drm/i915: Use an uninterruptible wait for page-flips during modeset
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
31169714
CW
61static LIST_HEAD(shrink_list);
62static DEFINE_SPINLOCK(shrink_list_lock);
63
7d1c4804
CW
64static inline bool
65i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
66{
67 return obj_priv->gtt_space &&
68 !obj_priv->active &&
69 obj_priv->pin_count == 0;
70}
71
79e53945
JB
72int i915_gem_do_init(struct drm_device *dev, unsigned long start,
73 unsigned long end)
673a394b
EA
74{
75 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 76
79e53945
JB
77 if (start >= end ||
78 (start & (PAGE_SIZE - 1)) != 0 ||
79 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
80 return -EINVAL;
81 }
82
79e53945
JB
83 drm_mm_init(&dev_priv->mm.gtt_space, start,
84 end - start);
673a394b 85
79e53945
JB
86 dev->gtt_total = (uint32_t) (end - start);
87
88 return 0;
89}
673a394b 90
79e53945
JB
91int
92i915_gem_init_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
94{
95 struct drm_i915_gem_init *args = data;
96 int ret;
97
98 mutex_lock(&dev->struct_mutex);
99 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
100 mutex_unlock(&dev->struct_mutex);
101
79e53945 102 return ret;
673a394b
EA
103}
104
5a125c3c
EA
105int
106i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
107 struct drm_file *file_priv)
108{
5a125c3c 109 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
110
111 if (!(dev->driver->driver_features & DRIVER_GEM))
112 return -ENODEV;
113
114 args->aper_size = dev->gtt_total;
2678d9d6
KP
115 args->aper_available_size = (args->aper_size -
116 atomic_read(&dev->pin_memory));
5a125c3c
EA
117
118 return 0;
119}
120
673a394b
EA
121
122/**
123 * Creates a new mm object and returns a handle to it.
124 */
125int
126i915_gem_create_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file_priv)
128{
129 struct drm_i915_gem_create *args = data;
130 struct drm_gem_object *obj;
a1a2d1d3
PP
131 int ret;
132 u32 handle;
673a394b
EA
133
134 args->size = roundup(args->size, PAGE_SIZE);
135
136 /* Allocate the new object */
ac52bc56 137 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
138 if (obj == NULL)
139 return -ENOMEM;
140
141 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
142 if (ret) {
143 drm_gem_object_unreference_unlocked(obj);
673a394b 144 return ret;
1dfd9754 145 }
673a394b 146
1dfd9754
CW
147 /* Sink the floating reference from kref_init(handlecount) */
148 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 149
1dfd9754 150 args->handle = handle;
673a394b
EA
151 return 0;
152}
153
eb01459f
EA
154static inline int
155fast_shmem_read(struct page **pages,
156 loff_t page_base, int page_offset,
157 char __user *data,
158 int length)
159{
160 char __iomem *vaddr;
2bc43b5c 161 int unwritten;
eb01459f
EA
162
163 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
164 if (vaddr == NULL)
165 return -ENOMEM;
2bc43b5c 166 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
167 kunmap_atomic(vaddr, KM_USER0);
168
2bc43b5c
FM
169 if (unwritten)
170 return -EFAULT;
171
172 return 0;
eb01459f
EA
173}
174
280b713b
EA
175static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
176{
177 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 178 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
179
180 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
181 obj_priv->tiling_mode != I915_TILING_NONE;
182}
183
99a03df5 184static inline void
40123c1f
EA
185slow_shmem_copy(struct page *dst_page,
186 int dst_offset,
187 struct page *src_page,
188 int src_offset,
189 int length)
190{
191 char *dst_vaddr, *src_vaddr;
192
99a03df5
CW
193 dst_vaddr = kmap(dst_page);
194 src_vaddr = kmap(src_page);
40123c1f
EA
195
196 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
197
99a03df5
CW
198 kunmap(src_page);
199 kunmap(dst_page);
40123c1f
EA
200}
201
99a03df5 202static inline void
280b713b
EA
203slow_shmem_bit17_copy(struct page *gpu_page,
204 int gpu_offset,
205 struct page *cpu_page,
206 int cpu_offset,
207 int length,
208 int is_read)
209{
210 char *gpu_vaddr, *cpu_vaddr;
211
212 /* Use the unswizzled path if this page isn't affected. */
213 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
214 if (is_read)
215 return slow_shmem_copy(cpu_page, cpu_offset,
216 gpu_page, gpu_offset, length);
217 else
218 return slow_shmem_copy(gpu_page, gpu_offset,
219 cpu_page, cpu_offset, length);
220 }
221
99a03df5
CW
222 gpu_vaddr = kmap(gpu_page);
223 cpu_vaddr = kmap(cpu_page);
280b713b
EA
224
225 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226 * XORing with the other bits (A9 for Y, A9 and A10 for X)
227 */
228 while (length > 0) {
229 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230 int this_length = min(cacheline_end - gpu_offset, length);
231 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233 if (is_read) {
234 memcpy(cpu_vaddr + cpu_offset,
235 gpu_vaddr + swizzled_gpu_offset,
236 this_length);
237 } else {
238 memcpy(gpu_vaddr + swizzled_gpu_offset,
239 cpu_vaddr + cpu_offset,
240 this_length);
241 }
242 cpu_offset += this_length;
243 gpu_offset += this_length;
244 length -= this_length;
245 }
246
99a03df5
CW
247 kunmap(cpu_page);
248 kunmap(gpu_page);
280b713b
EA
249}
250
eb01459f
EA
251/**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256static int
257i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260{
23010e43 261 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
4bdadb97 273 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
23010e43 282 obj_priv = to_intel_bo(obj);
eb01459f
EA
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309fail_put_pages:
310 i915_gem_object_put_pages(obj);
311fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315}
316
07f73f69
CW
317static int
318i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
319{
320 int ret;
321
4bdadb97 322 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
323
324 /* If we've insufficient memory to map in the pages, attempt
325 * to make some space by throwing out some old buffers.
326 */
327 if (ret == -ENOMEM) {
328 struct drm_device *dev = obj->dev;
07f73f69 329
0108a3ed
DV
330 ret = i915_gem_evict_something(dev, obj->size,
331 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
332 if (ret)
333 return ret;
334
4bdadb97 335 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
336 }
337
338 return ret;
339}
340
eb01459f
EA
341/**
342 * This is the fallback shmem pread path, which allocates temporary storage
343 * in kernel space to copy_to_user into outside of the struct_mutex, so we
344 * can copy out of the object's backing pages while holding the struct mutex
345 * and not take page faults.
346 */
347static int
348i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
349 struct drm_i915_gem_pread *args,
350 struct drm_file *file_priv)
351{
23010e43 352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
353 struct mm_struct *mm = current->mm;
354 struct page **user_pages;
355 ssize_t remain;
356 loff_t offset, pinned_pages, i;
357 loff_t first_data_page, last_data_page, num_pages;
358 int shmem_page_index, shmem_page_offset;
359 int data_page_index, data_page_offset;
360 int page_length;
361 int ret;
362 uint64_t data_ptr = args->data_ptr;
280b713b 363 int do_bit17_swizzling;
eb01459f
EA
364
365 remain = args->size;
366
367 /* Pin the user pages containing the data. We can't fault while
368 * holding the struct mutex, yet we want to hold it while
369 * dereferencing the user data.
370 */
371 first_data_page = data_ptr / PAGE_SIZE;
372 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
373 num_pages = last_data_page - first_data_page + 1;
374
8e7d2b2c 375 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
376 if (user_pages == NULL)
377 return -ENOMEM;
378
379 down_read(&mm->mmap_sem);
380 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 381 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
382 up_read(&mm->mmap_sem);
383 if (pinned_pages < num_pages) {
384 ret = -EFAULT;
385 goto fail_put_user_pages;
386 }
387
280b713b
EA
388 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
389
eb01459f
EA
390 mutex_lock(&dev->struct_mutex);
391
07f73f69
CW
392 ret = i915_gem_object_get_pages_or_evict(obj);
393 if (ret)
eb01459f
EA
394 goto fail_unlock;
395
396 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
397 args->size);
398 if (ret != 0)
399 goto fail_put_pages;
400
23010e43 401 obj_priv = to_intel_bo(obj);
eb01459f
EA
402 offset = args->offset;
403
404 while (remain > 0) {
405 /* Operation in this page
406 *
407 * shmem_page_index = page number within shmem file
408 * shmem_page_offset = offset within page in shmem file
409 * data_page_index = page number in get_user_pages return
410 * data_page_offset = offset with data_page_index page.
411 * page_length = bytes to copy for this page
412 */
413 shmem_page_index = offset / PAGE_SIZE;
414 shmem_page_offset = offset & ~PAGE_MASK;
415 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
416 data_page_offset = data_ptr & ~PAGE_MASK;
417
418 page_length = remain;
419 if ((shmem_page_offset + page_length) > PAGE_SIZE)
420 page_length = PAGE_SIZE - shmem_page_offset;
421 if ((data_page_offset + page_length) > PAGE_SIZE)
422 page_length = PAGE_SIZE - data_page_offset;
423
280b713b 424 if (do_bit17_swizzling) {
99a03df5 425 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 426 shmem_page_offset,
99a03df5
CW
427 user_pages[data_page_index],
428 data_page_offset,
429 page_length,
430 1);
431 } else {
432 slow_shmem_copy(user_pages[data_page_index],
433 data_page_offset,
434 obj_priv->pages[shmem_page_index],
435 shmem_page_offset,
436 page_length);
280b713b 437 }
eb01459f
EA
438
439 remain -= page_length;
440 data_ptr += page_length;
441 offset += page_length;
442 }
443
444fail_put_pages:
445 i915_gem_object_put_pages(obj);
446fail_unlock:
447 mutex_unlock(&dev->struct_mutex);
448fail_put_user_pages:
449 for (i = 0; i < pinned_pages; i++) {
450 SetPageDirty(user_pages[i]);
451 page_cache_release(user_pages[i]);
452 }
8e7d2b2c 453 drm_free_large(user_pages);
eb01459f
EA
454
455 return ret;
456}
457
673a394b
EA
458/**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463int
464i915_gem_pread_ioctl(struct drm_device *dev, void *data,
465 struct drm_file *file_priv)
466{
467 struct drm_i915_gem_pread *args = data;
468 struct drm_gem_object *obj;
469 struct drm_i915_gem_object *obj_priv;
673a394b
EA
470 int ret;
471
472 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
473 if (obj == NULL)
bf79cb91 474 return -ENOENT;
23010e43 475 obj_priv = to_intel_bo(obj);
673a394b
EA
476
477 /* Bounds check source.
478 *
479 * XXX: This could use review for overflow issues...
480 */
481 if (args->offset > obj->size || args->size > obj->size ||
482 args->offset + args->size > obj->size) {
bc9025bd 483 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
484 return -EINVAL;
485 }
486
280b713b 487 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 488 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
489 } else {
490 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
491 if (ret != 0)
492 ret = i915_gem_shmem_pread_slow(dev, obj, args,
493 file_priv);
494 }
673a394b 495
bc9025bd 496 drm_gem_object_unreference_unlocked(obj);
673a394b 497
eb01459f 498 return ret;
673a394b
EA
499}
500
0839ccb8
KP
501/* This is the fast write path which cannot handle
502 * page faults in the source data
9b7530cc 503 */
0839ccb8
KP
504
505static inline int
506fast_user_write(struct io_mapping *mapping,
507 loff_t page_base, int page_offset,
508 char __user *user_data,
509 int length)
9b7530cc 510{
9b7530cc 511 char *vaddr_atomic;
0839ccb8 512 unsigned long unwritten;
9b7530cc 513
fca3ec01 514 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
515 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
516 user_data, length);
fca3ec01 517 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
518 if (unwritten)
519 return -EFAULT;
520 return 0;
521}
522
523/* Here's the write path which can sleep for
524 * page faults
525 */
526
ab34c226 527static inline void
3de09aa3
EA
528slow_kernel_write(struct io_mapping *mapping,
529 loff_t gtt_base, int gtt_offset,
530 struct page *user_page, int user_offset,
531 int length)
0839ccb8 532{
ab34c226
CW
533 char __iomem *dst_vaddr;
534 char *src_vaddr;
0839ccb8 535
ab34c226
CW
536 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
537 src_vaddr = kmap(user_page);
538
539 memcpy_toio(dst_vaddr + gtt_offset,
540 src_vaddr + user_offset,
541 length);
542
543 kunmap(user_page);
544 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
545}
546
40123c1f
EA
547static inline int
548fast_shmem_write(struct page **pages,
549 loff_t page_base, int page_offset,
550 char __user *data,
551 int length)
552{
553 char __iomem *vaddr;
d0088775 554 unsigned long unwritten;
40123c1f
EA
555
556 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
557 if (vaddr == NULL)
558 return -ENOMEM;
d0088775 559 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
560 kunmap_atomic(vaddr, KM_USER0);
561
d0088775
DA
562 if (unwritten)
563 return -EFAULT;
40123c1f
EA
564 return 0;
565}
566
3de09aa3
EA
567/**
568 * This is the fast pwrite path, where we copy the data directly from the
569 * user into the GTT, uncached.
570 */
673a394b 571static int
3de09aa3
EA
572i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file_priv)
673a394b 575{
23010e43 576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 577 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 578 ssize_t remain;
0839ccb8 579 loff_t offset, page_base;
673a394b 580 char __user *user_data;
0839ccb8
KP
581 int page_offset, page_length;
582 int ret;
673a394b
EA
583
584 user_data = (char __user *) (uintptr_t) args->data_ptr;
585 remain = args->size;
586 if (!access_ok(VERIFY_READ, user_data, remain))
587 return -EFAULT;
588
589
590 mutex_lock(&dev->struct_mutex);
591 ret = i915_gem_object_pin(obj, 0);
592 if (ret) {
593 mutex_unlock(&dev->struct_mutex);
594 return ret;
595 }
2ef7eeaa 596 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
597 if (ret)
598 goto fail;
599
23010e43 600 obj_priv = to_intel_bo(obj);
673a394b 601 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
602
603 while (remain > 0) {
604 /* Operation in this page
605 *
0839ccb8
KP
606 * page_base = page offset within aperture
607 * page_offset = offset within page
608 * page_length = bytes to copy for this page
673a394b 609 */
0839ccb8
KP
610 page_base = (offset & ~(PAGE_SIZE-1));
611 page_offset = offset & (PAGE_SIZE-1);
612 page_length = remain;
613 if ((page_offset + remain) > PAGE_SIZE)
614 page_length = PAGE_SIZE - page_offset;
615
616 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
617 page_offset, user_data, page_length);
618
619 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
620 * source page isn't available. Return the error and we'll
621 * retry in the slow path.
0839ccb8 622 */
3de09aa3
EA
623 if (ret)
624 goto fail;
673a394b 625
0839ccb8
KP
626 remain -= page_length;
627 user_data += page_length;
628 offset += page_length;
673a394b 629 }
673a394b
EA
630
631fail:
632 i915_gem_object_unpin(obj);
633 mutex_unlock(&dev->struct_mutex);
634
635 return ret;
636}
637
3de09aa3
EA
638/**
639 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
640 * the memory and maps it using kmap_atomic for copying.
641 *
642 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
643 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
644 */
3043c60c 645static int
3de09aa3
EA
646i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
647 struct drm_i915_gem_pwrite *args,
648 struct drm_file *file_priv)
673a394b 649{
23010e43 650 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
651 drm_i915_private_t *dev_priv = dev->dev_private;
652 ssize_t remain;
653 loff_t gtt_page_base, offset;
654 loff_t first_data_page, last_data_page, num_pages;
655 loff_t pinned_pages, i;
656 struct page **user_pages;
657 struct mm_struct *mm = current->mm;
658 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 659 int ret;
3de09aa3
EA
660 uint64_t data_ptr = args->data_ptr;
661
662 remain = args->size;
663
664 /* Pin the user pages containing the data. We can't fault while
665 * holding the struct mutex, and all of the pwrite implementations
666 * want to hold it while dereferencing the user data.
667 */
668 first_data_page = data_ptr / PAGE_SIZE;
669 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
670 num_pages = last_data_page - first_data_page + 1;
671
8e7d2b2c 672 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
673 if (user_pages == NULL)
674 return -ENOMEM;
675
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
680 if (pinned_pages < num_pages) {
681 ret = -EFAULT;
682 goto out_unpin_pages;
683 }
673a394b
EA
684
685 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
686 ret = i915_gem_object_pin(obj, 0);
687 if (ret)
688 goto out_unlock;
689
690 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
691 if (ret)
692 goto out_unpin_object;
693
23010e43 694 obj_priv = to_intel_bo(obj);
3de09aa3
EA
695 offset = obj_priv->gtt_offset + args->offset;
696
697 while (remain > 0) {
698 /* Operation in this page
699 *
700 * gtt_page_base = page offset within aperture
701 * gtt_page_offset = offset within page in aperture
702 * data_page_index = page number in get_user_pages return
703 * data_page_offset = offset with data_page_index page.
704 * page_length = bytes to copy for this page
705 */
706 gtt_page_base = offset & PAGE_MASK;
707 gtt_page_offset = offset & ~PAGE_MASK;
708 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
709 data_page_offset = data_ptr & ~PAGE_MASK;
710
711 page_length = remain;
712 if ((gtt_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - gtt_page_offset;
714 if ((data_page_offset + page_length) > PAGE_SIZE)
715 page_length = PAGE_SIZE - data_page_offset;
716
ab34c226
CW
717 slow_kernel_write(dev_priv->mm.gtt_mapping,
718 gtt_page_base, gtt_page_offset,
719 user_pages[data_page_index],
720 data_page_offset,
721 page_length);
3de09aa3
EA
722
723 remain -= page_length;
724 offset += page_length;
725 data_ptr += page_length;
726 }
727
728out_unpin_object:
729 i915_gem_object_unpin(obj);
730out_unlock:
731 mutex_unlock(&dev->struct_mutex);
732out_unpin_pages:
733 for (i = 0; i < pinned_pages; i++)
734 page_cache_release(user_pages[i]);
8e7d2b2c 735 drm_free_large(user_pages);
3de09aa3
EA
736
737 return ret;
738}
739
40123c1f
EA
740/**
741 * This is the fast shmem pwrite path, which attempts to directly
742 * copy_from_user into the kmapped pages backing the object.
743 */
3043c60c 744static int
40123c1f
EA
745i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
746 struct drm_i915_gem_pwrite *args,
747 struct drm_file *file_priv)
673a394b 748{
23010e43 749 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
750 ssize_t remain;
751 loff_t offset, page_base;
752 char __user *user_data;
753 int page_offset, page_length;
673a394b 754 int ret;
40123c1f
EA
755
756 user_data = (char __user *) (uintptr_t) args->data_ptr;
757 remain = args->size;
673a394b
EA
758
759 mutex_lock(&dev->struct_mutex);
760
4bdadb97 761 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
762 if (ret != 0)
763 goto fail_unlock;
673a394b 764
e47c68e9 765 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
766 if (ret != 0)
767 goto fail_put_pages;
768
23010e43 769 obj_priv = to_intel_bo(obj);
40123c1f
EA
770 offset = args->offset;
771 obj_priv->dirty = 1;
772
773 while (remain > 0) {
774 /* Operation in this page
775 *
776 * page_base = page offset within aperture
777 * page_offset = offset within page
778 * page_length = bytes to copy for this page
779 */
780 page_base = (offset & ~(PAGE_SIZE-1));
781 page_offset = offset & (PAGE_SIZE-1);
782 page_length = remain;
783 if ((page_offset + remain) > PAGE_SIZE)
784 page_length = PAGE_SIZE - page_offset;
785
786 ret = fast_shmem_write(obj_priv->pages,
787 page_base, page_offset,
788 user_data, page_length);
789 if (ret)
790 goto fail_put_pages;
791
792 remain -= page_length;
793 user_data += page_length;
794 offset += page_length;
795 }
796
797fail_put_pages:
798 i915_gem_object_put_pages(obj);
799fail_unlock:
800 mutex_unlock(&dev->struct_mutex);
801
802 return ret;
803}
804
805/**
806 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
807 * the memory and maps it using kmap_atomic for copying.
