timekeeping: Provide ktime_get_raw()
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43
CW
63static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 202 if (i915_gem_obj_is_pinned(obj))
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
00731155
CW
212static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213{
214 drm_dma_handle_t *phys = obj->phys_handle;
215
216 if (!phys)
217 return;
218
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
223
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
231
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
235 }
236 vaddr += PAGE_SIZE;
237 }
238 i915_gem_chipset_flush(obj->base.dev);
239 }
240
241#ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243#endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
246}
247
248int
249i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
251{
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
256
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
260
261 return 0;
262 }
263
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
266
267 if (obj->base.filp == NULL)
268 return -EINVAL;
269
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
274
275 vaddr = phys->vaddr;
276#ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278#endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
283
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286#ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288#endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
291 }
292
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
296
297 mark_page_accessed(page);
298 page_cache_release(page);
299
300 vaddr += PAGE_SIZE;
301 }
302
303 obj->phys_handle = phys;
304 return 0;
305}
306
307static int
308i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
311{
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
315
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
318
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
322 */
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
328 }
329
330 i915_gem_chipset_flush(dev);
331 return 0;
332}
333
42dcedd4
CW
334void *i915_gem_object_alloc(struct drm_device *dev)
335{
336 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
338}
339
340void i915_gem_object_free(struct drm_i915_gem_object *obj)
341{
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
344}
345
ff72145b
DA
346static int
347i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
673a394b 351{
05394f39 352 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
353 int ret;
354 u32 handle;
673a394b 355
ff72145b 356 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
357 if (size == 0)
358 return -EINVAL;
673a394b
EA
359
360 /* Allocate the new object */
ff72145b 361 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
362 if (obj == NULL)
363 return -ENOMEM;
364
05394f39 365 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 366 /* drop reference from allocate - handle holds it now */
d861e338
DV
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
202f2fef 370
ff72145b 371 *handle_p = handle;
673a394b
EA
372 return 0;
373}
374
ff72145b
DA
375int
376i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
379{
380 /* have to work out size/pitch and return them */
de45eaf7 381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
385}
386
ff72145b
DA
387/**
388 * Creates a new mm object and returns a handle to it.
389 */
390int
391i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
393{
394 struct drm_i915_gem_create *args = data;
63ed2cb2 395
ff72145b
DA
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
398}
399
8461d226
DV
400static inline int
401__copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
404{
405 int ret, cpu_offset = 0;
406
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
417
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
421 }
422
423 return 0;
424}
425
8c59967c 426static inline int
4f0c7cfb
BW
427__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
8c59967c
DV
429 int length)
430{
431 int ret, cpu_offset = 0;
432
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
443
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
447 }
448
449 return 0;
450}
451
4c914c0c
BV
452/*
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
456 */
457int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
459{
460 int ret;
461
462 *needs_clflush = 0;
463
464 if (!obj->base.filp)
465 return -EINVAL;
466
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
c8725f3d
CW
477
478 i915_gem_object_retire(obj);
4c914c0c
BV
479 }
480
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
484
485 i915_gem_object_pin_pages(obj);
486
487 return ret;
488}
489
d174bd64
DV
490/* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
eb01459f 493static int
d174bd64
DV
494shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
497{
498 char *vaddr;
499 int ret;
500
e7e58eb5 501 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
502 return -EINVAL;
503
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
512
f60d7f0c 513 return ret ? -EFAULT : 0;
d174bd64
DV
514}
515
23c18c71
DV
516static void
517shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
519{
e7e58eb5 520 if (unlikely(swizzled)) {
23c18c71
DV
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
523
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
530
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
534 }
535
536}
537
d174bd64
DV
538/* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540static int
541shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544{
545 char *vaddr;
546 int ret;
547
548 vaddr = kmap(page);
549 if (needs_clflush)
23c18c71
DV
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
d174bd64
DV
553
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
563
f60d7f0c 564 return ret ? - EFAULT : 0;
d174bd64
DV
565}
566
eb01459f 567static int
dbf7bff0
DV
568i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
eb01459f 572{
8461d226 573 char __user *user_data;
eb01459f 574 ssize_t remain;
8461d226 575 loff_t offset;
eb2c0c81 576 int shmem_page_offset, page_length, ret = 0;
8461d226 577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 578 int prefaulted = 0;
8489731c 579 int needs_clflush = 0;
67d5a50c 580 struct sg_page_iter sg_iter;
eb01459f 581
2bb4629a 582 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
583 remain = args->size;
584
8461d226 585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 586
4c914c0c 587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
588 if (ret)
589 return ret;
590
8461d226 591 offset = args->offset;
eb01459f 592
67d5a50c
ID
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
2db76d7c 595 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
596
597 if (remain <= 0)
598 break;
599
eb01459f
EA
600 /* Operation in this page
601 *
eb01459f 602 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
603 * page_length = bytes to copy for this page
604 */
c8cbbb8b 605 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 609
8461d226
DV
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
612
d174bd64
DV
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
dbf7bff0 618
dbf7bff0
DV
619 mutex_unlock(&dev->struct_mutex);
620
d330a953 621 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 622 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
629 }
eb01459f 630
d174bd64
DV
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
eb01459f 634
dbf7bff0 635 mutex_lock(&dev->struct_mutex);
f60d7f0c 636
f60d7f0c 637 if (ret)
8461d226 638 goto out;
8461d226 639
17793c9a 640next_page:
eb01459f 641 remain -= page_length;
8461d226 642 user_data += page_length;
eb01459f
EA
643 offset += page_length;
644 }
645
4f27b75d 646out:
f60d7f0c
CW
647 i915_gem_object_unpin_pages(obj);
648
eb01459f
EA
649 return ret;
650}
651
673a394b
EA
652/**
653 * Reads data from the object referenced by handle.
654 *
655 * On error, the contents of *data are undefined.
656 */
657int
658i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 659 struct drm_file *file)
673a394b
EA
660{
661 struct drm_i915_gem_pread *args = data;
05394f39 662 struct drm_i915_gem_object *obj;
35b62a89 663 int ret = 0;
673a394b 664
51311d0a
CW
665 if (args->size == 0)
666 return 0;
667
668 if (!access_ok(VERIFY_WRITE,
2bb4629a 669 to_user_ptr(args->data_ptr),
51311d0a
CW
670 args->size))
671 return -EFAULT;
672
4f27b75d 673 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 674 if (ret)
4f27b75d 675 return ret;
673a394b 676
05394f39 677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 678 if (&obj->base == NULL) {
1d7cfea1
CW
679 ret = -ENOENT;
680 goto unlock;
4f27b75d 681 }
673a394b 682
7dcd2499 683 /* Bounds check source. */
05394f39
CW
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
ce9d419d 686 ret = -EINVAL;
35b62a89 687 goto out;
ce9d419d
CW
688 }
689
1286ff73
DV
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
692 */
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
696 }
697
db53a302
CW
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
699
dbf7bff0 700 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 701
35b62a89 702out:
05394f39 703 drm_gem_object_unreference(&obj->base);
1d7cfea1 704unlock:
4f27b75d 705 mutex_unlock(&dev->struct_mutex);
eb01459f 706 return ret;
673a394b
EA
707}
708
0839ccb8
KP
709/* This is the fast write path which cannot handle
710 * page faults in the source data
9b7530cc 711 */
0839ccb8
KP
712
713static inline int
714fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
9b7530cc 718{
4f0c7cfb
BW
719 void __iomem *vaddr_atomic;
720 void *vaddr;
0839ccb8 721 unsigned long unwritten;
9b7530cc 722
3e4d3af5 723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 727 user_data, length);
3e4d3af5 728 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 729 return unwritten;
0839ccb8
KP
730}
731
3de09aa3
EA
732/**
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
735 */
673a394b 736static int
05394f39
CW
737i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
3de09aa3 739 struct drm_i915_gem_pwrite *args,
05394f39 740 struct drm_file *file)
673a394b 741{
3e31c6c0 742 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 743 ssize_t remain;
0839ccb8 744 loff_t offset, page_base;
673a394b 745 char __user *user_data;
935aaa69
DV
746 int page_offset, page_length, ret;
747
1ec9e26d 748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
755
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
673a394b 759
2bb4629a 760 user_data = to_user_ptr(args->data_ptr);
673a394b 761 remain = args->size;
673a394b 762
f343c5f6 763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
0839ccb8
KP
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
673a394b 771 */
c8cbbb8b
CW
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
0839ccb8
KP
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
0839ccb8 778 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
0839ccb8 781 */
5d4545ae 782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
786 }
673a394b 787
0839ccb8
KP
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
673a394b 791 }
673a394b 792
935aaa69 793out_unpin:
d7f46fc4 794 i915_gem_object_ggtt_unpin(obj);
935aaa69 795out:
3de09aa3 796 return ret;
673a394b
EA
797}
798
d174bd64
DV
799/* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
3043c60c 803static int
d174bd64
DV
804shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
673a394b 809{
d174bd64 810 char *vaddr;
673a394b 811 int ret;
3de09aa3 812
e7e58eb5 813 if (unlikely(page_do_bit17_swizzling))
d174bd64 814 return -EINVAL;
3de09aa3 815
d174bd64
DV
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
c2831a94
CW
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
d174bd64
DV
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
3de09aa3 826
755d2218 827 return ret ? -EFAULT : 0;
3de09aa3
EA
828}
829
d174bd64
DV
830/* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
3043c60c 832static int
d174bd64
DV
833shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
673a394b 838{
d174bd64
DV
839 char *vaddr;
840 int ret;
e5281ccd 841
d174bd64 842 vaddr = kmap(page);
e7e58eb5 843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
d174bd64
DV
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
849 user_data,
850 page_length);
d174bd64
DV
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
23c18c71
DV
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
d174bd64 859 kunmap(page);
40123c1f 860
755d2218 861 return ret ? -EFAULT : 0;
40123c1f
EA
862}
863
40123c1f 864static int
e244a443
DV
865i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
40123c1f 869{
40123c1f 870 ssize_t remain;
8c59967c
DV
871 loff_t offset;
872 char __user *user_data;
eb2c0c81 873 int shmem_page_offset, page_length, ret = 0;
8c59967c 874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 875 int hit_slowpath = 0;
58642885
DV
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
67d5a50c 878 struct sg_page_iter sg_iter;
40123c1f 879
2bb4629a 880 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
881 remain = args->size;
882
8c59967c 883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 884
58642885
DV
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
2c22569b 890 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
c8725f3d
CW
894
895 i915_gem_object_retire(obj);
58642885 896 }
c76ce038
CW
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 902
755d2218
CW
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
906
907 i915_gem_object_pin_pages(obj);
908
673a394b 909 offset = args->offset;
05394f39 910 obj->dirty = 1;
673a394b 911
67d5a50c
ID
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
2db76d7c 914 struct page *page = sg_page_iter_page(&sg_iter);
58642885 915 int partial_cacheline_write;
e5281ccd 916
9da3da66
CW
917 if (remain <= 0)
918 break;
919
40123c1f
EA
920 /* Operation in this page
921 *
40123c1f 922 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
923 * page_length = bytes to copy for this page
924 */
c8cbbb8b 925 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
926
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 930
58642885
DV
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
937
8c59967c
DV
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
940
d174bd64
DV
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
e244a443
DV
947
948 hit_slowpath = 1;
e244a443 949 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
40123c1f 954
e244a443 955 mutex_lock(&dev->struct_mutex);
755d2218 956
755d2218 957 if (ret)
8c59967c 958 goto out;
8c59967c 959
17793c9a 960next_page:
40123c1f 961 remain -= page_length;
8c59967c 962 user_data += page_length;
40123c1f 963 offset += page_length;
673a394b
EA
964 }
965
fbd5a26d 966out:
755d2218
CW
967 i915_gem_object_unpin_pages(obj);
968
e244a443 969 if (hit_slowpath) {
8dcf015e
DV
970 /*
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
974 */
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
e244a443 979 }
8c59967c 980 }
673a394b 981
58642885 982 if (needs_clflush_after)
e76e9aeb 983 i915_gem_chipset_flush(dev);
58642885 984
40123c1f 985 return ret;
673a394b
EA
986}
987
988/**
989 * Writes data to the object referenced by handle.
990 *
991 * On error, the contents of the buffer that were to be modified are undefined.
992 */
993int
994i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 995 struct drm_file *file)
673a394b
EA
996{
997 struct drm_i915_gem_pwrite *args = data;
05394f39 998 struct drm_i915_gem_object *obj;
51311d0a
CW
999 int ret;
1000
1001 if (args->size == 0)
1002 return 0;
1003
1004 if (!access_ok(VERIFY_READ,
2bb4629a 1005 to_user_ptr(args->data_ptr),
51311d0a
CW
1006 args->size))
1007 return -EFAULT;
1008
d330a953 1009 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1014 }
673a394b 1015
fbd5a26d 1016 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1017 if (ret)
fbd5a26d 1018 return ret;
1d7cfea1 1019
05394f39 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1021 if (&obj->base == NULL) {
1d7cfea1
CW
1022 ret = -ENOENT;
1023 goto unlock;
fbd5a26d 1024 }
673a394b 1025
7dcd2499 1026 /* Bounds check destination. */
05394f39
CW
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
ce9d419d 1029 ret = -EINVAL;
35b62a89 1030 goto out;
ce9d419d
CW
1031 }
1032
1286ff73
DV
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1035 */
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
db53a302
CW
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
935aaa69 1043 ret = -EFAULT;
673a394b
EA
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1049 */
00731155
CW
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
5c0480f2
DV
1052 goto out;
1053 }
1054
2c22569b
CW
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
fbd5a26d 1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1062 }
673a394b 1063
86a1ee26 1064 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 1066
35b62a89 1067out:
05394f39 1068 drm_gem_object_unreference(&obj->base);
1d7cfea1 1069unlock:
fbd5a26d 1070 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1071 return ret;
1072}
1073
b361237b 1074int
33196ded 1075i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1076 bool interruptible)
1077{
1f83fee0 1078 if (i915_reset_in_progress(error)) {
b361237b
CW
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1083
1f83fee0
DV
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
b361237b
CW
1086 return -EIO;
1087
1088 return -EAGAIN;
1089 }
1090
1091 return 0;
1092}
1093
1094/*
1095 * Compare seqno against outstanding lazy request. Emit a request if they are
1096 * equal.
1097 */
1098static int
a4872ba6 1099i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1100{
1101 int ret;
1102
1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104
1105 ret = 0;
1823521d 1106 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1107 ret = i915_add_request(ring, NULL);
b361237b
CW
1108
1109 return ret;
1110}
1111
094f9a54
CW
1112static void fake_irq(unsigned long data)
1113{
1114 wake_up_process((struct task_struct *)data);
1115}
1116
1117static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1118 struct intel_engine_cs *ring)
094f9a54
CW
1119{
1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121}
1122
b29c19b6
CW
1123static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124{
1125 if (file_priv == NULL)
1126 return true;
1127
1128 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129}
1130
b361237b
CW
1131/**
1132 * __wait_seqno - wait until execution of seqno has finished
1133 * @ring: the ring expected to report seqno
1134 * @seqno: duh!
f69061be 1135 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1136 * @interruptible: do an interruptible wait (normally yes)
1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138 *
f69061be
DV
1139 * Note: It is of utmost importance that the passed in seqno and reset_counter
1140 * values have been read by the caller in an smp safe manner. Where read-side
1141 * locks are involved, it is sufficient to read the reset_counter before
1142 * unlocking the lock that protects the seqno. For lockless tricks, the
1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144 * inserted.
1145 *
b361237b
CW
1146 * Returns 0 if the seqno was found within the alloted time. Else returns the
1147 * errno with remaining time filled in timeout argument.
1148 */
a4872ba6 1149static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1150 unsigned reset_counter,
b29c19b6
CW
1151 bool interruptible,
1152 struct timespec *timeout,
1153 struct drm_i915_file_private *file_priv)
b361237b 1154{
3d13ef2e 1155 struct drm_device *dev = ring->dev;
3e31c6c0 1156 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1157 const bool irq_test_in_progress =
1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1159 struct timespec before, now;
1160 DEFINE_WAIT(wait);
47e9766d 1161 unsigned long timeout_expire;
b361237b
CW
1162 int ret;
1163
5d584b2e 1164 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
c67a470b 1165
b361237b
CW
1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 return 0;
1168
47e9766d 1169 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1170
3d13ef2e 1171 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1172 gen6_rps_boost(dev_priv);
1173 if (file_priv)
1174 mod_delayed_work(dev_priv->wq,
1175 &file_priv->mm.idle_work,
1176 msecs_to_jiffies(100));
1177 }
1178
168c3f21 1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1180 return -ENODEV;
1181
094f9a54
CW
1182 /* Record current time in case interrupted by signal, or wedged */
1183 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1184 getrawmonotonic(&before);
094f9a54
CW
1185 for (;;) {
1186 struct timer_list timer;
b361237b 1187
094f9a54
CW
1188 prepare_to_wait(&ring->irq_queue, &wait,
1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1190
f69061be
DV
1191 /* We need to check whether any gpu reset happened in between
1192 * the caller grabbing the seqno and now ... */
094f9a54
CW
1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 * is truely gone. */
1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 if (ret == 0)
1198 ret = -EAGAIN;
1199 break;
1200 }
f69061be 1201
094f9a54
CW
1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 ret = 0;
1204 break;
1205 }
b361237b 1206
094f9a54
CW
1207 if (interruptible && signal_pending(current)) {
1208 ret = -ERESTARTSYS;
1209 break;
1210 }
1211
47e9766d 1212 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1213 ret = -ETIME;
1214 break;
1215 }
1216
1217 timer.function = NULL;
1218 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1219 unsigned long expire;
1220
094f9a54 1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1223 mod_timer(&timer, expire);
1224 }
1225
5035c275 1226 io_schedule();
094f9a54 1227
094f9a54
CW
1228 if (timer.function) {
1229 del_singleshot_timer_sync(&timer);
1230 destroy_timer_on_stack(&timer);
1231 }
1232 }
b361237b 1233 getrawmonotonic(&now);
094f9a54 1234 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1235
168c3f21
MK
1236 if (!irq_test_in_progress)
1237 ring->irq_put(ring);
094f9a54
CW
1238
1239 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1240
1241 if (timeout) {
1242 struct timespec sleep_time = timespec_sub(now, before);
1243 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1244 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1246 }
1247
094f9a54 1248 return ret;
b361237b
CW
1249}
1250
1251/**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255int
a4872ba6 1256i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1257{
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
33196ded 1266 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
f69061be
DV
1274 return __wait_seqno(ring, seqno,
1275 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1276 interruptible, NULL, NULL);
b361237b
CW
1277}
1278
d26e3af8
CW
1279static int
1280i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
a4872ba6 1281 struct intel_engine_cs *ring)
d26e3af8 1282{
c8725f3d
CW
1283 if (!obj->active)
1284 return 0;
d26e3af8
CW
1285
1286 /* Manually manage the write flush as we may have not yet
1287 * retired the buffer.
