drm/i915: Use the .release hook to drop the stolen drm_mm tracking
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43
CW
63static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 202 if (i915_gem_obj_is_pinned(obj))
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
00731155
CW
212static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213{
214 drm_dma_handle_t *phys = obj->phys_handle;
215
216 if (!phys)
217 return;
218
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
223
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
231
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
235 }
236 vaddr += PAGE_SIZE;
237 }
238 i915_gem_chipset_flush(obj->base.dev);
239 }
240
241#ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243#endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
246}
247
248int
249i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
251{
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
256
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
260
261 return 0;
262 }
263
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
266
267 if (obj->base.filp == NULL)
268 return -EINVAL;
269
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
274
275 vaddr = phys->vaddr;
276#ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278#endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
283
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286#ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288#endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
291 }
292
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
296
297 mark_page_accessed(page);
298 page_cache_release(page);
299
300 vaddr += PAGE_SIZE;
301 }
302
303 obj->phys_handle = phys;
304 return 0;
305}
306
307static int
308i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
311{
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
315
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
318
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
322 */
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
328 }
329
330 i915_gem_chipset_flush(dev);
331 return 0;
332}
333
42dcedd4
CW
334void *i915_gem_object_alloc(struct drm_device *dev)
335{
336 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
338}
339
340void i915_gem_object_free(struct drm_i915_gem_object *obj)
341{
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
344}
345
ff72145b
DA
346static int
347i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
673a394b 351{
05394f39 352 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
353 int ret;
354 u32 handle;
673a394b 355
ff72145b 356 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
357 if (size == 0)
358 return -EINVAL;
673a394b
EA
359
360 /* Allocate the new object */
ff72145b 361 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
362 if (obj == NULL)
363 return -ENOMEM;
364
05394f39 365 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 366 /* drop reference from allocate - handle holds it now */
d861e338
DV
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
202f2fef 370
ff72145b 371 *handle_p = handle;
673a394b
EA
372 return 0;
373}
374
ff72145b
DA
375int
376i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
379{
380 /* have to work out size/pitch and return them */
de45eaf7 381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
385}
386
ff72145b
DA
387/**
388 * Creates a new mm object and returns a handle to it.
389 */
390int
391i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
393{
394 struct drm_i915_gem_create *args = data;
63ed2cb2 395
ff72145b
DA
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
398}
399
8461d226
DV
400static inline int
401__copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
404{
405 int ret, cpu_offset = 0;
406
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
417
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
421 }
422
423 return 0;
424}
425
8c59967c 426static inline int
4f0c7cfb
BW
427__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
8c59967c
DV
429 int length)
430{
431 int ret, cpu_offset = 0;
432
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
443
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
447 }
448
449 return 0;
450}
451
4c914c0c
BV
452/*
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
456 */
457int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
459{
460 int ret;
461
462 *needs_clflush = 0;
463
464 if (!obj->base.filp)
465 return -EINVAL;
466
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
c8725f3d
CW
477
478 i915_gem_object_retire(obj);
4c914c0c
BV
479 }
480
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
484
485 i915_gem_object_pin_pages(obj);
486
487 return ret;
488}
489
d174bd64
DV
490/* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
eb01459f 493static int
d174bd64
DV
494shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
497{
498 char *vaddr;
499 int ret;
500
e7e58eb5 501 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
502 return -EINVAL;
503
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
512
f60d7f0c 513 return ret ? -EFAULT : 0;
d174bd64
DV
514}
515
23c18c71
DV
516static void
517shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
519{
e7e58eb5 520 if (unlikely(swizzled)) {
23c18c71
DV
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
523
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
530
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
534 }
535
536}
537
d174bd64
DV
538/* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540static int
541shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544{
545 char *vaddr;
546 int ret;
547
548 vaddr = kmap(page);
549 if (needs_clflush)
23c18c71
DV
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
d174bd64
DV
553
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
563
f60d7f0c 564 return ret ? - EFAULT : 0;
d174bd64
DV
565}
566
eb01459f 567static int
dbf7bff0
DV
568i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
eb01459f 572{
8461d226 573 char __user *user_data;
eb01459f 574 ssize_t remain;
8461d226 575 loff_t offset;
eb2c0c81 576 int shmem_page_offset, page_length, ret = 0;
8461d226 577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 578 int prefaulted = 0;
8489731c 579 int needs_clflush = 0;
67d5a50c 580 struct sg_page_iter sg_iter;
eb01459f 581
2bb4629a 582 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
583 remain = args->size;
584
8461d226 585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 586
4c914c0c 587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
588 if (ret)
589 return ret;
590
8461d226 591 offset = args->offset;
eb01459f 592
67d5a50c
ID
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
2db76d7c 595 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
596
597 if (remain <= 0)
598 break;
599
eb01459f
EA
600 /* Operation in this page
601 *
eb01459f 602 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
603 * page_length = bytes to copy for this page
604 */
c8cbbb8b 605 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 609
8461d226
DV
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
612
d174bd64
DV
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
dbf7bff0 618
dbf7bff0
DV
619 mutex_unlock(&dev->struct_mutex);
620
d330a953 621 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 622 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
629 }
eb01459f 630
d174bd64
DV
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
eb01459f 634
dbf7bff0 635 mutex_lock(&dev->struct_mutex);
f60d7f0c 636
f60d7f0c 637 if (ret)
8461d226 638 goto out;
8461d226 639
17793c9a 640next_page:
eb01459f 641 remain -= page_length;
8461d226 642 user_data += page_length;
eb01459f
EA
643 offset += page_length;
644 }
645
4f27b75d 646out:
f60d7f0c
CW
647 i915_gem_object_unpin_pages(obj);
648
eb01459f
EA
649 return ret;
650}
651
673a394b
EA
652/**
653 * Reads data from the object referenced by handle.
654 *
655 * On error, the contents of *data are undefined.
656 */
657int
658i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 659 struct drm_file *file)
673a394b
EA
660{
661 struct drm_i915_gem_pread *args = data;
05394f39 662 struct drm_i915_gem_object *obj;
35b62a89 663 int ret = 0;
673a394b 664
51311d0a
CW
665 if (args->size == 0)
666 return 0;
667
668 if (!access_ok(VERIFY_WRITE,
2bb4629a 669 to_user_ptr(args->data_ptr),
51311d0a
CW
670 args->size))
671 return -EFAULT;
672
4f27b75d 673 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 674 if (ret)
4f27b75d 675 return ret;
673a394b 676
05394f39 677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 678 if (&obj->base == NULL) {
1d7cfea1
CW
679 ret = -ENOENT;
680 goto unlock;
4f27b75d 681 }
673a394b 682
7dcd2499 683 /* Bounds check source. */
05394f39
CW
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
ce9d419d 686 ret = -EINVAL;
35b62a89 687 goto out;
ce9d419d
CW
688 }
689
1286ff73
DV
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
692 */
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
696 }
697
db53a302
CW
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
699
dbf7bff0 700 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 701
35b62a89 702out:
05394f39 703 drm_gem_object_unreference(&obj->base);
1d7cfea1 704unlock:
4f27b75d 705 mutex_unlock(&dev->struct_mutex);
eb01459f 706 return ret;
673a394b
EA
707}
708
0839ccb8
KP
709/* This is the fast write path which cannot handle
710 * page faults in the source data
9b7530cc 711 */
0839ccb8
KP
712
713static inline int
714fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
9b7530cc 718{
4f0c7cfb
BW
719 void __iomem *vaddr_atomic;
720 void *vaddr;
0839ccb8 721 unsigned long unwritten;
9b7530cc 722
3e4d3af5 723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 727 user_data, length);
3e4d3af5 728 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 729 return unwritten;
0839ccb8
KP
730}
731
3de09aa3
EA
732/**
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
735 */
673a394b 736static int
05394f39
CW
737i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
3de09aa3 739 struct drm_i915_gem_pwrite *args,
05394f39 740 struct drm_file *file)
673a394b 741{
3e31c6c0 742 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 743 ssize_t remain;
0839ccb8 744 loff_t offset, page_base;
673a394b 745 char __user *user_data;
935aaa69
DV
746 int page_offset, page_length, ret;
747
1ec9e26d 748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
755
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
673a394b 759
2bb4629a 760 user_data = to_user_ptr(args->data_ptr);
673a394b 761 remain = args->size;
673a394b 762
f343c5f6 763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
0839ccb8
KP
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
673a394b 771 */
c8cbbb8b
CW
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
0839ccb8
KP
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
0839ccb8 778 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
0839ccb8 781 */
5d4545ae 782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
786 }
673a394b 787
0839ccb8
KP
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
673a394b 791 }
673a394b 792
935aaa69 793out_unpin:
d7f46fc4 794 i915_gem_object_ggtt_unpin(obj);
935aaa69 795out:
3de09aa3 796 return ret;
673a394b
EA
797}
798
d174bd64
DV
799/* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
3043c60c 803static int
d174bd64
DV
804shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
673a394b 809{
d174bd64 810 char *vaddr;
673a394b 811 int ret;
3de09aa3 812
e7e58eb5 813 if (unlikely(page_do_bit17_swizzling))
d174bd64 814 return -EINVAL;
3de09aa3 815
d174bd64
DV
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
c2831a94
CW
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
d174bd64
DV
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
3de09aa3 826
755d2218 827 return ret ? -EFAULT : 0;
3de09aa3
EA
828}
829
d174bd64
DV
830/* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
3043c60c 832static int
d174bd64
DV
833shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
673a394b 838{
d174bd64
DV
839 char *vaddr;
840 int ret;
e5281ccd 841
d174bd64 842 vaddr = kmap(page);
e7e58eb5 843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
d174bd64
DV
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
849 user_data,
850 page_length);
d174bd64
DV
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
23c18c71
DV
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
d174bd64 859 kunmap(page);
40123c1f 860
755d2218 861 return ret ? -EFAULT : 0;
40123c1f
EA
862}
863
40123c1f 864static int
e244a443
DV
865i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
40123c1f 869{
40123c1f 870 ssize_t remain;
8c59967c
DV
871 loff_t offset;
872 char __user *user_data;
eb2c0c81 873 int shmem_page_offset, page_length, ret = 0;
8c59967c 874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 875 int hit_slowpath = 0;
58642885
DV
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
67d5a50c 878 struct sg_page_iter sg_iter;
40123c1f 879
2bb4629a 880 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
881 remain = args->size;
882
8c59967c 883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 884
58642885
DV
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
2c22569b 890 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
c8725f3d
CW
894
895 i915_gem_object_retire(obj);
58642885 896 }
c76ce038
CW
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 902
755d2218
CW
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
906
907 i915_gem_object_pin_pages(obj);
908
673a394b 909 offset = args->offset;
05394f39 910 obj->dirty = 1;
673a394b 911
67d5a50c
ID
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
2db76d7c 914 struct page *page = sg_page_iter_page(&sg_iter);
58642885 915 int partial_cacheline_write;
e5281ccd 916
9da3da66
CW
917 if (remain <= 0)
918 break;
919
40123c1f
EA
920 /* Operation in this page
921 *
40123c1f 922 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
923 * page_length = bytes to copy for this page
924 */
c8cbbb8b 925 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
926
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 930
58642885
DV
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
937
8c59967c
DV
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
940
d174bd64
DV
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
e244a443
DV
947
948 hit_slowpath = 1;
e244a443 949 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
40123c1f 954
e244a443 955 mutex_lock(&dev->struct_mutex);
755d2218 956
755d2218 957 if (ret)
8c59967c 958 goto out;
8c59967c 959
17793c9a 960next_page:
40123c1f 961 remain -= page_length;
8c59967c 962 user_data += page_length;
40123c1f 963 offset += page_length;
673a394b
EA
964 }
965
fbd5a26d 966out:
755d2218
CW
967 i915_gem_object_unpin_pages(obj);
968
e244a443 969 if (hit_slowpath) {
8dcf015e
DV
970 /*
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
974 */
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
e244a443 979 }
8c59967c 980 }
673a394b 981
58642885 982 if (needs_clflush_after)
e76e9aeb 983 i915_gem_chipset_flush(dev);
58642885 984
40123c1f 985 return ret;
673a394b
EA
986}
987
988/**
989 * Writes data to the object referenced by handle.
990 *
991 * On error, the contents of the buffer that were to be modified are undefined.
992 */
993int
994i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 995 struct drm_file *file)
673a394b
EA
996{
997 struct drm_i915_gem_pwrite *args = data;
05394f39 998 struct drm_i915_gem_object *obj;
51311d0a
CW
999 int ret;
1000
1001 if (args->size == 0)
1002 return 0;
1003
1004 if (!access_ok(VERIFY_READ,
2bb4629a 1005 to_user_ptr(args->data_ptr),
51311d0a
CW
1006 args->size))
1007 return -EFAULT;
1008
d330a953 1009 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1014 }
673a394b 1015
fbd5a26d 1016 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1017 if (ret)
fbd5a26d 1018 return ret;
1d7cfea1 1019
05394f39 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1021 if (&obj->base == NULL) {
1d7cfea1
CW
1022 ret = -ENOENT;
1023 goto unlock;
fbd5a26d 1024 }
673a394b 1025
7dcd2499 1026 /* Bounds check destination. */
05394f39
CW
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
ce9d419d 1029 ret = -EINVAL;
35b62a89 1030 goto out;
ce9d419d
CW
1031 }
1032
1286ff73
DV
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1035 */
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
db53a302
CW
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
935aaa69 1043 ret = -EFAULT;
673a394b
EA
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1049 */
00731155
CW
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
5c0480f2
DV
1052 goto out;
1053 }
1054
2c22569b
CW
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
fbd5a26d 1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1062 }
673a394b 1063
86a1ee26 1064 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 1066
35b62a89 1067out:
05394f39 1068 drm_gem_object_unreference(&obj->base);
1d7cfea1 1069unlock:
fbd5a26d 1070 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1071 return ret;
1072}
1073
b361237b 1074int
33196ded 1075i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1076 bool interruptible)
1077{
1f83fee0 1078 if (i915_reset_in_progress(error)) {
b361237b
CW
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1083
1f83fee0
DV
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
b361237b
CW
1086 return -EIO;
1087
1088 return -EAGAIN;
1089 }
1090
1091 return 0;
1092}
1093
1094/*
1095 * Compare seqno against outstanding lazy request. Emit a request if they are
1096 * equal.
1097 */
1098static int
a4872ba6 1099i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1100{
1101 int ret;
1102
1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104
1105 ret = 0;
1823521d 1106 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1107 ret = i915_add_request(ring, NULL);
b361237b
CW
1108
1109 return ret;
1110}
1111
094f9a54
CW
1112static void fake_irq(unsigned long data)
1113{
1114 wake_up_process((struct task_struct *)data);
1115}
1116
1117static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1118 struct intel_engine_cs *ring)
094f9a54
CW
1119{
1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121}
1122
b29c19b6
CW
1123static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124{
1125 if (file_priv == NULL)
1126 return true;
1127
1128 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129}
1130
b361237b
CW
1131/**
1132 * __wait_seqno - wait until execution of seqno has finished
1133 * @ring: the ring expected to report seqno
1134 * @seqno: duh!
f69061be 1135 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1136 * @interruptible: do an interruptible wait (normally yes)
1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138 *
f69061be
DV
1139 * Note: It is of utmost importance that the passed in seqno and reset_counter
1140 * values have been read by the caller in an smp safe manner. Where read-side
1141 * locks are involved, it is sufficient to read the reset_counter before
1142 * unlocking the lock that protects the seqno. For lockless tricks, the
1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144 * inserted.
1145 *
b361237b
CW
1146 * Returns 0 if the seqno was found within the alloted time. Else returns the
1147 * errno with remaining time filled in timeout argument.
1148 */
a4872ba6 1149static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1150 unsigned reset_counter,
b29c19b6
CW
1151 bool interruptible,
1152 struct timespec *timeout,
1153 struct drm_i915_file_private *file_priv)
b361237b 1154{
3d13ef2e 1155 struct drm_device *dev = ring->dev;
3e31c6c0 1156 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1157 const bool irq_test_in_progress =
1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1159 struct timespec before, now;
1160 DEFINE_WAIT(wait);
47e9766d 1161 unsigned long timeout_expire;
b361237b
CW
1162 int ret;
1163
5d584b2e 1164 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
c67a470b 1165
b361237b
CW
1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 return 0;
1168
47e9766d 1169 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1170
3d13ef2e 1171 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1172 gen6_rps_boost(dev_priv);
1173 if (file_priv)
1174 mod_delayed_work(dev_priv->wq,
1175 &file_priv->mm.idle_work,
1176 msecs_to_jiffies(100));
1177 }
1178
168c3f21 1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1180 return -ENODEV;
1181
094f9a54
CW
1182 /* Record current time in case interrupted by signal, or wedged */
1183 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1184 getrawmonotonic(&before);
094f9a54
CW
1185 for (;;) {
1186 struct timer_list timer;
b361237b 1187
094f9a54
CW
1188 prepare_to_wait(&ring->irq_queue, &wait,
1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1190
f69061be
DV
1191 /* We need to check whether any gpu reset happened in between
1192 * the caller grabbing the seqno and now ... */
094f9a54
CW
1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 * is truely gone. */
1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 if (ret == 0)
1198 ret = -EAGAIN;
1199 break;
1200 }
f69061be 1201
094f9a54
CW
1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 ret = 0;
1204 break;
1205 }
b361237b 1206
094f9a54
CW
1207 if (interruptible && signal_pending(current)) {
1208 ret = -ERESTARTSYS;
1209 break;
1210 }
1211
47e9766d 1212 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1213 ret = -ETIME;
1214 break;
1215 }
1216
1217 timer.function = NULL;
1218 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1219 unsigned long expire;
1220
094f9a54 1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1223 mod_timer(&timer, expire);
1224 }
1225
5035c275 1226 io_schedule();
094f9a54 1227
094f9a54
CW
1228 if (timer.function) {
1229 del_singleshot_timer_sync(&timer);
1230 destroy_timer_on_stack(&timer);
1231 }
1232 }
b361237b 1233 getrawmonotonic(&now);
094f9a54 1234 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1235
168c3f21
MK
1236 if (!irq_test_in_progress)
1237 ring->irq_put(ring);
094f9a54
CW
1238
1239 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1240
1241 if (timeout) {
1242 struct timespec sleep_time = timespec_sub(now, before);
1243 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1244 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1246 }
1247
094f9a54 1248 return ret;
b361237b
CW
1249}
1250
1251/**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255int
a4872ba6 1256i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1257{
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
33196ded 1266 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
f69061be
DV
1274 return __wait_seqno(ring, seqno,
1275 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1276 interruptible, NULL, NULL);
b361237b
CW
1277}
1278
d26e3af8
CW
1279static int
1280i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
a4872ba6 1281 struct intel_engine_cs *ring)
d26e3af8 1282{
c8725f3d
CW
1283 if (!obj->active)
1284 return 0;
d26e3af8
CW
1285
1286 /* Manually manage the write flush as we may have not yet
1287 * retired the buffer.
