drm/i915/bdw: Use timeout mode for RC6 on bdw
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
79e53945 104typedef struct {
0206e353 105 int min, max;
79e53945
JB
106} intel_range_t;
107
108typedef struct {
0206e353
AJ
109 int dot_limit;
110 int p2_slow, p2_fast;
79e53945
JB
111} intel_p2_t;
112
d4906093
ML
113typedef struct intel_limit intel_limit_t;
114struct intel_limit {
0206e353
AJ
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
d4906093 117};
79e53945 118
d2acd215
DV
119int
120intel_pch_rawclk(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127}
128
021357ac
CW
129static inline u32 /* units of 100MHz */
130intel_fdi_link_freq(struct drm_device *dev)
131{
8b99e68c
CW
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
021357ac
CW
137}
138
5d536e28 139static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 140 .dot = { .min = 25000, .max = 350000 },
9c333719 141 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 142 .n = { .min = 2, .max = 16 },
0206e353
AJ
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
150};
151
5d536e28
DV
152static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
5d536e28
DV
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163};
164
e4b36699 165static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
0206e353
AJ
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
e4b36699 176};
273e27ca 177
e4b36699 178static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
189};
190
191static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
202};
203
273e27ca 204
e4b36699 205static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
044c7c41 217 },
e4b36699
KP
218};
219
220static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
044c7c41 244 },
e4b36699
KP
245};
246
247static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
044c7c41 258 },
e4b36699
KP
259};
260
f2b115e6 261static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 264 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
273e27ca 267 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
274};
275
f2b115e6 276static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
287};
288
273e27ca
EA
289/* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
b91ad0ec 294static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
305};
306
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331};
332
273e27ca 333/* LVDS 100mhz refclk limits. */
b91ad0ec 334static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
0206e353 342 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358};
359
dc730512 360static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 368 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 369 .n = { .min = 1, .max = 7 },
a0c4da24
JB
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
b99ab663 372 .p1 = { .min = 2, .max = 3 },
5fdc9c49 373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
374};
375
ef9348c8
CML
376static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390};
391
6b4bf1c4
VS
392static void vlv_clock(int refclk, intel_clock_t *clock)
393{
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
fb03ac01
VS
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
400}
401
e0638cdf
PZ
402/**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406{
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415}
416
1b894b59
CW
417static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
2c07245f 419{
b91ad0ec 420 struct drm_device *dev = crtc->dev;
2c07245f 421 const intel_limit_t *limit;
b91ad0ec
ZW
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 424 if (intel_is_dual_link_lvds(dev)) {
1b894b59 425 if (refclk == 100000)
b91ad0ec
ZW
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
1b894b59 430 if (refclk == 100000)
b91ad0ec
ZW
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
c6bb3538 435 } else
b91ad0ec 436 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
437
438 return limit;
439}
440
044c7c41
ML
441static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442{
443 struct drm_device *dev = crtc->dev;
044c7c41
ML
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 447 if (intel_is_dual_link_lvds(dev))
e4b36699 448 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 449 else
e4b36699 450 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 453 limit = &intel_limits_g4x_hdmi;
044c7c41 454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 455 limit = &intel_limits_g4x_sdvo;
044c7c41 456 } else /* The option is for other outputs */
e4b36699 457 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
458
459 return limit;
460}
461
1b894b59 462static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
463{
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
bad720ff 467 if (HAS_PCH_SPLIT(dev))
1b894b59 468 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 469 else if (IS_G4X(dev)) {
044c7c41 470 limit = intel_g4x_limit(crtc);
f2b115e6 471 } else if (IS_PINEVIEW(dev)) {
2177832f 472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 473 limit = &intel_limits_pineview_lvds;
2177832f 474 else
f2b115e6 475 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
a0c4da24 478 } else if (IS_VALLEYVIEW(dev)) {
dc730512 479 limit = &intel_limits_vlv;
a6c45cf0
CW
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 487 limit = &intel_limits_i8xx_lvds;
5d536e28 488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 489 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
490 else
491 limit = &intel_limits_i8xx_dac;
