drm/i915/gen8: Split out mappings
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
CommitLineData
0260c420
BW
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
4d884705
DV
37struct drm_i915_file_private;
38
07749ef3
MT
39typedef uint32_t gen6_pte_t;
40typedef uint64_t gen8_pte_t;
41typedef uint64_t gen8_pde_t;
0260c420
BW
42
43#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
07749ef3 45
0260c420
BW
46/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
48#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
49#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50#define GEN6_PTE_CACHE_LLC (2 << 1)
51#define GEN6_PTE_UNCACHED (1 << 1)
52#define GEN6_PTE_VALID (1 << 0)
53
07749ef3
MT
54#define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
55#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
56#define I915_PDES 512
57#define I915_PDE_MASK (I915_PDES - 1)
678d96fb 58#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
07749ef3
MT
59
60#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
61#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
0260c420 62#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
678d96fb 63#define GEN6_PDE_SHIFT 22
0260c420
BW
64#define GEN6_PDE_VALID (1 << 0)
65
66#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
67
68#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
69#define BYT_PTE_WRITEABLE (1 << 1)
70
71/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
72 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
73 */
74#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
75 (((bits) & 0x8) << (11 - 3)))
76#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
77#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
78#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
79#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
80#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
81#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
82#define HSW_PTE_UNCACHED (0)
83#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
84#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
85
86/* GEN8 legacy style address is defined as a 3 level page table:
87 * 31:30 | 29:21 | 20:12 | 11:0
88 * PDPE | PDE | PTE | offset
89 * The difference as compared to normal x86 3 level page table is the PDPEs are
90 * programmed via register.
91 */
92#define GEN8_PDPE_SHIFT 30
93#define GEN8_PDPE_MASK 0x3
94#define GEN8_PDE_SHIFT 21
95#define GEN8_PDE_MASK 0x1ff
96#define GEN8_PTE_SHIFT 12
97#define GEN8_PTE_MASK 0x1ff
76643600 98#define GEN8_LEGACY_PDPES 4
07749ef3 99#define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
0260c420
BW
100
101#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
102#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
103#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
104#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
105
ee0ce478 106#define CHV_PPAT_SNOOP (1<<6)
0260c420
BW
107#define GEN8_PPAT_AGE(x) (x<<4)
108#define GEN8_PPAT_LLCeLLC (3<<2)
109#define GEN8_PPAT_LLCELLC (2<<2)
110#define GEN8_PPAT_LLC (1<<2)
111#define GEN8_PPAT_WB (3<<0)
112#define GEN8_PPAT_WT (2<<0)
113#define GEN8_PPAT_WC (1<<0)
114#define GEN8_PPAT_UC (0<<0)
115#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
116#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
117
fe14d5f4
TU
118enum i915_ggtt_view_type {
119 I915_GGTT_VIEW_NORMAL = 0,
50470bb0
TU
120 I915_GGTT_VIEW_ROTATED
121};
122
123struct intel_rotation_info {
124 unsigned int height;
125 unsigned int pitch;
126 uint32_t pixel_format;
127 uint64_t fb_modifier;
fe14d5f4
TU
128};
129
130struct i915_ggtt_view {
131 enum i915_ggtt_view_type type;
132
133 struct sg_table *pages;
50470bb0
TU
134
135 union {
136 struct intel_rotation_info rotation_info;
137 };
fe14d5f4
TU
138};
139
140extern const struct i915_ggtt_view i915_ggtt_view_normal;
9abc4648 141extern const struct i915_ggtt_view i915_ggtt_view_rotated;
fe14d5f4 142
0260c420 143enum i915_cache_level;
fe14d5f4 144
0260c420
BW
145/**
146 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
147 * VMA's presence cannot be guaranteed before binding, or after unbinding the
148 * object into/from the address space.
149 *
150 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
151 * will always be <= an objects lifetime. So object refcounting should cover us.