1288 *
1289 * Note that the last_write_seqno is always the earlier of
1290 * the two (read/write) seqno, so if we haved successfully waited,
1291 * we know we have passed the last write.
1292 */
1293 obj->last_write_seqno = 0;
d26e3af8
CW
1294
1295 return 0;
1296}
1297
b361237b
CW
1298/**
1299 * Ensures that all rendering to the object has completed and the object is
1300 * safe to unbind from the GTT or access from the CPU.
1301 */
1302static __must_check int
1303i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304 bool readonly)
1305{
a4872ba6 1306 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1307 u32 seqno;
1308 int ret;
1309
1310 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311 if (seqno == 0)
1312 return 0;
1313
1314 ret = i915_wait_seqno(ring, seqno);
1315 if (ret)
1316 return ret;
1317
d26e3af8 1318 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1319}
1320
3236f57a
CW
1321/* A nonblocking variant of the above wait. This is a highly dangerous routine
1322 * as the object state may change during this call.
1323 */
1324static __must_check int
1325i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1326 struct drm_i915_file_private *file_priv,
3236f57a
CW
1327 bool readonly)
1328{
1329 struct drm_device *dev = obj->base.dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1331 struct intel_engine_cs *ring = obj->ring;
f69061be 1332 unsigned reset_counter;
3236f57a
CW
1333 u32 seqno;
1334 int ret;
1335
1336 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337 BUG_ON(!dev_priv->mm.interruptible);
1338
1339 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340 if (seqno == 0)
1341 return 0;
1342
33196ded 1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(ring, seqno);
1348 if (ret)
1349 return ret;
1350
f69061be 1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1352 mutex_unlock(&dev->struct_mutex);
6e4930f6 1353 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1354 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1355 if (ret)
1356 return ret;
3236f57a 1357
d26e3af8 1358 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1359}
1360
673a394b 1361/**
2ef7eeaa
EA
1362 * Called when user space prepares to use an object with the CPU, either
1363 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1364 */
1365int
1366i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1367 struct drm_file *file)
673a394b
EA
1368{
1369 struct drm_i915_gem_set_domain *args = data;
05394f39 1370 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1371 uint32_t read_domains = args->read_domains;
1372 uint32_t write_domain = args->write_domain;
673a394b
EA
1373 int ret;
1374
2ef7eeaa 1375 /* Only handle setting domains to types used by the CPU. */
21d509e3 1376 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1377 return -EINVAL;
1378
21d509e3 1379 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1380 return -EINVAL;
1381
1382 /* Having something in the write domain implies it's in the read
1383 * domain, and only that read domain. Enforce that in the request.
1384 */
1385 if (write_domain != 0 && read_domains != write_domain)
1386 return -EINVAL;
1387
76c1dec1 1388 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1389 if (ret)
76c1dec1 1390 return ret;
1d7cfea1 1391
05394f39 1392 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1393 if (&obj->base == NULL) {
1d7cfea1
CW
1394 ret = -ENOENT;
1395 goto unlock;
76c1dec1 1396 }
673a394b 1397
3236f57a
CW
1398 /* Try to flush the object off the GPU without holding the lock.
1399 * We will repeat the flush holding the lock in the normal manner
1400 * to catch cases where we are gazumped.
1401 */
6e4930f6
CW
1402 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1403 file->driver_priv,
1404 !write_domain);
3236f57a
CW
1405 if (ret)
1406 goto unref;
1407
2ef7eeaa
EA
1408 if (read_domains & I915_GEM_DOMAIN_GTT) {
1409 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1410
1411 /* Silently promote "you're not bound, there was nothing to do"
1412 * to success, since the client was just asking us to
1413 * make sure everything was done.
1414 */
1415 if (ret == -EINVAL)
1416 ret = 0;
2ef7eeaa 1417 } else {
e47c68e9 1418 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1419 }
1420
3236f57a 1421unref:
05394f39 1422 drm_gem_object_unreference(&obj->base);
1d7cfea1 1423unlock:
673a394b
EA
1424 mutex_unlock(&dev->struct_mutex);
1425 return ret;
1426}
1427
1428/**
1429 * Called when user space has done writes to this buffer
1430 */
1431int
1432i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1433 struct drm_file *file)
673a394b
EA
1434{
1435 struct drm_i915_gem_sw_finish *args = data;
05394f39 1436 struct drm_i915_gem_object *obj;
673a394b
EA
1437 int ret = 0;
1438
76c1dec1 1439 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1440 if (ret)
76c1dec1 1441 return ret;
1d7cfea1 1442
05394f39 1443 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1444 if (&obj->base == NULL) {
1d7cfea1
CW
1445 ret = -ENOENT;
1446 goto unlock;
673a394b
EA
1447 }
1448
673a394b 1449 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1450 if (obj->pin_display)
1451 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1452
05394f39 1453 drm_gem_object_unreference(&obj->base);
1d7cfea1 1454unlock:
673a394b
EA
1455 mutex_unlock(&dev->struct_mutex);
1456 return ret;
1457}
1458
1459/**
1460 * Maps the contents of an object, returning the address it is mapped
1461 * into.
1462 *
1463 * While the mapping holds a reference on the contents of the object, it doesn't
1464 * imply a ref on the object itself.
1465 */
1466int
1467i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1468 struct drm_file *file)
673a394b
EA
1469{
1470 struct drm_i915_gem_mmap *args = data;
1471 struct drm_gem_object *obj;
673a394b
EA
1472 unsigned long addr;
1473
05394f39 1474 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1475 if (obj == NULL)
bf79cb91 1476 return -ENOENT;
673a394b 1477
1286ff73
DV
1478 /* prime objects have no backing filp to GEM mmap
1479 * pages from.
1480 */
1481 if (!obj->filp) {
1482 drm_gem_object_unreference_unlocked(obj);
1483 return -EINVAL;
1484 }
1485
6be5ceb0 1486 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1487 PROT_READ | PROT_WRITE, MAP_SHARED,
1488 args->offset);
bc9025bd 1489 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1490 if (IS_ERR((void *)addr))
1491 return addr;
1492
1493 args->addr_ptr = (uint64_t) addr;
1494
1495 return 0;
1496}
1497
de151cf6
JB
1498/**
1499 * i915_gem_fault - fault a page into the GTT
1500 * vma: VMA in question
1501 * vmf: fault info
1502 *
1503 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1504 * from userspace. The fault handler takes care of binding the object to
1505 * the GTT (if needed), allocating and programming a fence register (again,
1506 * only if needed based on whether the old reg is still valid or the object
1507 * is tiled) and inserting a new PTE into the faulting process.
1508 *
1509 * Note that the faulting process may involve evicting existing objects
1510 * from the GTT and/or fence registers to make room. So performance may
1511 * suffer if the GTT working set is large or there are few fence registers
1512 * left.
1513 */
1514int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1515{
05394f39
CW
1516 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1517 struct drm_device *dev = obj->base.dev;
3e31c6c0 1518 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1519 pgoff_t page_offset;
1520 unsigned long pfn;
1521 int ret = 0;
0f973f27 1522 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1523
f65c9168
PZ
1524 intel_runtime_pm_get(dev_priv);
1525
de151cf6
JB
1526 /* We don't use vmf->pgoff since that has the fake offset */
1527 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1528 PAGE_SHIFT;
1529
d9bc7e9f
CW
1530 ret = i915_mutex_lock_interruptible(dev);
1531 if (ret)
1532 goto out;
a00b10c3 1533
db53a302
CW
1534 trace_i915_gem_object_fault(obj, page_offset, true, write);
1535
6e4930f6
CW
1536 /* Try to flush the object off the GPU first without holding the lock.
1537 * Upon reacquiring the lock, we will perform our sanity checks and then
1538 * repeat the flush holding the lock in the normal manner to catch cases
1539 * where we are gazumped.
1540 */
1541 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1542 if (ret)
1543 goto unlock;
1544
eb119bd6
CW
1545 /* Access to snoopable pages through the GTT is incoherent. */
1546 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1547 ret = -EFAULT;
eb119bd6
CW
1548 goto unlock;
1549 }
1550
d9bc7e9f 1551 /* Now bind it into the GTT if needed */
1ec9e26d 1552 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1553 if (ret)
1554 goto unlock;
4a684a41 1555
c9839303
CW
1556 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1557 if (ret)
1558 goto unpin;
74898d7e 1559
06d98131 1560 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1561 if (ret)
c9839303 1562 goto unpin;
7d1c4804 1563
6299f992
CW
1564 obj->fault_mappable = true;
1565
f343c5f6
BW
1566 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1567 pfn >>= PAGE_SHIFT;
1568 pfn += page_offset;
de151cf6
JB
1569
1570 /* Finally, remap it using the new GTT offset */
1571 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1572unpin:
d7f46fc4 1573 i915_gem_object_ggtt_unpin(obj);
c715089f 1574unlock:
de151cf6 1575 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1576out:
de151cf6 1577 switch (ret) {
d9bc7e9f 1578 case -EIO:
a9340cca
DV
1579 /* If this -EIO is due to a gpu hang, give the reset code a
1580 * chance to clean up the mess. Otherwise return the proper
1581 * SIGBUS. */
f65c9168
PZ
1582 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1583 ret = VM_FAULT_SIGBUS;
1584 break;
1585 }
045e769a 1586 case -EAGAIN:
571c608d
DV
1587 /*
1588 * EAGAIN means the gpu is hung and we'll wait for the error
1589 * handler to reset everything when re-faulting in
1590 * i915_mutex_lock_interruptible.
d9bc7e9f 1591 */
c715089f
CW
1592 case 0:
1593 case -ERESTARTSYS:
bed636ab 1594 case -EINTR:
e79e0fe3
DR
1595 case -EBUSY:
1596 /*
1597 * EBUSY is ok: this just means that another thread
1598 * already did the job.
1599 */
f65c9168
PZ
1600 ret = VM_FAULT_NOPAGE;
1601 break;
de151cf6 1602 case -ENOMEM:
f65c9168
PZ
1603 ret = VM_FAULT_OOM;
1604 break;
a7c2e1aa 1605 case -ENOSPC:
45d67817 1606 case -EFAULT:
f65c9168
PZ
1607 ret = VM_FAULT_SIGBUS;
1608 break;
de151cf6 1609 default:
a7c2e1aa 1610 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1611 ret = VM_FAULT_SIGBUS;
1612 break;
de151cf6 1613 }
f65c9168
PZ
1614
1615 intel_runtime_pm_put(dev_priv);
1616 return ret;
de151cf6
JB
1617}
1618
48018a57
PZ
1619void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1620{
1621 struct i915_vma *vma;
1622
1623 /*
1624 * Only the global gtt is relevant for gtt memory mappings, so restrict
1625 * list traversal to objects bound into the global address space. Note
1626 * that the active list should be empty, but better safe than sorry.
1627 */
1628 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1629 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1630 i915_gem_release_mmap(vma->obj);
1631 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1632 i915_gem_release_mmap(vma->obj);
1633}
1634
901782b2
CW
1635/**
1636 * i915_gem_release_mmap - remove physical page mappings
1637 * @obj: obj in question
1638 *
af901ca1 1639 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1640 * relinquish ownership of the pages back to the system.
1641 *
1642 * It is vital that we remove the page mapping if we have mapped a tiled
1643 * object through the GTT and then lose the fence register due to
1644 * resource pressure. Similarly if the object has been moved out of the
1645 * aperture, than pages mapped into userspace must be revoked. Removing the
1646 * mapping will then trigger a page fault on the next user access, allowing
1647 * fixup by i915_gem_fault().
1648 */
d05ca301 1649void
05394f39 1650i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1651{
6299f992
CW
1652 if (!obj->fault_mappable)
1653 return;
901782b2 1654
6796cb16
DH
1655 drm_vma_node_unmap(&obj->base.vma_node,
1656 obj->base.dev->anon_inode->i_mapping);
6299f992 1657 obj->fault_mappable = false;
901782b2
CW
1658}
1659
0fa87796 1660uint32_t
e28f8711 1661i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1662{
e28f8711 1663 uint32_t gtt_size;
92b88aeb
CW
1664
1665 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1666 tiling_mode == I915_TILING_NONE)
1667 return size;
92b88aeb
CW
1668
1669 /* Previous chips need a power-of-two fence region when tiling */
1670 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1671 gtt_size = 1024*1024;
92b88aeb 1672 else
e28f8711 1673 gtt_size = 512*1024;
92b88aeb 1674
e28f8711
CW
1675 while (gtt_size < size)
1676 gtt_size <<= 1;
92b88aeb 1677
e28f8711 1678 return gtt_size;
92b88aeb
CW
1679}
1680
de151cf6
JB
1681/**
1682 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1683 * @obj: object to check
1684 *
1685 * Return the required GTT alignment for an object, taking into account
5e783301 1686 * potential fence register mapping.
de151cf6 1687 */
d865110c
ID
1688uint32_t
1689i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1690 int tiling_mode, bool fenced)
de151cf6 1691{
de151cf6
JB
1692 /*
1693 * Minimum alignment is 4k (GTT page size), but might be greater
1694 * if a fence register is needed for the object.
1695 */
d865110c 1696 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1697 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1698 return 4096;
1699
a00b10c3
CW
1700 /*
1701 * Previous chips need to be aligned to the size of the smallest
1702 * fence register that can contain the object.
1703 */
e28f8711 1704 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1705}
1706
d8cb5086
CW
1707static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1708{
1709 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1710 int ret;
1711
0de23977 1712 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1713 return 0;
1714
da494d7c
DV
1715 dev_priv->mm.shrinker_no_lock_stealing = true;
1716
d8cb5086
CW
1717 ret = drm_gem_create_mmap_offset(&obj->base);
1718 if (ret != -ENOSPC)
da494d7c 1719 goto out;
d8cb5086
CW
1720
1721 /* Badly fragmented mmap space? The only way we can recover
1722 * space is by destroying unwanted objects. We can't randomly release
1723 * mmap_offsets as userspace expects them to be persistent for the
1724 * lifetime of the objects. The closest we can is to release the
1725 * offsets on purgeable objects by truncating it and marking it purged,
1726 * which prevents userspace from ever using that object again.
1727 */
1728 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1729 ret = drm_gem_create_mmap_offset(&obj->base);
1730 if (ret != -ENOSPC)
da494d7c 1731 goto out;
d8cb5086
CW
1732
1733 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1734 ret = drm_gem_create_mmap_offset(&obj->base);
1735out:
1736 dev_priv->mm.shrinker_no_lock_stealing = false;
1737
1738 return ret;
d8cb5086
CW
1739}
1740
1741static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1742{
d8cb5086
CW
1743 drm_gem_free_mmap_offset(&obj->base);
1744}
1745
de151cf6 1746int
ff72145b
DA
1747i915_gem_mmap_gtt(struct drm_file *file,
1748 struct drm_device *dev,
1749 uint32_t handle,
1750 uint64_t *offset)
de151cf6 1751{
da761a6e 1752 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1753 struct drm_i915_gem_object *obj;
de151cf6
JB
1754 int ret;
1755
76c1dec1 1756 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1757 if (ret)
76c1dec1 1758 return ret;
de151cf6 1759
ff72145b 1760 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1761 if (&obj->base == NULL) {
1d7cfea1
CW
1762 ret = -ENOENT;
1763 goto unlock;
1764 }
de151cf6 1765
5d4545ae 1766 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1767 ret = -E2BIG;
ff56b0bc 1768 goto out;
da761a6e
CW
1769 }
1770
05394f39 1771 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1772 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1773 ret = -EFAULT;
1d7cfea1 1774 goto out;
ab18282d
CW
1775 }
1776
d8cb5086
CW
1777 ret = i915_gem_object_create_mmap_offset(obj);
1778 if (ret)
1779 goto out;
de151cf6 1780
0de23977 1781 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1782
1d7cfea1 1783out:
05394f39 1784 drm_gem_object_unreference(&obj->base);
1d7cfea1 1785unlock:
de151cf6 1786 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1787 return ret;
de151cf6
JB
1788}
1789
ff72145b
DA
1790/**
1791 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1792 * @dev: DRM device
1793 * @data: GTT mapping ioctl data
1794 * @file: GEM object info
1795 *
1796 * Simply returns the fake offset to userspace so it can mmap it.
1797 * The mmap call will end up in drm_gem_mmap(), which will set things
1798 * up so we can get faults in the handler above.
1799 *
1800 * The fault handler will take care of binding the object into the GTT
1801 * (since it may have been evicted to make room for something), allocating
1802 * a fence register, and mapping the appropriate aperture address into
1803 * userspace.