79e53945
JB
492 }
493 return limit;
494}
495
f2b115e6
AJ
496/* m1 is reserved as 0 in Pineview, n is a ring counter */
497static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 498{
2177832f
SL
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
fb03ac01
VS
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
505}
506
7429e9d4
DV
507static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508{
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510}
511
ac58c3f0 512static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 513{
7429e9d4 514 clock->m = i9xx_dpll_compute_m(clock);
79e53945 515 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
fb03ac01
VS
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
520}
521
ef9348c8
CML
522static void chv_clock(int refclk, intel_clock_t *clock)
523{
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531}
532
7c04d1d9 533#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
534/**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
1b894b59
CW
539static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
79e53945 542{
f01b7962
VS
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
79e53945 545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 546 INTELPllInvalid("p1 out of range\n");
79e53945 547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 548 INTELPllInvalid("m2 out of range\n");
79e53945 549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 550 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
79e53945 563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 564 INTELPllInvalid("vco out of range\n");
79e53945
JB
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 569 INTELPllInvalid("dot out of range\n");
79e53945
JB
570
571 return true;
572}
573
d4906093 574static bool
ee9300bb 575i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
79e53945
JB
578{
579 struct drm_device *dev = crtc->dev;
79e53945 580 intel_clock_t clock;
79e53945
JB
581 int err = target;
582
a210b028 583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 584 /*
a210b028
DV
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
79e53945 588 */
1974cad0 589 if (intel_is_dual_link_lvds(dev))
79e53945
JB
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
0206e353 600 memset(best_clock, 0, sizeof(*best_clock));
79e53945 601
42158660
ZY
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 606 if (clock.m2 >= clock.m1)
42158660
ZY
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
612 int this_err;
613
ac58c3f0
DV
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633}
634
635static bool
ee9300bb
DV
636pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
671 int this_err;
672
ac58c3f0 673 pineview_clock(refclk, &clock);
1b894b59
CW
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
79e53945 676 continue;
cec2f356
SP
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
79e53945
JB
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692}
693
d4906093 694static bool
ee9300bb
DV
695g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
d4906093
ML
698{
699 struct drm_device *dev = crtc->dev;
d4906093
ML
700 intel_clock_t clock;
701 int max_n;
702 bool found;
6ba770dc
AJ
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 708 if (intel_is_dual_link_lvds(dev))
d4906093
ML
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
f77f13e2 721 /* based on hardware requirement, prefer smaller n to precision */
d4906093 722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 723 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
ac58c3f0 732 i9xx_clock(refclk, &clock);
1b894b59
CW
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
d4906093 735 continue;
1b894b59
CW
736
737 this_err = abs(clock.dot - target);
d4906093
ML
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
2c07245f
ZW
748 return found;
749}
750
a0c4da24 751static bool
ee9300bb
DV
752vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
a0c4da24 755{
f01b7962 756 struct drm_device *dev = crtc->dev;
6b4bf1c4 757 intel_clock_t clock;
69e4f900 758 unsigned int bestppm = 1000000;
27e639bf
VS
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 761 bool found = false;
a0c4da24 762
6b4bf1c4
VS
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
766
767 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 772 clock.p = clock.p1 * clock.p2;
a0c4da24 773 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
775 unsigned int ppm, diff;
776
6b4bf1c4
VS
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
43b0ac53 781
f01b7962
VS
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
43b0ac53
VS
784 continue;
785
6b4bf1c4
VS
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 790 bestppm = 0;
6b4bf1c4 791 *best_clock = clock;
49e497ef 792 found = true;
43b0ac53 793 }
6b4bf1c4 794
c686122c 795 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 796 bestppm = ppm;
6b4bf1c4 797 *best_clock = clock;
49e497ef 798 found = true;
a0c4da24
JB
799 }
800 }
801 }
802 }
803 }
a0c4da24 804
49e497ef 805 return found;
a0c4da24 806}
a4fc5ed6 807
ef9348c8
CML
808static bool
809chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858}
859
20ddf665
VS
860bool intel_crtc_active(struct drm_crtc *crtc)
861{
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
241bfc38 867 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
868 * as Haswell has gained clock readout/fastboot support.
869 *
66e514c1 870 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
871 * properly reconstruct framebuffers.
