priv->bsd_ring,
1940 invalidate_domains, flush_domains);
1941 }
8187a2b7
ZN
1942}
1943
673a394b
EA
1944/**
1945 * Ensures that all rendering to the object has completed and the object is
1946 * safe to unbind from the GTT or access from the CPU.
1947 */
1948static int
2cf34d7b
CW
1949i915_gem_object_wait_rendering(struct drm_gem_object *obj,
1950 bool interruptible)
673a394b
EA
1951{
1952 struct drm_device *dev = obj->dev;
23010e43 1953 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1954 int ret;
1955
e47c68e9
EA
1956 /* This function only exists to support waiting for existing rendering,
1957 * not for emitting required flushes.
673a394b 1958 */
e47c68e9 1959 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1960
1961 /* If there is rendering queued on the buffer being evicted, wait for
1962 * it.
1963 */
1964 if (obj_priv->active) {
1965#if WATCH_BUF
1966 DRM_INFO("%s: object %p wait for seqno %08x\n",
1967 __func__, obj, obj_priv->last_rendering_seqno);
1968#endif
2cf34d7b
CW
1969 ret = i915_do_wait_request(dev,
1970 obj_priv->last_rendering_seqno,
1971 interruptible,
1972 obj_priv->ring);
1973 if (ret)
673a394b
EA
1974 return ret;
1975 }
1976
1977 return 0;
1978}
1979
1980/**
1981 * Unbinds an object from the GTT aperture.
1982 */
0f973f27 1983int
673a394b
EA
1984i915_gem_object_unbind(struct drm_gem_object *obj)
1985{
1986 struct drm_device *dev = obj->dev;
23010e43 1987 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1988 int ret = 0;
1989
1990#if WATCH_BUF
1991 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1992 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1993#endif
1994 if (obj_priv->gtt_space == NULL)
1995 return 0;
1996
1997 if (obj_priv->pin_count != 0) {
1998 DRM_ERROR("Attempting to unbind pinned buffer\n");
1999 return -EINVAL;
2000 }
2001
5323fd04
EA
2002 /* blow away mappings if mapped through GTT */
2003 i915_gem_release_mmap(obj);
2004
673a394b
EA
2005 /* Move the object to the CPU domain to ensure that
2006 * any possible CPU writes while it's not in the GTT
2007 * are flushed when we go to remap it. This will
2008 * also ensure that all pending GPU writes are finished
2009 * before we unbind.
2010 */
e47c68e9 2011 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2012 if (ret == -ERESTARTSYS)
673a394b 2013 return ret;
8dc1775d
CW
2014 /* Continue on if we fail due to EIO, the GPU is hung so we
2015 * should be safe and we need to cleanup or else we might
2016 * cause memory corruption through use-after-free.
2017 */
673a394b 2018
96b47b65
DV
2019 /* release the fence reg _after_ flushing */
2020 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2021 i915_gem_clear_fence_reg(obj);
2022
673a394b
EA
2023 if (obj_priv->agp_mem != NULL) {
2024 drm_unbind_agp(obj_priv->agp_mem);
2025 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2026 obj_priv->agp_mem = NULL;
2027 }
2028
856fa198 2029 i915_gem_object_put_pages(obj);
a32808c0 2030 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2031
2032 if (obj_priv->gtt_space) {
2033 atomic_dec(&dev->gtt_count);
2034 atomic_sub(obj->size, &dev->gtt_memory);
2035
2036 drm_mm_put_block(obj_priv->gtt_space);
2037 obj_priv->gtt_space = NULL;
2038 }
2039
2040 /* Remove ourselves from the LRU list if present. */
2041 if (!list_empty(&obj_priv->list))
2042 list_del_init(&obj_priv->list);
2043
963b4836
CW
2044 if (i915_gem_object_is_purgeable(obj_priv))
2045 i915_gem_object_truncate(obj);
2046
1c5d22f7
CW
2047 trace_i915_gem_object_unbind(obj);
2048
8dc1775d 2049 return ret;
673a394b
EA
2050}
2051
b47eb4a2 2052int
4df2faf4
DV
2053i915_gpu_idle(struct drm_device *dev)
2054{
2055 drm_i915_private_t *dev_priv = dev->dev_private;
2056 bool lists_empty;
852835f3 2057 int ret;
4df2faf4 2058
d1b851fc
ZN
2059 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2060 list_empty(&dev_priv->render_ring.active_list) &&
2061 (!HAS_BSD(dev) ||
2062 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2063 if (lists_empty)
2064 return 0;
2065
2066 /* Flush everything onto the inactive list. */
9220434a
CW
2067 i915_gem_flush_ring(dev,
2068 &dev_priv->render_ring,
2069 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4fc6ee76
DV
2070
2071 ret = i915_wait_request(dev,
2072 i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
2073 &dev_priv->render_ring);
8a1a49f9
DV
2074 if (ret)
2075 return ret;
d1b851fc
ZN
2076
2077 if (HAS_BSD(dev)) {
9220434a
CW
2078 i915_gem_flush_ring(dev,
2079 &dev_priv->bsd_ring,
2080 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2081
4fc6ee76
DV
2082 ret = i915_wait_request(dev,
2083 i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
2084 &dev_priv->bsd_ring);
d1b851fc
ZN
2085 if (ret)
2086 return ret;
2087 }
2088
8a1a49f9 2089 return 0;
4df2faf4
DV
2090}
2091
6911a9b8 2092int
4bdadb97
CW
2093i915_gem_object_get_pages(struct drm_gem_object *obj,
2094 gfp_t gfpmask)
673a394b 2095{
23010e43 2096 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2097 int page_count, i;
2098 struct address_space *mapping;
2099 struct inode *inode;
2100 struct page *page;
673a394b 2101
778c3544
DV
2102 BUG_ON(obj_priv->pages_refcount
2103 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2104
856fa198 2105 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2106 return 0;
2107
2108 /* Get the list of pages out of our struct file. They'll be pinned
2109 * at this point until we release them.
2110 */
2111 page_count = obj->size / PAGE_SIZE;
856fa198 2112 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2113 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2114 if (obj_priv->pages == NULL) {
856fa198 2115 obj_priv->pages_refcount--;
673a394b
EA
2116 return -ENOMEM;
2117 }
2118
2119 inode = obj->filp->f_path.dentry->d_inode;
2120 mapping = inode->i_mapping;
2121 for (i = 0; i < page_count; i++) {
4bdadb97 2122 page = read_cache_page_gfp(mapping, i,
985b823b 2123 GFP_HIGHUSER |
4bdadb97 2124 __GFP_COLD |
cd9f040d 2125 __GFP_RECLAIMABLE |
4bdadb97 2126 gfpmask);
1f2b1013
CW
2127 if (IS_ERR(page))
2128 goto err_pages;
2129
856fa198 2130 obj_priv->pages[i] = page;
673a394b 2131 }
280b713b
EA
2132
2133 if (obj_priv->tiling_mode != I915_TILING_NONE)
2134 i915_gem_object_do_bit_17_swizzle(obj);
2135
673a394b 2136 return 0;
1f2b1013
CW
2137
2138err_pages:
2139 while (i--)
2140 page_cache_release(obj_priv->pages[i]);
2141
2142 drm_free_large(obj_priv->pages);
2143 obj_priv->pages = NULL;
2144 obj_priv->pages_refcount--;
2145 return PTR_ERR(page);
673a394b
EA
2146}
2147
4e901fdc
EA
2148static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2149{
2150 struct drm_gem_object *obj = reg->obj;
2151 struct drm_device *dev = obj->dev;
2152 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2153 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2154 int regnum = obj_priv->fence_reg;
2155 uint64_t val;
2156
2157 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2158 0xfffff000) << 32;
2159 val |= obj_priv->gtt_offset & 0xfffff000;
2160 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2161 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2162
2163 if (obj_priv->tiling_mode == I915_TILING_Y)
2164 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2165 val |= I965_FENCE_REG_VALID;
2166
2167 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2168}
2169
de151cf6
JB
2170static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2171{
2172 struct drm_gem_object *obj = reg->obj;
2173 struct drm_device *dev = obj->dev;
2174 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2175 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2176 int regnum = obj_priv->fence_reg;
2177 uint64_t val;
2178
2179 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2180 0xfffff000) << 32;
2181 val |= obj_priv->gtt_offset & 0xfffff000;
2182 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2183 if (obj_priv->tiling_mode == I915_TILING_Y)
2184 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2185 val |= I965_FENCE_REG_VALID;
2186
2187 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2188}
2189
2190static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2191{
2192 struct drm_gem_object *obj = reg->obj;
2193 struct drm_device *dev = obj->dev;
2194 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2195 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2196 int regnum = obj_priv->fence_reg;
0f973f27 2197 int tile_width;
dc529a4f 2198 uint32_t fence_reg, val;
de151cf6
JB
2199 uint32_t pitch_val;
2200
2201 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2202 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2203 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2204 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2205 return;
2206 }
2207
0f973f27
JB
2208 if (obj_priv->tiling_mode == I915_TILING_Y &&
2209 HAS_128_BYTE_Y_TILING(dev))
2210 tile_width = 128;
de151cf6 2211 else
0f973f27
JB
2212 tile_width = 512;
2213
2214 /* Note: pitch better be a power of two tile widths */
2215 pitch_val = obj_priv->stride / tile_width;
2216 pitch_val = ffs(pitch_val) - 1;
de151cf6 2217
c36a2a6d
DV
2218 if (obj_priv->tiling_mode == I915_TILING_Y &&
2219 HAS_128_BYTE_Y_TILING(dev))
2220 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2221 else
2222 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2223
de151cf6
JB
2224 val = obj_priv->gtt_offset;
2225 if (obj_priv->tiling_mode == I915_TILING_Y)
2226 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2227 val |= I915_FENCE_SIZE_BITS(obj->size);
2228 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2229 val |= I830_FENCE_REG_VALID;
2230
dc529a4f
EA
2231 if (regnum < 8)
2232 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2233 else
2234 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2235 I915_WRITE(fence_reg, val);
de151cf6
JB
2236}
2237
2238static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2239{
2240 struct drm_gem_object *obj = reg->obj;
2241 struct drm_device *dev = obj->dev;
2242 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2243 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2244 int regnum = obj_priv->fence_reg;
2245 uint32_t val;
2246 uint32_t pitch_val;
8d7773a3 2247 uint32_t fence_size_bits;
de151cf6 2248
8d7773a3 2249 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2250 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2251 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2252 __func__, obj_priv->gtt_offset);
de151cf6
JB
2253 return;
2254 }
2255
e76a16de
EA
2256 pitch_val = obj_priv->stride / 128;
2257 pitch_val = ffs(pitch_val) - 1;
2258 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2259
de151cf6
JB
2260 val = obj_priv->gtt_offset;
2261 if (obj_priv->tiling_mode == I915_TILING_Y)
2262 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2263 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2264 WARN_ON(fence_size_bits & ~0x00000f00);
2265 val |= fence_size_bits;
de151cf6
JB
2266 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2267 val |= I830_FENCE_REG_VALID;
2268
2269 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2270}
2271
2cf34d7b
CW
2272static int i915_find_fence_reg(struct drm_device *dev,
2273 bool interruptible)
ae3db24a
DV
2274{
2275 struct drm_i915_fence_reg *reg = NULL;
2276 struct drm_i915_gem_object *obj_priv = NULL;
2277 struct drm_i915_private *dev_priv = dev->dev_private;
2278 struct drm_gem_object *obj = NULL;
2279 int i, avail, ret;
2280
2281 /* First try to find a free reg */
2282 avail = 0;
2283 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2284 reg = &dev_priv->fence_regs[i];
2285 if (!reg->obj)
2286 return i;
2287
23010e43 2288 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2289 if (!obj_priv->pin_count)
2290 avail++;
2291 }
2292
2293 if (avail == 0)
2294 return -ENOSPC;
2295
2296 /* None available, try to steal one or wait for a user to finish */
2297 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2298 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2299 lru_list) {
2300 obj = reg->obj;
2301 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2302
2303 if (obj_priv->pin_count)
2304 continue;
2305
2306 /* found one! */
2307 i = obj_priv->fence_reg;
2308 break;
2309 }
2310
2311 BUG_ON(i == I915_FENCE_REG_NONE);
2312
2313 /* We only have a reference on obj from the active list. put_fence_reg
2314 * might drop that one, causing a use-after-free in it. So hold a
2315 * private reference to obj like the other callers of put_fence_reg
2316 * (set_tiling ioctl) do. */
2317 drm_gem_object_reference(obj);
2cf34d7b 2318 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2319 drm_gem_object_unreference(obj);
2320 if (ret != 0)
2321 return ret;
2322
2323 return i;
2324}
2325
de151cf6
JB
2326/**
2327 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2328 * @obj: object to map through a fence reg
2329 *
2330 * When mapping objects through the GTT, userspace wants to be able to write
2331 * to them without having to worry about swizzling if the object is tiled.
