drm/i915/gtt: Introduce i915_page_dir_dma_addr
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
CommitLineData
0260c420
BW
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
4d884705
DV
37struct drm_i915_file_private;
38
07749ef3
MT
39typedef uint32_t gen6_pte_t;
40typedef uint64_t gen8_pte_t;
41typedef uint64_t gen8_pde_t;
0260c420
BW
42
43#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
07749ef3 45
0260c420
BW
46/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
48#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
49#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50#define GEN6_PTE_CACHE_LLC (2 << 1)
51#define GEN6_PTE_UNCACHED (1 << 1)
52#define GEN6_PTE_VALID (1 << 0)
53
07749ef3
MT
54#define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
55#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
56#define I915_PDES 512
57#define I915_PDE_MASK (I915_PDES - 1)
678d96fb 58#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
07749ef3
MT
59
60#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
61#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
0260c420 62#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
678d96fb 63#define GEN6_PDE_SHIFT 22
0260c420
BW
64#define GEN6_PDE_VALID (1 << 0)
65
66#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
67
68#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
69#define BYT_PTE_WRITEABLE (1 << 1)
70
71/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
72 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
73 */
74#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
75 (((bits) & 0x8) << (11 - 3)))
76#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
77#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
78#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
79#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
80#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
81#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
82#define HSW_PTE_UNCACHED (0)
83#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
84#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
85
86/* GEN8 legacy style address is defined as a 3 level page table:
87 * 31:30 | 29:21 | 20:12 | 11:0
88 * PDPE | PDE | PTE | offset
89 * The difference as compared to normal x86 3 level page table is the PDPEs are
90 * programmed via register.
91 */
92#define GEN8_PDPE_SHIFT 30
93#define GEN8_PDPE_MASK 0x3
94#define GEN8_PDE_SHIFT 21
95#define GEN8_PDE_MASK 0x1ff
96#define GEN8_PTE_SHIFT 12
97#define GEN8_PTE_MASK 0x1ff
76643600 98#define GEN8_LEGACY_PDPES 4
07749ef3 99#define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
0260c420
BW
100
101#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
102#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
103#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
104#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
105
ee0ce478 106#define CHV_PPAT_SNOOP (1<<6)
0260c420
BW
107#define GEN8_PPAT_AGE(x) (x<<4)
108#define GEN8_PPAT_LLCeLLC (3<<2)
109#define GEN8_PPAT_LLCELLC (2<<2)
110#define GEN8_PPAT_LLC (1<<2)
111#define GEN8_PPAT_WB (3<<0)
112#define GEN8_PPAT_WT (2<<0)
113#define GEN8_PPAT_WC (1<<0)
114#define GEN8_PPAT_UC (0<<0)
115#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
116#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
117
fe14d5f4
TU
118enum i915_ggtt_view_type {
119 I915_GGTT_VIEW_NORMAL = 0,
8bd7ef16
JL
120 I915_GGTT_VIEW_ROTATED,
121 I915_GGTT_VIEW_PARTIAL,
50470bb0
TU
122};
123
124struct intel_rotation_info {
125 unsigned int height;
126 unsigned int pitch;
127 uint32_t pixel_format;
128 uint64_t fb_modifier;
84fe03f7
TU
129 unsigned int width_pages, height_pages;
130 uint64_t size;
fe14d5f4
TU
131};
132
133struct i915_ggtt_view {
134 enum i915_ggtt_view_type type;
135
8bd7ef16
JL
136 union {
137 struct {
138 unsigned long offset;
139 unsigned int size;
140 } partial;
141 } params;
142
fe14d5f4 143 struct sg_table *pages;
50470bb0
TU
144
145 union {
146 struct intel_rotation_info rotation_info;
147 };
fe14d5f4
TU
148};
149
150extern const struct i915_ggtt_view i915_ggtt_view_normal;
9abc4648 151extern const struct i915_ggtt_view i915_ggtt_view_rotated;
fe14d5f4 152
0260c420 153enum i915_cache_level;
fe14d5f4 154
0260c420
BW
155/**
156 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
157 * VMA's presence cannot be guaranteed before binding, or after unbinding the
158 * object into/from the address space.
159 *
160 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
161 * will always be <= an objects lifetime. So object refcounting should cover us.