1288 *
1289 * Note that the last_write_seqno is always the earlier of
1290 * the two (read/write) seqno, so if we haved successfully waited,
1291 * we know we have passed the last write.
1292 */
1293 obj->last_write_seqno = 0;
d26e3af8
CW
1294
1295 return 0;
1296}
1297
b361237b
CW
1298/**
1299 * Ensures that all rendering to the object has completed and the object is
1300 * safe to unbind from the GTT or access from the CPU.
1301 */
1302static __must_check int
1303i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304 bool readonly)
1305{
a4872ba6 1306 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1307 u32 seqno;
1308 int ret;
1309
1310 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311 if (seqno == 0)
1312 return 0;
1313
1314 ret = i915_wait_seqno(ring, seqno);
1315 if (ret)
1316 return ret;
1317
d26e3af8 1318 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1319}
1320
3236f57a
CW
1321/* A nonblocking variant of the above wait. This is a highly dangerous routine
1322 * as the object state may change during this call.
1323 */
1324static __must_check int
1325i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1326 struct drm_i915_file_private *file_priv,
3236f57a
CW
1327 bool readonly)
1328{
1329 struct drm_device *dev = obj->base.dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1331 struct intel_engine_cs *ring = obj->ring;
f69061be 1332 unsigned reset_counter;
3236f57a
CW
1333 u32 seqno;
1334 int ret;
1335
1336 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337 BUG_ON(!dev_priv->mm.interruptible);
1338
1339 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340 if (seqno == 0)
1341 return 0;
1342
33196ded 1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(ring, seqno);
1348 if (ret)
1349 return ret;
1350
f69061be 1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1352 mutex_unlock(&dev->struct_mutex);
6e4930f6 1353 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1354 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1355 if (ret)
1356 return ret;
3236f57a 1357
d26e3af8 1358 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1359}
1360
673a394b 1361/**
2ef7eeaa
EA
1362 * Called when user space prepares to use an object with the CPU, either
1363 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1364 */
1365int
1366i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1367 struct drm_file *file)
673a394b
EA
1368{
1369 struct drm_i915_gem_set_domain *args = data;
05394f39 1370 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1371 uint32_t read_domains = args->read_domains;
1372 uint32_t write_domain = args->write_domain;
673a394b
EA
1373 int ret;
1374
2ef7eeaa 1375 /* Only handle setting domains to types used by the CPU. */
21d509e3 1376 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1377 return -EINVAL;
1378
21d509e3 1379 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1380 return -EINVAL;
1381
1382 /* Having something in the write domain implies it's in the read
1383 * domain, and only that read domain. Enforce that in the request.
1384 */
1385 if (write_domain != 0 && read_domains != write_domain)
1386 return -EINVAL;
1387
76c1dec1 1388 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1389 if (ret)
76c1dec1 1390 return ret;
1d7cfea1 1391
05394f39 1392 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1393 if (&obj->base == NULL) {
1d7cfea1
CW
1394 ret = -ENOENT;
1395 goto unlock;
76c1dec1 1396 }
673a394b 1397
3236f57a
CW
1398 /* Try to flush the object off the GPU without holding the lock.
1399 * We will repeat the flush holding the lock in the normal manner
1400 * to catch cases where we are gazumped.
1401 */
6e4930f6
CW
1402 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1403 file->driver_priv,
1404 !write_domain);
3236f57a
CW
1405 if (ret)
1406 goto unref;
1407
2ef7eeaa
EA
1408 if (read_domains & I915_GEM_DOMAIN_GTT) {
1409 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1410
1411 /* Silently promote "you're not bound, there was nothing to do"
1412 * to success, since the client was just asking us to
1413 * make sure everything was done.
1414 */
1415 if (ret == -EINVAL)
1416 ret = 0;
2ef7eeaa 1417 } else {
e47c68e9 1418 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1419 }
1420
3236f57a 1421unref:
05394f39 1422 drm_gem_object_unreference(&obj->base);
1d7cfea1 1423unlock:
673a394b
EA
1424 mutex_unlock(&dev->struct_mutex);
1425 return ret;
1426}
1427
1428/**
1429 * Called when user space has done writes to this buffer
1430 */
1431int
1432i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1433 struct drm_file *file)
673a394b
EA
1434{
1435 struct drm_i915_gem_sw_finish *args = data;
05394f39 1436 struct drm_i915_gem_object *obj;
673a394b
EA
1437 int ret = 0;
1438
76c1dec1 1439 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1440 if (ret)
76c1dec1 1441 return ret;
1d7cfea1 1442
05394f39 1443 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1444 if (&obj->base == NULL) {
1d7cfea1
CW
1445 ret = -ENOENT;
1446 goto unlock;
673a394b
EA
1447 }
1448
673a394b 1449 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1450 if (obj->pin_display)
1451 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1452
05394f39 1453 drm_gem_object_unreference(&obj->base);
1d7cfea1 1454unlock:
673a394b
EA
1455 mutex_unlock(&dev->struct_mutex);
1456 return ret;
1457}
1458
1459/**
1460 * Maps the contents of an object, returning the address it is mapped
1461 * into.
1462 *
1463 * While the mapping holds a reference on the contents of the object, it doesn't
1464 * imply a ref on the object itself.
1465 */
1466int
1467i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1468 struct drm_file *file)
673a394b
EA
1469{
1470 struct drm_i915_gem_mmap *args = data;
1471 struct drm_gem_object *obj;
673a394b
EA
1472 unsigned long addr;
1473
05394f39 1474 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1475 if (obj == NULL)
bf79cb91 1476 return -ENOENT;
673a394b 1477
1286ff73
DV
1478 /* prime objects have no backing filp to GEM mmap
1479 * pages from.
1480 */
1481 if (!obj->filp) {
1482 drm_gem_object_unreference_unlocked(obj);
1483 return -EINVAL;
1484 }
1485
6be5ceb0 1486 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1487 PROT_READ | PROT_WRITE, MAP_SHARED,
1488 args->offset);
bc9025bd 1489 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1490 if (IS_ERR((void *)addr))
1491 return addr;
1492
1493 args->addr_ptr = (uint64_t) addr;
1494
1495 return 0;
1496}
1497
de151cf6
JB
1498/**
1499 * i915_gem_fault - fault a page into the GTT
1500 * vma: VMA in question
1501 * vmf: fault info
1502 *
1503 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1504 * from userspace. The fault handler takes care of binding the object to
1505 * the GTT (if needed), allocating and programming a fence register (again,
1506 * only if needed based on whether the old reg is still valid or the object
1507 * is tiled) and inserting a new PTE into the faulting process.
1508 *
1509 * Note that the faulting process may involve evicting existing objects
1510 * from the GTT and/or fence registers to make room. So performance may
1511 * suffer if the GTT working set is large or there are few fence registers
1512 * left.
1513 */
1514int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1515{
05394f39
CW
1516 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1517 struct drm_device *dev = obj->base.dev;
3e31c6c0 1518 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1519 pgoff_t page_offset;
1520 unsigned long pfn;
1521 int ret = 0;
0f973f27 1522 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1523
f65c9168
PZ
1524 intel_runtime_pm_get(dev_priv);
1525
de151cf6
JB
1526 /* We don't use vmf->pgoff since that has the fake offset */
1527 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1528 PAGE_SHIFT;
1529
d9bc7e9f
CW
1530 ret = i915_mutex_lock_interruptible(dev);
1531 if (ret)
1532 goto out;
a00b10c3 1533
db53a302
CW
1534 trace_i915_gem_object_fault(obj, page_offset, true, write);
1535
6e4930f6
CW
1536 /* Try to flush the object off the GPU first without holding the lock.
1537 * Upon reacquiring the lock, we will perform our sanity checks and then
1538 * repeat the flush holding the lock in the normal manner to catch cases
1539 * where we are gazumped.
1540 */
1541 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1542 if (ret)
1543 goto unlock;
1544
eb119bd6
CW
1545 /* Access to snoopable pages through the GTT is incoherent. */
1546 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1547 ret = -EFAULT;
eb119bd6
CW
1548 goto unlock;
1549 }
1550
d9bc7e9f 1551 /* Now bind it into the GTT if needed */
1ec9e26d 1552 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1553 if (ret)
1554 goto unlock;
4a684a41 1555
c9839303
CW
1556 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1557 if (ret)
1558 goto unpin;
74898d7e 1559
06d98131 1560 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1561 if (ret)
c9839303 1562 goto unpin;
7d1c4804 1563
6299f992
CW
1564 obj->fault_mappable = true;
1565
f343c5f6
BW
1566 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1567 pfn >>= PAGE_SHIFT;
1568 pfn += page_offset;
de151cf6
JB
1569
1570 /* Finally, remap it using the new GTT offset */
1571 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1572unpin:
d7f46fc4 1573 i915_gem_object_ggtt_unpin(obj);
c715089f 1574unlock:
de151cf6 1575 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1576out:
de151cf6 1577 switch (ret) {
d9bc7e9f 1578 case -EIO:
a9340cca
DV
1579 /* If this -EIO is due to a gpu hang, give the reset code a
1580 * chance to clean up the mess. Otherwise return the proper
1581 * SIGBUS. */
f65c9168
PZ
1582 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1583 ret = VM_FAULT_SIGBUS;
1584 break;
1585 }
045e769a 1586 case -EAGAIN:
571c608d
DV
1587 /*
1588 * EAGAIN means the gpu is hung and we'll wait for the error
1589 * handler to reset everything when re-faulting in
1590 * i915_mutex_lock_interruptible.
d9bc7e9f 1591 */
c715089f
CW
1592 case 0:
1593 case -ERESTARTSYS:
bed636ab 1594 case -EINTR:
e79e0fe3
DR
1595 case -EBUSY:
1596 /*
1597 * EBUSY is ok: this just means that another thread
1598 * already did the job.
1599 */
f65c9168
PZ
1600 ret = VM_FAULT_NOPAGE;
1601 break;
de151cf6 1602 case -ENOMEM:
f65c9168
PZ
1603 ret = VM_FAULT_OOM;
1604 break;
a7c2e1aa 1605 case -ENOSPC:
45d67817 1606 case -EFAULT:
f65c9168
PZ
1607 ret = VM_FAULT_SIGBUS;
1608 break;
de151cf6 1609 default:
a7c2e1aa 1610 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1611 ret = VM_FAULT_SIGBUS;
1612 break;
de151cf6 1613 }
f65c9168
PZ
1614
1615 intel_runtime_pm_put(dev_priv);
1616 return ret;
de151cf6
JB
1617}
1618
48018a57
PZ
1619void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1620{
1621 struct i915_vma *vma;
1622
1623 /*
1624 * Only the global gtt is relevant for gtt memory mappings, so restrict
1625 * list traversal to objects bound into the global address space. Note
1626 * that the active list should be empty, but better safe than sorry.
1627 */
1628 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1629 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1630 i915_gem_release_mmap(vma->obj);
1631 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1632 i915_gem_release_mmap(vma->obj);
1633}
1634
901782b2
CW
1635/**
1636 * i915_gem_release_mmap - remove physical page mappings
1637 * @obj: obj in question
1638 *
af901ca1 1639 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1640 * relinquish ownership of the pages back to the system.
1641 *
1642 * It is vital that we remove the page mapping if we have mapped a tiled
1643 * object through the GTT and then lose the fence register due to
1644 * resource pressure. Similarly if the object has been moved out of the
1645 * aperture, than pages mapped into userspace must be revoked. Removing the
1646 * mapping will then trigger a page fault on the next user access, allowing
1647 * fixup by i915_gem_fault().
1648 */
d05ca301 1649void
05394f39 1650i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1651{
6299f992
CW
1652 if (!obj->fault_mappable)
1653 return;
901782b2 1654
6796cb16
DH
1655 drm_vma_node_unmap(&obj->base.vma_node,
1656 obj->base.dev->anon_inode->i_mapping);
6299f992 1657 obj->fault_mappable = false;
901782b2
CW
1658}
1659
0fa87796 1660uint32_t
e28f8711 1661i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1662{
e28f8711 1663 uint32_t gtt_size;
92b88aeb
CW
1664
1665 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1666 tiling_mode == I915_TILING_NONE)
1667 return size;
92b88aeb
CW
1668
1669 /* Previous chips need a power-of-two fence region when tiling */
1670 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1671 gtt_size = 1024*1024;
92b88aeb 1672 else
e28f8711 1673 gtt_size = 512*1024;
92b88aeb 1674
e28f8711
CW
1675 while (gtt_size < size)
1676 gtt_size <<= 1;
92b88aeb 1677
e28f8711 1678 return gtt_size;
92b88aeb
CW
1679}
1680
de151cf6
JB
1681/**
1682 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1683 * @obj: object to check
1684 *
1685 * Return the required GTT alignment for an object, taking into account
5e783301 1686 * potential fence register mapping.
de151cf6 1687 */
d865110c
ID
1688uint32_t
1689i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1690 int tiling_mode, bool fenced)
de151cf6 1691{
de151cf6
JB
1692 /*
1693 * Minimum alignment is 4k (GTT page size), but might be greater
1694 * if a fence register is needed for the object.
1695 */
d865110c 1696 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1697 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1698 return 4096;
1699
a00b10c3
CW
1700 /*
1701 * Previous chips need to be aligned to the size of the smallest
1702 * fence register that can contain the object.
1703 */
e28f8711 1704 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1705}
1706
d8cb5086
CW
1707static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1708{
1709 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1710 int ret;
1711
0de23977 1712 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1713 return 0;
1714
da494d7c
DV
1715 dev_priv->mm.shrinker_no_lock_stealing = true;
1716
d8cb5086
CW
1717 ret = drm_gem_create_mmap_offset(&obj->base);
1718 if (ret != -ENOSPC)
da494d7c 1719 goto out;
d8cb5086
CW
1720
1721 /* Badly fragmented mmap space? The only way we can recover
1722 * space is by destroying unwanted objects. We can't randomly release
1723 * mmap_offsets as userspace expects them to be persistent for the
1724 * lifetime of the objects. The closest we can is to release the
1725 * offsets on purgeable objects by truncating it and marking it purged,
1726 * which prevents userspace from ever using that object again.
1727 */
1728 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1729 ret = drm_gem_create_mmap_offset(&obj->base);
1730 if (ret != -ENOSPC)
da494d7c 1731 goto out;
d8cb5086
CW
1732
1733 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1734 ret = drm_gem_create_mmap_offset(&obj->base);
1735out:
1736 dev_priv->mm.shrinker_no_lock_stealing = false;
1737
1738 return ret;
d8cb5086
CW
1739}
1740
1741static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1742{
d8cb5086
CW
1743 drm_gem_free_mmap_offset(&obj->base);
1744}
1745
de151cf6 1746int
ff72145b
DA
1747i915_gem_mmap_gtt(struct drm_file *file,
1748 struct drm_device *dev,
1749 uint32_t handle,
1750 uint64_t *offset)
de151cf6 1751{
da761a6e 1752 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1753 struct drm_i915_gem_object *obj;
de151cf6
JB
1754 int ret;
1755
76c1dec1 1756 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1757 if (ret)
76c1dec1 1758 return ret;
de151cf6 1759
ff72145b 1760 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1761 if (&obj->base == NULL) {
1d7cfea1
CW
1762 ret = -ENOENT;
1763 goto unlock;
1764 }
de151cf6 1765
5d4545ae 1766 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1767 ret = -E2BIG;
ff56b0bc 1768 goto out;
da761a6e
CW
1769 }
1770
05394f39 1771 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1772 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1773 ret = -EFAULT;
1d7cfea1 1774 goto out;
ab18282d
CW
1775 }
1776
d8cb5086
CW
1777 ret = i915_gem_object_create_mmap_offset(obj);
1778 if (ret)
1779 goto out;
de151cf6 1780
0de23977 1781 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1782
1d7cfea1 1783out:
05394f39 1784 drm_gem_object_unreference(&obj->base);
1d7cfea1 1785unlock:
de151cf6 1786 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1787 return ret;
de151cf6
JB
1788}
1789
ff72145b
DA
1790/**
1791 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1792 * @dev: DRM device
1793 * @data: GTT mapping ioctl data
1794 * @file: GEM object info
1795 *
1796 * Simply returns the fake offset to userspace so it can mmap it.
1797 * The mmap call will end up in drm_gem_mmap(), which will set things
1798 * up so we can get faults in the handler above.
1799 *
1800 * The fault handler will take care of binding the object into the GTT
1801 * (since it may have been evicted to make room for something), allocating
1802 * a fence register, and mapping the appropriate aperture address into
1803 * userspace.