808 *
809 * This avoids taking mmap_sem for faulting on the user's address while the
810 * struct_mutex is held.
811 */
812static int
813i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file_priv)
816{
23010e43 817 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
818 struct mm_struct *mm = current->mm;
819 struct page **user_pages;
820 ssize_t remain;
821 loff_t offset, pinned_pages, i;
822 loff_t first_data_page, last_data_page, num_pages;
823 int shmem_page_index, shmem_page_offset;
824 int data_page_index, data_page_offset;
825 int page_length;
826 int ret;
827 uint64_t data_ptr = args->data_ptr;
280b713b 828 int do_bit17_swizzling;
40123c1f
EA
829
830 remain = args->size;
831
832 /* Pin the user pages containing the data. We can't fault while
833 * holding the struct mutex, and all of the pwrite implementations
834 * want to hold it while dereferencing the user data.
835 */
836 first_data_page = data_ptr / PAGE_SIZE;
837 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838 num_pages = last_data_page - first_data_page + 1;
839
8e7d2b2c 840 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
841 if (user_pages == NULL)
842 return -ENOMEM;
843
844 down_read(&mm->mmap_sem);
845 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
846 num_pages, 0, 0, user_pages, NULL);
847 up_read(&mm->mmap_sem);
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
850 goto fail_put_user_pages;
673a394b
EA
851 }
852
280b713b
EA
853 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
854
40123c1f
EA
855 mutex_lock(&dev->struct_mutex);
856
07f73f69
CW
857 ret = i915_gem_object_get_pages_or_evict(obj);
858 if (ret)
40123c1f
EA
859 goto fail_unlock;
860
861 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
862 if (ret != 0)
863 goto fail_put_pages;
864
23010e43 865 obj_priv = to_intel_bo(obj);
673a394b 866 offset = args->offset;
40123c1f 867 obj_priv->dirty = 1;
673a394b 868
40123c1f
EA
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * shmem_page_index = page number within shmem file
873 * shmem_page_offset = offset within page in shmem file
874 * data_page_index = page number in get_user_pages return
875 * data_page_offset = offset with data_page_index page.
876 * page_length = bytes to copy for this page
877 */
878 shmem_page_index = offset / PAGE_SIZE;
879 shmem_page_offset = offset & ~PAGE_MASK;
880 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
881 data_page_offset = data_ptr & ~PAGE_MASK;
882
883 page_length = remain;
884 if ((shmem_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - shmem_page_offset;
886 if ((data_page_offset + page_length) > PAGE_SIZE)
887 page_length = PAGE_SIZE - data_page_offset;
888
280b713b 889 if (do_bit17_swizzling) {
99a03df5 890 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
99a03df5
CW
894 page_length,
895 0);
896 } else {
897 slow_shmem_copy(obj_priv->pages[shmem_page_index],
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
280b713b 902 }
40123c1f
EA
903
904 remain -= page_length;
905 data_ptr += page_length;
906 offset += page_length;
673a394b
EA
907 }
908
40123c1f
EA
909fail_put_pages:
910 i915_gem_object_put_pages(obj);
911fail_unlock:
673a394b 912 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
913fail_put_user_pages:
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
8e7d2b2c 916 drm_free_large(user_pages);
673a394b 917
40123c1f 918 return ret;
673a394b
EA
919}
920
921/**
922 * Writes data to the object referenced by handle.
923 *
924 * On error, the contents of the buffer that were to be modified are undefined.
925 */
926int
927i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
928 struct drm_file *file_priv)
929{
930 struct drm_i915_gem_pwrite *args = data;
931 struct drm_gem_object *obj;
932 struct drm_i915_gem_object *obj_priv;
933 int ret = 0;
934
935 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
936 if (obj == NULL)
bf79cb91 937 return -ENOENT;
23010e43 938 obj_priv = to_intel_bo(obj);
673a394b
EA
939
940 /* Bounds check destination.
941 *
942 * XXX: This could use review for overflow issues...
943 */
944 if (args->offset > obj->size || args->size > obj->size ||
945 args->offset + args->size > obj->size) {
bc9025bd 946 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
947 return -EINVAL;
948 }
949
950 /* We can only do the GTT pwrite on untiled buffers, as otherwise
951 * it would end up going through the fenced access, and we'll get
952 * different detiling behavior between reading and writing.
953 * pread/pwrite currently are reading and writing from the CPU
954 * perspective, requiring manual detiling by the client.
955 */
71acb5eb
DA
956 if (obj_priv->phys_obj)
957 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
958 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
959 dev->gtt_total != 0 &&
960 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
961 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
962 if (ret == -EFAULT) {
963 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
964 file_priv);
965 }
280b713b
EA
966 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
967 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
968 } else {
969 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
970 if (ret == -EFAULT) {
971 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
972 file_priv);
973 }
974 }
673a394b
EA
975
976#if WATCH_PWRITE
977 if (ret)
978 DRM_INFO("pwrite failed %d\n", ret);
979#endif
980
bc9025bd 981 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
982
983 return ret;
984}
985
986/**
2ef7eeaa
EA
987 * Called when user space prepares to use an object with the CPU, either
988 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
989 */
990int
991i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
992 struct drm_file *file_priv)
993{
a09ba7fa 994 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
995 struct drm_i915_gem_set_domain *args = data;
996 struct drm_gem_object *obj;
652c393a 997 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
998 uint32_t read_domains = args->read_domains;
999 uint32_t write_domain = args->write_domain;
673a394b
EA
1000 int ret;
1001
1002 if (!(dev->driver->driver_features & DRIVER_GEM))
1003 return -ENODEV;
1004
2ef7eeaa 1005 /* Only handle setting domains to types used by the CPU. */
21d509e3 1006 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1007 return -EINVAL;
1008
21d509e3 1009 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1010 return -EINVAL;
1011
1012 /* Having something in the write domain implies it's in the read
1013 * domain, and only that read domain. Enforce that in the request.
1014 */
1015 if (write_domain != 0 && read_domains != write_domain)
1016 return -EINVAL;
1017
673a394b
EA
1018 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1019 if (obj == NULL)
bf79cb91 1020 return -ENOENT;
23010e43 1021 obj_priv = to_intel_bo(obj);
673a394b
EA
1022
1023 mutex_lock(&dev->struct_mutex);
652c393a
JB
1024
1025 intel_mark_busy(dev, obj);
1026
673a394b 1027#if WATCH_BUF
cfd43c02 1028 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1029 obj, obj->size, read_domains, write_domain);
673a394b 1030#endif
2ef7eeaa
EA
1031 if (read_domains & I915_GEM_DOMAIN_GTT) {
1032 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1033
a09ba7fa
EA
1034 /* Update the LRU on the fence for the CPU access that's
1035 * about to occur.
1036 */
1037 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1038 struct drm_i915_fence_reg *reg =
1039 &dev_priv->fence_regs[obj_priv->fence_reg];
1040 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1041 &dev_priv->mm.fence_list);
1042 }
1043
02354392
EA
1044 /* Silently promote "you're not bound, there was nothing to do"
1045 * to success, since the client was just asking us to
1046 * make sure everything was done.
1047 */
1048 if (ret == -EINVAL)
1049 ret = 0;
2ef7eeaa 1050 } else {
e47c68e9 1051 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1052 }
1053
7d1c4804
CW
1054 /* Maintain LRU order of "inactive" objects */
1055 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1056 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1057
673a394b
EA
1058 drm_gem_object_unreference(obj);
1059 mutex_unlock(&dev->struct_mutex);
1060 return ret;
1061}
1062
1063/**
1064 * Called when user space has done writes to this buffer
1065 */
1066int
1067i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1068 struct drm_file *file_priv)
1069{
1070 struct drm_i915_gem_sw_finish *args = data;
1071 struct drm_gem_object *obj;
1072 struct drm_i915_gem_object *obj_priv;
1073 int ret = 0;
1074
1075 if (!(dev->driver->driver_features & DRIVER_GEM))
1076 return -ENODEV;
1077
1078 mutex_lock(&dev->struct_mutex);
1079 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1080 if (obj == NULL) {
1081 mutex_unlock(&dev->struct_mutex);
bf79cb91 1082 return -ENOENT;
673a394b
EA
1083 }
1084
1085#if WATCH_BUF
cfd43c02 1086 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1087 __func__, args->handle, obj, obj->size);
1088#endif
23010e43 1089 obj_priv = to_intel_bo(obj);
673a394b
EA
1090
1091 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1092 if (obj_priv->pin_count)
1093 i915_gem_object_flush_cpu_write_domain(obj);
1094
673a394b
EA
1095 drm_gem_object_unreference(obj);
1096 mutex_unlock(&dev->struct_mutex);
1097 return ret;
1098}
1099
1100/**
1101 * Maps the contents of an object, returning the address it is mapped
1102 * into.
1103 *
1104 * While the mapping holds a reference on the contents of the object, it doesn't
1105 * imply a ref on the object itself.
1106 */
1107int
1108i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1109 struct drm_file *file_priv)
1110{
1111 struct drm_i915_gem_mmap *args = data;
1112 struct drm_gem_object *obj;
1113 loff_t offset;
1114 unsigned long addr;
1115
1116 if (!(dev->driver->driver_features & DRIVER_GEM))
1117 return -ENODEV;
1118
1119 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1120 if (obj == NULL)
bf79cb91 1121 return -ENOENT;
673a394b
EA
1122
1123 offset = args->offset;
1124
1125 down_write(&current->mm->mmap_sem);
1126 addr = do_mmap(obj->filp, 0, args->size,
1127 PROT_READ | PROT_WRITE, MAP_SHARED,
1128 args->offset);
1129 up_write(&current->mm->mmap_sem);
bc9025bd 1130 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1131 if (IS_ERR((void *)addr))
1132 return addr;
1133
1134 args->addr_ptr = (uint64_t) addr;
1135
1136 return 0;
1137}
1138
de151cf6
JB
1139/**
1140 * i915_gem_fault - fault a page into the GTT
1141 * vma: VMA in question
1142 * vmf: fault info
1143 *
1144 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1145 * from userspace. The fault handler takes care of binding the object to
1146 * the GTT (if needed), allocating and programming a fence register (again,
1147 * only if needed based on whether the old reg is still valid or the object
1148 * is tiled) and inserting a new PTE into the faulting process.
1149 *
1150 * Note that the faulting process may involve evicting existing objects
1151 * from the GTT and/or fence registers to make room. So performance may
1152 * suffer if the GTT working set is large or there are few fence registers
1153 * left.
1154 */
1155int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1156{
1157 struct drm_gem_object *obj = vma->vm_private_data;
1158 struct drm_device *dev = obj->dev;
7d1c4804 1159 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1160 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1161 pgoff_t page_offset;
1162 unsigned long pfn;
1163 int ret = 0;
0f973f27 1164 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1165
1166 /* We don't use vmf->pgoff since that has the fake offset */
1167 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1168 PAGE_SHIFT;
1169
1170 /* Now bind it into the GTT if needed */
1171 mutex_lock(&dev->struct_mutex);
1172 if (!obj_priv->gtt_space) {
e67b8ce1 1173 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1174 if (ret)
1175 goto unlock;
07f4f3e8 1176
07f4f3e8 1177 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1178 if (ret)
1179 goto unlock;
de151cf6
JB
1180 }
1181
1182 /* Need a new fence register? */
a09ba7fa 1183 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1184 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1185 if (ret)
1186 goto unlock;
d9ddcb96 1187 }
de151cf6 1188
7d1c4804
CW
1189 if (i915_gem_object_is_inactive(obj_priv))
1190 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1191
de151cf6
JB
1192 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1193 page_offset;
1194
1195 /* Finally, remap it using the new GTT offset */
1196 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1197unlock:
de151cf6
JB
1198 mutex_unlock(&dev->struct_mutex);
1199
1200 switch (ret) {
c715089f
CW
1201 case 0:
1202 case -ERESTARTSYS:
1203 return VM_FAULT_NOPAGE;
de151cf6
JB
1204 case -ENOMEM:
1205 case -EAGAIN:
1206 return VM_FAULT_OOM;
de151cf6 1207 default:
c715089f 1208 return VM_FAULT_SIGBUS;
de151cf6
JB
1209 }
1210}
1211
1212/**
1213 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1214 * @obj: obj in question
1215 *
1216 * GEM memory mapping works by handing back to userspace a fake mmap offset
1217 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1218 * up the object based on the offset and sets up the various memory mapping
1219 * structures.
1220 *
1221 * This routine allocates and attaches a fake offset for @obj.
1222 */
1223static int
1224i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1225{
1226 struct drm_device *dev = obj->dev;
1227 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1229 struct drm_map_list *list;
f77d390c 1230 struct drm_local_map *map;
de151cf6
JB
1231 int ret = 0;
1232
1233 /* Set the object up for mmap'ing */
1234 list = &obj->map_list;
9a298b2a 1235 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1236 if (!list->map)
1237 return -ENOMEM;
1238
1239 map = list->map;
1240 map->type = _DRM_GEM;
1241 map->size = obj->size;
1242 map->handle = obj;
1243
1244 /* Get a DRM GEM mmap offset allocated... */
1245 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1246 obj->size / PAGE_SIZE, 0, 0);
1247 if (!list->file_offset_node) {
1248 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1249 ret = -ENOSPC;
de151cf6
JB
1250 goto out_free_list;
1251 }
1252
1253 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1254 obj->size / PAGE_SIZE, 0);
1255 if (!list->file_offset_node) {
1256 ret = -ENOMEM;
1257 goto out_free_list;
1258 }
1259
1260 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1261 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1262 if (ret) {
de151cf6
JB
1263 DRM_ERROR("failed to add to map hash\n");
1264 goto out_free_mm;
1265 }
1266
1267 /* By now we should be all set, any drm_mmap request on the offset
1268 * below will get to our mmap & fault handler */
1269 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1270
1271 return 0;
1272
1273out_free_mm:
1274 drm_mm_put_block(list->file_offset_node);
1275out_free_list:
9a298b2a 1276 kfree(list->map);
de151cf6
JB
1277
1278 return ret;
1279}
1280
901782b2
CW
1281/**
1282 * i915_gem_release_mmap - remove physical page mappings
1283 * @obj: obj in question
1284 *
af901ca1 1285 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1286 * relinquish ownership of the pages back to the system.
1287 *
1288 * It is vital that we remove the page mapping if we have mapped a tiled
1289 * object through the GTT and then lose the fence register due to
1290 * resource pressure. Similarly if the object has been moved out of the
1291 * aperture, than pages mapped into userspace must be revoked. Removing the
1292 * mapping will then trigger a page fault on the next user access, allowing
1293 * fixup by i915_gem_fault().
1294 */
d05ca301 1295void
901782b2
CW
1296i915_gem_release_mmap(struct drm_gem_object *obj)
1297{
1298 struct drm_device *dev = obj->dev;
23010e43 1299 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1300
1301 if (dev->dev_mapping)
1302 unmap_mapping_range(dev->dev_mapping,
1303 obj_priv->mmap_offset, obj->size, 1);
1304}
1305
ab00b3e5
JB
1306static void
1307i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1308{
1309 struct drm_device *dev = obj->dev;
23010e43 1310 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_map_list *list;
1313
1314 list = &obj->map_list;
1315 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1316
1317 if (list->file_offset_node) {
1318 drm_mm_put_block(list->file_offset_node);
1319 list->file_offset_node = NULL;
1320 }
1321
1322 if (list->map) {
9a298b2a 1323 kfree(list->map);
ab00b3e5
JB
1324 list->map = NULL;
1325 }
1326
1327 obj_priv->mmap_offset = 0;
1328}
1329
de151cf6
JB
1330/**
1331 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1332 * @obj: object to check
1333 *
1334 * Return the required GTT alignment for an object, taking into account
1335 * potential fence register mapping if needed.
1336 */
1337static uint32_t
1338i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1339{
1340 struct drm_device *dev = obj->dev;
23010e43 1341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1342 int start, i;
1343
1344 /*
1345 * Minimum alignment is 4k (GTT page size), but might be greater
1346 * if a fence register is needed for the object.
1347 */
a6c45cf0 1348 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1349 return 4096;
1350
1351 /*
1352 * Previous chips need to be aligned to the size of the smallest
1353 * fence register that can contain the object.
1354 */
a6c45cf0 1355 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1356 start = 1024*1024;
1357 else
1358 start = 512*1024;
1359
1360 for (i = start; i < obj->size; i <<= 1)
1361 ;
1362
1363 return i;
1364}
1365
1366/**
1367 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1368 * @dev: DRM device
1369 * @data: GTT mapping ioctl data
1370 * @file_priv: GEM object info
1371 *
1372 * Simply returns the fake offset to userspace so it can mmap it.
1373 * The mmap call will end up in drm_gem_mmap(), which will set things
1374 * up so we can get faults in the handler above.
1375 *
1376 * The fault handler will take care of binding the object into the GTT
1377 * (since it may have been evicted to make room for something), allocating
1378 * a fence register, and mapping the appropriate aperture address into
1379 * userspace.
1380 */
1381int
1382i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1383 struct drm_file *file_priv)
1384{
1385 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1386 struct drm_gem_object *obj;
1387 struct drm_i915_gem_object *obj_priv;
1388 int ret;
1389
1390 if (!(dev->driver->driver_features & DRIVER_GEM))
1391 return -ENODEV;
1392
1393 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1394 if (obj == NULL)
bf79cb91 1395 return -ENOENT;
de151cf6
JB
1396
1397 mutex_lock(&dev->struct_mutex);
1398
23010e43 1399 obj_priv = to_intel_bo(obj);
de151cf6 1400
ab18282d
CW
1401 if (obj_priv->madv != I915_MADV_WILLNEED) {
1402 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1403 drm_gem_object_unreference(obj);
1404 mutex_unlock(&dev->struct_mutex);
1405 return -EINVAL;
1406 }
1407
1408
de151cf6
JB
1409 if (!obj_priv->mmap_offset) {
1410 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1411 if (ret) {
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
de151cf6 1414 return ret;
13af1062 1415 }
de151cf6
JB
1416 }
1417
1418 args->offset = obj_priv->mmap_offset;
1419
de151cf6
JB
1420 /*
1421 * Pull it into the GTT so that we have a page list (makes the
1422 * initial fault faster and any subsequent flushing possible).