162 */
163struct i915_vma {
164 struct drm_mm_node node;
165 struct drm_i915_gem_object *obj;
166 struct i915_address_space *vm;
167
aff43766
TU
168 /** Flags and address space this VMA is bound to */
169#define GLOBAL_BIND (1<<0)
170#define LOCAL_BIND (1<<1)
aff43766
TU
171 unsigned int bound : 4;
172
fe14d5f4
TU
173 /**
174 * Support different GGTT views into the same object.
175 * This means there can be multiple VMA mappings per object and per VM.
176 * i915_ggtt_view_type is used to distinguish between those entries.
177 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
178 * assumed in GEM functions which take no ggtt view parameter.
179 */
180 struct i915_ggtt_view ggtt_view;
181
0260c420
BW
182 /** This object's place on the active/inactive lists */
183 struct list_head mm_list;
184
185 struct list_head vma_link; /* Link in the object's VMA list */
186
187 /** This vma's place in the batchbuffer or on the eviction list */
188 struct list_head exec_list;
189
190 /**
191 * Used for performing relocations during execbuffer insertion.
192 */
193 struct hlist_node exec_node;
194 unsigned long exec_handle;
195 struct drm_i915_gem_exec_object2 *exec_entry;
196
197 /**
198 * How many users have pinned this object in GTT space. The following
4feb7659
DV
199 * users can each hold at most one reference: pwrite/pread, execbuffer
200 * (objects are not allowed multiple times for the same batchbuffer),
201 * and the framebuffer code. When switching/pageflipping, the
202 * framebuffer code has at most two buffers pinned per crtc.
0260c420
BW
203 *
204 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
205 * bits with absolutely no headroom. So use 4 bits. */
206 unsigned int pin_count:4;
207#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
0260c420
BW
208};
209
ec565b3c 210struct i915_page_table {
d7b3de91 211 struct page *page;
7324cc04 212 dma_addr_t daddr;
678d96fb
BW
213
214 unsigned long *used_ptes;
d7b3de91
BW
215};
216
ec565b3c 217struct i915_page_directory {
d7b3de91 218 struct page *page; /* NULL for GEN6-GEN7 */
7324cc04
BW
219 union {
220 uint32_t pd_offset;
221 dma_addr_t daddr;
222 };
223
33c8819f 224 unsigned long *used_pdes;
ec565b3c 225 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
d7b3de91
BW
226};
227
ec565b3c 228struct i915_page_directory_pointer {
d7b3de91 229 /* struct page *page; */
33c8819f 230 DECLARE_BITMAP(used_pdpes, GEN8_LEGACY_PDPES);
ec565b3c 231 struct i915_page_directory *page_directory[GEN8_LEGACY_PDPES];
d7b3de91
BW
232};
233
0260c420
BW
234struct i915_address_space {
235 struct drm_mm mm;
236 struct drm_device *dev;
237 struct list_head global_link;
c44ef60e
MK
238 u64 start; /* Start offset always 0 for dri2 */
239 u64 total; /* size addr space maps (ex. 2GB for ggtt) */
0260c420
BW
240
241 struct {
242 dma_addr_t addr;
243 struct page *page;
244 } scratch;
245
246 /**
247 * List of objects currently involved in rendering.
248 *
249 * Includes buffers having the contents of their GPU caches
97b2a6a1 250 * flushed, not necessarily primitives. last_read_req
0260c420
BW
251 * represents when the rendering involved will be completed.
252 *
253 * A reference is held on the buffer while on this list.
254 */
255 struct list_head active_list;
256
257 /**
258 * LRU list of objects which are not in the ringbuffer and
259 * are ready to unbind, but are still in the GTT.
260 *
97b2a6a1 261 * last_read_req is NULL while an object is in this list.
0260c420
BW
262 *
263 * A reference is not held on the buffer while on this list,
264 * as merely being GTT-bound shouldn't prevent its being
265 * freed, and we'll pull it off the list in the free path.