2332 *
2333 * This function walks the fence regs looking for a free one for @obj,
2334 * stealing one if it can't find any.
2335 *
2336 * It then sets up the reg based on the object's properties: address, pitch
2337 * and tiling format.
2338 */
8c4b8c3f 2339int
2cf34d7b
CW
2340i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2341 bool interruptible)
de151cf6
JB
2342{
2343 struct drm_device *dev = obj->dev;
79e53945 2344 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2345 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2346 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2347 int ret;
de151cf6 2348
a09ba7fa
EA
2349 /* Just update our place in the LRU if our fence is getting used. */
2350 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2351 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2352 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2353 return 0;
2354 }
2355
de151cf6
JB
2356 switch (obj_priv->tiling_mode) {
2357 case I915_TILING_NONE:
2358 WARN(1, "allocating a fence for non-tiled object?\n");
2359 break;
2360 case I915_TILING_X:
0f973f27
JB
2361 if (!obj_priv->stride)
2362 return -EINVAL;
2363 WARN((obj_priv->stride & (512 - 1)),
2364 "object 0x%08x is X tiled but has non-512B pitch\n",
2365 obj_priv->gtt_offset);
de151cf6
JB
2366 break;
2367 case I915_TILING_Y:
0f973f27
JB
2368 if (!obj_priv->stride)
2369 return -EINVAL;
2370 WARN((obj_priv->stride & (128 - 1)),
2371 "object 0x%08x is Y tiled but has non-128B pitch\n",
2372 obj_priv->gtt_offset);
de151cf6
JB
2373 break;
2374 }
2375
2cf34d7b 2376 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2377 if (ret < 0)
2378 return ret;
de151cf6 2379
ae3db24a
DV
2380 obj_priv->fence_reg = ret;
2381 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2382 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2383
de151cf6
JB
2384 reg->obj = obj;
2385
e259befd
CW
2386 switch (INTEL_INFO(dev)->gen) {
2387 case 6:
4e901fdc 2388 sandybridge_write_fence_reg(reg);
e259befd
CW
2389 break;
2390 case 5:
2391 case 4:
de151cf6 2392 i965_write_fence_reg(reg);
e259befd
CW
2393 break;
2394 case 3:
de151cf6 2395 i915_write_fence_reg(reg);
e259befd
CW
2396 break;
2397 case 2:
de151cf6 2398 i830_write_fence_reg(reg);
e259befd
CW
2399 break;
2400 }
d9ddcb96 2401
ae3db24a
DV
2402 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2403 obj_priv->tiling_mode);
1c5d22f7 2404
d9ddcb96 2405 return 0;
de151cf6
JB
2406}
2407
2408/**
2409 * i915_gem_clear_fence_reg - clear out fence register info
2410 * @obj: object to clear
2411 *
2412 * Zeroes out the fence register itself and clears out the associated
2413 * data structures in dev_priv and obj_priv.
2414 */
2415static void
2416i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2417{
2418 struct drm_device *dev = obj->dev;
79e53945 2419 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2420 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2421 struct drm_i915_fence_reg *reg =
2422 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2423 uint32_t fence_reg;
de151cf6 2424
e259befd
CW
2425 switch (INTEL_INFO(dev)->gen) {
2426 case 6:
4e901fdc
EA
2427 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2428 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2429 break;
2430 case 5:
2431 case 4:
de151cf6 2432 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2433 break;
2434 case 3:
2435 if (obj_priv->fence_reg > 8)
2436 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2437 else
e259befd
CW
2438 case 2:
2439 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2440
2441 I915_WRITE(fence_reg, 0);
e259befd 2442 break;
dc529a4f 2443 }
de151cf6 2444
007cc8ac 2445 reg->obj = NULL;
de151cf6 2446 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2447 list_del_init(&reg->lru_list);
de151cf6
JB
2448}
2449
52dc7d32
CW
2450/**
2451 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2452 * to the buffer to finish, and then resets the fence register.
2453 * @obj: tiled object holding a fence register.
2cf34d7b 2454 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2455 *
2456 * Zeroes out the fence register itself and clears out the associated
2457 * data structures in dev_priv and obj_priv.
2458 */
2459int
2cf34d7b
CW
2460i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2461 bool interruptible)
52dc7d32
CW
2462{
2463 struct drm_device *dev = obj->dev;
23010e43 2464 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2465
2466 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2467 return 0;
2468
10ae9bd2
DV
2469 /* If we've changed tiling, GTT-mappings of the object
2470 * need to re-fault to ensure that the correct fence register
2471 * setup is in place.
2472 */
2473 i915_gem_release_mmap(obj);
2474
52dc7d32
CW
2475 /* On the i915, GPU access to tiled buffers is via a fence,
2476 * therefore we must wait for any outstanding access to complete
2477 * before clearing the fence.
2478 */
a6c45cf0 2479 if (INTEL_INFO(dev)->gen < 4) {
52dc7d32
CW
2480 int ret;
2481
2cf34d7b 2482 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2483 if (ret)
2484 return ret;
2485
2cf34d7b 2486 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2487 if (ret)
52dc7d32
CW
2488 return ret;
2489 }
2490
4a726612 2491 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2492 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2493
2494 return 0;
2495}
2496
673a394b
EA
2497/**
2498 * Finds free space in the GTT aperture and binds the object there.
2499 */
2500static int
2501i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2502{
2503 struct drm_device *dev = obj->dev;
2504 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2505 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2506 struct drm_mm_node *free_space;
4bdadb97 2507 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2508 int ret;
673a394b 2509
bb6baf76 2510 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2511 DRM_ERROR("Attempting to bind a purgeable object\n");
2512 return -EINVAL;
2513 }
2514
673a394b 2515 if (alignment == 0)
0f973f27 2516 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2517 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2518 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2519 return -EINVAL;
2520 }
2521
654fc607
CW
2522 /* If the object is bigger than the entire aperture, reject it early
2523 * before evicting everything in a vain attempt to find space.
2524 */
2525 if (obj->size > dev->gtt_total) {
2526 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2527 return -E2BIG;
2528 }
2529
673a394b
EA
2530 search_free:
2531 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2532 obj->size, alignment, 0);
2533 if (free_space != NULL) {
2534 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2535 alignment);
db3307a9 2536 if (obj_priv->gtt_space != NULL)
673a394b 2537 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2538 }
2539 if (obj_priv->gtt_space == NULL) {
2540 /* If the gtt is empty and we're still having trouble
2541 * fitting our object in, we're out of memory.
2542 */
2543#if WATCH_LRU
2544 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2545#endif
0108a3ed 2546 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2547 if (ret)
673a394b 2548 return ret;
9731129c 2549
673a394b
EA
2550 goto search_free;
2551 }
2552
2553#if WATCH_BUF
cfd43c02 2554 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2555 obj->size, obj_priv->gtt_offset);
2556#endif
4bdadb97 2557 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2558 if (ret) {
2559 drm_mm_put_block(obj_priv->gtt_space);
2560 obj_priv->gtt_space = NULL;
07f73f69
CW
2561
2562 if (ret == -ENOMEM) {
2563 /* first try to clear up some space from the GTT */
0108a3ed
DV
2564 ret = i915_gem_evict_something(dev, obj->size,
2565 alignment);
07f73f69 2566 if (ret) {
07f73f69 2567 /* now try to shrink everyone else */
4bdadb97
CW
2568 if (gfpmask) {
2569 gfpmask = 0;
2570 goto search_free;
07f73f69
CW
2571 }
2572
2573 return ret;
2574 }
2575
2576 goto search_free;
2577 }
2578
673a394b
EA
2579 return ret;
2580 }
2581
673a394b
EA
2582 /* Create an AGP memory structure pointing at our pages, and bind it
2583 * into the GTT.
2584 */
2585 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2586 obj_priv->pages,
07f73f69 2587 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2588 obj_priv->gtt_offset,
2589 obj_priv->agp_type);
673a394b 2590 if (obj_priv->agp_mem == NULL) {
856fa198 2591 i915_gem_object_put_pages(obj);
673a394b
EA
2592 drm_mm_put_block(obj_priv->gtt_space);
2593 obj_priv->gtt_space = NULL;
07f73f69 2594
0108a3ed 2595 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2596 if (ret)
07f73f69 2597 return ret;
07f73f69
CW
2598
2599 goto search_free;
673a394b
EA
2600 }
2601 atomic_inc(&dev->gtt_count);
2602 atomic_add(obj->size, &dev->gtt_memory);
2603
bf1a1092
CW
2604 /* keep track of bounds object by adding it to the inactive list */
2605 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2606
673a394b
EA
2607 /* Assert that the object is not currently in any GPU domain. As it
2608 * wasn't in the GTT, there shouldn't be any way it could have been in
2609 * a GPU cache
2610 */
21d509e3
CW
2611 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2612 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2613
1c5d22f7
CW
2614 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2615
673a394b
EA
2616 return 0;
2617}
2618
2619void
2620i915_gem_clflush_object(struct drm_gem_object *obj)
2621{
23010e43 2622 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2623
2624 /* If we don't have a page list set up, then we're not pinned
2625 * to GPU, and we can ignore the cache flush because it'll happen
2626 * again at bind time.
2627 */
856fa198 2628 if (obj_priv->pages == NULL)
673a394b
EA
2629 return;
2630
1c5d22f7 2631 trace_i915_gem_object_clflush(obj);
cfa16a0d 2632
856fa198 2633 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2634}
2635
e47c68e9 2636/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2637static int
ba3d8d74
DV
2638i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2639 bool pipelined)
e47c68e9
EA
2640{
2641 struct drm_device *dev = obj->dev;
1c5d22f7 2642 uint32_t old_write_domain;
e47c68e9
EA
2643
2644 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2645 return 0;
e47c68e9
EA
2646
2647 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2648 old_write_domain = obj->write_domain;
9220434a
CW
2649 i915_gem_flush_ring(dev,
2650 to_intel_bo(obj)->ring,
2651 0, obj->write_domain);
48b956c5 2652 BUG_ON(obj->write_domain);
1c5d22f7
CW
2653
2654 trace_i915_gem_object_change_domain(obj,
2655 obj->read_domains,
2656 old_write_domain);
ba3d8d74
DV
2657
2658 if (pipelined)
2659 return 0;
2660
2cf34d7b 2661 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2662}
2663
2664/** Flushes the GTT write domain for the object if it's dirty. */
2665static void
2666i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2667{
1c5d22f7
CW
2668 uint32_t old_write_domain;
2669
e47c68e9
EA
2670 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2671 return;
2672
2673 /* No actual flushing is required for the GTT write domain. Writes
2674 * to it immediately go to main memory as far as we know, so there's
2675 * no chipset flush. It also doesn't land in render cache.
2676 */
1c5d22f7 2677 old_write_domain = obj->write_domain;
e47c68e9 2678 obj->write_domain = 0;
1c5d22f7
CW
2679
2680 trace_i915_gem_object_change_domain(obj,
2681 obj->read_domains,
2682 old_write_domain);
e47c68e9
EA
2683}
2684
2685/** Flushes the CPU write domain for the object if it's dirty. */
2686static void
2687i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2688{
2689 struct drm_device *dev = obj->dev;
1c5d22f7 2690 uint32_t old_write_domain;
e47c68e9
EA
2691
2692 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2693 return;
2694
2695 i915_gem_clflush_object(obj);
2696 drm_agp_chipset_flush(dev);
1c5d22f7 2697 old_write_domain = obj->write_domain;
e47c68e9 2698 obj->write_domain = 0;
1c5d22f7
CW
2699
2700 trace_i915_gem_object_change_domain(obj,
2701 obj->read_domains,
2702 old_write_domain);
e47c68e9
EA
2703}
2704
2ef7eeaa
EA
2705/**
2706 * Moves a single object to the GTT read, and possibly write domain.
2707 *
2708 * This function returns when the move is complete, including waiting on
2709 * flushes to occur.