1804 */
1805int
1806i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1807 struct drm_file *file)
1808{
1809 struct drm_i915_gem_mmap_gtt *args = data;
1810
ff72145b
DA
1811 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1812}
1813
5537252b
CW
1814static inline int
1815i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1816{
1817 return obj->madv == I915_MADV_DONTNEED;
1818}
1819
225067ee
DV
1820/* Immediately discard the backing storage */
1821static void
1822i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1823{
4d6294bf 1824 i915_gem_object_free_mmap_offset(obj);
1286ff73 1825
4d6294bf
CW
1826 if (obj->base.filp == NULL)
1827 return;
e5281ccd 1828
225067ee
DV
1829 /* Our goal here is to return as much of the memory as
1830 * is possible back to the system as we are called from OOM.
1831 * To do this we must instruct the shmfs to drop all of its
1832 * backing pages, *now*.
1833 */
5537252b 1834 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1835 obj->madv = __I915_MADV_PURGED;
1836}
e5281ccd 1837
5537252b
CW
1838/* Try to discard unwanted pages */
1839static void
1840i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1841{
5537252b
CW
1842 struct address_space *mapping;
1843
1844 switch (obj->madv) {
1845 case I915_MADV_DONTNEED:
1846 i915_gem_object_truncate(obj);
1847 case __I915_MADV_PURGED:
1848 return;
1849 }
1850
1851 if (obj->base.filp == NULL)
1852 return;
1853
1854 mapping = file_inode(obj->base.filp)->i_mapping,
1855 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1856}
1857
5cdf5881 1858static void
05394f39 1859i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1860{
90797e6d
ID
1861 struct sg_page_iter sg_iter;
1862 int ret;
1286ff73 1863
05394f39 1864 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1865
6c085a72
CW
1866 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1867 if (ret) {
1868 /* In the event of a disaster, abandon all caches and
1869 * hope for the best.
1870 */
1871 WARN_ON(ret != -EIO);
2c22569b 1872 i915_gem_clflush_object(obj, true);
6c085a72
CW
1873 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1874 }
1875
6dacfd2f 1876 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1877 i915_gem_object_save_bit_17_swizzle(obj);
1878
05394f39
CW
1879 if (obj->madv == I915_MADV_DONTNEED)
1880 obj->dirty = 0;
3ef94daa 1881
90797e6d 1882 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1883 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1884
05394f39 1885 if (obj->dirty)
9da3da66 1886 set_page_dirty(page);
3ef94daa 1887
05394f39 1888 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1889 mark_page_accessed(page);
3ef94daa 1890
9da3da66 1891 page_cache_release(page);
3ef94daa 1892 }
05394f39 1893 obj->dirty = 0;
673a394b 1894
9da3da66
CW
1895 sg_free_table(obj->pages);
1896 kfree(obj->pages);
37e680a1 1897}
6c085a72 1898
dd624afd 1899int
37e680a1
CW
1900i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1901{
1902 const struct drm_i915_gem_object_ops *ops = obj->ops;
1903
2f745ad3 1904 if (obj->pages == NULL)
37e680a1
CW
1905 return 0;
1906
a5570178
CW
1907 if (obj->pages_pin_count)
1908 return -EBUSY;
1909
9843877d 1910 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1911
a2165e31
CW
1912 /* ->put_pages might need to allocate memory for the bit17 swizzle
1913 * array, hence protect them from being reaped by removing them from gtt
1914 * lists early. */
35c20a60 1915 list_del(&obj->global_list);
a2165e31 1916
37e680a1 1917 ops->put_pages(obj);
05394f39 1918 obj->pages = NULL;
37e680a1 1919
5537252b 1920 i915_gem_object_invalidate(obj);
6c085a72
CW
1921
1922 return 0;
1923}
1924
d9973b43 1925static unsigned long
93927ca5
DV
1926__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1927 bool purgeable_only)
6c085a72 1928{
c8725f3d
CW
1929 struct list_head still_in_list;
1930 struct drm_i915_gem_object *obj;
d9973b43 1931 unsigned long count = 0;
6c085a72 1932
57094f82 1933 /*
c8725f3d 1934 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1935 * (due to retiring requests) we have to strictly process only
1936 * one element of the list at the time, and recheck the list
1937 * on every iteration.
c8725f3d
CW
1938 *
1939 * In particular, we must hold a reference whilst removing the
1940 * object as we may end up waiting for and/or retiring the objects.
1941 * This might release the final reference (held by the active list)
1942 * and result in the object being freed from under us. This is
1943 * similar to the precautions the eviction code must take whilst
1944 * removing objects.
1945 *
1946 * Also note that although these lists do not hold a reference to
1947 * the object we can safely grab one here: The final object
1948 * unreferencing and the bound_list are both protected by the
1949 * dev->struct_mutex and so we won't ever be able to observe an
1950 * object on the bound_list with a reference count equals 0.
57094f82 1951 */
c8725f3d
CW
1952 INIT_LIST_HEAD(&still_in_list);
1953 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1954 obj = list_first_entry(&dev_priv->mm.unbound_list,
1955 typeof(*obj), global_list);
1956 list_move_tail(&obj->global_list, &still_in_list);
1957
1958 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1959 continue;
1960
1961 drm_gem_object_reference(&obj->base);
1962
1963 if (i915_gem_object_put_pages(obj) == 0)
1964 count += obj->base.size >> PAGE_SHIFT;
1965
1966 drm_gem_object_unreference(&obj->base);
1967 }
1968 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1969
1970 INIT_LIST_HEAD(&still_in_list);
57094f82 1971 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1972 struct i915_vma *vma, *v;
80dcfdbd 1973
57094f82
CW
1974 obj = list_first_entry(&dev_priv->mm.bound_list,
1975 typeof(*obj), global_list);
c8725f3d 1976 list_move_tail(&obj->global_list, &still_in_list);
57094f82 1977
80dcfdbd
BW
1978 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1979 continue;
1980
57094f82
CW
1981 drm_gem_object_reference(&obj->base);
1982
07fe0b12
BW
1983 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1984 if (i915_vma_unbind(vma))
1985 break;
80dcfdbd 1986
57094f82 1987 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1988 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1989
1990 drm_gem_object_unreference(&obj->base);
6c085a72 1991 }
c8725f3d 1992 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
1993
1994 return count;
1995}
1996
d9973b43 1997static unsigned long
93927ca5
DV
1998i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1999{
2000 return __i915_gem_shrink(dev_priv, target, true);
2001}
2002
d9973b43 2003static unsigned long
6c085a72
CW
2004i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2005{
6c085a72 2006 i915_gem_evict_everything(dev_priv->dev);
c8725f3d 2007 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
225067ee
DV
2008}
2009
37e680a1 2010static int
6c085a72 2011i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2012{
6c085a72 2013 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2014 int page_count, i;
2015 struct address_space *mapping;
9da3da66
CW
2016 struct sg_table *st;
2017 struct scatterlist *sg;
90797e6d 2018 struct sg_page_iter sg_iter;
e5281ccd 2019 struct page *page;
90797e6d 2020 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2021 gfp_t gfp;
e5281ccd 2022
6c085a72
CW
2023 /* Assert that the object is not currently in any GPU domain. As it
2024 * wasn't in the GTT, there shouldn't be any way it could have been in
2025 * a GPU cache
2026 */
2027 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2028 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2029
9da3da66
CW
2030 st = kmalloc(sizeof(*st), GFP_KERNEL);
2031 if (st == NULL)
2032 return -ENOMEM;
2033
05394f39 2034 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2035 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2036 kfree(st);
e5281ccd 2037 return -ENOMEM;
9da3da66 2038 }
e5281ccd 2039
9da3da66
CW
2040 /* Get the list of pages out of our struct file. They'll be pinned
2041 * at this point until we release them.
2042 *
2043 * Fail silently without starting the shrinker
2044 */
496ad9aa 2045 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2046 gfp = mapping_gfp_mask(mapping);
caf49191 2047 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2048 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2049 sg = st->sgl;
2050 st->nents = 0;
2051 for (i = 0; i < page_count; i++) {
6c085a72
CW
2052 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2053 if (IS_ERR(page)) {
2054 i915_gem_purge(dev_priv, page_count);
2055 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2056 }
2057 if (IS_ERR(page)) {
2058 /* We've tried hard to allocate the memory by reaping
2059 * our own buffer, now let the real VM do its job and
2060 * go down in flames if truly OOM.
2061 */
6c085a72 2062 i915_gem_shrink_all(dev_priv);
f461d1be 2063 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2064 if (IS_ERR(page))
2065 goto err_pages;
6c085a72 2066 }
426729dc
KRW
2067#ifdef CONFIG_SWIOTLB
2068 if (swiotlb_nr_tbl()) {
2069 st->nents++;
2070 sg_set_page(sg, page, PAGE_SIZE, 0);
2071 sg = sg_next(sg);
2072 continue;
2073 }
2074#endif
90797e6d
ID
2075 if (!i || page_to_pfn(page) != last_pfn + 1) {
2076 if (i)
2077 sg = sg_next(sg);
2078 st->nents++;
2079 sg_set_page(sg, page, PAGE_SIZE, 0);
2080 } else {
2081 sg->length += PAGE_SIZE;
2082 }
2083 last_pfn = page_to_pfn(page);
3bbbe706
DV
2084
2085 /* Check that the i965g/gm workaround works. */
2086 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2087 }
426729dc
KRW
2088#ifdef CONFIG_SWIOTLB
2089 if (!swiotlb_nr_tbl())
2090#endif
2091 sg_mark_end(sg);
74ce6b6c
CW
2092 obj->pages = st;
2093
6dacfd2f 2094 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2095 i915_gem_object_do_bit_17_swizzle(obj);
2096
2097 return 0;
2098
2099err_pages:
90797e6d
ID
2100 sg_mark_end(sg);
2101 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2102 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2103 sg_free_table(st);
2104 kfree(st);
0820baf3
CW
2105
2106 /* shmemfs first checks if there is enough memory to allocate the page
2107 * and reports ENOSPC should there be insufficient, along with the usual
2108 * ENOMEM for a genuine allocation failure.
2109 *
2110 * We use ENOSPC in our driver to mean that we have run out of aperture
2111 * space and so want to translate the error from shmemfs back to our
2112 * usual understanding of ENOMEM.
2113 */
2114 if (PTR_ERR(page) == -ENOSPC)
2115 return -ENOMEM;
2116 else
2117 return PTR_ERR(page);
673a394b
EA
2118}
2119
37e680a1
CW
2120/* Ensure that the associated pages are gathered from the backing storage
2121 * and pinned into our object. i915_gem_object_get_pages() may be called
2122 * multiple times before they are released by a single call to
2123 * i915_gem_object_put_pages() - once the pages are no longer referenced
2124 * either as a result of memory pressure (reaping pages under the shrinker)
2125 * or as the object is itself released.
2126 */
2127int
2128i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2129{
2130 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2131 const struct drm_i915_gem_object_ops *ops = obj->ops;
2132 int ret;
2133
2f745ad3 2134 if (obj->pages)
37e680a1
CW
2135 return 0;
2136
43e28f09 2137 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2138 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2139 return -EFAULT;
43e28f09
CW
2140 }
2141
a5570178
CW
2142 BUG_ON(obj->pages_pin_count);
2143
37e680a1
CW
2144 ret = ops->get_pages(obj);
2145 if (ret)
2146 return ret;
2147
35c20a60 2148 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2149 return 0;
673a394b
EA
2150}
2151
e2d05a8b 2152static void
05394f39 2153i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2154 struct intel_engine_cs *ring)
673a394b 2155{
05394f39 2156 struct drm_device *dev = obj->base.dev;
69dc4987 2157 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2158 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2159
852835f3 2160 BUG_ON(ring == NULL);
02978ff5
CW
2161 if (obj->ring != ring && obj->last_write_seqno) {
2162 /* Keep the seqno relative to the current ring */
2163 obj->last_write_seqno = seqno;
2164 }
05394f39 2165 obj->ring = ring;
673a394b
EA
2166
2167 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2168 if (!obj->active) {
2169 drm_gem_object_reference(&obj->base);
2170 obj->active = 1;
673a394b 2171 }
e35a41de 2172
05394f39 2173 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2174
0201f1ec 2175 obj->last_read_seqno = seqno;
caea7476 2176
7dd49065 2177 if (obj->fenced_gpu_access) {
caea7476 2178 obj->last_fenced_seqno = seqno;
caea7476 2179
7dd49065
CW
2180 /* Bump MRU to take account of the delayed flush */
2181 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2182 struct drm_i915_fence_reg *reg;
2183
2184 reg = &dev_priv->fence_regs[obj->fence_reg];
2185 list_move_tail(&reg->lru_list,
2186 &dev_priv->mm.fence_list);
2187 }
caea7476
CW
2188 }
2189}
2190
e2d05a8b 2191void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2192 struct intel_engine_cs *ring)
e2d05a8b
BW
2193{
2194 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2195 return i915_gem_object_move_to_active(vma->obj, ring);
2196}
2197
caea7476 2198static void
caea7476 2199i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2200{
ca191b13 2201 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2202 struct i915_address_space *vm;
2203 struct i915_vma *vma;
ce44b0ea 2204
65ce3027 2205 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2206 BUG_ON(!obj->active);
caea7476 2207
feb822cf
BW
2208 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2209 vma = i915_gem_obj_to_vma(obj, vm);
2210 if (vma && !list_empty(&vma->mm_list))
2211 list_move_tail(&vma->mm_list, &vm->inactive_list);
2212 }
caea7476 2213
65ce3027 2214 list_del_init(&obj->ring_list);
caea7476
CW
2215 obj->ring = NULL;
2216
65ce3027
CW
2217 obj->last_read_seqno = 0;
2218 obj->last_write_seqno = 0;
2219 obj->base.write_domain = 0;
2220
2221 obj->last_fenced_seqno = 0;
caea7476 2222 obj->fenced_gpu_access = false;
caea7476
CW
2223
2224 obj->active = 0;
2225 drm_gem_object_unreference(&obj->base);
2226
2227 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2228}
673a394b 2229
c8725f3d
CW
2230static void
2231i915_gem_object_retire(struct drm_i915_gem_object *obj)
2232{
a4872ba6 2233 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2234
2235 if (ring == NULL)
2236 return;
2237
2238 if (i915_seqno_passed(ring->get_seqno(ring, true),
2239 obj->last_read_seqno))
2240 i915_gem_object_move_to_inactive(obj);
2241}
2242
9d773091 2243static int
fca26bb4 2244i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2245{
9d773091 2246 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2247 struct intel_engine_cs *ring;
9d773091 2248 int ret, i, j;
53d227f2 2249
107f27a5 2250 /* Carefully retire all requests without writing to the rings */
9d773091 2251 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2252 ret = intel_ring_idle(ring);
2253 if (ret)
2254 return ret;
9d773091 2255 }
9d773091 2256 i915_gem_retire_requests(dev);
107f27a5
CW
2257
2258 /* Finally reset hw state */
9d773091 2259 for_each_ring(ring, dev_priv, i) {
fca26bb4 2260 intel_ring_init_seqno(ring, seqno);
498d2ac1 2261
ebc348b2
BW
2262 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2263 ring->semaphore.sync_seqno[j] = 0;
9d773091 2264 }
53d227f2 2265
9d773091 2266 return 0;
53d227f2
DV
2267}
2268
fca26bb4
MK
2269int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2270{
2271 struct drm_i915_private *dev_priv = dev->dev_private;
2272 int ret;
2273
2274 if (seqno == 0)
2275 return -EINVAL;
2276
2277 /* HWS page needs to be set less than what we
2278 * will inject to ring
2279 */
2280 ret = i915_gem_init_seqno(dev, seqno - 1);
2281 if (ret)
2282 return ret;
2283
2284 /* Carefully set the last_seqno value so that wrap
2285 * detection still works
2286 */
2287 dev_priv->next_seqno = seqno;
2288 dev_priv->last_seqno = seqno - 1;
2289 if (dev_priv->last_seqno == 0)
2290 dev_priv->last_seqno--;
2291
2292 return 0;
2293}
2294
9d773091
CW
2295int
2296i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2297{
9d773091
CW
2298 struct drm_i915_private *dev_priv = dev->dev_private;
2299
2300 /* reserve 0 for non-seqno */
2301 if (dev_priv->next_seqno == 0) {
fca26bb4 2302 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2303 if (ret)
2304 return ret;
53d227f2 2305
9d773091
CW
2306 dev_priv->next_seqno = 1;
2307 }
53d227f2 2308
f72b3435 2309 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2310 return 0;
53d227f2
DV
2311}
2312
a4872ba6 2313int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2314 struct drm_file *file,
7d736f4f 2315 struct drm_i915_gem_object *obj,
0025c077 2316 u32 *out_seqno)
673a394b 2317{
3e31c6c0 2318 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2319 struct drm_i915_gem_request *request;
7d736f4f 2320 u32 request_ring_position, request_start;
3cce469c
CW
2321 int ret;
2322
7d736f4f 2323 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2324 /*
2325 * Emit any outstanding flushes - execbuf can fail to emit the flush
2326 * after having emitted the batchbuffer command. Hence we need to fix
2327 * things up similar to emitting the lazy request. The difference here
2328 * is that the flush _must_ happen before the next request, no matter
2329 * what.
2330 */
a7b9761d
CW
2331 ret = intel_ring_flush_all_caches(ring);
2332 if (ret)
2333 return ret;
cc889e0f 2334
3c0e234c
CW
2335 request = ring->preallocated_lazy_request;
2336 if (WARN_ON(request == NULL))
acb868d3 2337 return -ENOMEM;
cc889e0f 2338
a71d8d94
CW
2339 /* Record the position of the start of the request so that
2340 * should we detect the updated seqno part-way through the
2341 * GPU processing the request, we never over-estimate the
2342 * position of the head.
