drm/i915: Prevent integer overflow when validating the execbuffer
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
5cdf5881
CW
61static int
62i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65static void
66i915_gem_object_put_pages(struct drm_gem_object *obj);
67
31169714
CW
68static LIST_HEAD(shrink_list);
69static DEFINE_SPINLOCK(shrink_list_lock);
70
73aa808f
CW
71/* some bookkeeping */
72static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74{
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77}
78
79static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81{
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84}
85
86static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88{
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91}
92
93static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95{
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98}
99
100static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102{
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105}
106
107static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109{
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112}
113
30dbf0c0
CW
114int
115i915_gem_check_is_wedged(struct drm_device *dev)
116{
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142}
143
76c1dec1
CW
144static int i915_mutex_lock_interruptible(struct drm_device *dev)
145{
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
23bc5982 162 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
163 return 0;
164}
30dbf0c0 165
7d1c4804
CW
166static inline bool
167i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168{
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172}
173
73aa808f
CW
174int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
79e53945 176 unsigned long end)
673a394b
EA
177{
178 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 179
79e53945
JB
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
183 return -EINVAL;
184 }
185
79e53945
JB
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
673a394b 188
73aa808f 189 dev_priv->mm.gtt_total = end - start;
79e53945
JB
190
191 return 0;
192}
673a394b 193
79e53945
JB
194int
195i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
197{
198 struct drm_i915_gem_init *args = data;
199 int ret;
200
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
203 mutex_unlock(&dev->struct_mutex);
204
79e53945 205 return ret;
673a394b
EA
206}
207
5a125c3c
EA
208int
209i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
211{
73aa808f 212 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 213 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
214
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
217
73aa808f
CW
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
222
223 return 0;
224}
225
673a394b
EA
226
227/**
228 * Creates a new mm object and returns a handle to it.
229 */
230int
231i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233{
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b
EA
238
239 args->size = roundup(args->size, PAGE_SIZE);
240
241 /* Allocate the new object */
ac52bc56 242 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
243 if (obj == NULL)
244 return -ENOMEM;
245
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 247 if (ret) {
202f2fef
CW
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
673a394b 251 return ret;
1dfd9754 252 }
673a394b 253
202f2fef
CW
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
257
1dfd9754 258 args->handle = handle;
673a394b
EA
259 return 0;
260}
261
eb01459f
EA
262static inline int
263fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
267{
b5e4feb6 268 char *vaddr;
4f27b75d 269 int ret;
eb01459f 270
3e4d3af5 271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
4f27b75d 272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
3e4d3af5 273 kunmap_atomic(vaddr);
eb01459f 274
4f27b75d 275 return ret;
eb01459f
EA
276}
277
280b713b
EA
278static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279{
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
282
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
285}
286
99a03df5 287static inline void
40123c1f
EA
288slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
293{
294 char *dst_vaddr, *src_vaddr;
295
99a03df5
CW
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
40123c1f
EA
298
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
99a03df5
CW
301 kunmap(src_page);
302 kunmap(dst_page);
40123c1f
EA
303}
304
99a03df5 305static inline void
280b713b
EA
306slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
312{
313 char *gpu_vaddr, *cpu_vaddr;
314
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
323 }
324
99a03df5
CW
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
280b713b
EA
327
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
330 */
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
344 }
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
348 }
349
99a03df5
CW
350 kunmap(cpu_page);
351 kunmap(gpu_page);
280b713b
EA
352}
353
eb01459f
EA
354/**
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358 */
359static int
360i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
363{
23010e43 364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
eb01459f
EA
369
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
372
23010e43 373 obj_priv = to_intel_bo(obj);
eb01459f
EA
374 offset = args->offset;
375
376 while (remain > 0) {
377 /* Operation in this page
378 *
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
382 */
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
388
4f27b75d
CW
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
eb01459f
EA
393
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
397 }
398
4f27b75d 399 return 0;
eb01459f
EA
400}
401
07f73f69
CW
402static int
403i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
404{
405 int ret;
406
4bdadb97 407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
408
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
411 */
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
07f73f69 414
0108a3ed
DV
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
417 if (ret)
418 return ret;
419
4bdadb97 420 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
421 }
422
423 return ret;
424}
425
eb01459f
EA
426/**
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
431 */
432static int
433i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
436{
23010e43 437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
280b713b 448 int do_bit17_swizzling;
eb01459f
EA
449
450 remain = args->size;
451
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
455 */
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
459
4f27b75d 460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
461 if (user_pages == NULL)
462 return -ENOMEM;
463
4f27b75d 464 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 467 num_pages, 1, 0, user_pages, NULL);
eb01459f 468 up_read(&mm->mmap_sem);
4f27b75d 469 mutex_lock(&dev->struct_mutex);
eb01459f
EA
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
4f27b75d 472 goto out;
eb01459f
EA
473 }
474
4f27b75d
CW
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
07f73f69 478 if (ret)
4f27b75d 479 goto out;
eb01459f 480
4f27b75d 481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 482
23010e43 483 obj_priv = to_intel_bo(obj);
eb01459f
EA
484 offset = args->offset;
485
486 while (remain > 0) {
487 /* Operation in this page
488 *
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
494 */
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
499
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
505
280b713b 506 if (do_bit17_swizzling) {
99a03df5 507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 508 shmem_page_offset,
99a03df5
CW
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
512 1);
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
280b713b 519 }
eb01459f
EA
520
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
524 }
525
4f27b75d 526out:
eb01459f
EA
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
530 }
8e7d2b2c 531 drm_free_large(user_pages);
eb01459f
EA
532
533 return ret;
534}
535
673a394b
EA
536/**
537 * Reads data from the object referenced by handle.
538 *
539 * On error, the contents of *data are undefined.
540 */
541int
542i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
544{
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
35b62a89 548 int ret = 0;
673a394b 549
51311d0a
CW
550 if (args->size == 0)
551 return 0;
552
553 if (!access_ok(VERIFY_WRITE,
554 (char __user *)(uintptr_t)args->data_ptr,
555 args->size))
556 return -EFAULT;
557
558 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
559 args->size);
560 if (ret)
561 return -EFAULT;
562
4f27b75d 563 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 564 if (ret)
4f27b75d 565 return ret;
673a394b
EA
566
567 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
568 if (obj == NULL) {
569 ret = -ENOENT;
570 goto unlock;
4f27b75d 571 }
23010e43 572 obj_priv = to_intel_bo(obj);
673a394b 573
7dcd2499
CW
574 /* Bounds check source. */
575 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 576 ret = -EINVAL;
35b62a89 577 goto out;
ce9d419d
CW
578 }
579
4f27b75d
CW
580 ret = i915_gem_object_get_pages_or_evict(obj);
581 if (ret)
582 goto out;
583
584 ret = i915_gem_object_set_cpu_read_domain_range(obj,
585 args->offset,
586 args->size);
587 if (ret)
588 goto out_put;
589
590 ret = -EFAULT;
591 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 592 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
593 if (ret == -EFAULT)
594 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 595
4f27b75d
CW
596out_put:
597 i915_gem_object_put_pages(obj);
35b62a89 598out:
4f27b75d 599 drm_gem_object_unreference(obj);
1d7cfea1 600unlock:
4f27b75d 601 mutex_unlock(&dev->struct_mutex);
eb01459f 602 return ret;
673a394b
EA
603}
604
0839ccb8
KP
605/* This is the fast write path which cannot handle
606 * page faults in the source data
9b7530cc 607 */
0839ccb8
KP
608
609static inline int
610fast_user_write(struct io_mapping *mapping,
611 loff_t page_base, int page_offset,
612 char __user *user_data,
613 int length)
9b7530cc 614{
9b7530cc 615 char *vaddr_atomic;
0839ccb8 616 unsigned long unwritten;
9b7530cc 617
3e4d3af5 618 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
619 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
620 user_data, length);
3e4d3af5 621 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 622 return unwritten;
0839ccb8
KP
623}
624
625/* Here's the write path which can sleep for
626 * page faults
627 */
628
ab34c226 629static inline void
3de09aa3
EA
630slow_kernel_write(struct io_mapping *mapping,
631 loff_t gtt_base, int gtt_offset,
632 struct page *user_page, int user_offset,
633 int length)
0839ccb8 634{
ab34c226
CW
635 char __iomem *dst_vaddr;
636 char *src_vaddr;
0839ccb8 637
ab34c226
CW
638 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
639 src_vaddr = kmap(user_page);
640
641 memcpy_toio(dst_vaddr + gtt_offset,
642 src_vaddr + user_offset,
643 length);
644
645 kunmap(user_page);
646 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
647}
648
40123c1f
EA
649static inline int
650fast_shmem_write(struct page **pages,
651 loff_t page_base, int page_offset,
652 char __user *data,
653 int length)
654{
b5e4feb6 655 char *vaddr;
fbd5a26d 656 int ret;
40123c1f 657
3e4d3af5 658 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
fbd5a26d 659 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
3e4d3af5 660 kunmap_atomic(vaddr);
40123c1f 661
fbd5a26d 662 return ret;
40123c1f
EA
663}
664
3de09aa3
EA
665/**
666 * This is the fast pwrite path, where we copy the data directly from the
667 * user into the GTT, uncached.
668 */
673a394b 669static int
3de09aa3
EA
670i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
671 struct drm_i915_gem_pwrite *args,
672 struct drm_file *file_priv)
673a394b 673{
23010e43 674 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 675 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 676 ssize_t remain;
0839ccb8 677 loff_t offset, page_base;
673a394b 678 char __user *user_data;
0839ccb8 679 int page_offset, page_length;
673a394b
EA
680
681 user_data = (char __user *) (uintptr_t) args->data_ptr;
682 remain = args->size;
673a394b 683
23010e43 684 obj_priv = to_intel_bo(obj);
673a394b 685 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
686
687 while (remain > 0) {
688 /* Operation in this page
689 *
0839ccb8
KP
690 * page_base = page offset within aperture
691 * page_offset = offset within page
692 * page_length = bytes to copy for this page
673a394b 693 */
0839ccb8
KP
694 page_base = (offset & ~(PAGE_SIZE-1));
695 page_offset = offset & (PAGE_SIZE-1);
696 page_length = remain;
697 if ((page_offset + remain) > PAGE_SIZE)
698 page_length = PAGE_SIZE - page_offset;
699
0839ccb8 700 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
701 * source page isn't available. Return the error and we'll
702 * retry in the slow path.
0839ccb8 703 */
fbd5a26d
CW
704 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
705 page_offset, user_data, page_length))
706
707 return -EFAULT;
673a394b 708
0839ccb8
KP
709 remain -= page_length;
710 user_data += page_length;
711 offset += page_length;
673a394b 712 }
673a394b 713
fbd5a26d 714 return 0;
673a394b
EA
715}
716
3de09aa3
EA
717/**
718 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
719 * the memory and maps it using kmap_atomic for copying.
720 *
721 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
722 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
723 */
3043c60c 724static int
3de09aa3
EA
725i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
726 struct drm_i915_gem_pwrite *args,
727 struct drm_file *file_priv)
673a394b 728{
23010e43 729 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
730 drm_i915_private_t *dev_priv = dev->dev_private;
731 ssize_t remain;
732 loff_t gtt_page_base, offset;
733 loff_t first_data_page, last_data_page, num_pages;
734 loff_t pinned_pages, i;
735 struct page **user_pages;
736 struct mm_struct *mm = current->mm;
737 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 738 int ret;
3de09aa3
EA
739 uint64_t data_ptr = args->data_ptr;
740
741 remain = args->size;
742
743 /* Pin the user pages containing the data. We can't fault while
744 * holding the struct mutex, and all of the pwrite implementations
745 * want to hold it while dereferencing the user data.
746 */
747 first_data_page = data_ptr / PAGE_SIZE;
748 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
749 num_pages = last_data_page - first_data_page + 1;
750
fbd5a26d 751 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
752 if (user_pages == NULL)
753 return -ENOMEM;
754
fbd5a26d 755 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
756 down_read(&mm->mmap_sem);
757 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
758 num_pages, 0, 0, user_pages, NULL);
759 up_read(&mm->mmap_sem);
fbd5a26d 760 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
761 if (pinned_pages < num_pages) {
762 ret = -EFAULT;
763 goto out_unpin_pages;
764 }
673a394b 765
3de09aa3
EA
766 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
767 if (ret)
fbd5a26d 768 goto out_unpin_pages;
3de09aa3 769
23010e43 770 obj_priv = to_intel_bo(obj);
3de09aa3
EA
771 offset = obj_priv->gtt_offset + args->offset;
772
773 while (remain > 0) {
774 /* Operation in this page
775 *
776 * gtt_page_base = page offset within aperture
777 * gtt_page_offset = offset within page in aperture
778 * data_page_index = page number in get_user_pages return
779 * data_page_offset = offset with data_page_index page.
780 * page_length = bytes to copy for this page
781 */
782 gtt_page_base = offset & PAGE_MASK;
783 gtt_page_offset = offset & ~PAGE_MASK;
784 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
785 data_page_offset = data_ptr & ~PAGE_MASK;
786
787 page_length = remain;
788 if ((gtt_page_offset + page_length) > PAGE_SIZE)
789 page_length = PAGE_SIZE - gtt_page_offset;
790 if ((data_page_offset + page_length) > PAGE_SIZE)
791 page_length = PAGE_SIZE - data_page_offset;
792
ab34c226
CW
793 slow_kernel_write(dev_priv->mm.gtt_mapping,
794 gtt_page_base, gtt_page_offset,
795 user_pages[data_page_index],
796 data_page_offset,
797 page_length);
3de09aa3
EA
798
799 remain -= page_length;
800 offset += page_length;
801 data_ptr += page_length;
802 }
803
3de09aa3
EA
804out_unpin_pages:
805 for (i = 0; i < pinned_pages; i++)
806 page_cache_release(user_pages[i]);
8e7d2b2c 807 drm_free_large(user_pages);
3de09aa3
EA
808
809 return ret;
810}
811
40123c1f
EA
812/**
813 * This is the fast shmem pwrite path, which attempts to directly
814 * copy_from_user into the kmapped pages backing the object.
815 */
3043c60c 816static int
40123c1f
EA
817i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
818 struct drm_i915_gem_pwrite *args,
819 struct drm_file *file_priv)
673a394b 820{
23010e43 821 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
822 ssize_t remain;
823 loff_t offset, page_base;
824 char __user *user_data;
825 int page_offset, page_length;
40123c1f
EA
826
827 user_data = (char __user *) (uintptr_t) args->data_ptr;
828 remain = args->size;
673a394b 829
23010e43 830 obj_priv = to_intel_bo(obj);
40123c1f
EA
831 offset = args->offset;
832 obj_priv->dirty = 1;
833
834 while (remain > 0) {
835 /* Operation in this page
836 *
837 * page_base = page offset within aperture
838 * page_offset = offset within page
839 * page_length = bytes to copy for this page
840 */
841 page_base = (offset & ~(PAGE_SIZE-1));
842 page_offset = offset & (PAGE_SIZE-1);
843 page_length = remain;
844 if ((page_offset + remain) > PAGE_SIZE)
845 page_length = PAGE_SIZE - page_offset;
846
fbd5a26d 847 if (fast_shmem_write(obj_priv->pages,
40123c1f 848 page_base, page_offset,
fbd5a26d
CW
849 user_data, page_length))
850 return -EFAULT;
40123c1f
EA
851
852 remain -= page_length;
853 user_data += page_length;
854 offset += page_length;
855 }
856
fbd5a26d 857 return 0;
40123c1f
EA
858}
859
860/**
861 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
862 * the memory and maps it using kmap_atomic for copying.
863 *
864 * This avoids taking mmap_sem for faulting on the user's address while the
865 * struct_mutex is held.
866 */
867static int
868i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
869 struct drm_i915_gem_pwrite *args,
870 struct drm_file *file_priv)
871{
23010e43 872 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
873 struct mm_struct *mm = current->mm;
874 struct page **user_pages;
875 ssize_t remain;
876 loff_t offset, pinned_pages, i;
877 loff_t first_data_page, last_data_page, num_pages;
878 int shmem_page_index, shmem_page_offset;
879 int data_page_index, data_page_offset;
880 int page_length;
881 int ret;
882 uint64_t data_ptr = args->data_ptr;
280b713b 883 int do_bit17_swizzling;
40123c1f
EA
884
885 remain = args->size;
886
887 /* Pin the user pages containing the data. We can't fault while
888 * holding the struct mutex, and all of the pwrite implementations
889 * want to hold it while dereferencing the user data.
890 */
891 first_data_page = data_ptr / PAGE_SIZE;
892 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
893 num_pages = last_data_page - first_data_page + 1;
894
4f27b75d 895 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
896 if (user_pages == NULL)
897 return -ENOMEM;
898
fbd5a26d 899 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
900 down_read(&mm->mmap_sem);
901 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
902 num_pages, 0, 0, user_pages, NULL);
903 up_read(&mm->mmap_sem);
fbd5a26d 904 mutex_lock(&dev->struct_mutex);
40123c1f
EA
905 if (pinned_pages < num_pages) {
906 ret = -EFAULT;
fbd5a26d 907 goto out;
673a394b
EA
908 }
909
fbd5a26d 910 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 911 if (ret)
fbd5a26d 912 goto out;
40123c1f 913
fbd5a26d 914 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 915
23010e43 916 obj_priv = to_intel_bo(obj);
673a394b 917 offset = args->offset;
40123c1f 918 obj_priv->dirty = 1;
673a394b 919
40123c1f
EA
920 while (remain > 0) {
921 /* Operation in this page
922 *
923 * shmem_page_index = page number within shmem file
924 * shmem_page_offset = offset within page in shmem file
925 * data_page_index = page number in get_user_pages return
926 * data_page_offset = offset with data_page_index page.
927 * page_length = bytes to copy for this page
928 */
929 shmem_page_index = offset / PAGE_SIZE;
930 shmem_page_offset = offset & ~PAGE_MASK;
931 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
932 data_page_offset = data_ptr & ~PAGE_MASK;
933
934 page_length = remain;
935 if ((shmem_page_offset + page_length) > PAGE_SIZE)
936 page_length = PAGE_SIZE - shmem_page_offset;
937 if ((data_page_offset + page_length) > PAGE_SIZE)
938 page_length = PAGE_SIZE - data_page_offset;
939
280b713b 940 if (do_bit17_swizzling) {
99a03df5 941 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
942 shmem_page_offset,
943 user_pages[data_page_index],
944 data_page_offset,
99a03df5
CW
945 page_length,
946 0);
947 } else {
948 slow_shmem_copy(obj_priv->pages[shmem_page_index],
949 shmem_page_offset,
950 user_pages[data_page_index],
951 data_page_offset,
952 page_length);
280b713b 953 }
40123c1f
EA
954
955 remain -= page_length;
956 data_ptr += page_length;
957 offset += page_length;
673a394b
EA
958 }
959
fbd5a26d 960out:
40123c1f
EA
961 for (i = 0; i < pinned_pages; i++)
962 page_cache_release(user_pages[i]);
8e7d2b2c 963 drm_free_large(user_pages);
673a394b 964
40123c1f 965 return ret;
673a394b
EA
966}
967
968/**
969 * Writes data to the object referenced by handle.
