drm/i915: Don't read 'HEAD' MMIO register in LRC mode
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
CommitLineData
0260c420
BW
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
4d884705
DV
37struct drm_i915_file_private;
38
0260c420
BW
39typedef uint32_t gen6_gtt_pte_t;
40typedef uint64_t gen8_gtt_pte_t;
41typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
42
43#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
45#define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
46/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
48#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
49#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50#define GEN6_PTE_CACHE_LLC (2 << 1)
51#define GEN6_PTE_UNCACHED (1 << 1)
52#define GEN6_PTE_VALID (1 << 0)
53
54#define GEN6_PPGTT_PD_ENTRIES 512
55#define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
56#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
57#define GEN6_PDE_VALID (1 << 0)
58
59#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
60
61#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
62#define BYT_PTE_WRITEABLE (1 << 1)
63
64/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
65 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
66 */
67#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
68 (((bits) & 0x8) << (11 - 3)))
69#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
70#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
71#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
72#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
73#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
74#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
75#define HSW_PTE_UNCACHED (0)
76#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
77#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
78
79/* GEN8 legacy style address is defined as a 3 level page table:
80 * 31:30 | 29:21 | 20:12 | 11:0
81 * PDPE | PDE | PTE | offset
82 * The difference as compared to normal x86 3 level page table is the PDPEs are
83 * programmed via register.
84 */
85#define GEN8_PDPE_SHIFT 30
86#define GEN8_PDPE_MASK 0x3
87#define GEN8_PDE_SHIFT 21
88#define GEN8_PDE_MASK 0x1ff
89#define GEN8_PTE_SHIFT 12
90#define GEN8_PTE_MASK 0x1ff
91#define GEN8_LEGACY_PDPS 4
92#define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
93#define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
94
95#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
96#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
97#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
98#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
99
ee0ce478 100#define CHV_PPAT_SNOOP (1<<6)
0260c420
BW
101#define GEN8_PPAT_AGE(x) (x<<4)
102#define GEN8_PPAT_LLCeLLC (3<<2)
103#define GEN8_PPAT_LLCELLC (2<<2)
104#define GEN8_PPAT_LLC (1<<2)
105#define GEN8_PPAT_WB (3<<0)
106#define GEN8_PPAT_WT (2<<0)
107#define GEN8_PPAT_WC (1<<0)
108#define GEN8_PPAT_UC (0<<0)
109#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
110#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
111
112enum i915_cache_level;
113/**
114 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
115 * VMA's presence cannot be guaranteed before binding, or after unbinding the
116 * object into/from the address space.
117 *
118 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
119 * will always be <= an objects lifetime. So object refcounting should cover us.
120 */
121struct i915_vma {
122 struct drm_mm_node node;
123 struct drm_i915_gem_object *obj;
124 struct i915_address_space *vm;
125
aff43766
TU
126 /** Flags and address space this VMA is bound to */
127#define GLOBAL_BIND (1<<0)
128#define LOCAL_BIND (1<<1)
129#define PTE_READ_ONLY (1<<2)
130 unsigned int bound : 4;
131
0260c420
BW
132 /** This object's place on the active/inactive lists */
133 struct list_head mm_list;
134
135 struct list_head vma_link; /* Link in the object's VMA list */
136
137 /** This vma's place in the batchbuffer or on the eviction list */
138 struct list_head exec_list;
139
140 /**
141 * Used for performing relocations during execbuffer insertion.
142 */
143 struct hlist_node exec_node;
144 unsigned long exec_handle;
145 struct drm_i915_gem_exec_object2 *exec_entry;
146
147 /**
148 * How many users have pinned this object in GTT space. The following
149 * users can each hold at most one reference: pwrite/pread, pin_ioctl
150 * (via user_pin_count), execbuffer (objects are not allowed multiple
151 * times for the same batchbuffer), and the framebuffer code. When
152 * switching/pageflipping, the framebuffer code has at most two buffers
153 * pinned per crtc.
154 *
155 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
156 * bits with absolutely no headroom. So use 4 bits. */
157 unsigned int pin_count:4;
158#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
159
160 /** Unmap an object from an address space. This usually consists of
161 * setting the valid PTE entries to a reserved scratch page. */
162 void (*unbind_vma)(struct i915_vma *vma);
163 /* Map an object into an address space with the given cache flags. */
0260c420
BW
164 void (*bind_vma)(struct i915_vma *vma,
165 enum i915_cache_level cache_level,
166 u32 flags);
167};
168
169struct i915_address_space {
170 struct drm_mm mm;
171 struct drm_device *dev;
172 struct list_head global_link;
173 unsigned long start; /* Start offset always 0 for dri2 */
174 size_t total; /* size addr space maps (ex. 2GB for ggtt) */
175
176 struct {
177 dma_addr_t addr;
178 struct page *page;
179 } scratch;
180
181 /**
182 * List of objects currently involved in rendering.