152 */
153struct i915_vma {
154 struct drm_mm_node node;
155 struct drm_i915_gem_object *obj;
156 struct i915_address_space *vm;
157
aff43766
TU
158 /** Flags and address space this VMA is bound to */
159#define GLOBAL_BIND (1<<0)
160#define LOCAL_BIND (1<<1)
161#define PTE_READ_ONLY (1<<2)
162 unsigned int bound : 4;
163
fe14d5f4
TU
164 /**
165 * Support different GGTT views into the same object.
166 * This means there can be multiple VMA mappings per object and per VM.
167 * i915_ggtt_view_type is used to distinguish between those entries.
168 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
169 * assumed in GEM functions which take no ggtt view parameter.
170 */
171 struct i915_ggtt_view ggtt_view;
172
0260c420
BW
173 /** This object's place on the active/inactive lists */
174 struct list_head mm_list;
175
176 struct list_head vma_link; /* Link in the object's VMA list */
177
178 /** This vma's place in the batchbuffer or on the eviction list */
179 struct list_head exec_list;
180
181 /**
182 * Used for performing relocations during execbuffer insertion.
183 */
184 struct hlist_node exec_node;
185 unsigned long exec_handle;
186 struct drm_i915_gem_exec_object2 *exec_entry;
187
188 /**
189 * How many users have pinned this object in GTT space. The following
4feb7659
DV
190 * users can each hold at most one reference: pwrite/pread, execbuffer
191 * (objects are not allowed multiple times for the same batchbuffer),
192 * and the framebuffer code. When switching/pageflipping, the
193 * framebuffer code has at most two buffers pinned per crtc.
0260c420
BW
194 *
195 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
196 * bits with absolutely no headroom. So use 4 bits. */
197 unsigned int pin_count:4;
198#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
199
200 /** Unmap an object from an address space. This usually consists of
201 * setting the valid PTE entries to a reserved scratch page. */
202 void (*unbind_vma)(struct i915_vma *vma);
203 /* Map an object into an address space with the given cache flags. */
0260c420
BW
204 void (*bind_vma)(struct i915_vma *vma,
205 enum i915_cache_level cache_level,
206 u32 flags);
207};
208
ec565b3c 209struct i915_page_table {
d7b3de91 210 struct page *page;
7324cc04 211 dma_addr_t daddr;
678d96fb
BW
212
213 unsigned long *used_ptes;
d7b3de91
BW
214};
215
ec565b3c 216struct i915_page_directory {
d7b3de91 217 struct page *page; /* NULL for GEN6-GEN7 */
7324cc04
BW
218 union {
219 uint32_t pd_offset;
220 dma_addr_t daddr;
221 };
222
ec565b3c 223 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
d7b3de91
BW
224};
225
ec565b3c 226struct i915_page_directory_pointer {
d7b3de91 227 /* struct page *page; */
ec565b3c 228 struct i915_page_directory *page_directory[GEN8_LEGACY_PDPES];
d7b3de91
BW
229};
230
0260c420
BW
231struct i915_address_space {
232 struct drm_mm mm;
233 struct drm_device *dev;
234 struct list_head global_link;
235 unsigned long start; /* Start offset always 0 for dri2 */
236 size_t total; /* size addr space maps (ex. 2GB for ggtt) */
237
238 struct {
239 dma_addr_t addr;
240 struct page *page;
241 } scratch;
242
243 /**
244 * List of objects currently involved in rendering.
245 *
246 * Includes buffers having the contents of their GPU caches
97b2a6a1 247 * flushed, not necessarily primitives. last_read_req
0260c420
BW
248 * represents when the rendering involved will be completed.
249 *
250 * A reference is held on the buffer while on this list.
251 */
252 struct list_head active_list;
253
254 /**
255 * LRU list of objects which are not in the ringbuffer and
256 * are ready to unbind, but are still in the GTT.
257 *
97b2a6a1 258 * last_read_req is NULL while an object is in this list.