970 *
971 * On error, the contents of the buffer that were to be modified are undefined.
972 */
973int
974i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 975 struct drm_file *file)
673a394b
EA
976{
977 struct drm_i915_gem_pwrite *args = data;
978 struct drm_gem_object *obj;
979 struct drm_i915_gem_object *obj_priv;
51311d0a
CW
980 int ret;
981
982 if (args->size == 0)
983 return 0;
984
985 if (!access_ok(VERIFY_READ,
986 (char __user *)(uintptr_t)args->data_ptr,
987 args->size))
988 return -EFAULT;
989
990 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
991 args->size);
992 if (ret)
993 return -EFAULT;
673a394b 994
fbd5a26d 995 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 996 if (ret)
fbd5a26d 997 return ret;
1d7cfea1
CW
998
999 obj = drm_gem_object_lookup(dev, file, args->handle);
1000 if (obj == NULL) {
1001 ret = -ENOENT;
1002 goto unlock;
fbd5a26d 1003 }
23010e43 1004 obj_priv = to_intel_bo(obj);
673a394b 1005
7dcd2499
CW
1006 /* Bounds check destination. */
1007 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1008 ret = -EINVAL;
35b62a89 1009 goto out;
ce9d419d
CW
1010 }
1011
673a394b
EA
1012 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1013 * it would end up going through the fenced access, and we'll get
1014 * different detiling behavior between reading and writing.
1015 * pread/pwrite currently are reading and writing from the CPU
1016 * perspective, requiring manual detiling by the client.
1017 */
71acb5eb 1018 if (obj_priv->phys_obj)
fbd5a26d 1019 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1020 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1021 obj_priv->gtt_space &&
9b8c4a0b 1022 obj->write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d
CW
1023 ret = i915_gem_object_pin(obj, 0);
1024 if (ret)
1025 goto out;
1026
1027 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1028 if (ret)
1029 goto out_unpin;
1030
1031 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1032 if (ret == -EFAULT)
1033 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1034
1035out_unpin:
1036 i915_gem_object_unpin(obj);
40123c1f 1037 } else {
fbd5a26d
CW
1038 ret = i915_gem_object_get_pages_or_evict(obj);
1039 if (ret)
1040 goto out;
673a394b 1041
fbd5a26d
CW
1042 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1043 if (ret)
1044 goto out_put;
673a394b 1045
fbd5a26d
CW
1046 ret = -EFAULT;
1047 if (!i915_gem_object_needs_bit17_swizzle(obj))
1048 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1049 if (ret == -EFAULT)
1050 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1051
1052out_put:
1053 i915_gem_object_put_pages(obj);
1054 }
673a394b 1055
35b62a89 1056out:
fbd5a26d 1057 drm_gem_object_unreference(obj);
1d7cfea1 1058unlock:
fbd5a26d 1059 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1060 return ret;
1061}
1062
1063/**
2ef7eeaa
EA
1064 * Called when user space prepares to use an object with the CPU, either
1065 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1066 */
1067int
1068i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1069 struct drm_file *file_priv)
1070{
a09ba7fa 1071 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1072 struct drm_i915_gem_set_domain *args = data;
1073 struct drm_gem_object *obj;
652c393a 1074 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1075 uint32_t read_domains = args->read_domains;
1076 uint32_t write_domain = args->write_domain;
673a394b
EA
1077 int ret;
1078
1079 if (!(dev->driver->driver_features & DRIVER_GEM))
1080 return -ENODEV;
1081
2ef7eeaa 1082 /* Only handle setting domains to types used by the CPU. */
21d509e3 1083 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1084 return -EINVAL;
1085
21d509e3 1086 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1087 return -EINVAL;
1088
1089 /* Having something in the write domain implies it's in the read
1090 * domain, and only that read domain. Enforce that in the request.
1091 */
1092 if (write_domain != 0 && read_domains != write_domain)
1093 return -EINVAL;
1094
76c1dec1 1095 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1096 if (ret)
76c1dec1 1097 return ret;
1d7cfea1 1098
673a394b 1099 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1100 if (obj == NULL) {
1101 ret = -ENOENT;
1102 goto unlock;
76c1dec1 1103 }
23010e43 1104 obj_priv = to_intel_bo(obj);
673a394b 1105
652c393a
JB
1106 intel_mark_busy(dev, obj);
1107
2ef7eeaa
EA
1108 if (read_domains & I915_GEM_DOMAIN_GTT) {
1109 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1110
a09ba7fa
EA
1111 /* Update the LRU on the fence for the CPU access that's
1112 * about to occur.
1113 */
1114 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1115 struct drm_i915_fence_reg *reg =
1116 &dev_priv->fence_regs[obj_priv->fence_reg];
1117 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1118 &dev_priv->mm.fence_list);
1119 }
1120
02354392
EA
1121 /* Silently promote "you're not bound, there was nothing to do"
1122 * to success, since the client was just asking us to
1123 * make sure everything was done.
1124 */
1125 if (ret == -EINVAL)
1126 ret = 0;
2ef7eeaa 1127 } else {
e47c68e9 1128 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1129 }
1130
7d1c4804
CW
1131 /* Maintain LRU order of "inactive" objects */
1132 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1133 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1134
673a394b 1135 drm_gem_object_unreference(obj);
1d7cfea1 1136unlock:
673a394b
EA
1137 mutex_unlock(&dev->struct_mutex);
1138 return ret;
1139}
1140
1141/**
1142 * Called when user space has done writes to this buffer
1143 */
1144int
1145i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1146 struct drm_file *file_priv)
1147{
1148 struct drm_i915_gem_sw_finish *args = data;
1149 struct drm_gem_object *obj;
673a394b
EA
1150 int ret = 0;
1151
1152 if (!(dev->driver->driver_features & DRIVER_GEM))
1153 return -ENODEV;
1154
76c1dec1 1155 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1156 if (ret)
76c1dec1 1157 return ret;
1d7cfea1 1158
673a394b
EA
1159 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1160 if (obj == NULL) {
1d7cfea1
CW
1161 ret = -ENOENT;
1162 goto unlock;
673a394b
EA
1163 }
1164
673a394b 1165 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1166 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1167 i915_gem_object_flush_cpu_write_domain(obj);
1168
673a394b 1169 drm_gem_object_unreference(obj);
1d7cfea1 1170unlock:
673a394b
EA
1171 mutex_unlock(&dev->struct_mutex);
1172 return ret;
1173}
1174
1175/**
1176 * Maps the contents of an object, returning the address it is mapped
1177 * into.
1178 *
1179 * While the mapping holds a reference on the contents of the object, it doesn't
1180 * imply a ref on the object itself.
1181 */
1182int
1183i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1184 struct drm_file *file_priv)
1185{
1186 struct drm_i915_gem_mmap *args = data;
1187 struct drm_gem_object *obj;
1188 loff_t offset;
1189 unsigned long addr;
1190
1191 if (!(dev->driver->driver_features & DRIVER_GEM))
1192 return -ENODEV;
1193
1194 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1195 if (obj == NULL)
bf79cb91 1196 return -ENOENT;
673a394b
EA
1197
1198 offset = args->offset;
1199
1200 down_write(&current->mm->mmap_sem);
1201 addr = do_mmap(obj->filp, 0, args->size,
1202 PROT_READ | PROT_WRITE, MAP_SHARED,
1203 args->offset);
1204 up_write(&current->mm->mmap_sem);
bc9025bd 1205 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1206 if (IS_ERR((void *)addr))
1207 return addr;
1208
1209 args->addr_ptr = (uint64_t) addr;
1210
1211 return 0;
1212}
1213
de151cf6
JB
1214/**
1215 * i915_gem_fault - fault a page into the GTT
1216 * vma: VMA in question
1217 * vmf: fault info
1218 *
1219 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1220 * from userspace. The fault handler takes care of binding the object to
1221 * the GTT (if needed), allocating and programming a fence register (again,
1222 * only if needed based on whether the old reg is still valid or the object
1223 * is tiled) and inserting a new PTE into the faulting process.
1224 *
1225 * Note that the faulting process may involve evicting existing objects
1226 * from the GTT and/or fence registers to make room. So performance may
1227 * suffer if the GTT working set is large or there are few fence registers
1228 * left.
1229 */
1230int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231{
1232 struct drm_gem_object *obj = vma->vm_private_data;
1233 struct drm_device *dev = obj->dev;
7d1c4804 1234 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1235 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1236 pgoff_t page_offset;
1237 unsigned long pfn;
1238 int ret = 0;
0f973f27 1239 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1240
1241 /* We don't use vmf->pgoff since that has the fake offset */
1242 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1243 PAGE_SHIFT;
1244
1245 /* Now bind it into the GTT if needed */
1246 mutex_lock(&dev->struct_mutex);
1247 if (!obj_priv->gtt_space) {
e67b8ce1 1248 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1249 if (ret)
1250 goto unlock;
07f4f3e8 1251
07f4f3e8 1252 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1253 if (ret)
1254 goto unlock;
de151cf6
JB
1255 }
1256
1257 /* Need a new fence register? */
a09ba7fa 1258 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1259 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1260 if (ret)
1261 goto unlock;
d9ddcb96 1262 }
de151cf6 1263
7d1c4804 1264 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1265 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1266
de151cf6
JB
1267 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1268 page_offset;
1269
1270 /* Finally, remap it using the new GTT offset */
1271 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1272unlock:
de151cf6
JB
1273 mutex_unlock(&dev->struct_mutex);
1274
1275 switch (ret) {
c715089f
CW
1276 case 0:
1277 case -ERESTARTSYS:
1278 return VM_FAULT_NOPAGE;
de151cf6
JB
1279 case -ENOMEM:
1280 case -EAGAIN:
1281 return VM_FAULT_OOM;
de151cf6 1282 default:
c715089f 1283 return VM_FAULT_SIGBUS;
de151cf6
JB
1284 }
1285}
1286
1287/**
1288 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1289 * @obj: obj in question
1290 *
1291 * GEM memory mapping works by handing back to userspace a fake mmap offset
1292 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1293 * up the object based on the offset and sets up the various memory mapping
1294 * structures.
1295 *
1296 * This routine allocates and attaches a fake offset for @obj.
1297 */
1298static int
1299i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1300{
1301 struct drm_device *dev = obj->dev;
1302 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1303 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1304 struct drm_map_list *list;
f77d390c 1305 struct drm_local_map *map;
de151cf6
JB
1306 int ret = 0;
1307
1308 /* Set the object up for mmap'ing */
1309 list = &obj->map_list;
9a298b2a 1310 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1311 if (!list->map)
1312 return -ENOMEM;
1313
1314 map = list->map;
1315 map->type = _DRM_GEM;
1316 map->size = obj->size;
1317 map->handle = obj;
1318
1319 /* Get a DRM GEM mmap offset allocated... */
1320 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1321 obj->size / PAGE_SIZE, 0, 0);
1322 if (!list->file_offset_node) {
1323 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1324 ret = -ENOSPC;
de151cf6
JB
1325 goto out_free_list;
1326 }
1327
1328 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1329 obj->size / PAGE_SIZE, 0);
1330 if (!list->file_offset_node) {
1331 ret = -ENOMEM;
1332 goto out_free_list;
1333 }
1334
1335 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1336 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1337 if (ret) {
de151cf6
JB
1338 DRM_ERROR("failed to add to map hash\n");
1339 goto out_free_mm;
1340 }
1341
1342 /* By now we should be all set, any drm_mmap request on the offset
1343 * below will get to our mmap & fault handler */
1344 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1345
1346 return 0;
1347
1348out_free_mm:
1349 drm_mm_put_block(list->file_offset_node);
1350out_free_list:
9a298b2a 1351 kfree(list->map);
de151cf6
JB
1352
1353 return ret;
1354}
1355
901782b2
CW
1356/**
1357 * i915_gem_release_mmap - remove physical page mappings
1358 * @obj: obj in question
1359 *
af901ca1 1360 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1361 * relinquish ownership of the pages back to the system.
1362 *
1363 * It is vital that we remove the page mapping if we have mapped a tiled
1364 * object through the GTT and then lose the fence register due to
1365 * resource pressure. Similarly if the object has been moved out of the
1366 * aperture, than pages mapped into userspace must be revoked. Removing the
1367 * mapping will then trigger a page fault on the next user access, allowing
1368 * fixup by i915_gem_fault().
1369 */
d05ca301 1370void
901782b2
CW
1371i915_gem_release_mmap(struct drm_gem_object *obj)
1372{
1373 struct drm_device *dev = obj->dev;
23010e43 1374 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1375
1376 if (dev->dev_mapping)
1377 unmap_mapping_range(dev->dev_mapping,
1378 obj_priv->mmap_offset, obj->size, 1);
1379}
1380
ab00b3e5
JB
1381static void
1382i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1383{
1384 struct drm_device *dev = obj->dev;
23010e43 1385 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1386 struct drm_gem_mm *mm = dev->mm_private;
1387 struct drm_map_list *list;
1388
1389 list = &obj->map_list;
1390 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1391
1392 if (list->file_offset_node) {
1393 drm_mm_put_block(list->file_offset_node);
1394 list->file_offset_node = NULL;
1395 }
1396
1397 if (list->map) {
9a298b2a 1398 kfree(list->map);
ab00b3e5
JB
1399 list->map = NULL;
1400 }
1401
1402 obj_priv->mmap_offset = 0;
1403}
1404
de151cf6
JB
1405/**
1406 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1407 * @obj: object to check
1408 *
1409 * Return the required GTT alignment for an object, taking into account
1410 * potential fence register mapping if needed.
1411 */
1412static uint32_t
1413i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1414{
1415 struct drm_device *dev = obj->dev;
23010e43 1416 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1417 int start, i;
1418
1419 /*
1420 * Minimum alignment is 4k (GTT page size), but might be greater
1421 * if a fence register is needed for the object.
1422 */
a6c45cf0 1423 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1424 return 4096;
1425
1426 /*
1427 * Previous chips need to be aligned to the size of the smallest
1428 * fence register that can contain the object.
1429 */
a6c45cf0 1430 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1431 start = 1024*1024;
1432 else
1433 start = 512*1024;
1434
1435 for (i = start; i < obj->size; i <<= 1)
1436 ;
1437
1438 return i;
1439}
1440
1441/**
1442 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1443 * @dev: DRM device
1444 * @data: GTT mapping ioctl data
1445 * @file_priv: GEM object info
1446 *
1447 * Simply returns the fake offset to userspace so it can mmap it.
1448 * The mmap call will end up in drm_gem_mmap(), which will set things
1449 * up so we can get faults in the handler above.
1450 *
1451 * The fault handler will take care of binding the object into the GTT
1452 * (since it may have been evicted to make room for something), allocating
1453 * a fence register, and mapping the appropriate aperture address into
1454 * userspace.
1455 */
1456int
1457i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1458 struct drm_file *file_priv)
1459{
1460 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1461 struct drm_gem_object *obj;
1462 struct drm_i915_gem_object *obj_priv;
1463 int ret;
1464
1465 if (!(dev->driver->driver_features & DRIVER_GEM))
1466 return -ENODEV;
1467
76c1dec1 1468 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1469 if (ret)
76c1dec1 1470 return ret;
de151cf6 1471
1d7cfea1
CW
1472 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1473 if (obj == NULL) {
1474 ret = -ENOENT;
1475 goto unlock;
1476 }
23010e43 1477 obj_priv = to_intel_bo(obj);
de151cf6 1478
ab18282d
CW
1479 if (obj_priv->madv != I915_MADV_WILLNEED) {
1480 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1481 ret = -EINVAL;
1482 goto out;
ab18282d
CW
1483 }
1484
de151cf6
JB
1485 if (!obj_priv->mmap_offset) {
1486 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1487 if (ret)
1488 goto out;
de151cf6
JB
1489 }
1490
1491 args->offset = obj_priv->mmap_offset;
1492
de151cf6
JB
1493 /*
1494 * Pull it into the GTT so that we have a page list (makes the
1495 * initial fault faster and any subsequent flushing possible).
1496 */
1497 if (!obj_priv->agp_mem) {
e67b8ce1 1498 ret = i915_gem_object_bind_to_gtt(obj, 0);
1d7cfea1
CW
1499 if (ret)
1500 goto out;
de151cf6
JB
1501 }
1502
1d7cfea1 1503out:
de151cf6 1504 drm_gem_object_unreference(obj);
1d7cfea1 1505unlock:
de151cf6 1506 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1507 return ret;
de151cf6
JB
1508}
1509
5cdf5881 1510static void
856fa198 1511i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1512{
23010e43 1513 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1514 int page_count = obj->size / PAGE_SIZE;
1515 int i;
1516
856fa198 1517 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1518 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1519
856fa198
EA
1520 if (--obj_priv->pages_refcount != 0)
1521 return;
673a394b 1522
280b713b
EA
1523 if (obj_priv->tiling_mode != I915_TILING_NONE)
1524 i915_gem_object_save_bit_17_swizzle(obj);
1525
3ef94daa 1526 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1527 obj_priv->dirty = 0;
3ef94daa
CW
1528
1529 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1530 if (obj_priv->dirty)
1531 set_page_dirty(obj_priv->pages[i]);
1532
1533 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1534 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1535
1536 page_cache_release(obj_priv->pages[i]);
1537 }
673a394b
EA
1538 obj_priv->dirty = 0;
1539
8e7d2b2c 1540 drm_free_large(obj_priv->pages);
856fa198 1541 obj_priv->pages = NULL;
673a394b
EA
1542}
1543
a56ba56c
CW
1544static uint32_t
1545i915_gem_next_request_seqno(struct drm_device *dev,
1546 struct intel_ring_buffer *ring)
1547{
1548 drm_i915_private_t *dev_priv = dev->dev_private;
1549
1550 ring->outstanding_lazy_request = true;
1551 return dev_priv->next_seqno;
1552}
1553
673a394b 1554static void
617dbe27 1555i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1556 struct intel_ring_buffer *ring)
673a394b
EA
1557{
1558 struct drm_device *dev = obj->dev;
69dc4987 1559 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1560 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1561 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1562
852835f3
ZN
1563 BUG_ON(ring == NULL);
1564 obj_priv->ring = ring;
673a394b
EA
1565
1566 /* Add a reference if we're newly entering the active list. */
1567 if (!obj_priv->active) {
1568 drm_gem_object_reference(obj);
1569 obj_priv->active = 1;
1570 }
e35a41de 1571
673a394b 1572 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1573 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1574 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1575 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1576}
1577
ce44b0ea
EA
1578static void
1579i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1580{
1581 struct drm_device *dev = obj->dev;
1582 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1583 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1584
1585 BUG_ON(!obj_priv->active);
69dc4987
CW
1586 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1587 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1588 obj_priv->last_rendering_seqno = 0;
1589}
673a394b 1590
963b4836
CW
1591/* Immediately discard the backing storage */
1592static void
1593i915_gem_object_truncate(struct drm_gem_object *obj)
1594{
23010e43 1595 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1596 struct inode *inode;
963b4836 1597
ae9fed6b
CW
1598 /* Our goal here is to return as much of the memory as
1599 * is possible back to the system as we are called from OOM.