266 */
267 struct list_head inactive_list;
268
269 /* FIXME: Need a more generic return type */
07749ef3
MT
270 gen6_pte_t (*pte_encode)(dma_addr_t addr,
271 enum i915_cache_level level,
272 bool valid, u32 flags); /* Create a valid PTE */
f329f5f6
DV
273 /* flags for pte_encode */
274#define PTE_READ_ONLY (1<<0)
678d96fb
BW
275 int (*allocate_va_range)(struct i915_address_space *vm,
276 uint64_t start,
277 uint64_t length);
0260c420
BW
278 void (*clear_range)(struct i915_address_space *vm,
279 uint64_t start,
280 uint64_t length,
281 bool use_scratch);
282 void (*insert_entries)(struct i915_address_space *vm,
283 struct sg_table *st,
284 uint64_t start,
24f3a8cf 285 enum i915_cache_level cache_level, u32 flags);
0260c420 286 void (*cleanup)(struct i915_address_space *vm);
777dc5bb
DV
287 /** Unmap an object from an address space. This usually consists of
288 * setting the valid PTE entries to a reserved scratch page. */
289 void (*unbind_vma)(struct i915_vma *vma);
290 /* Map an object into an address space with the given cache flags. */
70b9f6f8
DV
291 int (*bind_vma)(struct i915_vma *vma,
292 enum i915_cache_level cache_level,
293 u32 flags);
0260c420
BW
294};
295
296/* The Graphics Translation Table is the way in which GEN hardware translates a
297 * Graphics Virtual Address into a Physical Address. In addition to the normal
298 * collateral associated with any va->pa translations GEN hardware also has a
299 * portion of the GTT which can be mapped by the CPU and remain both coherent
300 * and correct (in cases like swizzling). That region is referred to as GMADR in
301 * the spec.
302 */
303struct i915_gtt {
304 struct i915_address_space base;
0260c420 305
c44ef60e
MK
306 size_t stolen_size; /* Total size of stolen memory */
307 u64 mappable_end; /* End offset that we can CPU map */
0260c420
BW
308 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
309 phys_addr_t mappable_base; /* PA of our GMADR */
310
311 /** "Graphics Stolen Memory" holds the global PTEs */
312 void __iomem *gsm;
313
314 bool do_idle_maps;
315
316 int mtrr;
317
318 /* global gtt ops */
c44ef60e 319 int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
0260c420 320 size_t *stolen, phys_addr_t *mappable_base,
c44ef60e 321 u64 *mappable_end);
0260c420
BW
322};
323
324struct i915_hw_ppgtt {
325 struct i915_address_space base;
326 struct kref ref;
327 struct drm_mm_node node;
563222a7 328 unsigned long pd_dirty_rings;
d7b3de91 329 union {
ec565b3c
MT
330 struct i915_page_directory_pointer pdp;
331 struct i915_page_directory pd;
d7b3de91 332 };
0260c420 333
ec565b3c 334 struct i915_page_table *scratch_pt;
7cb6d7ac 335 struct i915_page_directory *scratch_pd;
4933d519 336
4d884705 337 struct drm_i915_file_private *file_priv;
0260c420 338
678d96fb
BW
339 gen6_pte_t __iomem *pd_addr;
340
0260c420
BW
341 int (*enable)(struct i915_hw_ppgtt *ppgtt);
342 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
e85b26dc 343 struct drm_i915_gem_request *req);
0260c420
BW
344 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
345};
346
678d96fb
BW
347/* For each pde iterates over every pde between from start until start + length.
348 * If start, and start+length are not perfectly divisible, the macro will round
349 * down, and up as needed. The macro modifies pde, start, and length. Dev is
350 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
351 * and length = 2G effectively iterates over every PDE in the system.
352 *
353 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
354 */
355#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
fdc454c1
MT
356 for (iter = gen6_pde_index(start); \
357 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
358 iter++, \
678d96fb
BW
359 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
360 temp = min_t(unsigned, temp, length), \
361 start += temp, length -= temp)
362
09942c65
MT
363#define gen6_for_all_pdes(pt, ppgtt, iter) \
364 for (iter = 0; \
365 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
366 iter++)
367
678d96fb
BW
368static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
369{
370 const uint32_t mask = NUM_PTE(pde_shift) - 1;
371
372 return (address >> PAGE_SHIFT) & mask;
373}
374
375/* Helper to counts the number of PTEs within the given length. This count
376 * does not cross a page table boundary, so the max value would be
377 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
378*/
379static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
380 uint32_t pde_shift)
381{
382 const uint64_t mask = ~((1 << pde_shift) - 1);
383 uint64_t end;
384
385 WARN_ON(length == 0);
386 WARN_ON(offset_in_page(addr|length));
387
388 end = addr + length;
389
390 if ((addr & mask) != (end & mask))
391 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
392
393 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
394}
395
396static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
397{
398 return (addr >> shift) & I915_PDE_MASK;
399}
400
401static inline uint32_t gen6_pte_index(uint32_t addr)
402{
403 return i915_pte_index(addr, GEN6_PDE_SHIFT);
404}
405
406static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
407{
408 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
409}
410
411static inline uint32_t gen6_pde_index(uint32_t addr)
412{
413 return i915_pde_index(addr, GEN6_PDE_SHIFT);
414}
415
9271d959
MT
416/* Equivalent to the gen6 version, For each pde iterates over every pde
417 * between from start until start + length. On gen8+ it simply iterates
418 * over every page directory entry in a page directory.