872 */
f4510a27 873 return intel_crtc->active && crtc->primary->fb &&
241bfc38 874 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
875}
876
a5c961d1
PZ
877enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
3b117c8f 883 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
884}
885
57e22f4a 886static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
887{
888 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 894 WARN(1, "vblank wait timed out\n");
a928d536
PZ
895}
896
9d0498a2
JB
897/**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 906{
9d0498a2 907 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 908 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 909
57e22f4a
VS
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
912 return;
913 }
914
300387c0
CW
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
9d0498a2 931 /* Wait for vblank interrupt bit to set */
481b6af3
CW
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
9d0498a2
JB
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936}
937
fbf49ea2
VS
938static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939{
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955}
956
ab7ad7f6
KP
957/*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
ab7ad7f6
KP
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
58e10eb9 972 *
9d0498a2 973 */
58e10eb9 974void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
975{
976 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
ab7ad7f6
KP
979
980 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 981 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
982
983 /* Wait for the Pipe State to go off */
58e10eb9
CW
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
284637d9 986 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 987 } else {
ab7ad7f6 988 /* Wait for the display line to settle */
fbf49ea2 989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 990 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 991 }
79e53945
JB
992}
993
b0ea7d37
DL
994/*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003{
1004 u32 bit;
1005
c36346e3 1006 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1007 switch (port->port) {
c36346e3
DL
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
eba905b2 1021 switch (port->port) {
c36346e3
DL
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
b0ea7d37
DL
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037}
1038
b24e7179
JB
1039static const char *state_string(bool enabled)
1040{
1041 return enabled ? "on" : "off";
1042}
1043
1044/* Only for pre-ILK configs */
55607e8a
DV
1045void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
b24e7179
JB
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
b24e7179 1059
23538ef1
JN
1060/* XXX: the dsi pll is shared between MIPI DSI ports */
1061static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062{
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074}
1075#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
55607e8a 1078struct intel_shared_dpll *
e2b78267
DV
1079intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080{
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
a43f6e0f 1083 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1084 return NULL;
1085
a43f6e0f 1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1087}
1088
040484af 1089/* For ILK+ */
55607e8a
DV
1090void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
040484af 1093{
040484af 1094 bool cur_state;
5358901f 1095 struct intel_dpll_hw_state hw_state;
040484af 1096
9d82aa17
ED
1097 if (HAS_PCH_LPT(dev_priv->dev)) {
1098 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1099 return;
1100 }
1101
92b27b08 1102 if (WARN (!pll,
46edb027 1103 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1104 return;
ee7b9f93 1105
5358901f 1106 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1107 WARN(cur_state != state,
5358901f
DV
1108 "%s assertion failure (expected %s, current %s)\n",
1109 pll->name, state_string(state), state_string(cur_state));
040484af 1110}
040484af
JB
1111
1112static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114{
1115 int reg;
1116 u32 val;
1117 bool cur_state;
ad80a810
PZ
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
040484af 1120
affa9354
PZ
1121 if (HAS_DDI(dev_priv->dev)) {
1122 /* DDI does not have a specific FDI_TX register */
ad80a810 1123 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1124 val = I915_READ(reg);
ad80a810 1125 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1126 } else {
1127 reg = FDI_TX_CTL(pipe);
1128 val = I915_READ(reg);
1129 cur_state = !!(val & FDI_TX_ENABLE);
1130 }
040484af
JB
1131 WARN(cur_state != state,
1132 "FDI TX state assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
1134}
1135#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1136#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1137
1138static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1139 enum pipe pipe, bool state)
1140{
1141 int reg;
1142 u32 val;
1143 bool cur_state;
1144
d63fa0dc
PZ
1145 reg = FDI_RX_CTL(pipe);
1146 val = I915_READ(reg);
1147 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1148 WARN(cur_state != state,
1149 "FDI RX state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151}
1152#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1153#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1154
1155static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1156 enum pipe pipe)
1157{
1158 int reg;
1159 u32 val;
1160
1161 /* ILK FDI PLL is always enabled */
3d13ef2e 1162 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1163 return;
1164