1804 */
1805int
1806i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1807 struct drm_file *file)
1808{
1809 struct drm_i915_gem_mmap_gtt *args = data;
1810
ff72145b
DA
1811 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1812}
1813
5537252b
CW
1814static inline int
1815i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1816{
1817 return obj->madv == I915_MADV_DONTNEED;
1818}
1819
225067ee
DV
1820/* Immediately discard the backing storage */
1821static void
1822i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1823{
4d6294bf 1824 i915_gem_object_free_mmap_offset(obj);
1286ff73 1825
4d6294bf
CW
1826 if (obj->base.filp == NULL)
1827 return;
e5281ccd 1828
225067ee
DV
1829 /* Our goal here is to return as much of the memory as
1830 * is possible back to the system as we are called from OOM.
1831 * To do this we must instruct the shmfs to drop all of its
1832 * backing pages, *now*.
1833 */
5537252b 1834 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1835 obj->madv = __I915_MADV_PURGED;
1836}
e5281ccd 1837
5537252b
CW
1838/* Try to discard unwanted pages */
1839static void
1840i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1841{
5537252b
CW
1842 struct address_space *mapping;
1843
1844 switch (obj->madv) {
1845 case I915_MADV_DONTNEED:
1846 i915_gem_object_truncate(obj);
1847 case __I915_MADV_PURGED:
1848 return;
1849 }
1850
1851 if (obj->base.filp == NULL)
1852 return;
1853
1854 mapping = file_inode(obj->base.filp)->i_mapping,
1855 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1856}
1857
5cdf5881 1858static void
05394f39 1859i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1860{
90797e6d
ID
1861 struct sg_page_iter sg_iter;
1862 int ret;
1286ff73 1863
05394f39 1864 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1865
6c085a72
CW
1866 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1867 if (ret) {
1868 /* In the event of a disaster, abandon all caches and
1869 * hope for the best.
1870 */
1871 WARN_ON(ret != -EIO);
2c22569b 1872 i915_gem_clflush_object(obj, true);
6c085a72
CW
1873 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1874 }
1875
6dacfd2f 1876 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1877 i915_gem_object_save_bit_17_swizzle(obj);
1878
05394f39
CW
1879 if (obj->madv == I915_MADV_DONTNEED)
1880 obj->dirty = 0;
3ef94daa 1881
90797e6d 1882 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1883 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1884
05394f39 1885 if (obj->dirty)
9da3da66 1886 set_page_dirty(page);
3ef94daa 1887
05394f39 1888 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1889 mark_page_accessed(page);
3ef94daa 1890
9da3da66 1891 page_cache_release(page);
3ef94daa 1892 }
05394f39 1893 obj->dirty = 0;
673a394b 1894
9da3da66
CW
1895 sg_free_table(obj->pages);
1896 kfree(obj->pages);
37e680a1 1897}
6c085a72 1898
dd624afd 1899int
37e680a1
CW
1900i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1901{
1902 const struct drm_i915_gem_object_ops *ops = obj->ops;
1903
2f745ad3 1904 if (obj->pages == NULL)
37e680a1
CW
1905 return 0;
1906
a5570178
CW
1907 if (obj->pages_pin_count)
1908 return -EBUSY;
1909
9843877d 1910 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1911
a2165e31
CW
1912 /* ->put_pages might need to allocate memory for the bit17 swizzle
1913 * array, hence protect them from being reaped by removing them from gtt
1914 * lists early. */
35c20a60 1915 list_del(&obj->global_list);
a2165e31 1916
37e680a1 1917 ops->put_pages(obj);
05394f39 1918 obj->pages = NULL;
37e680a1 1919
5537252b 1920 i915_gem_object_invalidate(obj);
6c085a72
CW
1921
1922 return 0;
1923}
1924
d9973b43 1925static unsigned long
93927ca5
DV
1926__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1927 bool purgeable_only)
6c085a72 1928{
c8725f3d
CW
1929 struct list_head still_in_list;
1930 struct drm_i915_gem_object *obj;
d9973b43 1931 unsigned long count = 0;
6c085a72 1932
57094f82 1933 /*
c8725f3d 1934 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1935 * (due to retiring requests) we have to strictly process only
1936 * one element of the list at the time, and recheck the list
1937 * on every iteration.
c8725f3d
CW
1938 *
1939 * In particular, we must hold a reference whilst removing the
1940 * object as we may end up waiting for and/or retiring the objects.
1941 * This might release the final reference (held by the active list)
1942 * and result in the object being freed from under us. This is
1943 * similar to the precautions the eviction code must take whilst
1944 * removing objects.
1945 *
1946 * Also note that although these lists do not hold a reference to
1947 * the object we can safely grab one here: The final object
1948 * unreferencing and the bound_list are both protected by the
1949 * dev->struct_mutex and so we won't ever be able to observe an
1950 * object on the bound_list with a reference count equals 0.
57094f82 1951 */
c8725f3d
CW
1952 INIT_LIST_HEAD(&still_in_list);
1953 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1954 obj = list_first_entry(&dev_priv->mm.unbound_list,
1955 typeof(*obj), global_list);
1956 list_move_tail(&obj->global_list, &still_in_list);
1957
1958 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1959 continue;
1960
1961 drm_gem_object_reference(&obj->base);
1962
1963 if (i915_gem_object_put_pages(obj) == 0)
1964 count += obj->base.size >> PAGE_SHIFT;
1965
1966 drm_gem_object_unreference(&obj->base);
1967 }
1968 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1969
1970 INIT_LIST_HEAD(&still_in_list);
57094f82 1971 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1972 struct i915_vma *vma, *v;
80dcfdbd 1973
57094f82
CW
1974 obj = list_first_entry(&dev_priv->mm.bound_list,
1975 typeof(*obj), global_list);
c8725f3d 1976 list_move_tail(&obj->global_list, &still_in_list);
57094f82 1977
80dcfdbd
BW
1978 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1979 continue;
1980
57094f82
CW
1981 drm_gem_object_reference(&obj->base);
1982
07fe0b12
BW
1983 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1984 if (i915_vma_unbind(vma))
1985 break;
80dcfdbd 1986
57094f82 1987 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1988 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1989
1990 drm_gem_object_unreference(&obj->base);
6c085a72 1991 }
c8725f3d 1992 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
1993
1994 return count;
1995}
1996
d9973b43 1997static unsigned long
93927ca5
DV
1998i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1999{
2000 return __i915_gem_shrink(dev_priv, target, true);
2001}
2002
d9973b43 2003static unsigned long
6c085a72
CW
2004i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2005{
6c085a72 2006 i915_gem_evict_everything(dev_priv->dev);
c8725f3d 2007 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
225067ee
DV
2008}
2009
37e680a1 2010static int
6c085a72 2011i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2012{
6c085a72 2013 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2014 int page_count, i;
2015 struct address_space *mapping;
9da3da66
CW
2016 struct sg_table *st;
2017 struct scatterlist *sg;
90797e6d 2018 struct sg_page_iter sg_iter;
e5281ccd 2019 struct page *page;
90797e6d 2020 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2021 gfp_t gfp;
e5281ccd 2022
6c085a72
CW
2023 /* Assert that the object is not currently in any GPU domain. As it
2024 * wasn't in the GTT, there shouldn't be any way it could have been in
2025 * a GPU cache
2026 */
2027 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2028 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2029
9da3da66
CW
2030 st = kmalloc(sizeof(*st), GFP_KERNEL);
2031 if (st == NULL)
2032 return -ENOMEM;
2033
05394f39 2034 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2035 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2036 kfree(st);
e5281ccd 2037 return -ENOMEM;
9da3da66 2038 }
e5281ccd 2039
9da3da66
CW
2040 /* Get the list of pages out of our struct file. They'll be pinned
2041 * at this point until we release them.
2042 *
2043 * Fail silently without starting the shrinker
2044 */
496ad9aa 2045 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2046 gfp = mapping_gfp_mask(mapping);
caf49191 2047 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2048 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2049 sg = st->sgl;
2050 st->nents = 0;
2051 for (i = 0; i < page_count; i++) {
6c085a72
CW
2052 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2053 if (IS_ERR(page)) {
2054 i915_gem_purge(dev_priv, page_count);
2055 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2056 }
2057 if (IS_ERR(page)) {
2058 /* We've tried hard to allocate the memory by reaping
2059 * our own buffer, now let the real VM do its job and
2060 * go down in flames if truly OOM.
2061 */
caf49191 2062 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
2063 gfp |= __GFP_IO | __GFP_WAIT;
2064
2065 i915_gem_shrink_all(dev_priv);
2066 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2067 if (IS_ERR(page))
2068 goto err_pages;
2069
caf49191 2070 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
2071 gfp &= ~(__GFP_IO | __GFP_WAIT);
2072 }
426729dc
KRW
2073#ifdef CONFIG_SWIOTLB
2074 if (swiotlb_nr_tbl()) {
2075 st->nents++;
2076 sg_set_page(sg, page, PAGE_SIZE, 0);
2077 sg = sg_next(sg);
2078 continue;
2079 }
2080#endif
90797e6d
ID
2081 if (!i || page_to_pfn(page) != last_pfn + 1) {
2082 if (i)
2083 sg = sg_next(sg);
2084 st->nents++;
2085 sg_set_page(sg, page, PAGE_SIZE, 0);
2086 } else {
2087 sg->length += PAGE_SIZE;
2088 }
2089 last_pfn = page_to_pfn(page);
3bbbe706
DV
2090
2091 /* Check that the i965g/gm workaround works. */
2092 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2093 }
426729dc
KRW
2094#ifdef CONFIG_SWIOTLB
2095 if (!swiotlb_nr_tbl())
2096#endif
2097 sg_mark_end(sg);
74ce6b6c
CW
2098 obj->pages = st;
2099
6dacfd2f 2100 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2101 i915_gem_object_do_bit_17_swizzle(obj);
2102
2103 return 0;
2104
2105err_pages:
90797e6d
ID
2106 sg_mark_end(sg);
2107 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2108 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2109 sg_free_table(st);
2110 kfree(st);
0820baf3
CW
2111
2112 /* shmemfs first checks if there is enough memory to allocate the page
2113 * and reports ENOSPC should there be insufficient, along with the usual
2114 * ENOMEM for a genuine allocation failure.
2115 *
2116 * We use ENOSPC in our driver to mean that we have run out of aperture
2117 * space and so want to translate the error from shmemfs back to our
2118 * usual understanding of ENOMEM.
2119 */
2120 if (PTR_ERR(page) == -ENOSPC)
2121 return -ENOMEM;
2122 else
2123 return PTR_ERR(page);
673a394b
EA
2124}
2125
37e680a1
CW
2126/* Ensure that the associated pages are gathered from the backing storage
2127 * and pinned into our object. i915_gem_object_get_pages() may be called
2128 * multiple times before they are released by a single call to
2129 * i915_gem_object_put_pages() - once the pages are no longer referenced
2130 * either as a result of memory pressure (reaping pages under the shrinker)
2131 * or as the object is itself released.
2132 */
2133int
2134i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2135{
2136 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2137 const struct drm_i915_gem_object_ops *ops = obj->ops;
2138 int ret;
2139
2f745ad3 2140 if (obj->pages)
37e680a1
CW
2141 return 0;
2142
43e28f09 2143 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2144 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2145 return -EFAULT;
43e28f09
CW
2146 }
2147
a5570178
CW
2148 BUG_ON(obj->pages_pin_count);
2149
37e680a1
CW
2150 ret = ops->get_pages(obj);
2151 if (ret)
2152 return ret;
2153
35c20a60 2154 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2155 return 0;
673a394b
EA
2156}
2157
e2d05a8b 2158static void
05394f39 2159i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2160 struct intel_engine_cs *ring)
673a394b 2161{
05394f39 2162 struct drm_device *dev = obj->base.dev;
69dc4987 2163 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2164 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2165
852835f3 2166 BUG_ON(ring == NULL);
02978ff5
CW
2167 if (obj->ring != ring && obj->last_write_seqno) {
2168 /* Keep the seqno relative to the current ring */
2169 obj->last_write_seqno = seqno;
2170 }
05394f39 2171 obj->ring = ring;
673a394b
EA
2172
2173 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2174 if (!obj->active) {
2175 drm_gem_object_reference(&obj->base);
2176 obj->active = 1;
673a394b 2177 }
e35a41de 2178
05394f39 2179 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2180
0201f1ec 2181 obj->last_read_seqno = seqno;
caea7476 2182
7dd49065 2183 if (obj->fenced_gpu_access) {
caea7476 2184 obj->last_fenced_seqno = seqno;
caea7476 2185
7dd49065
CW
2186 /* Bump MRU to take account of the delayed flush */
2187 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2188 struct drm_i915_fence_reg *reg;
2189
2190 reg = &dev_priv->fence_regs[obj->fence_reg];
2191 list_move_tail(&reg->lru_list,
2192 &dev_priv->mm.fence_list);
2193 }
caea7476
CW
2194 }
2195}
2196
e2d05a8b 2197void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2198 struct intel_engine_cs *ring)
e2d05a8b
BW
2199{
2200 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2201 return i915_gem_object_move_to_active(vma->obj, ring);
2202}
2203
caea7476 2204static void
caea7476 2205i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2206{
ca191b13 2207 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2208 struct i915_address_space *vm;
2209 struct i915_vma *vma;
ce44b0ea 2210
65ce3027 2211 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2212 BUG_ON(!obj->active);
caea7476 2213
feb822cf
BW
2214 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2215 vma = i915_gem_obj_to_vma(obj, vm);
2216 if (vma && !list_empty(&vma->mm_list))
2217 list_move_tail(&vma->mm_list, &vm->inactive_list);
2218 }
caea7476 2219
65ce3027 2220 list_del_init(&obj->ring_list);
caea7476
CW
2221 obj->ring = NULL;
2222
65ce3027
CW
2223 obj->last_read_seqno = 0;
2224 obj->last_write_seqno = 0;
2225 obj->base.write_domain = 0;
2226
2227 obj->last_fenced_seqno = 0;
caea7476 2228 obj->fenced_gpu_access = false;
caea7476
CW
2229
2230 obj->active = 0;
2231 drm_gem_object_unreference(&obj->base);
2232
2233 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2234}
673a394b 2235
c8725f3d
CW
2236static void
2237i915_gem_object_retire(struct drm_i915_gem_object *obj)
2238{
a4872ba6 2239 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2240
2241 if (ring == NULL)
2242 return;
2243
2244 if (i915_seqno_passed(ring->get_seqno(ring, true),
2245 obj->last_read_seqno))
2246 i915_gem_object_move_to_inactive(obj);
2247}
2248
9d773091 2249static int
fca26bb4 2250i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2251{
9d773091 2252 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2253 struct intel_engine_cs *ring;
9d773091 2254 int ret, i, j;
53d227f2 2255
107f27a5 2256 /* Carefully retire all requests without writing to the rings */
9d773091 2257 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2258 ret = intel_ring_idle(ring);
2259 if (ret)
2260 return ret;
9d773091 2261 }
9d773091 2262 i915_gem_retire_requests(dev);
107f27a5
CW
2263
2264 /* Finally reset hw state */
9d773091 2265 for_each_ring(ring, dev_priv, i) {
fca26bb4 2266 intel_ring_init_seqno(ring, seqno);
498d2ac1 2267
ebc348b2
BW
2268 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2269 ring->semaphore.sync_seqno[j] = 0;
9d773091 2270 }
53d227f2 2271
9d773091 2272 return 0;
53d227f2
DV
2273}
2274
fca26bb4
MK
2275int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2276{
2277 struct drm_i915_private *dev_priv = dev->dev_private;
2278 int ret;
2279
2280 if (seqno == 0)
2281 return -EINVAL;
2282
2283 /* HWS page needs to be set less than what we
2284 * will inject to ring
2285 */
2286 ret = i915_gem_init_seqno(dev, seqno - 1);
2287 if (ret)
2288 return ret;
2289
2290 /* Carefully set the last_seqno value so that wrap
2291 * detection still works
2292 */
2293 dev_priv->next_seqno = seqno;
2294 dev_priv->last_seqno = seqno - 1;
2295 if (dev_priv->last_seqno == 0)
2296 dev_priv->last_seqno--;
2297
2298 return 0;
2299}
2300
9d773091
CW
2301int
2302i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2303{
9d773091
CW
2304 struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306 /* reserve 0 for non-seqno */
2307 if (dev_priv->next_seqno == 0) {
fca26bb4 2308 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2309 if (ret)
2310 return ret;
53d227f2 2311
9d773091
CW
2312 dev_priv->next_seqno = 1;
2313 }
53d227f2 2314
f72b3435 2315 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2316 return 0;
53d227f2
DV
2317}
2318
a4872ba6 2319int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2320 struct drm_file *file,
7d736f4f 2321 struct drm_i915_gem_object *obj,
0025c077 2322 u32 *out_seqno)
673a394b 2323{
3e31c6c0 2324 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2325 struct drm_i915_gem_request *request;
7d736f4f 2326 u32 request_ring_position, request_start;
3cce469c
CW
2327 int ret;
2328
7d736f4f 2329 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2330 /*
2331 * Emit any outstanding flushes - execbuf can fail to emit the flush
2332 * after having emitted the batchbuffer command. Hence we need to fix
2333 * things up similar to emitting the lazy request. The difference here
2334 * is that the flush _must_ happen before the next request, no matter
2335 * what.
2336 */
a7b9761d
CW
2337 ret = intel_ring_flush_all_caches(ring);
2338 if (ret)
2339 return ret;
cc889e0f 2340
3c0e234c
CW
2341 request = ring->preallocated_lazy_request;
2342 if (WARN_ON(request == NULL))
acb868d3 2343 return -ENOMEM;
cc889e0f 2344
a71d8d94
CW
2345 /* Record the position of the start of the request so that
2346 * should we detect the updated seqno part-way through the
2347 * GPU processing the request, we never over-estimate the
2348 * position of the head.