1423 */
1424 if (!obj_priv->agp_mem) {
e67b8ce1 1425 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1426 if (ret) {
1427 drm_gem_object_unreference(obj);
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
de151cf6
JB
1431 }
1432
1433 drm_gem_object_unreference(obj);
1434 mutex_unlock(&dev->struct_mutex);
1435
1436 return 0;
1437}
1438
6911a9b8 1439void
856fa198 1440i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1441{
23010e43 1442 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1443 int page_count = obj->size / PAGE_SIZE;
1444 int i;
1445
856fa198 1446 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1447 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1448
856fa198
EA
1449 if (--obj_priv->pages_refcount != 0)
1450 return;
673a394b 1451
280b713b
EA
1452 if (obj_priv->tiling_mode != I915_TILING_NONE)
1453 i915_gem_object_save_bit_17_swizzle(obj);
1454
3ef94daa 1455 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1456 obj_priv->dirty = 0;
3ef94daa
CW
1457
1458 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1459 if (obj_priv->dirty)
1460 set_page_dirty(obj_priv->pages[i]);
1461
1462 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1463 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1464
1465 page_cache_release(obj_priv->pages[i]);
1466 }
673a394b
EA
1467 obj_priv->dirty = 0;
1468
8e7d2b2c 1469 drm_free_large(obj_priv->pages);
856fa198 1470 obj_priv->pages = NULL;
673a394b
EA
1471}
1472
1473static void
617dbe27 1474i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1475 struct intel_ring_buffer *ring)
673a394b 1476{
5c12a07e 1477 struct drm_i915_private *dev_priv = obj->dev->dev_private;
23010e43 1478 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
617dbe27 1479
852835f3
ZN
1480 BUG_ON(ring == NULL);
1481 obj_priv->ring = ring;
673a394b
EA
1482
1483 /* Add a reference if we're newly entering the active list. */
1484 if (!obj_priv->active) {
1485 drm_gem_object_reference(obj);
1486 obj_priv->active = 1;
1487 }
e35a41de 1488
673a394b 1489 /* Move from whatever list we were on to the tail of execution. */
852835f3 1490 list_move_tail(&obj_priv->list, &ring->active_list);
5c12a07e 1491 obj_priv->last_rendering_seqno = dev_priv->next_seqno;
673a394b
EA
1492}
1493
ce44b0ea
EA
1494static void
1495i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1496{
1497 struct drm_device *dev = obj->dev;
1498 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1499 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1500
1501 BUG_ON(!obj_priv->active);
1502 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1503 obj_priv->last_rendering_seqno = 0;
1504}
673a394b 1505
963b4836
CW
1506/* Immediately discard the backing storage */
1507static void
1508i915_gem_object_truncate(struct drm_gem_object *obj)
1509{
23010e43 1510 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1511 struct inode *inode;
963b4836 1512
ae9fed6b
CW
1513 /* Our goal here is to return as much of the memory as
1514 * is possible back to the system as we are called from OOM.
1515 * To do this we must instruct the shmfs to drop all of its
1516 * backing pages, *now*. Here we mirror the actions taken
1517 * when by shmem_delete_inode() to release the backing store.
1518 */
bb6baf76 1519 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1520 truncate_inode_pages(inode->i_mapping, 0);
1521 if (inode->i_op->truncate_range)
1522 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1523
1524 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1525}
1526
1527static inline int
1528i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1529{
1530 return obj_priv->madv == I915_MADV_DONTNEED;
1531}
1532
673a394b
EA
1533static void
1534i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1535{
1536 struct drm_device *dev = obj->dev;
1537 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1538 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1539
1540 i915_verify_inactive(dev, __FILE__, __LINE__);
1541 if (obj_priv->pin_count != 0)
f13d3f73 1542 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
673a394b
EA
1543 else
1544 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1545
99fcb766
DV
1546 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1547
ce44b0ea 1548 obj_priv->last_rendering_seqno = 0;
852835f3 1549 obj_priv->ring = NULL;
673a394b
EA
1550 if (obj_priv->active) {
1551 obj_priv->active = 0;
1552 drm_gem_object_unreference(obj);
1553 }
1554 i915_verify_inactive(dev, __FILE__, __LINE__);
1555}
1556
9220434a 1557static void
63560396 1558i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1559 uint32_t flush_domains,
852835f3 1560 struct intel_ring_buffer *ring)
63560396
DV
1561{
1562 drm_i915_private_t *dev_priv = dev->dev_private;
1563 struct drm_i915_gem_object *obj_priv, *next;
1564
1565 list_for_each_entry_safe(obj_priv, next,
1566 &dev_priv->mm.gpu_write_list,
1567 gpu_write_list) {
a8089e84 1568 struct drm_gem_object *obj = &obj_priv->base;
63560396 1569
2b6efaa4
CW
1570 if (obj->write_domain & flush_domains &&
1571 obj_priv->ring == ring) {
63560396
DV
1572 uint32_t old_write_domain = obj->write_domain;
1573
1574 obj->write_domain = 0;
1575 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1576 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1577
1578 /* update the fence lru list */
007cc8ac
DV
1579 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1580 struct drm_i915_fence_reg *reg =
1581 &dev_priv->fence_regs[obj_priv->fence_reg];
1582 list_move_tail(&reg->lru_list,
63560396 1583 &dev_priv->mm.fence_list);
007cc8ac 1584 }
63560396
DV
1585
1586 trace_i915_gem_object_change_domain(obj,
1587 obj->read_domains,
1588 old_write_domain);
1589 }
1590 }
1591}
8187a2b7 1592
5a5a0c64 1593uint32_t
8a1a49f9
DV
1594i915_add_request(struct drm_device *dev,
1595 struct drm_file *file_priv,
8dc5d147 1596 struct drm_i915_gem_request *request,
8a1a49f9 1597 struct intel_ring_buffer *ring)
673a394b
EA
1598{
1599 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1600 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1601 uint32_t seqno;
1602 int was_empty;
673a394b 1603
b962442e
EA
1604 if (file_priv != NULL)
1605 i915_file_priv = file_priv->driver_priv;
1606
8dc5d147
CW
1607 if (request == NULL) {
1608 request = kzalloc(sizeof(*request), GFP_KERNEL);
1609 if (request == NULL)
1610 return 0;
1611 }
673a394b 1612
8a1a49f9 1613 seqno = ring->add_request(dev, ring, file_priv, 0);
673a394b
EA
1614
1615 request->seqno = seqno;
852835f3 1616 request->ring = ring;
673a394b 1617 request->emitted_jiffies = jiffies;
852835f3
ZN
1618 was_empty = list_empty(&ring->request_list);
1619 list_add_tail(&request->list, &ring->request_list);
1620
b962442e
EA
1621 if (i915_file_priv) {
1622 list_add_tail(&request->client_list,
1623 &i915_file_priv->mm.request_list);
1624 } else {
1625 INIT_LIST_HEAD(&request->client_list);
1626 }
673a394b 1627
f65d9421 1628 if (!dev_priv->mm.suspended) {
b3b079db
CW
1629 mod_timer(&dev_priv->hangcheck_timer,
1630 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1631 if (was_empty)
b3b079db
CW
1632 queue_delayed_work(dev_priv->wq,
1633 &dev_priv->mm.retire_work, HZ);
f65d9421 1634 }
673a394b
EA
1635 return seqno;
1636}
1637
1638/**
1639 * Command execution barrier
1640 *
1641 * Ensures that all commands in the ring are finished
1642 * before signalling the CPU
1643 */
8a1a49f9 1644static void
852835f3 1645i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1646{
673a394b 1647 uint32_t flush_domains = 0;
673a394b
EA
1648
1649 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1650 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1651 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1652
1653 ring->flush(dev, ring,
1654 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1655}
1656
673a394b
EA
1657/**
1658 * Returns true if seq1 is later than seq2.
1659 */
22be1724 1660bool
673a394b
EA
1661i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1662{
1663 return (int32_t)(seq1 - seq2) >= 0;
1664}
1665
1666uint32_t
852835f3 1667i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1668 struct intel_ring_buffer *ring)
673a394b 1669{
852835f3 1670 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1671}
1672
dfaae392
CW
1673static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1674 struct intel_ring_buffer *ring)
9375e446 1675{
dfaae392
CW
1676 while (!list_empty(&ring->request_list)) {
1677 struct drm_i915_gem_request *request;
9375e446 1678
dfaae392
CW
1679 request = list_first_entry(&ring->request_list,
1680 struct drm_i915_gem_request,
1681 list);
1682
1683 list_del(&request->list);
1684 list_del(&request->client_list);
1685 kfree(request);
1686 }
1687
1688 while (!list_empty(&ring->active_list)) {
9375e446
CW
1689 struct drm_i915_gem_object *obj_priv;
1690
dfaae392 1691 obj_priv = list_first_entry(&ring->active_list,
9375e446
CW
1692 struct drm_i915_gem_object,
1693 list);
1694
1695 obj_priv->base.write_domain = 0;
dfaae392 1696 list_del_init(&obj_priv->gpu_write_list);
9375e446
CW
1697 i915_gem_object_move_to_inactive(&obj_priv->base);
1698 }
1699}
1700
dfaae392 1701void i915_gem_reset_lists(struct drm_device *dev)
77f01230
CW
1702{
1703 struct drm_i915_private *dev_priv = dev->dev_private;
1704 struct drm_i915_gem_object *obj_priv;
1705
dfaae392
CW
1706 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1707 if (HAS_BSD(dev))
1708 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1709
1710 /* Remove anything from the flushing lists. The GPU cache is likely
1711 * to be lost on reset along with the data, so simply move the
1712 * lost bo to the inactive list.
1713 */
1714 while (!list_empty(&dev_priv->mm.flushing_list)) {
1715 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1716 struct drm_i915_gem_object,
1717 list);
1718
1719 obj_priv->base.write_domain = 0;
1720 list_del_init(&obj_priv->gpu_write_list);
1721 i915_gem_object_move_to_inactive(&obj_priv->base);
1722 }
1723
1724 /* Move everything out of the GPU domains to ensure we do any
1725 * necessary invalidation upon reuse.
1726 */
77f01230
CW
1727 list_for_each_entry(obj_priv,
1728 &dev_priv->mm.inactive_list,
1729 list)
1730 {
1731 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1732 }
1733}
1734
673a394b
EA
1735/**
1736 * This function clears the request list as sequence numbers are passed.
1737 */
b09a1fec
CW
1738static void
1739i915_gem_retire_requests_ring(struct drm_device *dev,
1740 struct intel_ring_buffer *ring)
673a394b
EA
1741{
1742 drm_i915_private_t *dev_priv = dev->dev_private;
1743 uint32_t seqno;
1744
b84d5f0c
CW
1745 if (!ring->status_page.page_addr ||
1746 list_empty(&ring->request_list))
6c0594a3
KW
1747 return;
1748
852835f3 1749 seqno = i915_get_gem_seqno(dev, ring);
852835f3 1750 while (!list_empty(&ring->request_list)) {
673a394b 1751 struct drm_i915_gem_request *request;
673a394b 1752
852835f3 1753 request = list_first_entry(&ring->request_list,
673a394b
EA
1754 struct drm_i915_gem_request,
1755 list);
673a394b 1756
dfaae392 1757 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1758 break;
1759
1760 trace_i915_gem_request_retire(dev, request->seqno);
1761
1762 list_del(&request->list);
1763 list_del(&request->client_list);
1764 kfree(request);
1765 }
1766
1767 /* Move any buffers on the active list that are no longer referenced
1768 * by the ringbuffer to the flushing/inactive lists as appropriate.
1769 */
1770 while (!list_empty(&ring->active_list)) {
1771 struct drm_gem_object *obj;
1772 struct drm_i915_gem_object *obj_priv;
1773
1774 obj_priv = list_first_entry(&ring->active_list,
1775 struct drm_i915_gem_object,
1776 list);
673a394b 1777
dfaae392 1778 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1779 break;
b84d5f0c
CW
1780
1781 obj = &obj_priv->base;
1782
1783#if WATCH_LRU
1784 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1785 __func__, request->seqno, obj);
1786#endif
1787
1788 if (obj->write_domain != 0)
1789 i915_gem_object_move_to_flushing(obj);
1790 else
1791 i915_gem_object_move_to_inactive(obj);
673a394b 1792 }
9d34e5db
CW
1793
1794 if (unlikely (dev_priv->trace_irq_seqno &&
1795 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7 1796 ring->user_irq_put(dev, ring);
9d34e5db
CW
1797 dev_priv->trace_irq_seqno = 0;
1798 }
673a394b
EA
1799}
1800
b09a1fec
CW
1801void
1802i915_gem_retire_requests(struct drm_device *dev)
1803{
1804 drm_i915_private_t *dev_priv = dev->dev_private;
1805
be72615b
CW
1806 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1807 struct drm_i915_gem_object *obj_priv, *tmp;
1808
1809 /* We must be careful that during unbind() we do not
1810 * accidentally infinitely recurse into retire requests.
1811 * Currently:
1812 * retire -> free -> unbind -> wait -> retire_ring
1813 */
1814 list_for_each_entry_safe(obj_priv, tmp,
1815 &dev_priv->mm.deferred_free_list,
1816 list)
1817 i915_gem_free_object_tail(&obj_priv->base);
1818 }
1819
b09a1fec
CW
1820 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1821 if (HAS_BSD(dev))
1822 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1823}
1824
75ef9da2 1825static void
673a394b
EA
1826i915_gem_retire_work_handler(struct work_struct *work)
1827{
1828 drm_i915_private_t *dev_priv;
1829 struct drm_device *dev;
1830
1831 dev_priv = container_of(work, drm_i915_private_t,
1832 mm.retire_work.work);
1833 dev = dev_priv->dev;
1834
1835 mutex_lock(&dev->struct_mutex);
b09a1fec 1836 i915_gem_retire_requests(dev);
d1b851fc 1837
6dbe2772 1838 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1839 (!list_empty(&dev_priv->render_ring.request_list) ||
1840 (HAS_BSD(dev) &&
1841 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1842 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1843 mutex_unlock(&dev->struct_mutex);
1844}
1845
5a5a0c64 1846int
852835f3 1847i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1848 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1849{
1850 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1851 u32 ier;
673a394b
EA
1852 int ret = 0;
1853
1854 BUG_ON(seqno == 0);
1855
e35a41de 1856 if (seqno == dev_priv->next_seqno) {
8dc5d147 1857 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1858 if (seqno == 0)
1859 return -ENOMEM;
1860 }
1861
ba1234d1 1862 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1863 return -EIO;
1864
852835f3 1865 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1866 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1867 ier = I915_READ(DEIER) | I915_READ(GTIER);
1868 else
1869 ier = I915_READ(IER);
802c7eb6
JB
1870 if (!ier) {
1871 DRM_ERROR("something (likely vbetool) disabled "
1872 "interrupts, re-enabling\n");
1873 i915_driver_irq_preinstall(dev);
1874 i915_driver_irq_postinstall(dev);
1875 }
1876
1c5d22f7
CW
1877 trace_i915_gem_request_wait_begin(dev, seqno);
1878
852835f3 1879 ring->waiting_gem_seqno = seqno;
8187a2b7 1880 ring->user_irq_get(dev, ring);
48764bf4 1881 if (interruptible)
852835f3
ZN
1882 ret = wait_event_interruptible(ring->irq_queue,
1883 i915_seqno_passed(
1884 ring->get_gem_seqno(dev, ring), seqno)
1885 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1886 else
852835f3
ZN
1887 wait_event(ring->irq_queue,
1888 i915_seqno_passed(
1889 ring->get_gem_seqno(dev, ring), seqno)
1890 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1891
8187a2b7 1892 ring->user_irq_put(dev, ring);
852835f3 1893 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1894
1895 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1896 }
ba1234d1 1897 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1898 ret = -EIO;
1899
1900 if (ret && ret != -ERESTARTSYS)
8bff917c
DV
1901 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1902 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1903 dev_priv->next_seqno);
673a394b
EA
1904
1905 /* Directly dispatch request retiring. While we have the work queue
1906 * to handle this, the waiter on a request often wants an associated
1907 * buffer to have made it to the inactive list, and we would need
1908 * a separate wait queue to handle that.
1909 */
1910 if (ret == 0)
b09a1fec 1911 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1912
1913 return ret;
1914}
1915
48764bf4
DV
1916/**
1917 * Waits for a sequence number to be signaled, and cleans up the
1918 * request and object lists appropriately for that event.
1919 */
1920static int
852835f3
ZN
1921i915_wait_request(struct drm_device *dev, uint32_t seqno,
1922 struct intel_ring_buffer *ring)
48764bf4 1923{
852835f3 1924 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1925}
1926
20f0cd55 1927static void
9220434a 1928i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 1929 struct drm_file *file_priv,
9220434a
CW
1930 struct intel_ring_buffer *ring,
1931 uint32_t invalidate_domains,
1932 uint32_t flush_domains)
1933{
1934 ring->flush(dev, ring, invalidate_domains, flush_domains);
1935 i915_gem_process_flushing_list(dev, flush_domains, ring);
1936}
1937
8187a2b7
ZN
1938static void
1939i915_gem_flush(struct drm_device *dev,
c78ec30b 1940 struct drm_file *file_priv,
8187a2b7 1941 uint32_t invalidate_domains,
9220434a
CW
1942 uint32_t flush_domains,
1943 uint32_t flush_rings)
8187a2b7
ZN
1944{
1945 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 1946
8187a2b7
ZN
1947 if (flush_domains & I915_GEM_DOMAIN_CPU)
1948 drm_agp_chipset_flush(dev);
8bff917c 1949
9220434a
CW
1950 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
1951 if (flush_rings & RING_RENDER)
c78ec30b 1952 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
1953 &dev_priv->render_ring,
1954 invalidate_domains, flush_domains);
1955 if (flush_rings & RING_BSD)
c78ec30b 1956 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
1957 &dev_priv->bsd_ring,
1958 invalidate_domains, flush_domains);
1959 }
8187a2b7
ZN
1960}
1961
673a394b
EA
1962/**
1963 * Ensures that all rendering to the object has completed and the object is
1964 * safe to unbind from the GTT or access from the CPU.
1965 */
1966static int
2cf34d7b
CW
1967i915_gem_object_wait_rendering(struct drm_gem_object *obj,
1968 bool interruptible)
673a394b
EA
1969{
1970 struct drm_device *dev = obj->dev;
23010e43 1971 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1972 int ret;
1973
e47c68e9
EA
1974 /* This function only exists to support waiting for existing rendering,
1975 * not for emitting required flushes.
673a394b 1976 */
e47c68e9 1977 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1978
1979 /* If there is rendering queued on the buffer being evicted, wait for
1980 * it.
1981 */
1982 if (obj_priv->active) {
1983#if WATCH_BUF
1984 DRM_INFO("%s: object %p wait for seqno %08x\n",
1985 __func__, obj, obj_priv->last_rendering_seqno);
1986#endif
2cf34d7b
CW
1987 ret = i915_do_wait_request(dev,
1988 obj_priv->last_rendering_seqno,
1989 interruptible,
1990 obj_priv->ring);
1991 if (ret)
673a394b
EA
1992 return ret;
1993 }
1994
1995 return 0;
1996}
1997
1998/**
1999 * Unbinds an object from the GTT aperture.
2000 */
0f973f27 2001int
673a394b
EA
2002i915_gem_object_unbind(struct drm_gem_object *obj)
2003{
2004 struct drm_device *dev = obj->dev;
23010e43 2005 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2006 int ret = 0;
2007
2008#if WATCH_BUF
2009 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2010 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2011#endif
2012 if (obj_priv->gtt_space == NULL)
2013 return 0;
2014
2015 if (obj_priv->pin_count != 0) {
2016 DRM_ERROR("Attempting to unbind pinned buffer\n");
2017 return -EINVAL;
2018 }
2019
5323fd04
EA
2020 /* blow away mappings if mapped through GTT */
2021 i915_gem_release_mmap(obj);
2022
673a394b
EA
2023 /* Move the object to the CPU domain to ensure that
2024 * any possible CPU writes while it's not in the GTT
2025 * are flushed when we go to remap it. This will
2026 * also ensure that all pending GPU writes are finished
2027 * before we unbind.