1600 * To do this we must instruct the shmfs to drop all of its
1601 * backing pages, *now*. Here we mirror the actions taken
1602 * when by shmem_delete_inode() to release the backing store.
1603 */
bb6baf76 1604 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1605 truncate_inode_pages(inode->i_mapping, 0);
1606 if (inode->i_op->truncate_range)
1607 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1608
1609 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1610}
1611
1612static inline int
1613i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1614{
1615 return obj_priv->madv == I915_MADV_DONTNEED;
1616}
1617
673a394b
EA
1618static void
1619i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1620{
1621 struct drm_device *dev = obj->dev;
1622 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1623 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1624
673a394b 1625 if (obj_priv->pin_count != 0)
69dc4987 1626 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1627 else
69dc4987
CW
1628 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1629 list_del_init(&obj_priv->ring_list);
673a394b 1630
99fcb766
DV
1631 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1632
ce44b0ea 1633 obj_priv->last_rendering_seqno = 0;
852835f3 1634 obj_priv->ring = NULL;
673a394b
EA
1635 if (obj_priv->active) {
1636 obj_priv->active = 0;
1637 drm_gem_object_unreference(obj);
1638 }
23bc5982 1639 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1640}
1641
63560396
DV
1642static void
1643i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1644 uint32_t flush_domains,
852835f3 1645 struct intel_ring_buffer *ring)
63560396
DV
1646{
1647 drm_i915_private_t *dev_priv = dev->dev_private;
1648 struct drm_i915_gem_object *obj_priv, *next;
1649
1650 list_for_each_entry_safe(obj_priv, next,
64193406 1651 &ring->gpu_write_list,
63560396 1652 gpu_write_list) {
a8089e84 1653 struct drm_gem_object *obj = &obj_priv->base;
63560396 1654
64193406 1655 if (obj->write_domain & flush_domains) {
63560396
DV
1656 uint32_t old_write_domain = obj->write_domain;
1657
1658 obj->write_domain = 0;
1659 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1660 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1661
1662 /* update the fence lru list */
007cc8ac
DV
1663 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1664 struct drm_i915_fence_reg *reg =
1665 &dev_priv->fence_regs[obj_priv->fence_reg];
1666 list_move_tail(&reg->lru_list,
63560396 1667 &dev_priv->mm.fence_list);
007cc8ac 1668 }
63560396
DV
1669
1670 trace_i915_gem_object_change_domain(obj,
1671 obj->read_domains,
1672 old_write_domain);
1673 }
1674 }
1675}
8187a2b7 1676
5a5a0c64 1677uint32_t
8a1a49f9 1678i915_add_request(struct drm_device *dev,
f787a5f5 1679 struct drm_file *file,
8dc5d147 1680 struct drm_i915_gem_request *request,
8a1a49f9 1681 struct intel_ring_buffer *ring)
673a394b
EA
1682{
1683 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1684 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1685 uint32_t seqno;
1686 int was_empty;
673a394b 1687
f787a5f5
CW
1688 if (file != NULL)
1689 file_priv = file->driver_priv;
b962442e 1690
8dc5d147
CW
1691 if (request == NULL) {
1692 request = kzalloc(sizeof(*request), GFP_KERNEL);
1693 if (request == NULL)
1694 return 0;
1695 }
673a394b 1696
f787a5f5 1697 seqno = ring->add_request(dev, ring, 0);
a56ba56c 1698 ring->outstanding_lazy_request = false;
673a394b
EA
1699
1700 request->seqno = seqno;
852835f3 1701 request->ring = ring;
673a394b 1702 request->emitted_jiffies = jiffies;
852835f3
ZN
1703 was_empty = list_empty(&ring->request_list);
1704 list_add_tail(&request->list, &ring->request_list);
1705
f787a5f5 1706 if (file_priv) {
1c25595f 1707 spin_lock(&file_priv->mm.lock);
f787a5f5 1708 request->file_priv = file_priv;
b962442e 1709 list_add_tail(&request->client_list,
f787a5f5 1710 &file_priv->mm.request_list);
1c25595f 1711 spin_unlock(&file_priv->mm.lock);
b962442e 1712 }
673a394b 1713
f65d9421 1714 if (!dev_priv->mm.suspended) {
b3b079db
CW
1715 mod_timer(&dev_priv->hangcheck_timer,
1716 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1717 if (was_empty)
b3b079db
CW
1718 queue_delayed_work(dev_priv->wq,
1719 &dev_priv->mm.retire_work, HZ);
f65d9421 1720 }
673a394b
EA
1721 return seqno;
1722}
1723
1724/**
1725 * Command execution barrier
1726 *
1727 * Ensures that all commands in the ring are finished
1728 * before signalling the CPU
1729 */
8a1a49f9 1730static void
852835f3 1731i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1732{
673a394b 1733 uint32_t flush_domains = 0;
673a394b
EA
1734
1735 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1736 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1737 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1738
1739 ring->flush(dev, ring,
1740 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1741}
1742
f787a5f5
CW
1743static inline void
1744i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1745{
1c25595f 1746 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1747
1c25595f
CW
1748 if (!file_priv)
1749 return;
1c5d22f7 1750
1c25595f
CW
1751 spin_lock(&file_priv->mm.lock);
1752 list_del(&request->client_list);
1753 request->file_priv = NULL;
1754 spin_unlock(&file_priv->mm.lock);
673a394b 1755}
673a394b 1756
dfaae392
CW
1757static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1758 struct intel_ring_buffer *ring)
9375e446 1759{
dfaae392
CW
1760 while (!list_empty(&ring->request_list)) {
1761 struct drm_i915_gem_request *request;
673a394b 1762
dfaae392
CW
1763 request = list_first_entry(&ring->request_list,
1764 struct drm_i915_gem_request,
1765 list);
de151cf6 1766
dfaae392 1767 list_del(&request->list);
f787a5f5 1768 i915_gem_request_remove_from_client(request);
dfaae392
CW
1769 kfree(request);
1770 }
673a394b 1771
dfaae392 1772 while (!list_empty(&ring->active_list)) {
9375e446
CW
1773 struct drm_i915_gem_object *obj_priv;
1774
dfaae392 1775 obj_priv = list_first_entry(&ring->active_list,
9375e446 1776 struct drm_i915_gem_object,
69dc4987 1777 ring_list);
9375e446
CW
1778
1779 obj_priv->base.write_domain = 0;
dfaae392 1780 list_del_init(&obj_priv->gpu_write_list);
9375e446 1781 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1782 }
1783}
1784
069efc1d 1785void i915_gem_reset(struct drm_device *dev)
673a394b 1786{
77f01230
CW
1787 struct drm_i915_private *dev_priv = dev->dev_private;
1788 struct drm_i915_gem_object *obj_priv;
069efc1d 1789 int i;
673a394b 1790
dfaae392 1791 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1792 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1793 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1794
1795 /* Remove anything from the flushing lists. The GPU cache is likely
1796 * to be lost on reset along with the data, so simply move the
1797 * lost bo to the inactive list.
1798 */
1799 while (!list_empty(&dev_priv->mm.flushing_list)) {
1800 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1801 struct drm_i915_gem_object,
69dc4987 1802 mm_list);
dfaae392
CW
1803
1804 obj_priv->base.write_domain = 0;
1805 list_del_init(&obj_priv->gpu_write_list);
1806 i915_gem_object_move_to_inactive(&obj_priv->base);
1807 }
1808
1809 /* Move everything out of the GPU domains to ensure we do any
1810 * necessary invalidation upon reuse.
1811 */
77f01230
CW
1812 list_for_each_entry(obj_priv,
1813 &dev_priv->mm.inactive_list,
69dc4987 1814 mm_list)
77f01230
CW
1815 {
1816 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1817 }
069efc1d
CW
1818
1819 /* The fence registers are invalidated so clear them out */
1820 for (i = 0; i < 16; i++) {
1821 struct drm_i915_fence_reg *reg;
1822
1823 reg = &dev_priv->fence_regs[i];
1824 if (!reg->obj)
1825 continue;
1826
1827 i915_gem_clear_fence_reg(reg->obj);
1828 }
673a394b
EA
1829}
1830
1831/**
1832 * This function clears the request list as sequence numbers are passed.
1833 */
b09a1fec
CW
1834static void
1835i915_gem_retire_requests_ring(struct drm_device *dev,
1836 struct intel_ring_buffer *ring)
673a394b
EA
1837{
1838 drm_i915_private_t *dev_priv = dev->dev_private;
1839 uint32_t seqno;
1840
b84d5f0c
CW
1841 if (!ring->status_page.page_addr ||
1842 list_empty(&ring->request_list))
6c0594a3
KW
1843 return;
1844
23bc5982 1845 WARN_ON(i915_verify_lists(dev));
673a394b 1846
f787a5f5 1847 seqno = ring->get_seqno(dev, ring);
852835f3 1848 while (!list_empty(&ring->request_list)) {
673a394b 1849 struct drm_i915_gem_request *request;
673a394b 1850
852835f3 1851 request = list_first_entry(&ring->request_list,
673a394b
EA
1852 struct drm_i915_gem_request,
1853 list);
673a394b 1854
dfaae392 1855 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1856 break;
1857
1858 trace_i915_gem_request_retire(dev, request->seqno);
1859
1860 list_del(&request->list);
f787a5f5 1861 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1862 kfree(request);
1863 }
673a394b 1864
b84d5f0c
CW
1865 /* Move any buffers on the active list that are no longer referenced
1866 * by the ringbuffer to the flushing/inactive lists as appropriate.
1867 */
1868 while (!list_empty(&ring->active_list)) {
1869 struct drm_gem_object *obj;
1870 struct drm_i915_gem_object *obj_priv;
1871
1872 obj_priv = list_first_entry(&ring->active_list,
1873 struct drm_i915_gem_object,
69dc4987 1874 ring_list);
673a394b 1875
dfaae392 1876 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1877 break;
b84d5f0c
CW
1878
1879 obj = &obj_priv->base;
b84d5f0c
CW
1880 if (obj->write_domain != 0)
1881 i915_gem_object_move_to_flushing(obj);
1882 else
1883 i915_gem_object_move_to_inactive(obj);
673a394b 1884 }
9d34e5db
CW
1885
1886 if (unlikely (dev_priv->trace_irq_seqno &&
1887 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7 1888 ring->user_irq_put(dev, ring);
9d34e5db
CW
1889 dev_priv->trace_irq_seqno = 0;
1890 }
23bc5982
CW
1891
1892 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1893}
1894
b09a1fec
CW
1895void
1896i915_gem_retire_requests(struct drm_device *dev)
1897{
1898 drm_i915_private_t *dev_priv = dev->dev_private;
1899
be72615b
CW
1900 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1901 struct drm_i915_gem_object *obj_priv, *tmp;
1902
1903 /* We must be careful that during unbind() we do not
1904 * accidentally infinitely recurse into retire requests.
1905 * Currently:
1906 * retire -> free -> unbind -> wait -> retire_ring
1907 */
1908 list_for_each_entry_safe(obj_priv, tmp,
1909 &dev_priv->mm.deferred_free_list,
69dc4987 1910 mm_list)
be72615b
CW
1911 i915_gem_free_object_tail(&obj_priv->base);
1912 }
1913
b09a1fec 1914 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 1915 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 1916 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
1917}
1918
75ef9da2 1919static void
673a394b
EA
1920i915_gem_retire_work_handler(struct work_struct *work)
1921{
1922 drm_i915_private_t *dev_priv;
1923 struct drm_device *dev;
1924
1925 dev_priv = container_of(work, drm_i915_private_t,
1926 mm.retire_work.work);
1927 dev = dev_priv->dev;
1928
891b48cf
CW
1929 /* Come back later if the device is busy... */
1930 if (!mutex_trylock(&dev->struct_mutex)) {
1931 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1932 return;
1933 }
1934
b09a1fec 1935 i915_gem_retire_requests(dev);
d1b851fc 1936
6dbe2772 1937 if (!dev_priv->mm.suspended &&
d1b851fc 1938 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
1939 !list_empty(&dev_priv->bsd_ring.request_list) ||
1940 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 1941 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1942 mutex_unlock(&dev->struct_mutex);
1943}
1944
5a5a0c64 1945int
852835f3 1946i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1947 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1948{
1949 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1950 u32 ier;
673a394b
EA
1951 int ret = 0;
1952
1953 BUG_ON(seqno == 0);
1954
ba1234d1 1955 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
1956 return -EAGAIN;
1957
a56ba56c 1958 if (ring->outstanding_lazy_request) {
8dc5d147 1959 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1960 if (seqno == 0)
1961 return -ENOMEM;
1962 }
a56ba56c 1963 BUG_ON(seqno == dev_priv->next_seqno);
ffed1d09 1964
f787a5f5 1965 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
bad720ff 1966 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1967 ier = I915_READ(DEIER) | I915_READ(GTIER);
1968 else
1969 ier = I915_READ(IER);
802c7eb6
JB
1970 if (!ier) {
1971 DRM_ERROR("something (likely vbetool) disabled "
1972 "interrupts, re-enabling\n");
1973 i915_driver_irq_preinstall(dev);
1974 i915_driver_irq_postinstall(dev);
1975 }
1976
1c5d22f7
CW
1977 trace_i915_gem_request_wait_begin(dev, seqno);
1978
852835f3 1979 ring->waiting_gem_seqno = seqno;
8187a2b7 1980 ring->user_irq_get(dev, ring);
48764bf4 1981 if (interruptible)
852835f3
ZN
1982 ret = wait_event_interruptible(ring->irq_queue,
1983 i915_seqno_passed(
f787a5f5 1984 ring->get_seqno(dev, ring), seqno)
852835f3 1985 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1986 else
852835f3
ZN
1987 wait_event(ring->irq_queue,
1988 i915_seqno_passed(
f787a5f5 1989 ring->get_seqno(dev, ring), seqno)
852835f3 1990 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1991
8187a2b7 1992 ring->user_irq_put(dev, ring);
852835f3 1993 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1994
1995 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1996 }
ba1234d1 1997 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1998 ret = -EAGAIN;
673a394b
EA
1999
2000 if (ret && ret != -ERESTARTSYS)
8bff917c 2001 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
f787a5f5 2002 __func__, ret, seqno, ring->get_seqno(dev, ring),
8bff917c 2003 dev_priv->next_seqno);
673a394b
EA
2004
2005 /* Directly dispatch request retiring. While we have the work queue
2006 * to handle this, the waiter on a request often wants an associated
2007 * buffer to have made it to the inactive list, and we would need
2008 * a separate wait queue to handle that.
2009 */
2010 if (ret == 0)
b09a1fec 2011 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2012
2013 return ret;
2014}
2015
48764bf4
DV
2016/**
2017 * Waits for a sequence number to be signaled, and cleans up the
2018 * request and object lists appropriately for that event.
2019 */
2020static int
852835f3 2021i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2022 struct intel_ring_buffer *ring)
48764bf4 2023{
852835f3 2024 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2025}
2026
20f0cd55 2027static void
9220434a 2028i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2029 struct drm_file *file_priv,
9220434a
CW
2030 struct intel_ring_buffer *ring,
2031 uint32_t invalidate_domains,
2032 uint32_t flush_domains)
2033{
2034 ring->flush(dev, ring, invalidate_domains, flush_domains);
2035 i915_gem_process_flushing_list(dev, flush_domains, ring);
2036}
2037
8187a2b7
ZN
2038static void
2039i915_gem_flush(struct drm_device *dev,
c78ec30b 2040 struct drm_file *file_priv,
8187a2b7 2041 uint32_t invalidate_domains,
9220434a
CW
2042 uint32_t flush_domains,
2043 uint32_t flush_rings)
8187a2b7
ZN
2044{
2045 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2046
8187a2b7
ZN
2047 if (flush_domains & I915_GEM_DOMAIN_CPU)
2048 drm_agp_chipset_flush(dev);
8bff917c 2049
9220434a
CW
2050 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2051 if (flush_rings & RING_RENDER)
c78ec30b 2052 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2053 &dev_priv->render_ring,
2054 invalidate_domains, flush_domains);
2055 if (flush_rings & RING_BSD)
c78ec30b 2056 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2057 &dev_priv->bsd_ring,
2058 invalidate_domains, flush_domains);
549f7365
CW
2059 if (flush_rings & RING_BLT)
2060 i915_gem_flush_ring(dev, file_priv,
2061 &dev_priv->blt_ring,
2062 invalidate_domains, flush_domains);
9220434a 2063 }
8187a2b7
ZN
2064}
2065
673a394b
EA
2066/**
2067 * Ensures that all rendering to the object has completed and the object is
2068 * safe to unbind from the GTT or access from the CPU.
2069 */
2070static int
2cf34d7b
CW
2071i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2072 bool interruptible)
673a394b
EA
2073{
2074 struct drm_device *dev = obj->dev;
23010e43 2075 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2076 int ret;
2077
e47c68e9
EA
2078 /* This function only exists to support waiting for existing rendering,
2079 * not for emitting required flushes.
673a394b 2080 */
e47c68e9 2081 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2082
2083 /* If there is rendering queued on the buffer being evicted, wait for
2084 * it.
2085 */
2086 if (obj_priv->active) {
2cf34d7b
CW
2087 ret = i915_do_wait_request(dev,
2088 obj_priv->last_rendering_seqno,
2089 interruptible,
2090 obj_priv->ring);
2091 if (ret)
673a394b
EA
2092 return ret;
2093 }
2094
2095 return 0;
2096}
2097
2098/**
2099 * Unbinds an object from the GTT aperture.
2100 */
0f973f27 2101int
673a394b
EA
2102i915_gem_object_unbind(struct drm_gem_object *obj)
2103{
2104 struct drm_device *dev = obj->dev;
73aa808f 2105 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2106 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2107 int ret = 0;
2108
673a394b
EA
2109 if (obj_priv->gtt_space == NULL)
2110 return 0;
2111
2112 if (obj_priv->pin_count != 0) {
2113 DRM_ERROR("Attempting to unbind pinned buffer\n");
2114 return -EINVAL;
2115 }
2116
5323fd04
EA
2117 /* blow away mappings if mapped through GTT */
2118 i915_gem_release_mmap(obj);
2119
673a394b
EA
2120 /* Move the object to the CPU domain to ensure that
2121 * any possible CPU writes while it's not in the GTT
2122 * are flushed when we go to remap it. This will
2123 * also ensure that all pending GPU writes are finished
2124 * before we unbind.
2125 */
e47c68e9 2126 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2127 if (ret == -ERESTARTSYS)
673a394b 2128 return ret;
8dc1775d
CW
2129 /* Continue on if we fail due to EIO, the GPU is hung so we
2130 * should be safe and we need to cleanup or else we might
2131 * cause memory corruption through use-after-free.