2343 */
2344 request_ring_position = intel_ring_get_tail(ring);
2345
9d773091 2346 ret = ring->add_request(ring);
3c0e234c 2347 if (ret)
3bb73aba 2348 return ret;
673a394b 2349
9d773091 2350 request->seqno = intel_ring_get_seqno(ring);
852835f3 2351 request->ring = ring;
7d736f4f 2352 request->head = request_start;
a71d8d94 2353 request->tail = request_ring_position;
7d736f4f
MK
2354
2355 /* Whilst this request exists, batch_obj will be on the
2356 * active_list, and so will hold the active reference. Only when this
2357 * request is retired will the the batch_obj be moved onto the
2358 * inactive_list and lose its active reference. Hence we do not need
2359 * to explicitly hold another reference here.
2360 */
9a7e0c2a 2361 request->batch_obj = obj;
0e50e96b 2362
9a7e0c2a
CW
2363 /* Hold a reference to the current context so that we can inspect
2364 * it later in case a hangcheck error event fires.
2365 */
2366 request->ctx = ring->last_context;
0e50e96b
MK
2367 if (request->ctx)
2368 i915_gem_context_reference(request->ctx);
2369
673a394b 2370 request->emitted_jiffies = jiffies;
852835f3 2371 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2372 request->file_priv = NULL;
852835f3 2373
db53a302
CW
2374 if (file) {
2375 struct drm_i915_file_private *file_priv = file->driver_priv;
2376
1c25595f 2377 spin_lock(&file_priv->mm.lock);
f787a5f5 2378 request->file_priv = file_priv;
b962442e 2379 list_add_tail(&request->client_list,
f787a5f5 2380 &file_priv->mm.request_list);
1c25595f 2381 spin_unlock(&file_priv->mm.lock);
b962442e 2382 }
673a394b 2383
9d773091 2384 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2385 ring->outstanding_lazy_seqno = 0;
3c0e234c 2386 ring->preallocated_lazy_request = NULL;
db53a302 2387
db1b76ca 2388 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2389 i915_queue_hangcheck(ring->dev);
2390
f62a0076
CW
2391 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2392 queue_delayed_work(dev_priv->wq,
2393 &dev_priv->mm.retire_work,
2394 round_jiffies_up_relative(HZ));
2395 intel_mark_busy(dev_priv->dev);
f65d9421 2396 }
cc889e0f 2397
acb868d3 2398 if (out_seqno)
9d773091 2399 *out_seqno = request->seqno;
3cce469c 2400 return 0;
673a394b
EA
2401}
2402
f787a5f5
CW
2403static inline void
2404i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2405{
1c25595f 2406 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2407
1c25595f
CW
2408 if (!file_priv)
2409 return;
1c5d22f7 2410
1c25595f 2411 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2412 list_del(&request->client_list);
2413 request->file_priv = NULL;
1c25595f 2414 spin_unlock(&file_priv->mm.lock);
673a394b 2415}
673a394b 2416
939fd762 2417static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2418 const struct intel_context *ctx)
be62acb4 2419{
44e2c070 2420 unsigned long elapsed;
be62acb4 2421
44e2c070
MK
2422 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2423
2424 if (ctx->hang_stats.banned)
be62acb4
MK
2425 return true;
2426
2427 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2428 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2429 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2430 return true;
88b4aa87
MK
2431 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2432 if (i915_stop_ring_allow_warn(dev_priv))
2433 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2434 return true;
3fac8978 2435 }
be62acb4
MK
2436 }
2437
2438 return false;
2439}
2440
939fd762 2441static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2442 struct intel_context *ctx,
b6b0fac0 2443 const bool guilty)
aa60c664 2444{
44e2c070
MK
2445 struct i915_ctx_hang_stats *hs;
2446
2447 if (WARN_ON(!ctx))
2448 return;
aa60c664 2449
44e2c070
MK
2450 hs = &ctx->hang_stats;
2451
2452 if (guilty) {
939fd762 2453 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2454 hs->batch_active++;
2455 hs->guilty_ts = get_seconds();
2456 } else {
2457 hs->batch_pending++;
aa60c664
MK
2458 }
2459}
2460
0e50e96b
MK
2461static void i915_gem_free_request(struct drm_i915_gem_request *request)
2462{
2463 list_del(&request->list);
2464 i915_gem_request_remove_from_client(request);
2465
2466 if (request->ctx)
2467 i915_gem_context_unreference(request->ctx);
2468
2469 kfree(request);
2470}
2471
8d9fc7fd 2472struct drm_i915_gem_request *
a4872ba6 2473i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2474{
4db080f9 2475 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2476 u32 completed_seqno;
2477
2478 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2479
2480 list_for_each_entry(request, &ring->request_list, list) {
2481 if (i915_seqno_passed(completed_seqno, request->seqno))
2482 continue;
aa60c664 2483
b6b0fac0 2484 return request;
4db080f9 2485 }
b6b0fac0
MK
2486
2487 return NULL;
2488}
2489
2490static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2491 struct intel_engine_cs *ring)
b6b0fac0
MK
2492{
2493 struct drm_i915_gem_request *request;
2494 bool ring_hung;
2495
8d9fc7fd 2496 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2497
2498 if (request == NULL)
2499 return;
2500
2501 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2502
939fd762 2503 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2504
2505 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2506 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2507}
aa60c664 2508
4db080f9 2509static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2510 struct intel_engine_cs *ring)
4db080f9 2511{
dfaae392 2512 while (!list_empty(&ring->active_list)) {
05394f39 2513 struct drm_i915_gem_object *obj;
9375e446 2514
05394f39
CW
2515 obj = list_first_entry(&ring->active_list,
2516 struct drm_i915_gem_object,
2517 ring_list);
9375e446 2518
05394f39 2519 i915_gem_object_move_to_inactive(obj);
673a394b 2520 }
1d62beea
BW
2521
2522 /*
2523 * We must free the requests after all the corresponding objects have
2524 * been moved off active lists. Which is the same order as the normal
2525 * retire_requests function does. This is important if object hold
2526 * implicit references on things like e.g. ppgtt address spaces through
2527 * the request.
2528 */
2529 while (!list_empty(&ring->request_list)) {
2530 struct drm_i915_gem_request *request;
2531
2532 request = list_first_entry(&ring->request_list,
2533 struct drm_i915_gem_request,
2534 list);
2535
2536 i915_gem_free_request(request);
2537 }
e3efda49
CW
2538
2539 /* These may not have been flush before the reset, do so now */
2540 kfree(ring->preallocated_lazy_request);
2541 ring->preallocated_lazy_request = NULL;
2542 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2543}
2544
19b2dbde 2545void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2546{
2547 struct drm_i915_private *dev_priv = dev->dev_private;
2548 int i;
2549
4b9de737 2550 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2551 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2552
94a335db
DV
2553 /*
2554 * Commit delayed tiling changes if we have an object still
2555 * attached to the fence, otherwise just clear the fence.
2556 */
2557 if (reg->obj) {
2558 i915_gem_object_update_fence(reg->obj, reg,
2559 reg->obj->tiling_mode);
2560 } else {
2561 i915_gem_write_fence(dev, i, NULL);
2562 }
312817a3
CW
2563 }
2564}
2565
069efc1d 2566void i915_gem_reset(struct drm_device *dev)
673a394b 2567{
77f01230 2568 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2569 struct intel_engine_cs *ring;
1ec14ad3 2570 int i;
673a394b 2571
4db080f9
CW
2572 /*
2573 * Before we free the objects from the requests, we need to inspect
2574 * them for finding the guilty party. As the requests only borrow
2575 * their reference to the objects, the inspection must be done first.
2576 */
2577 for_each_ring(ring, dev_priv, i)
2578 i915_gem_reset_ring_status(dev_priv, ring);
2579
b4519513 2580 for_each_ring(ring, dev_priv, i)
4db080f9 2581 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2582
acce9ffa
BW
2583 i915_gem_context_reset(dev);
2584
19b2dbde 2585 i915_gem_restore_fences(dev);
673a394b
EA
2586}
2587
2588/**
2589 * This function clears the request list as sequence numbers are passed.
2590 */
1cf0ba14 2591void
a4872ba6 2592i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2593{
673a394b
EA
2594 uint32_t seqno;
2595
db53a302 2596 if (list_empty(&ring->request_list))
6c0594a3
KW
2597 return;
2598
db53a302 2599 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2600
b2eadbc8 2601 seqno = ring->get_seqno(ring, true);
1ec14ad3 2602
e9103038
CW
2603 /* Move any buffers on the active list that are no longer referenced
2604 * by the ringbuffer to the flushing/inactive lists as appropriate,
2605 * before we free the context associated with the requests.
2606 */
2607 while (!list_empty(&ring->active_list)) {
2608 struct drm_i915_gem_object *obj;
2609
2610 obj = list_first_entry(&ring->active_list,
2611 struct drm_i915_gem_object,
2612 ring_list);
2613
2614 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2615 break;
2616
2617 i915_gem_object_move_to_inactive(obj);
2618 }
2619
2620
852835f3 2621 while (!list_empty(&ring->request_list)) {
673a394b 2622 struct drm_i915_gem_request *request;
673a394b 2623
852835f3 2624 request = list_first_entry(&ring->request_list,
673a394b
EA
2625 struct drm_i915_gem_request,
2626 list);
673a394b 2627
dfaae392 2628 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2629 break;
2630
db53a302 2631 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2632 /* We know the GPU must have read the request to have
2633 * sent us the seqno + interrupt, so use the position
2634 * of tail of the request to update the last known position
2635 * of the GPU head.
2636 */
ee1b1e5e 2637 ring->buffer->last_retired_head = request->tail;
b84d5f0c 2638
0e50e96b 2639 i915_gem_free_request(request);
b84d5f0c 2640 }
673a394b 2641
db53a302
CW
2642 if (unlikely(ring->trace_irq_seqno &&
2643 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2644 ring->irq_put(ring);
db53a302 2645 ring->trace_irq_seqno = 0;
9d34e5db 2646 }
23bc5982 2647
db53a302 2648 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2649}
2650
b29c19b6 2651bool
b09a1fec
CW
2652i915_gem_retire_requests(struct drm_device *dev)
2653{
3e31c6c0 2654 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2655 struct intel_engine_cs *ring;
b29c19b6 2656 bool idle = true;
1ec14ad3 2657 int i;
b09a1fec 2658
b29c19b6 2659 for_each_ring(ring, dev_priv, i) {
b4519513 2660 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2661 idle &= list_empty(&ring->request_list);
2662 }
2663
2664 if (idle)
2665 mod_delayed_work(dev_priv->wq,
2666 &dev_priv->mm.idle_work,
2667 msecs_to_jiffies(100));
2668
2669 return idle;
b09a1fec
CW
2670}
2671
75ef9da2 2672static void
673a394b
EA
2673i915_gem_retire_work_handler(struct work_struct *work)
2674{
b29c19b6
CW
2675 struct drm_i915_private *dev_priv =
2676 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2677 struct drm_device *dev = dev_priv->dev;
0a58705b 2678 bool idle;
673a394b 2679
891b48cf 2680 /* Come back later if the device is busy... */
b29c19b6
CW
2681 idle = false;
2682 if (mutex_trylock(&dev->struct_mutex)) {
2683 idle = i915_gem_retire_requests(dev);
2684 mutex_unlock(&dev->struct_mutex);
673a394b 2685 }
b29c19b6 2686 if (!idle)
bcb45086
CW
2687 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2688 round_jiffies_up_relative(HZ));
b29c19b6 2689}
0a58705b 2690
b29c19b6
CW
2691static void
2692i915_gem_idle_work_handler(struct work_struct *work)
2693{
2694 struct drm_i915_private *dev_priv =
2695 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2696
2697 intel_mark_idle(dev_priv->dev);
673a394b
EA
2698}
2699
30dfebf3
DV
2700/**
2701 * Ensures that an object will eventually get non-busy by flushing any required
2702 * write domains, emitting any outstanding lazy request and retiring and
2703 * completed requests.
2704 */
2705static int
2706i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2707{
2708 int ret;
2709
2710 if (obj->active) {
0201f1ec 2711 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2712 if (ret)
2713 return ret;
2714
30dfebf3
DV
2715 i915_gem_retire_requests_ring(obj->ring);
2716 }
2717
2718 return 0;
2719}
2720
23ba4fd0
BW
2721/**
2722 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2723 * @DRM_IOCTL_ARGS: standard ioctl arguments
2724 *
2725 * Returns 0 if successful, else an error is returned with the remaining time in
2726 * the timeout parameter.
2727 * -ETIME: object is still busy after timeout
2728 * -ERESTARTSYS: signal interrupted the wait
2729 * -ENONENT: object doesn't exist
2730 * Also possible, but rare:
2731 * -EAGAIN: GPU wedged
2732 * -ENOMEM: damn
2733 * -ENODEV: Internal IRQ fail
2734 * -E?: The add request failed
2735 *
2736 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2737 * non-zero timeout parameter the wait ioctl will wait for the given number of
2738 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2739 * without holding struct_mutex the object may become re-busied before this
2740 * function completes. A similar but shorter * race condition exists in the busy
2741 * ioctl
2742 */
2743int
2744i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2745{
3e31c6c0 2746 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2747 struct drm_i915_gem_wait *args = data;
2748 struct drm_i915_gem_object *obj;
a4872ba6 2749 struct intel_engine_cs *ring = NULL;
eac1f14f 2750 struct timespec timeout_stack, *timeout = NULL;
f69061be 2751 unsigned reset_counter;
23ba4fd0
BW
2752 u32 seqno = 0;
2753 int ret = 0;
2754
eac1f14f
BW
2755 if (args->timeout_ns >= 0) {
2756 timeout_stack = ns_to_timespec(args->timeout_ns);
2757 timeout = &timeout_stack;
2758 }
23ba4fd0
BW
2759
2760 ret = i915_mutex_lock_interruptible(dev);
2761 if (ret)
2762 return ret;
2763
2764 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2765 if (&obj->base == NULL) {
2766 mutex_unlock(&dev->struct_mutex);
2767 return -ENOENT;
2768 }
2769
30dfebf3
DV
2770 /* Need to make sure the object gets inactive eventually. */
2771 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2772 if (ret)
2773 goto out;
2774
2775 if (obj->active) {
0201f1ec 2776 seqno = obj->last_read_seqno;
23ba4fd0
BW
2777 ring = obj->ring;
2778 }
2779
2780 if (seqno == 0)
2781 goto out;
2782
23ba4fd0
BW
2783 /* Do this after OLR check to make sure we make forward progress polling
2784 * on this IOCTL with a 0 timeout (like busy ioctl)
2785 */
2786 if (!args->timeout_ns) {
2787 ret = -ETIME;
2788 goto out;
2789 }
2790
2791 drm_gem_object_unreference(&obj->base);
f69061be 2792 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2793 mutex_unlock(&dev->struct_mutex);
2794
b29c19b6 2795 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2796 if (timeout)
eac1f14f 2797 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2798 return ret;
2799
2800out:
2801 drm_gem_object_unreference(&obj->base);
2802 mutex_unlock(&dev->struct_mutex);
2803 return ret;
2804}
2805
5816d648
BW
2806/**
2807 * i915_gem_object_sync - sync an object to a ring.
2808 *
2809 * @obj: object which may be in use on another ring.
2810 * @to: ring we wish to use the object on. May be NULL.
2811 *
2812 * This code is meant to abstract object synchronization with the GPU.
2813 * Calling with NULL implies synchronizing the object with the CPU
2814 * rather than a particular GPU ring.
2815 *
2816 * Returns 0 if successful, else propagates up the lower layer error.
2817 */
2911a35b
BW
2818int
2819i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2820 struct intel_engine_cs *to)
2911a35b 2821{
a4872ba6 2822 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2823 u32 seqno;
2824 int ret, idx;
2825
2826 if (from == NULL || to == from)
2827 return 0;
2828
5816d648 2829 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2830 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2831
2832 idx = intel_ring_sync_index(from, to);
2833
0201f1ec 2834 seqno = obj->last_read_seqno;
ebc348b2 2835 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2836 return 0;
2837
b4aca010
BW
2838 ret = i915_gem_check_olr(obj->ring, seqno);
2839 if (ret)
2840 return ret;
2911a35b 2841
b52b89da 2842 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2843 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2844 if (!ret)
7b01e260
MK
2845 /* We use last_read_seqno because sync_to()
2846 * might have just caused seqno wrap under
2847 * the radar.
2848 */
ebc348b2 2849 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2850
e3a5a225 2851 return ret;
2911a35b
BW
2852}
2853
b5ffc9bc
CW
2854static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2855{
2856 u32 old_write_domain, old_read_domains;
2857
b5ffc9bc
CW
2858 /* Force a pagefault for domain tracking on next user access */
2859 i915_gem_release_mmap(obj);
2860
b97c3d9c
KP
2861 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2862 return;
2863
97c809fd
CW
2864 /* Wait for any direct GTT access to complete */
2865 mb();
2866
b5ffc9bc
CW
2867 old_read_domains = obj->base.read_domains;
2868 old_write_domain = obj->base.write_domain;
2869
2870 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2871 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2872
2873 trace_i915_gem_object_change_domain(obj,
2874 old_read_domains,
2875 old_write_domain);
2876}
2877
07fe0b12 2878int i915_vma_unbind(struct i915_vma *vma)
673a394b 2879{
07fe0b12 2880 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2882 int ret;
673a394b 2883
07fe0b12 2884 if (list_empty(&vma->vma_link))
673a394b
EA
2885 return 0;
2886
0ff501cb
DV
2887 if (!drm_mm_node_allocated(&vma->node)) {
2888 i915_gem_vma_destroy(vma);
0ff501cb
DV
2889 return 0;
2890 }
433544bd 2891
d7f46fc4 2892 if (vma->pin_count)
31d8d651 2893 return -EBUSY;
673a394b 2894
c4670ad0
CW
2895 BUG_ON(obj->pages == NULL);
2896
a8198eea 2897 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2898 if (ret)
a8198eea
CW
2899 return ret;
2900 /* Continue on if we fail due to EIO, the GPU is hung so we
2901 * should be safe and we need to cleanup or else we might
2902 * cause memory corruption through use-after-free.