0260c420
BW
259 *
260 * A reference is not held on the buffer while on this list,
261 * as merely being GTT-bound shouldn't prevent its being
262 * freed, and we'll pull it off the list in the free path.
263 */
264 struct list_head inactive_list;
265
266 /* FIXME: Need a more generic return type */
07749ef3
MT
267 gen6_pte_t (*pte_encode)(dma_addr_t addr,
268 enum i915_cache_level level,
269 bool valid, u32 flags); /* Create a valid PTE */
678d96fb
BW
270 int (*allocate_va_range)(struct i915_address_space *vm,
271 uint64_t start,
272 uint64_t length);
0260c420
BW
273 void (*clear_range)(struct i915_address_space *vm,
274 uint64_t start,
275 uint64_t length,
276 bool use_scratch);
277 void (*insert_entries)(struct i915_address_space *vm,
278 struct sg_table *st,
279 uint64_t start,
24f3a8cf 280 enum i915_cache_level cache_level, u32 flags);
0260c420
BW
281 void (*cleanup)(struct i915_address_space *vm);
282};
283
284/* The Graphics Translation Table is the way in which GEN hardware translates a
285 * Graphics Virtual Address into a Physical Address. In addition to the normal
286 * collateral associated with any va->pa translations GEN hardware also has a
287 * portion of the GTT which can be mapped by the CPU and remain both coherent
288 * and correct (in cases like swizzling). That region is referred to as GMADR in
289 * the spec.
290 */
291struct i915_gtt {
292 struct i915_address_space base;
293 size_t stolen_size; /* Total size of stolen memory */
294
295 unsigned long mappable_end; /* End offset that we can CPU map */
296 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
297 phys_addr_t mappable_base; /* PA of our GMADR */
298
299 /** "Graphics Stolen Memory" holds the global PTEs */
300 void __iomem *gsm;
301
302 bool do_idle_maps;
303
304 int mtrr;
305
306 /* global gtt ops */
307 int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
308 size_t *stolen, phys_addr_t *mappable_base,
309 unsigned long *mappable_end);
310};
311
312struct i915_hw_ppgtt {
313 struct i915_address_space base;
314 struct kref ref;
315 struct drm_mm_node node;
563222a7 316 unsigned long pd_dirty_rings;
d7b3de91 317 union {
ec565b3c
MT
318 struct i915_page_directory_pointer pdp;
319 struct i915_page_directory pd;
d7b3de91 320 };
0260c420 321
ec565b3c 322 struct i915_page_table *scratch_pt;
7cb6d7ac 323 struct i915_page_directory *scratch_pd;
4933d519 324
4d884705 325 struct drm_i915_file_private *file_priv;
0260c420 326
678d96fb
BW
327 gen6_pte_t __iomem *pd_addr;
328
0260c420
BW
329 int (*enable)(struct i915_hw_ppgtt *ppgtt);
330 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
6689c167 331 struct intel_engine_cs *ring);
0260c420
BW
332 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
333};
334
678d96fb
BW
335/* For each pde iterates over every pde between from start until start + length.
336 * If start, and start+length are not perfectly divisible, the macro will round
337 * down, and up as needed. The macro modifies pde, start, and length. Dev is
338 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
339 * and length = 2G effectively iterates over every PDE in the system.