2132 */
812ed492
CW
2133 if (ret) {
2134 i915_gem_clflush_object(obj);
2135 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2136 }
673a394b 2137
96b47b65
DV
2138 /* release the fence reg _after_ flushing */
2139 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2140 i915_gem_clear_fence_reg(obj);
2141
73aa808f
CW
2142 drm_unbind_agp(obj_priv->agp_mem);
2143 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2144
856fa198 2145 i915_gem_object_put_pages(obj);
a32808c0 2146 BUG_ON(obj_priv->pages_refcount);
673a394b 2147
73aa808f 2148 i915_gem_info_remove_gtt(dev_priv, obj->size);
69dc4987 2149 list_del_init(&obj_priv->mm_list);
673a394b 2150
73aa808f
CW
2151 drm_mm_put_block(obj_priv->gtt_space);
2152 obj_priv->gtt_space = NULL;
9af90d19 2153 obj_priv->gtt_offset = 0;
673a394b 2154
963b4836
CW
2155 if (i915_gem_object_is_purgeable(obj_priv))
2156 i915_gem_object_truncate(obj);
2157
1c5d22f7
CW
2158 trace_i915_gem_object_unbind(obj);
2159
8dc1775d 2160 return ret;
673a394b
EA
2161}
2162
a56ba56c
CW
2163static int i915_ring_idle(struct drm_device *dev,
2164 struct intel_ring_buffer *ring)
2165{
395b70be 2166 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2167 return 0;
2168
a56ba56c
CW
2169 i915_gem_flush_ring(dev, NULL, ring,
2170 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2171 return i915_wait_request(dev,
2172 i915_gem_next_request_seqno(dev, ring),
2173 ring);
2174}
2175
b47eb4a2 2176int
4df2faf4
DV
2177i915_gpu_idle(struct drm_device *dev)
2178{
2179 drm_i915_private_t *dev_priv = dev->dev_private;
2180 bool lists_empty;
852835f3 2181 int ret;
4df2faf4 2182
d1b851fc 2183 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2184 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2185 if (lists_empty)
2186 return 0;
2187
2188 /* Flush everything onto the inactive list. */
a56ba56c 2189 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2190 if (ret)
2191 return ret;
d1b851fc 2192
87acb0a5
CW
2193 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2194 if (ret)
2195 return ret;
d1b851fc 2196
549f7365
CW
2197 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2198 if (ret)
2199 return ret;
4df2faf4 2200
8a1a49f9 2201 return 0;
4df2faf4
DV
2202}
2203
5cdf5881 2204static int
4bdadb97
CW
2205i915_gem_object_get_pages(struct drm_gem_object *obj,
2206 gfp_t gfpmask)
673a394b 2207{
23010e43 2208 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2209 int page_count, i;
2210 struct address_space *mapping;
2211 struct inode *inode;
2212 struct page *page;
673a394b 2213
778c3544
DV
2214 BUG_ON(obj_priv->pages_refcount
2215 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2216
856fa198 2217 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2218 return 0;
2219
2220 /* Get the list of pages out of our struct file. They'll be pinned
2221 * at this point until we release them.
2222 */
2223 page_count = obj->size / PAGE_SIZE;
856fa198 2224 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2225 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2226 if (obj_priv->pages == NULL) {
856fa198 2227 obj_priv->pages_refcount--;
673a394b
EA
2228 return -ENOMEM;
2229 }
2230
2231 inode = obj->filp->f_path.dentry->d_inode;
2232 mapping = inode->i_mapping;
2233 for (i = 0; i < page_count; i++) {
4bdadb97 2234 page = read_cache_page_gfp(mapping, i,
985b823b 2235 GFP_HIGHUSER |
4bdadb97 2236 __GFP_COLD |
cd9f040d 2237 __GFP_RECLAIMABLE |
4bdadb97 2238 gfpmask);
1f2b1013
CW
2239 if (IS_ERR(page))
2240 goto err_pages;
2241
856fa198 2242 obj_priv->pages[i] = page;
673a394b 2243 }
280b713b
EA
2244
2245 if (obj_priv->tiling_mode != I915_TILING_NONE)
2246 i915_gem_object_do_bit_17_swizzle(obj);
2247
673a394b 2248 return 0;
1f2b1013
CW
2249
2250err_pages:
2251 while (i--)
2252 page_cache_release(obj_priv->pages[i]);
2253
2254 drm_free_large(obj_priv->pages);
2255 obj_priv->pages = NULL;
2256 obj_priv->pages_refcount--;
2257 return PTR_ERR(page);
673a394b
EA
2258}
2259
4e901fdc
EA
2260static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2261{
2262 struct drm_gem_object *obj = reg->obj;
2263 struct drm_device *dev = obj->dev;
2264 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2265 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2266 int regnum = obj_priv->fence_reg;
2267 uint64_t val;
2268
2269 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2270 0xfffff000) << 32;
2271 val |= obj_priv->gtt_offset & 0xfffff000;
2272 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2273 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2274
2275 if (obj_priv->tiling_mode == I915_TILING_Y)
2276 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2277 val |= I965_FENCE_REG_VALID;
2278
2279 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2280}
2281
de151cf6
JB
2282static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2283{
2284 struct drm_gem_object *obj = reg->obj;
2285 struct drm_device *dev = obj->dev;
2286 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2288 int regnum = obj_priv->fence_reg;
2289 uint64_t val;
2290
2291 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2292 0xfffff000) << 32;
2293 val |= obj_priv->gtt_offset & 0xfffff000;
2294 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2295 if (obj_priv->tiling_mode == I915_TILING_Y)
2296 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2297 val |= I965_FENCE_REG_VALID;
2298
2299 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2300}
2301
2302static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2303{
2304 struct drm_gem_object *obj = reg->obj;
2305 struct drm_device *dev = obj->dev;
2306 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2307 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2308 int regnum = obj_priv->fence_reg;
0f973f27 2309 int tile_width;
dc529a4f 2310 uint32_t fence_reg, val;
de151cf6
JB
2311 uint32_t pitch_val;
2312
2313 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2314 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2315 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2316 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2317 return;
2318 }
2319
0f973f27
JB
2320 if (obj_priv->tiling_mode == I915_TILING_Y &&
2321 HAS_128_BYTE_Y_TILING(dev))
2322 tile_width = 128;
de151cf6 2323 else
0f973f27
JB
2324 tile_width = 512;
2325
2326 /* Note: pitch better be a power of two tile widths */
2327 pitch_val = obj_priv->stride / tile_width;
2328 pitch_val = ffs(pitch_val) - 1;
de151cf6 2329
c36a2a6d
DV
2330 if (obj_priv->tiling_mode == I915_TILING_Y &&
2331 HAS_128_BYTE_Y_TILING(dev))
2332 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2333 else
2334 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2335
de151cf6
JB
2336 val = obj_priv->gtt_offset;
2337 if (obj_priv->tiling_mode == I915_TILING_Y)
2338 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2339 val |= I915_FENCE_SIZE_BITS(obj->size);
2340 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2341 val |= I830_FENCE_REG_VALID;
2342
dc529a4f
EA
2343 if (regnum < 8)
2344 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2345 else
2346 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2347 I915_WRITE(fence_reg, val);
de151cf6
JB
2348}
2349
2350static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2351{
2352 struct drm_gem_object *obj = reg->obj;
2353 struct drm_device *dev = obj->dev;
2354 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2355 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2356 int regnum = obj_priv->fence_reg;
2357 uint32_t val;
2358 uint32_t pitch_val;
8d7773a3 2359 uint32_t fence_size_bits;
de151cf6 2360
8d7773a3 2361 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2362 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2363 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2364 __func__, obj_priv->gtt_offset);
de151cf6
JB
2365 return;
2366 }
2367
e76a16de
EA
2368 pitch_val = obj_priv->stride / 128;
2369 pitch_val = ffs(pitch_val) - 1;
2370 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2371
de151cf6
JB
2372 val = obj_priv->gtt_offset;
2373 if (obj_priv->tiling_mode == I915_TILING_Y)
2374 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2375 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2376 WARN_ON(fence_size_bits & ~0x00000f00);
2377 val |= fence_size_bits;
de151cf6
JB
2378 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2379 val |= I830_FENCE_REG_VALID;
2380
2381 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2382}
2383
2cf34d7b
CW
2384static int i915_find_fence_reg(struct drm_device *dev,
2385 bool interruptible)
ae3db24a
DV
2386{
2387 struct drm_i915_fence_reg *reg = NULL;
2388 struct drm_i915_gem_object *obj_priv = NULL;
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 struct drm_gem_object *obj = NULL;
2391 int i, avail, ret;
2392
2393 /* First try to find a free reg */
2394 avail = 0;
2395 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2396 reg = &dev_priv->fence_regs[i];
2397 if (!reg->obj)
2398 return i;
2399
23010e43 2400 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2401 if (!obj_priv->pin_count)
2402 avail++;
2403 }
2404
2405 if (avail == 0)
2406 return -ENOSPC;
2407
2408 /* None available, try to steal one or wait for a user to finish */
2409 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2410 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2411 lru_list) {
2412 obj = reg->obj;
2413 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2414
2415 if (obj_priv->pin_count)
2416 continue;
2417
2418 /* found one! */
2419 i = obj_priv->fence_reg;
2420 break;
2421 }
2422
2423 BUG_ON(i == I915_FENCE_REG_NONE);
2424
2425 /* We only have a reference on obj from the active list. put_fence_reg
2426 * might drop that one, causing a use-after-free in it. So hold a
2427 * private reference to obj like the other callers of put_fence_reg
2428 * (set_tiling ioctl) do. */
2429 drm_gem_object_reference(obj);
2cf34d7b 2430 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2431 drm_gem_object_unreference(obj);
2432 if (ret != 0)
2433 return ret;
2434
2435 return i;
2436}
2437
de151cf6
JB
2438/**
2439 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2440 * @obj: object to map through a fence reg
2441 *
2442 * When mapping objects through the GTT, userspace wants to be able to write
2443 * to them without having to worry about swizzling if the object is tiled.
2444 *
2445 * This function walks the fence regs looking for a free one for @obj,
2446 * stealing one if it can't find any.
2447 *
2448 * It then sets up the reg based on the object's properties: address, pitch
2449 * and tiling format.
2450 */
8c4b8c3f 2451int
2cf34d7b
CW
2452i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2453 bool interruptible)
de151cf6
JB
2454{
2455 struct drm_device *dev = obj->dev;
79e53945 2456 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2457 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2458 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2459 int ret;
de151cf6 2460
a09ba7fa
EA
2461 /* Just update our place in the LRU if our fence is getting used. */
2462 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2463 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2464 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2465 return 0;
2466 }
2467
de151cf6
JB
2468 switch (obj_priv->tiling_mode) {
2469 case I915_TILING_NONE:
2470 WARN(1, "allocating a fence for non-tiled object?\n");
2471 break;
2472 case I915_TILING_X:
0f973f27
JB
2473 if (!obj_priv->stride)
2474 return -EINVAL;
2475 WARN((obj_priv->stride & (512 - 1)),
2476 "object 0x%08x is X tiled but has non-512B pitch\n",
2477 obj_priv->gtt_offset);
de151cf6
JB
2478 break;
2479 case I915_TILING_Y:
0f973f27
JB
2480 if (!obj_priv->stride)
2481 return -EINVAL;
2482 WARN((obj_priv->stride & (128 - 1)),
2483 "object 0x%08x is Y tiled but has non-128B pitch\n",
2484 obj_priv->gtt_offset);
de151cf6
JB
2485 break;
2486 }
2487
2cf34d7b 2488 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2489 if (ret < 0)
2490 return ret;
de151cf6 2491
ae3db24a
DV
2492 obj_priv->fence_reg = ret;
2493 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2494 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2495
de151cf6
JB
2496 reg->obj = obj;
2497
e259befd
CW
2498 switch (INTEL_INFO(dev)->gen) {
2499 case 6:
4e901fdc 2500 sandybridge_write_fence_reg(reg);
e259befd
CW
2501 break;
2502 case 5:
2503 case 4:
de151cf6 2504 i965_write_fence_reg(reg);
e259befd
CW
2505 break;
2506 case 3:
de151cf6 2507 i915_write_fence_reg(reg);
e259befd
CW
2508 break;
2509 case 2:
de151cf6 2510 i830_write_fence_reg(reg);
e259befd
CW
2511 break;
2512 }
d9ddcb96 2513
ae3db24a
DV
2514 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2515 obj_priv->tiling_mode);
1c5d22f7 2516
d9ddcb96 2517 return 0;
de151cf6
JB
2518}
2519
2520/**
2521 * i915_gem_clear_fence_reg - clear out fence register info
2522 * @obj: object to clear
2523 *
2524 * Zeroes out the fence register itself and clears out the associated
2525 * data structures in dev_priv and obj_priv.
2526 */
2527static void
2528i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2529{
2530 struct drm_device *dev = obj->dev;
79e53945 2531 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2532 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2533 struct drm_i915_fence_reg *reg =
2534 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2535 uint32_t fence_reg;
de151cf6 2536
e259befd
CW
2537 switch (INTEL_INFO(dev)->gen) {
2538 case 6:
4e901fdc
EA
2539 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2540 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2541 break;
2542 case 5:
2543 case 4:
de151cf6 2544 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2545 break;
2546 case 3:
9b74f734 2547 if (obj_priv->fence_reg >= 8)
e259befd 2548 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2549 else
e259befd
CW
2550 case 2:
2551 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2552
2553 I915_WRITE(fence_reg, 0);
e259befd 2554 break;
dc529a4f 2555 }
de151cf6 2556
007cc8ac 2557 reg->obj = NULL;
de151cf6 2558 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2559 list_del_init(&reg->lru_list);
de151cf6
JB
2560}
2561
52dc7d32
CW
2562/**
2563 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2564 * to the buffer to finish, and then resets the fence register.
2565 * @obj: tiled object holding a fence register.
2cf34d7b 2566 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2567 *
2568 * Zeroes out the fence register itself and clears out the associated
2569 * data structures in dev_priv and obj_priv.
2570 */
2571int
2cf34d7b
CW
2572i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2573 bool interruptible)
52dc7d32
CW
2574{
2575 struct drm_device *dev = obj->dev;
53640e1d 2576 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2577 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2578 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2579
2580 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2581 return 0;
2582
10ae9bd2
DV
2583 /* If we've changed tiling, GTT-mappings of the object
2584 * need to re-fault to ensure that the correct fence register
2585 * setup is in place.
2586 */
2587 i915_gem_release_mmap(obj);
2588
52dc7d32
CW
2589 /* On the i915, GPU access to tiled buffers is via a fence,
2590 * therefore we must wait for any outstanding access to complete
2591 * before clearing the fence.
2592 */
53640e1d
CW
2593 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2594 if (reg->gpu) {
52dc7d32
CW
2595 int ret;
2596
2cf34d7b 2597 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2598 if (ret)
2dafb1e0
CW
2599 return ret;
2600
2cf34d7b 2601 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2602 if (ret)
52dc7d32 2603 return ret;
53640e1d
CW
2604
2605 reg->gpu = false;
52dc7d32
CW
2606 }
2607
4a726612 2608 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2609 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2610
2611 return 0;
2612}
2613
673a394b
EA
2614/**
2615 * Finds free space in the GTT aperture and binds the object there.
2616 */
2617static int
2618i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2619{
2620 struct drm_device *dev = obj->dev;
2621 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2622 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2623 struct drm_mm_node *free_space;
4bdadb97 2624 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2625 int ret;
673a394b 2626
bb6baf76 2627 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2628 DRM_ERROR("Attempting to bind a purgeable object\n");
2629 return -EINVAL;
2630 }
2631
673a394b 2632 if (alignment == 0)
0f973f27 2633 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2634 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2635 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2636 return -EINVAL;
2637 }
2638
654fc607
CW
2639 /* If the object is bigger than the entire aperture, reject it early
2640 * before evicting everything in a vain attempt to find space.
2641 */
73aa808f 2642 if (obj->size > dev_priv->mm.gtt_total) {
654fc607
CW
2643 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2644 return -E2BIG;
2645 }
2646
673a394b
EA
2647 search_free:
2648 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2649 obj->size, alignment, 0);
9af90d19 2650 if (free_space != NULL)
673a394b
EA
2651 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2652 alignment);
673a394b
EA
2653 if (obj_priv->gtt_space == NULL) {
2654 /* If the gtt is empty and we're still having trouble
2655 * fitting our object in, we're out of memory.
2656 */
0108a3ed 2657 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2658 if (ret)
673a394b 2659 return ret;
9731129c 2660
673a394b
EA
2661 goto search_free;
2662 }
2663
4bdadb97 2664 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2665 if (ret) {
2666 drm_mm_put_block(obj_priv->gtt_space);
2667 obj_priv->gtt_space = NULL;
07f73f69
CW
2668
2669 if (ret == -ENOMEM) {
2670 /* first try to clear up some space from the GTT */
0108a3ed
DV
2671 ret = i915_gem_evict_something(dev, obj->size,
2672 alignment);
07f73f69 2673 if (ret) {
07f73f69 2674 /* now try to shrink everyone else */
4bdadb97
CW
2675 if (gfpmask) {
2676 gfpmask = 0;
2677 goto search_free;
07f73f69
CW
2678 }
2679
2680 return ret;
2681 }
2682
2683 goto search_free;
2684 }
2685
673a394b
EA
2686 return ret;
2687 }
2688
673a394b
EA
2689 /* Create an AGP memory structure pointing at our pages, and bind it
2690 * into the GTT.
2691 */
2692 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2693 obj_priv->pages,
07f73f69 2694 obj->size >> PAGE_SHIFT,
9af90d19 2695 obj_priv->gtt_space->start,
ba1eb1d8 2696 obj_priv->agp_type);
673a394b 2697 if (obj_priv->agp_mem == NULL) {
856fa198 2698 i915_gem_object_put_pages(obj);
673a394b
EA
2699 drm_mm_put_block(obj_priv->gtt_space);
2700 obj_priv->gtt_space = NULL;
07f73f69 2701
0108a3ed 2702 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2703 if (ret)
07f73f69 2704 return ret;
07f73f69
CW
2705
2706 goto search_free;
673a394b 2707 }
673a394b 2708
bf1a1092 2709 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2710 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
73aa808f 2711 i915_gem_info_add_gtt(dev_priv, obj->size);
bf1a1092 2712
673a394b
EA
2713 /* Assert that the object is not currently in any GPU domain. As it
2714 * wasn't in the GTT, there shouldn't be any way it could have been in
2715 * a GPU cache
2716 */
21d509e3
CW
2717 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2718 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2719
9af90d19 2720 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1c5d22f7
CW
2721 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2722
673a394b
EA
2723 return 0;
2724}
2725
2726void
2727i915_gem_clflush_object(struct drm_gem_object *obj)
2728{
23010e43 2729 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2730
2731 /* If we don't have a page list set up, then we're not pinned
2732 * to GPU, and we can ignore the cache flush because it'll happen
2733 * again at bind time.