2028 */
e47c68e9 2029 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2030 if (ret == -ERESTARTSYS)
673a394b 2031 return ret;
8dc1775d
CW
2032 /* Continue on if we fail due to EIO, the GPU is hung so we
2033 * should be safe and we need to cleanup or else we might
2034 * cause memory corruption through use-after-free.
2035 */
673a394b 2036
96b47b65
DV
2037 /* release the fence reg _after_ flushing */
2038 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2039 i915_gem_clear_fence_reg(obj);
2040
673a394b
EA
2041 if (obj_priv->agp_mem != NULL) {
2042 drm_unbind_agp(obj_priv->agp_mem);
2043 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2044 obj_priv->agp_mem = NULL;
2045 }
2046
856fa198 2047 i915_gem_object_put_pages(obj);
a32808c0 2048 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2049
2050 if (obj_priv->gtt_space) {
2051 atomic_dec(&dev->gtt_count);
2052 atomic_sub(obj->size, &dev->gtt_memory);
2053
2054 drm_mm_put_block(obj_priv->gtt_space);
2055 obj_priv->gtt_space = NULL;
2056 }
2057
f13d3f73 2058 list_del_init(&obj_priv->list);
673a394b 2059
963b4836
CW
2060 if (i915_gem_object_is_purgeable(obj_priv))
2061 i915_gem_object_truncate(obj);
2062
1c5d22f7
CW
2063 trace_i915_gem_object_unbind(obj);
2064
8dc1775d 2065 return ret;
673a394b
EA
2066}
2067
b47eb4a2 2068int
4df2faf4
DV
2069i915_gpu_idle(struct drm_device *dev)
2070{
2071 drm_i915_private_t *dev_priv = dev->dev_private;
2072 bool lists_empty;
c78ec30b 2073 u32 seqno;
852835f3 2074 int ret;
4df2faf4 2075
d1b851fc
ZN
2076 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2077 list_empty(&dev_priv->render_ring.active_list) &&
2078 (!HAS_BSD(dev) ||
2079 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2080 if (lists_empty)
2081 return 0;
2082
2083 /* Flush everything onto the inactive list. */
5c12a07e 2084 seqno = dev_priv->next_seqno;
c78ec30b 2085 i915_gem_flush_ring(dev, NULL, &dev_priv->render_ring,
9220434a 2086 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
c78ec30b 2087 ret = i915_wait_request(dev, seqno, &dev_priv->render_ring);
8a1a49f9
DV
2088 if (ret)
2089 return ret;
d1b851fc
ZN
2090
2091 if (HAS_BSD(dev)) {
5c12a07e 2092 seqno = dev_priv->next_seqno;
c78ec30b 2093 i915_gem_flush_ring(dev, NULL, &dev_priv->bsd_ring,
9220434a 2094 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
c78ec30b 2095 ret = i915_wait_request(dev, seqno, &dev_priv->bsd_ring);
d1b851fc
ZN
2096 if (ret)
2097 return ret;
2098 }
2099
8a1a49f9 2100 return 0;
4df2faf4
DV
2101}
2102
6911a9b8 2103int
4bdadb97
CW
2104i915_gem_object_get_pages(struct drm_gem_object *obj,
2105 gfp_t gfpmask)
673a394b 2106{
23010e43 2107 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2108 int page_count, i;
2109 struct address_space *mapping;
2110 struct inode *inode;
2111 struct page *page;
673a394b 2112
778c3544
DV
2113 BUG_ON(obj_priv->pages_refcount
2114 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2115
856fa198 2116 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2117 return 0;
2118
2119 /* Get the list of pages out of our struct file. They'll be pinned
2120 * at this point until we release them.
2121 */
2122 page_count = obj->size / PAGE_SIZE;
856fa198 2123 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2124 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2125 if (obj_priv->pages == NULL) {
856fa198 2126 obj_priv->pages_refcount--;
673a394b
EA
2127 return -ENOMEM;
2128 }
2129
2130 inode = obj->filp->f_path.dentry->d_inode;
2131 mapping = inode->i_mapping;
2132 for (i = 0; i < page_count; i++) {
4bdadb97 2133 page = read_cache_page_gfp(mapping, i,
985b823b 2134 GFP_HIGHUSER |
4bdadb97 2135 __GFP_COLD |
cd9f040d 2136 __GFP_RECLAIMABLE |
4bdadb97 2137 gfpmask);
1f2b1013
CW
2138 if (IS_ERR(page))
2139 goto err_pages;
2140
856fa198 2141 obj_priv->pages[i] = page;
673a394b 2142 }
280b713b
EA
2143
2144 if (obj_priv->tiling_mode != I915_TILING_NONE)
2145 i915_gem_object_do_bit_17_swizzle(obj);
2146
673a394b 2147 return 0;
1f2b1013
CW
2148
2149err_pages:
2150 while (i--)
2151 page_cache_release(obj_priv->pages[i]);
2152
2153 drm_free_large(obj_priv->pages);
2154 obj_priv->pages = NULL;
2155 obj_priv->pages_refcount--;
2156 return PTR_ERR(page);
673a394b
EA
2157}
2158
4e901fdc
EA
2159static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2160{
2161 struct drm_gem_object *obj = reg->obj;
2162 struct drm_device *dev = obj->dev;
2163 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2164 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2165 int regnum = obj_priv->fence_reg;
2166 uint64_t val;
2167
2168 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2169 0xfffff000) << 32;
2170 val |= obj_priv->gtt_offset & 0xfffff000;
2171 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2172 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2173
2174 if (obj_priv->tiling_mode == I915_TILING_Y)
2175 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2176 val |= I965_FENCE_REG_VALID;
2177
2178 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2179}
2180
de151cf6
JB
2181static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2182{
2183 struct drm_gem_object *obj = reg->obj;
2184 struct drm_device *dev = obj->dev;
2185 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2186 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2187 int regnum = obj_priv->fence_reg;
2188 uint64_t val;
2189
2190 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2191 0xfffff000) << 32;
2192 val |= obj_priv->gtt_offset & 0xfffff000;
2193 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2194 if (obj_priv->tiling_mode == I915_TILING_Y)
2195 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2196 val |= I965_FENCE_REG_VALID;
2197
2198 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2199}
2200
2201static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2202{
2203 struct drm_gem_object *obj = reg->obj;
2204 struct drm_device *dev = obj->dev;
2205 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2206 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2207 int regnum = obj_priv->fence_reg;
0f973f27 2208 int tile_width;
dc529a4f 2209 uint32_t fence_reg, val;
de151cf6
JB
2210 uint32_t pitch_val;
2211
2212 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2213 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2214 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2215 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2216 return;
2217 }
2218
0f973f27
JB
2219 if (obj_priv->tiling_mode == I915_TILING_Y &&
2220 HAS_128_BYTE_Y_TILING(dev))
2221 tile_width = 128;
de151cf6 2222 else
0f973f27
JB
2223 tile_width = 512;
2224
2225 /* Note: pitch better be a power of two tile widths */
2226 pitch_val = obj_priv->stride / tile_width;
2227 pitch_val = ffs(pitch_val) - 1;
de151cf6 2228
c36a2a6d
DV
2229 if (obj_priv->tiling_mode == I915_TILING_Y &&
2230 HAS_128_BYTE_Y_TILING(dev))
2231 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2232 else
2233 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2234
de151cf6
JB
2235 val = obj_priv->gtt_offset;
2236 if (obj_priv->tiling_mode == I915_TILING_Y)
2237 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2238 val |= I915_FENCE_SIZE_BITS(obj->size);
2239 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2240 val |= I830_FENCE_REG_VALID;
2241
dc529a4f
EA
2242 if (regnum < 8)
2243 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2244 else
2245 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2246 I915_WRITE(fence_reg, val);
de151cf6
JB
2247}
2248
2249static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2250{
2251 struct drm_gem_object *obj = reg->obj;
2252 struct drm_device *dev = obj->dev;
2253 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2254 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2255 int regnum = obj_priv->fence_reg;
2256 uint32_t val;
2257 uint32_t pitch_val;
8d7773a3 2258 uint32_t fence_size_bits;
de151cf6 2259
8d7773a3 2260 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2261 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2262 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2263 __func__, obj_priv->gtt_offset);
de151cf6
JB
2264 return;
2265 }
2266
e76a16de
EA
2267 pitch_val = obj_priv->stride / 128;
2268 pitch_val = ffs(pitch_val) - 1;
2269 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2270
de151cf6
JB
2271 val = obj_priv->gtt_offset;
2272 if (obj_priv->tiling_mode == I915_TILING_Y)
2273 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2274 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2275 WARN_ON(fence_size_bits & ~0x00000f00);
2276 val |= fence_size_bits;
de151cf6
JB
2277 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2278 val |= I830_FENCE_REG_VALID;
2279
2280 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2281}
2282
2cf34d7b
CW
2283static int i915_find_fence_reg(struct drm_device *dev,
2284 bool interruptible)
ae3db24a
DV
2285{
2286 struct drm_i915_fence_reg *reg = NULL;
2287 struct drm_i915_gem_object *obj_priv = NULL;
2288 struct drm_i915_private *dev_priv = dev->dev_private;
2289 struct drm_gem_object *obj = NULL;
2290 int i, avail, ret;
2291
2292 /* First try to find a free reg */
2293 avail = 0;
2294 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2295 reg = &dev_priv->fence_regs[i];
2296 if (!reg->obj)
2297 return i;
2298
23010e43 2299 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2300 if (!obj_priv->pin_count)
2301 avail++;
2302 }
2303
2304 if (avail == 0)
2305 return -ENOSPC;
2306
2307 /* None available, try to steal one or wait for a user to finish */
2308 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2309 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2310 lru_list) {
2311 obj = reg->obj;
2312 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2313
2314 if (obj_priv->pin_count)
2315 continue;
2316
2317 /* found one! */
2318 i = obj_priv->fence_reg;
2319 break;
2320 }
2321
2322 BUG_ON(i == I915_FENCE_REG_NONE);
2323
2324 /* We only have a reference on obj from the active list. put_fence_reg
2325 * might drop that one, causing a use-after-free in it. So hold a
2326 * private reference to obj like the other callers of put_fence_reg
2327 * (set_tiling ioctl) do. */
2328 drm_gem_object_reference(obj);
2cf34d7b 2329 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2330 drm_gem_object_unreference(obj);
2331 if (ret != 0)
2332 return ret;
2333
2334 return i;
2335}
2336
de151cf6
JB
2337/**
2338 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2339 * @obj: object to map through a fence reg
2340 *
2341 * When mapping objects through the GTT, userspace wants to be able to write
2342 * to them without having to worry about swizzling if the object is tiled.
2343 *
2344 * This function walks the fence regs looking for a free one for @obj,
2345 * stealing one if it can't find any.
2346 *
2347 * It then sets up the reg based on the object's properties: address, pitch
2348 * and tiling format.
2349 */
8c4b8c3f 2350int
2cf34d7b
CW
2351i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2352 bool interruptible)
de151cf6
JB
2353{
2354 struct drm_device *dev = obj->dev;
79e53945 2355 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2356 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2357 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2358 int ret;
de151cf6 2359
a09ba7fa
EA
2360 /* Just update our place in the LRU if our fence is getting used. */
2361 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2362 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2363 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2364 return 0;
2365 }
2366
de151cf6
JB
2367 switch (obj_priv->tiling_mode) {
2368 case I915_TILING_NONE:
2369 WARN(1, "allocating a fence for non-tiled object?\n");
2370 break;
2371 case I915_TILING_X:
0f973f27
JB
2372 if (!obj_priv->stride)
2373 return -EINVAL;
2374 WARN((obj_priv->stride & (512 - 1)),
2375 "object 0x%08x is X tiled but has non-512B pitch\n",
2376 obj_priv->gtt_offset);
de151cf6
JB
2377 break;
2378 case I915_TILING_Y:
0f973f27
JB
2379 if (!obj_priv->stride)
2380 return -EINVAL;
2381 WARN((obj_priv->stride & (128 - 1)),
2382 "object 0x%08x is Y tiled but has non-128B pitch\n",
2383 obj_priv->gtt_offset);
de151cf6
JB
2384 break;
2385 }
2386
2cf34d7b 2387 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2388 if (ret < 0)
2389 return ret;
de151cf6 2390
ae3db24a
DV
2391 obj_priv->fence_reg = ret;
2392 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2393 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2394
de151cf6
JB
2395 reg->obj = obj;
2396
e259befd
CW
2397 switch (INTEL_INFO(dev)->gen) {
2398 case 6:
4e901fdc 2399 sandybridge_write_fence_reg(reg);
e259befd
CW
2400 break;
2401 case 5:
2402 case 4:
de151cf6 2403 i965_write_fence_reg(reg);
e259befd
CW
2404 break;
2405 case 3:
de151cf6 2406 i915_write_fence_reg(reg);
e259befd
CW
2407 break;
2408 case 2:
de151cf6 2409 i830_write_fence_reg(reg);
e259befd
CW
2410 break;
2411 }
d9ddcb96 2412
ae3db24a
DV
2413 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2414 obj_priv->tiling_mode);
1c5d22f7 2415
d9ddcb96 2416 return 0;
de151cf6
JB
2417}
2418
2419/**
2420 * i915_gem_clear_fence_reg - clear out fence register info
2421 * @obj: object to clear
2422 *
2423 * Zeroes out the fence register itself and clears out the associated
2424 * data structures in dev_priv and obj_priv.
2425 */
2426static void
2427i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2428{
2429 struct drm_device *dev = obj->dev;
79e53945 2430 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2431 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2432 struct drm_i915_fence_reg *reg =
2433 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2434 uint32_t fence_reg;
de151cf6 2435
e259befd
CW
2436 switch (INTEL_INFO(dev)->gen) {
2437 case 6:
4e901fdc
EA
2438 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2439 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2440 break;
2441 case 5:
2442 case 4:
de151cf6 2443 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2444 break;
2445 case 3:
2446 if (obj_priv->fence_reg > 8)
2447 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2448 else
e259befd
CW
2449 case 2:
2450 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2451
2452 I915_WRITE(fence_reg, 0);
e259befd 2453 break;
dc529a4f 2454 }
de151cf6 2455
007cc8ac 2456 reg->obj = NULL;
de151cf6 2457 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2458 list_del_init(&reg->lru_list);
de151cf6
JB
2459}
2460
52dc7d32
CW
2461/**
2462 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2463 * to the buffer to finish, and then resets the fence register.
2464 * @obj: tiled object holding a fence register.
2cf34d7b 2465 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2466 *
2467 * Zeroes out the fence register itself and clears out the associated
2468 * data structures in dev_priv and obj_priv.
2469 */
2470int
2cf34d7b
CW
2471i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2472 bool interruptible)
52dc7d32
CW
2473{
2474 struct drm_device *dev = obj->dev;
53640e1d 2475 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2476 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2477 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2478
2479 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2480 return 0;
2481
10ae9bd2
DV
2482 /* If we've changed tiling, GTT-mappings of the object
2483 * need to re-fault to ensure that the correct fence register
2484 * setup is in place.
2485 */
2486 i915_gem_release_mmap(obj);
2487
52dc7d32
CW
2488 /* On the i915, GPU access to tiled buffers is via a fence,
2489 * therefore we must wait for any outstanding access to complete
2490 * before clearing the fence.
2491 */
53640e1d
CW
2492 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2493 if (reg->gpu) {
52dc7d32
CW
2494 int ret;
2495
2cf34d7b 2496 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2497 if (ret)
2498 return ret;
2499
2cf34d7b 2500 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2501 if (ret)
52dc7d32 2502 return ret;
53640e1d
CW
2503
2504 reg->gpu = false;
52dc7d32
CW
2505 }
2506
4a726612 2507 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2508 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2509
2510 return 0;
2511}
2512
673a394b
EA
2513/**
2514 * Finds free space in the GTT aperture and binds the object there.
2515 */
2516static int
2517i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2518{
2519 struct drm_device *dev = obj->dev;
2520 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2521 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2522 struct drm_mm_node *free_space;
4bdadb97 2523 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2524 int ret;
673a394b 2525
bb6baf76 2526 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2527 DRM_ERROR("Attempting to bind a purgeable object\n");
2528 return -EINVAL;
2529 }
2530
673a394b 2531 if (alignment == 0)
0f973f27 2532 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2533 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2534 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2535 return -EINVAL;
2536 }
2537
654fc607
CW
2538 /* If the object is bigger than the entire aperture, reject it early
2539 * before evicting everything in a vain attempt to find space.
2540 */
2541 if (obj->size > dev->gtt_total) {
2542 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2543 return -E2BIG;
2544 }
2545
673a394b
EA
2546 search_free:
2547 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2548 obj->size, alignment, 0);
2549 if (free_space != NULL) {
2550 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2551 alignment);
db3307a9 2552 if (obj_priv->gtt_space != NULL)
673a394b 2553 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2554 }
2555 if (obj_priv->gtt_space == NULL) {
2556 /* If the gtt is empty and we're still having trouble
2557 * fitting our object in, we're out of memory.
2558 */
2559#if WATCH_LRU
2560 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2561#endif
0108a3ed 2562 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2563 if (ret)
673a394b 2564 return ret;
9731129c 2565
673a394b
EA
2566 goto search_free;
2567 }
2568
2569#if WATCH_BUF
cfd43c02 2570 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2571 obj->size, obj_priv->gtt_offset);
2572#endif
4bdadb97 2573 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2574 if (ret) {
2575 drm_mm_put_block(obj_priv->gtt_space);
2576 obj_priv->gtt_space = NULL;
07f73f69
CW
2577
2578 if (ret == -ENOMEM) {
2579 /* first try to clear up some space from the GTT */
0108a3ed
DV
2580 ret = i915_gem_evict_something(dev, obj->size,
2581 alignment);
07f73f69 2582 if (ret) {
07f73f69 2583 /* now try to shrink everyone else */
4bdadb97
CW
2584 if (gfpmask) {
2585 gfpmask = 0;
2586 goto search_free;
07f73f69
CW
2587 }
2588
2589 return ret;
2590 }
2591
2592 goto search_free;
2593 }
2594
673a394b
EA
2595 return ret;
2596 }
2597
673a394b
EA
2598 /* Create an AGP memory structure pointing at our pages, and bind it
2599 * into the GTT.