bf507ef7 1165 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1166 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1167 return;
1168
040484af
JB
1169 reg = FDI_TX_CTL(pipe);
1170 val = I915_READ(reg);
1171 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1172}
1173
55607e8a
DV
1174void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1175 enum pipe pipe, bool state)
040484af
JB
1176{
1177 int reg;
1178 u32 val;
55607e8a 1179 bool cur_state;
040484af
JB
1180
1181 reg = FDI_RX_CTL(pipe);
1182 val = I915_READ(reg);
55607e8a
DV
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 state_string(state), state_string(cur_state));
040484af
JB
1187}
1188
ea0760cf
JB
1189static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191{
1192 int pp_reg, lvds_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
0de3b485 1195 bool locked = true;
ea0760cf
JB
1196
1197 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1198 pp_reg = PCH_PP_CONTROL;
1199 lvds_reg = PCH_LVDS;
1200 } else {
1201 pp_reg = PP_CONTROL;
1202 lvds_reg = LVDS;
1203 }
1204
1205 val = I915_READ(pp_reg);
1206 if (!(val & PANEL_POWER_ON) ||
1207 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1208 locked = false;
1209
1210 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1211 panel_pipe = PIPE_B;
1212
1213 WARN(panel_pipe == pipe && locked,
1214 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1215 pipe_name(pipe));
ea0760cf
JB
1216}
1217
93ce0ba6
JN
1218static void assert_cursor(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220{
1221 struct drm_device *dev = dev_priv->dev;
1222 bool cur_state;
1223
d9d82081 1224 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1225 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1226 else
5efb3e28 1227 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1228
1229 WARN(cur_state != state,
1230 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1231 pipe_name(pipe), state_string(state), state_string(cur_state));
1232}
1233#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1234#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1235
b840d907
JB
1236void assert_pipe(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, bool state)
b24e7179
JB
1238{
1239 int reg;
1240 u32 val;
63d7bbe9 1241 bool cur_state;
702e7a56
PZ
1242 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1243 pipe);
b24e7179 1244
8e636784
DV
1245 /* if we need the pipe A quirk it must be always on */
1246 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1247 state = true;
1248
da7e29bd 1249 if (!intel_display_power_enabled(dev_priv,
b97186f0 1250 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1251 cur_state = false;
1252 } else {
1253 reg = PIPECONF(cpu_transcoder);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & PIPECONF_ENABLE);
1256 }
1257
63d7bbe9
JB
1258 WARN(cur_state != state,
1259 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1260 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1261}
1262
931872fc
CW
1263static void assert_plane(struct drm_i915_private *dev_priv,
1264 enum plane plane, bool state)
b24e7179
JB
1265{
1266 int reg;
1267 u32 val;
931872fc 1268 bool cur_state;
b24e7179
JB
1269
1270 reg = DSPCNTR(plane);
1271 val = I915_READ(reg);
931872fc
CW
1272 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1273 WARN(cur_state != state,
1274 "plane %c assertion failure (expected %s, current %s)\n",
1275 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1276}
1277
931872fc
CW
1278#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1279#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1280
b24e7179
JB
1281static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe)
1283{
653e1026 1284 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1285 int reg, i;
1286 u32 val;
1287 int cur_pipe;
1288
653e1026
VS
1289 /* Primary planes are fixed to pipes on gen4+ */
1290 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1291 reg = DSPCNTR(pipe);
1292 val = I915_READ(reg);
83f26f16 1293 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1294 "plane %c assertion failure, should be disabled but not\n",
1295 plane_name(pipe));
19ec1358 1296 return;
28c05794 1297 }
19ec1358 1298
b24e7179 1299 /* Need to check both planes against the pipe */
08e2a7de 1300 for_each_pipe(i) {
b24e7179
JB
1301 reg = DSPCNTR(i);
1302 val = I915_READ(reg);
1303 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1304 DISPPLANE_SEL_PIPE_SHIFT;
1305 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1306 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1307 plane_name(i), pipe_name(pipe));
b24e7179
JB
1308 }
1309}
1310
19332d7a
JB
1311static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1312 enum pipe pipe)
1313{
20674eef 1314 struct drm_device *dev = dev_priv->dev;
1fe47785 1315 int reg, sprite;
19332d7a
JB
1316 u32 val;
1317
20674eef 1318 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1319 for_each_sprite(pipe, sprite) {
1320 reg = SPCNTR(pipe, sprite);
20674eef 1321 val = I915_READ(reg);
83f26f16 1322 WARN(val & SP_ENABLE,
20674eef 1323 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1324 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1325 }
1326 } else if (INTEL_INFO(dev)->gen >= 7) {
1327 reg = SPRCTL(pipe);
19332d7a 1328 val = I915_READ(reg);
83f26f16 1329 WARN(val & SPRITE_ENABLE,
06da8da2 1330 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1331 plane_name(pipe), pipe_name(pipe));
1332 } else if (INTEL_INFO(dev)->gen >= 5) {
1333 reg = DVSCNTR(pipe);
19332d7a 1334 val = I915_READ(reg);
83f26f16 1335 WARN(val & DVS_ENABLE,
06da8da2 1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1337 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1338 }
1339}
1340