2710 */
79e53945 2711int
2ef7eeaa
EA
2712i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2713{
23010e43 2714 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2715 uint32_t old_write_domain, old_read_domains;
e47c68e9 2716 int ret;
2ef7eeaa 2717
02354392
EA
2718 /* Not valid to be called on unbound objects. */
2719 if (obj_priv->gtt_space == NULL)
2720 return -EINVAL;
2721
ba3d8d74 2722 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2723 if (ret != 0)
2724 return ret;
2725
7213342d 2726 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2727
ba3d8d74 2728 if (write) {
2cf34d7b 2729 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2730 if (ret)
2731 return ret;
ba3d8d74 2732 }
2ef7eeaa 2733
7213342d
CW
2734 old_write_domain = obj->write_domain;
2735 old_read_domains = obj->read_domains;
2ef7eeaa 2736
e47c68e9
EA
2737 /* It should now be out of any other write domains, and we can update
2738 * the domain values for our changes.
2739 */
2740 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2741 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2742 if (write) {
7213342d 2743 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2744 obj->write_domain = I915_GEM_DOMAIN_GTT;
2745 obj_priv->dirty = 1;
2ef7eeaa
EA
2746 }
2747
1c5d22f7
CW
2748 trace_i915_gem_object_change_domain(obj,
2749 old_read_domains,
2750 old_write_domain);
2751
e47c68e9
EA
2752 return 0;
2753}
2754
b9241ea3
ZW
2755/*
2756 * Prepare buffer for display plane. Use uninterruptible for possible flush
2757 * wait, as in modesetting process we're not supposed to be interrupted.
2758 */
2759int
48b956c5
CW
2760i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2761 bool pipelined)
b9241ea3 2762{
23010e43 2763 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2764 uint32_t old_read_domains;
b9241ea3
ZW
2765 int ret;
2766
2767 /* Not valid to be called on unbound objects. */
2768 if (obj_priv->gtt_space == NULL)
2769 return -EINVAL;
2770
48b956c5
CW
2771 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2772 if (ret)
e35a41de 2773 return ret;
b9241ea3 2774
b118c1e3
CW
2775 i915_gem_object_flush_cpu_write_domain(obj);
2776
b9241ea3 2777 old_read_domains = obj->read_domains;
b118c1e3 2778 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2779
2780 trace_i915_gem_object_change_domain(obj,
2781 old_read_domains,
ba3d8d74 2782 obj->write_domain);
b9241ea3
ZW
2783
2784 return 0;
2785}
2786
e47c68e9
EA
2787/**
2788 * Moves a single object to the CPU read, and possibly write domain.
2789 *
2790 * This function returns when the move is complete, including waiting on
2791 * flushes to occur.
2792 */
2793static int
2794i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2795{
1c5d22f7 2796 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2797 int ret;
2798
ba3d8d74 2799 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2800 if (ret != 0)
2801 return ret;
2ef7eeaa 2802
e47c68e9 2803 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2804
e47c68e9
EA
2805 /* If we have a partially-valid cache of the object in the CPU,
2806 * finish invalidating it and free the per-page flags.
2ef7eeaa 2807 */
e47c68e9 2808 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2809
7213342d 2810 if (write) {
2cf34d7b 2811 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2812 if (ret)
2813 return ret;
2814 }
2815
1c5d22f7
CW
2816 old_write_domain = obj->write_domain;
2817 old_read_domains = obj->read_domains;
2818
e47c68e9
EA
2819 /* Flush the CPU cache if it's still invalid. */
2820 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2821 i915_gem_clflush_object(obj);
2ef7eeaa 2822
e47c68e9 2823 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2824 }
2825
2826 /* It should now be out of any other write domains, and we can update
2827 * the domain values for our changes.
2828 */
e47c68e9
EA
2829 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2830
2831 /* If we're writing through the CPU, then the GPU read domains will
2832 * need to be invalidated at next use.
2833 */
2834 if (write) {
2835 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2836 obj->write_domain = I915_GEM_DOMAIN_CPU;
2837 }
2ef7eeaa 2838
1c5d22f7
CW
2839 trace_i915_gem_object_change_domain(obj,
2840 old_read_domains,
2841 old_write_domain);
2842
2ef7eeaa
EA
2843 return 0;
2844}
2845
673a394b
EA
2846/*
2847 * Set the next domain for the specified object. This
2848 * may not actually perform the necessary flushing/invaliding though,
2849 * as that may want to be batched with other set_domain operations
2850 *
2851 * This is (we hope) the only really tricky part of gem. The goal
2852 * is fairly simple -- track which caches hold bits of the object
2853 * and make sure they remain coherent. A few concrete examples may
2854 * help to explain how it works. For shorthand, we use the notation
2855 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2856 * a pair of read and write domain masks.
2857 *
2858 * Case 1: the batch buffer
2859 *
2860 * 1. Allocated
2861 * 2. Written by CPU
2862 * 3. Mapped to GTT
2863 * 4. Read by GPU
2864 * 5. Unmapped from GTT
2865 * 6. Freed
2866 *
2867 * Let's take these a step at a time
2868 *
2869 * 1. Allocated
2870 * Pages allocated from the kernel may still have
2871 * cache contents, so we set them to (CPU, CPU) always.
2872 * 2. Written by CPU (using pwrite)
2873 * The pwrite function calls set_domain (CPU, CPU) and
2874 * this function does nothing (as nothing changes)
2875 * 3. Mapped by GTT
2876 * This function asserts that the object is not
2877 * currently in any GPU-based read or write domains
2878 * 4. Read by GPU
2879 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2880 * As write_domain is zero, this function adds in the
2881 * current read domains (CPU+COMMAND, 0).
2882 * flush_domains is set to CPU.
2883 * invalidate_domains is set to COMMAND
2884 * clflush is run to get data out of the CPU caches
2885 * then i915_dev_set_domain calls i915_gem_flush to
2886 * emit an MI_FLUSH and drm_agp_chipset_flush
2887 * 5. Unmapped from GTT
2888 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2889 * flush_domains and invalidate_domains end up both zero
2890 * so no flushing/invalidating happens
2891 * 6. Freed
2892 * yay, done
2893 *
2894 * Case 2: The shared render buffer
2895 *
2896 * 1. Allocated
2897 * 2. Mapped to GTT
2898 * 3. Read/written by GPU
2899 * 4. set_domain to (CPU,CPU)
2900 * 5. Read/written by CPU
2901 * 6. Read/written by GPU
2902 *
2903 * 1. Allocated
2904 * Same as last example, (CPU, CPU)
2905 * 2. Mapped to GTT
2906 * Nothing changes (assertions find that it is not in the GPU)
2907 * 3. Read/written by GPU
2908 * execbuffer calls set_domain (RENDER, RENDER)
2909 * flush_domains gets CPU
2910 * invalidate_domains gets GPU
2911 * clflush (obj)
2912 * MI_FLUSH and drm_agp_chipset_flush
2913 * 4. set_domain (CPU, CPU)
2914 * flush_domains gets GPU
2915 * invalidate_domains gets CPU
2916 * wait_rendering (obj) to make sure all drawing is complete.
2917 * This will include an MI_FLUSH to get the data from GPU
2918 * to memory
2919 * clflush (obj) to invalidate the CPU cache
2920 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2921 * 5. Read/written by CPU
2922 * cache lines are loaded and dirtied
2923 * 6. Read written by GPU
2924 * Same as last GPU access
2925 *
2926 * Case 3: The constant buffer
2927 *
2928 * 1. Allocated
2929 * 2. Written by CPU
2930 * 3. Read by GPU
2931 * 4. Updated (written) by CPU again
2932 * 5. Read by GPU
2933 *
2934 * 1. Allocated
2935 * (CPU, CPU)
2936 * 2. Written by CPU
2937 * (CPU, CPU)
2938 * 3. Read by GPU
2939 * (CPU+RENDER, 0)
2940 * flush_domains = CPU
2941 * invalidate_domains = RENDER
2942 * clflush (obj)
2943 * MI_FLUSH
2944 * drm_agp_chipset_flush
2945 * 4. Updated (written) by CPU again
2946 * (CPU, CPU)
2947 * flush_domains = 0 (no previous write domain)
2948 * invalidate_domains = 0 (no new read domains)
2949 * 5. Read by GPU
2950 * (CPU+RENDER, 0)
2951 * flush_domains = CPU
2952 * invalidate_domains = RENDER
2953 * clflush (obj)
2954 * MI_FLUSH
2955 * drm_agp_chipset_flush
2956 */
c0d90829 2957static void
8b0e378a 2958i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2959{
2960 struct drm_device *dev = obj->dev;
9220434a 2961 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2962 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2963 uint32_t invalidate_domains = 0;
2964 uint32_t flush_domains = 0;
1c5d22f7 2965 uint32_t old_read_domains;
e47c68e9 2966
8b0e378a
EA
2967 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2968 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2969
652c393a
JB
2970 intel_mark_busy(dev, obj);
2971
673a394b
EA
2972#if WATCH_BUF
2973 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2974 __func__, obj,
8b0e378a
EA
2975 obj->read_domains, obj->pending_read_domains,
2976 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2977#endif
2978 /*
2979 * If the object isn't moving to a new write domain,
2980 * let the object stay in multiple read domains
2981 */
8b0e378a
EA
2982 if (obj->pending_write_domain == 0)
2983 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2984 else
2985 obj_priv->dirty = 1;
2986
2987 /*
2988 * Flush the current write domain if
2989 * the new read domains don't match. Invalidate
2990 * any read domains which differ from the old
2991 * write domain
2992 */
8b0e378a
EA
2993 if (obj->write_domain &&
2994 obj->write_domain != obj->pending_read_domains) {
673a394b 2995 flush_domains |= obj->write_domain;
8b0e378a
EA
2996 invalidate_domains |=
2997 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2998 }
2999 /*
3000 * Invalidate any read caches which may have
3001 * stale data. That is, any new read domains.
3002 */
8b0e378a 3003 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3004 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3005#if WATCH_BUF
3006 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3007 __func__, flush_domains, invalidate_domains);
3008#endif
673a394b
EA
3009 i915_gem_clflush_object(obj);
3010 }
3011
1c5d22f7
CW
3012 old_read_domains = obj->read_domains;
3013
efbeed96
EA
3014 /* The actual obj->write_domain will be updated with
3015 * pending_write_domain after we emit the accumulated flush for all
3016 * of our domain changes in execbuffers (which clears objects'
3017 * write_domains). So if we have a current write domain that we
3018 * aren't changing, set pending_write_domain to that.
3019 */
3020 if (flush_domains == 0 && obj->pending_write_domain == 0)
3021 obj->pending_write_domain = obj->write_domain;
8b0e378a 3022 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3023
3024 dev->invalidate_domains |= invalidate_domains;
3025 dev->flush_domains |= flush_domains;
9220434a
CW
3026 if (obj_priv->ring)
3027 dev_priv->mm.flush_rings |= obj_priv->ring->id;
673a394b
EA
3028#if WATCH_BUF
3029 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3030 __func__,
3031 obj->read_domains, obj->write_domain,
3032 dev->invalidate_domains, dev->flush_domains);
3033#endif
1c5d22f7
CW
3034
3035 trace_i915_gem_object_change_domain(obj,
3036 old_read_domains,
3037 obj->write_domain);
673a394b
EA
3038}
3039
3040/**
e47c68e9 3041 * Moves the object from a partially CPU read to a full one.
673a394b 3042 *
e47c68e9
EA
3043 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3044 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3045 */
e47c68e9
EA
3046static void
3047i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3048{
23010e43 3049 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3050
e47c68e9
EA
3051 if (!obj_priv->page_cpu_valid)
3052 return;
3053
3054 /* If we're partially in the CPU read domain, finish moving it in.
3055 */
3056 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3057 int i;
3058
3059 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3060 if (obj_priv->page_cpu_valid[i])
3061 continue;
856fa198 3062 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3063 }
e47c68e9
EA
3064 }
3065
3066 /* Free the page_cpu_valid mappings which are now stale, whether
3067 * or not we've got I915_GEM_DOMAIN_CPU.
3068 */
9a298b2a 3069 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3070 obj_priv->page_cpu_valid = NULL;
3071}
3072
3073/**
3074 * Set the CPU read domain on a range of the object.
3075 *
3076 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3077 * not entirely valid. The page_cpu_valid member of the object flags which
3078 * pages have been flushed, and will be respected by
3079 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3080 * of the whole object.
3081 *
3082 * This function returns when the move is complete, including waiting on
3083 * flushes to occur.