2903 */
2904
8b1bc9b4
DV
2905 if (i915_is_ggtt(vma->vm)) {
2906 i915_gem_object_finish_gtt(obj);
5323fd04 2907
8b1bc9b4
DV
2908 /* release the fence reg _after_ flushing */
2909 ret = i915_gem_object_put_fence(obj);
2910 if (ret)
2911 return ret;
2912 }
96b47b65 2913
07fe0b12 2914 trace_i915_vma_unbind(vma);
db53a302 2915
6f65e29a
BW
2916 vma->unbind_vma(vma);
2917
74163907 2918 i915_gem_gtt_finish_object(obj);
7bddb01f 2919
64bf9303 2920 list_del_init(&vma->mm_list);
75e9e915 2921 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2922 if (i915_is_ggtt(vma->vm))
2923 obj->map_and_fenceable = true;
673a394b 2924
2f633156
BW
2925 drm_mm_remove_node(&vma->node);
2926 i915_gem_vma_destroy(vma);
2927
2928 /* Since the unbound list is global, only move to that list if
b93dab6e 2929 * no more VMAs exist. */
2f633156
BW
2930 if (list_empty(&obj->vma_list))
2931 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2932
70903c3b
CW
2933 /* And finally now the object is completely decoupled from this vma,
2934 * we can drop its hold on the backing storage and allow it to be
2935 * reaped by the shrinker.
2936 */
2937 i915_gem_object_unpin_pages(obj);
2938
88241785 2939 return 0;
54cf91dc
CW
2940}
2941
b2da9fe5 2942int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2943{
3e31c6c0 2944 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2945 struct intel_engine_cs *ring;
1ec14ad3 2946 int ret, i;
4df2faf4 2947
4df2faf4 2948 /* Flush everything onto the inactive list. */
b4519513 2949 for_each_ring(ring, dev_priv, i) {
691e6415 2950 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2951 if (ret)
2952 return ret;
2953
3e960501 2954 ret = intel_ring_idle(ring);
1ec14ad3
CW
2955 if (ret)
2956 return ret;
2957 }
4df2faf4 2958
8a1a49f9 2959 return 0;
4df2faf4
DV
2960}
2961
9ce079e4
CW
2962static void i965_write_fence_reg(struct drm_device *dev, int reg,
2963 struct drm_i915_gem_object *obj)
de151cf6 2964{
3e31c6c0 2965 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2966 int fence_reg;
2967 int fence_pitch_shift;
de151cf6 2968
56c844e5
ID
2969 if (INTEL_INFO(dev)->gen >= 6) {
2970 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2971 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2972 } else {
2973 fence_reg = FENCE_REG_965_0;
2974 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2975 }
2976
d18b9619
CW
2977 fence_reg += reg * 8;
2978
2979 /* To w/a incoherency with non-atomic 64-bit register updates,
2980 * we split the 64-bit update into two 32-bit writes. In order
2981 * for a partial fence not to be evaluated between writes, we
2982 * precede the update with write to turn off the fence register,
2983 * and only enable the fence as the last step.
2984 *
2985 * For extra levels of paranoia, we make sure each step lands
2986 * before applying the next step.
2987 */
2988 I915_WRITE(fence_reg, 0);
2989 POSTING_READ(fence_reg);
2990
9ce079e4 2991 if (obj) {
f343c5f6 2992 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2993 uint64_t val;
de151cf6 2994
f343c5f6 2995 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2996 0xfffff000) << 32;
f343c5f6 2997 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2998 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2999 if (obj->tiling_mode == I915_TILING_Y)
3000 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3001 val |= I965_FENCE_REG_VALID;
c6642782 3002
d18b9619
CW
3003 I915_WRITE(fence_reg + 4, val >> 32);
3004 POSTING_READ(fence_reg + 4);
3005
3006 I915_WRITE(fence_reg + 0, val);
3007 POSTING_READ(fence_reg);
3008 } else {
3009 I915_WRITE(fence_reg + 4, 0);
3010 POSTING_READ(fence_reg + 4);
3011 }
de151cf6
JB
3012}
3013
9ce079e4
CW
3014static void i915_write_fence_reg(struct drm_device *dev, int reg,
3015 struct drm_i915_gem_object *obj)
de151cf6 3016{
3e31c6c0 3017 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3018 u32 val;
de151cf6 3019
9ce079e4 3020 if (obj) {
f343c5f6 3021 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3022 int pitch_val;
3023 int tile_width;
c6642782 3024
f343c5f6 3025 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3026 (size & -size) != size ||
f343c5f6
BW
3027 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3028 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3029 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3030
9ce079e4
CW
3031 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3032 tile_width = 128;
3033 else
3034 tile_width = 512;
3035
3036 /* Note: pitch better be a power of two tile widths */
3037 pitch_val = obj->stride / tile_width;
3038 pitch_val = ffs(pitch_val) - 1;
3039
f343c5f6 3040 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3041 if (obj->tiling_mode == I915_TILING_Y)
3042 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3043 val |= I915_FENCE_SIZE_BITS(size);
3044 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3045 val |= I830_FENCE_REG_VALID;
3046 } else
3047 val = 0;
3048
3049 if (reg < 8)
3050 reg = FENCE_REG_830_0 + reg * 4;
3051 else
3052 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3053
3054 I915_WRITE(reg, val);
3055 POSTING_READ(reg);
de151cf6
JB
3056}
3057
9ce079e4
CW
3058static void i830_write_fence_reg(struct drm_device *dev, int reg,
3059 struct drm_i915_gem_object *obj)
de151cf6 3060{
3e31c6c0 3061 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3062 uint32_t val;
de151cf6 3063
9ce079e4 3064 if (obj) {
f343c5f6 3065 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3066 uint32_t pitch_val;
de151cf6 3067
f343c5f6 3068 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3069 (size & -size) != size ||
f343c5f6
BW
3070 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3071 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3072 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3073
9ce079e4
CW
3074 pitch_val = obj->stride / 128;
3075 pitch_val = ffs(pitch_val) - 1;
de151cf6 3076
f343c5f6 3077 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3078 if (obj->tiling_mode == I915_TILING_Y)
3079 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3080 val |= I830_FENCE_SIZE_BITS(size);
3081 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3082 val |= I830_FENCE_REG_VALID;
3083 } else
3084 val = 0;
c6642782 3085
9ce079e4
CW
3086 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3087 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3088}
3089
d0a57789
CW
3090inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3091{
3092 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3093}
3094
9ce079e4
CW
3095static void i915_gem_write_fence(struct drm_device *dev, int reg,
3096 struct drm_i915_gem_object *obj)
3097{
d0a57789
CW
3098 struct drm_i915_private *dev_priv = dev->dev_private;
3099
3100 /* Ensure that all CPU reads are completed before installing a fence
3101 * and all writes before removing the fence.
3102 */
3103 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3104 mb();
3105
94a335db
DV
3106 WARN(obj && (!obj->stride || !obj->tiling_mode),
3107 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3108 obj->stride, obj->tiling_mode);
3109
9ce079e4 3110 switch (INTEL_INFO(dev)->gen) {
5ab31333 3111 case 8:
9ce079e4 3112 case 7:
56c844e5 3113 case 6:
9ce079e4
CW
3114 case 5:
3115 case 4: i965_write_fence_reg(dev, reg, obj); break;
3116 case 3: i915_write_fence_reg(dev, reg, obj); break;
3117 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3118 default: BUG();
9ce079e4 3119 }
d0a57789
CW
3120
3121 /* And similarly be paranoid that no direct access to this region
3122 * is reordered to before the fence is installed.
3123 */
3124 if (i915_gem_object_needs_mb(obj))
3125 mb();
de151cf6
JB
3126}
3127
61050808
CW
3128static inline int fence_number(struct drm_i915_private *dev_priv,
3129 struct drm_i915_fence_reg *fence)
3130{
3131 return fence - dev_priv->fence_regs;
3132}
3133
3134static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3135 struct drm_i915_fence_reg *fence,
3136 bool enable)
3137{
2dc8aae0 3138 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3139 int reg = fence_number(dev_priv, fence);
3140
3141 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3142
3143 if (enable) {
46a0b638 3144 obj->fence_reg = reg;
61050808
CW
3145 fence->obj = obj;
3146 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3147 } else {
3148 obj->fence_reg = I915_FENCE_REG_NONE;
3149 fence->obj = NULL;
3150 list_del_init(&fence->lru_list);
3151 }
94a335db 3152 obj->fence_dirty = false;
61050808
CW
3153}
3154
d9e86c0e 3155static int
d0a57789 3156i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3157{
1c293ea3 3158 if (obj->last_fenced_seqno) {
86d5bc37 3159 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3160 if (ret)
3161 return ret;
d9e86c0e
CW
3162
3163 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3164 }
3165
86d5bc37 3166 obj->fenced_gpu_access = false;
d9e86c0e
CW
3167 return 0;
3168}
3169
3170int
3171i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3172{
61050808 3173 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3174 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3175 int ret;
3176
d0a57789 3177 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3178 if (ret)
3179 return ret;
3180
61050808
CW
3181 if (obj->fence_reg == I915_FENCE_REG_NONE)
3182 return 0;
d9e86c0e 3183
f9c513e9
CW
3184 fence = &dev_priv->fence_regs[obj->fence_reg];
3185
aff10b30
DV
3186 if (WARN_ON(fence->pin_count))
3187 return -EBUSY;
3188
61050808 3189 i915_gem_object_fence_lost(obj);
f9c513e9 3190 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3191
3192 return 0;
3193}
3194
3195static struct drm_i915_fence_reg *
a360bb1a 3196i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3197{
ae3db24a 3198 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3199 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3200 int i;
ae3db24a
DV
3201
3202 /* First try to find a free reg */
d9e86c0e 3203 avail = NULL;
ae3db24a
DV
3204 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3205 reg = &dev_priv->fence_regs[i];
3206 if (!reg->obj)
d9e86c0e 3207 return reg;
ae3db24a 3208
1690e1eb 3209 if (!reg->pin_count)
d9e86c0e 3210 avail = reg;
ae3db24a
DV
3211 }
3212
d9e86c0e 3213 if (avail == NULL)
5dce5b93 3214 goto deadlock;
ae3db24a
DV
3215
3216 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3217 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3218 if (reg->pin_count)
ae3db24a
DV
3219 continue;
3220
8fe301ad 3221 return reg;
ae3db24a
DV
3222 }
3223
5dce5b93
CW
3224deadlock:
3225 /* Wait for completion of pending flips which consume fences */
3226 if (intel_has_pending_fb_unpin(dev))
3227 return ERR_PTR(-EAGAIN);
3228
3229 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3230}
3231
de151cf6 3232/**
9a5a53b3 3233 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3234 * @obj: object to map through a fence reg
3235 *
3236 * When mapping objects through the GTT, userspace wants to be able to write
3237 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3238 * This function walks the fence regs looking for a free one for @obj,
3239 * stealing one if it can't find any.
3240 *
3241 * It then sets up the reg based on the object's properties: address, pitch
3242 * and tiling format.
9a5a53b3
CW
3243 *
3244 * For an untiled surface, this removes any existing fence.
de151cf6 3245 */
8c4b8c3f 3246int
06d98131 3247i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3248{
05394f39 3249 struct drm_device *dev = obj->base.dev;
79e53945 3250 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3251 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3252 struct drm_i915_fence_reg *reg;
ae3db24a 3253 int ret;
de151cf6 3254
14415745
CW
3255 /* Have we updated the tiling parameters upon the object and so
3256 * will need to serialise the write to the associated fence register?
3257 */
5d82e3e6 3258 if (obj->fence_dirty) {
d0a57789 3259 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3260 if (ret)
3261 return ret;
3262 }
9a5a53b3 3263
d9e86c0e 3264 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3265 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3266 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3267 if (!obj->fence_dirty) {
14415745
CW
3268 list_move_tail(&reg->lru_list,
3269 &dev_priv->mm.fence_list);
3270 return 0;
3271 }
3272 } else if (enable) {
3273 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3274 if (IS_ERR(reg))
3275 return PTR_ERR(reg);
d9e86c0e 3276
14415745
CW
3277 if (reg->obj) {
3278 struct drm_i915_gem_object *old = reg->obj;
3279
d0a57789 3280 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3281 if (ret)
3282 return ret;
3283
14415745 3284 i915_gem_object_fence_lost(old);
29c5a587 3285 }
14415745 3286 } else
a09ba7fa 3287 return 0;
a09ba7fa 3288
14415745 3289 i915_gem_object_update_fence(obj, reg, enable);
14415745 3290
9ce079e4 3291 return 0;
de151cf6
JB
3292}
3293
42d6ab48
CW
3294static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3295 struct drm_mm_node *gtt_space,
3296 unsigned long cache_level)
3297{
3298 struct drm_mm_node *other;
3299
3300 /* On non-LLC machines we have to be careful when putting differing
3301 * types of snoopable memory together to avoid the prefetcher
4239ca77 3302 * crossing memory domains and dying.
42d6ab48
CW
3303 */
3304 if (HAS_LLC(dev))
3305 return true;
3306
c6cfb325 3307 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3308 return true;
3309
3310 if (list_empty(&gtt_space->node_list))
3311 return true;
3312
3313 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3314 if (other->allocated && !other->hole_follows && other->color != cache_level)
3315 return false;
3316
3317 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3318 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3319 return false;
3320
3321 return true;
3322}
3323
3324static void i915_gem_verify_gtt(struct drm_device *dev)
3325{
3326#if WATCH_GTT
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328 struct drm_i915_gem_object *obj;
3329 int err = 0;
3330
35c20a60 3331 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3332 if (obj->gtt_space == NULL) {
3333 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3334 err++;
3335 continue;
3336 }
3337
3338 if (obj->cache_level != obj->gtt_space->color) {
3339 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3340 i915_gem_obj_ggtt_offset(obj),
3341 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3342 obj->cache_level,
3343 obj->gtt_space->color);
3344 err++;
3345 continue;
3346 }
3347
3348 if (!i915_gem_valid_gtt_space(dev,
3349 obj->gtt_space,
3350 obj->cache_level)) {
3351 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3352 i915_gem_obj_ggtt_offset(obj),
3353 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3354 obj->cache_level);
3355 err++;
3356 continue;
3357 }
3358 }
3359
3360 WARN_ON(err);
3361#endif
3362}
3363
673a394b
EA
3364/**
3365 * Finds free space in the GTT aperture and binds the object there.
3366 */
262de145 3367static struct i915_vma *
07fe0b12
BW
3368i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3369 struct i915_address_space *vm,
3370 unsigned alignment,
d23db88c 3371 uint64_t flags)
673a394b 3372{
05394f39 3373 struct drm_device *dev = obj->base.dev;
3e31c6c0 3374 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3375 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3376 unsigned long start =
3377 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3378 unsigned long end =
1ec9e26d 3379 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3380 struct i915_vma *vma;
07f73f69 3381 int ret;
673a394b 3382
e28f8711
CW
3383 fence_size = i915_gem_get_gtt_size(dev,
3384 obj->base.size,
3385 obj->tiling_mode);
3386 fence_alignment = i915_gem_get_gtt_alignment(dev,
3387 obj->base.size,
d865110c 3388 obj->tiling_mode, true);
e28f8711 3389 unfenced_alignment =
d865110c 3390 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3391 obj->base.size,
3392 obj->tiling_mode, false);
a00b10c3 3393
673a394b 3394 if (alignment == 0)
1ec9e26d 3395 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3396 unfenced_alignment;
1ec9e26d 3397 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3398 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3399 return ERR_PTR(-EINVAL);
673a394b
EA
3400 }
3401
1ec9e26d 3402 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3403
654fc607
CW
3404 /* If the object is bigger than the entire aperture, reject it early
3405 * before evicting everything in a vain attempt to find space.
3406 */
d23db88c
CW
3407 if (obj->base.size > end) {
3408 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3409 obj->base.size,
1ec9e26d 3410 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3411 end);
262de145 3412 return ERR_PTR(-E2BIG);
654fc607
CW
3413 }
3414
37e680a1 3415 ret = i915_gem_object_get_pages(obj);
6c085a72 3416 if (ret)
262de145 3417 return ERR_PTR(ret);
6c085a72 3418
fbdda6fb
CW
3419 i915_gem_object_pin_pages(obj);
3420
accfef2e 3421 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3422 if (IS_ERR(vma))
bc6bc15b 3423 goto err_unpin;
2f633156 3424
0a9ae0d7 3425search_free:
07fe0b12 3426 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3427 size, alignment,
d23db88c
CW
3428 obj->cache_level,
3429 start, end,
62347f9e
LK
3430 DRM_MM_SEARCH_DEFAULT,
3431 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3432 if (ret) {
f6cd1f15 3433 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3434 obj->cache_level,
3435 start, end,
3436 flags);
dc9dd7a2
CW
3437 if (ret == 0)
3438 goto search_free;
9731129c 3439
bc6bc15b 3440 goto err_free_vma;
673a394b 3441 }
2f633156 3442 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3443 obj->cache_level))) {
2f633156 3444 ret = -EINVAL;
bc6bc15b 3445 goto err_remove_node;
673a394b
EA
3446 }
3447
74163907 3448 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3449 if (ret)
bc6bc15b 3450 goto err_remove_node;
673a394b 3451
35c20a60 3452 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3453 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3454
4bd561b3
BW
3455 if (i915_is_ggtt(vm)) {
3456 bool mappable, fenceable;
a00b10c3 3457
49987099
DV
3458 fenceable = (vma->node.size == fence_size &&
3459 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3460
49987099
DV
3461 mappable = (vma->node.start + obj->base.size <=
3462 dev_priv->gtt.mappable_end);
a00b10c3 3463
5cacaac7 3464 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3465 }
75e9e915 3466
1ec9e26d 3467 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3468
1ec9e26d 3469 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3470 vma->bind_vma(vma, obj->cache_level,
3471 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3472
42d6ab48 3473 i915_gem_verify_gtt(dev);
262de145 3474 return vma;
2f633156 3475
bc6bc15b 3476err_remove_node:
6286ef9b 3477 drm_mm_remove_node(&vma->node);
bc6bc15b 3478err_free_vma:
2f633156 3479 i915_gem_vma_destroy(vma);
262de145 3480 vma = ERR_PTR(ret);
bc6bc15b 3481err_unpin:
2f633156 3482 i915_gem_object_unpin_pages(obj);
262de145 3483 return vma;
673a394b
EA
3484}
3485
000433b6 3486bool
2c22569b
CW
3487i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3488 bool force)
673a394b 3489{
673a394b
EA
3490 /* If we don't have a page list set up, then we're not pinned
3491 * to GPU, and we can ignore the cache flush because it'll happen
3492 * again at bind time.