2734 */
856fa198 2735 if (obj_priv->pages == NULL)
673a394b
EA
2736 return;
2737
1c5d22f7 2738 trace_i915_gem_object_clflush(obj);
cfa16a0d 2739
856fa198 2740 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2741}
2742
e47c68e9 2743/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2744static int
ba3d8d74
DV
2745i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2746 bool pipelined)
e47c68e9
EA
2747{
2748 struct drm_device *dev = obj->dev;
1c5d22f7 2749 uint32_t old_write_domain;
e47c68e9
EA
2750
2751 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2752 return 0;
e47c68e9
EA
2753
2754 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2755 old_write_domain = obj->write_domain;
c78ec30b 2756 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2757 to_intel_bo(obj)->ring,
2758 0, obj->write_domain);
48b956c5 2759 BUG_ON(obj->write_domain);
1c5d22f7
CW
2760
2761 trace_i915_gem_object_change_domain(obj,
2762 obj->read_domains,
2763 old_write_domain);
ba3d8d74
DV
2764
2765 if (pipelined)
2766 return 0;
2767
2cf34d7b 2768 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2769}
2770
2771/** Flushes the GTT write domain for the object if it's dirty. */
2772static void
2773i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2774{
1c5d22f7
CW
2775 uint32_t old_write_domain;
2776
e47c68e9
EA
2777 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2778 return;
2779
2780 /* No actual flushing is required for the GTT write domain. Writes
2781 * to it immediately go to main memory as far as we know, so there's
2782 * no chipset flush. It also doesn't land in render cache.
2783 */
1c5d22f7 2784 old_write_domain = obj->write_domain;
e47c68e9 2785 obj->write_domain = 0;
1c5d22f7
CW
2786
2787 trace_i915_gem_object_change_domain(obj,
2788 obj->read_domains,
2789 old_write_domain);
e47c68e9
EA
2790}
2791
2792/** Flushes the CPU write domain for the object if it's dirty. */
2793static void
2794i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2795{
2796 struct drm_device *dev = obj->dev;
1c5d22f7 2797 uint32_t old_write_domain;
e47c68e9
EA
2798
2799 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2800 return;
2801
2802 i915_gem_clflush_object(obj);
2803 drm_agp_chipset_flush(dev);
1c5d22f7 2804 old_write_domain = obj->write_domain;
e47c68e9 2805 obj->write_domain = 0;
1c5d22f7
CW
2806
2807 trace_i915_gem_object_change_domain(obj,
2808 obj->read_domains,
2809 old_write_domain);
e47c68e9
EA
2810}
2811
2ef7eeaa
EA
2812/**
2813 * Moves a single object to the GTT read, and possibly write domain.
2814 *
2815 * This function returns when the move is complete, including waiting on
2816 * flushes to occur.
2817 */
79e53945 2818int
2ef7eeaa
EA
2819i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2820{
23010e43 2821 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2822 uint32_t old_write_domain, old_read_domains;
e47c68e9 2823 int ret;
2ef7eeaa 2824
02354392
EA
2825 /* Not valid to be called on unbound objects. */
2826 if (obj_priv->gtt_space == NULL)
2827 return -EINVAL;
2828
ba3d8d74 2829 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2830 if (ret != 0)
2831 return ret;
2832
7213342d 2833 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2834
ba3d8d74 2835 if (write) {
2cf34d7b 2836 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2837 if (ret)
2838 return ret;
ba3d8d74 2839 }
e47c68e9 2840
1c5d22f7
CW
2841 old_write_domain = obj->write_domain;
2842 old_read_domains = obj->read_domains;
2843
e47c68e9
EA
2844 /* It should now be out of any other write domains, and we can update
2845 * the domain values for our changes.
2846 */
2847 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2848 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2849 if (write) {
7213342d 2850 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2851 obj->write_domain = I915_GEM_DOMAIN_GTT;
2852 obj_priv->dirty = 1;
2ef7eeaa
EA
2853 }
2854
1c5d22f7
CW
2855 trace_i915_gem_object_change_domain(obj,
2856 old_read_domains,
2857 old_write_domain);
2858
e47c68e9
EA
2859 return 0;
2860}
2861
b9241ea3
ZW
2862/*
2863 * Prepare buffer for display plane. Use uninterruptible for possible flush
2864 * wait, as in modesetting process we're not supposed to be interrupted.
2865 */
2866int
48b956c5
CW
2867i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2868 bool pipelined)
b9241ea3 2869{
23010e43 2870 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2871 uint32_t old_read_domains;
b9241ea3
ZW
2872 int ret;
2873
2874 /* Not valid to be called on unbound objects. */
2875 if (obj_priv->gtt_space == NULL)
2876 return -EINVAL;
2877
ced270fa 2878 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
2879 if (ret)
2880 return ret;
b9241ea3 2881
ced270fa
CW
2882 /* Currently, we are always called from an non-interruptible context. */
2883 if (!pipelined) {
2884 ret = i915_gem_object_wait_rendering(obj, false);
2885 if (ret)
b9241ea3
ZW
2886 return ret;
2887 }
2888
b118c1e3
CW
2889 i915_gem_object_flush_cpu_write_domain(obj);
2890
b9241ea3 2891 old_read_domains = obj->read_domains;
c78ec30b 2892 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2893
2894 trace_i915_gem_object_change_domain(obj,
2895 old_read_domains,
ba3d8d74 2896 obj->write_domain);
b9241ea3
ZW
2897
2898 return 0;
2899}
2900
85345517
CW
2901int
2902i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
2903 bool interruptible)
2904{
2905 if (!obj->active)
2906 return 0;
2907
2908 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2909 i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
2910 0, obj->base.write_domain);
2911
2912 return i915_gem_object_wait_rendering(&obj->base, interruptible);
2913}
2914
e47c68e9
EA
2915/**
2916 * Moves a single object to the CPU read, and possibly write domain.
2917 *
2918 * This function returns when the move is complete, including waiting on
2919 * flushes to occur.
2920 */
2921static int
2922i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2923{
1c5d22f7 2924 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2925 int ret;
2926
ba3d8d74 2927 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2928 if (ret != 0)
2929 return ret;
2ef7eeaa 2930
e47c68e9 2931 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2932
e47c68e9
EA
2933 /* If we have a partially-valid cache of the object in the CPU,
2934 * finish invalidating it and free the per-page flags.
2ef7eeaa 2935 */
e47c68e9 2936 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2937
7213342d 2938 if (write) {
2cf34d7b 2939 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2940 if (ret)
2941 return ret;
2942 }
2943
1c5d22f7
CW
2944 old_write_domain = obj->write_domain;
2945 old_read_domains = obj->read_domains;
2946
e47c68e9
EA
2947 /* Flush the CPU cache if it's still invalid. */
2948 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2949 i915_gem_clflush_object(obj);
2ef7eeaa 2950
e47c68e9 2951 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2952 }
2953
2954 /* It should now be out of any other write domains, and we can update
2955 * the domain values for our changes.
2956 */
e47c68e9
EA
2957 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2958
2959 /* If we're writing through the CPU, then the GPU read domains will
2960 * need to be invalidated at next use.
2961 */
2962 if (write) {
c78ec30b 2963 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2964 obj->write_domain = I915_GEM_DOMAIN_CPU;
2965 }
2ef7eeaa 2966
1c5d22f7
CW
2967 trace_i915_gem_object_change_domain(obj,
2968 old_read_domains,
2969 old_write_domain);
2970
2ef7eeaa
EA
2971 return 0;
2972}
2973
673a394b
EA
2974/*
2975 * Set the next domain for the specified object. This
2976 * may not actually perform the necessary flushing/invaliding though,
2977 * as that may want to be batched with other set_domain operations
2978 *
2979 * This is (we hope) the only really tricky part of gem. The goal
2980 * is fairly simple -- track which caches hold bits of the object
2981 * and make sure they remain coherent. A few concrete examples may
2982 * help to explain how it works. For shorthand, we use the notation
2983 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2984 * a pair of read and write domain masks.
2985 *
2986 * Case 1: the batch buffer
2987 *
2988 * 1. Allocated
2989 * 2. Written by CPU
2990 * 3. Mapped to GTT
2991 * 4. Read by GPU
2992 * 5. Unmapped from GTT
2993 * 6. Freed
2994 *
2995 * Let's take these a step at a time
2996 *
2997 * 1. Allocated
2998 * Pages allocated from the kernel may still have
2999 * cache contents, so we set them to (CPU, CPU) always.
3000 * 2. Written by CPU (using pwrite)
3001 * The pwrite function calls set_domain (CPU, CPU) and
3002 * this function does nothing (as nothing changes)
3003 * 3. Mapped by GTT
3004 * This function asserts that the object is not
3005 * currently in any GPU-based read or write domains
3006 * 4. Read by GPU
3007 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3008 * As write_domain is zero, this function adds in the
3009 * current read domains (CPU+COMMAND, 0).
3010 * flush_domains is set to CPU.
3011 * invalidate_domains is set to COMMAND
3012 * clflush is run to get data out of the CPU caches
3013 * then i915_dev_set_domain calls i915_gem_flush to
3014 * emit an MI_FLUSH and drm_agp_chipset_flush
3015 * 5. Unmapped from GTT
3016 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3017 * flush_domains and invalidate_domains end up both zero
3018 * so no flushing/invalidating happens
3019 * 6. Freed
3020 * yay, done
3021 *
3022 * Case 2: The shared render buffer
3023 *
3024 * 1. Allocated
3025 * 2. Mapped to GTT
3026 * 3. Read/written by GPU
3027 * 4. set_domain to (CPU,CPU)
3028 * 5. Read/written by CPU
3029 * 6. Read/written by GPU
3030 *
3031 * 1. Allocated
3032 * Same as last example, (CPU, CPU)
3033 * 2. Mapped to GTT
3034 * Nothing changes (assertions find that it is not in the GPU)
3035 * 3. Read/written by GPU
3036 * execbuffer calls set_domain (RENDER, RENDER)
3037 * flush_domains gets CPU
3038 * invalidate_domains gets GPU
3039 * clflush (obj)
3040 * MI_FLUSH and drm_agp_chipset_flush
3041 * 4. set_domain (CPU, CPU)
3042 * flush_domains gets GPU
3043 * invalidate_domains gets CPU
3044 * wait_rendering (obj) to make sure all drawing is complete.
3045 * This will include an MI_FLUSH to get the data from GPU
3046 * to memory
3047 * clflush (obj) to invalidate the CPU cache
3048 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3049 * 5. Read/written by CPU
3050 * cache lines are loaded and dirtied
3051 * 6. Read written by GPU
3052 * Same as last GPU access
3053 *
3054 * Case 3: The constant buffer
3055 *
3056 * 1. Allocated
3057 * 2. Written by CPU
3058 * 3. Read by GPU
3059 * 4. Updated (written) by CPU again
3060 * 5. Read by GPU
3061 *
3062 * 1. Allocated
3063 * (CPU, CPU)
3064 * 2. Written by CPU
3065 * (CPU, CPU)
3066 * 3. Read by GPU
3067 * (CPU+RENDER, 0)
3068 * flush_domains = CPU
3069 * invalidate_domains = RENDER
3070 * clflush (obj)
3071 * MI_FLUSH
3072 * drm_agp_chipset_flush
3073 * 4. Updated (written) by CPU again
3074 * (CPU, CPU)
3075 * flush_domains = 0 (no previous write domain)
3076 * invalidate_domains = 0 (no new read domains)
3077 * 5. Read by GPU
3078 * (CPU+RENDER, 0)
3079 * flush_domains = CPU
3080 * invalidate_domains = RENDER
3081 * clflush (obj)
3082 * MI_FLUSH
3083 * drm_agp_chipset_flush
3084 */
c0d90829 3085static void
b6651458
CW
3086i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3087 struct intel_ring_buffer *ring)
673a394b
EA
3088{
3089 struct drm_device *dev = obj->dev;
9220434a 3090 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3091 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3092 uint32_t invalidate_domains = 0;
3093 uint32_t flush_domains = 0;
1c5d22f7 3094 uint32_t old_read_domains;
e47c68e9 3095
652c393a
JB
3096 intel_mark_busy(dev, obj);
3097
673a394b
EA
3098 /*
3099 * If the object isn't moving to a new write domain,
3100 * let the object stay in multiple read domains
3101 */
8b0e378a
EA
3102 if (obj->pending_write_domain == 0)
3103 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3104 else
3105 obj_priv->dirty = 1;
3106
3107 /*
3108 * Flush the current write domain if
3109 * the new read domains don't match. Invalidate
3110 * any read domains which differ from the old
3111 * write domain
3112 */
8b0e378a 3113 if (obj->write_domain &&
c6afd658
CW
3114 (obj->write_domain != obj->pending_read_domains ||
3115 obj_priv->ring != ring)) {
673a394b 3116 flush_domains |= obj->write_domain;
8b0e378a
EA
3117 invalidate_domains |=
3118 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3119 }
3120 /*
3121 * Invalidate any read caches which may have
3122 * stale data. That is, any new read domains.
3123 */
8b0e378a 3124 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3125 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3126 i915_gem_clflush_object(obj);
673a394b 3127
1c5d22f7
CW
3128 old_read_domains = obj->read_domains;
3129
efbeed96
EA
3130 /* The actual obj->write_domain will be updated with
3131 * pending_write_domain after we emit the accumulated flush for all
3132 * of our domain changes in execbuffers (which clears objects'
3133 * write_domains). So if we have a current write domain that we
3134 * aren't changing, set pending_write_domain to that.
3135 */
3136 if (flush_domains == 0 && obj->pending_write_domain == 0)
3137 obj->pending_write_domain = obj->write_domain;
8b0e378a 3138 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3139
3140 dev->invalidate_domains |= invalidate_domains;
3141 dev->flush_domains |= flush_domains;
b6651458 3142 if (flush_domains & I915_GEM_GPU_DOMAINS)
9220434a 3143 dev_priv->mm.flush_rings |= obj_priv->ring->id;
b6651458
CW
3144 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3145 dev_priv->mm.flush_rings |= ring->id;
1c5d22f7
CW
3146
3147 trace_i915_gem_object_change_domain(obj,
3148 old_read_domains,
3149 obj->write_domain);
673a394b
EA
3150}
3151
3152/**
e47c68e9 3153 * Moves the object from a partially CPU read to a full one.
673a394b 3154 *
e47c68e9
EA
3155 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3156 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3157 */
e47c68e9
EA
3158static void
3159i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3160{
23010e43 3161 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3162
e47c68e9
EA
3163 if (!obj_priv->page_cpu_valid)
3164 return;
3165
3166 /* If we're partially in the CPU read domain, finish moving it in.
3167 */
3168 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3169 int i;
3170
3171 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3172 if (obj_priv->page_cpu_valid[i])
3173 continue;
856fa198 3174 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3175 }
e47c68e9
EA
3176 }
3177
3178 /* Free the page_cpu_valid mappings which are now stale, whether
3179 * or not we've got I915_GEM_DOMAIN_CPU.
3180 */
9a298b2a 3181 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3182 obj_priv->page_cpu_valid = NULL;
3183}
3184
3185/**
3186 * Set the CPU read domain on a range of the object.
3187 *
3188 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3189 * not entirely valid. The page_cpu_valid member of the object flags which
3190 * pages have been flushed, and will be respected by
3191 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3192 * of the whole object.
3193 *
3194 * This function returns when the move is complete, including waiting on
3195 * flushes to occur.
3196 */
3197static int
3198i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3199 uint64_t offset, uint64_t size)
3200{
23010e43 3201 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3202 uint32_t old_read_domains;
e47c68e9 3203 int i, ret;
673a394b 3204
e47c68e9
EA
3205 if (offset == 0 && size == obj->size)
3206 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3207
ba3d8d74 3208 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3209 if (ret != 0)
6a47baa6 3210 return ret;
e47c68e9
EA
3211 i915_gem_object_flush_gtt_write_domain(obj);
3212
3213 /* If we're already fully in the CPU read domain, we're done. */
3214 if (obj_priv->page_cpu_valid == NULL &&
3215 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3216 return 0;
673a394b 3217
e47c68e9
EA
3218 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3219 * newly adding I915_GEM_DOMAIN_CPU
3220 */
673a394b 3221 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3222 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3223 GFP_KERNEL);
e47c68e9
EA
3224 if (obj_priv->page_cpu_valid == NULL)
3225 return -ENOMEM;
3226 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3227 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3228
3229 /* Flush the cache on any pages that are still invalid from the CPU's
3230 * perspective.
3231 */
e47c68e9
EA
3232 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3233 i++) {
673a394b
EA
3234 if (obj_priv->page_cpu_valid[i])
3235 continue;
3236
856fa198 3237 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3238
3239 obj_priv->page_cpu_valid[i] = 1;
3240 }
3241
e47c68e9
EA
3242 /* It should now be out of any other write domains, and we can update
3243 * the domain values for our changes.
3244 */
3245 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3246
1c5d22f7 3247 old_read_domains = obj->read_domains;
e47c68e9
EA
3248 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3249
1c5d22f7
CW
3250 trace_i915_gem_object_change_domain(obj,
3251 old_read_domains,
3252 obj->write_domain);
3253
673a394b
EA
3254 return 0;
3255}
3256
673a394b
EA
3257/**
3258 * Pin an object to the GTT and evaluate the relocations landing in it.
3259 */
3260static int
9af90d19
CW
3261i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3262 struct drm_file *file_priv,
3263 struct drm_i915_gem_exec_object2 *entry)
673a394b 3264{
9af90d19 3265 struct drm_device *dev = obj->base.dev;
0839ccb8 3266 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3267 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3268 struct drm_gem_object *target_obj = NULL;
3269 uint32_t target_handle = 0;
3270 int i, ret = 0;
673a394b 3271
2549d6c2 3272 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3273 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3274 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3275 uint32_t target_offset;
673a394b 3276
9af90d19
CW
3277 if (__copy_from_user_inatomic(&reloc,
3278 user_relocs+i,
3279 sizeof(reloc))) {
3280 ret = -EFAULT;
3281 break;
76446cac 3282 }
76446cac 3283
9af90d19
CW
3284 if (reloc.target_handle != target_handle) {
3285 drm_gem_object_unreference(target_obj);
673a394b 3286
9af90d19
CW
3287 target_obj = drm_gem_object_lookup(dev, file_priv,
3288 reloc.target_handle);
3289 if (target_obj == NULL) {
3290 ret = -ENOENT;
3291 break;
3292 }
3293
3294 target_handle = reloc.target_handle;
673a394b 3295 }
9af90d19 3296 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3297
8542a0bb
CW
3298#if WATCH_RELOC
3299 DRM_INFO("%s: obj %p offset %08x target %d "
3300 "read %08x write %08x gtt %08x "
3301 "presumed %08x delta %08x\n",
3302 __func__,
3303 obj,
2549d6c2
CW
3304 (int) reloc.offset,
3305 (int) reloc.target_handle,
3306 (int) reloc.read_domains,
3307 (int) reloc.write_domain,
9af90d19 3308 (int) target_offset,
2549d6c2
CW
3309 (int) reloc.presumed_offset,
3310 reloc.delta);
8542a0bb
CW
3311#endif
3312
673a394b
EA
3313 /* The target buffer should have appeared before us in the
3314 * exec_object list, so it should have a GTT space bound by now.