2600 */
2601 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2602 obj_priv->pages,
07f73f69 2603 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2604 obj_priv->gtt_offset,
2605 obj_priv->agp_type);
673a394b 2606 if (obj_priv->agp_mem == NULL) {
856fa198 2607 i915_gem_object_put_pages(obj);
673a394b
EA
2608 drm_mm_put_block(obj_priv->gtt_space);
2609 obj_priv->gtt_space = NULL;
07f73f69 2610
0108a3ed 2611 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2612 if (ret)
07f73f69 2613 return ret;
07f73f69
CW
2614
2615 goto search_free;
673a394b
EA
2616 }
2617 atomic_inc(&dev->gtt_count);
2618 atomic_add(obj->size, &dev->gtt_memory);
2619
bf1a1092
CW
2620 /* keep track of bounds object by adding it to the inactive list */
2621 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2622
673a394b
EA
2623 /* Assert that the object is not currently in any GPU domain. As it
2624 * wasn't in the GTT, there shouldn't be any way it could have been in
2625 * a GPU cache
2626 */
21d509e3
CW
2627 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2628 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2629
1c5d22f7
CW
2630 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2631
673a394b
EA
2632 return 0;
2633}
2634
2635void
2636i915_gem_clflush_object(struct drm_gem_object *obj)
2637{
23010e43 2638 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2639
2640 /* If we don't have a page list set up, then we're not pinned
2641 * to GPU, and we can ignore the cache flush because it'll happen
2642 * again at bind time.
2643 */
856fa198 2644 if (obj_priv->pages == NULL)
673a394b
EA
2645 return;
2646
1c5d22f7 2647 trace_i915_gem_object_clflush(obj);
cfa16a0d 2648
856fa198 2649 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2650}
2651
e47c68e9 2652/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2653static int
ba3d8d74
DV
2654i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2655 bool pipelined)
e47c68e9
EA
2656{
2657 struct drm_device *dev = obj->dev;
1c5d22f7 2658 uint32_t old_write_domain;
e47c68e9
EA
2659
2660 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2661 return 0;
e47c68e9
EA
2662
2663 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2664 old_write_domain = obj->write_domain;
c78ec30b 2665 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2666 to_intel_bo(obj)->ring,
2667 0, obj->write_domain);
48b956c5 2668 BUG_ON(obj->write_domain);
1c5d22f7
CW
2669
2670 trace_i915_gem_object_change_domain(obj,
2671 obj->read_domains,
2672 old_write_domain);
ba3d8d74
DV
2673
2674 if (pipelined)
2675 return 0;
2676
2cf34d7b 2677 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2678}
2679
2680/** Flushes the GTT write domain for the object if it's dirty. */
2681static void
2682i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2683{
1c5d22f7
CW
2684 uint32_t old_write_domain;
2685
e47c68e9
EA
2686 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2687 return;
2688
2689 /* No actual flushing is required for the GTT write domain. Writes
2690 * to it immediately go to main memory as far as we know, so there's
2691 * no chipset flush. It also doesn't land in render cache.
2692 */
1c5d22f7 2693 old_write_domain = obj->write_domain;
e47c68e9 2694 obj->write_domain = 0;
1c5d22f7
CW
2695
2696 trace_i915_gem_object_change_domain(obj,
2697 obj->read_domains,
2698 old_write_domain);
e47c68e9
EA
2699}
2700
2701/** Flushes the CPU write domain for the object if it's dirty. */
2702static void
2703i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2704{
2705 struct drm_device *dev = obj->dev;
1c5d22f7 2706 uint32_t old_write_domain;
e47c68e9
EA
2707
2708 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2709 return;
2710
2711 i915_gem_clflush_object(obj);
2712 drm_agp_chipset_flush(dev);
1c5d22f7 2713 old_write_domain = obj->write_domain;
e47c68e9 2714 obj->write_domain = 0;
1c5d22f7
CW
2715
2716 trace_i915_gem_object_change_domain(obj,
2717 obj->read_domains,
2718 old_write_domain);
e47c68e9
EA
2719}
2720
2ef7eeaa
EA
2721/**
2722 * Moves a single object to the GTT read, and possibly write domain.
2723 *
2724 * This function returns when the move is complete, including waiting on
2725 * flushes to occur.
2726 */
79e53945 2727int
2ef7eeaa
EA
2728i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2729{
23010e43 2730 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2731 uint32_t old_write_domain, old_read_domains;
e47c68e9 2732 int ret;
2ef7eeaa 2733
02354392
EA
2734 /* Not valid to be called on unbound objects. */
2735 if (obj_priv->gtt_space == NULL)
2736 return -EINVAL;
2737
ba3d8d74 2738 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2739 if (ret != 0)
2740 return ret;
2741
7213342d 2742 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2743
ba3d8d74 2744 if (write) {
2cf34d7b 2745 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2746 if (ret)
2747 return ret;
ba3d8d74 2748 }
2ef7eeaa 2749
7213342d
CW
2750 old_write_domain = obj->write_domain;
2751 old_read_domains = obj->read_domains;
2ef7eeaa 2752
e47c68e9
EA
2753 /* It should now be out of any other write domains, and we can update
2754 * the domain values for our changes.
2755 */
2756 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2757 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2758 if (write) {
7213342d 2759 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2760 obj->write_domain = I915_GEM_DOMAIN_GTT;
2761 obj_priv->dirty = 1;
2ef7eeaa
EA
2762 }
2763
1c5d22f7
CW
2764 trace_i915_gem_object_change_domain(obj,
2765 old_read_domains,
2766 old_write_domain);
2767
e47c68e9
EA
2768 return 0;
2769}
2770
b9241ea3
ZW
2771/*
2772 * Prepare buffer for display plane. Use uninterruptible for possible flush
2773 * wait, as in modesetting process we're not supposed to be interrupted.
2774 */
2775int
48b956c5
CW
2776i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2777 bool pipelined)
b9241ea3 2778{
23010e43 2779 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2780 uint32_t old_read_domains;
b9241ea3
ZW
2781 int ret;
2782
2783 /* Not valid to be called on unbound objects. */
2784 if (obj_priv->gtt_space == NULL)
2785 return -EINVAL;
2786
48b956c5
CW
2787 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2788 if (ret)
e35a41de 2789 return ret;
b9241ea3 2790
b118c1e3
CW
2791 i915_gem_object_flush_cpu_write_domain(obj);
2792
b9241ea3 2793 old_read_domains = obj->read_domains;
c78ec30b 2794 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2795
2796 trace_i915_gem_object_change_domain(obj,
2797 old_read_domains,
ba3d8d74 2798 obj->write_domain);
b9241ea3
ZW
2799
2800 return 0;
2801}
2802
e47c68e9
EA
2803/**
2804 * Moves a single object to the CPU read, and possibly write domain.
2805 *
2806 * This function returns when the move is complete, including waiting on
2807 * flushes to occur.
2808 */
2809static int
2810i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2811{
1c5d22f7 2812 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2813 int ret;
2814
ba3d8d74 2815 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2816 if (ret != 0)
2817 return ret;
2ef7eeaa 2818
e47c68e9 2819 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2820
e47c68e9
EA
2821 /* If we have a partially-valid cache of the object in the CPU,
2822 * finish invalidating it and free the per-page flags.
2ef7eeaa 2823 */
e47c68e9 2824 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2825
7213342d 2826 if (write) {
2cf34d7b 2827 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2828 if (ret)
2829 return ret;
2830 }
2831
1c5d22f7
CW
2832 old_write_domain = obj->write_domain;
2833 old_read_domains = obj->read_domains;
2834
e47c68e9
EA
2835 /* Flush the CPU cache if it's still invalid. */
2836 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2837 i915_gem_clflush_object(obj);
2ef7eeaa 2838
e47c68e9 2839 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2840 }
2841
2842 /* It should now be out of any other write domains, and we can update
2843 * the domain values for our changes.
2844 */
e47c68e9
EA
2845 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2846
2847 /* If we're writing through the CPU, then the GPU read domains will
2848 * need to be invalidated at next use.
2849 */
2850 if (write) {
c78ec30b 2851 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2852 obj->write_domain = I915_GEM_DOMAIN_CPU;
2853 }
2ef7eeaa 2854
1c5d22f7
CW
2855 trace_i915_gem_object_change_domain(obj,
2856 old_read_domains,
2857 old_write_domain);
2858
2ef7eeaa
EA
2859 return 0;
2860}
2861
673a394b
EA
2862/*
2863 * Set the next domain for the specified object. This
2864 * may not actually perform the necessary flushing/invaliding though,
2865 * as that may want to be batched with other set_domain operations
2866 *
2867 * This is (we hope) the only really tricky part of gem. The goal
2868 * is fairly simple -- track which caches hold bits of the object
2869 * and make sure they remain coherent. A few concrete examples may
2870 * help to explain how it works. For shorthand, we use the notation
2871 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2872 * a pair of read and write domain masks.
2873 *
2874 * Case 1: the batch buffer
2875 *
2876 * 1. Allocated
2877 * 2. Written by CPU
2878 * 3. Mapped to GTT
2879 * 4. Read by GPU
2880 * 5. Unmapped from GTT
2881 * 6. Freed
2882 *
2883 * Let's take these a step at a time
2884 *
2885 * 1. Allocated
2886 * Pages allocated from the kernel may still have
2887 * cache contents, so we set them to (CPU, CPU) always.
2888 * 2. Written by CPU (using pwrite)
2889 * The pwrite function calls set_domain (CPU, CPU) and
2890 * this function does nothing (as nothing changes)
2891 * 3. Mapped by GTT
2892 * This function asserts that the object is not
2893 * currently in any GPU-based read or write domains
2894 * 4. Read by GPU
2895 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2896 * As write_domain is zero, this function adds in the
2897 * current read domains (CPU+COMMAND, 0).
2898 * flush_domains is set to CPU.
2899 * invalidate_domains is set to COMMAND
2900 * clflush is run to get data out of the CPU caches
2901 * then i915_dev_set_domain calls i915_gem_flush to
2902 * emit an MI_FLUSH and drm_agp_chipset_flush
2903 * 5. Unmapped from GTT
2904 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2905 * flush_domains and invalidate_domains end up both zero
2906 * so no flushing/invalidating happens
2907 * 6. Freed
2908 * yay, done
2909 *
2910 * Case 2: The shared render buffer
2911 *
2912 * 1. Allocated
2913 * 2. Mapped to GTT
2914 * 3. Read/written by GPU
2915 * 4. set_domain to (CPU,CPU)
2916 * 5. Read/written by CPU
2917 * 6. Read/written by GPU
2918 *
2919 * 1. Allocated
2920 * Same as last example, (CPU, CPU)
2921 * 2. Mapped to GTT
2922 * Nothing changes (assertions find that it is not in the GPU)
2923 * 3. Read/written by GPU
2924 * execbuffer calls set_domain (RENDER, RENDER)
2925 * flush_domains gets CPU
2926 * invalidate_domains gets GPU
2927 * clflush (obj)
2928 * MI_FLUSH and drm_agp_chipset_flush
2929 * 4. set_domain (CPU, CPU)
2930 * flush_domains gets GPU
2931 * invalidate_domains gets CPU
2932 * wait_rendering (obj) to make sure all drawing is complete.
2933 * This will include an MI_FLUSH to get the data from GPU
2934 * to memory
2935 * clflush (obj) to invalidate the CPU cache
2936 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2937 * 5. Read/written by CPU
2938 * cache lines are loaded and dirtied
2939 * 6. Read written by GPU
2940 * Same as last GPU access
2941 *
2942 * Case 3: The constant buffer
2943 *
2944 * 1. Allocated
2945 * 2. Written by CPU
2946 * 3. Read by GPU
2947 * 4. Updated (written) by CPU again
2948 * 5. Read by GPU
2949 *
2950 * 1. Allocated
2951 * (CPU, CPU)
2952 * 2. Written by CPU
2953 * (CPU, CPU)
2954 * 3. Read by GPU
2955 * (CPU+RENDER, 0)
2956 * flush_domains = CPU
2957 * invalidate_domains = RENDER
2958 * clflush (obj)
2959 * MI_FLUSH
2960 * drm_agp_chipset_flush
2961 * 4. Updated (written) by CPU again
2962 * (CPU, CPU)
2963 * flush_domains = 0 (no previous write domain)
2964 * invalidate_domains = 0 (no new read domains)
2965 * 5. Read by GPU
2966 * (CPU+RENDER, 0)
2967 * flush_domains = CPU
2968 * invalidate_domains = RENDER
2969 * clflush (obj)
2970 * MI_FLUSH
2971 * drm_agp_chipset_flush
2972 */
c0d90829 2973static void
8b0e378a 2974i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2975{
2976 struct drm_device *dev = obj->dev;
9220434a 2977 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2978 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2979 uint32_t invalidate_domains = 0;
2980 uint32_t flush_domains = 0;
1c5d22f7 2981 uint32_t old_read_domains;
e47c68e9 2982
8b0e378a
EA
2983 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2984 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2985
652c393a
JB
2986 intel_mark_busy(dev, obj);
2987
673a394b
EA
2988#if WATCH_BUF
2989 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2990 __func__, obj,
8b0e378a
EA
2991 obj->read_domains, obj->pending_read_domains,
2992 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2993#endif
2994 /*
2995 * If the object isn't moving to a new write domain,
2996 * let the object stay in multiple read domains
2997 */
8b0e378a
EA
2998 if (obj->pending_write_domain == 0)
2999 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3000 else
3001 obj_priv->dirty = 1;
3002
3003 /*
3004 * Flush the current write domain if
3005 * the new read domains don't match. Invalidate
3006 * any read domains which differ from the old
3007 * write domain
3008 */
8b0e378a
EA
3009 if (obj->write_domain &&
3010 obj->write_domain != obj->pending_read_domains) {
673a394b 3011 flush_domains |= obj->write_domain;
8b0e378a
EA
3012 invalidate_domains |=
3013 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3014 }
3015 /*
3016 * Invalidate any read caches which may have
3017 * stale data. That is, any new read domains.
3018 */
8b0e378a 3019 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3020 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3021#if WATCH_BUF
3022 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3023 __func__, flush_domains, invalidate_domains);
3024#endif
673a394b
EA
3025 i915_gem_clflush_object(obj);
3026 }
3027
1c5d22f7
CW
3028 old_read_domains = obj->read_domains;
3029
efbeed96
EA
3030 /* The actual obj->write_domain will be updated with
3031 * pending_write_domain after we emit the accumulated flush for all
3032 * of our domain changes in execbuffers (which clears objects'
3033 * write_domains). So if we have a current write domain that we
3034 * aren't changing, set pending_write_domain to that.
3035 */
3036 if (flush_domains == 0 && obj->pending_write_domain == 0)
3037 obj->pending_write_domain = obj->write_domain;
8b0e378a 3038 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3039
3040 dev->invalidate_domains |= invalidate_domains;
3041 dev->flush_domains |= flush_domains;
9220434a
CW
3042 if (obj_priv->ring)
3043 dev_priv->mm.flush_rings |= obj_priv->ring->id;
673a394b
EA
3044#if WATCH_BUF
3045 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3046 __func__,
3047 obj->read_domains, obj->write_domain,
3048 dev->invalidate_domains, dev->flush_domains);
3049#endif
1c5d22f7
CW
3050
3051 trace_i915_gem_object_change_domain(obj,
3052 old_read_domains,
3053 obj->write_domain);
673a394b
EA
3054}
3055
3056/**
e47c68e9 3057 * Moves the object from a partially CPU read to a full one.
673a394b 3058 *
e47c68e9
EA
3059 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3060 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3061 */
e47c68e9
EA
3062static void
3063i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3064{
23010e43 3065 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3066
e47c68e9
EA
3067 if (!obj_priv->page_cpu_valid)
3068 return;
3069
3070 /* If we're partially in the CPU read domain, finish moving it in.
3071 */
3072 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3073 int i;
3074
3075 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3076 if (obj_priv->page_cpu_valid[i])
3077 continue;
856fa198 3078 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3079 }
e47c68e9
EA
3080 }
3081
3082 /* Free the page_cpu_valid mappings which are now stale, whether
3083 * or not we've got I915_GEM_DOMAIN_CPU.
3084 */
9a298b2a 3085 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3086 obj_priv->page_cpu_valid = NULL;
3087}
3088
3089/**
3090 * Set the CPU read domain on a range of the object.
3091 *
3092 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3093 * not entirely valid. The page_cpu_valid member of the object flags which
3094 * pages have been flushed, and will be respected by
3095 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3096 * of the whole object.
3097 *
3098 * This function returns when the move is complete, including waiting on
3099 * flushes to occur.
3100 */
3101static int
3102i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3103 uint64_t offset, uint64_t size)
3104{
23010e43 3105 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3106 uint32_t old_read_domains;
e47c68e9 3107 int i, ret;
673a394b 3108
e47c68e9
EA
3109 if (offset == 0 && size == obj->size)
3110 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3111
ba3d8d74 3112 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3113 if (ret != 0)
6a47baa6 3114 return ret;
e47c68e9
EA
3115 i915_gem_object_flush_gtt_write_domain(obj);
3116
3117 /* If we're already fully in the CPU read domain, we're done. */
3118 if (obj_priv->page_cpu_valid == NULL &&
3119 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3120 return 0;
673a394b 3121
e47c68e9
EA
3122 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3123 * newly adding I915_GEM_DOMAIN_CPU
3124 */
673a394b 3125 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3126 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3127 GFP_KERNEL);
e47c68e9
EA
3128 if (obj_priv->page_cpu_valid == NULL)
3129 return -ENOMEM;
3130 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3131 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3132
3133 /* Flush the cache on any pages that are still invalid from the CPU's
3134 * perspective.
3135 */
e47c68e9
EA
3136 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3137 i++) {
673a394b
EA
3138 if (obj_priv->page_cpu_valid[i])
3139 continue;
3140
856fa198 3141 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3142
3143 obj_priv->page_cpu_valid[i] = 1;
3144 }
3145
e47c68e9
EA
3146 /* It should now be out of any other write domains, and we can update
3147 * the domain values for our changes.
3148 */
3149 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3150
1c5d22f7 3151 old_read_domains = obj->read_domains;
e47c68e9
EA
3152 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3153
1c5d22f7
CW
3154 trace_i915_gem_object_change_domain(obj,
3155 old_read_domains,
3156 obj->write_domain);
3157
673a394b
EA
3158 return 0;
3159}
3160
673a394b
EA
3161/**
3162 * Pin an object to the GTT and evaluate the relocations landing in it.
3163 */
3164static int
3165i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3166 struct drm_file *file_priv,
76446cac 3167 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3168 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3169{
3170 struct drm_device *dev = obj->dev;
0839ccb8 3171 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3172 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3173 int i, ret;
0839ccb8 3174 void __iomem *reloc_page;
76446cac
JB
3175 bool need_fence;
3176
3177 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3178 obj_priv->tiling_mode != I915_TILING_NONE;
3179
3180 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3181 if (need_fence &&
3182 !i915_gem_object_fence_offset_ok(obj,
3183 obj_priv->tiling_mode)) {
3184 ret = i915_gem_object_unbind(obj);
3185 if (ret)
3186 return ret;
3187 }
673a394b
EA
3188
3189 /* Choose the GTT offset for our buffer and put it there. */
3190 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3191 if (ret)
3192 return ret;
3193
76446cac
JB
3194 /*
3195 * Pre-965 chips need a fence register set up in order to
3196 * properly handle blits to/from tiled surfaces.
3197 */
3198 if (need_fence) {
53640e1d 3199 ret = i915_gem_object_get_fence_reg(obj, true);
76446cac 3200 if (ret != 0) {
76446cac
JB
3201 i915_gem_object_unpin(obj);
3202 return ret;
3203 }
53640e1d
CW
3204
3205 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
76446cac
JB
3206 }
3207
673a394b
EA
3208 entry->offset = obj_priv->gtt_offset;
3209
673a394b
EA
3210 /* Apply the relocations, using the GTT aperture to avoid cache
3211 * flushing requirements.