3493 */
05394f39 3494 if (obj->pages == NULL)
000433b6 3495 return false;
673a394b 3496
769ce464
ID
3497 /*
3498 * Stolen memory is always coherent with the GPU as it is explicitly
3499 * marked as wc by the system, or the system is cache-coherent.
3500 */
3501 if (obj->stolen)
000433b6 3502 return false;
769ce464 3503
9c23f7fc
CW
3504 /* If the GPU is snooping the contents of the CPU cache,
3505 * we do not need to manually clear the CPU cache lines. However,
3506 * the caches are only snooped when the render cache is
3507 * flushed/invalidated. As we always have to emit invalidations
3508 * and flushes when moving into and out of the RENDER domain, correct
3509 * snooping behaviour occurs naturally as the result of our domain
3510 * tracking.
3511 */
2c22569b 3512 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3513 return false;
9c23f7fc 3514
1c5d22f7 3515 trace_i915_gem_object_clflush(obj);
9da3da66 3516 drm_clflush_sg(obj->pages);
000433b6
CW
3517
3518 return true;
e47c68e9
EA
3519}
3520
3521/** Flushes the GTT write domain for the object if it's dirty. */
3522static void
05394f39 3523i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3524{
1c5d22f7
CW
3525 uint32_t old_write_domain;
3526
05394f39 3527 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3528 return;
3529
63256ec5 3530 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3531 * to it immediately go to main memory as far as we know, so there's
3532 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3533 *
3534 * However, we do have to enforce the order so that all writes through
3535 * the GTT land before any writes to the device, such as updates to
3536 * the GATT itself.
e47c68e9 3537 */
63256ec5
CW
3538 wmb();
3539
05394f39
CW
3540 old_write_domain = obj->base.write_domain;
3541 obj->base.write_domain = 0;
1c5d22f7
CW
3542
3543 trace_i915_gem_object_change_domain(obj,
05394f39 3544 obj->base.read_domains,
1c5d22f7 3545 old_write_domain);
e47c68e9
EA
3546}
3547
3548/** Flushes the CPU write domain for the object if it's dirty. */
3549static void
2c22569b
CW
3550i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3551 bool force)
e47c68e9 3552{
1c5d22f7 3553 uint32_t old_write_domain;
e47c68e9 3554
05394f39 3555 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3556 return;
3557
000433b6
CW
3558 if (i915_gem_clflush_object(obj, force))
3559 i915_gem_chipset_flush(obj->base.dev);
3560
05394f39
CW
3561 old_write_domain = obj->base.write_domain;
3562 obj->base.write_domain = 0;
1c5d22f7
CW
3563
3564 trace_i915_gem_object_change_domain(obj,
05394f39 3565 obj->base.read_domains,
1c5d22f7 3566 old_write_domain);
e47c68e9
EA
3567}
3568
2ef7eeaa
EA
3569/**
3570 * Moves a single object to the GTT read, and possibly write domain.
3571 *
3572 * This function returns when the move is complete, including waiting on
3573 * flushes to occur.
3574 */
79e53945 3575int
2021746e 3576i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3577{
3e31c6c0 3578 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3579 uint32_t old_write_domain, old_read_domains;
e47c68e9 3580 int ret;
2ef7eeaa 3581
02354392 3582 /* Not valid to be called on unbound objects. */
9843877d 3583 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3584 return -EINVAL;
3585
8d7e3de1
CW
3586 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3587 return 0;
3588
0201f1ec 3589 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3590 if (ret)
3591 return ret;
3592
c8725f3d 3593 i915_gem_object_retire(obj);
2c22569b 3594 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3595
d0a57789
CW
3596 /* Serialise direct access to this object with the barriers for
3597 * coherent writes from the GPU, by effectively invalidating the
3598 * GTT domain upon first access.
3599 */
3600 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3601 mb();
3602
05394f39
CW
3603 old_write_domain = obj->base.write_domain;
3604 old_read_domains = obj->base.read_domains;
1c5d22f7 3605
e47c68e9
EA
3606 /* It should now be out of any other write domains, and we can update
3607 * the domain values for our changes.
3608 */
05394f39
CW
3609 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3610 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3611 if (write) {
05394f39
CW
3612 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3613 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3614 obj->dirty = 1;
2ef7eeaa
EA
3615 }
3616
1c5d22f7
CW
3617 trace_i915_gem_object_change_domain(obj,
3618 old_read_domains,
3619 old_write_domain);
3620
8325a09d 3621 /* And bump the LRU for this access */
ca191b13 3622 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3623 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3624 if (vma)
3625 list_move_tail(&vma->mm_list,
3626 &dev_priv->gtt.base.inactive_list);
3627
3628 }
8325a09d 3629
e47c68e9
EA
3630 return 0;
3631}
3632
e4ffd173
CW
3633int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3634 enum i915_cache_level cache_level)
3635{
7bddb01f 3636 struct drm_device *dev = obj->base.dev;
df6f783a 3637 struct i915_vma *vma, *next;
e4ffd173
CW
3638 int ret;
3639
3640 if (obj->cache_level == cache_level)
3641 return 0;
3642
d7f46fc4 3643 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3644 DRM_DEBUG("can not change the cache level of pinned objects\n");
3645 return -EBUSY;
3646 }
3647
df6f783a 3648 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3649 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3650 ret = i915_vma_unbind(vma);
3089c6f2
BW
3651 if (ret)
3652 return ret;
3089c6f2 3653 }
42d6ab48
CW
3654 }
3655
3089c6f2 3656 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3657 ret = i915_gem_object_finish_gpu(obj);
3658 if (ret)
3659 return ret;
3660
3661 i915_gem_object_finish_gtt(obj);
3662
3663 /* Before SandyBridge, you could not use tiling or fence
3664 * registers with snooped memory, so relinquish any fences
3665 * currently pointing to our region in the aperture.
3666 */
42d6ab48 3667 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3668 ret = i915_gem_object_put_fence(obj);
3669 if (ret)
3670 return ret;
3671 }
3672
6f65e29a 3673 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3674 if (drm_mm_node_allocated(&vma->node))
3675 vma->bind_vma(vma, cache_level,
3676 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3677 }
3678
2c22569b
CW
3679 list_for_each_entry(vma, &obj->vma_list, vma_link)
3680 vma->node.color = cache_level;
3681 obj->cache_level = cache_level;
3682
3683 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3684 u32 old_read_domains, old_write_domain;
3685
3686 /* If we're coming from LLC cached, then we haven't
3687 * actually been tracking whether the data is in the
3688 * CPU cache or not, since we only allow one bit set
3689 * in obj->write_domain and have been skipping the clflushes.
3690 * Just set it to the CPU cache for now.
3691 */
c8725f3d 3692 i915_gem_object_retire(obj);
e4ffd173 3693 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3694
3695 old_read_domains = obj->base.read_domains;
3696 old_write_domain = obj->base.write_domain;
3697
3698 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3699 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3700
3701 trace_i915_gem_object_change_domain(obj,
3702 old_read_domains,
3703 old_write_domain);
3704 }
3705
42d6ab48 3706 i915_gem_verify_gtt(dev);
e4ffd173
CW
3707 return 0;
3708}
3709
199adf40
BW
3710int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3711 struct drm_file *file)
e6994aee 3712{
199adf40 3713 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3714 struct drm_i915_gem_object *obj;
3715 int ret;
3716
3717 ret = i915_mutex_lock_interruptible(dev);
3718 if (ret)
3719 return ret;
3720
3721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3722 if (&obj->base == NULL) {
3723 ret = -ENOENT;
3724 goto unlock;
3725 }
3726
651d794f
CW
3727 switch (obj->cache_level) {
3728 case I915_CACHE_LLC:
3729 case I915_CACHE_L3_LLC:
3730 args->caching = I915_CACHING_CACHED;
3731 break;
3732
4257d3ba
CW
3733 case I915_CACHE_WT:
3734 args->caching = I915_CACHING_DISPLAY;
3735 break;
3736
651d794f
CW
3737 default:
3738 args->caching = I915_CACHING_NONE;
3739 break;
3740 }
e6994aee
CW
3741
3742 drm_gem_object_unreference(&obj->base);
3743unlock:
3744 mutex_unlock(&dev->struct_mutex);
3745 return ret;
3746}
3747
199adf40
BW
3748int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3749 struct drm_file *file)
e6994aee 3750{
199adf40 3751 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3752 struct drm_i915_gem_object *obj;
3753 enum i915_cache_level level;
3754 int ret;
3755
199adf40
BW
3756 switch (args->caching) {
3757 case I915_CACHING_NONE:
e6994aee
CW
3758 level = I915_CACHE_NONE;
3759 break;
199adf40 3760 case I915_CACHING_CACHED:
e6994aee
CW
3761 level = I915_CACHE_LLC;
3762 break;
4257d3ba
CW
3763 case I915_CACHING_DISPLAY:
3764 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3765 break;
e6994aee
CW
3766 default:
3767 return -EINVAL;
3768 }
3769
3bc2913e
BW
3770 ret = i915_mutex_lock_interruptible(dev);
3771 if (ret)
3772 return ret;
3773
e6994aee
CW
3774 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3775 if (&obj->base == NULL) {
3776 ret = -ENOENT;
3777 goto unlock;
3778 }
3779
3780 ret = i915_gem_object_set_cache_level(obj, level);
3781
3782 drm_gem_object_unreference(&obj->base);
3783unlock:
3784 mutex_unlock(&dev->struct_mutex);
3785 return ret;
3786}
3787
cc98b413
CW
3788static bool is_pin_display(struct drm_i915_gem_object *obj)
3789{
19656430
OM
3790 struct i915_vma *vma;
3791
3792 if (list_empty(&obj->vma_list))
3793 return false;
3794
3795 vma = i915_gem_obj_to_ggtt(obj);
3796 if (!vma)
3797 return false;
3798
cc98b413
CW
3799 /* There are 3 sources that pin objects:
3800 * 1. The display engine (scanouts, sprites, cursors);
3801 * 2. Reservations for execbuffer;
3802 * 3. The user.
3803 *
3804 * We can ignore reservations as we hold the struct_mutex and
3805 * are only called outside of the reservation path. The user
3806 * can only increment pin_count once, and so if after
3807 * subtracting the potential reference by the user, any pin_count
3808 * remains, it must be due to another use by the display engine.
3809 */
19656430 3810 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3811}
3812
b9241ea3 3813/*
2da3b9b9
CW
3814 * Prepare buffer for display plane (scanout, cursors, etc).
3815 * Can be called from an uninterruptible phase (modesetting) and allows
3816 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3817 */
3818int
2da3b9b9
CW
3819i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3820 u32 alignment,
a4872ba6 3821 struct intel_engine_cs *pipelined)
b9241ea3 3822{
2da3b9b9 3823 u32 old_read_domains, old_write_domain;
19656430 3824 bool was_pin_display;
b9241ea3
ZW
3825 int ret;
3826
0be73284 3827 if (pipelined != obj->ring) {
2911a35b
BW
3828 ret = i915_gem_object_sync(obj, pipelined);
3829 if (ret)
b9241ea3
ZW
3830 return ret;
3831 }
3832
cc98b413
CW
3833 /* Mark the pin_display early so that we account for the
3834 * display coherency whilst setting up the cache domains.
3835 */
19656430 3836 was_pin_display = obj->pin_display;
cc98b413
CW
3837 obj->pin_display = true;
3838
a7ef0640
EA
3839 /* The display engine is not coherent with the LLC cache on gen6. As
3840 * a result, we make sure that the pinning that is about to occur is
3841 * done with uncached PTEs. This is lowest common denominator for all
3842 * chipsets.
3843 *
3844 * However for gen6+, we could do better by using the GFDT bit instead
3845 * of uncaching, which would allow us to flush all the LLC-cached data
3846 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3847 */
651d794f
CW
3848 ret = i915_gem_object_set_cache_level(obj,
3849 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3850 if (ret)
cc98b413 3851 goto err_unpin_display;
a7ef0640 3852
2da3b9b9
CW
3853 /* As the user may map the buffer once pinned in the display plane
3854 * (e.g. libkms for the bootup splash), we have to ensure that we
3855 * always use map_and_fenceable for all scanout buffers.
3856 */
1ec9e26d 3857 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3858 if (ret)
cc98b413 3859 goto err_unpin_display;
2da3b9b9 3860
2c22569b 3861 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3862
2da3b9b9 3863 old_write_domain = obj->base.write_domain;
05394f39 3864 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3865
3866 /* It should now be out of any other write domains, and we can update
3867 * the domain values for our changes.
3868 */
e5f1d962 3869 obj->base.write_domain = 0;
05394f39 3870 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3871
3872 trace_i915_gem_object_change_domain(obj,
3873 old_read_domains,
2da3b9b9 3874 old_write_domain);
b9241ea3
ZW
3875
3876 return 0;
cc98b413
CW
3877
3878err_unpin_display:
19656430
OM
3879 WARN_ON(was_pin_display != is_pin_display(obj));
3880 obj->pin_display = was_pin_display;
cc98b413
CW
3881 return ret;
3882}
3883
3884void
3885i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3886{
d7f46fc4 3887 i915_gem_object_ggtt_unpin(obj);
cc98b413 3888 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3889}
3890
85345517 3891int
a8198eea 3892i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3893{
88241785
CW
3894 int ret;
3895
a8198eea 3896 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3897 return 0;
3898
0201f1ec 3899 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3900 if (ret)
3901 return ret;
3902
a8198eea
CW
3903 /* Ensure that we invalidate the GPU's caches and TLBs. */
3904 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3905 return 0;
85345517
CW
3906}
3907
e47c68e9
EA
3908/**
3909 * Moves a single object to the CPU read, and possibly write domain.
3910 *
3911 * This function returns when the move is complete, including waiting on
3912 * flushes to occur.
3913 */
dabdfe02 3914int
919926ae 3915i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3916{
1c5d22f7 3917 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3918 int ret;
3919
8d7e3de1
CW
3920 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3921 return 0;
3922
0201f1ec 3923 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3924 if (ret)
3925 return ret;
3926
c8725f3d 3927 i915_gem_object_retire(obj);
e47c68e9 3928 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3929
05394f39
CW
3930 old_write_domain = obj->base.write_domain;
3931 old_read_domains = obj->base.read_domains;
1c5d22f7 3932
e47c68e9 3933 /* Flush the CPU cache if it's still invalid. */
05394f39 3934 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3935 i915_gem_clflush_object(obj, false);
2ef7eeaa 3936
05394f39 3937 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3938 }
3939
3940 /* It should now be out of any other write domains, and we can update
3941 * the domain values for our changes.
3942 */
05394f39 3943 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3944
3945 /* If we're writing through the CPU, then the GPU read domains will
3946 * need to be invalidated at next use.
3947 */
3948 if (write) {
05394f39
CW
3949 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3950 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3951 }
2ef7eeaa 3952
1c5d22f7
CW
3953 trace_i915_gem_object_change_domain(obj,
3954 old_read_domains,
3955 old_write_domain);
3956
2ef7eeaa
EA
3957 return 0;
3958}
3959
673a394b
EA
3960/* Throttle our rendering by waiting until the ring has completed our requests
3961 * emitted over 20 msec ago.
3962 *
b962442e
EA
3963 * Note that if we were to use the current jiffies each time around the loop,
3964 * we wouldn't escape the function with any frames outstanding if the time to
3965 * render a frame was over 20ms.
3966 *
673a394b
EA
3967 * This should get us reasonable parallelism between CPU and GPU but also
3968 * relatively low latency when blocking on a particular request to finish.