2349 */
2350 request_ring_position = intel_ring_get_tail(ring);
2351
9d773091 2352 ret = ring->add_request(ring);
3c0e234c 2353 if (ret)
3bb73aba 2354 return ret;
673a394b 2355
9d773091 2356 request->seqno = intel_ring_get_seqno(ring);
852835f3 2357 request->ring = ring;
7d736f4f 2358 request->head = request_start;
a71d8d94 2359 request->tail = request_ring_position;
7d736f4f
MK
2360
2361 /* Whilst this request exists, batch_obj will be on the
2362 * active_list, and so will hold the active reference. Only when this
2363 * request is retired will the the batch_obj be moved onto the
2364 * inactive_list and lose its active reference. Hence we do not need
2365 * to explicitly hold another reference here.
2366 */
9a7e0c2a 2367 request->batch_obj = obj;
0e50e96b 2368
9a7e0c2a
CW
2369 /* Hold a reference to the current context so that we can inspect
2370 * it later in case a hangcheck error event fires.
2371 */
2372 request->ctx = ring->last_context;
0e50e96b
MK
2373 if (request->ctx)
2374 i915_gem_context_reference(request->ctx);
2375
673a394b 2376 request->emitted_jiffies = jiffies;
852835f3 2377 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2378 request->file_priv = NULL;
852835f3 2379
db53a302
CW
2380 if (file) {
2381 struct drm_i915_file_private *file_priv = file->driver_priv;
2382
1c25595f 2383 spin_lock(&file_priv->mm.lock);
f787a5f5 2384 request->file_priv = file_priv;
b962442e 2385 list_add_tail(&request->client_list,
f787a5f5 2386 &file_priv->mm.request_list);
1c25595f 2387 spin_unlock(&file_priv->mm.lock);
b962442e 2388 }
673a394b 2389
9d773091 2390 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2391 ring->outstanding_lazy_seqno = 0;
3c0e234c 2392 ring->preallocated_lazy_request = NULL;
db53a302 2393
db1b76ca 2394 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2395 i915_queue_hangcheck(ring->dev);
2396
f62a0076
CW
2397 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2398 queue_delayed_work(dev_priv->wq,
2399 &dev_priv->mm.retire_work,
2400 round_jiffies_up_relative(HZ));
2401 intel_mark_busy(dev_priv->dev);
f65d9421 2402 }
cc889e0f 2403
acb868d3 2404 if (out_seqno)
9d773091 2405 *out_seqno = request->seqno;
3cce469c 2406 return 0;
673a394b
EA
2407}
2408
f787a5f5
CW
2409static inline void
2410i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2411{
1c25595f 2412 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2413
1c25595f
CW
2414 if (!file_priv)
2415 return;
1c5d22f7 2416
1c25595f 2417 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2418 list_del(&request->client_list);
2419 request->file_priv = NULL;
1c25595f 2420 spin_unlock(&file_priv->mm.lock);
673a394b 2421}
673a394b 2422
939fd762 2423static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2424 const struct intel_context *ctx)
be62acb4 2425{
44e2c070 2426 unsigned long elapsed;
be62acb4 2427
44e2c070
MK
2428 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2429
2430 if (ctx->hang_stats.banned)
be62acb4
MK
2431 return true;
2432
2433 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2434 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2435 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2436 return true;
88b4aa87
MK
2437 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2438 if (i915_stop_ring_allow_warn(dev_priv))
2439 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2440 return true;
3fac8978 2441 }
be62acb4
MK
2442 }
2443
2444 return false;
2445}
2446
939fd762 2447static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2448 struct intel_context *ctx,
b6b0fac0 2449 const bool guilty)
aa60c664 2450{
44e2c070
MK
2451 struct i915_ctx_hang_stats *hs;
2452
2453 if (WARN_ON(!ctx))
2454 return;
aa60c664 2455
44e2c070
MK
2456 hs = &ctx->hang_stats;
2457
2458 if (guilty) {
939fd762 2459 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2460 hs->batch_active++;
2461 hs->guilty_ts = get_seconds();
2462 } else {
2463 hs->batch_pending++;
aa60c664
MK
2464 }
2465}
2466
0e50e96b
MK
2467static void i915_gem_free_request(struct drm_i915_gem_request *request)
2468{
2469 list_del(&request->list);
2470 i915_gem_request_remove_from_client(request);
2471
2472 if (request->ctx)
2473 i915_gem_context_unreference(request->ctx);
2474
2475 kfree(request);
2476}
2477
8d9fc7fd 2478struct drm_i915_gem_request *
a4872ba6 2479i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2480{
4db080f9 2481 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2482 u32 completed_seqno;
2483
2484 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2485
2486 list_for_each_entry(request, &ring->request_list, list) {
2487 if (i915_seqno_passed(completed_seqno, request->seqno))
2488 continue;
aa60c664 2489
b6b0fac0 2490 return request;
4db080f9 2491 }
b6b0fac0
MK
2492
2493 return NULL;
2494}
2495
2496static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2497 struct intel_engine_cs *ring)
b6b0fac0
MK
2498{
2499 struct drm_i915_gem_request *request;
2500 bool ring_hung;
2501
8d9fc7fd 2502 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2503
2504 if (request == NULL)
2505 return;
2506
2507 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2508
939fd762 2509 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2510
2511 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2512 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2513}
aa60c664 2514
4db080f9 2515static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2516 struct intel_engine_cs *ring)
4db080f9 2517{
dfaae392 2518 while (!list_empty(&ring->active_list)) {
05394f39 2519 struct drm_i915_gem_object *obj;
9375e446 2520
05394f39
CW
2521 obj = list_first_entry(&ring->active_list,
2522 struct drm_i915_gem_object,
2523 ring_list);
9375e446 2524
05394f39 2525 i915_gem_object_move_to_inactive(obj);
673a394b 2526 }
1d62beea
BW
2527
2528 /*
2529 * We must free the requests after all the corresponding objects have
2530 * been moved off active lists. Which is the same order as the normal
2531 * retire_requests function does. This is important if object hold
2532 * implicit references on things like e.g. ppgtt address spaces through
2533 * the request.
2534 */
2535 while (!list_empty(&ring->request_list)) {
2536 struct drm_i915_gem_request *request;
2537
2538 request = list_first_entry(&ring->request_list,
2539 struct drm_i915_gem_request,
2540 list);
2541
2542 i915_gem_free_request(request);
2543 }
e3efda49
CW
2544
2545 /* These may not have been flush before the reset, do so now */
2546 kfree(ring->preallocated_lazy_request);
2547 ring->preallocated_lazy_request = NULL;
2548 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2549}
2550
19b2dbde 2551void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2552{
2553 struct drm_i915_private *dev_priv = dev->dev_private;
2554 int i;
2555
4b9de737 2556 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2557 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2558
94a335db
DV
2559 /*
2560 * Commit delayed tiling changes if we have an object still
2561 * attached to the fence, otherwise just clear the fence.
2562 */
2563 if (reg->obj) {
2564 i915_gem_object_update_fence(reg->obj, reg,
2565 reg->obj->tiling_mode);
2566 } else {
2567 i915_gem_write_fence(dev, i, NULL);
2568 }
312817a3
CW
2569 }
2570}
2571
069efc1d 2572void i915_gem_reset(struct drm_device *dev)
673a394b 2573{
77f01230 2574 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2575 struct intel_engine_cs *ring;
1ec14ad3 2576 int i;
673a394b 2577
4db080f9
CW
2578 /*
2579 * Before we free the objects from the requests, we need to inspect
2580 * them for finding the guilty party. As the requests only borrow
2581 * their reference to the objects, the inspection must be done first.
2582 */
2583 for_each_ring(ring, dev_priv, i)
2584 i915_gem_reset_ring_status(dev_priv, ring);
2585
b4519513 2586 for_each_ring(ring, dev_priv, i)
4db080f9 2587 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2588
acce9ffa
BW
2589 i915_gem_context_reset(dev);
2590
19b2dbde 2591 i915_gem_restore_fences(dev);
673a394b
EA
2592}
2593
2594/**
2595 * This function clears the request list as sequence numbers are passed.
2596 */
1cf0ba14 2597void
a4872ba6 2598i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2599{
673a394b
EA
2600 uint32_t seqno;
2601
db53a302 2602 if (list_empty(&ring->request_list))
6c0594a3
KW
2603 return;
2604
db53a302 2605 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2606
b2eadbc8 2607 seqno = ring->get_seqno(ring, true);
1ec14ad3 2608
e9103038
CW
2609 /* Move any buffers on the active list that are no longer referenced
2610 * by the ringbuffer to the flushing/inactive lists as appropriate,
2611 * before we free the context associated with the requests.
2612 */
2613 while (!list_empty(&ring->active_list)) {
2614 struct drm_i915_gem_object *obj;
2615
2616 obj = list_first_entry(&ring->active_list,
2617 struct drm_i915_gem_object,
2618 ring_list);
2619
2620 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2621 break;
2622
2623 i915_gem_object_move_to_inactive(obj);
2624 }
2625
2626
852835f3 2627 while (!list_empty(&ring->request_list)) {
673a394b 2628 struct drm_i915_gem_request *request;
673a394b 2629
852835f3 2630 request = list_first_entry(&ring->request_list,
673a394b
EA
2631 struct drm_i915_gem_request,
2632 list);
673a394b 2633
dfaae392 2634 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2635 break;
2636
db53a302 2637 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2638 /* We know the GPU must have read the request to have
2639 * sent us the seqno + interrupt, so use the position
2640 * of tail of the request to update the last known position
2641 * of the GPU head.
2642 */
ee1b1e5e 2643 ring->buffer->last_retired_head = request->tail;
b84d5f0c 2644
0e50e96b 2645 i915_gem_free_request(request);
b84d5f0c 2646 }
673a394b 2647
db53a302
CW
2648 if (unlikely(ring->trace_irq_seqno &&
2649 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2650 ring->irq_put(ring);
db53a302 2651 ring->trace_irq_seqno = 0;
9d34e5db 2652 }
23bc5982 2653
db53a302 2654 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2655}
2656
b29c19b6 2657bool
b09a1fec
CW
2658i915_gem_retire_requests(struct drm_device *dev)
2659{
3e31c6c0 2660 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2661 struct intel_engine_cs *ring;
b29c19b6 2662 bool idle = true;
1ec14ad3 2663 int i;
b09a1fec 2664
b29c19b6 2665 for_each_ring(ring, dev_priv, i) {
b4519513 2666 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2667 idle &= list_empty(&ring->request_list);
2668 }
2669
2670 if (idle)
2671 mod_delayed_work(dev_priv->wq,
2672 &dev_priv->mm.idle_work,
2673 msecs_to_jiffies(100));
2674
2675 return idle;
b09a1fec
CW
2676}
2677
75ef9da2 2678static void
673a394b
EA
2679i915_gem_retire_work_handler(struct work_struct *work)
2680{
b29c19b6
CW
2681 struct drm_i915_private *dev_priv =
2682 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2683 struct drm_device *dev = dev_priv->dev;
0a58705b 2684 bool idle;
673a394b 2685
891b48cf 2686 /* Come back later if the device is busy... */
b29c19b6
CW
2687 idle = false;
2688 if (mutex_trylock(&dev->struct_mutex)) {
2689 idle = i915_gem_retire_requests(dev);
2690 mutex_unlock(&dev->struct_mutex);
673a394b 2691 }
b29c19b6 2692 if (!idle)
bcb45086
CW
2693 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2694 round_jiffies_up_relative(HZ));
b29c19b6 2695}
0a58705b 2696
b29c19b6
CW
2697static void
2698i915_gem_idle_work_handler(struct work_struct *work)
2699{
2700 struct drm_i915_private *dev_priv =
2701 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2702
2703 intel_mark_idle(dev_priv->dev);
673a394b
EA
2704}
2705
30dfebf3
DV
2706/**
2707 * Ensures that an object will eventually get non-busy by flushing any required
2708 * write domains, emitting any outstanding lazy request and retiring and
2709 * completed requests.
2710 */
2711static int
2712i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2713{
2714 int ret;
2715
2716 if (obj->active) {
0201f1ec 2717 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2718 if (ret)
2719 return ret;
2720
30dfebf3
DV
2721 i915_gem_retire_requests_ring(obj->ring);
2722 }
2723
2724 return 0;
2725}
2726
23ba4fd0
BW
2727/**
2728 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2729 * @DRM_IOCTL_ARGS: standard ioctl arguments
2730 *
2731 * Returns 0 if successful, else an error is returned with the remaining time in
2732 * the timeout parameter.
2733 * -ETIME: object is still busy after timeout
2734 * -ERESTARTSYS: signal interrupted the wait
2735 * -ENONENT: object doesn't exist
2736 * Also possible, but rare:
2737 * -EAGAIN: GPU wedged
2738 * -ENOMEM: damn
2739 * -ENODEV: Internal IRQ fail
2740 * -E?: The add request failed
2741 *
2742 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2743 * non-zero timeout parameter the wait ioctl will wait for the given number of
2744 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2745 * without holding struct_mutex the object may become re-busied before this
2746 * function completes. A similar but shorter * race condition exists in the busy
2747 * ioctl
2748 */
2749int
2750i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2751{
3e31c6c0 2752 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2753 struct drm_i915_gem_wait *args = data;
2754 struct drm_i915_gem_object *obj;
a4872ba6 2755 struct intel_engine_cs *ring = NULL;
eac1f14f 2756 struct timespec timeout_stack, *timeout = NULL;
f69061be 2757 unsigned reset_counter;
23ba4fd0
BW
2758 u32 seqno = 0;
2759 int ret = 0;
2760
eac1f14f
BW
2761 if (args->timeout_ns >= 0) {
2762 timeout_stack = ns_to_timespec(args->timeout_ns);
2763 timeout = &timeout_stack;
2764 }
23ba4fd0
BW
2765
2766 ret = i915_mutex_lock_interruptible(dev);
2767 if (ret)
2768 return ret;
2769
2770 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2771 if (&obj->base == NULL) {
2772 mutex_unlock(&dev->struct_mutex);
2773 return -ENOENT;
2774 }
2775
30dfebf3
DV
2776 /* Need to make sure the object gets inactive eventually. */
2777 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2778 if (ret)
2779 goto out;
2780
2781 if (obj->active) {
0201f1ec 2782 seqno = obj->last_read_seqno;
23ba4fd0
BW
2783 ring = obj->ring;
2784 }
2785
2786 if (seqno == 0)
2787 goto out;
2788
23ba4fd0
BW
2789 /* Do this after OLR check to make sure we make forward progress polling
2790 * on this IOCTL with a 0 timeout (like busy ioctl)
2791 */
2792 if (!args->timeout_ns) {
2793 ret = -ETIME;
2794 goto out;
2795 }
2796
2797 drm_gem_object_unreference(&obj->base);
f69061be 2798 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2799 mutex_unlock(&dev->struct_mutex);
2800
b29c19b6 2801 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2802 if (timeout)
eac1f14f 2803 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2804 return ret;
2805
2806out:
2807 drm_gem_object_unreference(&obj->base);
2808 mutex_unlock(&dev->struct_mutex);
2809 return ret;
2810}
2811
5816d648
BW
2812/**
2813 * i915_gem_object_sync - sync an object to a ring.
2814 *
2815 * @obj: object which may be in use on another ring.
2816 * @to: ring we wish to use the object on. May be NULL.
2817 *
2818 * This code is meant to abstract object synchronization with the GPU.
2819 * Calling with NULL implies synchronizing the object with the CPU
2820 * rather than a particular GPU ring.
2821 *
2822 * Returns 0 if successful, else propagates up the lower layer error.
2823 */
2911a35b
BW
2824int
2825i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2826 struct intel_engine_cs *to)
2911a35b 2827{
a4872ba6 2828 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2829 u32 seqno;
2830 int ret, idx;
2831
2832 if (from == NULL || to == from)
2833 return 0;
2834
5816d648 2835 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2836 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2837
2838 idx = intel_ring_sync_index(from, to);
2839
0201f1ec 2840 seqno = obj->last_read_seqno;
ebc348b2 2841 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2842 return 0;
2843
b4aca010
BW
2844 ret = i915_gem_check_olr(obj->ring, seqno);
2845 if (ret)
2846 return ret;
2911a35b 2847
b52b89da 2848 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2849 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2850 if (!ret)
7b01e260
MK
2851 /* We use last_read_seqno because sync_to()
2852 * might have just caused seqno wrap under
2853 * the radar.
2854 */
ebc348b2 2855 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2856
e3a5a225 2857 return ret;
2911a35b
BW
2858}
2859
b5ffc9bc
CW
2860static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2861{
2862 u32 old_write_domain, old_read_domains;
2863
b5ffc9bc
CW
2864 /* Force a pagefault for domain tracking on next user access */
2865 i915_gem_release_mmap(obj);
2866
b97c3d9c
KP
2867 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2868 return;
2869
97c809fd
CW
2870 /* Wait for any direct GTT access to complete */
2871 mb();
2872
b5ffc9bc
CW
2873 old_read_domains = obj->base.read_domains;
2874 old_write_domain = obj->base.write_domain;
2875
2876 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2877 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2878
2879 trace_i915_gem_object_change_domain(obj,
2880 old_read_domains,
2881 old_write_domain);
2882}
2883
07fe0b12 2884int i915_vma_unbind(struct i915_vma *vma)
673a394b 2885{
07fe0b12 2886 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2887 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2888 int ret;
673a394b 2889
07fe0b12 2890 if (list_empty(&vma->vma_link))
673a394b
EA
2891 return 0;
2892
0ff501cb
DV
2893 if (!drm_mm_node_allocated(&vma->node)) {
2894 i915_gem_vma_destroy(vma);
0ff501cb
DV
2895 return 0;
2896 }
433544bd 2897
d7f46fc4 2898 if (vma->pin_count)
31d8d651 2899 return -EBUSY;
673a394b 2900
c4670ad0
CW
2901 BUG_ON(obj->pages == NULL);
2902
a8198eea 2903 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2904 if (ret)
a8198eea
CW
2905 return ret;
2906 /* Continue on if we fail due to EIO, the GPU is hung so we
2907 * should be safe and we need to cleanup or else we might
2908 * cause memory corruption through use-after-free.