3315 */
9af90d19 3316 if (target_offset == 0) {
673a394b 3317 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3318 reloc.target_handle);
9af90d19
CW
3319 ret = -EINVAL;
3320 break;
673a394b
EA
3321 }
3322
8542a0bb 3323 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3324 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3325 DRM_ERROR("reloc with multiple write domains: "
3326 "obj %p target %d offset %d "
3327 "read %08x write %08x",
2549d6c2
CW
3328 obj, reloc.target_handle,
3329 (int) reloc.offset,
3330 reloc.read_domains,
3331 reloc.write_domain);
9af90d19
CW
3332 ret = -EINVAL;
3333 break;
16edd550 3334 }
2549d6c2
CW
3335 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3336 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3337 DRM_ERROR("reloc with read/write CPU domains: "
3338 "obj %p target %d offset %d "
3339 "read %08x write %08x",
2549d6c2
CW
3340 obj, reloc.target_handle,
3341 (int) reloc.offset,
3342 reloc.read_domains,
3343 reloc.write_domain);
9af90d19
CW
3344 ret = -EINVAL;
3345 break;
e47c68e9 3346 }
2549d6c2
CW
3347 if (reloc.write_domain && target_obj->pending_write_domain &&
3348 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3349 DRM_ERROR("Write domain conflict: "
3350 "obj %p target %d offset %d "
3351 "new %08x old %08x\n",
2549d6c2
CW
3352 obj, reloc.target_handle,
3353 (int) reloc.offset,
3354 reloc.write_domain,
673a394b 3355 target_obj->pending_write_domain);
9af90d19
CW
3356 ret = -EINVAL;
3357 break;
673a394b
EA
3358 }
3359
2549d6c2 3360 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3361 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3362
3363 /* If the relocation already has the right value in it, no
3364 * more work needs to be done.
3365 */
9af90d19 3366 if (target_offset == reloc.presumed_offset)
673a394b 3367 continue;
673a394b 3368
8542a0bb 3369 /* Check that the relocation address is valid... */
9af90d19 3370 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3371 DRM_ERROR("Relocation beyond object bounds: "
3372 "obj %p target %d offset %d size %d.\n",
2549d6c2 3373 obj, reloc.target_handle,
9af90d19
CW
3374 (int) reloc.offset, (int) obj->base.size);
3375 ret = -EINVAL;
3376 break;
8542a0bb 3377 }
2549d6c2 3378 if (reloc.offset & 3) {
8542a0bb
CW
3379 DRM_ERROR("Relocation not 4-byte aligned: "
3380 "obj %p target %d offset %d.\n",
2549d6c2
CW
3381 obj, reloc.target_handle,
3382 (int) reloc.offset);
9af90d19
CW
3383 ret = -EINVAL;
3384 break;
8542a0bb
CW
3385 }
3386
3387 /* and points to somewhere within the target object. */
2549d6c2 3388 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3389 DRM_ERROR("Relocation beyond target object bounds: "
3390 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3391 obj, reloc.target_handle,
3392 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3393 ret = -EINVAL;
3394 break;
673a394b
EA
3395 }
3396
9af90d19
CW
3397 reloc.delta += target_offset;
3398 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3399 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3400 char *vaddr;
673a394b 3401
c48c43e4 3402 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3403 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3404 kunmap_atomic(vaddr);
f0c43d9b
CW
3405 } else {
3406 uint32_t __iomem *reloc_entry;
3407 void __iomem *reloc_page;
b962442e 3408
9af90d19
CW
3409 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3410 if (ret)
3411 break;
b962442e 3412
f0c43d9b 3413 /* Map the page containing the relocation we're going to perform. */
9af90d19 3414 reloc.offset += obj->gtt_offset;
f0c43d9b 3415 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3416 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3417 reloc_entry = (uint32_t __iomem *)
3418 (reloc_page + (reloc.offset & ~PAGE_MASK));
3419 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3420 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3421 }
b962442e 3422
b5dc608c
CW
3423 /* and update the user's relocation entry */
3424 reloc.presumed_offset = target_offset;
3425 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3426 &reloc.presumed_offset,
3427 sizeof(reloc.presumed_offset))) {
3428 ret = -EFAULT;
3429 break;
3430 }
b962442e 3431 }
b962442e 3432
9af90d19 3433 drm_gem_object_unreference(target_obj);
673a394b
EA
3434 return ret;
3435}
3436
40a5f0de 3437static int
9af90d19
CW
3438i915_gem_execbuffer_pin(struct drm_device *dev,
3439 struct drm_file *file,
3440 struct drm_gem_object **object_list,
3441 struct drm_i915_gem_exec_object2 *exec_list,
3442 int count)
40a5f0de 3443{
9af90d19
CW
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 int ret, i, retry;
40a5f0de 3446
9af90d19
CW
3447 /* attempt to pin all of the buffers into the GTT */
3448 for (retry = 0; retry < 2; retry++) {
3449 ret = 0;
3450 for (i = 0; i < count; i++) {
3451 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3452 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3453 bool need_fence =
3454 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3455 obj->tiling_mode != I915_TILING_NONE;
3456
3457 /* Check fence reg constraints and rebind if necessary */
3458 if (need_fence &&
3459 !i915_gem_object_fence_offset_ok(&obj->base,
3460 obj->tiling_mode)) {
3461 ret = i915_gem_object_unbind(&obj->base);
3462 if (ret)
3463 break;
3464 }
40a5f0de 3465
9af90d19
CW
3466 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3467 if (ret)
3468 break;
40a5f0de 3469
9af90d19
CW
3470 /*
3471 * Pre-965 chips need a fence register set up in order
3472 * to properly handle blits to/from tiled surfaces.
3473 */
3474 if (need_fence) {
3475 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3476 if (ret) {
3477 i915_gem_object_unpin(&obj->base);
3478 break;
3479 }
40a5f0de 3480
9af90d19
CW
3481 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3482 }
40a5f0de 3483
9af90d19 3484 entry->offset = obj->gtt_offset;
40a5f0de
EA
3485 }
3486
9af90d19
CW
3487 while (i--)
3488 i915_gem_object_unpin(object_list[i]);
3489
3490 if (ret == 0)
3491 break;
673a394b 3492
9af90d19
CW
3493 if (ret != -ENOSPC || retry)
3494 return ret;
3495
3496 ret = i915_gem_evict_everything(dev);
3497 if (ret)
3498 return ret;
40a5f0de
EA
3499 }
3500
2bc43b5c 3501 return 0;
40a5f0de
EA
3502}
3503
c6afd658
CW
3504static int
3505i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3506 struct drm_file *file,
3507 struct intel_ring_buffer *ring,
3508 struct drm_gem_object **objects,
3509 int count)
3510{
3511 struct drm_i915_private *dev_priv = dev->dev_private;
3512 int ret, i;
3513
3514 /* Zero the global flush/invalidate flags. These
3515 * will be modified as new domains are computed
3516 * for each object
3517 */
3518 dev->invalidate_domains = 0;
3519 dev->flush_domains = 0;
3520 dev_priv->mm.flush_rings = 0;
3521 for (i = 0; i < count; i++)
3522 i915_gem_object_set_to_gpu_domain(objects[i], ring);
3523
3524 if (dev->invalidate_domains | dev->flush_domains) {
3525#if WATCH_EXEC
3526 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3527 __func__,
3528 dev->invalidate_domains,
3529 dev->flush_domains);
3530#endif
3531 i915_gem_flush(dev, file,
3532 dev->invalidate_domains,
3533 dev->flush_domains,
3534 dev_priv->mm.flush_rings);
3535 }
3536
3537 for (i = 0; i < count; i++) {
3538 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3539 /* XXX replace with semaphores */
3540 if (obj->ring && ring != obj->ring) {
3541 ret = i915_gem_object_wait_rendering(&obj->base, true);
3542 if (ret)
3543 return ret;
3544 }
3545 }
3546
3547 return 0;
3548}
3549
673a394b
EA
3550/* Throttle our rendering by waiting until the ring has completed our requests
3551 * emitted over 20 msec ago.
3552 *
b962442e
EA
3553 * Note that if we were to use the current jiffies each time around the loop,
3554 * we wouldn't escape the function with any frames outstanding if the time to
3555 * render a frame was over 20ms.
3556 *
673a394b
EA
3557 * This should get us reasonable parallelism between CPU and GPU but also
3558 * relatively low latency when blocking on a particular request to finish.
3559 */
40a5f0de 3560static int
f787a5f5 3561i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3562{
f787a5f5
CW
3563 struct drm_i915_private *dev_priv = dev->dev_private;
3564 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3565 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3566 struct drm_i915_gem_request *request;
3567 struct intel_ring_buffer *ring = NULL;
3568 u32 seqno = 0;
3569 int ret;
93533c29 3570
1c25595f 3571 spin_lock(&file_priv->mm.lock);
f787a5f5 3572 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3573 if (time_after_eq(request->emitted_jiffies, recent_enough))
3574 break;
40a5f0de 3575
f787a5f5
CW
3576 ring = request->ring;
3577 seqno = request->seqno;
b962442e 3578 }
1c25595f 3579 spin_unlock(&file_priv->mm.lock);
40a5f0de 3580
f787a5f5
CW
3581 if (seqno == 0)
3582 return 0;
2bc43b5c 3583
f787a5f5
CW
3584 ret = 0;
3585 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3586 /* And wait for the seqno passing without holding any locks and
3587 * causing extra latency for others. This is safe as the irq
3588 * generation is designed to be run atomically and so is
3589 * lockless.
3590 */
3591 ring->user_irq_get(dev, ring);
3592 ret = wait_event_interruptible(ring->irq_queue,
3593 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3594 || atomic_read(&dev_priv->mm.wedged));
3595 ring->user_irq_put(dev, ring);
40a5f0de 3596
f787a5f5
CW
3597 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3598 ret = -EIO;
40a5f0de
EA
3599 }
3600
f787a5f5
CW
3601 if (ret == 0)
3602 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3603
3604 return ret;
3605}
3606
83d60795 3607static int
2549d6c2
CW
3608i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3609 uint64_t exec_offset)
83d60795
CW
3610{
3611 uint32_t exec_start, exec_len;
3612
3613 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3614 exec_len = (uint32_t) exec->batch_len;
3615
3616 if ((exec_start | exec_len) & 0x7)
3617 return -EINVAL;
3618
3619 if (!exec_start)
3620 return -EINVAL;
3621
3622 return 0;
3623}
3624
6b95a207 3625static int
2549d6c2
CW
3626validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3627 int count)
6b95a207 3628{
2549d6c2 3629 int i;
6b95a207 3630
2549d6c2
CW
3631 for (i = 0; i < count; i++) {
3632 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
d1d78830 3633 int length; /* limited by fault_in_pages_readable() */
6b95a207 3634
d1d78830
CW
3635 /* First check for malicious input causing overflow */
3636 if (exec[i].relocation_count >
3637 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
3638 return -EINVAL;
3639
3640 length = exec[i].relocation_count *
3641 sizeof(struct drm_i915_gem_relocation_entry);
2549d6c2
CW
3642 if (!access_ok(VERIFY_READ, ptr, length))
3643 return -EFAULT;
40a5f0de 3644
b5dc608c
CW
3645 /* we may also need to update the presumed offsets */
3646 if (!access_ok(VERIFY_WRITE, ptr, length))
3647 return -EFAULT;
3648
2549d6c2
CW
3649 if (fault_in_pages_readable(ptr, length))
3650 return -EFAULT;
6b95a207 3651 }
6b95a207 3652
83d60795 3653 return 0;
6b95a207
KH
3654}
3655
8dc5d147 3656static int
76446cac 3657i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3658 struct drm_file *file,
76446cac
JB
3659 struct drm_i915_gem_execbuffer2 *args,
3660 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3661{
3662 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3663 struct drm_gem_object **object_list = NULL;
3664 struct drm_gem_object *batch_obj;
b70d11da 3665 struct drm_i915_gem_object *obj_priv;
201361a5 3666 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3667 struct drm_i915_gem_request *request = NULL;
9af90d19 3668 int ret, i, flips;
673a394b 3669 uint64_t exec_offset;
673a394b 3670
852835f3
ZN
3671 struct intel_ring_buffer *ring = NULL;
3672
30dbf0c0
CW
3673 ret = i915_gem_check_is_wedged(dev);
3674 if (ret)
3675 return ret;
3676
2549d6c2
CW
3677 ret = validate_exec_list(exec_list, args->buffer_count);
3678 if (ret)
3679 return ret;
3680
673a394b
EA
3681#if WATCH_EXEC
3682 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3683 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3684#endif
549f7365
CW
3685 switch (args->flags & I915_EXEC_RING_MASK) {
3686 case I915_EXEC_DEFAULT:
3687 case I915_EXEC_RENDER:
3688 ring = &dev_priv->render_ring;
3689 break;
3690 case I915_EXEC_BSD:
d1b851fc 3691 if (!HAS_BSD(dev)) {
549f7365 3692 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3693 return -EINVAL;
3694 }
3695 ring = &dev_priv->bsd_ring;
549f7365
CW
3696 break;
3697 case I915_EXEC_BLT:
3698 if (!HAS_BLT(dev)) {
3699 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3700 return -EINVAL;
3701 }
3702 ring = &dev_priv->blt_ring;
3703 break;
3704 default:
3705 DRM_ERROR("execbuf with unknown ring: %d\n",
3706 (int)(args->flags & I915_EXEC_RING_MASK));
3707 return -EINVAL;
d1b851fc
ZN
3708 }
3709
4f481ed2
EA
3710 if (args->buffer_count < 1) {
3711 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3712 return -EINVAL;
3713 }
c8e0f93a 3714 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3715 if (object_list == NULL) {
3716 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3717 args->buffer_count);
3718 ret = -ENOMEM;
3719 goto pre_mutex_err;
3720 }
673a394b 3721
201361a5 3722 if (args->num_cliprects != 0) {
9a298b2a
EA
3723 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3724 GFP_KERNEL);
a40e8d31
OA
3725 if (cliprects == NULL) {
3726 ret = -ENOMEM;
201361a5 3727 goto pre_mutex_err;
a40e8d31 3728 }
201361a5
EA
3729
3730 ret = copy_from_user(cliprects,
3731 (struct drm_clip_rect __user *)
3732 (uintptr_t) args->cliprects_ptr,
3733 sizeof(*cliprects) * args->num_cliprects);
3734 if (ret != 0) {
3735 DRM_ERROR("copy %d cliprects failed: %d\n",
3736 args->num_cliprects, ret);
c877cdce 3737 ret = -EFAULT;
201361a5
EA
3738 goto pre_mutex_err;
3739 }
3740 }
3741
8dc5d147
CW
3742 request = kzalloc(sizeof(*request), GFP_KERNEL);
3743 if (request == NULL) {
3744 ret = -ENOMEM;
40a5f0de 3745 goto pre_mutex_err;
8dc5d147 3746 }
40a5f0de 3747
76c1dec1
CW
3748 ret = i915_mutex_lock_interruptible(dev);
3749 if (ret)
a198bc80 3750 goto pre_mutex_err;
673a394b
EA
3751
3752 if (dev_priv->mm.suspended) {
673a394b 3753 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3754 ret = -EBUSY;
3755 goto pre_mutex_err;
673a394b
EA
3756 }
3757
ac94a962 3758 /* Look up object handles */
673a394b 3759 for (i = 0; i < args->buffer_count; i++) {
9af90d19 3760 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3761 exec_list[i].handle);
3762 if (object_list[i] == NULL) {
3763 DRM_ERROR("Invalid object handle %d at index %d\n",
3764 exec_list[i].handle, i);
0ce907f8
CW
3765 /* prevent error path from reading uninitialized data */
3766 args->buffer_count = i + 1;
bf79cb91 3767 ret = -ENOENT;
673a394b
EA
3768 goto err;
3769 }
b70d11da 3770
23010e43 3771 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3772 if (obj_priv->in_execbuffer) {
3773 DRM_ERROR("Object %p appears more than once in object list\n",
3774 object_list[i]);
0ce907f8
CW
3775 /* prevent error path from reading uninitialized data */
3776 args->buffer_count = i + 1;
bf79cb91 3777 ret = -EINVAL;
b70d11da
KH
3778 goto err;
3779 }
3780 obj_priv->in_execbuffer = true;
ac94a962 3781 }
673a394b 3782
9af90d19
CW
3783 /* Move the objects en-masse into the GTT, evicting if necessary. */
3784 ret = i915_gem_execbuffer_pin(dev, file,
3785 object_list, exec_list,
3786 args->buffer_count);
3787 if (ret)
3788 goto err;
ac94a962 3789
9af90d19
CW
3790 /* The objects are in their final locations, apply the relocations. */
3791 for (i = 0; i < args->buffer_count; i++) {
3792 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3793 obj->base.pending_read_domains = 0;
3794 obj->base.pending_write_domain = 0;
3795 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3796 if (ret)
ac94a962 3797 goto err;
673a394b
EA
3798 }
3799
3800 /* Set the pending read domains for the batch buffer to COMMAND */
3801 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3802 if (batch_obj->pending_write_domain) {
3803 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3804 ret = -EINVAL;
3805 goto err;
3806 }
3807 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3808
9af90d19
CW
3809 /* Sanity check the batch buffer */
3810 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3811 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3812 if (ret != 0) {
3813 DRM_ERROR("execbuf with invalid offset/length\n");
3814 goto err;
3815 }
3816
c6afd658
CW
3817 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3818 object_list, args->buffer_count);
3819 if (ret)
3820 goto err;
673a394b 3821
efbeed96
EA
3822 for (i = 0; i < args->buffer_count; i++) {
3823 struct drm_gem_object *obj = object_list[i];
1c5d22f7 3824 uint32_t old_write_domain = obj->write_domain;
efbeed96 3825 obj->write_domain = obj->pending_write_domain;
1c5d22f7
CW
3826 trace_i915_gem_object_change_domain(obj,
3827 obj->read_domains,
3828 old_write_domain);
efbeed96
EA
3829 }
3830
673a394b
EA
3831#if WATCH_COHERENCY
3832 for (i = 0; i < args->buffer_count; i++) {
3833 i915_gem_object_check_coherency(object_list[i],
3834 exec_list[i].handle);
3835 }
3836#endif
3837
673a394b 3838#if WATCH_EXEC
6911a9b8 3839 i915_gem_dump_object(batch_obj,
673a394b
EA
3840 args->batch_len,
3841 __func__,
3842 ~0);
3843#endif
3844
e59f2bac
CW
3845 /* Check for any pending flips. As we only maintain a flip queue depth
3846 * of 1, we can simply insert a WAIT for the next display flip prior
3847 * to executing the batch and avoid stalling the CPU.