3212 */
3213 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3214 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3215 struct drm_gem_object *target_obj;
3216 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3217 uint32_t reloc_val, reloc_offset;
3218 uint32_t __iomem *reloc_entry;
673a394b 3219
673a394b 3220 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3221 reloc->target_handle);
673a394b
EA
3222 if (target_obj == NULL) {
3223 i915_gem_object_unpin(obj);
bf79cb91 3224 return -ENOENT;
673a394b 3225 }
23010e43 3226 target_obj_priv = to_intel_bo(target_obj);
673a394b 3227
8542a0bb
CW
3228#if WATCH_RELOC
3229 DRM_INFO("%s: obj %p offset %08x target %d "
3230 "read %08x write %08x gtt %08x "
3231 "presumed %08x delta %08x\n",
3232 __func__,
3233 obj,
3234 (int) reloc->offset,
3235 (int) reloc->target_handle,
3236 (int) reloc->read_domains,
3237 (int) reloc->write_domain,
3238 (int) target_obj_priv->gtt_offset,
3239 (int) reloc->presumed_offset,
3240 reloc->delta);
3241#endif
3242
673a394b
EA
3243 /* The target buffer should have appeared before us in the
3244 * exec_object list, so it should have a GTT space bound by now.
3245 */
3246 if (target_obj_priv->gtt_space == NULL) {
3247 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3248 reloc->target_handle);
673a394b
EA
3249 drm_gem_object_unreference(target_obj);
3250 i915_gem_object_unpin(obj);
3251 return -EINVAL;
3252 }
3253
8542a0bb 3254 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3255 if (reloc->write_domain & (reloc->write_domain - 1)) {
3256 DRM_ERROR("reloc with multiple write domains: "
3257 "obj %p target %d offset %d "
3258 "read %08x write %08x",
3259 obj, reloc->target_handle,
3260 (int) reloc->offset,
3261 reloc->read_domains,
3262 reloc->write_domain);
3263 return -EINVAL;
3264 }
40a5f0de
EA
3265 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3266 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3267 DRM_ERROR("reloc with read/write CPU domains: "
3268 "obj %p target %d offset %d "
3269 "read %08x write %08x",
40a5f0de
EA
3270 obj, reloc->target_handle,
3271 (int) reloc->offset,
3272 reloc->read_domains,
3273 reloc->write_domain);
491152b8
CW
3274 drm_gem_object_unreference(target_obj);
3275 i915_gem_object_unpin(obj);
e47c68e9
EA
3276 return -EINVAL;
3277 }
40a5f0de
EA
3278 if (reloc->write_domain && target_obj->pending_write_domain &&
3279 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3280 DRM_ERROR("Write domain conflict: "
3281 "obj %p target %d offset %d "
3282 "new %08x old %08x\n",
40a5f0de
EA
3283 obj, reloc->target_handle,
3284 (int) reloc->offset,
3285 reloc->write_domain,
673a394b
EA
3286 target_obj->pending_write_domain);
3287 drm_gem_object_unreference(target_obj);
3288 i915_gem_object_unpin(obj);
3289 return -EINVAL;
3290 }
3291
40a5f0de
EA
3292 target_obj->pending_read_domains |= reloc->read_domains;
3293 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3294
3295 /* If the relocation already has the right value in it, no
3296 * more work needs to be done.
3297 */
40a5f0de 3298 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3299 drm_gem_object_unreference(target_obj);
3300 continue;
3301 }
3302
8542a0bb
CW
3303 /* Check that the relocation address is valid... */
3304 if (reloc->offset > obj->size - 4) {
3305 DRM_ERROR("Relocation beyond object bounds: "
3306 "obj %p target %d offset %d size %d.\n",
3307 obj, reloc->target_handle,
3308 (int) reloc->offset, (int) obj->size);
3309 drm_gem_object_unreference(target_obj);
3310 i915_gem_object_unpin(obj);
3311 return -EINVAL;
3312 }
3313 if (reloc->offset & 3) {
3314 DRM_ERROR("Relocation not 4-byte aligned: "
3315 "obj %p target %d offset %d.\n",
3316 obj, reloc->target_handle,
3317 (int) reloc->offset);
3318 drm_gem_object_unreference(target_obj);
3319 i915_gem_object_unpin(obj);
3320 return -EINVAL;
3321 }
3322
3323 /* and points to somewhere within the target object. */
3324 if (reloc->delta >= target_obj->size) {
3325 DRM_ERROR("Relocation beyond target object bounds: "
3326 "obj %p target %d delta %d size %d.\n",
3327 obj, reloc->target_handle,
3328 (int) reloc->delta, (int) target_obj->size);
3329 drm_gem_object_unreference(target_obj);
3330 i915_gem_object_unpin(obj);
3331 return -EINVAL;
3332 }
3333
2ef7eeaa
EA
3334 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3335 if (ret != 0) {
3336 drm_gem_object_unreference(target_obj);
3337 i915_gem_object_unpin(obj);
3338 return -EINVAL;
673a394b
EA
3339 }
3340
3341 /* Map the page containing the relocation we're going to
3342 * perform.
3343 */
40a5f0de 3344 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3345 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3346 (reloc_offset &
fca3ec01
CW
3347 ~(PAGE_SIZE - 1)),
3348 KM_USER0);
3043c60c 3349 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3350 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3351 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3352
3353#if WATCH_BUF
3354 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3355 obj, (unsigned int) reloc->offset,
673a394b
EA
3356 readl(reloc_entry), reloc_val);
3357#endif
3358 writel(reloc_val, reloc_entry);
fca3ec01 3359 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3360
40a5f0de
EA
3361 /* The updated presumed offset for this entry will be
3362 * copied back out to the user.
673a394b 3363 */
40a5f0de 3364 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3365
3366 drm_gem_object_unreference(target_obj);
3367 }
3368
673a394b
EA
3369#if WATCH_BUF
3370 if (0)
3371 i915_gem_dump_object(obj, 128, __func__, ~0);
3372#endif
3373 return 0;
3374}
3375
673a394b
EA
3376/* Throttle our rendering by waiting until the ring has completed our requests
3377 * emitted over 20 msec ago.
3378 *
b962442e
EA
3379 * Note that if we were to use the current jiffies each time around the loop,
3380 * we wouldn't escape the function with any frames outstanding if the time to
3381 * render a frame was over 20ms.
3382 *
673a394b
EA
3383 * This should get us reasonable parallelism between CPU and GPU but also
3384 * relatively low latency when blocking on a particular request to finish.
3385 */
3386static int
3387i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3388{
3389 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3390 int ret = 0;
b962442e 3391 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3392
3393 mutex_lock(&dev->struct_mutex);
b962442e
EA
3394 while (!list_empty(&i915_file_priv->mm.request_list)) {
3395 struct drm_i915_gem_request *request;
3396
3397 request = list_first_entry(&i915_file_priv->mm.request_list,
3398 struct drm_i915_gem_request,
3399 client_list);
3400
3401 if (time_after_eq(request->emitted_jiffies, recent_enough))
3402 break;
3403
852835f3 3404 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3405 if (ret != 0)
3406 break;
3407 }
673a394b 3408 mutex_unlock(&dev->struct_mutex);
b962442e 3409
673a394b
EA
3410 return ret;
3411}
3412
40a5f0de 3413static int
76446cac 3414i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3415 uint32_t buffer_count,
3416 struct drm_i915_gem_relocation_entry **relocs)
3417{
3418 uint32_t reloc_count = 0, reloc_index = 0, i;
3419 int ret;
3420
3421 *relocs = NULL;
3422 for (i = 0; i < buffer_count; i++) {
3423 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3424 return -EINVAL;
3425 reloc_count += exec_list[i].relocation_count;
3426 }
3427
8e7d2b2c 3428 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3429 if (*relocs == NULL) {
3430 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3431 return -ENOMEM;
76446cac 3432 }
40a5f0de
EA
3433
3434 for (i = 0; i < buffer_count; i++) {
3435 struct drm_i915_gem_relocation_entry __user *user_relocs;
3436
3437 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3438
3439 ret = copy_from_user(&(*relocs)[reloc_index],
3440 user_relocs,
3441 exec_list[i].relocation_count *
3442 sizeof(**relocs));
3443 if (ret != 0) {
8e7d2b2c 3444 drm_free_large(*relocs);
40a5f0de 3445 *relocs = NULL;
2bc43b5c 3446 return -EFAULT;
40a5f0de
EA
3447 }
3448
3449 reloc_index += exec_list[i].relocation_count;
3450 }
3451
2bc43b5c 3452 return 0;
40a5f0de
EA
3453}
3454
3455static int
76446cac 3456i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3457 uint32_t buffer_count,
3458 struct drm_i915_gem_relocation_entry *relocs)
3459{
3460 uint32_t reloc_count = 0, i;
2bc43b5c 3461 int ret = 0;
40a5f0de 3462
93533c29
CW
3463 if (relocs == NULL)
3464 return 0;
3465
40a5f0de
EA
3466 for (i = 0; i < buffer_count; i++) {
3467 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3468 int unwritten;
40a5f0de
EA
3469
3470 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3471
2bc43b5c
FM
3472 unwritten = copy_to_user(user_relocs,
3473 &relocs[reloc_count],
3474 exec_list[i].relocation_count *
3475 sizeof(*relocs));
3476
3477 if (unwritten) {
3478 ret = -EFAULT;
3479 goto err;
40a5f0de
EA
3480 }
3481
3482 reloc_count += exec_list[i].relocation_count;
3483 }
3484
2bc43b5c 3485err:
8e7d2b2c 3486 drm_free_large(relocs);
40a5f0de
EA
3487
3488 return ret;
3489}
3490
83d60795 3491static int
76446cac 3492i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3493 uint64_t exec_offset)
3494{
3495 uint32_t exec_start, exec_len;
3496
3497 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3498 exec_len = (uint32_t) exec->batch_len;
3499
3500 if ((exec_start | exec_len) & 0x7)
3501 return -EINVAL;
3502
3503 if (!exec_start)
3504 return -EINVAL;
3505
3506 return 0;
3507}
3508
e6c3a2a6 3509static int
6b95a207
KH
3510i915_gem_wait_for_pending_flip(struct drm_device *dev,
3511 struct drm_gem_object **object_list,
3512 int count)
3513{
3514 drm_i915_private_t *dev_priv = dev->dev_private;
3515 struct drm_i915_gem_object *obj_priv;
3516 DEFINE_WAIT(wait);
3517 int i, ret = 0;
3518
3519 for (;;) {
3520 prepare_to_wait(&dev_priv->pending_flip_queue,
3521 &wait, TASK_INTERRUPTIBLE);
3522 for (i = 0; i < count; i++) {
23010e43 3523 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3524 if (atomic_read(&obj_priv->pending_flip) > 0)
3525 break;
3526 }
3527 if (i == count)
3528 break;
3529
3530 if (!signal_pending(current)) {
3531 mutex_unlock(&dev->struct_mutex);
3532 schedule();
3533 mutex_lock(&dev->struct_mutex);
3534 continue;
3535 }
3536 ret = -ERESTARTSYS;
3537 break;
3538 }
3539 finish_wait(&dev_priv->pending_flip_queue, &wait);
3540
3541 return ret;
3542}
3543
8dc5d147 3544static int
76446cac
JB
3545i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3546 struct drm_file *file_priv,
3547 struct drm_i915_gem_execbuffer2 *args,
3548 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3549{
3550 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3551 struct drm_gem_object **object_list = NULL;
3552 struct drm_gem_object *batch_obj;
b70d11da 3553 struct drm_i915_gem_object *obj_priv;
201361a5 3554 struct drm_clip_rect *cliprects = NULL;
93533c29 3555 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3556 struct drm_i915_gem_request *request = NULL;
76446cac 3557 int ret = 0, ret2, i, pinned = 0;
673a394b 3558 uint64_t exec_offset;
5c12a07e 3559 uint32_t reloc_index;
6b95a207 3560 int pin_tries, flips;
673a394b 3561
852835f3
ZN
3562 struct intel_ring_buffer *ring = NULL;
3563
673a394b
EA
3564#if WATCH_EXEC
3565 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3566 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3567#endif
d1b851fc
ZN
3568 if (args->flags & I915_EXEC_BSD) {
3569 if (!HAS_BSD(dev)) {
3570 DRM_ERROR("execbuf with wrong flag\n");
3571 return -EINVAL;
3572 }
3573 ring = &dev_priv->bsd_ring;
3574 } else {
3575 ring = &dev_priv->render_ring;
3576 }
3577
4f481ed2
EA
3578 if (args->buffer_count < 1) {
3579 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3580 return -EINVAL;
3581 }
c8e0f93a 3582 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3583 if (object_list == NULL) {
3584 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3585 args->buffer_count);
3586 ret = -ENOMEM;
3587 goto pre_mutex_err;
3588 }
673a394b 3589
201361a5 3590 if (args->num_cliprects != 0) {
9a298b2a
EA
3591 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3592 GFP_KERNEL);
a40e8d31
OA
3593 if (cliprects == NULL) {
3594 ret = -ENOMEM;
201361a5 3595 goto pre_mutex_err;
a40e8d31 3596 }
201361a5
EA
3597
3598 ret = copy_from_user(cliprects,
3599 (struct drm_clip_rect __user *)
3600 (uintptr_t) args->cliprects_ptr,
3601 sizeof(*cliprects) * args->num_cliprects);
3602 if (ret != 0) {
3603 DRM_ERROR("copy %d cliprects failed: %d\n",
3604 args->num_cliprects, ret);
c877cdce 3605 ret = -EFAULT;
201361a5
EA
3606 goto pre_mutex_err;
3607 }
3608 }
3609
8dc5d147
CW
3610 request = kzalloc(sizeof(*request), GFP_KERNEL);
3611 if (request == NULL) {
3612 ret = -ENOMEM;
3613 goto pre_mutex_err;
3614 }
3615
40a5f0de
EA
3616 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3617 &relocs);
3618 if (ret != 0)
3619 goto pre_mutex_err;
3620
673a394b
EA
3621 mutex_lock(&dev->struct_mutex);
3622
3623 i915_verify_inactive(dev, __FILE__, __LINE__);
3624
ba1234d1 3625 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3626 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3627 ret = -EIO;
3628 goto pre_mutex_err;
673a394b
EA
3629 }
3630
3631 if (dev_priv->mm.suspended) {
673a394b 3632 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3633 ret = -EBUSY;
3634 goto pre_mutex_err;
673a394b
EA
3635 }
3636
ac94a962 3637 /* Look up object handles */
6b95a207 3638 flips = 0;
673a394b
EA
3639 for (i = 0; i < args->buffer_count; i++) {
3640 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3641 exec_list[i].handle);
3642 if (object_list[i] == NULL) {
3643 DRM_ERROR("Invalid object handle %d at index %d\n",
3644 exec_list[i].handle, i);
0ce907f8
CW
3645 /* prevent error path from reading uninitialized data */
3646 args->buffer_count = i + 1;
bf79cb91 3647 ret = -ENOENT;
673a394b
EA
3648 goto err;
3649 }
b70d11da 3650
23010e43 3651 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3652 if (obj_priv->in_execbuffer) {
3653 DRM_ERROR("Object %p appears more than once in object list\n",
3654 object_list[i]);
0ce907f8
CW
3655 /* prevent error path from reading uninitialized data */
3656 args->buffer_count = i + 1;
bf79cb91 3657 ret = -EINVAL;
b70d11da
KH
3658 goto err;
3659 }
3660 obj_priv->in_execbuffer = true;
6b95a207
KH
3661 flips += atomic_read(&obj_priv->pending_flip);
3662 }
3663
3664 if (flips > 0) {
3665 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3666 args->buffer_count);
3667 if (ret)
3668 goto err;
ac94a962 3669 }
673a394b 3670
ac94a962
KP
3671 /* Pin and relocate */
3672 for (pin_tries = 0; ; pin_tries++) {
3673 ret = 0;
40a5f0de
EA
3674 reloc_index = 0;
3675
ac94a962
KP
3676 for (i = 0; i < args->buffer_count; i++) {
3677 object_list[i]->pending_read_domains = 0;
3678 object_list[i]->pending_write_domain = 0;
3679 ret = i915_gem_object_pin_and_relocate(object_list[i],
3680 file_priv,
40a5f0de
EA
3681 &exec_list[i],
3682 &relocs[reloc_index]);
ac94a962
KP
3683 if (ret)
3684 break;
3685 pinned = i + 1;
40a5f0de 3686 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3687 }
3688 /* success */
3689 if (ret == 0)
3690 break;
3691
3692 /* error other than GTT full, or we've already tried again */
2939e1f5 3693 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3694 if (ret != -ERESTARTSYS) {
3695 unsigned long long total_size = 0;
3d1cc470
CW
3696 int num_fences = 0;
3697 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3698 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3699
07f73f69 3700 total_size += object_list[i]->size;
3d1cc470
CW
3701 num_fences +=
3702 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3703 obj_priv->tiling_mode != I915_TILING_NONE;
3704 }
3705 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3706 pinned+1, args->buffer_count,
3d1cc470
CW
3707 total_size, num_fences,
3708 ret);
07f73f69
CW
3709 DRM_ERROR("%d objects [%d pinned], "
3710 "%d object bytes [%d pinned], "
3711 "%d/%d gtt bytes\n",
3712 atomic_read(&dev->object_count),
3713 atomic_read(&dev->pin_count),
3714 atomic_read(&dev->object_memory),
3715 atomic_read(&dev->pin_memory),
3716 atomic_read(&dev->gtt_memory),
3717 dev->gtt_total);
3718 }
673a394b
EA
3719 goto err;
3720 }
ac94a962
KP
3721
3722 /* unpin all of our buffers */
3723 for (i = 0; i < pinned; i++)
3724 i915_gem_object_unpin(object_list[i]);
b1177636 3725 pinned = 0;
ac94a962
KP
3726
3727 /* evict everyone we can from the aperture */
3728 ret = i915_gem_evict_everything(dev);
07f73f69 3729 if (ret && ret != -ENOSPC)
ac94a962 3730 goto err;
673a394b
EA
3731 }
3732
3733 /* Set the pending read domains for the batch buffer to COMMAND */
3734 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3735 if (batch_obj->pending_write_domain) {
3736 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3737 ret = -EINVAL;
3738 goto err;
3739 }
3740 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3741
83d60795
CW
3742 /* Sanity check the batch buffer, prior to moving objects */
3743 exec_offset = exec_list[args->buffer_count - 1].offset;
3744 ret = i915_gem_check_execbuffer (args, exec_offset);
3745 if (ret != 0) {
3746 DRM_ERROR("execbuf with invalid offset/length\n");
3747 goto err;
3748 }
3749
673a394b
EA
3750 i915_verify_inactive(dev, __FILE__, __LINE__);
3751
646f0f6e
KP
3752 /* Zero the global flush/invalidate flags. These
3753 * will be modified as new domains are computed
3754 * for each object
3755 */
3756 dev->invalidate_domains = 0;
3757 dev->flush_domains = 0;
9220434a 3758 dev_priv->mm.flush_rings = 0;
646f0f6e 3759
673a394b
EA
3760 for (i = 0; i < args->buffer_count; i++) {
3761 struct drm_gem_object *obj = object_list[i];
673a394b 3762
646f0f6e 3763 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3764 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3765 }
3766
3767 i915_verify_inactive(dev, __FILE__, __LINE__);
3768
646f0f6e
KP
3769 if (dev->invalidate_domains | dev->flush_domains) {
3770#if WATCH_EXEC
3771 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3772 __func__,
3773 dev->invalidate_domains,
3774 dev->flush_domains);
3775#endif
c78ec30b 3776 i915_gem_flush(dev, file_priv,
646f0f6e 3777 dev->invalidate_domains,
9220434a
CW
3778 dev->flush_domains,
3779 dev_priv->mm.flush_rings);
a6910434
DV
3780 }
3781
efbeed96
EA
3782 for (i = 0; i < args->buffer_count; i++) {
3783 struct drm_gem_object *obj = object_list[i];
23010e43 3784 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3785 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3786
3787 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3788 if (obj->write_domain)
3789 list_move_tail(&obj_priv->gpu_write_list,
3790 &dev_priv->mm.gpu_write_list);
3791 else
3792 list_del_init(&obj_priv->gpu_write_list);
3793
1c5d22f7
CW
3794 trace_i915_gem_object_change_domain(obj,
3795 obj->read_domains,
3796 old_write_domain);
efbeed96
EA
3797 }
3798
673a394b
EA
3799 i915_verify_inactive(dev, __FILE__, __LINE__);
3800
3801#if WATCH_COHERENCY
3802 for (i = 0; i < args->buffer_count; i++) {
3803 i915_gem_object_check_coherency(object_list[i],
3804 exec_list[i].handle);
3805 }
3806#endif
3807
673a394b 3808#if WATCH_EXEC
6911a9b8 3809 i915_gem_dump_object(batch_obj,
673a394b
EA
3810 args->batch_len,
3811 __func__,
3812 ~0);
3813#endif
3814
673a394b 3815 /* Exec the batchbuffer */
852835f3
ZN
3816 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3817 cliprects, exec_offset);
673a394b
EA
3818 if (ret) {
3819 DRM_ERROR("dispatch failed %d\n", ret);
3820 goto err;
3821 }
3822
3823 /*
3824 * Ensure that the commands in the batch buffer are
3825 * finished before the interrupt fires
3826 */
8a1a49f9 3827 i915_retire_commands(dev, ring);
673a394b
EA
3828
3829 i915_verify_inactive(dev, __FILE__, __LINE__);
3830
617dbe27
DV
3831 for (i = 0; i < args->buffer_count; i++) {
3832 struct drm_gem_object *obj = object_list[i];
3833 obj_priv = to_intel_bo(obj);
3834
3835 i915_gem_object_move_to_active(obj, ring);
3836#if WATCH_LRU
3837 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3838#endif
3839 }
5c12a07e 3840 i915_add_request(dev, file_priv, request, ring);
8dc5d147 3841 request = NULL;
673a394b 3842
673a394b
EA
3843#if WATCH_LRU
3844 i915_dump_lru(dev, __func__);
3845#endif
3846
3847 i915_verify_inactive(dev, __FILE__, __LINE__);
3848
673a394b 3849err:
aad87dff
JL
3850 for (i = 0; i < pinned; i++)
3851 i915_gem_object_unpin(object_list[i]);
3852
b70d11da
KH
3853 for (i = 0; i < args->buffer_count; i++) {
3854 if (object_list[i]) {
23010e43 3855 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3856 obj_priv->in_execbuffer = false;
3857 }
aad87dff 3858 drm_gem_object_unreference(object_list[i]);
b70d11da 3859 }
673a394b 3860
673a394b
EA
3861 mutex_unlock(&dev->struct_mutex);
3862
93533c29 3863pre_mutex_err:
40a5f0de
EA
3864 /* Copy the updated relocations out regardless of current error
3865 * state. Failure to update the relocs would mean that the next
3866 * time userland calls execbuf, it would do so with presumed offset
3867 * state that didn't match the actual object state.