2909 */
2910
8b1bc9b4
DV
2911 if (i915_is_ggtt(vma->vm)) {
2912 i915_gem_object_finish_gtt(obj);
5323fd04 2913
8b1bc9b4
DV
2914 /* release the fence reg _after_ flushing */
2915 ret = i915_gem_object_put_fence(obj);
2916 if (ret)
2917 return ret;
2918 }
96b47b65 2919
07fe0b12 2920 trace_i915_vma_unbind(vma);
db53a302 2921
6f65e29a
BW
2922 vma->unbind_vma(vma);
2923
74163907 2924 i915_gem_gtt_finish_object(obj);
7bddb01f 2925
64bf9303 2926 list_del_init(&vma->mm_list);
75e9e915 2927 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2928 if (i915_is_ggtt(vma->vm))
2929 obj->map_and_fenceable = true;
673a394b 2930
2f633156
BW
2931 drm_mm_remove_node(&vma->node);
2932 i915_gem_vma_destroy(vma);
2933
2934 /* Since the unbound list is global, only move to that list if
b93dab6e 2935 * no more VMAs exist. */
2f633156
BW
2936 if (list_empty(&obj->vma_list))
2937 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2938
70903c3b
CW
2939 /* And finally now the object is completely decoupled from this vma,
2940 * we can drop its hold on the backing storage and allow it to be
2941 * reaped by the shrinker.
2942 */
2943 i915_gem_object_unpin_pages(obj);
2944
88241785 2945 return 0;
54cf91dc
CW
2946}
2947
b2da9fe5 2948int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2949{
3e31c6c0 2950 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2951 struct intel_engine_cs *ring;
1ec14ad3 2952 int ret, i;
4df2faf4 2953
4df2faf4 2954 /* Flush everything onto the inactive list. */
b4519513 2955 for_each_ring(ring, dev_priv, i) {
691e6415 2956 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2957 if (ret)
2958 return ret;
2959
3e960501 2960 ret = intel_ring_idle(ring);
1ec14ad3
CW
2961 if (ret)
2962 return ret;
2963 }
4df2faf4 2964
8a1a49f9 2965 return 0;
4df2faf4
DV
2966}
2967
9ce079e4
CW
2968static void i965_write_fence_reg(struct drm_device *dev, int reg,
2969 struct drm_i915_gem_object *obj)
de151cf6 2970{
3e31c6c0 2971 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2972 int fence_reg;
2973 int fence_pitch_shift;
de151cf6 2974
56c844e5
ID
2975 if (INTEL_INFO(dev)->gen >= 6) {
2976 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2977 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2978 } else {
2979 fence_reg = FENCE_REG_965_0;
2980 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2981 }
2982
d18b9619
CW
2983 fence_reg += reg * 8;
2984
2985 /* To w/a incoherency with non-atomic 64-bit register updates,
2986 * we split the 64-bit update into two 32-bit writes. In order
2987 * for a partial fence not to be evaluated between writes, we
2988 * precede the update with write to turn off the fence register,
2989 * and only enable the fence as the last step.
2990 *
2991 * For extra levels of paranoia, we make sure each step lands
2992 * before applying the next step.
2993 */
2994 I915_WRITE(fence_reg, 0);
2995 POSTING_READ(fence_reg);
2996
9ce079e4 2997 if (obj) {
f343c5f6 2998 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2999 uint64_t val;
de151cf6 3000
f343c5f6 3001 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3002 0xfffff000) << 32;
f343c5f6 3003 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3004 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3005 if (obj->tiling_mode == I915_TILING_Y)
3006 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3007 val |= I965_FENCE_REG_VALID;
c6642782 3008
d18b9619
CW
3009 I915_WRITE(fence_reg + 4, val >> 32);
3010 POSTING_READ(fence_reg + 4);
3011
3012 I915_WRITE(fence_reg + 0, val);
3013 POSTING_READ(fence_reg);
3014 } else {
3015 I915_WRITE(fence_reg + 4, 0);
3016 POSTING_READ(fence_reg + 4);
3017 }
de151cf6
JB
3018}
3019
9ce079e4
CW
3020static void i915_write_fence_reg(struct drm_device *dev, int reg,
3021 struct drm_i915_gem_object *obj)
de151cf6 3022{
3e31c6c0 3023 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3024 u32 val;
de151cf6 3025
9ce079e4 3026 if (obj) {
f343c5f6 3027 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3028 int pitch_val;
3029 int tile_width;
c6642782 3030
f343c5f6 3031 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3032 (size & -size) != size ||
f343c5f6
BW
3033 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3034 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3035 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3036
9ce079e4
CW
3037 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3038 tile_width = 128;
3039 else
3040 tile_width = 512;
3041
3042 /* Note: pitch better be a power of two tile widths */
3043 pitch_val = obj->stride / tile_width;
3044 pitch_val = ffs(pitch_val) - 1;
3045
f343c5f6 3046 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3047 if (obj->tiling_mode == I915_TILING_Y)
3048 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3049 val |= I915_FENCE_SIZE_BITS(size);
3050 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3051 val |= I830_FENCE_REG_VALID;
3052 } else
3053 val = 0;
3054
3055 if (reg < 8)
3056 reg = FENCE_REG_830_0 + reg * 4;
3057 else
3058 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3059
3060 I915_WRITE(reg, val);
3061 POSTING_READ(reg);
de151cf6
JB
3062}
3063
9ce079e4
CW
3064static void i830_write_fence_reg(struct drm_device *dev, int reg,
3065 struct drm_i915_gem_object *obj)
de151cf6 3066{
3e31c6c0 3067 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3068 uint32_t val;
de151cf6 3069
9ce079e4 3070 if (obj) {
f343c5f6 3071 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3072 uint32_t pitch_val;
de151cf6 3073
f343c5f6 3074 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3075 (size & -size) != size ||
f343c5f6
BW
3076 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3077 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3078 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3079
9ce079e4
CW
3080 pitch_val = obj->stride / 128;
3081 pitch_val = ffs(pitch_val) - 1;
de151cf6 3082
f343c5f6 3083 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3084 if (obj->tiling_mode == I915_TILING_Y)
3085 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3086 val |= I830_FENCE_SIZE_BITS(size);
3087 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3088 val |= I830_FENCE_REG_VALID;
3089 } else
3090 val = 0;
c6642782 3091
9ce079e4
CW
3092 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3093 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3094}
3095
d0a57789
CW
3096inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3097{
3098 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3099}
3100
9ce079e4
CW
3101static void i915_gem_write_fence(struct drm_device *dev, int reg,
3102 struct drm_i915_gem_object *obj)
3103{
d0a57789
CW
3104 struct drm_i915_private *dev_priv = dev->dev_private;
3105
3106 /* Ensure that all CPU reads are completed before installing a fence
3107 * and all writes before removing the fence.
3108 */
3109 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3110 mb();
3111
94a335db
DV
3112 WARN(obj && (!obj->stride || !obj->tiling_mode),
3113 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3114 obj->stride, obj->tiling_mode);
3115
9ce079e4 3116 switch (INTEL_INFO(dev)->gen) {
5ab31333 3117 case 8:
9ce079e4 3118 case 7:
56c844e5 3119 case 6:
9ce079e4
CW
3120 case 5:
3121 case 4: i965_write_fence_reg(dev, reg, obj); break;
3122 case 3: i915_write_fence_reg(dev, reg, obj); break;
3123 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3124 default: BUG();
9ce079e4 3125 }
d0a57789
CW
3126
3127 /* And similarly be paranoid that no direct access to this region
3128 * is reordered to before the fence is installed.
3129 */
3130 if (i915_gem_object_needs_mb(obj))
3131 mb();
de151cf6
JB
3132}
3133
61050808
CW
3134static inline int fence_number(struct drm_i915_private *dev_priv,
3135 struct drm_i915_fence_reg *fence)
3136{
3137 return fence - dev_priv->fence_regs;
3138}
3139
3140static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3141 struct drm_i915_fence_reg *fence,
3142 bool enable)
3143{
2dc8aae0 3144 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3145 int reg = fence_number(dev_priv, fence);
3146
3147 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3148
3149 if (enable) {
46a0b638 3150 obj->fence_reg = reg;
61050808
CW
3151 fence->obj = obj;
3152 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3153 } else {
3154 obj->fence_reg = I915_FENCE_REG_NONE;
3155 fence->obj = NULL;
3156 list_del_init(&fence->lru_list);
3157 }
94a335db 3158 obj->fence_dirty = false;
61050808
CW
3159}
3160
d9e86c0e 3161static int
d0a57789 3162i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3163{
1c293ea3 3164 if (obj->last_fenced_seqno) {
86d5bc37 3165 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3166 if (ret)
3167 return ret;
d9e86c0e
CW
3168
3169 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3170 }
3171
86d5bc37 3172 obj->fenced_gpu_access = false;
d9e86c0e
CW
3173 return 0;
3174}
3175
3176int
3177i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3178{
61050808 3179 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3180 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3181 int ret;
3182
d0a57789 3183 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3184 if (ret)
3185 return ret;
3186
61050808
CW
3187 if (obj->fence_reg == I915_FENCE_REG_NONE)
3188 return 0;
d9e86c0e 3189
f9c513e9
CW
3190 fence = &dev_priv->fence_regs[obj->fence_reg];
3191
aff10b30
DV
3192 if (WARN_ON(fence->pin_count))
3193 return -EBUSY;
3194
61050808 3195 i915_gem_object_fence_lost(obj);
f9c513e9 3196 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3197
3198 return 0;
3199}
3200
3201static struct drm_i915_fence_reg *
a360bb1a 3202i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3203{
ae3db24a 3204 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3205 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3206 int i;
ae3db24a
DV
3207
3208 /* First try to find a free reg */
d9e86c0e 3209 avail = NULL;
ae3db24a
DV
3210 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3211 reg = &dev_priv->fence_regs[i];
3212 if (!reg->obj)
d9e86c0e 3213 return reg;
ae3db24a 3214
1690e1eb 3215 if (!reg->pin_count)
d9e86c0e 3216 avail = reg;
ae3db24a
DV
3217 }
3218
d9e86c0e 3219 if (avail == NULL)
5dce5b93 3220 goto deadlock;
ae3db24a
DV
3221
3222 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3223 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3224 if (reg->pin_count)
ae3db24a
DV
3225 continue;
3226
8fe301ad 3227 return reg;
ae3db24a
DV
3228 }
3229
5dce5b93
CW
3230deadlock:
3231 /* Wait for completion of pending flips which consume fences */
3232 if (intel_has_pending_fb_unpin(dev))
3233 return ERR_PTR(-EAGAIN);
3234
3235 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3236}
3237
de151cf6 3238/**
9a5a53b3 3239 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3240 * @obj: object to map through a fence reg
3241 *
3242 * When mapping objects through the GTT, userspace wants to be able to write
3243 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3244 * This function walks the fence regs looking for a free one for @obj,
3245 * stealing one if it can't find any.
3246 *
3247 * It then sets up the reg based on the object's properties: address, pitch
3248 * and tiling format.
9a5a53b3
CW
3249 *
3250 * For an untiled surface, this removes any existing fence.
de151cf6 3251 */
8c4b8c3f 3252int
06d98131 3253i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3254{
05394f39 3255 struct drm_device *dev = obj->base.dev;
79e53945 3256 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3257 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3258 struct drm_i915_fence_reg *reg;
ae3db24a 3259 int ret;
de151cf6 3260
14415745
CW
3261 /* Have we updated the tiling parameters upon the object and so
3262 * will need to serialise the write to the associated fence register?
3263 */
5d82e3e6 3264 if (obj->fence_dirty) {
d0a57789 3265 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3266 if (ret)
3267 return ret;
3268 }
9a5a53b3 3269
d9e86c0e 3270 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3271 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3272 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3273 if (!obj->fence_dirty) {
14415745
CW
3274 list_move_tail(&reg->lru_list,
3275 &dev_priv->mm.fence_list);
3276 return 0;
3277 }
3278 } else if (enable) {
3279 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3280 if (IS_ERR(reg))
3281 return PTR_ERR(reg);
d9e86c0e 3282
14415745
CW
3283 if (reg->obj) {
3284 struct drm_i915_gem_object *old = reg->obj;
3285
d0a57789 3286 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3287 if (ret)
3288 return ret;
3289
14415745 3290 i915_gem_object_fence_lost(old);
29c5a587 3291 }
14415745 3292 } else
a09ba7fa 3293 return 0;
a09ba7fa 3294
14415745 3295 i915_gem_object_update_fence(obj, reg, enable);
14415745 3296
9ce079e4 3297 return 0;
de151cf6
JB
3298}
3299
42d6ab48
CW
3300static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3301 struct drm_mm_node *gtt_space,
3302 unsigned long cache_level)
3303{
3304 struct drm_mm_node *other;
3305
3306 /* On non-LLC machines we have to be careful when putting differing
3307 * types of snoopable memory together to avoid the prefetcher
4239ca77 3308 * crossing memory domains and dying.
42d6ab48
CW
3309 */
3310 if (HAS_LLC(dev))
3311 return true;
3312
c6cfb325 3313 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3314 return true;
3315
3316 if (list_empty(&gtt_space->node_list))
3317 return true;
3318
3319 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3320 if (other->allocated && !other->hole_follows && other->color != cache_level)
3321 return false;
3322
3323 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3324 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3325 return false;
3326
3327 return true;
3328}
3329
3330static void i915_gem_verify_gtt(struct drm_device *dev)
3331{
3332#if WATCH_GTT
3333 struct drm_i915_private *dev_priv = dev->dev_private;
3334 struct drm_i915_gem_object *obj;
3335 int err = 0;
3336
35c20a60 3337 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3338 if (obj->gtt_space == NULL) {
3339 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3340 err++;
3341 continue;
3342 }
3343
3344 if (obj->cache_level != obj->gtt_space->color) {
3345 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3346 i915_gem_obj_ggtt_offset(obj),
3347 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3348 obj->cache_level,
3349 obj->gtt_space->color);
3350 err++;
3351 continue;
3352 }
3353
3354 if (!i915_gem_valid_gtt_space(dev,
3355 obj->gtt_space,
3356 obj->cache_level)) {
3357 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3358 i915_gem_obj_ggtt_offset(obj),
3359 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3360 obj->cache_level);
3361 err++;
3362 continue;
3363 }
3364 }
3365
3366 WARN_ON(err);
3367#endif
3368}
3369
673a394b
EA
3370/**
3371 * Finds free space in the GTT aperture and binds the object there.
3372 */
262de145 3373static struct i915_vma *
07fe0b12
BW
3374i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3375 struct i915_address_space *vm,
3376 unsigned alignment,
d23db88c 3377 uint64_t flags)
673a394b 3378{
05394f39 3379 struct drm_device *dev = obj->base.dev;
3e31c6c0 3380 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3381 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3382 unsigned long start =
3383 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3384 unsigned long end =
1ec9e26d 3385 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3386 struct i915_vma *vma;
07f73f69 3387 int ret;
673a394b 3388
e28f8711
CW
3389 fence_size = i915_gem_get_gtt_size(dev,
3390 obj->base.size,
3391 obj->tiling_mode);
3392 fence_alignment = i915_gem_get_gtt_alignment(dev,
3393 obj->base.size,
d865110c 3394 obj->tiling_mode, true);
e28f8711 3395 unfenced_alignment =
d865110c 3396 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3397 obj->base.size,
3398 obj->tiling_mode, false);
a00b10c3 3399
673a394b 3400 if (alignment == 0)
1ec9e26d 3401 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3402 unfenced_alignment;
1ec9e26d 3403 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3404 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3405 return ERR_PTR(-EINVAL);
673a394b
EA
3406 }
3407
1ec9e26d 3408 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3409
654fc607
CW
3410 /* If the object is bigger than the entire aperture, reject it early
3411 * before evicting everything in a vain attempt to find space.
3412 */
d23db88c
CW
3413 if (obj->base.size > end) {
3414 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3415 obj->base.size,
1ec9e26d 3416 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3417 end);
262de145 3418 return ERR_PTR(-E2BIG);
654fc607
CW
3419 }
3420
37e680a1 3421 ret = i915_gem_object_get_pages(obj);
6c085a72 3422 if (ret)
262de145 3423 return ERR_PTR(ret);
6c085a72 3424
fbdda6fb
CW
3425 i915_gem_object_pin_pages(obj);
3426
accfef2e 3427 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3428 if (IS_ERR(vma))
bc6bc15b 3429 goto err_unpin;
2f633156 3430
0a9ae0d7 3431search_free:
07fe0b12 3432 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3433 size, alignment,
d23db88c
CW
3434 obj->cache_level,
3435 start, end,
62347f9e
LK
3436 DRM_MM_SEARCH_DEFAULT,
3437 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3438 if (ret) {
f6cd1f15 3439 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3440 obj->cache_level,
3441 start, end,
3442 flags);
dc9dd7a2
CW
3443 if (ret == 0)
3444 goto search_free;
9731129c 3445
bc6bc15b 3446 goto err_free_vma;
673a394b 3447 }
2f633156 3448 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3449 obj->cache_level))) {
2f633156 3450 ret = -EINVAL;
bc6bc15b 3451 goto err_remove_node;
673a394b
EA
3452 }
3453
74163907 3454 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3455 if (ret)
bc6bc15b 3456 goto err_remove_node;
673a394b 3457
35c20a60 3458 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3459 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3460
4bd561b3
BW
3461 if (i915_is_ggtt(vm)) {
3462 bool mappable, fenceable;
a00b10c3 3463
49987099
DV
3464 fenceable = (vma->node.size == fence_size &&
3465 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3466
49987099
DV
3467 mappable = (vma->node.start + obj->base.size <=
3468 dev_priv->gtt.mappable_end);
a00b10c3 3469
5cacaac7 3470 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3471 }
75e9e915 3472
1ec9e26d 3473 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3474
1ec9e26d 3475 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3476 vma->bind_vma(vma, obj->cache_level,
3477 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3478
42d6ab48 3479 i915_gem_verify_gtt(dev);
262de145 3480 return vma;
2f633156 3481
bc6bc15b 3482err_remove_node:
6286ef9b 3483 drm_mm_remove_node(&vma->node);
bc6bc15b 3484err_free_vma:
2f633156 3485 i915_gem_vma_destroy(vma);
262de145 3486 vma = ERR_PTR(ret);
bc6bc15b 3487err_unpin:
2f633156 3488 i915_gem_object_unpin_pages(obj);
262de145 3489 return vma;
673a394b
EA
3490}
3491
000433b6 3492bool
2c22569b
CW
3493i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3494 bool force)
673a394b 3495{
673a394b
EA
3496 /* If we don't have a page list set up, then we're not pinned
3497 * to GPU, and we can ignore the cache flush because it'll happen
3498 * again at bind time.