3848 */
3849 flips = 0;
3850 for (i = 0; i < args->buffer_count; i++) {
3851 if (object_list[i]->write_domain)
3852 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3853 }
3854 if (flips) {
3855 int plane, flip_mask;
3856
3857 for (plane = 0; flips >> plane; plane++) {
3858 if (((flips >> plane) & 1) == 0)
3859 continue;
3860
3861 if (plane)
3862 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3863 else
3864 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3865
3866 intel_ring_begin(dev, ring, 2);
3867 intel_ring_emit(dev, ring,
3868 MI_WAIT_FOR_EVENT | flip_mask);
3869 intel_ring_emit(dev, ring, MI_NOOP);
3870 intel_ring_advance(dev, ring);
3871 }
3872 }
3873
673a394b 3874 /* Exec the batchbuffer */
852835f3 3875 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
e59f2bac 3876 cliprects, exec_offset);
673a394b
EA
3877 if (ret) {
3878 DRM_ERROR("dispatch failed %d\n", ret);
3879 goto err;
3880 }
3881
3882 /*
3883 * Ensure that the commands in the batch buffer are
3884 * finished before the interrupt fires
3885 */
8a1a49f9 3886 i915_retire_commands(dev, ring);
673a394b 3887
673a394b
EA
3888 for (i = 0; i < args->buffer_count; i++) {
3889 struct drm_gem_object *obj = object_list[i];
673a394b 3890
617dbe27 3891 i915_gem_object_move_to_active(obj, ring);
64193406
CW
3892 if (obj->write_domain)
3893 list_move_tail(&to_intel_bo(obj)->gpu_write_list,
3894 &ring->gpu_write_list);
673a394b 3895 }
673a394b 3896
9af90d19 3897 i915_add_request(dev, file, request, ring);
8dc5d147 3898 request = NULL;
673a394b 3899
673a394b 3900err:
b70d11da
KH
3901 for (i = 0; i < args->buffer_count; i++) {
3902 if (object_list[i]) {
23010e43 3903 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3904 obj_priv->in_execbuffer = false;
3905 }
aad87dff 3906 drm_gem_object_unreference(object_list[i]);
b70d11da 3907 }
673a394b 3908
673a394b
EA
3909 mutex_unlock(&dev->struct_mutex);
3910
93533c29 3911pre_mutex_err:
8e7d2b2c 3912 drm_free_large(object_list);
9a298b2a 3913 kfree(cliprects);
8dc5d147 3914 kfree(request);
673a394b
EA
3915
3916 return ret;
3917}
3918
76446cac
JB
3919/*
3920 * Legacy execbuffer just creates an exec2 list from the original exec object
3921 * list array and passes it to the real function.
3922 */
3923int
3924i915_gem_execbuffer(struct drm_device *dev, void *data,
3925 struct drm_file *file_priv)
3926{
3927 struct drm_i915_gem_execbuffer *args = data;
3928 struct drm_i915_gem_execbuffer2 exec2;
3929 struct drm_i915_gem_exec_object *exec_list = NULL;
3930 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3931 int ret, i;
3932
3933#if WATCH_EXEC
3934 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3935 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3936#endif
3937
3938 if (args->buffer_count < 1) {
3939 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3940 return -EINVAL;
3941 }
3942
3943 /* Copy in the exec list from userland */
3944 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3945 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3946 if (exec_list == NULL || exec2_list == NULL) {
3947 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3948 args->buffer_count);
3949 drm_free_large(exec_list);
3950 drm_free_large(exec2_list);
3951 return -ENOMEM;
3952 }
3953 ret = copy_from_user(exec_list,
3954 (struct drm_i915_relocation_entry __user *)
3955 (uintptr_t) args->buffers_ptr,
3956 sizeof(*exec_list) * args->buffer_count);
3957 if (ret != 0) {
3958 DRM_ERROR("copy %d exec entries failed %d\n",
3959 args->buffer_count, ret);
3960 drm_free_large(exec_list);
3961 drm_free_large(exec2_list);
3962 return -EFAULT;
3963 }
3964
3965 for (i = 0; i < args->buffer_count; i++) {
3966 exec2_list[i].handle = exec_list[i].handle;
3967 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3968 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3969 exec2_list[i].alignment = exec_list[i].alignment;
3970 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3971 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3972 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3973 else
3974 exec2_list[i].flags = 0;
3975 }
3976
3977 exec2.buffers_ptr = args->buffers_ptr;
3978 exec2.buffer_count = args->buffer_count;
3979 exec2.batch_start_offset = args->batch_start_offset;
3980 exec2.batch_len = args->batch_len;
3981 exec2.DR1 = args->DR1;
3982 exec2.DR4 = args->DR4;
3983 exec2.num_cliprects = args->num_cliprects;
3984 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3985 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3986
3987 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3988 if (!ret) {
3989 /* Copy the new buffer offsets back to the user's exec list. */
3990 for (i = 0; i < args->buffer_count; i++)
3991 exec_list[i].offset = exec2_list[i].offset;
3992 /* ... and back out to userspace */
3993 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3994 (uintptr_t) args->buffers_ptr,
3995 exec_list,
3996 sizeof(*exec_list) * args->buffer_count);
3997 if (ret) {
3998 ret = -EFAULT;
3999 DRM_ERROR("failed to copy %d exec entries "
4000 "back to user (%d)\n",
4001 args->buffer_count, ret);
4002 }
76446cac
JB
4003 }
4004
4005 drm_free_large(exec_list);
4006 drm_free_large(exec2_list);
4007 return ret;
4008}
4009
4010int
4011i915_gem_execbuffer2(struct drm_device *dev, void *data,
4012 struct drm_file *file_priv)
4013{
4014 struct drm_i915_gem_execbuffer2 *args = data;
4015 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4016 int ret;
4017
4018#if WATCH_EXEC
4019 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4020 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4021#endif
4022
4023 if (args->buffer_count < 1) {
4024 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4025 return -EINVAL;
4026 }
4027
4028 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4029 if (exec2_list == NULL) {
4030 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4031 args->buffer_count);
4032 return -ENOMEM;
4033 }
4034 ret = copy_from_user(exec2_list,
4035 (struct drm_i915_relocation_entry __user *)
4036 (uintptr_t) args->buffers_ptr,
4037 sizeof(*exec2_list) * args->buffer_count);
4038 if (ret != 0) {
4039 DRM_ERROR("copy %d exec entries failed %d\n",
4040 args->buffer_count, ret);
4041 drm_free_large(exec2_list);
4042 return -EFAULT;
4043 }
4044
4045 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4046 if (!ret) {
4047 /* Copy the new buffer offsets back to the user's exec list. */
4048 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4049 (uintptr_t) args->buffers_ptr,
4050 exec2_list,
4051 sizeof(*exec2_list) * args->buffer_count);
4052 if (ret) {
4053 ret = -EFAULT;
4054 DRM_ERROR("failed to copy %d exec entries "
4055 "back to user (%d)\n",
4056 args->buffer_count, ret);
4057 }
4058 }
4059
4060 drm_free_large(exec2_list);
4061 return ret;
4062}
4063
673a394b
EA
4064int
4065i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4066{
4067 struct drm_device *dev = obj->dev;
f13d3f73 4068 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4069 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4070 int ret;
4071
778c3544 4072 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4073 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4074
4075 if (obj_priv->gtt_space != NULL) {
4076 if (alignment == 0)
4077 alignment = i915_gem_get_gtt_alignment(obj);
4078 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8 4079 WARN(obj_priv->pin_count,
fce7d61b 4080 "bo is already pinned with incorrect alignment: offset=%x, req.alignment=%x\n",
ae7d49d8 4081 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4082 ret = i915_gem_object_unbind(obj);
4083 if (ret)
4084 return ret;
4085 }
4086 }
4087
673a394b
EA
4088 if (obj_priv->gtt_space == NULL) {
4089 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4090 if (ret)
673a394b 4091 return ret;
22c344e9 4092 }
76446cac 4093
673a394b
EA
4094 obj_priv->pin_count++;
4095
4096 /* If the object is not active and not pending a flush,
4097 * remove it from the inactive list
4098 */
4099 if (obj_priv->pin_count == 1) {
73aa808f 4100 i915_gem_info_add_pin(dev_priv, obj->size);
f13d3f73 4101 if (!obj_priv->active)
69dc4987 4102 list_move_tail(&obj_priv->mm_list,
f13d3f73 4103 &dev_priv->mm.pinned_list);
673a394b 4104 }
673a394b 4105
23bc5982 4106 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4107 return 0;
4108}
4109
4110void
4111i915_gem_object_unpin(struct drm_gem_object *obj)
4112{
4113 struct drm_device *dev = obj->dev;
4114 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4115 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4116
23bc5982 4117 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4118 obj_priv->pin_count--;
4119 BUG_ON(obj_priv->pin_count < 0);
4120 BUG_ON(obj_priv->gtt_space == NULL);
4121
4122 /* If the object is no longer pinned, and is
4123 * neither active nor being flushed, then stick it on
4124 * the inactive list
4125 */
4126 if (obj_priv->pin_count == 0) {
f13d3f73 4127 if (!obj_priv->active)
69dc4987 4128 list_move_tail(&obj_priv->mm_list,
673a394b 4129 &dev_priv->mm.inactive_list);
73aa808f 4130 i915_gem_info_remove_pin(dev_priv, obj->size);
673a394b 4131 }
23bc5982 4132 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4133}
4134
4135int
4136i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4137 struct drm_file *file_priv)
4138{
4139 struct drm_i915_gem_pin *args = data;
4140 struct drm_gem_object *obj;
4141 struct drm_i915_gem_object *obj_priv;
4142 int ret;
4143
1d7cfea1
CW
4144 ret = i915_mutex_lock_interruptible(dev);
4145 if (ret)
4146 return ret;
673a394b
EA
4147
4148 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4149 if (obj == NULL) {
1d7cfea1
CW
4150 ret = -ENOENT;
4151 goto unlock;
673a394b 4152 }
23010e43 4153 obj_priv = to_intel_bo(obj);
673a394b 4154
bb6baf76
CW
4155 if (obj_priv->madv != I915_MADV_WILLNEED) {
4156 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4157 ret = -EINVAL;
4158 goto out;
3ef94daa
CW
4159 }
4160
79e53945
JB
4161 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4162 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4163 args->handle);
1d7cfea1
CW
4164 ret = -EINVAL;
4165 goto out;
79e53945
JB
4166 }
4167
4168 obj_priv->user_pin_count++;
4169 obj_priv->pin_filp = file_priv;
4170 if (obj_priv->user_pin_count == 1) {
4171 ret = i915_gem_object_pin(obj, args->alignment);
1d7cfea1
CW
4172 if (ret)
4173 goto out;
673a394b
EA
4174 }
4175
4176 /* XXX - flush the CPU caches for pinned objects
4177 * as the X server doesn't manage domains yet
4178 */
e47c68e9 4179 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4180 args->offset = obj_priv->gtt_offset;
1d7cfea1 4181out:
673a394b 4182 drm_gem_object_unreference(obj);
1d7cfea1 4183unlock:
673a394b 4184 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4185 return ret;
673a394b
EA
4186}
4187
4188int
4189i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4190 struct drm_file *file_priv)
4191{
4192 struct drm_i915_gem_pin *args = data;
4193 struct drm_gem_object *obj;
79e53945 4194 struct drm_i915_gem_object *obj_priv;
76c1dec1 4195 int ret;
673a394b 4196
1d7cfea1
CW
4197 ret = i915_mutex_lock_interruptible(dev);
4198 if (ret)
4199 return ret;
673a394b
EA
4200
4201 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4202 if (obj == NULL) {
1d7cfea1
CW
4203 ret = -ENOENT;
4204 goto unlock;
673a394b 4205 }
23010e43 4206 obj_priv = to_intel_bo(obj);
76c1dec1 4207
79e53945
JB
4208 if (obj_priv->pin_filp != file_priv) {
4209 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4210 args->handle);
1d7cfea1
CW
4211 ret = -EINVAL;
4212 goto out;
79e53945
JB
4213 }
4214 obj_priv->user_pin_count--;
4215 if (obj_priv->user_pin_count == 0) {
4216 obj_priv->pin_filp = NULL;
4217 i915_gem_object_unpin(obj);
4218 }
673a394b 4219
1d7cfea1 4220out:
673a394b 4221 drm_gem_object_unreference(obj);
1d7cfea1 4222unlock:
673a394b 4223 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4224 return ret;
673a394b
EA
4225}
4226
4227int
4228i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4229 struct drm_file *file_priv)
4230{
4231 struct drm_i915_gem_busy *args = data;
4232 struct drm_gem_object *obj;
4233 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4234 int ret;
4235
76c1dec1 4236 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4237 if (ret)
76c1dec1 4238 return ret;
673a394b 4239
673a394b
EA
4240 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4241 if (obj == NULL) {
1d7cfea1
CW
4242 ret = -ENOENT;
4243 goto unlock;
673a394b 4244 }
1d7cfea1 4245 obj_priv = to_intel_bo(obj);
d1b851fc 4246
0be555b6
CW
4247 /* Count all active objects as busy, even if they are currently not used
4248 * by the gpu. Users of this interface expect objects to eventually
4249 * become non-busy without any further actions, therefore emit any
4250 * necessary flushes here.
c4de0a5d 4251 */
0be555b6
CW
4252 args->busy = obj_priv->active;
4253 if (args->busy) {
4254 /* Unconditionally flush objects, even when the gpu still uses this
4255 * object. Userspace calling this function indicates that it wants to
4256 * use this buffer rather sooner than later, so issuing the required
4257 * flush earlier is beneficial.
4258 */
c78ec30b
CW
4259 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4260 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4261 obj_priv->ring,
4262 0, obj->write_domain);
0be555b6
CW
4263
4264 /* Update the active list for the hardware's current position.
4265 * Otherwise this only updates on a delayed timer or when irqs
4266 * are actually unmasked, and our working set ends up being
4267 * larger than required.
4268 */
4269 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4270
4271 args->busy = obj_priv->active;
4272 }
673a394b
EA
4273
4274 drm_gem_object_unreference(obj);
1d7cfea1 4275unlock:
673a394b 4276 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4277 return ret;
673a394b
EA
4278}
4279
4280int
4281i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4282 struct drm_file *file_priv)
4283{
4284 return i915_gem_ring_throttle(dev, file_priv);
4285}
4286
3ef94daa
CW
4287int
4288i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4289 struct drm_file *file_priv)
4290{
4291 struct drm_i915_gem_madvise *args = data;
4292 struct drm_gem_object *obj;
4293 struct drm_i915_gem_object *obj_priv;
76c1dec1 4294 int ret;
3ef94daa
CW
4295
4296 switch (args->madv) {
4297 case I915_MADV_DONTNEED:
4298 case I915_MADV_WILLNEED:
4299 break;
4300 default:
4301 return -EINVAL;
4302 }
4303
1d7cfea1
CW
4304 ret = i915_mutex_lock_interruptible(dev);
4305 if (ret)
4306 return ret;
4307
3ef94daa
CW
4308 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4309 if (obj == NULL) {
1d7cfea1
CW
4310 ret = -ENOENT;
4311 goto unlock;
3ef94daa 4312 }
23010e43 4313 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4314
4315 if (obj_priv->pin_count) {
1d7cfea1
CW
4316 ret = -EINVAL;
4317 goto out;
3ef94daa
CW
4318 }
4319
bb6baf76
CW
4320 if (obj_priv->madv != __I915_MADV_PURGED)
4321 obj_priv->madv = args->madv;
3ef94daa 4322
2d7ef395
CW
4323 /* if the object is no longer bound, discard its backing storage */
4324 if (i915_gem_object_is_purgeable(obj_priv) &&
4325 obj_priv->gtt_space == NULL)
4326 i915_gem_object_truncate(obj);
4327
bb6baf76
CW
4328 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4329
1d7cfea1 4330out:
3ef94daa 4331 drm_gem_object_unreference(obj);
1d7cfea1 4332unlock:
3ef94daa 4333 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4334 return ret;
3ef94daa
CW
4335}
4336
ac52bc56
DV
4337struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4338 size_t size)
4339{
73aa808f 4340 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4341 struct drm_i915_gem_object *obj;
ac52bc56 4342
c397b908
DV
4343 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4344 if (obj == NULL)
4345 return NULL;
673a394b 4346
c397b908
DV
4347 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4348 kfree(obj);
4349 return NULL;
4350 }
673a394b 4351
73aa808f
CW
4352 i915_gem_info_add_obj(dev_priv, size);
4353
c397b908
DV
4354 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4355 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4356
c397b908 4357 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4358 obj->base.driver_private = NULL;
c397b908 4359 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4360 INIT_LIST_HEAD(&obj->mm_list);
4361 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4362 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4363 obj->madv = I915_MADV_WILLNEED;
de151cf6 4364
c397b908
DV
4365 return &obj->base;
4366}
4367
4368int i915_gem_init_object(struct drm_gem_object *obj)
4369{
4370 BUG();
de151cf6 4371
673a394b
EA
4372 return 0;
4373}
4374
be72615b 4375static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4376{
de151cf6 4377 struct drm_device *dev = obj->dev;
be72615b 4378 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4379 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4380 int ret;
673a394b 4381
be72615b
CW
4382 ret = i915_gem_object_unbind(obj);
4383 if (ret == -ERESTARTSYS) {
69dc4987 4384 list_move(&obj_priv->mm_list,
be72615b
CW
4385 &dev_priv->mm.deferred_free_list);
4386 return;
4387 }
673a394b 4388
7e616158
CW
4389 if (obj_priv->mmap_offset)
4390 i915_gem_free_mmap_offset(obj);
de151cf6 4391
c397b908 4392 drm_gem_object_release(obj);
73aa808f 4393 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4394
9a298b2a 4395 kfree(obj_priv->page_cpu_valid);
280b713b 4396 kfree(obj_priv->bit_17);
c397b908 4397 kfree(obj_priv);
673a394b
EA
4398}
4399
be72615b
CW
4400void i915_gem_free_object(struct drm_gem_object *obj)
4401{
4402 struct drm_device *dev = obj->dev;
4403 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4404
4405 trace_i915_gem_object_destroy(obj);
4406
4407 while (obj_priv->pin_count > 0)
4408 i915_gem_object_unpin(obj);
4409
4410 if (obj_priv->phys_obj)
4411 i915_gem_detach_phys_object(dev, obj);
4412
4413 i915_gem_free_object_tail(obj);
4414}
4415
29105ccc
CW
4416int
4417i915_gem_idle(struct drm_device *dev)
4418{
4419 drm_i915_private_t *dev_priv = dev->dev_private;
4420 int ret;
28dfe52a 4421
29105ccc 4422 mutex_lock(&dev->struct_mutex);
1c5d22f7 4423
87acb0a5 4424 if (dev_priv->mm.suspended) {
29105ccc
CW
4425 mutex_unlock(&dev->struct_mutex);
4426 return 0;
28dfe52a
EA
4427 }
4428
29105ccc 4429 ret = i915_gpu_idle(dev);
6dbe2772
KP
4430 if (ret) {
4431 mutex_unlock(&dev->struct_mutex);
673a394b 4432 return ret;
6dbe2772 4433 }
673a394b 4434
29105ccc
CW
4435 /* Under UMS, be paranoid and evict. */
4436 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4437 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4438 if (ret) {
4439 mutex_unlock(&dev->struct_mutex);
4440 return ret;
4441 }
4442 }
4443
4444 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4445 * We need to replace this with a semaphore, or something.
4446 * And not confound mm.suspended!