3084 */
3085static int
3086i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3087 uint64_t offset, uint64_t size)
3088{
23010e43 3089 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3090 uint32_t old_read_domains;
e47c68e9 3091 int i, ret;
673a394b 3092
e47c68e9
EA
3093 if (offset == 0 && size == obj->size)
3094 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3095
ba3d8d74 3096 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3097 if (ret != 0)
6a47baa6 3098 return ret;
e47c68e9
EA
3099 i915_gem_object_flush_gtt_write_domain(obj);
3100
3101 /* If we're already fully in the CPU read domain, we're done. */
3102 if (obj_priv->page_cpu_valid == NULL &&
3103 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3104 return 0;
673a394b 3105
e47c68e9
EA
3106 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3107 * newly adding I915_GEM_DOMAIN_CPU
3108 */
673a394b 3109 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3110 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3111 GFP_KERNEL);
e47c68e9
EA
3112 if (obj_priv->page_cpu_valid == NULL)
3113 return -ENOMEM;
3114 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3115 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3116
3117 /* Flush the cache on any pages that are still invalid from the CPU's
3118 * perspective.
3119 */
e47c68e9
EA
3120 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3121 i++) {
673a394b
EA
3122 if (obj_priv->page_cpu_valid[i])
3123 continue;
3124
856fa198 3125 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3126
3127 obj_priv->page_cpu_valid[i] = 1;
3128 }
3129
e47c68e9
EA
3130 /* It should now be out of any other write domains, and we can update
3131 * the domain values for our changes.
3132 */
3133 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3134
1c5d22f7 3135 old_read_domains = obj->read_domains;
e47c68e9
EA
3136 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3137
1c5d22f7
CW
3138 trace_i915_gem_object_change_domain(obj,
3139 old_read_domains,
3140 obj->write_domain);
3141
673a394b
EA
3142 return 0;
3143}
3144
673a394b
EA
3145/**
3146 * Pin an object to the GTT and evaluate the relocations landing in it.
3147 */
3148static int
3149i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3150 struct drm_file *file_priv,
76446cac 3151 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3152 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3153{
3154 struct drm_device *dev = obj->dev;
0839ccb8 3155 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3156 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3157 int i, ret;
0839ccb8 3158 void __iomem *reloc_page;
76446cac
JB
3159 bool need_fence;
3160
3161 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3162 obj_priv->tiling_mode != I915_TILING_NONE;
3163
3164 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3165 if (need_fence &&
3166 !i915_gem_object_fence_offset_ok(obj,
3167 obj_priv->tiling_mode)) {
3168 ret = i915_gem_object_unbind(obj);
3169 if (ret)
3170 return ret;
3171 }
673a394b
EA
3172
3173 /* Choose the GTT offset for our buffer and put it there. */
3174 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3175 if (ret)
3176 return ret;
3177
76446cac
JB
3178 /*
3179 * Pre-965 chips need a fence register set up in order to
3180 * properly handle blits to/from tiled surfaces.
3181 */
3182 if (need_fence) {
2cf34d7b 3183 ret = i915_gem_object_get_fence_reg(obj, false);
76446cac 3184 if (ret != 0) {
76446cac
JB
3185 i915_gem_object_unpin(obj);
3186 return ret;
3187 }
3188 }
3189
673a394b
EA
3190 entry->offset = obj_priv->gtt_offset;
3191
673a394b
EA
3192 /* Apply the relocations, using the GTT aperture to avoid cache
3193 * flushing requirements.
3194 */
3195 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3196 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3197 struct drm_gem_object *target_obj;
3198 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3199 uint32_t reloc_val, reloc_offset;
3200 uint32_t __iomem *reloc_entry;
673a394b 3201
673a394b 3202 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3203 reloc->target_handle);
673a394b
EA
3204 if (target_obj == NULL) {
3205 i915_gem_object_unpin(obj);
bf79cb91 3206 return -ENOENT;
673a394b 3207 }
23010e43 3208 target_obj_priv = to_intel_bo(target_obj);
673a394b 3209
8542a0bb
CW
3210#if WATCH_RELOC
3211 DRM_INFO("%s: obj %p offset %08x target %d "
3212 "read %08x write %08x gtt %08x "
3213 "presumed %08x delta %08x\n",
3214 __func__,
3215 obj,
3216 (int) reloc->offset,
3217 (int) reloc->target_handle,
3218 (int) reloc->read_domains,
3219 (int) reloc->write_domain,
3220 (int) target_obj_priv->gtt_offset,
3221 (int) reloc->presumed_offset,
3222 reloc->delta);
3223#endif
3224
673a394b
EA
3225 /* The target buffer should have appeared before us in the
3226 * exec_object list, so it should have a GTT space bound by now.
3227 */
3228 if (target_obj_priv->gtt_space == NULL) {
3229 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3230 reloc->target_handle);
673a394b
EA
3231 drm_gem_object_unreference(target_obj);
3232 i915_gem_object_unpin(obj);
3233 return -EINVAL;
3234 }
3235
8542a0bb 3236 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3237 if (reloc->write_domain & (reloc->write_domain - 1)) {
3238 DRM_ERROR("reloc with multiple write domains: "
3239 "obj %p target %d offset %d "
3240 "read %08x write %08x",
3241 obj, reloc->target_handle,
3242 (int) reloc->offset,
3243 reloc->read_domains,
3244 reloc->write_domain);
3245 return -EINVAL;
3246 }
40a5f0de
EA
3247 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3248 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3249 DRM_ERROR("reloc with read/write CPU domains: "
3250 "obj %p target %d offset %d "
3251 "read %08x write %08x",
40a5f0de
EA
3252 obj, reloc->target_handle,
3253 (int) reloc->offset,
3254 reloc->read_domains,
3255 reloc->write_domain);
491152b8
CW
3256 drm_gem_object_unreference(target_obj);
3257 i915_gem_object_unpin(obj);
e47c68e9
EA
3258 return -EINVAL;
3259 }
40a5f0de
EA
3260 if (reloc->write_domain && target_obj->pending_write_domain &&
3261 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3262 DRM_ERROR("Write domain conflict: "
3263 "obj %p target %d offset %d "
3264 "new %08x old %08x\n",
40a5f0de
EA
3265 obj, reloc->target_handle,
3266 (int) reloc->offset,
3267 reloc->write_domain,
673a394b
EA
3268 target_obj->pending_write_domain);
3269 drm_gem_object_unreference(target_obj);
3270 i915_gem_object_unpin(obj);
3271 return -EINVAL;
3272 }
3273
40a5f0de
EA
3274 target_obj->pending_read_domains |= reloc->read_domains;
3275 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3276
3277 /* If the relocation already has the right value in it, no
3278 * more work needs to be done.
3279 */
40a5f0de 3280 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3281 drm_gem_object_unreference(target_obj);
3282 continue;
3283 }
3284
8542a0bb
CW
3285 /* Check that the relocation address is valid... */
3286 if (reloc->offset > obj->size - 4) {
3287 DRM_ERROR("Relocation beyond object bounds: "
3288 "obj %p target %d offset %d size %d.\n",
3289 obj, reloc->target_handle,
3290 (int) reloc->offset, (int) obj->size);
3291 drm_gem_object_unreference(target_obj);
3292 i915_gem_object_unpin(obj);
3293 return -EINVAL;
3294 }
3295 if (reloc->offset & 3) {
3296 DRM_ERROR("Relocation not 4-byte aligned: "
3297 "obj %p target %d offset %d.\n",
3298 obj, reloc->target_handle,
3299 (int) reloc->offset);
3300 drm_gem_object_unreference(target_obj);
3301 i915_gem_object_unpin(obj);
3302 return -EINVAL;
3303 }
3304
3305 /* and points to somewhere within the target object. */
3306 if (reloc->delta >= target_obj->size) {
3307 DRM_ERROR("Relocation beyond target object bounds: "
3308 "obj %p target %d delta %d size %d.\n",
3309 obj, reloc->target_handle,
3310 (int) reloc->delta, (int) target_obj->size);
3311 drm_gem_object_unreference(target_obj);
3312 i915_gem_object_unpin(obj);
3313 return -EINVAL;
3314 }
3315
2ef7eeaa
EA
3316 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3317 if (ret != 0) {
3318 drm_gem_object_unreference(target_obj);
3319 i915_gem_object_unpin(obj);
3320 return -EINVAL;
673a394b
EA
3321 }
3322
3323 /* Map the page containing the relocation we're going to
3324 * perform.
3325 */
40a5f0de 3326 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3327 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3328 (reloc_offset &
fca3ec01
CW
3329 ~(PAGE_SIZE - 1)),
3330 KM_USER0);
3043c60c 3331 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3332 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3333 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3334
3335#if WATCH_BUF
3336 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3337 obj, (unsigned int) reloc->offset,
673a394b
EA
3338 readl(reloc_entry), reloc_val);
3339#endif
3340 writel(reloc_val, reloc_entry);
fca3ec01 3341 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3342
40a5f0de
EA
3343 /* The updated presumed offset for this entry will be
3344 * copied back out to the user.
673a394b 3345 */
40a5f0de 3346 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3347
3348 drm_gem_object_unreference(target_obj);
3349 }
3350
673a394b
EA
3351#if WATCH_BUF
3352 if (0)
3353 i915_gem_dump_object(obj, 128, __func__, ~0);
3354#endif
3355 return 0;
3356}
3357
673a394b
EA
3358/* Throttle our rendering by waiting until the ring has completed our requests
3359 * emitted over 20 msec ago.
3360 *
b962442e
EA
3361 * Note that if we were to use the current jiffies each time around the loop,
3362 * we wouldn't escape the function with any frames outstanding if the time to
3363 * render a frame was over 20ms.
3364 *
673a394b
EA
3365 * This should get us reasonable parallelism between CPU and GPU but also
3366 * relatively low latency when blocking on a particular request to finish.