3499 */
05394f39 3500 if (obj->pages == NULL)
000433b6 3501 return false;
673a394b 3502
769ce464
ID
3503 /*
3504 * Stolen memory is always coherent with the GPU as it is explicitly
3505 * marked as wc by the system, or the system is cache-coherent.
3506 */
3507 if (obj->stolen)
000433b6 3508 return false;
769ce464 3509
9c23f7fc
CW
3510 /* If the GPU is snooping the contents of the CPU cache,
3511 * we do not need to manually clear the CPU cache lines. However,
3512 * the caches are only snooped when the render cache is
3513 * flushed/invalidated. As we always have to emit invalidations
3514 * and flushes when moving into and out of the RENDER domain, correct
3515 * snooping behaviour occurs naturally as the result of our domain
3516 * tracking.
3517 */
2c22569b 3518 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3519 return false;
9c23f7fc 3520
1c5d22f7 3521 trace_i915_gem_object_clflush(obj);
9da3da66 3522 drm_clflush_sg(obj->pages);
000433b6
CW
3523
3524 return true;
e47c68e9
EA
3525}
3526
3527/** Flushes the GTT write domain for the object if it's dirty. */
3528static void
05394f39 3529i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3530{
1c5d22f7
CW
3531 uint32_t old_write_domain;
3532
05394f39 3533 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3534 return;
3535
63256ec5 3536 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3537 * to it immediately go to main memory as far as we know, so there's
3538 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3539 *
3540 * However, we do have to enforce the order so that all writes through
3541 * the GTT land before any writes to the device, such as updates to
3542 * the GATT itself.
e47c68e9 3543 */
63256ec5
CW
3544 wmb();
3545
05394f39
CW
3546 old_write_domain = obj->base.write_domain;
3547 obj->base.write_domain = 0;
1c5d22f7
CW
3548
3549 trace_i915_gem_object_change_domain(obj,
05394f39 3550 obj->base.read_domains,
1c5d22f7 3551 old_write_domain);
e47c68e9
EA
3552}
3553
3554/** Flushes the CPU write domain for the object if it's dirty. */
3555static void
2c22569b
CW
3556i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3557 bool force)
e47c68e9 3558{
1c5d22f7 3559 uint32_t old_write_domain;
e47c68e9 3560
05394f39 3561 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3562 return;
3563
000433b6
CW
3564 if (i915_gem_clflush_object(obj, force))
3565 i915_gem_chipset_flush(obj->base.dev);
3566
05394f39
CW
3567 old_write_domain = obj->base.write_domain;
3568 obj->base.write_domain = 0;
1c5d22f7
CW
3569
3570 trace_i915_gem_object_change_domain(obj,
05394f39 3571 obj->base.read_domains,
1c5d22f7 3572 old_write_domain);
e47c68e9
EA
3573}
3574
2ef7eeaa
EA
3575/**
3576 * Moves a single object to the GTT read, and possibly write domain.
3577 *
3578 * This function returns when the move is complete, including waiting on
3579 * flushes to occur.
3580 */
79e53945 3581int
2021746e 3582i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3583{
3e31c6c0 3584 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3585 uint32_t old_write_domain, old_read_domains;
e47c68e9 3586 int ret;
2ef7eeaa 3587
02354392 3588 /* Not valid to be called on unbound objects. */
9843877d 3589 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3590 return -EINVAL;
3591
8d7e3de1
CW
3592 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3593 return 0;
3594
0201f1ec 3595 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3596 if (ret)
3597 return ret;
3598
c8725f3d 3599 i915_gem_object_retire(obj);
2c22569b 3600 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3601
d0a57789
CW
3602 /* Serialise direct access to this object with the barriers for
3603 * coherent writes from the GPU, by effectively invalidating the
3604 * GTT domain upon first access.
3605 */
3606 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3607 mb();
3608
05394f39
CW
3609 old_write_domain = obj->base.write_domain;
3610 old_read_domains = obj->base.read_domains;
1c5d22f7 3611
e47c68e9
EA
3612 /* It should now be out of any other write domains, and we can update
3613 * the domain values for our changes.
3614 */
05394f39
CW
3615 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3616 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3617 if (write) {
05394f39
CW
3618 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3619 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3620 obj->dirty = 1;
2ef7eeaa
EA
3621 }
3622
1c5d22f7
CW
3623 trace_i915_gem_object_change_domain(obj,
3624 old_read_domains,
3625 old_write_domain);
3626
8325a09d 3627 /* And bump the LRU for this access */
ca191b13 3628 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3629 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3630 if (vma)
3631 list_move_tail(&vma->mm_list,
3632 &dev_priv->gtt.base.inactive_list);
3633
3634 }
8325a09d 3635
e47c68e9
EA
3636 return 0;
3637}
3638
e4ffd173
CW
3639int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3640 enum i915_cache_level cache_level)
3641{
7bddb01f 3642 struct drm_device *dev = obj->base.dev;
df6f783a 3643 struct i915_vma *vma, *next;
e4ffd173
CW
3644 int ret;
3645
3646 if (obj->cache_level == cache_level)
3647 return 0;
3648
d7f46fc4 3649 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3650 DRM_DEBUG("can not change the cache level of pinned objects\n");
3651 return -EBUSY;
3652 }
3653
df6f783a 3654 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3655 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3656 ret = i915_vma_unbind(vma);
3089c6f2
BW
3657 if (ret)
3658 return ret;
3089c6f2 3659 }
42d6ab48
CW
3660 }
3661
3089c6f2 3662 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3663 ret = i915_gem_object_finish_gpu(obj);
3664 if (ret)
3665 return ret;
3666
3667 i915_gem_object_finish_gtt(obj);
3668
3669 /* Before SandyBridge, you could not use tiling or fence
3670 * registers with snooped memory, so relinquish any fences
3671 * currently pointing to our region in the aperture.
3672 */
42d6ab48 3673 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3674 ret = i915_gem_object_put_fence(obj);
3675 if (ret)
3676 return ret;
3677 }
3678
6f65e29a 3679 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3680 if (drm_mm_node_allocated(&vma->node))
3681 vma->bind_vma(vma, cache_level,
3682 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3683 }
3684
2c22569b
CW
3685 list_for_each_entry(vma, &obj->vma_list, vma_link)
3686 vma->node.color = cache_level;
3687 obj->cache_level = cache_level;
3688
3689 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3690 u32 old_read_domains, old_write_domain;
3691
3692 /* If we're coming from LLC cached, then we haven't
3693 * actually been tracking whether the data is in the
3694 * CPU cache or not, since we only allow one bit set
3695 * in obj->write_domain and have been skipping the clflushes.
3696 * Just set it to the CPU cache for now.
3697 */
c8725f3d 3698 i915_gem_object_retire(obj);
e4ffd173 3699 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3700
3701 old_read_domains = obj->base.read_domains;
3702 old_write_domain = obj->base.write_domain;
3703
3704 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3705 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3706
3707 trace_i915_gem_object_change_domain(obj,
3708 old_read_domains,
3709 old_write_domain);
3710 }
3711
42d6ab48 3712 i915_gem_verify_gtt(dev);
e4ffd173
CW
3713 return 0;
3714}
3715
199adf40
BW
3716int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3717 struct drm_file *file)
e6994aee 3718{
199adf40 3719 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3720 struct drm_i915_gem_object *obj;
3721 int ret;
3722
3723 ret = i915_mutex_lock_interruptible(dev);
3724 if (ret)
3725 return ret;
3726
3727 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3728 if (&obj->base == NULL) {
3729 ret = -ENOENT;
3730 goto unlock;
3731 }
3732
651d794f
CW
3733 switch (obj->cache_level) {
3734 case I915_CACHE_LLC:
3735 case I915_CACHE_L3_LLC:
3736 args->caching = I915_CACHING_CACHED;
3737 break;
3738
4257d3ba
CW
3739 case I915_CACHE_WT:
3740 args->caching = I915_CACHING_DISPLAY;
3741 break;
3742
651d794f
CW
3743 default:
3744 args->caching = I915_CACHING_NONE;
3745 break;
3746 }
e6994aee
CW
3747
3748 drm_gem_object_unreference(&obj->base);
3749unlock:
3750 mutex_unlock(&dev->struct_mutex);
3751 return ret;
3752}
3753
199adf40
BW
3754int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3755 struct drm_file *file)
e6994aee 3756{
199adf40 3757 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3758 struct drm_i915_gem_object *obj;
3759 enum i915_cache_level level;
3760 int ret;
3761
199adf40
BW
3762 switch (args->caching) {
3763 case I915_CACHING_NONE:
e6994aee
CW
3764 level = I915_CACHE_NONE;
3765 break;
199adf40 3766 case I915_CACHING_CACHED:
e6994aee
CW
3767 level = I915_CACHE_LLC;
3768 break;
4257d3ba
CW
3769 case I915_CACHING_DISPLAY:
3770 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3771 break;
e6994aee
CW
3772 default:
3773 return -EINVAL;
3774 }
3775
3bc2913e
BW
3776 ret = i915_mutex_lock_interruptible(dev);
3777 if (ret)
3778 return ret;
3779
e6994aee
CW
3780 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3781 if (&obj->base == NULL) {
3782 ret = -ENOENT;
3783 goto unlock;
3784 }
3785
3786 ret = i915_gem_object_set_cache_level(obj, level);
3787
3788 drm_gem_object_unreference(&obj->base);
3789unlock:
3790 mutex_unlock(&dev->struct_mutex);
3791 return ret;
3792}
3793
cc98b413
CW
3794static bool is_pin_display(struct drm_i915_gem_object *obj)
3795{
19656430
OM
3796 struct i915_vma *vma;
3797
3798 if (list_empty(&obj->vma_list))
3799 return false;
3800
3801 vma = i915_gem_obj_to_ggtt(obj);
3802 if (!vma)
3803 return false;
3804
cc98b413
CW
3805 /* There are 3 sources that pin objects:
3806 * 1. The display engine (scanouts, sprites, cursors);
3807 * 2. Reservations for execbuffer;
3808 * 3. The user.
3809 *
3810 * We can ignore reservations as we hold the struct_mutex and
3811 * are only called outside of the reservation path. The user
3812 * can only increment pin_count once, and so if after
3813 * subtracting the potential reference by the user, any pin_count
3814 * remains, it must be due to another use by the display engine.
3815 */
19656430 3816 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3817}
3818
b9241ea3 3819/*
2da3b9b9
CW
3820 * Prepare buffer for display plane (scanout, cursors, etc).
3821 * Can be called from an uninterruptible phase (modesetting) and allows
3822 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3823 */
3824int
2da3b9b9
CW
3825i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3826 u32 alignment,
a4872ba6 3827 struct intel_engine_cs *pipelined)
b9241ea3 3828{
2da3b9b9 3829 u32 old_read_domains, old_write_domain;
19656430 3830 bool was_pin_display;
b9241ea3
ZW
3831 int ret;
3832
0be73284 3833 if (pipelined != obj->ring) {
2911a35b
BW
3834 ret = i915_gem_object_sync(obj, pipelined);
3835 if (ret)
b9241ea3
ZW
3836 return ret;
3837 }
3838
cc98b413
CW
3839 /* Mark the pin_display early so that we account for the
3840 * display coherency whilst setting up the cache domains.
3841 */
19656430 3842 was_pin_display = obj->pin_display;
cc98b413
CW
3843 obj->pin_display = true;
3844
a7ef0640
EA
3845 /* The display engine is not coherent with the LLC cache on gen6. As
3846 * a result, we make sure that the pinning that is about to occur is
3847 * done with uncached PTEs. This is lowest common denominator for all
3848 * chipsets.
3849 *
3850 * However for gen6+, we could do better by using the GFDT bit instead
3851 * of uncaching, which would allow us to flush all the LLC-cached data
3852 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3853 */
651d794f
CW
3854 ret = i915_gem_object_set_cache_level(obj,
3855 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3856 if (ret)
cc98b413 3857 goto err_unpin_display;
a7ef0640 3858
2da3b9b9
CW
3859 /* As the user may map the buffer once pinned in the display plane
3860 * (e.g. libkms for the bootup splash), we have to ensure that we
3861 * always use map_and_fenceable for all scanout buffers.
3862 */
1ec9e26d 3863 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3864 if (ret)
cc98b413 3865 goto err_unpin_display;
2da3b9b9 3866
2c22569b 3867 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3868
2da3b9b9 3869 old_write_domain = obj->base.write_domain;
05394f39 3870 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3871
3872 /* It should now be out of any other write domains, and we can update
3873 * the domain values for our changes.
3874 */
e5f1d962 3875 obj->base.write_domain = 0;
05394f39 3876 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3877
3878 trace_i915_gem_object_change_domain(obj,
3879 old_read_domains,
2da3b9b9 3880 old_write_domain);
b9241ea3
ZW
3881
3882 return 0;
cc98b413
CW
3883
3884err_unpin_display:
19656430
OM
3885 WARN_ON(was_pin_display != is_pin_display(obj));
3886 obj->pin_display = was_pin_display;
cc98b413
CW
3887 return ret;
3888}
3889
3890void
3891i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3892{
d7f46fc4 3893 i915_gem_object_ggtt_unpin(obj);
cc98b413 3894 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3895}
3896
85345517 3897int
a8198eea 3898i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3899{
88241785
CW
3900 int ret;
3901
a8198eea 3902 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3903 return 0;
3904
0201f1ec 3905 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3906 if (ret)
3907 return ret;
3908
a8198eea
CW
3909 /* Ensure that we invalidate the GPU's caches and TLBs. */
3910 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3911 return 0;
85345517
CW
3912}
3913
e47c68e9
EA
3914/**
3915 * Moves a single object to the CPU read, and possibly write domain.
3916 *
3917 * This function returns when the move is complete, including waiting on
3918 * flushes to occur.
3919 */
dabdfe02 3920int
919926ae 3921i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3922{
1c5d22f7 3923 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3924 int ret;
3925
8d7e3de1
CW
3926 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3927 return 0;
3928
0201f1ec 3929 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3930 if (ret)
3931 return ret;
3932
c8725f3d 3933 i915_gem_object_retire(obj);
e47c68e9 3934 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3935
05394f39
CW
3936 old_write_domain = obj->base.write_domain;
3937 old_read_domains = obj->base.read_domains;
1c5d22f7 3938
e47c68e9 3939 /* Flush the CPU cache if it's still invalid. */
05394f39 3940 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3941 i915_gem_clflush_object(obj, false);
2ef7eeaa 3942
05394f39 3943 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3944 }
3945
3946 /* It should now be out of any other write domains, and we can update
3947 * the domain values for our changes.
3948 */
05394f39 3949 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3950
3951 /* If we're writing through the CPU, then the GPU read domains will
3952 * need to be invalidated at next use.
3953 */
3954 if (write) {
05394f39
CW
3955 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3956 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3957 }
2ef7eeaa 3958
1c5d22f7
CW
3959 trace_i915_gem_object_change_domain(obj,
3960 old_read_domains,
3961 old_write_domain);
3962
2ef7eeaa
EA
3963 return 0;
3964}
3965
673a394b
EA
3966/* Throttle our rendering by waiting until the ring has completed our requests
3967 * emitted over 20 msec ago.
3968 *
b962442e
EA
3969 * Note that if we were to use the current jiffies each time around the loop,
3970 * we wouldn't escape the function with any frames outstanding if the time to
3971 * render a frame was over 20ms.
3972 *
673a394b
EA
3973 * This should get us reasonable parallelism between CPU and GPU but also
3974 * relatively low latency when blocking on a particular request to finish.