340 *
341 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
342 */
343#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
fdc454c1
MT
344 for (iter = gen6_pde_index(start); \
345 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
346 iter++, \
678d96fb
BW
347 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
348 temp = min_t(unsigned, temp, length), \
349 start += temp, length -= temp)
350
09942c65
MT
351#define gen6_for_all_pdes(pt, ppgtt, iter) \
352 for (iter = 0; \
353 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
354 iter++)
355
678d96fb
BW
356static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
357{
358 const uint32_t mask = NUM_PTE(pde_shift) - 1;
359
360 return (address >> PAGE_SHIFT) & mask;
361}
362
363/* Helper to counts the number of PTEs within the given length. This count
364 * does not cross a page table boundary, so the max value would be
365 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
366*/
367static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
368 uint32_t pde_shift)
369{
370 const uint64_t mask = ~((1 << pde_shift) - 1);
371 uint64_t end;
372
373 WARN_ON(length == 0);
374 WARN_ON(offset_in_page(addr|length));
375
376 end = addr + length;
377
378 if ((addr & mask) != (end & mask))
379 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
380
381 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
382}
383
384static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
385{
386 return (addr >> shift) & I915_PDE_MASK;
387}
388
389static inline uint32_t gen6_pte_index(uint32_t addr)
390{
391 return i915_pte_index(addr, GEN6_PDE_SHIFT);
392}
393
394static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
395{
396 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
397}
398
399static inline uint32_t gen6_pde_index(uint32_t addr)
400{
401 return i915_pde_index(addr, GEN6_PDE_SHIFT);
402}
403
9271d959
MT
404/* Equivalent to the gen6 version, For each pde iterates over every pde
405 * between from start until start + length. On gen8+ it simply iterates
406 * over every page directory entry in a page directory.
407 */
408#define gen8_for_each_pde(pt, pd, start, length, temp, iter) \
409 for (iter = gen8_pde_index(start); \
410 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
411 iter++, \
412 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start, \
413 temp = min(temp, length), \
414 start += temp, length -= temp)
415
416#define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter) \
417 for (iter = gen8_pdpe_index(start); \
418 pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES; \
419 iter++, \
420 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start, \
421 temp = min(temp, length), \
422 start += temp, length -= temp)
423
424/* Clamp length to the next page_directory boundary */
425static inline uint64_t gen8_clamp_pd(uint64_t start, uint64_t length)
426{
427 uint64_t next_pd = ALIGN(start + 1, 1 << GEN8_PDPE_SHIFT);
428
429 if (next_pd > (start + length))
430 return length;
431
432 return next_pd - start;
433}
434
435static inline uint32_t gen8_pte_index(uint64_t address)
436{
437 return i915_pte_index(address, GEN8_PDE_SHIFT);
438}
439
440static inline uint32_t gen8_pde_index(uint64_t address)
441{
442 return i915_pde_index(address, GEN8_PDE_SHIFT);
443}
444
445static inline uint32_t gen8_pdpe_index(uint64_t address)
446{
447 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
448}
449
450static inline uint32_t gen8_pml4e_index(uint64_t address)
451{
452 WARN_ON(1); /* For 64B */
453 return 0;
454}
455
0260c420
BW
456int i915_gem_gtt_init(struct drm_device *dev);
457void i915_gem_init_global_gtt(struct drm_device *dev);
90d0a0e8 458void i915_global_gtt_cleanup(struct drm_device *dev);
0260c420 459
ee960be7
DV
460
461int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
82460d97 462int i915_ppgtt_init_hw(struct drm_device *dev);
ee960be7 463void i915_ppgtt_release(struct kref *kref);
4d884705
DV
464struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
465 struct drm_i915_file_private *fpriv);
ee960be7
DV
466static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
467{
468 if (ppgtt)
469 kref_get(&ppgtt->ref);
470}
471static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
472{
473 if (ppgtt)
474 kref_put(&ppgtt->ref, i915_ppgtt_release);
475}
0260c420
BW
476
477void i915_check_and_clear_faults(struct drm_device *dev);
478void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
479void i915_gem_restore_gtt_mappings(struct drm_device *dev);
480
481int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
482void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
483
9abc4648
JL
484static inline bool
485i915_ggtt_view_equal(const struct i915_ggtt_view *a,
486 const struct i915_ggtt_view *b)
487{
488 if (WARN_ON(!a || !b))
489 return false;
490
491 return a->type == b->type;
492}
493
0260c420 494#endif
This page took 0.104422 seconds and 5 git commands to generate.