419 */
420#define gen8_for_each_pde(pt, pd, start, length, temp, iter) \
421 for (iter = gen8_pde_index(start); \
422 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
423 iter++, \
424 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start, \
425 temp = min(temp, length), \
426 start += temp, length -= temp)
427
428#define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter) \
429 for (iter = gen8_pdpe_index(start); \
430 pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES; \
431 iter++, \
432 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start, \
433 temp = min(temp, length), \
434 start += temp, length -= temp)
435
436/* Clamp length to the next page_directory boundary */
437static inline uint64_t gen8_clamp_pd(uint64_t start, uint64_t length)
438{
439 uint64_t next_pd = ALIGN(start + 1, 1 << GEN8_PDPE_SHIFT);
440
441 if (next_pd > (start + length))
442 return length;
443
444 return next_pd - start;
445}
446
447static inline uint32_t gen8_pte_index(uint64_t address)
448{
449 return i915_pte_index(address, GEN8_PDE_SHIFT);
450}
451
452static inline uint32_t gen8_pde_index(uint64_t address)
453{
454 return i915_pde_index(address, GEN8_PDE_SHIFT);
455}
456
457static inline uint32_t gen8_pdpe_index(uint64_t address)
458{
459 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
460}
461
462static inline uint32_t gen8_pml4e_index(uint64_t address)
463{
464 WARN_ON(1); /* For 64B */
465 return 0;
466}
467
33c8819f
MT
468static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
469{
470 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
471}
472
d852c7bf
MK
473static inline dma_addr_t
474i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
475{
476 return test_bit(n, ppgtt->pdp.used_pdpes) ?
477 ppgtt->pdp.page_directory[n]->daddr :
478 ppgtt->scratch_pd->daddr;
479}
480
0260c420
BW
481int i915_gem_gtt_init(struct drm_device *dev);
482void i915_gem_init_global_gtt(struct drm_device *dev);
90d0a0e8 483void i915_global_gtt_cleanup(struct drm_device *dev);
0260c420 484
ee960be7
DV
485
486int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
82460d97 487int i915_ppgtt_init_hw(struct drm_device *dev);
b3dd6b96 488int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
ee960be7 489void i915_ppgtt_release(struct kref *kref);
4d884705
DV
490struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
491 struct drm_i915_file_private *fpriv);
ee960be7
DV
492static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
493{
494 if (ppgtt)
495 kref_get(&ppgtt->ref);
496}
497static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
498{
499 if (ppgtt)
500 kref_put(&ppgtt->ref, i915_ppgtt_release);
501}
0260c420
BW
502
503void i915_check_and_clear_faults(struct drm_device *dev);
504void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
505void i915_gem_restore_gtt_mappings(struct drm_device *dev);
506
507int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
508void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
509
9abc4648
JL
510static inline bool
511i915_ggtt_view_equal(const struct i915_ggtt_view *a,
512 const struct i915_ggtt_view *b)
513{
514 if (WARN_ON(!a || !b))
515 return false;
516
8bd7ef16
JL
517 if (a->type != b->type)
518 return false;
519 if (a->type == I915_GGTT_VIEW_PARTIAL)
520 return !memcmp(&a->params, &b->params, sizeof(a->params));
521 return true;
9abc4648
JL
522}
523
91e6711e
JL
524size_t
525i915_ggtt_view_size(struct drm_i915_gem_object *obj,
526 const struct i915_ggtt_view *view);
527
0260c420 528#endif
This page took 0.119648 seconds and 5 git commands to generate.