3975 */
40a5f0de 3976static int
f787a5f5 3977i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3978{
f787a5f5
CW
3979 struct drm_i915_private *dev_priv = dev->dev_private;
3980 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3981 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 3982 struct drm_i915_gem_request *request;
a4872ba6 3983 struct intel_engine_cs *ring = NULL;
f69061be 3984 unsigned reset_counter;
f787a5f5
CW
3985 u32 seqno = 0;
3986 int ret;
93533c29 3987
308887aa
DV
3988 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3989 if (ret)
3990 return ret;
3991
3992 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3993 if (ret)
3994 return ret;
e110e8d6 3995
1c25595f 3996 spin_lock(&file_priv->mm.lock);
f787a5f5 3997 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3998 if (time_after_eq(request->emitted_jiffies, recent_enough))
3999 break;
40a5f0de 4000
f787a5f5
CW
4001 ring = request->ring;
4002 seqno = request->seqno;
b962442e 4003 }
f69061be 4004 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 4005 spin_unlock(&file_priv->mm.lock);
40a5f0de 4006
f787a5f5
CW
4007 if (seqno == 0)
4008 return 0;
2bc43b5c 4009
b29c19b6 4010 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
4011 if (ret == 0)
4012 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4013
4014 return ret;
4015}
4016
d23db88c
CW
4017static bool
4018i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4019{
4020 struct drm_i915_gem_object *obj = vma->obj;
4021
4022 if (alignment &&
4023 vma->node.start & (alignment - 1))
4024 return true;
4025
4026 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4027 return true;
4028
4029 if (flags & PIN_OFFSET_BIAS &&
4030 vma->node.start < (flags & PIN_OFFSET_MASK))
4031 return true;
4032
4033 return false;
4034}
4035
673a394b 4036int
05394f39 4037i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4038 struct i915_address_space *vm,
05394f39 4039 uint32_t alignment,
d23db88c 4040 uint64_t flags)
673a394b 4041{
6e7186af 4042 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4043 struct i915_vma *vma;
673a394b
EA
4044 int ret;
4045
6e7186af
BW
4046 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4047 return -ENODEV;
4048
bf3d149b 4049 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4050 return -EINVAL;
07fe0b12
BW
4051
4052 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4053 if (vma) {
d7f46fc4
BW
4054 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4055 return -EBUSY;
4056
d23db88c 4057 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4058 WARN(vma->pin_count,
ae7d49d8 4059 "bo is already pinned with incorrect alignment:"
f343c5f6 4060 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4061 " obj->map_and_fenceable=%d\n",
07fe0b12 4062 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4063 !!(flags & PIN_MAPPABLE),
05394f39 4064 obj->map_and_fenceable);
07fe0b12 4065 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4066 if (ret)
4067 return ret;
8ea99c92
DV
4068
4069 vma = NULL;
ac0c6b5a
CW
4070 }
4071 }
4072
8ea99c92 4073 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4074 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4075 if (IS_ERR(vma))
4076 return PTR_ERR(vma);
22c344e9 4077 }
76446cac 4078
8ea99c92
DV
4079 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4080 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4081
8ea99c92 4082 vma->pin_count++;
1ec9e26d
DV
4083 if (flags & PIN_MAPPABLE)
4084 obj->pin_mappable |= true;
673a394b
EA
4085
4086 return 0;
4087}
4088
4089void
d7f46fc4 4090i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4091{
d7f46fc4 4092 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4093
d7f46fc4
BW
4094 BUG_ON(!vma);
4095 BUG_ON(vma->pin_count == 0);
4096 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4097
4098 if (--vma->pin_count == 0)
6299f992 4099 obj->pin_mappable = false;
673a394b
EA
4100}
4101
d8ffa60b
DV
4102bool
4103i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4104{
4105 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4106 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4107 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4108
4109 WARN_ON(!ggtt_vma ||
4110 dev_priv->fence_regs[obj->fence_reg].pin_count >
4111 ggtt_vma->pin_count);
4112 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4113 return true;
4114 } else
4115 return false;
4116}
4117
4118void
4119i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4120{
4121 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4122 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4123 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4124 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4125 }
4126}
4127
673a394b
EA
4128int
4129i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4130 struct drm_file *file)
673a394b
EA
4131{
4132 struct drm_i915_gem_pin *args = data;
05394f39 4133 struct drm_i915_gem_object *obj;
673a394b
EA
4134 int ret;
4135
02f6bccc
DV
4136 if (INTEL_INFO(dev)->gen >= 6)
4137 return -ENODEV;
4138
1d7cfea1
CW
4139 ret = i915_mutex_lock_interruptible(dev);
4140 if (ret)
4141 return ret;
673a394b 4142
05394f39 4143 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4144 if (&obj->base == NULL) {
1d7cfea1
CW
4145 ret = -ENOENT;
4146 goto unlock;
673a394b 4147 }
673a394b 4148
05394f39 4149 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4150 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4151 ret = -EFAULT;
1d7cfea1 4152 goto out;
3ef94daa
CW
4153 }
4154
05394f39 4155 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4156 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4157 args->handle);
1d7cfea1
CW
4158 ret = -EINVAL;
4159 goto out;
79e53945
JB
4160 }
4161
aa5f8021
DV
4162 if (obj->user_pin_count == ULONG_MAX) {
4163 ret = -EBUSY;
4164 goto out;
4165 }
4166
93be8788 4167 if (obj->user_pin_count == 0) {
1ec9e26d 4168 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4169 if (ret)
4170 goto out;
673a394b
EA
4171 }
4172
93be8788
CW
4173 obj->user_pin_count++;
4174 obj->pin_filp = file;
4175
f343c5f6 4176 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4177out:
05394f39 4178 drm_gem_object_unreference(&obj->base);
1d7cfea1 4179unlock:
673a394b 4180 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4181 return ret;
673a394b
EA
4182}
4183
4184int
4185i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4186 struct drm_file *file)
673a394b
EA
4187{
4188 struct drm_i915_gem_pin *args = data;
05394f39 4189 struct drm_i915_gem_object *obj;
76c1dec1 4190 int ret;
673a394b 4191
1d7cfea1
CW
4192 ret = i915_mutex_lock_interruptible(dev);
4193 if (ret)
4194 return ret;
673a394b 4195
05394f39 4196 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4197 if (&obj->base == NULL) {
1d7cfea1
CW
4198 ret = -ENOENT;
4199 goto unlock;
673a394b 4200 }
76c1dec1 4201
05394f39 4202 if (obj->pin_filp != file) {
bd9b6a4e 4203 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4204 args->handle);
1d7cfea1
CW
4205 ret = -EINVAL;
4206 goto out;
79e53945 4207 }
05394f39
CW
4208 obj->user_pin_count--;
4209 if (obj->user_pin_count == 0) {
4210 obj->pin_filp = NULL;
d7f46fc4 4211 i915_gem_object_ggtt_unpin(obj);
79e53945 4212 }
673a394b 4213
1d7cfea1 4214out:
05394f39 4215 drm_gem_object_unreference(&obj->base);
1d7cfea1 4216unlock:
673a394b 4217 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4218 return ret;
673a394b
EA
4219}
4220
4221int
4222i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4223 struct drm_file *file)
673a394b
EA
4224{
4225 struct drm_i915_gem_busy *args = data;
05394f39 4226 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4227 int ret;
4228
76c1dec1 4229 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4230 if (ret)
76c1dec1 4231 return ret;
673a394b 4232
05394f39 4233 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4234 if (&obj->base == NULL) {
1d7cfea1
CW
4235 ret = -ENOENT;
4236 goto unlock;
673a394b 4237 }
d1b851fc 4238
0be555b6
CW
4239 /* Count all active objects as busy, even if they are currently not used
4240 * by the gpu. Users of this interface expect objects to eventually
4241 * become non-busy without any further actions, therefore emit any
4242 * necessary flushes here.
c4de0a5d 4243 */
30dfebf3 4244 ret = i915_gem_object_flush_active(obj);
0be555b6 4245
30dfebf3 4246 args->busy = obj->active;
e9808edd
CW
4247 if (obj->ring) {
4248 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4249 args->busy |= intel_ring_flag(obj->ring) << 16;
4250 }
673a394b 4251
05394f39 4252 drm_gem_object_unreference(&obj->base);
1d7cfea1 4253unlock:
673a394b 4254 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4255 return ret;
673a394b
EA
4256}
4257
4258int
4259i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4260 struct drm_file *file_priv)
4261{
0206e353 4262 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4263}
4264
3ef94daa
CW
4265int
4266i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4267 struct drm_file *file_priv)
4268{
4269 struct drm_i915_gem_madvise *args = data;
05394f39 4270 struct drm_i915_gem_object *obj;
76c1dec1 4271 int ret;
3ef94daa
CW
4272
4273 switch (args->madv) {
4274 case I915_MADV_DONTNEED:
4275 case I915_MADV_WILLNEED:
4276 break;
4277 default:
4278 return -EINVAL;
4279 }
4280
1d7cfea1
CW
4281 ret = i915_mutex_lock_interruptible(dev);
4282 if (ret)
4283 return ret;
4284
05394f39 4285 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4286 if (&obj->base == NULL) {
1d7cfea1
CW
4287 ret = -ENOENT;
4288 goto unlock;
3ef94daa 4289 }
3ef94daa 4290
d7f46fc4 4291 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4292 ret = -EINVAL;
4293 goto out;
3ef94daa
CW
4294 }
4295
05394f39
CW
4296 if (obj->madv != __I915_MADV_PURGED)
4297 obj->madv = args->madv;
3ef94daa 4298
6c085a72
CW
4299 /* if the object is no longer attached, discard its backing storage */
4300 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4301 i915_gem_object_truncate(obj);
4302
05394f39 4303 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4304
1d7cfea1 4305out:
05394f39 4306 drm_gem_object_unreference(&obj->base);
1d7cfea1 4307unlock:
3ef94daa 4308 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4309 return ret;
3ef94daa
CW
4310}
4311
37e680a1
CW
4312void i915_gem_object_init(struct drm_i915_gem_object *obj,
4313 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4314{
35c20a60 4315 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4316 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4317 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4318 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4319
37e680a1
CW
4320 obj->ops = ops;
4321
0327d6ba
CW
4322 obj->fence_reg = I915_FENCE_REG_NONE;
4323 obj->madv = I915_MADV_WILLNEED;
4324 /* Avoid an unnecessary call to unbind on the first bind. */
4325 obj->map_and_fenceable = true;
4326
4327 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4328}
4329
37e680a1
CW
4330static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4331 .get_pages = i915_gem_object_get_pages_gtt,
4332 .put_pages = i915_gem_object_put_pages_gtt,
4333};
4334
05394f39
CW
4335struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4336 size_t size)
ac52bc56 4337{
c397b908 4338 struct drm_i915_gem_object *obj;
5949eac4 4339 struct address_space *mapping;
1a240d4d 4340 gfp_t mask;
ac52bc56 4341
42dcedd4 4342 obj = i915_gem_object_alloc(dev);
c397b908
DV
4343 if (obj == NULL)
4344 return NULL;
673a394b 4345
c397b908 4346 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4347 i915_gem_object_free(obj);
c397b908
DV
4348 return NULL;
4349 }
673a394b 4350
bed1ea95
CW
4351 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4352 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4353 /* 965gm cannot relocate objects above 4GiB. */
4354 mask &= ~__GFP_HIGHMEM;
4355 mask |= __GFP_DMA32;
4356 }
4357
496ad9aa 4358 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4359 mapping_set_gfp_mask(mapping, mask);
5949eac4 4360
37e680a1 4361 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4362
c397b908
DV
4363 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4364 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4365
3d29b842
ED
4366 if (HAS_LLC(dev)) {
4367 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4368 * cache) for about a 10% performance improvement
4369 * compared to uncached. Graphics requests other than
4370 * display scanout are coherent with the CPU in
4371 * accessing this cache. This means in this mode we
4372 * don't need to clflush on the CPU side, and on the
4373 * GPU side we only need to flush internal caches to
4374 * get data visible to the CPU.
4375 *
4376 * However, we maintain the display planes as UC, and so
4377 * need to rebind when first used as such.
4378 */
4379 obj->cache_level = I915_CACHE_LLC;
4380 } else
4381 obj->cache_level = I915_CACHE_NONE;
4382
d861e338
DV
4383 trace_i915_gem_object_create(obj);
4384
05394f39 4385 return obj;
c397b908
DV
4386}
4387
340fbd8c
CW
4388static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4389{
4390 /* If we are the last user of the backing storage (be it shmemfs
4391 * pages or stolen etc), we know that the pages are going to be
4392 * immediately released. In this case, we can then skip copying
4393 * back the contents from the GPU.
4394 */
4395
4396 if (obj->madv != I915_MADV_WILLNEED)
4397 return false;
4398
4399 if (obj->base.filp == NULL)
4400 return true;
4401
4402 /* At first glance, this looks racy, but then again so would be
4403 * userspace racing mmap against close. However, the first external
4404 * reference to the filp can only be obtained through the
4405 * i915_gem_mmap_ioctl() which safeguards us against the user
4406 * acquiring such a reference whilst we are in the middle of
4407 * freeing the object.
4408 */
4409 return atomic_long_read(&obj->base.filp->f_count) == 1;
4410}
4411
1488fc08 4412void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4413{
1488fc08 4414 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4415 struct drm_device *dev = obj->base.dev;
3e31c6c0 4416 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4417 struct i915_vma *vma, *next;
673a394b 4418
f65c9168
PZ
4419 intel_runtime_pm_get(dev_priv);
4420
26e12f89
CW
4421 trace_i915_gem_object_destroy(obj);
4422
07fe0b12 4423 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4424 int ret;
4425
4426 vma->pin_count = 0;
4427 ret = i915_vma_unbind(vma);
07fe0b12
BW
4428 if (WARN_ON(ret == -ERESTARTSYS)) {
4429 bool was_interruptible;
1488fc08 4430
07fe0b12
BW
4431 was_interruptible = dev_priv->mm.interruptible;
4432 dev_priv->mm.interruptible = false;
1488fc08 4433
07fe0b12 4434 WARN_ON(i915_vma_unbind(vma));
1488fc08 4435
07fe0b12
BW
4436 dev_priv->mm.interruptible = was_interruptible;
4437 }
1488fc08
CW
4438 }
4439
00731155
CW
4440 i915_gem_object_detach_phys(obj);
4441
1d64ae71
BW
4442 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4443 * before progressing. */
4444 if (obj->stolen)
4445 i915_gem_object_unpin_pages(obj);
4446
401c29f6
BW
4447 if (WARN_ON(obj->pages_pin_count))
4448 obj->pages_pin_count = 0;
340fbd8c 4449 if (discard_backing_storage(obj))
5537252b 4450 obj->madv = I915_MADV_DONTNEED;
37e680a1 4451 i915_gem_object_put_pages(obj);
d8cb5086 4452 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4453 i915_gem_object_release_stolen(obj);
de151cf6 4454
9da3da66
CW
4455 BUG_ON(obj->pages);
4456
2f745ad3
CW
4457 if (obj->base.import_attach)
4458 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4459
5cc9ed4b
CW
4460 if (obj->ops->release)
4461 obj->ops->release(obj);
4462
05394f39
CW
4463 drm_gem_object_release(&obj->base);
4464 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4465
05394f39 4466 kfree(obj->bit_17);
42dcedd4 4467 i915_gem_object_free(obj);
f65c9168
PZ
4468
4469 intel_runtime_pm_put(dev_priv);
673a394b
EA
4470}
4471
e656a6cb 4472struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4473 struct i915_address_space *vm)
e656a6cb
DV
4474{
4475 struct i915_vma *vma;
4476 list_for_each_entry(vma, &obj->vma_list, vma_link)
4477 if (vma->vm == vm)
4478 return vma;
4479
4480 return NULL;
4481}
4482
2f633156
BW
4483void i915_gem_vma_destroy(struct i915_vma *vma)
4484{
4485 WARN_ON(vma->node.allocated);
aaa05667
CW
4486
4487 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4488 if (!list_empty(&vma->exec_list))
4489 return;
4490
8b9c2b94 4491 list_del(&vma->vma_link);
b93dab6e 4492
2f633156
BW
4493 kfree(vma);
4494}
4495
e3efda49
CW
4496static void
4497i915_gem_stop_ringbuffers(struct drm_device *dev)
4498{
4499 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4500 struct intel_engine_cs *ring;
e3efda49
CW
4501 int i;
4502
4503 for_each_ring(ring, dev_priv, i)
4504 intel_stop_ring_buffer(ring);
4505}
4506
29105ccc 4507int
45c5f202 4508i915_gem_suspend(struct drm_device *dev)
29105ccc 4509{
3e31c6c0 4510 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4511 int ret = 0;
28dfe52a 4512
45c5f202 4513 mutex_lock(&dev->struct_mutex);
f7403347 4514 if (dev_priv->ums.mm_suspended)
45c5f202 4515 goto err;
28dfe52a 4516
b2da9fe5 4517 ret = i915_gpu_idle(dev);
f7403347 4518 if (ret)
45c5f202 4519 goto err;
f7403347 4520
b2da9fe5 4521 i915_gem_retire_requests(dev);
673a394b 4522
29105ccc 4523 /* Under UMS, be paranoid and evict. */
a39d7efc 4524 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4525 i915_gem_evict_everything(dev);
29105ccc 4526
29105ccc 4527 i915_kernel_lost_context(dev);
e3efda49 4528 i915_gem_stop_ringbuffers(dev);
29105ccc 4529
45c5f202
CW
4530 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4531 * We need to replace this with a semaphore, or something.
4532 * And not confound ums.mm_suspended!
4533 */
4534 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4535 DRIVER_MODESET);
4536 mutex_unlock(&dev->struct_mutex);
4537
4538 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4539 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4540 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4541
673a394b 4542 return 0;
45c5f202
CW
4543
4544err:
4545 mutex_unlock(&dev->struct_mutex);
4546 return ret;
673a394b
EA
4547}
4548
a4872ba6 4549int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4550{
c3787e2e 4551 struct drm_device *dev = ring->dev;
3e31c6c0 4552 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4553 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4554 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4555 int i, ret;
b9524a1e 4556
040d2baa 4557 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4558 return 0;
b9524a1e 4559
c3787e2e
BW
4560 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4561 if (ret)
4562 return ret;
b9524a1e 4563
c3787e2e
BW
4564 /*
4565 * Note: We do not worry about the concurrent register cacheline hang
4566 * here because no other code should access these registers other than
4567 * at initialization time.