3367 */
3368static int
3369i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3370{
3371 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3372 int ret = 0;
b962442e 3373 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3374
3375 mutex_lock(&dev->struct_mutex);
b962442e
EA
3376 while (!list_empty(&i915_file_priv->mm.request_list)) {
3377 struct drm_i915_gem_request *request;
3378
3379 request = list_first_entry(&i915_file_priv->mm.request_list,
3380 struct drm_i915_gem_request,
3381 client_list);
3382
3383 if (time_after_eq(request->emitted_jiffies, recent_enough))
3384 break;
3385
852835f3 3386 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3387 if (ret != 0)
3388 break;
3389 }
673a394b 3390 mutex_unlock(&dev->struct_mutex);
b962442e 3391
673a394b
EA
3392 return ret;
3393}
3394
40a5f0de 3395static int
76446cac 3396i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3397 uint32_t buffer_count,
3398 struct drm_i915_gem_relocation_entry **relocs)
3399{
3400 uint32_t reloc_count = 0, reloc_index = 0, i;
3401 int ret;
3402
3403 *relocs = NULL;
3404 for (i = 0; i < buffer_count; i++) {
3405 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3406 return -EINVAL;
3407 reloc_count += exec_list[i].relocation_count;
3408 }
3409
8e7d2b2c 3410 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3411 if (*relocs == NULL) {
3412 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3413 return -ENOMEM;
76446cac 3414 }
40a5f0de
EA
3415
3416 for (i = 0; i < buffer_count; i++) {
3417 struct drm_i915_gem_relocation_entry __user *user_relocs;
3418
3419 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3420
3421 ret = copy_from_user(&(*relocs)[reloc_index],
3422 user_relocs,
3423 exec_list[i].relocation_count *
3424 sizeof(**relocs));
3425 if (ret != 0) {
8e7d2b2c 3426 drm_free_large(*relocs);
40a5f0de 3427 *relocs = NULL;
2bc43b5c 3428 return -EFAULT;
40a5f0de
EA
3429 }
3430
3431 reloc_index += exec_list[i].relocation_count;
3432 }
3433
2bc43b5c 3434 return 0;
40a5f0de
EA
3435}
3436
3437static int
76446cac 3438i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3439 uint32_t buffer_count,
3440 struct drm_i915_gem_relocation_entry *relocs)
3441{
3442 uint32_t reloc_count = 0, i;
2bc43b5c 3443 int ret = 0;
40a5f0de 3444
93533c29
CW
3445 if (relocs == NULL)
3446 return 0;
3447
40a5f0de
EA
3448 for (i = 0; i < buffer_count; i++) {
3449 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3450 int unwritten;
40a5f0de
EA
3451
3452 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3453
2bc43b5c
FM
3454 unwritten = copy_to_user(user_relocs,
3455 &relocs[reloc_count],
3456 exec_list[i].relocation_count *
3457 sizeof(*relocs));
3458
3459 if (unwritten) {
3460 ret = -EFAULT;
3461 goto err;
40a5f0de
EA
3462 }
3463
3464 reloc_count += exec_list[i].relocation_count;
3465 }
3466
2bc43b5c 3467err:
8e7d2b2c 3468 drm_free_large(relocs);
40a5f0de
EA
3469
3470 return ret;
3471}
3472
83d60795 3473static int
76446cac 3474i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3475 uint64_t exec_offset)
3476{
3477 uint32_t exec_start, exec_len;
3478
3479 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3480 exec_len = (uint32_t) exec->batch_len;
3481
3482 if ((exec_start | exec_len) & 0x7)
3483 return -EINVAL;
3484
3485 if (!exec_start)
3486 return -EINVAL;
3487
3488 return 0;
3489}
3490
6b95a207
KH
3491static int
3492i915_gem_wait_for_pending_flip(struct drm_device *dev,
3493 struct drm_gem_object **object_list,
3494 int count)
3495{
3496 drm_i915_private_t *dev_priv = dev->dev_private;
3497 struct drm_i915_gem_object *obj_priv;
3498 DEFINE_WAIT(wait);
3499 int i, ret = 0;
3500
3501 for (;;) {
3502 prepare_to_wait(&dev_priv->pending_flip_queue,
3503 &wait, TASK_INTERRUPTIBLE);
3504 for (i = 0; i < count; i++) {
23010e43 3505 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3506 if (atomic_read(&obj_priv->pending_flip) > 0)
3507 break;
3508 }
3509 if (i == count)
3510 break;
3511
3512 if (!signal_pending(current)) {
3513 mutex_unlock(&dev->struct_mutex);
3514 schedule();
3515 mutex_lock(&dev->struct_mutex);
3516 continue;
3517 }
3518 ret = -ERESTARTSYS;
3519 break;
3520 }
3521 finish_wait(&dev_priv->pending_flip_queue, &wait);
3522
3523 return ret;
3524}
3525
8dc5d147 3526static int
76446cac
JB
3527i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3528 struct drm_file *file_priv,
3529 struct drm_i915_gem_execbuffer2 *args,
3530 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3531{
3532 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3533 struct drm_gem_object **object_list = NULL;
3534 struct drm_gem_object *batch_obj;
b70d11da 3535 struct drm_i915_gem_object *obj_priv;
201361a5 3536 struct drm_clip_rect *cliprects = NULL;
93533c29 3537 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3538 struct drm_i915_gem_request *request = NULL;
76446cac 3539 int ret = 0, ret2, i, pinned = 0;
673a394b 3540 uint64_t exec_offset;
8a1a49f9 3541 uint32_t seqno, reloc_index;
6b95a207 3542 int pin_tries, flips;
673a394b 3543
852835f3
ZN
3544 struct intel_ring_buffer *ring = NULL;
3545
673a394b
EA
3546#if WATCH_EXEC
3547 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3548 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3549#endif
d1b851fc
ZN
3550 if (args->flags & I915_EXEC_BSD) {
3551 if (!HAS_BSD(dev)) {
3552 DRM_ERROR("execbuf with wrong flag\n");
3553 return -EINVAL;
3554 }
3555 ring = &dev_priv->bsd_ring;
3556 } else {
3557 ring = &dev_priv->render_ring;
3558 }
3559
4f481ed2
EA
3560 if (args->buffer_count < 1) {
3561 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3562 return -EINVAL;
3563 }
c8e0f93a 3564 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3565 if (object_list == NULL) {
3566 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3567 args->buffer_count);
3568 ret = -ENOMEM;
3569 goto pre_mutex_err;
3570 }
673a394b 3571
201361a5 3572 if (args->num_cliprects != 0) {
9a298b2a
EA
3573 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3574 GFP_KERNEL);
a40e8d31
OA
3575 if (cliprects == NULL) {
3576 ret = -ENOMEM;
201361a5 3577 goto pre_mutex_err;
a40e8d31 3578 }
201361a5
EA
3579
3580 ret = copy_from_user(cliprects,
3581 (struct drm_clip_rect __user *)
3582 (uintptr_t) args->cliprects_ptr,
3583 sizeof(*cliprects) * args->num_cliprects);
3584 if (ret != 0) {
3585 DRM_ERROR("copy %d cliprects failed: %d\n",
3586 args->num_cliprects, ret);
c877cdce 3587 ret = -EFAULT;
201361a5
EA
3588 goto pre_mutex_err;
3589 }
3590 }
3591
8dc5d147
CW
3592 request = kzalloc(sizeof(*request), GFP_KERNEL);
3593 if (request == NULL) {
3594 ret = -ENOMEM;
3595 goto pre_mutex_err;
3596 }
3597
40a5f0de
EA
3598 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3599 &relocs);
3600 if (ret != 0)
3601 goto pre_mutex_err;
3602
673a394b
EA
3603 mutex_lock(&dev->struct_mutex);
3604
3605 i915_verify_inactive(dev, __FILE__, __LINE__);
3606
ba1234d1 3607 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3608 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3609 ret = -EIO;
3610 goto pre_mutex_err;
673a394b
EA
3611 }
3612
3613 if (dev_priv->mm.suspended) {
673a394b 3614 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3615 ret = -EBUSY;
3616 goto pre_mutex_err;
673a394b
EA
3617 }
3618
ac94a962 3619 /* Look up object handles */
6b95a207 3620 flips = 0;
673a394b
EA
3621 for (i = 0; i < args->buffer_count; i++) {
3622 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3623 exec_list[i].handle);
3624 if (object_list[i] == NULL) {
3625 DRM_ERROR("Invalid object handle %d at index %d\n",
3626 exec_list[i].handle, i);
0ce907f8
CW
3627 /* prevent error path from reading uninitialized data */
3628 args->buffer_count = i + 1;
bf79cb91 3629 ret = -ENOENT;
673a394b
EA
3630 goto err;
3631 }
b70d11da 3632
23010e43 3633 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3634 if (obj_priv->in_execbuffer) {
3635 DRM_ERROR("Object %p appears more than once in object list\n",
3636 object_list[i]);
0ce907f8
CW
3637 /* prevent error path from reading uninitialized data */
3638 args->buffer_count = i + 1;
bf79cb91 3639 ret = -EINVAL;
b70d11da
KH
3640 goto err;
3641 }
3642 obj_priv->in_execbuffer = true;
6b95a207
KH
3643 flips += atomic_read(&obj_priv->pending_flip);
3644 }
3645
3646 if (flips > 0) {
3647 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3648 args->buffer_count);
3649 if (ret)
3650 goto err;
ac94a962 3651 }
673a394b 3652
ac94a962
KP
3653 /* Pin and relocate */
3654 for (pin_tries = 0; ; pin_tries++) {
3655 ret = 0;
40a5f0de
EA
3656 reloc_index = 0;
3657
ac94a962
KP
3658 for (i = 0; i < args->buffer_count; i++) {
3659 object_list[i]->pending_read_domains = 0;
3660 object_list[i]->pending_write_domain = 0;
3661 ret = i915_gem_object_pin_and_relocate(object_list[i],
3662 file_priv,
40a5f0de
EA
3663 &exec_list[i],
3664 &relocs[reloc_index]);
ac94a962
KP
3665 if (ret)
3666 break;
3667 pinned = i + 1;
40a5f0de 3668 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3669 }
3670 /* success */
3671 if (ret == 0)
3672 break;
3673
3674 /* error other than GTT full, or we've already tried again */
2939e1f5 3675 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3676 if (ret != -ERESTARTSYS) {
3677 unsigned long long total_size = 0;
3d1cc470
CW
3678 int num_fences = 0;
3679 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3680 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3681
07f73f69 3682 total_size += object_list[i]->size;
3d1cc470
CW
3683 num_fences +=
3684 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3685 obj_priv->tiling_mode != I915_TILING_NONE;
3686 }
3687 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3688 pinned+1, args->buffer_count,
3d1cc470
CW
3689 total_size, num_fences,
3690 ret);
07f73f69
CW
3691 DRM_ERROR("%d objects [%d pinned], "
3692 "%d object bytes [%d pinned], "
3693 "%d/%d gtt bytes\n",
3694 atomic_read(&dev->object_count),
3695 atomic_read(&dev->pin_count),
3696 atomic_read(&dev->object_memory),
3697 atomic_read(&dev->pin_memory),
3698 atomic_read(&dev->gtt_memory),
3699 dev->gtt_total);
3700 }
673a394b
EA
3701 goto err;
3702 }
ac94a962
KP
3703
3704 /* unpin all of our buffers */
3705 for (i = 0; i < pinned; i++)
3706 i915_gem_object_unpin(object_list[i]);
b1177636 3707 pinned = 0;
ac94a962
KP
3708
3709 /* evict everyone we can from the aperture */
3710 ret = i915_gem_evict_everything(dev);
07f73f69 3711 if (ret && ret != -ENOSPC)
ac94a962 3712 goto err;
673a394b
EA
3713 }
3714
3715 /* Set the pending read domains for the batch buffer to COMMAND */
3716 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3717 if (batch_obj->pending_write_domain) {
3718 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3719 ret = -EINVAL;
3720 goto err;
3721 }
3722 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3723
83d60795
CW
3724 /* Sanity check the batch buffer, prior to moving objects */
3725 exec_offset = exec_list[args->buffer_count - 1].offset;
3726 ret = i915_gem_check_execbuffer (args, exec_offset);
3727 if (ret != 0) {
3728 DRM_ERROR("execbuf with invalid offset/length\n");
3729 goto err;
3730 }
3731
673a394b
EA
3732 i915_verify_inactive(dev, __FILE__, __LINE__);
3733
646f0f6e
KP
3734 /* Zero the global flush/invalidate flags. These
3735 * will be modified as new domains are computed
3736 * for each object
3737 */
3738 dev->invalidate_domains = 0;
3739 dev->flush_domains = 0;
9220434a 3740 dev_priv->mm.flush_rings = 0;
646f0f6e 3741
673a394b
EA
3742 for (i = 0; i < args->buffer_count; i++) {
3743 struct drm_gem_object *obj = object_list[i];
673a394b 3744
646f0f6e 3745 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3746 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3747 }
3748
3749 i915_verify_inactive(dev, __FILE__, __LINE__);
3750
646f0f6e
KP
3751 if (dev->invalidate_domains | dev->flush_domains) {
3752#if WATCH_EXEC
3753 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3754 __func__,
3755 dev->invalidate_domains,
3756 dev->flush_domains);
3757#endif
3758 i915_gem_flush(dev,
3759 dev->invalidate_domains,
9220434a
CW
3760 dev->flush_domains,
3761 dev_priv->mm.flush_rings);
a6910434
DV
3762 }
3763
3764 if (dev_priv->render_ring.outstanding_lazy_request) {
8dc5d147 3765 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
a6910434
DV
3766 dev_priv->render_ring.outstanding_lazy_request = false;
3767 }
3768 if (dev_priv->bsd_ring.outstanding_lazy_request) {
8dc5d147 3769 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
a6910434 3770 dev_priv->bsd_ring.outstanding_lazy_request = false;
646f0f6e 3771 }
673a394b 3772
efbeed96
EA
3773 for (i = 0; i < args->buffer_count; i++) {
3774 struct drm_gem_object *obj = object_list[i];
23010e43 3775 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3776 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3777
3778 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3779 if (obj->write_domain)
3780 list_move_tail(&obj_priv->gpu_write_list,
3781 &dev_priv->mm.gpu_write_list);
3782 else
3783 list_del_init(&obj_priv->gpu_write_list);
3784
1c5d22f7
CW
3785 trace_i915_gem_object_change_domain(obj,
3786 obj->read_domains,
3787 old_write_domain);
efbeed96
EA
3788 }
3789
673a394b
EA
3790 i915_verify_inactive(dev, __FILE__, __LINE__);
3791
3792#if WATCH_COHERENCY
3793 for (i = 0; i < args->buffer_count; i++) {
3794 i915_gem_object_check_coherency(object_list[i],
3795 exec_list[i].handle);
3796 }
3797#endif
3798
673a394b 3799#if WATCH_EXEC
6911a9b8 3800 i915_gem_dump_object(batch_obj,
673a394b
EA
3801 args->batch_len,
3802 __func__,
3803 ~0);
3804#endif
3805
673a394b 3806 /* Exec the batchbuffer */
852835f3
ZN
3807 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3808 cliprects, exec_offset);
673a394b
EA
3809 if (ret) {
3810 DRM_ERROR("dispatch failed %d\n", ret);
3811 goto err;
3812 }
3813
3814 /*
3815 * Ensure that the commands in the batch buffer are
3816 * finished before the interrupt fires
3817 */
8a1a49f9 3818 i915_retire_commands(dev, ring);
673a394b
EA
3819
3820 i915_verify_inactive(dev, __FILE__, __LINE__);
3821
617dbe27
DV
3822 for (i = 0; i < args->buffer_count; i++) {
3823 struct drm_gem_object *obj = object_list[i];
3824 obj_priv = to_intel_bo(obj);
3825
3826 i915_gem_object_move_to_active(obj, ring);
3827#if WATCH_LRU
3828 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3829#endif
3830 }
3831
673a394b
EA
3832 /*
3833 * Get a seqno representing the execution of the current buffer,
3834 * which we can wait on. We would like to mitigate these interrupts,
3835 * likely by only creating seqnos occasionally (so that we have
3836 * *some* interrupts representing completion of buffers that we can
3837 * wait on when trying to clear up gtt space).