183 *
184 * Includes buffers having the contents of their GPU caches
185 * flushed, not necessarily primitives. last_rendering_seqno
186 * represents when the rendering involved will be completed.
187 *
188 * A reference is held on the buffer while on this list.
189 */
190 struct list_head active_list;
191
192 /**
193 * LRU list of objects which are not in the ringbuffer and
194 * are ready to unbind, but are still in the GTT.
195 *
196 * last_rendering_seqno is 0 while an object is in this list.
197 *
198 * A reference is not held on the buffer while on this list,
199 * as merely being GTT-bound shouldn't prevent its being
200 * freed, and we'll pull it off the list in the free path.
201 */
202 struct list_head inactive_list;
203
204 /* FIXME: Need a more generic return type */
205 gen6_gtt_pte_t (*pte_encode)(dma_addr_t addr,
206 enum i915_cache_level level,
24f3a8cf 207 bool valid, u32 flags); /* Create a valid PTE */
0260c420
BW
208 void (*clear_range)(struct i915_address_space *vm,
209 uint64_t start,
210 uint64_t length,
211 bool use_scratch);
212 void (*insert_entries)(struct i915_address_space *vm,
213 struct sg_table *st,
214 uint64_t start,
24f3a8cf 215 enum i915_cache_level cache_level, u32 flags);
0260c420
BW
216 void (*cleanup)(struct i915_address_space *vm);
217};
218
219/* The Graphics Translation Table is the way in which GEN hardware translates a
220 * Graphics Virtual Address into a Physical Address. In addition to the normal
221 * collateral associated with any va->pa translations GEN hardware also has a
222 * portion of the GTT which can be mapped by the CPU and remain both coherent
223 * and correct (in cases like swizzling). That region is referred to as GMADR in
224 * the spec.
225 */
226struct i915_gtt {
227 struct i915_address_space base;
228 size_t stolen_size; /* Total size of stolen memory */
229
230 unsigned long mappable_end; /* End offset that we can CPU map */
231 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
232 phys_addr_t mappable_base; /* PA of our GMADR */
233
234 /** "Graphics Stolen Memory" holds the global PTEs */
235 void __iomem *gsm;
236
237 bool do_idle_maps;
238
239 int mtrr;
240
241 /* global gtt ops */
242 int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
243 size_t *stolen, phys_addr_t *mappable_base,
244 unsigned long *mappable_end);
245};
246
247struct i915_hw_ppgtt {
248 struct i915_address_space base;
249 struct kref ref;
250 struct drm_mm_node node;
251 unsigned num_pd_entries;
252 unsigned num_pd_pages; /* gen8+ */
253 union {
254 struct page **pt_pages;
255 struct page **gen8_pt_pages[GEN8_LEGACY_PDPS];
256 };
257 struct page *pd_pages;
258 union {
259 uint32_t pd_offset;
260 dma_addr_t pd_dma_addr[GEN8_LEGACY_PDPS];
261 };
262 union {
263 dma_addr_t *pt_dma_addr;
264 dma_addr_t *gen8_pt_dma_addr[4];
265 };
266
4d884705 267 struct drm_i915_file_private *file_priv;
0260c420
BW
268
269 int (*enable)(struct i915_hw_ppgtt *ppgtt);
270 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
6689c167 271 struct intel_engine_cs *ring);
0260c420
BW
272 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
273};
274
275int i915_gem_gtt_init(struct drm_device *dev);
276void i915_gem_init_global_gtt(struct drm_device *dev);
90d0a0e8 277void i915_global_gtt_cleanup(struct drm_device *dev);
0260c420 278
ee960be7
DV
279
280int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
82460d97 281int i915_ppgtt_init_hw(struct drm_device *dev);
ee960be7 282void i915_ppgtt_release(struct kref *kref);
4d884705
DV
283struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
284 struct drm_i915_file_private *fpriv);
ee960be7
DV
285static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
286{
287 if (ppgtt)
288 kref_get(&ppgtt->ref);
289}
290static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
291{
292 if (ppgtt)
293 kref_put(&ppgtt->ref, i915_ppgtt_release);
294}
0260c420
BW
295
296void i915_check_and_clear_faults(struct drm_device *dev);
297void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
298void i915_gem_restore_gtt_mappings(struct drm_device *dev);
299
300int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
301void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
302
303#endif
This page took 0.077073 seconds and 5 git commands to generate.