3969 */
40a5f0de 3970static int
f787a5f5 3971i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3972{
f787a5f5
CW
3973 struct drm_i915_private *dev_priv = dev->dev_private;
3974 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3975 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 3976 struct drm_i915_gem_request *request;
a4872ba6 3977 struct intel_engine_cs *ring = NULL;
f69061be 3978 unsigned reset_counter;
f787a5f5
CW
3979 u32 seqno = 0;
3980 int ret;
93533c29 3981
308887aa
DV
3982 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3983 if (ret)
3984 return ret;
3985
3986 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3987 if (ret)
3988 return ret;
e110e8d6 3989
1c25595f 3990 spin_lock(&file_priv->mm.lock);
f787a5f5 3991 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3992 if (time_after_eq(request->emitted_jiffies, recent_enough))
3993 break;
40a5f0de 3994
f787a5f5
CW
3995 ring = request->ring;
3996 seqno = request->seqno;
b962442e 3997 }
f69061be 3998 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3999 spin_unlock(&file_priv->mm.lock);
40a5f0de 4000
f787a5f5
CW
4001 if (seqno == 0)
4002 return 0;
2bc43b5c 4003
b29c19b6 4004 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
4005 if (ret == 0)
4006 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4007
4008 return ret;
4009}
4010
d23db88c
CW
4011static bool
4012i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4013{
4014 struct drm_i915_gem_object *obj = vma->obj;
4015
4016 if (alignment &&
4017 vma->node.start & (alignment - 1))
4018 return true;
4019
4020 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4021 return true;
4022
4023 if (flags & PIN_OFFSET_BIAS &&
4024 vma->node.start < (flags & PIN_OFFSET_MASK))
4025 return true;
4026
4027 return false;
4028}
4029
673a394b 4030int
05394f39 4031i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4032 struct i915_address_space *vm,
05394f39 4033 uint32_t alignment,
d23db88c 4034 uint64_t flags)
673a394b 4035{
6e7186af 4036 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4037 struct i915_vma *vma;
673a394b
EA
4038 int ret;
4039
6e7186af
BW
4040 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4041 return -ENODEV;
4042
bf3d149b 4043 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4044 return -EINVAL;
07fe0b12
BW
4045
4046 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4047 if (vma) {
d7f46fc4
BW
4048 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4049 return -EBUSY;
4050
d23db88c 4051 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4052 WARN(vma->pin_count,
ae7d49d8 4053 "bo is already pinned with incorrect alignment:"
f343c5f6 4054 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4055 " obj->map_and_fenceable=%d\n",
07fe0b12 4056 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4057 !!(flags & PIN_MAPPABLE),
05394f39 4058 obj->map_and_fenceable);
07fe0b12 4059 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4060 if (ret)
4061 return ret;
8ea99c92
DV
4062
4063 vma = NULL;
ac0c6b5a
CW
4064 }
4065 }
4066
8ea99c92 4067 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4068 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4069 if (IS_ERR(vma))
4070 return PTR_ERR(vma);
22c344e9 4071 }
76446cac 4072
8ea99c92
DV
4073 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4074 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4075
8ea99c92 4076 vma->pin_count++;
1ec9e26d
DV
4077 if (flags & PIN_MAPPABLE)
4078 obj->pin_mappable |= true;
673a394b
EA
4079
4080 return 0;
4081}
4082
4083void
d7f46fc4 4084i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4085{
d7f46fc4 4086 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4087
d7f46fc4
BW
4088 BUG_ON(!vma);
4089 BUG_ON(vma->pin_count == 0);
4090 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4091
4092 if (--vma->pin_count == 0)
6299f992 4093 obj->pin_mappable = false;
673a394b
EA
4094}
4095
d8ffa60b
DV
4096bool
4097i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4098{
4099 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4100 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4101 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4102
4103 WARN_ON(!ggtt_vma ||
4104 dev_priv->fence_regs[obj->fence_reg].pin_count >
4105 ggtt_vma->pin_count);
4106 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4107 return true;
4108 } else
4109 return false;
4110}
4111
4112void
4113i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4114{
4115 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4116 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4117 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4118 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4119 }
4120}
4121
673a394b
EA
4122int
4123i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4124 struct drm_file *file)
673a394b
EA
4125{
4126 struct drm_i915_gem_pin *args = data;
05394f39 4127 struct drm_i915_gem_object *obj;
673a394b
EA
4128 int ret;
4129
02f6bccc
DV
4130 if (INTEL_INFO(dev)->gen >= 6)
4131 return -ENODEV;
4132
1d7cfea1
CW
4133 ret = i915_mutex_lock_interruptible(dev);
4134 if (ret)
4135 return ret;
673a394b 4136
05394f39 4137 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4138 if (&obj->base == NULL) {
1d7cfea1
CW
4139 ret = -ENOENT;
4140 goto unlock;
673a394b 4141 }
673a394b 4142
05394f39 4143 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4144 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4145 ret = -EFAULT;
1d7cfea1 4146 goto out;
3ef94daa
CW
4147 }
4148
05394f39 4149 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4150 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4151 args->handle);
1d7cfea1
CW
4152 ret = -EINVAL;
4153 goto out;
79e53945
JB
4154 }
4155
aa5f8021
DV
4156 if (obj->user_pin_count == ULONG_MAX) {
4157 ret = -EBUSY;
4158 goto out;
4159 }
4160
93be8788 4161 if (obj->user_pin_count == 0) {
1ec9e26d 4162 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4163 if (ret)
4164 goto out;
673a394b
EA
4165 }
4166
93be8788
CW
4167 obj->user_pin_count++;
4168 obj->pin_filp = file;
4169
f343c5f6 4170 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4171out:
05394f39 4172 drm_gem_object_unreference(&obj->base);
1d7cfea1 4173unlock:
673a394b 4174 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4175 return ret;
673a394b
EA
4176}
4177
4178int
4179i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4180 struct drm_file *file)
673a394b
EA
4181{
4182 struct drm_i915_gem_pin *args = data;
05394f39 4183 struct drm_i915_gem_object *obj;
76c1dec1 4184 int ret;
673a394b 4185
1d7cfea1
CW
4186 ret = i915_mutex_lock_interruptible(dev);
4187 if (ret)
4188 return ret;
673a394b 4189
05394f39 4190 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4191 if (&obj->base == NULL) {
1d7cfea1
CW
4192 ret = -ENOENT;
4193 goto unlock;
673a394b 4194 }
76c1dec1 4195
05394f39 4196 if (obj->pin_filp != file) {
bd9b6a4e 4197 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4198 args->handle);
1d7cfea1
CW
4199 ret = -EINVAL;
4200 goto out;
79e53945 4201 }
05394f39
CW
4202 obj->user_pin_count--;
4203 if (obj->user_pin_count == 0) {
4204 obj->pin_filp = NULL;
d7f46fc4 4205 i915_gem_object_ggtt_unpin(obj);
79e53945 4206 }
673a394b 4207
1d7cfea1 4208out:
05394f39 4209 drm_gem_object_unreference(&obj->base);
1d7cfea1 4210unlock:
673a394b 4211 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4212 return ret;
673a394b
EA
4213}
4214
4215int
4216i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4217 struct drm_file *file)
673a394b
EA
4218{
4219 struct drm_i915_gem_busy *args = data;
05394f39 4220 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4221 int ret;
4222
76c1dec1 4223 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4224 if (ret)
76c1dec1 4225 return ret;
673a394b 4226
05394f39 4227 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4228 if (&obj->base == NULL) {
1d7cfea1
CW
4229 ret = -ENOENT;
4230 goto unlock;
673a394b 4231 }
d1b851fc 4232
0be555b6
CW
4233 /* Count all active objects as busy, even if they are currently not used
4234 * by the gpu. Users of this interface expect objects to eventually
4235 * become non-busy without any further actions, therefore emit any
4236 * necessary flushes here.
c4de0a5d 4237 */
30dfebf3 4238 ret = i915_gem_object_flush_active(obj);
0be555b6 4239
30dfebf3 4240 args->busy = obj->active;
e9808edd
CW
4241 if (obj->ring) {
4242 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4243 args->busy |= intel_ring_flag(obj->ring) << 16;
4244 }
673a394b 4245
05394f39 4246 drm_gem_object_unreference(&obj->base);
1d7cfea1 4247unlock:
673a394b 4248 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4249 return ret;
673a394b
EA
4250}
4251
4252int
4253i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4254 struct drm_file *file_priv)
4255{
0206e353 4256 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4257}
4258
3ef94daa
CW
4259int
4260i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4261 struct drm_file *file_priv)
4262{
4263 struct drm_i915_gem_madvise *args = data;
05394f39 4264 struct drm_i915_gem_object *obj;
76c1dec1 4265 int ret;
3ef94daa
CW
4266
4267 switch (args->madv) {
4268 case I915_MADV_DONTNEED:
4269 case I915_MADV_WILLNEED:
4270 break;
4271 default:
4272 return -EINVAL;
4273 }
4274
1d7cfea1
CW
4275 ret = i915_mutex_lock_interruptible(dev);
4276 if (ret)
4277 return ret;
4278
05394f39 4279 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4280 if (&obj->base == NULL) {
1d7cfea1
CW
4281 ret = -ENOENT;
4282 goto unlock;
3ef94daa 4283 }
3ef94daa 4284
d7f46fc4 4285 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4286 ret = -EINVAL;
4287 goto out;
3ef94daa
CW
4288 }
4289
05394f39
CW
4290 if (obj->madv != __I915_MADV_PURGED)
4291 obj->madv = args->madv;
3ef94daa 4292
6c085a72
CW
4293 /* if the object is no longer attached, discard its backing storage */
4294 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4295 i915_gem_object_truncate(obj);
4296
05394f39 4297 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4298
1d7cfea1 4299out:
05394f39 4300 drm_gem_object_unreference(&obj->base);
1d7cfea1 4301unlock:
3ef94daa 4302 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4303 return ret;
3ef94daa
CW
4304}
4305
37e680a1
CW
4306void i915_gem_object_init(struct drm_i915_gem_object *obj,
4307 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4308{
35c20a60 4309 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4310 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4311 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4312 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4313
37e680a1
CW
4314 obj->ops = ops;
4315
0327d6ba
CW
4316 obj->fence_reg = I915_FENCE_REG_NONE;
4317 obj->madv = I915_MADV_WILLNEED;
4318 /* Avoid an unnecessary call to unbind on the first bind. */
4319 obj->map_and_fenceable = true;
4320
4321 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4322}
4323
37e680a1
CW
4324static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4325 .get_pages = i915_gem_object_get_pages_gtt,
4326 .put_pages = i915_gem_object_put_pages_gtt,
4327};
4328
05394f39
CW
4329struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4330 size_t size)
ac52bc56 4331{
c397b908 4332 struct drm_i915_gem_object *obj;
5949eac4 4333 struct address_space *mapping;
1a240d4d 4334 gfp_t mask;
ac52bc56 4335
42dcedd4 4336 obj = i915_gem_object_alloc(dev);
c397b908
DV
4337 if (obj == NULL)
4338 return NULL;
673a394b 4339
c397b908 4340 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4341 i915_gem_object_free(obj);
c397b908
DV
4342 return NULL;
4343 }
673a394b 4344
bed1ea95
CW
4345 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4346 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4347 /* 965gm cannot relocate objects above 4GiB. */
4348 mask &= ~__GFP_HIGHMEM;
4349 mask |= __GFP_DMA32;
4350 }
4351
496ad9aa 4352 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4353 mapping_set_gfp_mask(mapping, mask);
5949eac4 4354
37e680a1 4355 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4356
c397b908
DV
4357 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4358 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4359
3d29b842
ED
4360 if (HAS_LLC(dev)) {
4361 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4362 * cache) for about a 10% performance improvement
4363 * compared to uncached. Graphics requests other than
4364 * display scanout are coherent with the CPU in
4365 * accessing this cache. This means in this mode we
4366 * don't need to clflush on the CPU side, and on the
4367 * GPU side we only need to flush internal caches to
4368 * get data visible to the CPU.
4369 *
4370 * However, we maintain the display planes as UC, and so
4371 * need to rebind when first used as such.
4372 */
4373 obj->cache_level = I915_CACHE_LLC;
4374 } else
4375 obj->cache_level = I915_CACHE_NONE;
4376
d861e338
DV
4377 trace_i915_gem_object_create(obj);
4378
05394f39 4379 return obj;
c397b908
DV
4380}
4381
340fbd8c
CW
4382static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4383{
4384 /* If we are the last user of the backing storage (be it shmemfs
4385 * pages or stolen etc), we know that the pages are going to be
4386 * immediately released. In this case, we can then skip copying
4387 * back the contents from the GPU.
4388 */
4389
4390 if (obj->madv != I915_MADV_WILLNEED)
4391 return false;
4392
4393 if (obj->base.filp == NULL)
4394 return true;
4395
4396 /* At first glance, this looks racy, but then again so would be
4397 * userspace racing mmap against close. However, the first external
4398 * reference to the filp can only be obtained through the
4399 * i915_gem_mmap_ioctl() which safeguards us against the user
4400 * acquiring such a reference whilst we are in the middle of
4401 * freeing the object.
4402 */
4403 return atomic_long_read(&obj->base.filp->f_count) == 1;
4404}
4405
1488fc08 4406void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4407{
1488fc08 4408 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4409 struct drm_device *dev = obj->base.dev;
3e31c6c0 4410 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4411 struct i915_vma *vma, *next;
673a394b 4412
f65c9168
PZ
4413 intel_runtime_pm_get(dev_priv);
4414
26e12f89
CW
4415 trace_i915_gem_object_destroy(obj);
4416
07fe0b12 4417 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4418 int ret;
4419
4420 vma->pin_count = 0;
4421 ret = i915_vma_unbind(vma);
07fe0b12
BW
4422 if (WARN_ON(ret == -ERESTARTSYS)) {
4423 bool was_interruptible;
1488fc08 4424
07fe0b12
BW
4425 was_interruptible = dev_priv->mm.interruptible;
4426 dev_priv->mm.interruptible = false;
1488fc08 4427
07fe0b12 4428 WARN_ON(i915_vma_unbind(vma));
1488fc08 4429
07fe0b12
BW
4430 dev_priv->mm.interruptible = was_interruptible;
4431 }
1488fc08
CW
4432 }
4433
00731155
CW
4434 i915_gem_object_detach_phys(obj);
4435
1d64ae71
BW
4436 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4437 * before progressing. */
4438 if (obj->stolen)
4439 i915_gem_object_unpin_pages(obj);
4440
401c29f6
BW
4441 if (WARN_ON(obj->pages_pin_count))
4442 obj->pages_pin_count = 0;
340fbd8c 4443 if (discard_backing_storage(obj))
5537252b 4444 obj->madv = I915_MADV_DONTNEED;
37e680a1 4445 i915_gem_object_put_pages(obj);
d8cb5086 4446 i915_gem_object_free_mmap_offset(obj);
de151cf6 4447
9da3da66
CW
4448 BUG_ON(obj->pages);
4449
2f745ad3
CW
4450 if (obj->base.import_attach)
4451 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4452
5cc9ed4b
CW
4453 if (obj->ops->release)
4454 obj->ops->release(obj);
4455
05394f39
CW
4456 drm_gem_object_release(&obj->base);
4457 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4458
05394f39 4459 kfree(obj->bit_17);
42dcedd4 4460 i915_gem_object_free(obj);
f65c9168
PZ
4461
4462 intel_runtime_pm_put(dev_priv);
673a394b
EA
4463}
4464
e656a6cb 4465struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4466 struct i915_address_space *vm)
e656a6cb
DV
4467{
4468 struct i915_vma *vma;
4469 list_for_each_entry(vma, &obj->vma_list, vma_link)
4470 if (vma->vm == vm)
4471 return vma;
4472
4473 return NULL;
4474}
4475
2f633156
BW
4476void i915_gem_vma_destroy(struct i915_vma *vma)
4477{
4478 WARN_ON(vma->node.allocated);
aaa05667
CW
4479
4480 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4481 if (!list_empty(&vma->exec_list))
4482 return;
4483
8b9c2b94 4484 list_del(&vma->vma_link);
b93dab6e 4485
2f633156
BW
4486 kfree(vma);
4487}
4488
e3efda49
CW
4489static void
4490i915_gem_stop_ringbuffers(struct drm_device *dev)
4491{
4492 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4493 struct intel_engine_cs *ring;
e3efda49
CW
4494 int i;
4495
4496 for_each_ring(ring, dev_priv, i)
4497 intel_stop_ring_buffer(ring);
4498}
4499
29105ccc 4500int
45c5f202 4501i915_gem_suspend(struct drm_device *dev)
29105ccc 4502{
3e31c6c0 4503 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4504 int ret = 0;
28dfe52a 4505
45c5f202 4506 mutex_lock(&dev->struct_mutex);
f7403347 4507 if (dev_priv->ums.mm_suspended)
45c5f202 4508 goto err;
28dfe52a 4509
b2da9fe5 4510 ret = i915_gpu_idle(dev);
f7403347 4511 if (ret)
45c5f202 4512 goto err;
f7403347 4513
b2da9fe5 4514 i915_gem_retire_requests(dev);
673a394b 4515
29105ccc 4516 /* Under UMS, be paranoid and evict. */
a39d7efc 4517 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4518 i915_gem_evict_everything(dev);
29105ccc 4519
29105ccc 4520 i915_kernel_lost_context(dev);
e3efda49 4521 i915_gem_stop_ringbuffers(dev);
29105ccc 4522
45c5f202
CW
4523 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4524 * We need to replace this with a semaphore, or something.
4525 * And not confound ums.mm_suspended!
4526 */
4527 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4528 DRIVER_MODESET);
4529 mutex_unlock(&dev->struct_mutex);
4530
4531 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4532 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4533 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4534
673a394b 4535 return 0;
45c5f202
CW
4536
4537err:
4538 mutex_unlock(&dev->struct_mutex);
4539 return ret;
673a394b
EA
4540}
4541
a4872ba6 4542int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4543{
c3787e2e 4544 struct drm_device *dev = ring->dev;
3e31c6c0 4545 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4546 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4547 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4548 int i, ret;
b9524a1e 4549
040d2baa 4550 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4551 return 0;
b9524a1e 4552
c3787e2e
BW
4553 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4554 if (ret)
4555 return ret;
b9524a1e 4556
c3787e2e
BW
4557 /*
4558 * Note: We do not worry about the concurrent register cacheline hang
4559 * here because no other code should access these registers other than
4560 * at initialization time.