3838 */
8dc5d147
CW
3839 seqno = i915_add_request(dev, file_priv, request, ring);
3840 request = NULL;
673a394b 3841
673a394b
EA
3842#if WATCH_LRU
3843 i915_dump_lru(dev, __func__);
3844#endif
3845
3846 i915_verify_inactive(dev, __FILE__, __LINE__);
3847
673a394b 3848err:
aad87dff
JL
3849 for (i = 0; i < pinned; i++)
3850 i915_gem_object_unpin(object_list[i]);
3851
b70d11da
KH
3852 for (i = 0; i < args->buffer_count; i++) {
3853 if (object_list[i]) {
23010e43 3854 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3855 obj_priv->in_execbuffer = false;
3856 }
aad87dff 3857 drm_gem_object_unreference(object_list[i]);
b70d11da 3858 }
673a394b 3859
673a394b
EA
3860 mutex_unlock(&dev->struct_mutex);
3861
93533c29 3862pre_mutex_err:
40a5f0de
EA
3863 /* Copy the updated relocations out regardless of current error
3864 * state. Failure to update the relocs would mean that the next
3865 * time userland calls execbuf, it would do so with presumed offset
3866 * state that didn't match the actual object state.
3867 */
3868 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3869 relocs);
3870 if (ret2 != 0) {
3871 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3872
3873 if (ret == 0)
3874 ret = ret2;
3875 }
3876
8e7d2b2c 3877 drm_free_large(object_list);
9a298b2a 3878 kfree(cliprects);
8dc5d147 3879 kfree(request);
673a394b
EA
3880
3881 return ret;
3882}
3883
76446cac
JB
3884/*
3885 * Legacy execbuffer just creates an exec2 list from the original exec object
3886 * list array and passes it to the real function.
3887 */
3888int
3889i915_gem_execbuffer(struct drm_device *dev, void *data,
3890 struct drm_file *file_priv)
3891{
3892 struct drm_i915_gem_execbuffer *args = data;
3893 struct drm_i915_gem_execbuffer2 exec2;
3894 struct drm_i915_gem_exec_object *exec_list = NULL;
3895 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3896 int ret, i;
3897
3898#if WATCH_EXEC
3899 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3900 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3901#endif
3902
3903 if (args->buffer_count < 1) {
3904 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3905 return -EINVAL;
3906 }
3907
3908 /* Copy in the exec list from userland */
3909 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3910 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3911 if (exec_list == NULL || exec2_list == NULL) {
3912 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3913 args->buffer_count);
3914 drm_free_large(exec_list);
3915 drm_free_large(exec2_list);
3916 return -ENOMEM;
3917 }
3918 ret = copy_from_user(exec_list,
3919 (struct drm_i915_relocation_entry __user *)
3920 (uintptr_t) args->buffers_ptr,
3921 sizeof(*exec_list) * args->buffer_count);
3922 if (ret != 0) {
3923 DRM_ERROR("copy %d exec entries failed %d\n",
3924 args->buffer_count, ret);
3925 drm_free_large(exec_list);
3926 drm_free_large(exec2_list);
3927 return -EFAULT;
3928 }
3929
3930 for (i = 0; i < args->buffer_count; i++) {
3931 exec2_list[i].handle = exec_list[i].handle;
3932 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3933 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3934 exec2_list[i].alignment = exec_list[i].alignment;
3935 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3936 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3937 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3938 else
3939 exec2_list[i].flags = 0;
3940 }
3941
3942 exec2.buffers_ptr = args->buffers_ptr;
3943 exec2.buffer_count = args->buffer_count;
3944 exec2.batch_start_offset = args->batch_start_offset;
3945 exec2.batch_len = args->batch_len;
3946 exec2.DR1 = args->DR1;
3947 exec2.DR4 = args->DR4;
3948 exec2.num_cliprects = args->num_cliprects;
3949 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3950 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3951
3952 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3953 if (!ret) {
3954 /* Copy the new buffer offsets back to the user's exec list. */
3955 for (i = 0; i < args->buffer_count; i++)
3956 exec_list[i].offset = exec2_list[i].offset;
3957 /* ... and back out to userspace */
3958 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3959 (uintptr_t) args->buffers_ptr,
3960 exec_list,
3961 sizeof(*exec_list) * args->buffer_count);
3962 if (ret) {
3963 ret = -EFAULT;
3964 DRM_ERROR("failed to copy %d exec entries "
3965 "back to user (%d)\n",
3966 args->buffer_count, ret);
3967 }
76446cac
JB
3968 }
3969
3970 drm_free_large(exec_list);
3971 drm_free_large(exec2_list);
3972 return ret;
3973}
3974
3975int
3976i915_gem_execbuffer2(struct drm_device *dev, void *data,
3977 struct drm_file *file_priv)
3978{
3979 struct drm_i915_gem_execbuffer2 *args = data;
3980 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3981 int ret;
3982
3983#if WATCH_EXEC
3984 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3985 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3986#endif
3987
3988 if (args->buffer_count < 1) {
3989 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3990 return -EINVAL;
3991 }
3992
3993 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3994 if (exec2_list == NULL) {
3995 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3996 args->buffer_count);
3997 return -ENOMEM;
3998 }
3999 ret = copy_from_user(exec2_list,
4000 (struct drm_i915_relocation_entry __user *)
4001 (uintptr_t) args->buffers_ptr,
4002 sizeof(*exec2_list) * args->buffer_count);
4003 if (ret != 0) {
4004 DRM_ERROR("copy %d exec entries failed %d\n",
4005 args->buffer_count, ret);
4006 drm_free_large(exec2_list);
4007 return -EFAULT;
4008 }
4009
4010 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4011 if (!ret) {
4012 /* Copy the new buffer offsets back to the user's exec list. */
4013 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4014 (uintptr_t) args->buffers_ptr,
4015 exec2_list,
4016 sizeof(*exec2_list) * args->buffer_count);
4017 if (ret) {
4018 ret = -EFAULT;
4019 DRM_ERROR("failed to copy %d exec entries "
4020 "back to user (%d)\n",
4021 args->buffer_count, ret);
4022 }
4023 }
4024
4025 drm_free_large(exec2_list);
4026 return ret;
4027}
4028
673a394b
EA
4029int
4030i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4031{
4032 struct drm_device *dev = obj->dev;
23010e43 4033 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4034 int ret;
4035
778c3544
DV
4036 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4037
673a394b 4038 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4039
4040 if (obj_priv->gtt_space != NULL) {
4041 if (alignment == 0)
4042 alignment = i915_gem_get_gtt_alignment(obj);
4043 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4044 WARN(obj_priv->pin_count,
4045 "bo is already pinned with incorrect alignment:"
4046 " offset=%x, req.alignment=%x\n",
4047 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4048 ret = i915_gem_object_unbind(obj);
4049 if (ret)
4050 return ret;
4051 }
4052 }
4053
673a394b
EA
4054 if (obj_priv->gtt_space == NULL) {
4055 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4056 if (ret)
673a394b 4057 return ret;
22c344e9 4058 }
76446cac 4059
673a394b
EA
4060 obj_priv->pin_count++;
4061
4062 /* If the object is not active and not pending a flush,
4063 * remove it from the inactive list
4064 */
4065 if (obj_priv->pin_count == 1) {
4066 atomic_inc(&dev->pin_count);
4067 atomic_add(obj->size, &dev->pin_memory);
4068 if (!obj_priv->active &&
bf1a1092 4069 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4070 list_del_init(&obj_priv->list);
4071 }
4072 i915_verify_inactive(dev, __FILE__, __LINE__);
4073
4074 return 0;
4075}
4076
4077void
4078i915_gem_object_unpin(struct drm_gem_object *obj)
4079{
4080 struct drm_device *dev = obj->dev;
4081 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4082 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4083
4084 i915_verify_inactive(dev, __FILE__, __LINE__);
4085 obj_priv->pin_count--;
4086 BUG_ON(obj_priv->pin_count < 0);
4087 BUG_ON(obj_priv->gtt_space == NULL);
4088
4089 /* If the object is no longer pinned, and is
4090 * neither active nor being flushed, then stick it on
4091 * the inactive list
4092 */
4093 if (obj_priv->pin_count == 0) {
4094 if (!obj_priv->active &&
21d509e3 4095 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4096 list_move_tail(&obj_priv->list,
4097 &dev_priv->mm.inactive_list);
4098 atomic_dec(&dev->pin_count);
4099 atomic_sub(obj->size, &dev->pin_memory);
4100 }
4101 i915_verify_inactive(dev, __FILE__, __LINE__);
4102}
4103
4104int
4105i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4106 struct drm_file *file_priv)
4107{
4108 struct drm_i915_gem_pin *args = data;
4109 struct drm_gem_object *obj;
4110 struct drm_i915_gem_object *obj_priv;
4111 int ret;
4112
4113 mutex_lock(&dev->struct_mutex);
4114
4115 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4116 if (obj == NULL) {
4117 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4118 args->handle);
4119 mutex_unlock(&dev->struct_mutex);
bf79cb91 4120 return -ENOENT;
673a394b 4121 }
23010e43 4122 obj_priv = to_intel_bo(obj);
673a394b 4123
bb6baf76
CW
4124 if (obj_priv->madv != I915_MADV_WILLNEED) {
4125 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4126 drm_gem_object_unreference(obj);
4127 mutex_unlock(&dev->struct_mutex);
4128 return -EINVAL;
4129 }
4130
79e53945
JB
4131 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4132 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4133 args->handle);
96dec61d 4134 drm_gem_object_unreference(obj);
673a394b 4135 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4136 return -EINVAL;
4137 }
4138
4139 obj_priv->user_pin_count++;
4140 obj_priv->pin_filp = file_priv;
4141 if (obj_priv->user_pin_count == 1) {
4142 ret = i915_gem_object_pin(obj, args->alignment);
4143 if (ret != 0) {
4144 drm_gem_object_unreference(obj);
4145 mutex_unlock(&dev->struct_mutex);
4146 return ret;
4147 }
673a394b
EA
4148 }
4149
4150 /* XXX - flush the CPU caches for pinned objects
4151 * as the X server doesn't manage domains yet
4152 */
e47c68e9 4153 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4154 args->offset = obj_priv->gtt_offset;
4155 drm_gem_object_unreference(obj);
4156 mutex_unlock(&dev->struct_mutex);
4157
4158 return 0;
4159}
4160
4161int
4162i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4163 struct drm_file *file_priv)
4164{
4165 struct drm_i915_gem_pin *args = data;
4166 struct drm_gem_object *obj;
79e53945 4167 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4168
4169 mutex_lock(&dev->struct_mutex);
4170
4171 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4172 if (obj == NULL) {
4173 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4174 args->handle);
4175 mutex_unlock(&dev->struct_mutex);
bf79cb91 4176 return -ENOENT;
673a394b
EA
4177 }
4178
23010e43 4179 obj_priv = to_intel_bo(obj);
79e53945
JB
4180 if (obj_priv->pin_filp != file_priv) {
4181 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4182 args->handle);
4183 drm_gem_object_unreference(obj);
4184 mutex_unlock(&dev->struct_mutex);
4185 return -EINVAL;
4186 }
4187 obj_priv->user_pin_count--;
4188 if (obj_priv->user_pin_count == 0) {
4189 obj_priv->pin_filp = NULL;
4190 i915_gem_object_unpin(obj);
4191 }
673a394b
EA
4192
4193 drm_gem_object_unreference(obj);
4194 mutex_unlock(&dev->struct_mutex);
4195 return 0;
4196}
4197
4198int
4199i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4200 struct drm_file *file_priv)
4201{
4202 struct drm_i915_gem_busy *args = data;
4203 struct drm_gem_object *obj;
4204 struct drm_i915_gem_object *obj_priv;
4205
673a394b
EA
4206 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4207 if (obj == NULL) {
4208 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4209 args->handle);
bf79cb91 4210 return -ENOENT;
673a394b
EA
4211 }
4212
b1ce786c 4213 mutex_lock(&dev->struct_mutex);
d1b851fc 4214
0be555b6
CW
4215 /* Count all active objects as busy, even if they are currently not used
4216 * by the gpu. Users of this interface expect objects to eventually
4217 * become non-busy without any further actions, therefore emit any
4218 * necessary flushes here.
c4de0a5d 4219 */
0be555b6
CW
4220 obj_priv = to_intel_bo(obj);
4221 args->busy = obj_priv->active;
4222 if (args->busy) {
4223 /* Unconditionally flush objects, even when the gpu still uses this
4224 * object. Userspace calling this function indicates that it wants to
4225 * use this buffer rather sooner than later, so issuing the required
4226 * flush earlier is beneficial.