3868 */
3869 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3870 relocs);
3871 if (ret2 != 0) {
3872 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3873
3874 if (ret == 0)
3875 ret = ret2;
3876 }
3877
8e7d2b2c 3878 drm_free_large(object_list);
9a298b2a 3879 kfree(cliprects);
8dc5d147 3880 kfree(request);
673a394b
EA
3881
3882 return ret;
3883}
3884
76446cac
JB
3885/*
3886 * Legacy execbuffer just creates an exec2 list from the original exec object
3887 * list array and passes it to the real function.
3888 */
3889int
3890i915_gem_execbuffer(struct drm_device *dev, void *data,
3891 struct drm_file *file_priv)
3892{
3893 struct drm_i915_gem_execbuffer *args = data;
3894 struct drm_i915_gem_execbuffer2 exec2;
3895 struct drm_i915_gem_exec_object *exec_list = NULL;
3896 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3897 int ret, i;
3898
3899#if WATCH_EXEC
3900 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3901 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3902#endif
3903
3904 if (args->buffer_count < 1) {
3905 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3906 return -EINVAL;
3907 }
3908
3909 /* Copy in the exec list from userland */
3910 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3911 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3912 if (exec_list == NULL || exec2_list == NULL) {
3913 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3914 args->buffer_count);
3915 drm_free_large(exec_list);
3916 drm_free_large(exec2_list);
3917 return -ENOMEM;
3918 }
3919 ret = copy_from_user(exec_list,
3920 (struct drm_i915_relocation_entry __user *)
3921 (uintptr_t) args->buffers_ptr,
3922 sizeof(*exec_list) * args->buffer_count);
3923 if (ret != 0) {
3924 DRM_ERROR("copy %d exec entries failed %d\n",
3925 args->buffer_count, ret);
3926 drm_free_large(exec_list);
3927 drm_free_large(exec2_list);
3928 return -EFAULT;
3929 }
3930
3931 for (i = 0; i < args->buffer_count; i++) {
3932 exec2_list[i].handle = exec_list[i].handle;
3933 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3934 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3935 exec2_list[i].alignment = exec_list[i].alignment;
3936 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3937 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3938 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3939 else
3940 exec2_list[i].flags = 0;
3941 }
3942
3943 exec2.buffers_ptr = args->buffers_ptr;
3944 exec2.buffer_count = args->buffer_count;
3945 exec2.batch_start_offset = args->batch_start_offset;
3946 exec2.batch_len = args->batch_len;
3947 exec2.DR1 = args->DR1;
3948 exec2.DR4 = args->DR4;
3949 exec2.num_cliprects = args->num_cliprects;
3950 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3951 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3952
3953 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3954 if (!ret) {
3955 /* Copy the new buffer offsets back to the user's exec list. */
3956 for (i = 0; i < args->buffer_count; i++)
3957 exec_list[i].offset = exec2_list[i].offset;
3958 /* ... and back out to userspace */
3959 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3960 (uintptr_t) args->buffers_ptr,
3961 exec_list,
3962 sizeof(*exec_list) * args->buffer_count);
3963 if (ret) {
3964 ret = -EFAULT;
3965 DRM_ERROR("failed to copy %d exec entries "
3966 "back to user (%d)\n",
3967 args->buffer_count, ret);
3968 }
76446cac
JB
3969 }
3970
3971 drm_free_large(exec_list);
3972 drm_free_large(exec2_list);
3973 return ret;
3974}
3975
3976int
3977i915_gem_execbuffer2(struct drm_device *dev, void *data,
3978 struct drm_file *file_priv)
3979{
3980 struct drm_i915_gem_execbuffer2 *args = data;
3981 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3982 int ret;
3983
3984#if WATCH_EXEC
3985 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3986 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3987#endif
3988
3989 if (args->buffer_count < 1) {
3990 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3991 return -EINVAL;
3992 }
3993
3994 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3995 if (exec2_list == NULL) {
3996 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3997 args->buffer_count);
3998 return -ENOMEM;
3999 }
4000 ret = copy_from_user(exec2_list,
4001 (struct drm_i915_relocation_entry __user *)
4002 (uintptr_t) args->buffers_ptr,
4003 sizeof(*exec2_list) * args->buffer_count);
4004 if (ret != 0) {
4005 DRM_ERROR("copy %d exec entries failed %d\n",
4006 args->buffer_count, ret);
4007 drm_free_large(exec2_list);
4008 return -EFAULT;
4009 }
4010
4011 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4012 if (!ret) {
4013 /* Copy the new buffer offsets back to the user's exec list. */
4014 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4015 (uintptr_t) args->buffers_ptr,
4016 exec2_list,
4017 sizeof(*exec2_list) * args->buffer_count);
4018 if (ret) {
4019 ret = -EFAULT;
4020 DRM_ERROR("failed to copy %d exec entries "
4021 "back to user (%d)\n",
4022 args->buffer_count, ret);
4023 }
4024 }
4025
4026 drm_free_large(exec2_list);
4027 return ret;
4028}
4029
673a394b
EA
4030int
4031i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4032{
4033 struct drm_device *dev = obj->dev;
f13d3f73 4034 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4035 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4036 int ret;
4037
778c3544
DV
4038 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4039
673a394b 4040 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4041
4042 if (obj_priv->gtt_space != NULL) {
4043 if (alignment == 0)
4044 alignment = i915_gem_get_gtt_alignment(obj);
4045 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4046 WARN(obj_priv->pin_count,
4047 "bo is already pinned with incorrect alignment:"
4048 " offset=%x, req.alignment=%x\n",
4049 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4050 ret = i915_gem_object_unbind(obj);
4051 if (ret)
4052 return ret;
4053 }
4054 }
4055
673a394b
EA
4056 if (obj_priv->gtt_space == NULL) {
4057 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4058 if (ret)
673a394b 4059 return ret;
22c344e9 4060 }
76446cac 4061
673a394b
EA
4062 obj_priv->pin_count++;
4063
4064 /* If the object is not active and not pending a flush,
4065 * remove it from the inactive list
4066 */
4067 if (obj_priv->pin_count == 1) {
4068 atomic_inc(&dev->pin_count);
4069 atomic_add(obj->size, &dev->pin_memory);
f13d3f73
CW
4070 if (!obj_priv->active)
4071 list_move_tail(&obj_priv->list,
4072 &dev_priv->mm.pinned_list);
673a394b
EA
4073 }
4074 i915_verify_inactive(dev, __FILE__, __LINE__);
4075
4076 return 0;
4077}
4078
4079void
4080i915_gem_object_unpin(struct drm_gem_object *obj)
4081{
4082 struct drm_device *dev = obj->dev;
4083 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4084 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4085
4086 i915_verify_inactive(dev, __FILE__, __LINE__);
4087 obj_priv->pin_count--;
4088 BUG_ON(obj_priv->pin_count < 0);
4089 BUG_ON(obj_priv->gtt_space == NULL);
4090
4091 /* If the object is no longer pinned, and is
4092 * neither active nor being flushed, then stick it on
4093 * the inactive list
4094 */
4095 if (obj_priv->pin_count == 0) {
f13d3f73 4096 if (!obj_priv->active)
673a394b
EA
4097 list_move_tail(&obj_priv->list,
4098 &dev_priv->mm.inactive_list);
4099 atomic_dec(&dev->pin_count);
4100 atomic_sub(obj->size, &dev->pin_memory);
4101 }
4102 i915_verify_inactive(dev, __FILE__, __LINE__);
4103}
4104
4105int
4106i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4107 struct drm_file *file_priv)
4108{
4109 struct drm_i915_gem_pin *args = data;
4110 struct drm_gem_object *obj;
4111 struct drm_i915_gem_object *obj_priv;
4112 int ret;
4113
4114 mutex_lock(&dev->struct_mutex);
4115
4116 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4117 if (obj == NULL) {
4118 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4119 args->handle);
4120 mutex_unlock(&dev->struct_mutex);
bf79cb91 4121 return -ENOENT;
673a394b 4122 }
23010e43 4123 obj_priv = to_intel_bo(obj);
673a394b 4124
bb6baf76
CW
4125 if (obj_priv->madv != I915_MADV_WILLNEED) {
4126 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4127 drm_gem_object_unreference(obj);
4128 mutex_unlock(&dev->struct_mutex);
4129 return -EINVAL;
4130 }
4131
79e53945
JB
4132 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4133 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4134 args->handle);
96dec61d 4135 drm_gem_object_unreference(obj);
673a394b 4136 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4137 return -EINVAL;
4138 }
4139
4140 obj_priv->user_pin_count++;
4141 obj_priv->pin_filp = file_priv;
4142 if (obj_priv->user_pin_count == 1) {
4143 ret = i915_gem_object_pin(obj, args->alignment);
4144 if (ret != 0) {
4145 drm_gem_object_unreference(obj);
4146 mutex_unlock(&dev->struct_mutex);
4147 return ret;
4148 }
673a394b
EA
4149 }
4150
4151 /* XXX - flush the CPU caches for pinned objects
4152 * as the X server doesn't manage domains yet
4153 */
e47c68e9 4154 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4155 args->offset = obj_priv->gtt_offset;
4156 drm_gem_object_unreference(obj);
4157 mutex_unlock(&dev->struct_mutex);
4158
4159 return 0;
4160}
4161
4162int
4163i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4164 struct drm_file *file_priv)
4165{
4166 struct drm_i915_gem_pin *args = data;
4167 struct drm_gem_object *obj;
79e53945 4168 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4169
4170 mutex_lock(&dev->struct_mutex);
4171
4172 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4173 if (obj == NULL) {
4174 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4175 args->handle);
4176 mutex_unlock(&dev->struct_mutex);
bf79cb91 4177 return -ENOENT;
673a394b
EA
4178 }
4179
23010e43 4180 obj_priv = to_intel_bo(obj);
79e53945
JB
4181 if (obj_priv->pin_filp != file_priv) {
4182 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4183 args->handle);
4184 drm_gem_object_unreference(obj);
4185 mutex_unlock(&dev->struct_mutex);
4186 return -EINVAL;
4187 }
4188 obj_priv->user_pin_count--;
4189 if (obj_priv->user_pin_count == 0) {
4190 obj_priv->pin_filp = NULL;
4191 i915_gem_object_unpin(obj);
4192 }
673a394b
EA
4193
4194 drm_gem_object_unreference(obj);
4195 mutex_unlock(&dev->struct_mutex);
4196 return 0;
4197}
4198
4199int
4200i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4201 struct drm_file *file_priv)
4202{
4203 struct drm_i915_gem_busy *args = data;
4204 struct drm_gem_object *obj;
4205 struct drm_i915_gem_object *obj_priv;
4206
673a394b
EA
4207 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4208 if (obj == NULL) {
4209 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4210 args->handle);
bf79cb91 4211 return -ENOENT;
673a394b
EA
4212 }
4213
b1ce786c 4214 mutex_lock(&dev->struct_mutex);
d1b851fc 4215
0be555b6
CW
4216 /* Count all active objects as busy, even if they are currently not used
4217 * by the gpu. Users of this interface expect objects to eventually
4218 * become non-busy without any further actions, therefore emit any
4219 * necessary flushes here.
c4de0a5d 4220 */
0be555b6
CW
4221 obj_priv = to_intel_bo(obj);
4222 args->busy = obj_priv->active;
4223 if (args->busy) {
4224 /* Unconditionally flush objects, even when the gpu still uses this
4225 * object. Userspace calling this function indicates that it wants to
4226 * use this buffer rather sooner than later, so issuing the required
4227 * flush earlier is beneficial.
4228 */
c78ec30b
CW
4229 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4230 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4231 obj_priv->ring,
4232 0, obj->write_domain);
0be555b6
CW
4233
4234 /* Update the active list for the hardware's current position.
4235 * Otherwise this only updates on a delayed timer or when irqs
4236 * are actually unmasked, and our working set ends up being
4237 * larger than required.
4238 */
4239 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4240
4241 args->busy = obj_priv->active;
4242 }
673a394b
EA
4243
4244 drm_gem_object_unreference(obj);
4245 mutex_unlock(&dev->struct_mutex);
4246 return 0;
4247}
4248
4249int
4250i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4251 struct drm_file *file_priv)
4252{
4253 return i915_gem_ring_throttle(dev, file_priv);
4254}
4255
3ef94daa
CW
4256int
4257i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4258 struct drm_file *file_priv)
4259{
4260 struct drm_i915_gem_madvise *args = data;
4261 struct drm_gem_object *obj;
4262 struct drm_i915_gem_object *obj_priv;
4263
4264 switch (args->madv) {
4265 case I915_MADV_DONTNEED:
4266 case I915_MADV_WILLNEED:
4267 break;
4268 default:
4269 return -EINVAL;
4270 }
4271
4272 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4273 if (obj == NULL) {
4274 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4275 args->handle);
bf79cb91 4276 return -ENOENT;
3ef94daa
CW
4277 }
4278
4279 mutex_lock(&dev->struct_mutex);
23010e43 4280 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4281
4282 if (obj_priv->pin_count) {
4283 drm_gem_object_unreference(obj);
4284 mutex_unlock(&dev->struct_mutex);
4285
4286 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4287 return -EINVAL;
4288 }
4289
bb6baf76
CW
4290 if (obj_priv->madv != __I915_MADV_PURGED)
4291 obj_priv->madv = args->madv;
3ef94daa 4292
2d7ef395
CW
4293 /* if the object is no longer bound, discard its backing storage */
4294 if (i915_gem_object_is_purgeable(obj_priv) &&
4295 obj_priv->gtt_space == NULL)
4296 i915_gem_object_truncate(obj);
4297
bb6baf76
CW
4298 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4299
3ef94daa
CW
4300 drm_gem_object_unreference(obj);
4301 mutex_unlock(&dev->struct_mutex);
4302
4303 return 0;
4304}
4305
ac52bc56
DV
4306struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4307 size_t size)
4308{
c397b908 4309 struct drm_i915_gem_object *obj;
ac52bc56 4310
c397b908
DV
4311 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4312 if (obj == NULL)
4313 return NULL;
673a394b 4314
c397b908
DV
4315 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4316 kfree(obj);
4317 return NULL;
4318 }
673a394b 4319
c397b908
DV
4320 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4321 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4322
c397b908 4323 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4324 obj->base.driver_private = NULL;
c397b908
DV
4325 obj->fence_reg = I915_FENCE_REG_NONE;
4326 INIT_LIST_HEAD(&obj->list);
4327 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4328 obj->madv = I915_MADV_WILLNEED;
de151cf6 4329
c397b908
DV
4330 trace_i915_gem_object_create(&obj->base);
4331
4332 return &obj->base;
4333}
4334
4335int i915_gem_init_object(struct drm_gem_object *obj)
4336{
4337 BUG();
de151cf6 4338
673a394b
EA
4339 return 0;
4340}
4341
be72615b 4342static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4343{
de151cf6 4344 struct drm_device *dev = obj->dev;
be72615b 4345 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4346 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4347 int ret;
673a394b 4348
be72615b
CW
4349 ret = i915_gem_object_unbind(obj);
4350 if (ret == -ERESTARTSYS) {
4351 list_move(&obj_priv->list,
4352 &dev_priv->mm.deferred_free_list);
4353 return;
4354 }
673a394b 4355
7e616158
CW
4356 if (obj_priv->mmap_offset)
4357 i915_gem_free_mmap_offset(obj);
de151cf6 4358
c397b908
DV
4359 drm_gem_object_release(obj);
4360
9a298b2a 4361 kfree(obj_priv->page_cpu_valid);
280b713b 4362 kfree(obj_priv->bit_17);
c397b908 4363 kfree(obj_priv);
673a394b
EA
4364}
4365
be72615b
CW
4366void i915_gem_free_object(struct drm_gem_object *obj)
4367{
4368 struct drm_device *dev = obj->dev;
4369 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4370
4371 trace_i915_gem_object_destroy(obj);
4372
4373 while (obj_priv->pin_count > 0)
4374 i915_gem_object_unpin(obj);
4375
4376 if (obj_priv->phys_obj)
4377 i915_gem_detach_phys_object(dev, obj);
4378
4379 i915_gem_free_object_tail(obj);
4380}
4381
29105ccc
CW
4382int
4383i915_gem_idle(struct drm_device *dev)
4384{
4385 drm_i915_private_t *dev_priv = dev->dev_private;
4386 int ret;
28dfe52a 4387
29105ccc 4388 mutex_lock(&dev->struct_mutex);
1c5d22f7 4389
8187a2b7 4390 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4391 (dev_priv->render_ring.gem_object == NULL) ||
4392 (HAS_BSD(dev) &&
4393 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4394 mutex_unlock(&dev->struct_mutex);
4395 return 0;
28dfe52a
EA
4396 }
4397
29105ccc 4398 ret = i915_gpu_idle(dev);
6dbe2772
KP
4399 if (ret) {
4400 mutex_unlock(&dev->struct_mutex);
673a394b 4401 return ret;
6dbe2772 4402 }
673a394b 4403
29105ccc
CW
4404 /* Under UMS, be paranoid and evict. */
4405 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4406 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4407 if (ret) {
4408 mutex_unlock(&dev->struct_mutex);
4409 return ret;
4410 }
4411 }
4412
4413 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4414 * We need to replace this with a semaphore, or something.