4561 */
b9524a1e 4562 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4563 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4564 intel_ring_emit(ring, reg_base + i);
4565 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4566 }
4567
c3787e2e 4568 intel_ring_advance(ring);
b9524a1e 4569
c3787e2e 4570 return ret;
b9524a1e
BW
4571}
4572
f691e2f4
DV
4573void i915_gem_init_swizzling(struct drm_device *dev)
4574{
3e31c6c0 4575 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4576
11782b02 4577 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4578 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4579 return;
4580
4581 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4582 DISP_TILE_SURFACE_SWIZZLING);
4583
11782b02
DV
4584 if (IS_GEN5(dev))
4585 return;
4586
f691e2f4
DV
4587 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4588 if (IS_GEN6(dev))
6b26c86d 4589 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4590 else if (IS_GEN7(dev))
6b26c86d 4591 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4592 else if (IS_GEN8(dev))
4593 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4594 else
4595 BUG();
f691e2f4 4596}
e21af88d 4597
67b1b571
CW
4598static bool
4599intel_enable_blt(struct drm_device *dev)
4600{
4601 if (!HAS_BLT(dev))
4602 return false;
4603
4604 /* The blitter was dysfunctional on early prototypes */
4605 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4606 DRM_INFO("BLT not supported on this pre-production hardware;"
4607 " graphics performance will be degraded.\n");
4608 return false;
4609 }
4610
4611 return true;
4612}
4613
4fc7c971 4614static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4615{
4fc7c971 4616 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4617 int ret;
68f95ba9 4618
5c1143bb 4619 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4620 if (ret)
b6913e4b 4621 return ret;
68f95ba9
CW
4622
4623 if (HAS_BSD(dev)) {
5c1143bb 4624 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4625 if (ret)
4626 goto cleanup_render_ring;
d1b851fc 4627 }
68f95ba9 4628
67b1b571 4629 if (intel_enable_blt(dev)) {
549f7365
CW
4630 ret = intel_init_blt_ring_buffer(dev);
4631 if (ret)
4632 goto cleanup_bsd_ring;
4633 }
4634
9a8a2213
BW
4635 if (HAS_VEBOX(dev)) {
4636 ret = intel_init_vebox_ring_buffer(dev);
4637 if (ret)
4638 goto cleanup_blt_ring;
4639 }
4640
845f74a7
ZY
4641 if (HAS_BSD2(dev)) {
4642 ret = intel_init_bsd2_ring_buffer(dev);
4643 if (ret)
4644 goto cleanup_vebox_ring;
4645 }
9a8a2213 4646
99433931 4647 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4648 if (ret)
845f74a7 4649 goto cleanup_bsd2_ring;
4fc7c971
BW
4650
4651 return 0;
4652
845f74a7
ZY
4653cleanup_bsd2_ring:
4654 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4655cleanup_vebox_ring:
4656 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4657cleanup_blt_ring:
4658 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4659cleanup_bsd_ring:
4660 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4661cleanup_render_ring:
4662 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4663
4664 return ret;
4665}
4666
4667int
4668i915_gem_init_hw(struct drm_device *dev)
4669{
3e31c6c0 4670 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4671 int ret, i;
4fc7c971
BW
4672
4673 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4674 return -EIO;
4675
59124506 4676 if (dev_priv->ellc_size)
05e21cc4 4677 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4678
0bf21347
VS
4679 if (IS_HASWELL(dev))
4680 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4681 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4682
88a2b2a3 4683 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4684 if (IS_IVYBRIDGE(dev)) {
4685 u32 temp = I915_READ(GEN7_MSG_CTL);
4686 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4687 I915_WRITE(GEN7_MSG_CTL, temp);
4688 } else if (INTEL_INFO(dev)->gen >= 7) {
4689 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4690 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4691 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4692 }
88a2b2a3
BW
4693 }
4694
4fc7c971
BW
4695 i915_gem_init_swizzling(dev);
4696
4697 ret = i915_gem_init_rings(dev);
99433931
MK
4698 if (ret)
4699 return ret;
4700
c3787e2e
BW
4701 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4702 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4703
254f965c 4704 /*
2fa48d8d
BW
4705 * XXX: Contexts should only be initialized once. Doing a switch to the
4706 * default context switch however is something we'd like to do after
4707 * reset or thaw (the latter may not actually be necessary for HW, but
4708 * goes with our code better). Context switching requires rings (for
4709 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4710 */
2fa48d8d 4711 ret = i915_gem_context_enable(dev_priv);
60990320 4712 if (ret && ret != -EIO) {
2fa48d8d 4713 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4714 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4715 }
e21af88d 4716
2fa48d8d 4717 return ret;
8187a2b7
ZN
4718}
4719
1070a42b
CW
4720int i915_gem_init(struct drm_device *dev)
4721{
4722 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4723 int ret;
4724
1070a42b 4725 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4726
4727 if (IS_VALLEYVIEW(dev)) {
4728 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4729 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4730 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4731 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4732 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4733 }
4734
5cc9ed4b 4735 i915_gem_init_userptr(dev);
d7e5008f 4736 i915_gem_init_global_gtt(dev);
d62b4892 4737
2fa48d8d 4738 ret = i915_gem_context_init(dev);
e3848694
MK
4739 if (ret) {
4740 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4741 return ret;
e3848694 4742 }
2fa48d8d 4743
1070a42b 4744 ret = i915_gem_init_hw(dev);
60990320
CW
4745 if (ret == -EIO) {
4746 /* Allow ring initialisation to fail by marking the GPU as
4747 * wedged. But we only want to do this where the GPU is angry,
4748 * for all other failure, such as an allocation failure, bail.
4749 */
4750 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4751 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4752 ret = 0;
1070a42b 4753 }
60990320 4754 mutex_unlock(&dev->struct_mutex);
1070a42b 4755
53ca26ca
DV
4756 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4757 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4758 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4759 return ret;
1070a42b
CW
4760}
4761
8187a2b7
ZN
4762void
4763i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4764{
3e31c6c0 4765 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4766 struct intel_engine_cs *ring;
1ec14ad3 4767 int i;
8187a2b7 4768
b4519513
CW
4769 for_each_ring(ring, dev_priv, i)
4770 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4771}
4772
673a394b
EA
4773int
4774i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4775 struct drm_file *file_priv)
4776{
db1b76ca 4777 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4778 int ret;
673a394b 4779
79e53945
JB
4780 if (drm_core_check_feature(dev, DRIVER_MODESET))
4781 return 0;
4782
1f83fee0 4783 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4784 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4785 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4786 }
4787
673a394b 4788 mutex_lock(&dev->struct_mutex);
db1b76ca 4789 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4790
f691e2f4 4791 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4792 if (ret != 0) {
4793 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4794 return ret;
d816f6ac 4795 }
9bb2d6f9 4796
5cef07e1 4797 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4798
bb0f1b5c 4799 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4800 if (ret)
4801 goto cleanup_ringbuffer;
e090c53b 4802 mutex_unlock(&dev->struct_mutex);
dbb19d30 4803
673a394b 4804 return 0;
5f35308b
CW
4805
4806cleanup_ringbuffer:
5f35308b 4807 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4808 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4809 mutex_unlock(&dev->struct_mutex);
4810
4811 return ret;
673a394b
EA
4812}
4813
4814int
4815i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4816 struct drm_file *file_priv)
4817{
79e53945
JB
4818 if (drm_core_check_feature(dev, DRIVER_MODESET))
4819 return 0;
4820
e090c53b 4821 mutex_lock(&dev->struct_mutex);
dbb19d30 4822 drm_irq_uninstall(dev);
e090c53b 4823 mutex_unlock(&dev->struct_mutex);
db1b76ca 4824
45c5f202 4825 return i915_gem_suspend(dev);
673a394b
EA
4826}
4827
4828void
4829i915_gem_lastclose(struct drm_device *dev)
4830{
4831 int ret;
673a394b 4832
e806b495
EA
4833 if (drm_core_check_feature(dev, DRIVER_MODESET))
4834 return;
4835
45c5f202 4836 ret = i915_gem_suspend(dev);
6dbe2772
KP
4837 if (ret)
4838 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4839}
4840
64193406 4841static void
a4872ba6 4842init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4843{
4844 INIT_LIST_HEAD(&ring->active_list);
4845 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4846}
4847
7e0d96bc
BW
4848void i915_init_vm(struct drm_i915_private *dev_priv,
4849 struct i915_address_space *vm)
fc8c067e 4850{
7e0d96bc
BW
4851 if (!i915_is_ggtt(vm))
4852 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4853 vm->dev = dev_priv->dev;
4854 INIT_LIST_HEAD(&vm->active_list);
4855 INIT_LIST_HEAD(&vm->inactive_list);
4856 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4857 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4858}
4859
673a394b
EA
4860void
4861i915_gem_load(struct drm_device *dev)
4862{
3e31c6c0 4863 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4864 int i;
4865
4866 dev_priv->slab =
4867 kmem_cache_create("i915_gem_object",
4868 sizeof(struct drm_i915_gem_object), 0,
4869 SLAB_HWCACHE_ALIGN,
4870 NULL);
673a394b 4871
fc8c067e
BW
4872 INIT_LIST_HEAD(&dev_priv->vm_list);
4873 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4874
a33afea5 4875 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4876 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4877 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4878 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4879 for (i = 0; i < I915_NUM_RINGS; i++)
4880 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4881 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4882 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4883 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4884 i915_gem_retire_work_handler);
b29c19b6
CW
4885 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4886 i915_gem_idle_work_handler);
1f83fee0 4887 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4888
94400120 4889 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4890 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4891 I915_WRITE(MI_ARB_STATE,
4892 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4893 }
4894
72bfa19c
CW
4895 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4896
de151cf6 4897 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4898 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4899 dev_priv->fence_reg_start = 3;
de151cf6 4900
42b5aeab
VS
4901 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4902 dev_priv->num_fence_regs = 32;
4903 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4904 dev_priv->num_fence_regs = 16;
4905 else
4906 dev_priv->num_fence_regs = 8;
4907
b5aa8a0f 4908 /* Initialize fence registers to zero */
19b2dbde
CW
4909 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4910 i915_gem_restore_fences(dev);
10ed13e4 4911
673a394b 4912 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4913 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4914
ce453d81
CW
4915 dev_priv->mm.interruptible = true;
4916
ceabbba5
CW
4917 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4918 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4919 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4920 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4921
4922 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4923 register_oom_notifier(&dev_priv->mm.oom_notifier);
673a394b 4924}
71acb5eb 4925
f787a5f5 4926void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4927{
f787a5f5 4928 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4929
b29c19b6
CW
4930 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4931
b962442e
EA
4932 /* Clean up our request list when the client is going away, so that
4933 * later retire_requests won't dereference our soon-to-be-gone
4934 * file_priv.
4935 */
1c25595f 4936 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4937 while (!list_empty(&file_priv->mm.request_list)) {
4938 struct drm_i915_gem_request *request;
4939
4940 request = list_first_entry(&file_priv->mm.request_list,
4941 struct drm_i915_gem_request,
4942 client_list);
4943 list_del(&request->client_list);
4944 request->file_priv = NULL;
4945 }
1c25595f 4946 spin_unlock(&file_priv->mm.lock);
b962442e 4947}
31169714 4948
b29c19b6
CW
4949static void
4950i915_gem_file_idle_work_handler(struct work_struct *work)
4951{
4952 struct drm_i915_file_private *file_priv =
4953 container_of(work, typeof(*file_priv), mm.idle_work.work);
4954
4955 atomic_set(&file_priv->rps_wait_boost, false);
4956}
4957
4958int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4959{
4960 struct drm_i915_file_private *file_priv;
e422b888 4961 int ret;
b29c19b6
CW
4962
4963 DRM_DEBUG_DRIVER("\n");
4964
4965 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4966 if (!file_priv)
4967 return -ENOMEM;
4968
4969 file->driver_priv = file_priv;
4970 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4971 file_priv->file = file;
b29c19b6
CW
4972
4973 spin_lock_init(&file_priv->mm.lock);
4974 INIT_LIST_HEAD(&file_priv->mm.request_list);
4975 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4976 i915_gem_file_idle_work_handler);
4977
e422b888
BW
4978 ret = i915_gem_context_open(dev, file);
4979 if (ret)
4980 kfree(file_priv);
b29c19b6 4981
e422b888 4982 return ret;
b29c19b6
CW
4983}
4984
5774506f
CW
4985static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4986{
4987 if (!mutex_is_locked(mutex))
4988 return false;
4989
4990#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4991 return mutex->owner == task;
4992#else
4993 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4994 return false;
4995#endif
4996}
4997
b453c4db
CW
4998static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
4999{
5000 if (!mutex_trylock(&dev->struct_mutex)) {
5001 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5002 return false;
5003
5004 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5005 return false;
5006
5007 *unlock = false;
5008 } else
5009 *unlock = true;
5010
5011 return true;
5012}
5013
ceabbba5
CW
5014static int num_vma_bound(struct drm_i915_gem_object *obj)
5015{
5016 struct i915_vma *vma;
5017 int count = 0;
5018
5019 list_for_each_entry(vma, &obj->vma_list, vma_link)
5020 if (drm_mm_node_allocated(&vma->node))
5021 count++;
5022
5023 return count;
5024}
5025
7dc19d5a 5026static unsigned long
ceabbba5 5027i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5028{
17250b71 5029 struct drm_i915_private *dev_priv =
ceabbba5 5030 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5031 struct drm_device *dev = dev_priv->dev;
6c085a72 5032 struct drm_i915_gem_object *obj;
7dc19d5a 5033 unsigned long count;
b453c4db 5034 bool unlock;
17250b71 5035
b453c4db
CW
5036 if (!i915_gem_shrinker_lock(dev, &unlock))
5037 return 0;
31169714 5038
7dc19d5a 5039 count = 0;
35c20a60 5040 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5041 if (obj->pages_pin_count == 0)
7dc19d5a 5042 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5043
5044 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5045 if (!i915_gem_obj_is_pinned(obj) &&
5046 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5047 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5048 }
17250b71 5049
5774506f
CW
5050 if (unlock)
5051 mutex_unlock(&dev->struct_mutex);
d9973b43 5052
7dc19d5a 5053 return count;
31169714 5054}
a70a3148
BW
5055
5056/* All the new VM stuff */
5057unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5058 struct i915_address_space *vm)
5059{
5060 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5061 struct i915_vma *vma;
5062
6f425321
BW
5063 if (!dev_priv->mm.aliasing_ppgtt ||
5064 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5065 vm = &dev_priv->gtt.base;
5066
5067 BUG_ON(list_empty(&o->vma_list));
5068 list_for_each_entry(vma, &o->vma_list, vma_link) {
5069 if (vma->vm == vm)
5070 return vma->node.start;
5071
5072 }
5073 return -1;
5074}
5075
5076bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5077 struct i915_address_space *vm)
5078{
5079 struct i915_vma *vma;
5080
5081 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5082 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5083 return true;
5084
5085 return false;
5086}
5087
5088bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5089{
5a1d5eb0 5090 struct i915_vma *vma;
a70a3148 5091
5a1d5eb0
CW
5092 list_for_each_entry(vma, &o->vma_list, vma_link)
5093 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5094 return true;
5095
5096 return false;
5097}
5098
5099unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5100 struct i915_address_space *vm)
5101{
5102 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5103 struct i915_vma *vma;
5104
6f425321
BW
5105 if (!dev_priv->mm.aliasing_ppgtt ||
5106 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5107 vm = &dev_priv->gtt.base;
5108
5109 BUG_ON(list_empty(&o->vma_list));
5110
5111 list_for_each_entry(vma, &o->vma_list, vma_link)
5112 if (vma->vm == vm)
5113 return vma->node.size;
5114
5115 return 0;
5116}
5117
7dc19d5a 5118static unsigned long
ceabbba5 5119i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5120{
5121 struct drm_i915_private *dev_priv =
ceabbba5 5122 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5123 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5124 unsigned long freed;
b453c4db 5125 bool unlock;
7dc19d5a 5126
b453c4db
CW
5127 if (!i915_gem_shrinker_lock(dev, &unlock))
5128 return SHRINK_STOP;
7dc19d5a 5129
d9973b43
CW
5130 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5131 if (freed < sc->nr_to_scan)
5132 freed += __i915_gem_shrink(dev_priv,
5133 sc->nr_to_scan - freed,
5134 false);
7dc19d5a
DC
5135 if (unlock)
5136 mutex_unlock(&dev->struct_mutex);
d9973b43 5137
7dc19d5a
DC
5138 return freed;
5139}
5c2abbea 5140
2cfcd32a
CW
5141static int
5142i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5143{
5144 struct drm_i915_private *dev_priv =
5145 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5146 struct drm_device *dev = dev_priv->dev;
5147 struct drm_i915_gem_object *obj;
5148 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5149 unsigned long pinned, bound, unbound, freed;
5150 bool was_interruptible;
5151 bool unlock;
5152
5153 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5154 schedule_timeout_killable(1);
5155 if (timeout == 0) {
5156 pr_err("Unable to purge GPU memory due lock contention.\n");
5157 return NOTIFY_DONE;
5158 }
5159
5160 was_interruptible = dev_priv->mm.interruptible;
5161 dev_priv->mm.interruptible = false;
5162
5163 freed = i915_gem_shrink_all(dev_priv);
5164
5165 dev_priv->mm.interruptible = was_interruptible;
5166
5167 /* Because we may be allocating inside our own driver, we cannot
5168 * assert that there are no objects with pinned pages that are not
5169 * being pointed to by hardware.
5170 */
5171 unbound = bound = pinned = 0;
5172 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5173 if (!obj->base.filp) /* not backed by a freeable object */
5174 continue;
5175
5176 if (obj->pages_pin_count)
5177 pinned += obj->base.size;
5178 else
5179 unbound += obj->base.size;
5180 }
5181 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5182 if (!obj->base.filp)
5183 continue;
5184
5185 if (obj->pages_pin_count)
5186 pinned += obj->base.size;
5187 else
5188 bound += obj->base.size;
5189 }
5190
5191 if (unlock)
5192 mutex_unlock(&dev->struct_mutex);
5193
5194 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5195 freed, pinned);
5196 if (unbound || bound)
5197 pr_err("%lu and %lu bytes still available in the "
5198 "bound and unbound GPU page lists.\n",
5199 bound, unbound);
5200
5201 *(unsigned long *)ptr += freed;
5202 return NOTIFY_DONE;
5203}
5204
5c2abbea
BW
5205struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5206{
5207 struct i915_vma *vma;
5208
19656430
OM
5209 /* This WARN has probably outlived its usefulness (callers already
5210 * WARN if they don't find the GGTT vma they expect). When removing,
5211 * remember to remove the pre-check in is_pin_display() as well */
5c2abbea
BW
5212 if (WARN_ON(list_empty(&obj->vma_list)))
5213 return NULL;
5214
5215 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5216 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5217 return NULL;
5218
5219 return vma;
5220}
This page took 1.059055 seconds and 5 git commands to generate.