4227 */
9220434a
CW
4228 if (obj->write_domain & I915_GEM_GPU_DOMAINS) {
4229 i915_gem_flush_ring(dev,
4230 obj_priv->ring,
4231 0, obj->write_domain);
8dc5d147 4232 (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
0be555b6
CW
4233 }
4234
4235 /* Update the active list for the hardware's current position.
4236 * Otherwise this only updates on a delayed timer or when irqs
4237 * are actually unmasked, and our working set ends up being
4238 * larger than required.
4239 */
4240 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4241
4242 args->busy = obj_priv->active;
4243 }
673a394b
EA
4244
4245 drm_gem_object_unreference(obj);
4246 mutex_unlock(&dev->struct_mutex);
4247 return 0;
4248}
4249
4250int
4251i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4252 struct drm_file *file_priv)
4253{
4254 return i915_gem_ring_throttle(dev, file_priv);
4255}
4256
3ef94daa
CW
4257int
4258i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4259 struct drm_file *file_priv)
4260{
4261 struct drm_i915_gem_madvise *args = data;
4262 struct drm_gem_object *obj;
4263 struct drm_i915_gem_object *obj_priv;
4264
4265 switch (args->madv) {
4266 case I915_MADV_DONTNEED:
4267 case I915_MADV_WILLNEED:
4268 break;
4269 default:
4270 return -EINVAL;
4271 }
4272
4273 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4274 if (obj == NULL) {
4275 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4276 args->handle);
bf79cb91 4277 return -ENOENT;
3ef94daa
CW
4278 }
4279
4280 mutex_lock(&dev->struct_mutex);
23010e43 4281 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4282
4283 if (obj_priv->pin_count) {
4284 drm_gem_object_unreference(obj);
4285 mutex_unlock(&dev->struct_mutex);
4286
4287 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4288 return -EINVAL;
4289 }
4290
bb6baf76
CW
4291 if (obj_priv->madv != __I915_MADV_PURGED)
4292 obj_priv->madv = args->madv;
3ef94daa 4293
2d7ef395
CW
4294 /* if the object is no longer bound, discard its backing storage */
4295 if (i915_gem_object_is_purgeable(obj_priv) &&
4296 obj_priv->gtt_space == NULL)
4297 i915_gem_object_truncate(obj);
4298
bb6baf76
CW
4299 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4300
3ef94daa
CW
4301 drm_gem_object_unreference(obj);
4302 mutex_unlock(&dev->struct_mutex);
4303
4304 return 0;
4305}
4306
ac52bc56
DV
4307struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4308 size_t size)
4309{
c397b908 4310 struct drm_i915_gem_object *obj;
ac52bc56 4311
c397b908
DV
4312 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4313 if (obj == NULL)
4314 return NULL;
673a394b 4315
c397b908
DV
4316 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4317 kfree(obj);
4318 return NULL;
4319 }
673a394b 4320
c397b908
DV
4321 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4322 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4323
c397b908 4324 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4325 obj->base.driver_private = NULL;
c397b908
DV
4326 obj->fence_reg = I915_FENCE_REG_NONE;
4327 INIT_LIST_HEAD(&obj->list);
4328 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4329 obj->madv = I915_MADV_WILLNEED;
de151cf6 4330
c397b908
DV
4331 trace_i915_gem_object_create(&obj->base);
4332
4333 return &obj->base;
4334}
4335
4336int i915_gem_init_object(struct drm_gem_object *obj)
4337{
4338 BUG();
de151cf6 4339
673a394b
EA
4340 return 0;
4341}
4342
be72615b 4343static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4344{
de151cf6 4345 struct drm_device *dev = obj->dev;
be72615b 4346 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4347 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4348 int ret;
673a394b 4349
be72615b
CW
4350 ret = i915_gem_object_unbind(obj);
4351 if (ret == -ERESTARTSYS) {
4352 list_move(&obj_priv->list,
4353 &dev_priv->mm.deferred_free_list);
4354 return;
4355 }
673a394b 4356
7e616158
CW
4357 if (obj_priv->mmap_offset)
4358 i915_gem_free_mmap_offset(obj);
de151cf6 4359
c397b908
DV
4360 drm_gem_object_release(obj);
4361
9a298b2a 4362 kfree(obj_priv->page_cpu_valid);
280b713b 4363 kfree(obj_priv->bit_17);
c397b908 4364 kfree(obj_priv);
673a394b
EA
4365}
4366
be72615b
CW
4367void i915_gem_free_object(struct drm_gem_object *obj)
4368{
4369 struct drm_device *dev = obj->dev;
4370 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4371
4372 trace_i915_gem_object_destroy(obj);
4373
4374 while (obj_priv->pin_count > 0)
4375 i915_gem_object_unpin(obj);
4376
4377 if (obj_priv->phys_obj)
4378 i915_gem_detach_phys_object(dev, obj);
4379
4380 i915_gem_free_object_tail(obj);
4381}
4382
29105ccc
CW
4383int
4384i915_gem_idle(struct drm_device *dev)
4385{
4386 drm_i915_private_t *dev_priv = dev->dev_private;
4387 int ret;
28dfe52a 4388
29105ccc 4389 mutex_lock(&dev->struct_mutex);
1c5d22f7 4390
8187a2b7 4391 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4392 (dev_priv->render_ring.gem_object == NULL) ||
4393 (HAS_BSD(dev) &&
4394 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4395 mutex_unlock(&dev->struct_mutex);
4396 return 0;
28dfe52a
EA
4397 }
4398
29105ccc 4399 ret = i915_gpu_idle(dev);
6dbe2772
KP
4400 if (ret) {
4401 mutex_unlock(&dev->struct_mutex);
673a394b 4402 return ret;
6dbe2772 4403 }
673a394b 4404
29105ccc
CW
4405 /* Under UMS, be paranoid and evict. */
4406 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4407 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4408 if (ret) {
4409 mutex_unlock(&dev->struct_mutex);
4410 return ret;
4411 }
4412 }
4413
4414 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4415 * We need to replace this with a semaphore, or something.
4416 * And not confound mm.suspended!
4417 */
4418 dev_priv->mm.suspended = 1;
bc0c7f14 4419 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4420
4421 i915_kernel_lost_context(dev);
6dbe2772 4422 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4423
6dbe2772
KP
4424 mutex_unlock(&dev->struct_mutex);
4425
29105ccc
CW
4426 /* Cancel the retire work handler, which should be idle now. */
4427 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4428
673a394b
EA
4429 return 0;
4430}
4431
e552eb70
JB
4432/*
4433 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4434 * over cache flushing.
4435 */
8187a2b7 4436static int
e552eb70
JB
4437i915_gem_init_pipe_control(struct drm_device *dev)
4438{
4439 drm_i915_private_t *dev_priv = dev->dev_private;
4440 struct drm_gem_object *obj;
4441 struct drm_i915_gem_object *obj_priv;
4442 int ret;
4443
34dc4d44 4444 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4445 if (obj == NULL) {
4446 DRM_ERROR("Failed to allocate seqno page\n");
4447 ret = -ENOMEM;
4448 goto err;
4449 }
4450 obj_priv = to_intel_bo(obj);
4451 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4452
4453 ret = i915_gem_object_pin(obj, 4096);
4454 if (ret)
4455 goto err_unref;
4456
4457 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4458 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4459 if (dev_priv->seqno_page == NULL)
4460 goto err_unpin;
4461
4462 dev_priv->seqno_obj = obj;
4463 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4464
4465 return 0;
4466
4467err_unpin:
4468 i915_gem_object_unpin(obj);
4469err_unref:
4470 drm_gem_object_unreference(obj);
4471err:
4472 return ret;
4473}
4474
8187a2b7
ZN
4475
4476static void
e552eb70
JB
4477i915_gem_cleanup_pipe_control(struct drm_device *dev)
4478{
4479 drm_i915_private_t *dev_priv = dev->dev_private;
4480 struct drm_gem_object *obj;
4481 struct drm_i915_gem_object *obj_priv;
4482
4483 obj = dev_priv->seqno_obj;
4484 obj_priv = to_intel_bo(obj);
4485 kunmap(obj_priv->pages[0]);
4486 i915_gem_object_unpin(obj);
4487 drm_gem_object_unreference(obj);
4488 dev_priv->seqno_obj = NULL;
4489
4490 dev_priv->seqno_page = NULL;
673a394b
EA
4491}
4492
8187a2b7
ZN
4493int
4494i915_gem_init_ringbuffer(struct drm_device *dev)
4495{
4496 drm_i915_private_t *dev_priv = dev->dev_private;
4497 int ret;
68f95ba9 4498
8187a2b7
ZN
4499 if (HAS_PIPE_CONTROL(dev)) {
4500 ret = i915_gem_init_pipe_control(dev);
4501 if (ret)
4502 return ret;
4503 }
68f95ba9 4504
5c1143bb 4505 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4506 if (ret)
4507 goto cleanup_pipe_control;
4508
4509 if (HAS_BSD(dev)) {
5c1143bb 4510 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4511 if (ret)
4512 goto cleanup_render_ring;
d1b851fc 4513 }
68f95ba9 4514
6f392d54
CW
4515 dev_priv->next_seqno = 1;
4516
68f95ba9
CW
4517 return 0;
4518
4519cleanup_render_ring:
4520 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4521cleanup_pipe_control:
4522 if (HAS_PIPE_CONTROL(dev))
4523 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4524 return ret;
4525}
4526
4527void
4528i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4529{
4530 drm_i915_private_t *dev_priv = dev->dev_private;
4531
4532 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4533 if (HAS_BSD(dev))
4534 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4535 if (HAS_PIPE_CONTROL(dev))
4536 i915_gem_cleanup_pipe_control(dev);
4537}
4538
673a394b
EA
4539int
4540i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4541 struct drm_file *file_priv)
4542{
4543 drm_i915_private_t *dev_priv = dev->dev_private;
4544 int ret;
4545
79e53945
JB
4546 if (drm_core_check_feature(dev, DRIVER_MODESET))
4547 return 0;
4548
ba1234d1 4549 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4550 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4551 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4552 }
4553
673a394b 4554 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4555 dev_priv->mm.suspended = 0;
4556
4557 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4558 if (ret != 0) {
4559 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4560 return ret;
d816f6ac 4561 }
9bb2d6f9 4562
852835f3 4563 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4564 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4565 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4566 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4567 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4568 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4569 mutex_unlock(&dev->struct_mutex);
dbb19d30 4570
5f35308b
CW
4571 ret = drm_irq_install(dev);
4572 if (ret)
4573 goto cleanup_ringbuffer;
dbb19d30 4574
673a394b 4575 return 0;
5f35308b
CW
4576
4577cleanup_ringbuffer:
4578 mutex_lock(&dev->struct_mutex);
4579 i915_gem_cleanup_ringbuffer(dev);
4580 dev_priv->mm.suspended = 1;
4581 mutex_unlock(&dev->struct_mutex);
4582
4583 return ret;
673a394b
EA
4584}
4585
4586int
4587i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4588 struct drm_file *file_priv)
4589{
79e53945
JB
4590 if (drm_core_check_feature(dev, DRIVER_MODESET))
4591 return 0;
4592
dbb19d30 4593 drm_irq_uninstall(dev);
e6890f6f 4594 return i915_gem_idle(dev);
673a394b
EA
4595}
4596
4597void
4598i915_gem_lastclose(struct drm_device *dev)
4599{
4600 int ret;
673a394b 4601
e806b495
EA
4602 if (drm_core_check_feature(dev, DRIVER_MODESET))
4603 return;
4604
6dbe2772
KP
4605 ret = i915_gem_idle(dev);
4606 if (ret)
4607 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4608}
4609
4610void
4611i915_gem_load(struct drm_device *dev)
4612{
b5aa8a0f 4613 int i;
673a394b
EA
4614 drm_i915_private_t *dev_priv = dev->dev_private;
4615
673a394b 4616 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4617 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4618 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4619 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4620 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4621 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4622 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4623 if (HAS_BSD(dev)) {