4415 * And not confound mm.suspended!
4416 */
4417 dev_priv->mm.suspended = 1;
bc0c7f14 4418 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4419
4420 i915_kernel_lost_context(dev);
6dbe2772 4421 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4422
6dbe2772
KP
4423 mutex_unlock(&dev->struct_mutex);
4424
29105ccc
CW
4425 /* Cancel the retire work handler, which should be idle now. */
4426 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4427
673a394b
EA
4428 return 0;
4429}
4430
e552eb70
JB
4431/*
4432 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4433 * over cache flushing.
4434 */
8187a2b7 4435static int
e552eb70
JB
4436i915_gem_init_pipe_control(struct drm_device *dev)
4437{
4438 drm_i915_private_t *dev_priv = dev->dev_private;
4439 struct drm_gem_object *obj;
4440 struct drm_i915_gem_object *obj_priv;
4441 int ret;
4442
34dc4d44 4443 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4444 if (obj == NULL) {
4445 DRM_ERROR("Failed to allocate seqno page\n");
4446 ret = -ENOMEM;
4447 goto err;
4448 }
4449 obj_priv = to_intel_bo(obj);
4450 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4451
4452 ret = i915_gem_object_pin(obj, 4096);
4453 if (ret)
4454 goto err_unref;
4455
4456 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4457 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4458 if (dev_priv->seqno_page == NULL)
4459 goto err_unpin;
4460
4461 dev_priv->seqno_obj = obj;
4462 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4463
4464 return 0;
4465
4466err_unpin:
4467 i915_gem_object_unpin(obj);
4468err_unref:
4469 drm_gem_object_unreference(obj);
4470err:
4471 return ret;
4472}
4473
8187a2b7
ZN
4474
4475static void
e552eb70
JB
4476i915_gem_cleanup_pipe_control(struct drm_device *dev)
4477{
4478 drm_i915_private_t *dev_priv = dev->dev_private;
4479 struct drm_gem_object *obj;
4480 struct drm_i915_gem_object *obj_priv;
4481
4482 obj = dev_priv->seqno_obj;
4483 obj_priv = to_intel_bo(obj);
4484 kunmap(obj_priv->pages[0]);
4485 i915_gem_object_unpin(obj);
4486 drm_gem_object_unreference(obj);
4487 dev_priv->seqno_obj = NULL;
4488
4489 dev_priv->seqno_page = NULL;
673a394b
EA
4490}
4491
8187a2b7
ZN
4492int
4493i915_gem_init_ringbuffer(struct drm_device *dev)
4494{
4495 drm_i915_private_t *dev_priv = dev->dev_private;
4496 int ret;
68f95ba9 4497
8187a2b7
ZN
4498 if (HAS_PIPE_CONTROL(dev)) {
4499 ret = i915_gem_init_pipe_control(dev);
4500 if (ret)
4501 return ret;
4502 }
68f95ba9 4503
5c1143bb 4504 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4505 if (ret)
4506 goto cleanup_pipe_control;
4507
4508 if (HAS_BSD(dev)) {
5c1143bb 4509 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4510 if (ret)
4511 goto cleanup_render_ring;
d1b851fc 4512 }
68f95ba9 4513
6f392d54
CW
4514 dev_priv->next_seqno = 1;
4515
68f95ba9
CW
4516 return 0;
4517
4518cleanup_render_ring:
4519 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4520cleanup_pipe_control:
4521 if (HAS_PIPE_CONTROL(dev))
4522 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4523 return ret;
4524}
4525
4526void
4527i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4528{
4529 drm_i915_private_t *dev_priv = dev->dev_private;
4530
4531 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4532 if (HAS_BSD(dev))
4533 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4534 if (HAS_PIPE_CONTROL(dev))
4535 i915_gem_cleanup_pipe_control(dev);
4536}
4537
673a394b
EA
4538int
4539i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4540 struct drm_file *file_priv)
4541{
4542 drm_i915_private_t *dev_priv = dev->dev_private;
4543 int ret;
4544
79e53945
JB
4545 if (drm_core_check_feature(dev, DRIVER_MODESET))
4546 return 0;
4547
ba1234d1 4548 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4549 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4550 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4551 }
4552
673a394b 4553 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4554 dev_priv->mm.suspended = 0;
4555
4556 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4557 if (ret != 0) {
4558 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4559 return ret;
d816f6ac 4560 }
9bb2d6f9 4561
852835f3 4562 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4563 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4564 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4565 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4566 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4567 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4568 mutex_unlock(&dev->struct_mutex);
dbb19d30 4569
5f35308b
CW
4570 ret = drm_irq_install(dev);
4571 if (ret)
4572 goto cleanup_ringbuffer;
dbb19d30 4573
673a394b 4574 return 0;
5f35308b
CW
4575
4576cleanup_ringbuffer:
4577 mutex_lock(&dev->struct_mutex);
4578 i915_gem_cleanup_ringbuffer(dev);
4579 dev_priv->mm.suspended = 1;
4580 mutex_unlock(&dev->struct_mutex);
4581
4582 return ret;
673a394b
EA
4583}
4584
4585int
4586i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4587 struct drm_file *file_priv)
4588{
79e53945
JB
4589 if (drm_core_check_feature(dev, DRIVER_MODESET))
4590 return 0;
4591
dbb19d30 4592 drm_irq_uninstall(dev);
e6890f6f 4593 return i915_gem_idle(dev);
673a394b
EA
4594}
4595
4596void
4597i915_gem_lastclose(struct drm_device *dev)
4598{
4599 int ret;
673a394b 4600
e806b495
EA
4601 if (drm_core_check_feature(dev, DRIVER_MODESET))
4602 return;
4603
6dbe2772
KP
4604 ret = i915_gem_idle(dev);
4605 if (ret)
4606 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4607}
4608
4609void
4610i915_gem_load(struct drm_device *dev)
4611{
b5aa8a0f 4612 int i;
673a394b
EA
4613 drm_i915_private_t *dev_priv = dev->dev_private;
4614
673a394b 4615 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4616 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4617 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4618 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4619 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4620 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4621 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4622 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4623 if (HAS_BSD(dev)) {
4624 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4625 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4626 }
007cc8ac
DV
4627 for (i = 0; i < 16; i++)
4628 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4629 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4630 i915_gem_retire_work_handler);
31169714
CW
4631 spin_lock(&shrink_list_lock);
4632 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4633 spin_unlock(&shrink_list_lock);
4634
94400120
DA
4635 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4636 if (IS_GEN3(dev)) {
4637 u32 tmp = I915_READ(MI_ARB_STATE);
4638 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4639 /* arb state is a masked write, so set bit + bit in mask */
4640 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4641 I915_WRITE(MI_ARB_STATE, tmp);
4642 }
4643 }
4644
de151cf6 4645 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4646 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4647 dev_priv->fence_reg_start = 3;
de151cf6 4648
a6c45cf0 4649 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4650 dev_priv->num_fence_regs = 16;
4651 else
4652 dev_priv->num_fence_regs = 8;
4653
b5aa8a0f 4654 /* Initialize fence registers to zero */
a6c45cf0
CW
4655 switch (INTEL_INFO(dev)->gen) {
4656 case 6:
4657 for (i = 0; i < 16; i++)
4658 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4659 break;
4660 case 5:
4661 case 4:
b5aa8a0f
GH
4662 for (i = 0; i < 16; i++)
4663 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4664 break;
4665 case 3:
b5aa8a0f
GH
4666 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4667 for (i = 0; i < 8; i++)
4668 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4669 case 2:
4670 for (i = 0; i < 8; i++)
4671 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4672 break;
b5aa8a0f 4673 }
673a394b 4674 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4675 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4676}
71acb5eb
DA
4677
4678/*
4679 * Create a physically contiguous memory object for this object
4680 * e.g. for cursor + overlay regs
4681 */
995b6762
CW
4682static int i915_gem_init_phys_object(struct drm_device *dev,
4683 int id, int size, int align)
71acb5eb
DA
4684{
4685 drm_i915_private_t *dev_priv = dev->dev_private;
4686 struct drm_i915_gem_phys_object *phys_obj;
4687 int ret;
4688
4689 if (dev_priv->mm.phys_objs[id - 1] || !size)
4690 return 0;
4691
9a298b2a 4692 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4693 if (!phys_obj)
4694 return -ENOMEM;
4695
4696 phys_obj->id = id;
4697
6eeefaf3 4698 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4699 if (!phys_obj->handle) {
4700 ret = -ENOMEM;
4701 goto kfree_obj;
4702 }
4703#ifdef CONFIG_X86
4704 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4705#endif
4706
4707 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4708
4709 return 0;
4710kfree_obj:
9a298b2a 4711 kfree(phys_obj);
71acb5eb
DA
4712 return ret;
4713}
4714
995b6762 4715static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4716{
4717 drm_i915_private_t *dev_priv = dev->dev_private;
4718 struct drm_i915_gem_phys_object *phys_obj;
4719
4720 if (!dev_priv->mm.phys_objs[id - 1])
4721 return;
4722
4723 phys_obj = dev_priv->mm.phys_objs[id - 1];
4724 if (phys_obj->cur_obj) {
4725 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4726 }
4727
4728#ifdef CONFIG_X86
4729 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4730#endif
4731 drm_pci_free(dev, phys_obj->handle);
4732 kfree(phys_obj);
4733 dev_priv->mm.phys_objs[id - 1] = NULL;
4734}
4735
4736void i915_gem_free_all_phys_object(struct drm_device *dev)
4737{
4738 int i;
4739
260883c8 4740 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4741 i915_gem_free_phys_object(dev, i);
4742}
4743
4744void i915_gem_detach_phys_object(struct drm_device *dev,
4745 struct drm_gem_object *obj)
4746{
4747 struct drm_i915_gem_object *obj_priv;
4748 int i;
4749 int ret;
4750 int page_count;
4751
23010e43 4752 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4753 if (!obj_priv->phys_obj)
4754 return;
4755
4bdadb97 4756 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4757 if (ret)
4758 goto out;
4759
4760 page_count = obj->size / PAGE_SIZE;
4761
4762 for (i = 0; i < page_count; i++) {
856fa198 4763 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4764 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4765
4766 memcpy(dst, src, PAGE_SIZE);
4767 kunmap_atomic(dst, KM_USER0);
4768 }
856fa198 4769 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4770 drm_agp_chipset_flush(dev);
d78b47b9
CW
4771
4772 i915_gem_object_put_pages(obj);
71acb5eb
DA
4773out:
4774 obj_priv->phys_obj->cur_obj = NULL;
4775 obj_priv->phys_obj = NULL;
4776}
4777
4778int
4779i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4780 struct drm_gem_object *obj,
4781 int id,
4782 int align)
71acb5eb
DA
4783{
4784 drm_i915_private_t *dev_priv = dev->dev_private;
4785 struct drm_i915_gem_object *obj_priv;
4786 int ret = 0;
4787 int page_count;
4788 int i;
4789
4790 if (id > I915_MAX_PHYS_OBJECT)
4791 return -EINVAL;
4792
23010e43 4793 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4794
4795 if (obj_priv->phys_obj) {
4796 if (obj_priv->phys_obj->id == id)
4797 return 0;
4798 i915_gem_detach_phys_object(dev, obj);
4799 }
4800
71acb5eb
DA
4801 /* create a new object */
4802 if (!dev_priv->mm.phys_objs[id - 1]) {
4803 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4804 obj->size, align);
71acb5eb 4805 if (ret) {
aeb565df 4806 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4807 goto out;
4808 }
4809 }
4810
4811 /* bind to the object */
4812 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4813 obj_priv->phys_obj->cur_obj = obj;
4814
4bdadb97 4815 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4816 if (ret) {
4817 DRM_ERROR("failed to get page list\n");
4818 goto out;
4819 }
4820
4821 page_count = obj->size / PAGE_SIZE;
4822
4823 for (i = 0; i < page_count; i++) {
856fa198 4824 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4825 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4826
4827 memcpy(dst, src, PAGE_SIZE);
4828 kunmap_atomic(src, KM_USER0);
4829 }
4830
d78b47b9
CW
4831 i915_gem_object_put_pages(obj);
4832
71acb5eb
DA
4833 return 0;
4834out:
4835 return ret;
4836}
4837
4838static int
4839i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4840 struct drm_i915_gem_pwrite *args,
4841 struct drm_file *file_priv)
4842{
23010e43 4843 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4844 void *obj_addr;
4845 int ret;
4846 char __user *user_data;
4847
4848 user_data = (char __user *) (uintptr_t) args->data_ptr;
4849 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4850
44d98a61 4851 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4852 ret = copy_from_user(obj_addr, user_data, args->size);
4853 if (ret)
4854 return -EFAULT;
4855
4856 drm_agp_chipset_flush(dev);
4857 return 0;
4858}
b962442e
EA
4859
4860void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4861{
4862 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4863
4864 /* Clean up our request list when the client is going away, so that
4865 * later retire_requests won't dereference our soon-to-be-gone
4866 * file_priv.
4867 */
4868 mutex_lock(&dev->struct_mutex);
4869 while (!list_empty(&i915_file_priv->mm.request_list))
4870 list_del_init(i915_file_priv->mm.request_list.next);
4871 mutex_unlock(&dev->struct_mutex);
4872}
31169714 4873
1637ef41
CW
4874static int
4875i915_gpu_is_active(struct drm_device *dev)
4876{
4877 drm_i915_private_t *dev_priv = dev->dev_private;
4878 int lists_empty;
4879
1637ef41 4880 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4881 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4882 if (HAS_BSD(dev))
4883 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4884
4885 return !lists_empty;
4886}
4887
31169714 4888static int
7f8275d0 4889i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4890{
4891 drm_i915_private_t *dev_priv, *next_dev;
4892 struct drm_i915_gem_object *obj_priv, *next_obj;
4893 int cnt = 0;
4894 int would_deadlock = 1;
4895
4896 /* "fast-path" to count number of available objects */
4897 if (nr_to_scan == 0) {
4898 spin_lock(&shrink_list_lock);
4899 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4900 struct drm_device *dev = dev_priv->dev;
4901
4902 if (mutex_trylock(&dev->struct_mutex)) {
4903 list_for_each_entry(obj_priv,
4904 &dev_priv->mm.inactive_list,
4905 list)
4906 cnt++;
4907 mutex_unlock(&dev->struct_mutex);
4908 }
4909 }
4910 spin_unlock(&shrink_list_lock);
4911
4912 return (cnt / 100) * sysctl_vfs_cache_pressure;
4913 }
4914
4915 spin_lock(&shrink_list_lock);
4916
1637ef41 4917rescan:
31169714
CW
4918 /* first scan for clean buffers */
4919 list_for_each_entry_safe(dev_priv, next_dev,
4920 &shrink_list, mm.shrink_list) {
4921 struct drm_device *dev = dev_priv->dev;
4922
4923 if (! mutex_trylock(&dev->struct_mutex))
4924 continue;
4925
4926 spin_unlock(&shrink_list_lock);
b09a1fec 4927 i915_gem_retire_requests(dev);
31169714
CW
4928
4929 list_for_each_entry_safe(obj_priv, next_obj,
4930 &dev_priv->mm.inactive_list,
4931 list) {
4932 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4933 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4934 if (--nr_to_scan <= 0)
4935 break;
4936 }
4937 }
4938
4939 spin_lock(&shrink_list_lock);
4940 mutex_unlock(&dev->struct_mutex);
4941
963b4836
CW
4942 would_deadlock = 0;
4943
31169714
CW
4944 if (nr_to_scan <= 0)
4945 break;
4946 }
4947
4948 /* second pass, evict/count anything still on the inactive list */
4949 list_for_each_entry_safe(dev_priv, next_dev,
4950 &shrink_list, mm.shrink_list) {
4951 struct drm_device *dev = dev_priv->dev;
4952
4953 if (! mutex_trylock(&dev->struct_mutex))
4954 continue;
4955
4956 spin_unlock(&shrink_list_lock);
4957
4958 list_for_each_entry_safe(obj_priv, next_obj,
4959 &dev_priv->mm.inactive_list,
4960 list) {
4961 if (nr_to_scan > 0) {
a8089e84 4962 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4963 nr_to_scan--;
4964 } else
4965 cnt++;
4966 }
4967
4968 spin_lock(&shrink_list_lock);
4969 mutex_unlock(&dev->struct_mutex);
4970
4971 would_deadlock = 0;
4972 }
4973
1637ef41
CW
4974 if (nr_to_scan) {
4975 int active = 0;
4976
4977 /*
4978 * We are desperate for pages, so as a last resort, wait
4979 * for the GPU to finish and discard whatever we can.
4980 * This has a dramatic impact to reduce the number of
4981 * OOM-killer events whilst running the GPU aggressively.
4982 */
4983 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4984 struct drm_device *dev = dev_priv->dev;
4985
4986 if (!mutex_trylock(&dev->struct_mutex))
4987 continue;
4988
4989 spin_unlock(&shrink_list_lock);
4990
4991 if (i915_gpu_is_active(dev)) {
4992 i915_gpu_idle(dev);
4993 active++;
4994 }
4995
4996 spin_lock(&shrink_list_lock);
4997 mutex_unlock(&dev->struct_mutex);
4998 }
4999
5000 if (active)
5001 goto rescan;
5002 }
5003
31169714
CW
5004 spin_unlock(&shrink_list_lock);
5005
5006 if (would_deadlock)
5007 return -1;
5008 else if (cnt > 0)
5009 return (cnt / 100) * sysctl_vfs_cache_pressure;
5010 else
5011 return 0;
5012}
5013
5014static struct shrinker shrinker = {
5015 .shrink = i915_gem_shrink,
5016 .seeks = DEFAULT_SEEKS,
5017};
5018
5019__init void
5020i915_gem_shrinker_init(void)
5021{
5022 register_shrinker(&shrinker);
5023}
5024
5025__exit void
5026i915_gem_shrinker_exit(void)
5027{
5028 unregister_shrinker(&shrinker);
5029}
This page took 0.516546 seconds and 5 git commands to generate.