4447 */
4448 dev_priv->mm.suspended = 1;
bc0c7f14 4449 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4450
4451 i915_kernel_lost_context(dev);
6dbe2772 4452 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4453
6dbe2772
KP
4454 mutex_unlock(&dev->struct_mutex);
4455
29105ccc
CW
4456 /* Cancel the retire work handler, which should be idle now. */
4457 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4458
673a394b
EA
4459 return 0;
4460}
4461
e552eb70
JB
4462/*
4463 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4464 * over cache flushing.
4465 */
8187a2b7 4466static int
e552eb70
JB
4467i915_gem_init_pipe_control(struct drm_device *dev)
4468{
4469 drm_i915_private_t *dev_priv = dev->dev_private;
4470 struct drm_gem_object *obj;
4471 struct drm_i915_gem_object *obj_priv;
4472 int ret;
4473
34dc4d44 4474 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4475 if (obj == NULL) {
4476 DRM_ERROR("Failed to allocate seqno page\n");
4477 ret = -ENOMEM;
4478 goto err;
4479 }
4480 obj_priv = to_intel_bo(obj);
4481 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4482
4483 ret = i915_gem_object_pin(obj, 4096);
4484 if (ret)
4485 goto err_unref;
4486
4487 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4488 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4489 if (dev_priv->seqno_page == NULL)
4490 goto err_unpin;
4491
4492 dev_priv->seqno_obj = obj;
4493 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4494
4495 return 0;
4496
4497err_unpin:
4498 i915_gem_object_unpin(obj);
4499err_unref:
4500 drm_gem_object_unreference(obj);
4501err:
4502 return ret;
4503}
4504
8187a2b7
ZN
4505
4506static void
e552eb70
JB
4507i915_gem_cleanup_pipe_control(struct drm_device *dev)
4508{
4509 drm_i915_private_t *dev_priv = dev->dev_private;
4510 struct drm_gem_object *obj;
4511 struct drm_i915_gem_object *obj_priv;
4512
4513 obj = dev_priv->seqno_obj;
4514 obj_priv = to_intel_bo(obj);
4515 kunmap(obj_priv->pages[0]);
4516 i915_gem_object_unpin(obj);
4517 drm_gem_object_unreference(obj);
4518 dev_priv->seqno_obj = NULL;
4519
4520 dev_priv->seqno_page = NULL;
673a394b
EA
4521}
4522
8187a2b7
ZN
4523int
4524i915_gem_init_ringbuffer(struct drm_device *dev)
4525{
4526 drm_i915_private_t *dev_priv = dev->dev_private;
4527 int ret;
68f95ba9 4528
8187a2b7
ZN
4529 if (HAS_PIPE_CONTROL(dev)) {
4530 ret = i915_gem_init_pipe_control(dev);
4531 if (ret)
4532 return ret;
4533 }
68f95ba9 4534
5c1143bb 4535 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4536 if (ret)
4537 goto cleanup_pipe_control;
4538
4539 if (HAS_BSD(dev)) {
5c1143bb 4540 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4541 if (ret)
4542 goto cleanup_render_ring;
d1b851fc 4543 }
68f95ba9 4544
549f7365
CW
4545 if (HAS_BLT(dev)) {
4546 ret = intel_init_blt_ring_buffer(dev);
4547 if (ret)
4548 goto cleanup_bsd_ring;
4549 }
4550
6f392d54
CW
4551 dev_priv->next_seqno = 1;
4552
68f95ba9
CW
4553 return 0;
4554
549f7365
CW
4555cleanup_bsd_ring:
4556 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4557cleanup_render_ring:
4558 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4559cleanup_pipe_control:
4560 if (HAS_PIPE_CONTROL(dev))
4561 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4562 return ret;
4563}
4564
4565void
4566i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4567{
4568 drm_i915_private_t *dev_priv = dev->dev_private;
4569
4570 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
87acb0a5 4571 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
549f7365 4572 intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
8187a2b7
ZN
4573 if (HAS_PIPE_CONTROL(dev))
4574 i915_gem_cleanup_pipe_control(dev);
4575}
4576
673a394b
EA
4577int
4578i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4579 struct drm_file *file_priv)
4580{
4581 drm_i915_private_t *dev_priv = dev->dev_private;
4582 int ret;
4583
79e53945
JB
4584 if (drm_core_check_feature(dev, DRIVER_MODESET))
4585 return 0;
4586
ba1234d1 4587 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4588 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4589 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4590 }
4591
673a394b 4592 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4593 dev_priv->mm.suspended = 0;
4594
4595 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4596 if (ret != 0) {
4597 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4598 return ret;
d816f6ac 4599 }
9bb2d6f9 4600
69dc4987 4601 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4602 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4603 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4604 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4605 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4606 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4607 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4608 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4609 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4610 mutex_unlock(&dev->struct_mutex);
dbb19d30 4611
5f35308b
CW
4612 ret = drm_irq_install(dev);
4613 if (ret)
4614 goto cleanup_ringbuffer;
dbb19d30 4615
673a394b 4616 return 0;
5f35308b
CW
4617
4618cleanup_ringbuffer:
4619 mutex_lock(&dev->struct_mutex);
4620 i915_gem_cleanup_ringbuffer(dev);
4621 dev_priv->mm.suspended = 1;
4622 mutex_unlock(&dev->struct_mutex);
4623
4624 return ret;
673a394b
EA
4625}
4626
4627int
4628i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4629 struct drm_file *file_priv)
4630{
79e53945
JB
4631 if (drm_core_check_feature(dev, DRIVER_MODESET))
4632 return 0;
4633
dbb19d30 4634 drm_irq_uninstall(dev);
e6890f6f 4635 return i915_gem_idle(dev);
673a394b
EA
4636}
4637
4638void
4639i915_gem_lastclose(struct drm_device *dev)
4640{
4641 int ret;
673a394b 4642
e806b495
EA
4643 if (drm_core_check_feature(dev, DRIVER_MODESET))
4644 return;
4645
6dbe2772
KP
4646 ret = i915_gem_idle(dev);
4647 if (ret)
4648 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4649}
4650
64193406
CW
4651static void
4652init_ring_lists(struct intel_ring_buffer *ring)
4653{
4654 INIT_LIST_HEAD(&ring->active_list);
4655 INIT_LIST_HEAD(&ring->request_list);
4656 INIT_LIST_HEAD(&ring->gpu_write_list);
4657}
4658
673a394b
EA
4659void
4660i915_gem_load(struct drm_device *dev)
4661{
b5aa8a0f 4662 int i;
673a394b
EA
4663 drm_i915_private_t *dev_priv = dev->dev_private;
4664
69dc4987 4665 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4666 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4667 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4668 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4669 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4670 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4671 init_ring_lists(&dev_priv->render_ring);
4672 init_ring_lists(&dev_priv->bsd_ring);
4673 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4674 for (i = 0; i < 16; i++)
4675 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4676 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4677 i915_gem_retire_work_handler);
30dbf0c0 4678 init_completion(&dev_priv->error_completion);
31169714
CW
4679 spin_lock(&shrink_list_lock);
4680 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4681 spin_unlock(&shrink_list_lock);
4682
94400120
DA
4683 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4684 if (IS_GEN3(dev)) {
4685 u32 tmp = I915_READ(MI_ARB_STATE);
4686 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4687 /* arb state is a masked write, so set bit + bit in mask */
4688 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4689 I915_WRITE(MI_ARB_STATE, tmp);
4690 }
4691 }
4692
de151cf6 4693 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4694 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4695 dev_priv->fence_reg_start = 3;
de151cf6 4696
a6c45cf0 4697 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4698 dev_priv->num_fence_regs = 16;
4699 else
4700 dev_priv->num_fence_regs = 8;
4701
b5aa8a0f 4702 /* Initialize fence registers to zero */
a6c45cf0
CW
4703 switch (INTEL_INFO(dev)->gen) {
4704 case 6:
4705 for (i = 0; i < 16; i++)
4706 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4707 break;
4708 case 5:
4709 case 4:
b5aa8a0f
GH
4710 for (i = 0; i < 16; i++)
4711 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4712 break;
4713 case 3:
b5aa8a0f
GH
4714 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4715 for (i = 0; i < 8; i++)
4716 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4717 case 2:
4718 for (i = 0; i < 8; i++)
4719 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4720 break;
b5aa8a0f 4721 }
673a394b 4722 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4723 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4724}
71acb5eb
DA
4725
4726/*
4727 * Create a physically contiguous memory object for this object
4728 * e.g. for cursor + overlay regs
4729 */
995b6762
CW
4730static int i915_gem_init_phys_object(struct drm_device *dev,
4731 int id, int size, int align)
71acb5eb
DA
4732{
4733 drm_i915_private_t *dev_priv = dev->dev_private;
4734 struct drm_i915_gem_phys_object *phys_obj;
4735 int ret;
4736
4737 if (dev_priv->mm.phys_objs[id - 1] || !size)
4738 return 0;
4739
9a298b2a 4740 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4741 if (!phys_obj)
4742 return -ENOMEM;
4743
4744 phys_obj->id = id;
4745
6eeefaf3 4746 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4747 if (!phys_obj->handle) {
4748 ret = -ENOMEM;
4749 goto kfree_obj;
4750 }
4751#ifdef CONFIG_X86
4752 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4753#endif
4754
4755 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4756
4757 return 0;
4758kfree_obj:
9a298b2a 4759 kfree(phys_obj);
71acb5eb
DA
4760 return ret;
4761}
4762
995b6762 4763static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4764{
4765 drm_i915_private_t *dev_priv = dev->dev_private;
4766 struct drm_i915_gem_phys_object *phys_obj;
4767
4768 if (!dev_priv->mm.phys_objs[id - 1])
4769 return;
4770
4771 phys_obj = dev_priv->mm.phys_objs[id - 1];
4772 if (phys_obj->cur_obj) {
4773 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4774 }
4775
4776#ifdef CONFIG_X86
4777 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4778#endif
4779 drm_pci_free(dev, phys_obj->handle);
4780 kfree(phys_obj);
4781 dev_priv->mm.phys_objs[id - 1] = NULL;
4782}
4783
4784void i915_gem_free_all_phys_object(struct drm_device *dev)
4785{
4786 int i;
4787
260883c8 4788 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4789 i915_gem_free_phys_object(dev, i);
4790}
4791
4792void i915_gem_detach_phys_object(struct drm_device *dev,
4793 struct drm_gem_object *obj)
4794{
4795 struct drm_i915_gem_object *obj_priv;
4796 int i;
4797 int ret;
4798 int page_count;
4799
23010e43 4800 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4801 if (!obj_priv->phys_obj)
4802 return;
4803
4bdadb97 4804 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4805 if (ret)
4806 goto out;
4807
4808 page_count = obj->size / PAGE_SIZE;
4809
4810 for (i = 0; i < page_count; i++) {
3e4d3af5 4811 char *dst = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4812 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4813
4814 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4815 kunmap_atomic(dst);
71acb5eb 4816 }
856fa198 4817 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4818 drm_agp_chipset_flush(dev);
d78b47b9
CW
4819
4820 i915_gem_object_put_pages(obj);
71acb5eb
DA
4821out:
4822 obj_priv->phys_obj->cur_obj = NULL;
4823 obj_priv->phys_obj = NULL;
4824}
4825
4826int
4827i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4828 struct drm_gem_object *obj,
4829 int id,
4830 int align)
71acb5eb
DA
4831{
4832 drm_i915_private_t *dev_priv = dev->dev_private;
4833 struct drm_i915_gem_object *obj_priv;
4834 int ret = 0;
4835 int page_count;
4836 int i;
4837
4838 if (id > I915_MAX_PHYS_OBJECT)
4839 return -EINVAL;
4840
23010e43 4841 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4842
4843 if (obj_priv->phys_obj) {
4844 if (obj_priv->phys_obj->id == id)
4845 return 0;
4846 i915_gem_detach_phys_object(dev, obj);
4847 }
4848
71acb5eb
DA
4849 /* create a new object */
4850 if (!dev_priv->mm.phys_objs[id - 1]) {
4851 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4852 obj->size, align);
71acb5eb 4853 if (ret) {
aeb565df 4854 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4855 goto out;
4856 }
4857 }
4858
4859 /* bind to the object */
4860 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4861 obj_priv->phys_obj->cur_obj = obj;
4862
4bdadb97 4863 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4864 if (ret) {
4865 DRM_ERROR("failed to get page list\n");
4866 goto out;
4867 }
4868
4869 page_count = obj->size / PAGE_SIZE;
4870
4871 for (i = 0; i < page_count; i++) {
3e4d3af5 4872 char *src = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4873 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4874
4875 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4876 kunmap_atomic(src);
71acb5eb
DA
4877 }
4878
d78b47b9
CW
4879 i915_gem_object_put_pages(obj);
4880
71acb5eb
DA
4881 return 0;
4882out:
4883 return ret;
4884}
4885
4886static int
4887i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4888 struct drm_i915_gem_pwrite *args,
4889 struct drm_file *file_priv)
4890{
23010e43 4891 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b47b30cc
CW
4892 void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
4893 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4894
b47b30cc 4895 DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
71acb5eb 4896
b47b30cc
CW
4897 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4898 unsigned long unwritten;
4899
4900 /* The physical object once assigned is fixed for the lifetime
4901 * of the obj, so we can safely drop the lock and continue
4902 * to access vaddr.
4903 */
4904 mutex_unlock(&dev->struct_mutex);
4905 unwritten = copy_from_user(vaddr, user_data, args->size);
4906 mutex_lock(&dev->struct_mutex);
4907 if (unwritten)
4908 return -EFAULT;
4909 }
71acb5eb
DA
4910
4911 drm_agp_chipset_flush(dev);
4912 return 0;
4913}
b962442e 4914
f787a5f5 4915void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4916{
f787a5f5 4917 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4918
4919 /* Clean up our request list when the client is going away, so that
4920 * later retire_requests won't dereference our soon-to-be-gone
4921 * file_priv.
4922 */
1c25595f 4923 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4924 while (!list_empty(&file_priv->mm.request_list)) {
4925 struct drm_i915_gem_request *request;
4926
4927 request = list_first_entry(&file_priv->mm.request_list,
4928 struct drm_i915_gem_request,
4929 client_list);
4930 list_del(&request->client_list);
4931 request->file_priv = NULL;
4932 }
1c25595f 4933 spin_unlock(&file_priv->mm.lock);
b962442e 4934}
31169714 4935
1637ef41
CW
4936static int
4937i915_gpu_is_active(struct drm_device *dev)
4938{
4939 drm_i915_private_t *dev_priv = dev->dev_private;
4940 int lists_empty;
4941
1637ef41 4942 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
395b70be 4943 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4944
4945 return !lists_empty;
4946}
4947
31169714 4948static int
7f8275d0 4949i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4950{
4951 drm_i915_private_t *dev_priv, *next_dev;
4952 struct drm_i915_gem_object *obj_priv, *next_obj;
4953 int cnt = 0;
4954 int would_deadlock = 1;
4955
4956 /* "fast-path" to count number of available objects */
4957 if (nr_to_scan == 0) {
4958 spin_lock(&shrink_list_lock);
4959 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4960 struct drm_device *dev = dev_priv->dev;
4961
4962 if (mutex_trylock(&dev->struct_mutex)) {
4963 list_for_each_entry(obj_priv,
4964 &dev_priv->mm.inactive_list,
69dc4987 4965 mm_list)
31169714
CW
4966 cnt++;
4967 mutex_unlock(&dev->struct_mutex);
4968 }
4969 }
4970 spin_unlock(&shrink_list_lock);
4971
4972 return (cnt / 100) * sysctl_vfs_cache_pressure;
4973 }
4974
4975 spin_lock(&shrink_list_lock);
4976
1637ef41 4977rescan:
31169714
CW
4978 /* first scan for clean buffers */
4979 list_for_each_entry_safe(dev_priv, next_dev,
4980 &shrink_list, mm.shrink_list) {
4981 struct drm_device *dev = dev_priv->dev;
4982
4983 if (! mutex_trylock(&dev->struct_mutex))
4984 continue;
4985
4986 spin_unlock(&shrink_list_lock);
b09a1fec 4987 i915_gem_retire_requests(dev);
31169714
CW
4988
4989 list_for_each_entry_safe(obj_priv, next_obj,
4990 &dev_priv->mm.inactive_list,
69dc4987 4991 mm_list) {
31169714 4992 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4993 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4994 if (--nr_to_scan <= 0)
4995 break;
4996 }
4997 }
4998
4999 spin_lock(&shrink_list_lock);
5000 mutex_unlock(&dev->struct_mutex);
5001
963b4836
CW
5002 would_deadlock = 0;
5003
31169714
CW
5004 if (nr_to_scan <= 0)
5005 break;
5006 }
5007
5008 /* second pass, evict/count anything still on the inactive list */
5009 list_for_each_entry_safe(dev_priv, next_dev,
5010 &shrink_list, mm.shrink_list) {
5011 struct drm_device *dev = dev_priv->dev;
5012
5013 if (! mutex_trylock(&dev->struct_mutex))
5014 continue;
5015
5016 spin_unlock(&shrink_list_lock);
5017
5018 list_for_each_entry_safe(obj_priv, next_obj,
5019 &dev_priv->mm.inactive_list,
69dc4987 5020 mm_list) {
31169714 5021 if (nr_to_scan > 0) {
a8089e84 5022 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5023 nr_to_scan--;
5024 } else
5025 cnt++;
5026 }
5027
5028 spin_lock(&shrink_list_lock);
5029 mutex_unlock(&dev->struct_mutex);
5030
5031 would_deadlock = 0;
5032 }
5033
1637ef41
CW
5034 if (nr_to_scan) {
5035 int active = 0;
5036
5037 /*
5038 * We are desperate for pages, so as a last resort, wait
5039 * for the GPU to finish and discard whatever we can.
5040 * This has a dramatic impact to reduce the number of
5041 * OOM-killer events whilst running the GPU aggressively.
5042 */
5043 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5044 struct drm_device *dev = dev_priv->dev;
5045
5046 if (!mutex_trylock(&dev->struct_mutex))
5047 continue;
5048
5049 spin_unlock(&shrink_list_lock);
5050
5051 if (i915_gpu_is_active(dev)) {
5052 i915_gpu_idle(dev);
5053 active++;
5054 }
5055
5056 spin_lock(&shrink_list_lock);
5057 mutex_unlock(&dev->struct_mutex);
5058 }
5059
5060 if (active)
5061 goto rescan;
5062 }
5063
31169714
CW
5064 spin_unlock(&shrink_list_lock);
5065
5066 if (would_deadlock)
5067 return -1;
5068 else if (cnt > 0)
5069 return (cnt / 100) * sysctl_vfs_cache_pressure;
5070 else
5071 return 0;
5072}
5073
5074static struct shrinker shrinker = {
5075 .shrink = i915_gem_shrink,
5076 .seeks = DEFAULT_SEEKS,
5077};
5078
5079__init void
5080i915_gem_shrinker_init(void)
5081{
5082 register_shrinker(&shrinker);
5083}
5084
5085__exit void
5086i915_gem_shrinker_exit(void)
5087{
5088 unregister_shrinker(&shrinker);
5089}
This page took 0.638953 seconds and 5 git commands to generate.