4624 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4625 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4626 }
007cc8ac
DV
4627 for (i = 0; i < 16; i++)
4628 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4629 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4630 i915_gem_retire_work_handler);
31169714
CW
4631 spin_lock(&shrink_list_lock);
4632 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4633 spin_unlock(&shrink_list_lock);
4634
94400120
DA
4635 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4636 if (IS_GEN3(dev)) {
4637 u32 tmp = I915_READ(MI_ARB_STATE);
4638 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4639 /* arb state is a masked write, so set bit + bit in mask */
4640 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4641 I915_WRITE(MI_ARB_STATE, tmp);
4642 }
4643 }
4644
de151cf6 4645 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4646 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4647 dev_priv->fence_reg_start = 3;
de151cf6 4648
a6c45cf0 4649 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4650 dev_priv->num_fence_regs = 16;
4651 else
4652 dev_priv->num_fence_regs = 8;
4653
b5aa8a0f 4654 /* Initialize fence registers to zero */
a6c45cf0
CW
4655 switch (INTEL_INFO(dev)->gen) {
4656 case 6:
4657 for (i = 0; i < 16; i++)
4658 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4659 break;
4660 case 5:
4661 case 4:
b5aa8a0f
GH
4662 for (i = 0; i < 16; i++)
4663 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4664 break;
4665 case 3:
b5aa8a0f
GH
4666 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4667 for (i = 0; i < 8; i++)
4668 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4669 case 2:
4670 for (i = 0; i < 8; i++)
4671 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4672 break;
b5aa8a0f 4673 }
673a394b 4674 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4675 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4676}
71acb5eb
DA
4677
4678/*
4679 * Create a physically contiguous memory object for this object
4680 * e.g. for cursor + overlay regs
4681 */
995b6762
CW
4682static int i915_gem_init_phys_object(struct drm_device *dev,
4683 int id, int size, int align)
71acb5eb
DA
4684{
4685 drm_i915_private_t *dev_priv = dev->dev_private;
4686 struct drm_i915_gem_phys_object *phys_obj;
4687 int ret;
4688
4689 if (dev_priv->mm.phys_objs[id - 1] || !size)
4690 return 0;
4691
9a298b2a 4692 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4693 if (!phys_obj)
4694 return -ENOMEM;
4695
4696 phys_obj->id = id;
4697
6eeefaf3 4698 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4699 if (!phys_obj->handle) {
4700 ret = -ENOMEM;
4701 goto kfree_obj;
4702 }
4703#ifdef CONFIG_X86
4704 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4705#endif
4706
4707 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4708
4709 return 0;
4710kfree_obj:
9a298b2a 4711 kfree(phys_obj);
71acb5eb
DA
4712 return ret;
4713}
4714
995b6762 4715static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4716{
4717 drm_i915_private_t *dev_priv = dev->dev_private;
4718 struct drm_i915_gem_phys_object *phys_obj;
4719
4720 if (!dev_priv->mm.phys_objs[id - 1])
4721 return;
4722
4723 phys_obj = dev_priv->mm.phys_objs[id - 1];
4724 if (phys_obj->cur_obj) {
4725 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4726 }
4727
4728#ifdef CONFIG_X86
4729 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4730#endif
4731 drm_pci_free(dev, phys_obj->handle);
4732 kfree(phys_obj);
4733 dev_priv->mm.phys_objs[id - 1] = NULL;
4734}
4735
4736void i915_gem_free_all_phys_object(struct drm_device *dev)
4737{
4738 int i;
4739
260883c8 4740 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4741 i915_gem_free_phys_object(dev, i);
4742}
4743
4744void i915_gem_detach_phys_object(struct drm_device *dev,
4745 struct drm_gem_object *obj)
4746{
4747 struct drm_i915_gem_object *obj_priv;
4748 int i;
4749 int ret;
4750 int page_count;
4751
23010e43 4752 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4753 if (!obj_priv->phys_obj)
4754 return;
4755
4bdadb97 4756 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4757 if (ret)
4758 goto out;
4759
4760 page_count = obj->size / PAGE_SIZE;
4761
4762 for (i = 0; i < page_count; i++) {
856fa198 4763 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4764 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4765
4766 memcpy(dst, src, PAGE_SIZE);
4767 kunmap_atomic(dst, KM_USER0);
4768 }
856fa198 4769 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4770 drm_agp_chipset_flush(dev);
d78b47b9
CW
4771
4772 i915_gem_object_put_pages(obj);
71acb5eb
DA
4773out:
4774 obj_priv->phys_obj->cur_obj = NULL;
4775 obj_priv->phys_obj = NULL;
4776}
4777
4778int
4779i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4780 struct drm_gem_object *obj,
4781 int id,
4782 int align)
71acb5eb
DA
4783{
4784 drm_i915_private_t *dev_priv = dev->dev_private;
4785 struct drm_i915_gem_object *obj_priv;
4786 int ret = 0;
4787 int page_count;
4788 int i;
4789
4790 if (id > I915_MAX_PHYS_OBJECT)
4791 return -EINVAL;
4792
23010e43 4793 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4794
4795 if (obj_priv->phys_obj) {
4796 if (obj_priv->phys_obj->id == id)
4797 return 0;
4798 i915_gem_detach_phys_object(dev, obj);
4799 }
4800
71acb5eb
DA
4801 /* create a new object */
4802 if (!dev_priv->mm.phys_objs[id - 1]) {
4803 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4804 obj->size, align);
71acb5eb 4805 if (ret) {
aeb565df 4806 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4807 goto out;
4808 }
4809 }
4810
4811 /* bind to the object */
4812 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4813 obj_priv->phys_obj->cur_obj = obj;
4814
4bdadb97 4815 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4816 if (ret) {
4817 DRM_ERROR("failed to get page list\n");
4818 goto out;
4819 }
4820
4821 page_count = obj->size / PAGE_SIZE;
4822
4823 for (i = 0; i < page_count; i++) {
856fa198 4824 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4825 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4826
4827 memcpy(dst, src, PAGE_SIZE);
4828 kunmap_atomic(src, KM_USER0);
4829 }
4830
d78b47b9
CW
4831 i915_gem_object_put_pages(obj);
4832
71acb5eb
DA
4833 return 0;
4834out:
4835 return ret;
4836}
4837
4838static int
4839i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4840 struct drm_i915_gem_pwrite *args,
4841 struct drm_file *file_priv)
4842{
23010e43 4843 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4844 void *obj_addr;
4845 int ret;
4846 char __user *user_data;
4847
4848 user_data = (char __user *) (uintptr_t) args->data_ptr;
4849 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4850
44d98a61 4851 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4852 ret = copy_from_user(obj_addr, user_data, args->size);
4853 if (ret)
4854 return -EFAULT;
4855
4856 drm_agp_chipset_flush(dev);
4857 return 0;
4858}
b962442e
EA
4859
4860void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4861{
4862 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4863
4864 /* Clean up our request list when the client is going away, so that
4865 * later retire_requests won't dereference our soon-to-be-gone
4866 * file_priv.
4867 */
4868 mutex_lock(&dev->struct_mutex);
4869 while (!list_empty(&i915_file_priv->mm.request_list))
4870 list_del_init(i915_file_priv->mm.request_list.next);
4871 mutex_unlock(&dev->struct_mutex);
4872}
31169714 4873
1637ef41
CW
4874static int
4875i915_gpu_is_active(struct drm_device *dev)
4876{
4877 drm_i915_private_t *dev_priv = dev->dev_private;
4878 int lists_empty;
4879
1637ef41 4880 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4881 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4882 if (HAS_BSD(dev))
4883 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4884
4885 return !lists_empty;
4886}
4887
31169714 4888static int
7f8275d0 4889i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4890{
4891 drm_i915_private_t *dev_priv, *next_dev;
4892 struct drm_i915_gem_object *obj_priv, *next_obj;
4893 int cnt = 0;
4894 int would_deadlock = 1;
4895
4896 /* "fast-path" to count number of available objects */
4897 if (nr_to_scan == 0) {
4898 spin_lock(&shrink_list_lock);
4899 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4900 struct drm_device *dev = dev_priv->dev;
4901
4902 if (mutex_trylock(&dev->struct_mutex)) {
4903 list_for_each_entry(obj_priv,
4904 &dev_priv->mm.inactive_list,
4905 list)
4906 cnt++;
4907 mutex_unlock(&dev->struct_mutex);
4908 }
4909 }
4910 spin_unlock(&shrink_list_lock);
4911
4912 return (cnt / 100) * sysctl_vfs_cache_pressure;
4913 }
4914
4915 spin_lock(&shrink_list_lock);
4916
1637ef41 4917rescan:
31169714
CW
4918 /* first scan for clean buffers */
4919 list_for_each_entry_safe(dev_priv, next_dev,
4920 &shrink_list, mm.shrink_list) {
4921 struct drm_device *dev = dev_priv->dev;
4922
4923 if (! mutex_trylock(&dev->struct_mutex))
4924 continue;
4925
4926 spin_unlock(&shrink_list_lock);
b09a1fec 4927 i915_gem_retire_requests(dev);
31169714
CW
4928
4929 list_for_each_entry_safe(obj_priv, next_obj,
4930 &dev_priv->mm.inactive_list,
4931 list) {
4932 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4933 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4934 if (--nr_to_scan <= 0)
4935 break;
4936 }
4937 }
4938
4939 spin_lock(&shrink_list_lock);
4940 mutex_unlock(&dev->struct_mutex);
4941
963b4836
CW
4942 would_deadlock = 0;
4943
31169714
CW
4944 if (nr_to_scan <= 0)
4945 break;
4946 }
4947
4948 /* second pass, evict/count anything still on the inactive list */
4949 list_for_each_entry_safe(dev_priv, next_dev,
4950 &shrink_list, mm.shrink_list) {
4951 struct drm_device *dev = dev_priv->dev;
4952
4953 if (! mutex_trylock(&dev->struct_mutex))
4954 continue;
4955
4956 spin_unlock(&shrink_list_lock);
4957
4958 list_for_each_entry_safe(obj_priv, next_obj,
4959 &dev_priv->mm.inactive_list,
4960 list) {
4961 if (nr_to_scan > 0) {
a8089e84 4962 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4963 nr_to_scan--;
4964 } else
4965 cnt++;
4966 }
4967
4968 spin_lock(&shrink_list_lock);
4969 mutex_unlock(&dev->struct_mutex);
4970
4971 would_deadlock = 0;
4972 }
4973
1637ef41
CW
4974 if (nr_to_scan) {
4975 int active = 0;
4976
4977 /*
4978 * We are desperate for pages, so as a last resort, wait
4979 * for the GPU to finish and discard whatever we can.
4980 * This has a dramatic impact to reduce the number of
4981 * OOM-killer events whilst running the GPU aggressively.
4982 */
4983 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4984 struct drm_device *dev = dev_priv->dev;
4985
4986 if (!mutex_trylock(&dev->struct_mutex))
4987 continue;
4988
4989 spin_unlock(&shrink_list_lock);
4990
4991 if (i915_gpu_is_active(dev)) {
4992 i915_gpu_idle(dev);
4993 active++;
4994 }
4995
4996 spin_lock(&shrink_list_lock);
4997 mutex_unlock(&dev->struct_mutex);
4998 }
4999
5000 if (active)
5001 goto rescan;
5002 }
5003
31169714
CW
5004 spin_unlock(&shrink_list_lock);
5005
5006 if (would_deadlock)
5007 return -1;
5008 else if (cnt > 0)
5009 return (cnt / 100) * sysctl_vfs_cache_pressure;
5010 else
5011 return 0;
5012}
5013
5014static struct shrinker shrinker = {
5015 .shrink = i915_gem_shrink,
5016 .seeks = DEFAULT_SEEKS,
5017};
5018
5019__init void
5020i915_gem_shrinker_init(void)
5021{
5022 register_shrinker(&shrinker);
5023}
5024
5025__exit void
5026i915_gem_shrinker_exit(void)
5027{
5028 unregister_shrinker(&shrinker);
5029}
This page took 1.229711 seconds and 5 git commands to generate.