4568 */
b9524a1e 4569 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4570 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4571 intel_ring_emit(ring, reg_base + i);
4572 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4573 }
4574
c3787e2e 4575 intel_ring_advance(ring);
b9524a1e 4576
c3787e2e 4577 return ret;
b9524a1e
BW
4578}
4579
f691e2f4
DV
4580void i915_gem_init_swizzling(struct drm_device *dev)
4581{
3e31c6c0 4582 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4583
11782b02 4584 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4585 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4586 return;
4587
4588 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4589 DISP_TILE_SURFACE_SWIZZLING);
4590
11782b02
DV
4591 if (IS_GEN5(dev))
4592 return;
4593
f691e2f4
DV
4594 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4595 if (IS_GEN6(dev))
6b26c86d 4596 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4597 else if (IS_GEN7(dev))
6b26c86d 4598 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4599 else if (IS_GEN8(dev))
4600 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4601 else
4602 BUG();
f691e2f4 4603}
e21af88d 4604
67b1b571
CW
4605static bool
4606intel_enable_blt(struct drm_device *dev)
4607{
4608 if (!HAS_BLT(dev))
4609 return false;
4610
4611 /* The blitter was dysfunctional on early prototypes */
4612 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4613 DRM_INFO("BLT not supported on this pre-production hardware;"
4614 " graphics performance will be degraded.\n");
4615 return false;
4616 }
4617
4618 return true;
4619}
4620
4fc7c971 4621static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4622{
4fc7c971 4623 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4624 int ret;
68f95ba9 4625
5c1143bb 4626 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4627 if (ret)
b6913e4b 4628 return ret;
68f95ba9
CW
4629
4630 if (HAS_BSD(dev)) {
5c1143bb 4631 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4632 if (ret)
4633 goto cleanup_render_ring;
d1b851fc 4634 }
68f95ba9 4635
67b1b571 4636 if (intel_enable_blt(dev)) {
549f7365
CW
4637 ret = intel_init_blt_ring_buffer(dev);
4638 if (ret)
4639 goto cleanup_bsd_ring;
4640 }
4641
9a8a2213
BW
4642 if (HAS_VEBOX(dev)) {
4643 ret = intel_init_vebox_ring_buffer(dev);
4644 if (ret)
4645 goto cleanup_blt_ring;
4646 }
4647
845f74a7
ZY
4648 if (HAS_BSD2(dev)) {
4649 ret = intel_init_bsd2_ring_buffer(dev);
4650 if (ret)
4651 goto cleanup_vebox_ring;
4652 }
9a8a2213 4653
99433931 4654 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4655 if (ret)
845f74a7 4656 goto cleanup_bsd2_ring;
4fc7c971
BW
4657
4658 return 0;
4659
845f74a7
ZY
4660cleanup_bsd2_ring:
4661 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4662cleanup_vebox_ring:
4663 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4664cleanup_blt_ring:
4665 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4666cleanup_bsd_ring:
4667 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4668cleanup_render_ring:
4669 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4670
4671 return ret;
4672}
4673
4674int
4675i915_gem_init_hw(struct drm_device *dev)
4676{
3e31c6c0 4677 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4678 int ret, i;
4fc7c971
BW
4679
4680 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4681 return -EIO;
4682
59124506 4683 if (dev_priv->ellc_size)
05e21cc4 4684 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4685
0bf21347
VS
4686 if (IS_HASWELL(dev))
4687 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4688 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4689
88a2b2a3 4690 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4691 if (IS_IVYBRIDGE(dev)) {
4692 u32 temp = I915_READ(GEN7_MSG_CTL);
4693 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4694 I915_WRITE(GEN7_MSG_CTL, temp);
4695 } else if (INTEL_INFO(dev)->gen >= 7) {
4696 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4697 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4698 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4699 }
88a2b2a3
BW
4700 }
4701
4fc7c971
BW
4702 i915_gem_init_swizzling(dev);
4703
4704 ret = i915_gem_init_rings(dev);
99433931
MK
4705 if (ret)
4706 return ret;
4707
c3787e2e
BW
4708 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4709 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4710
254f965c 4711 /*
2fa48d8d
BW
4712 * XXX: Contexts should only be initialized once. Doing a switch to the
4713 * default context switch however is something we'd like to do after
4714 * reset or thaw (the latter may not actually be necessary for HW, but
4715 * goes with our code better). Context switching requires rings (for
4716 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4717 */
2fa48d8d 4718 ret = i915_gem_context_enable(dev_priv);
60990320 4719 if (ret && ret != -EIO) {
2fa48d8d 4720 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4721 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4722 }
e21af88d 4723
2fa48d8d 4724 return ret;
8187a2b7
ZN
4725}
4726
1070a42b
CW
4727int i915_gem_init(struct drm_device *dev)
4728{
4729 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4730 int ret;
4731
1070a42b 4732 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4733
4734 if (IS_VALLEYVIEW(dev)) {
4735 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4736 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4737 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4738 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4739 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4740 }
4741
5cc9ed4b 4742 i915_gem_init_userptr(dev);
d7e5008f 4743 i915_gem_init_global_gtt(dev);
d62b4892 4744
2fa48d8d 4745 ret = i915_gem_context_init(dev);
e3848694
MK
4746 if (ret) {
4747 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4748 return ret;
e3848694 4749 }
2fa48d8d 4750
1070a42b 4751 ret = i915_gem_init_hw(dev);
60990320
CW
4752 if (ret == -EIO) {
4753 /* Allow ring initialisation to fail by marking the GPU as
4754 * wedged. But we only want to do this where the GPU is angry,
4755 * for all other failure, such as an allocation failure, bail.
4756 */
4757 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4758 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4759 ret = 0;
1070a42b 4760 }
60990320 4761 mutex_unlock(&dev->struct_mutex);
1070a42b 4762
53ca26ca
DV
4763 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4764 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4765 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4766 return ret;
1070a42b
CW
4767}
4768
8187a2b7
ZN
4769void
4770i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4771{
3e31c6c0 4772 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4773 struct intel_engine_cs *ring;
1ec14ad3 4774 int i;
8187a2b7 4775
b4519513
CW
4776 for_each_ring(ring, dev_priv, i)
4777 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4778}
4779
673a394b
EA
4780int
4781i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4782 struct drm_file *file_priv)
4783{
db1b76ca 4784 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4785 int ret;
673a394b 4786
79e53945
JB
4787 if (drm_core_check_feature(dev, DRIVER_MODESET))
4788 return 0;
4789
1f83fee0 4790 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4791 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4792 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4793 }
4794
673a394b 4795 mutex_lock(&dev->struct_mutex);
db1b76ca 4796 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4797
f691e2f4 4798 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4799 if (ret != 0) {
4800 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4801 return ret;
d816f6ac 4802 }
9bb2d6f9 4803
5cef07e1 4804 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4805
bb0f1b5c 4806 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4807 if (ret)
4808 goto cleanup_ringbuffer;
e090c53b 4809 mutex_unlock(&dev->struct_mutex);
dbb19d30 4810
673a394b 4811 return 0;
5f35308b
CW
4812
4813cleanup_ringbuffer:
5f35308b 4814 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4815 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4816 mutex_unlock(&dev->struct_mutex);
4817
4818 return ret;
673a394b
EA
4819}
4820
4821int
4822i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4823 struct drm_file *file_priv)
4824{
79e53945
JB
4825 if (drm_core_check_feature(dev, DRIVER_MODESET))
4826 return 0;
4827
e090c53b 4828 mutex_lock(&dev->struct_mutex);
dbb19d30 4829 drm_irq_uninstall(dev);
e090c53b 4830 mutex_unlock(&dev->struct_mutex);
db1b76ca 4831
45c5f202 4832 return i915_gem_suspend(dev);
673a394b
EA
4833}
4834
4835void
4836i915_gem_lastclose(struct drm_device *dev)
4837{
4838 int ret;
673a394b 4839
e806b495
EA
4840 if (drm_core_check_feature(dev, DRIVER_MODESET))
4841 return;
4842
45c5f202 4843 ret = i915_gem_suspend(dev);
6dbe2772
KP
4844 if (ret)
4845 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4846}
4847
64193406 4848static void
a4872ba6 4849init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4850{
4851 INIT_LIST_HEAD(&ring->active_list);
4852 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4853}
4854
7e0d96bc
BW
4855void i915_init_vm(struct drm_i915_private *dev_priv,
4856 struct i915_address_space *vm)
fc8c067e 4857{
7e0d96bc
BW
4858 if (!i915_is_ggtt(vm))
4859 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4860 vm->dev = dev_priv->dev;
4861 INIT_LIST_HEAD(&vm->active_list);
4862 INIT_LIST_HEAD(&vm->inactive_list);
4863 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4864 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4865}
4866
673a394b
EA
4867void
4868i915_gem_load(struct drm_device *dev)
4869{
3e31c6c0 4870 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4871 int i;
4872
4873 dev_priv->slab =
4874 kmem_cache_create("i915_gem_object",
4875 sizeof(struct drm_i915_gem_object), 0,
4876 SLAB_HWCACHE_ALIGN,
4877 NULL);
673a394b 4878
fc8c067e
BW
4879 INIT_LIST_HEAD(&dev_priv->vm_list);
4880 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4881
a33afea5 4882 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4883 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4884 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4885 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4886 for (i = 0; i < I915_NUM_RINGS; i++)
4887 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4888 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4889 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4890 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4891 i915_gem_retire_work_handler);
b29c19b6
CW
4892 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4893 i915_gem_idle_work_handler);
1f83fee0 4894 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4895
94400120 4896 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4897 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4898 I915_WRITE(MI_ARB_STATE,
4899 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4900 }
4901
72bfa19c
CW
4902 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4903
de151cf6 4904 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4905 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4906 dev_priv->fence_reg_start = 3;
de151cf6 4907
42b5aeab
VS
4908 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4909 dev_priv->num_fence_regs = 32;
4910 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4911 dev_priv->num_fence_regs = 16;
4912 else
4913 dev_priv->num_fence_regs = 8;
4914
b5aa8a0f 4915 /* Initialize fence registers to zero */
19b2dbde
CW
4916 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4917 i915_gem_restore_fences(dev);
10ed13e4 4918
673a394b 4919 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4920 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4921
ce453d81
CW
4922 dev_priv->mm.interruptible = true;
4923
ceabbba5
CW
4924 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4925 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4926 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4927 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4928
4929 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4930 register_oom_notifier(&dev_priv->mm.oom_notifier);
673a394b 4931}
71acb5eb 4932
f787a5f5 4933void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4934{
f787a5f5 4935 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4936
b29c19b6
CW
4937 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4938
b962442e
EA
4939 /* Clean up our request list when the client is going away, so that
4940 * later retire_requests won't dereference our soon-to-be-gone
4941 * file_priv.
4942 */
1c25595f 4943 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4944 while (!list_empty(&file_priv->mm.request_list)) {
4945 struct drm_i915_gem_request *request;
4946
4947 request = list_first_entry(&file_priv->mm.request_list,
4948 struct drm_i915_gem_request,
4949 client_list);
4950 list_del(&request->client_list);
4951 request->file_priv = NULL;
4952 }
1c25595f 4953 spin_unlock(&file_priv->mm.lock);
b962442e 4954}
31169714 4955
b29c19b6
CW
4956static void
4957i915_gem_file_idle_work_handler(struct work_struct *work)
4958{
4959 struct drm_i915_file_private *file_priv =
4960 container_of(work, typeof(*file_priv), mm.idle_work.work);
4961
4962 atomic_set(&file_priv->rps_wait_boost, false);
4963}
4964
4965int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4966{
4967 struct drm_i915_file_private *file_priv;
e422b888 4968 int ret;
b29c19b6
CW
4969
4970 DRM_DEBUG_DRIVER("\n");
4971
4972 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4973 if (!file_priv)
4974 return -ENOMEM;
4975
4976 file->driver_priv = file_priv;
4977 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4978 file_priv->file = file;
b29c19b6
CW
4979
4980 spin_lock_init(&file_priv->mm.lock);
4981 INIT_LIST_HEAD(&file_priv->mm.request_list);
4982 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4983 i915_gem_file_idle_work_handler);
4984
e422b888
BW
4985 ret = i915_gem_context_open(dev, file);
4986 if (ret)
4987 kfree(file_priv);
b29c19b6 4988
e422b888 4989 return ret;
b29c19b6
CW
4990}
4991
5774506f
CW
4992static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4993{
4994 if (!mutex_is_locked(mutex))
4995 return false;
4996
4997#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4998 return mutex->owner == task;
4999#else
5000 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5001 return false;
5002#endif
5003}
5004
b453c4db
CW
5005static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5006{
5007 if (!mutex_trylock(&dev->struct_mutex)) {
5008 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5009 return false;
5010
5011 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5012 return false;
5013
5014 *unlock = false;
5015 } else
5016 *unlock = true;
5017
5018 return true;
5019}
5020
ceabbba5
CW
5021static int num_vma_bound(struct drm_i915_gem_object *obj)
5022{
5023 struct i915_vma *vma;
5024 int count = 0;
5025
5026 list_for_each_entry(vma, &obj->vma_list, vma_link)
5027 if (drm_mm_node_allocated(&vma->node))
5028 count++;
5029
5030 return count;
5031}
5032
7dc19d5a 5033static unsigned long
ceabbba5 5034i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5035{
17250b71 5036 struct drm_i915_private *dev_priv =
ceabbba5 5037 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5038 struct drm_device *dev = dev_priv->dev;
6c085a72 5039 struct drm_i915_gem_object *obj;
7dc19d5a 5040 unsigned long count;
b453c4db 5041 bool unlock;
17250b71 5042
b453c4db
CW
5043 if (!i915_gem_shrinker_lock(dev, &unlock))
5044 return 0;
31169714 5045
7dc19d5a 5046 count = 0;
35c20a60 5047 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5048 if (obj->pages_pin_count == 0)
7dc19d5a 5049 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5050
5051 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5052 if (!i915_gem_obj_is_pinned(obj) &&
5053 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5054 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5055 }
17250b71 5056
5774506f
CW
5057 if (unlock)
5058 mutex_unlock(&dev->struct_mutex);
d9973b43 5059
7dc19d5a 5060 return count;
31169714 5061}
a70a3148
BW
5062
5063/* All the new VM stuff */
5064unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5065 struct i915_address_space *vm)
5066{
5067 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5068 struct i915_vma *vma;
5069
6f425321
BW
5070 if (!dev_priv->mm.aliasing_ppgtt ||
5071 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5072 vm = &dev_priv->gtt.base;
5073
5074 BUG_ON(list_empty(&o->vma_list));
5075 list_for_each_entry(vma, &o->vma_list, vma_link) {
5076 if (vma->vm == vm)
5077 return vma->node.start;
5078
5079 }
5080 return -1;
5081}
5082
5083bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5084 struct i915_address_space *vm)
5085{
5086 struct i915_vma *vma;
5087
5088 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5089 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5090 return true;
5091
5092 return false;
5093}
5094
5095bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5096{
5a1d5eb0 5097 struct i915_vma *vma;
a70a3148 5098
5a1d5eb0
CW
5099 list_for_each_entry(vma, &o->vma_list, vma_link)
5100 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5101 return true;
5102
5103 return false;
5104}
5105
5106unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5107 struct i915_address_space *vm)
5108{
5109 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5110 struct i915_vma *vma;
5111
6f425321
BW
5112 if (!dev_priv->mm.aliasing_ppgtt ||
5113 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5114 vm = &dev_priv->gtt.base;
5115
5116 BUG_ON(list_empty(&o->vma_list));
5117
5118 list_for_each_entry(vma, &o->vma_list, vma_link)
5119 if (vma->vm == vm)
5120 return vma->node.size;
5121
5122 return 0;
5123}
5124
7dc19d5a 5125static unsigned long
ceabbba5 5126i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5127{
5128 struct drm_i915_private *dev_priv =
ceabbba5 5129 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5130 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5131 unsigned long freed;
b453c4db 5132 bool unlock;
7dc19d5a 5133
b453c4db
CW
5134 if (!i915_gem_shrinker_lock(dev, &unlock))
5135 return SHRINK_STOP;
7dc19d5a 5136
d9973b43
CW
5137 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5138 if (freed < sc->nr_to_scan)
5139 freed += __i915_gem_shrink(dev_priv,
5140 sc->nr_to_scan - freed,
5141 false);
7dc19d5a
DC
5142 if (unlock)
5143 mutex_unlock(&dev->struct_mutex);
d9973b43 5144
7dc19d5a
DC
5145 return freed;
5146}
5c2abbea 5147
2cfcd32a
CW
5148static int
5149i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5150{
5151 struct drm_i915_private *dev_priv =
5152 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5153 struct drm_device *dev = dev_priv->dev;
5154 struct drm_i915_gem_object *obj;
5155 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5156 unsigned long pinned, bound, unbound, freed;
5157 bool was_interruptible;
5158 bool unlock;
5159
5160 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5161 schedule_timeout_killable(1);
5162 if (timeout == 0) {
5163 pr_err("Unable to purge GPU memory due lock contention.\n");
5164 return NOTIFY_DONE;
5165 }
5166
5167 was_interruptible = dev_priv->mm.interruptible;
5168 dev_priv->mm.interruptible = false;
5169
5170 freed = i915_gem_shrink_all(dev_priv);
5171
5172 dev_priv->mm.interruptible = was_interruptible;
5173
5174 /* Because we may be allocating inside our own driver, we cannot
5175 * assert that there are no objects with pinned pages that are not
5176 * being pointed to by hardware.
5177 */
5178 unbound = bound = pinned = 0;
5179 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5180 if (!obj->base.filp) /* not backed by a freeable object */
5181 continue;
5182
5183 if (obj->pages_pin_count)
5184 pinned += obj->base.size;
5185 else
5186 unbound += obj->base.size;
5187 }
5188 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5189 if (!obj->base.filp)
5190 continue;
5191
5192 if (obj->pages_pin_count)
5193 pinned += obj->base.size;
5194 else
5195 bound += obj->base.size;
5196 }
5197
5198 if (unlock)
5199 mutex_unlock(&dev->struct_mutex);
5200
5201 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5202 freed, pinned);
5203 if (unbound || bound)
5204 pr_err("%lu and %lu bytes still available in the "
5205 "bound and unbound GPU page lists.\n",
5206 bound, unbound);
5207
5208 *(unsigned long *)ptr += freed;
5209 return NOTIFY_DONE;
5210}
5211
5c2abbea
BW
5212struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5213{
5214 struct i915_vma *vma;
5215
19656430
OM
5216 /* This WARN has probably outlived its usefulness (callers already
5217 * WARN if they don't find the GGTT vma they expect). When removing,
5218 * remember to remove the pre-check in is_pin_display() as well */
5c2abbea
BW
5219 if (WARN_ON(list_empty(&obj->vma_list)))
5220 return NULL;
5221
5222 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5223 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5224 return NULL;
5225
5226 return vma;
5227}
This page took 1.189285 seconds and 5 git commands to generate.