89eff4be 1341static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1342{
1343 u32 val;
1344 bool enabled;
1345
89eff4be 1346 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1347
92f2584a
JB
1348 val = I915_READ(PCH_DREF_CONTROL);
1349 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1350 DREF_SUPERSPREAD_SOURCE_MASK));
1351 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1352}
1353
ab9412ba
DV
1354static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
92f2584a
JB
1356{
1357 int reg;
1358 u32 val;
1359 bool enabled;
1360
ab9412ba 1361 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1362 val = I915_READ(reg);
1363 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1364 WARN(enabled,
1365 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1366 pipe_name(pipe));
92f2584a
JB
1367}
1368
4e634389
KP
1369static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1371{
1372 if ((val & DP_PORT_EN) == 0)
1373 return false;
1374
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1377 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1378 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1379 return false;
44f37d1f
CML
1380 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1381 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1382 return false;
f0575e92
KP
1383 } else {
1384 if ((val & DP_PIPE_MASK) != (pipe << 30))
1385 return false;
1386 }
1387 return true;
1388}
1389
1519b995
KP
1390static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, u32 val)
1392{
dc0fa718 1393 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1394 return false;
1395
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1398 return false;
44f37d1f
CML
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1401 return false;
1519b995 1402 } else {
dc0fa718 1403 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1404 return false;
1405 }
1406 return true;
1407}
1408
1409static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411{
1412 if ((val & LVDS_PORT_EN) == 0)
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
1416 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1417 return false;
1418 } else {
1419 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1420 return false;
1421 }
1422 return true;
1423}
1424
1425static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1426 enum pipe pipe, u32 val)
1427{
1428 if ((val & ADPA_DAC_ENABLE) == 0)
1429 return false;
1430 if (HAS_PCH_CPT(dev_priv->dev)) {
1431 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1432 return false;
1433 } else {
1434 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1435 return false;
1436 }
1437 return true;
1438}
1439
291906f1 1440static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1441 enum pipe pipe, int reg, u32 port_sel)
291906f1 1442{
47a05eca 1443 u32 val = I915_READ(reg);
4e634389 1444 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1445 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1446 reg, pipe_name(pipe));
de9a35ab 1447
75c5da27
DV
1448 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1449 && (val & DP_PIPEB_SELECT),
de9a35ab 1450 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1451}
1452
1453static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe, int reg)
1455{
47a05eca 1456 u32 val = I915_READ(reg);
b70ad586 1457 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1458 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1459 reg, pipe_name(pipe));
de9a35ab 1460
dc0fa718 1461 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1462 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1463 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1464}
1465
1466static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe)
1468{
1469 int reg;
1470 u32 val;
291906f1 1471
f0575e92
KP
1472 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1475
1476 reg = PCH_ADPA;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1
JB
1481
1482 reg = PCH_LVDS;
1483 val = I915_READ(reg);
b70ad586 1484 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1486 pipe_name(pipe));
291906f1 1487
e2debe91
PZ
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1491}
1492
40e9cf64
JB
1493static void intel_init_dpio(struct drm_device *dev)
1494{
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496
1497 if (!IS_VALLEYVIEW(dev))
1498 return;
1499
a09caddd
CML
1500 /*
1501 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1502 * CHV x1 PHY (DP/HDMI D)
1503 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1504 */
1505 if (IS_CHERRYVIEW(dev)) {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1507 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1508 } else {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1510 }
5382f5f3
JB
1511}
1512
1513static void intel_reset_dpio(struct drm_device *dev)
1514{
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516
1517 if (!IS_VALLEYVIEW(dev))
1518 return;
1519
076ed3b2
CML
1520 if (IS_CHERRYVIEW(dev)) {
1521 enum dpio_phy phy;
1522 u32 val;
1523
1524 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1525 /* Poll for phypwrgood signal */
1526 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1527 PHY_POWERGOOD(phy), 1))
1528 DRM_ERROR("Display PHY %d is not power up\n", phy);
1529
1530 /*
1531 * Deassert common lane reset for PHY.
1532 *
1533 * This should only be done on init and resume from S3
1534 * with both PLLs disabled, or we risk losing DPIO and
1535 * PLL synchronization.
1536 */
1537 val = I915_READ(DISPLAY_PHY_CONTROL);
1538 I915_WRITE(DISPLAY_PHY_CONTROL,
1539 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1540 }
1541
1542 } else {
1543 /*
57021059
JB
1544 * If DPIO has already been reset, e.g. by BIOS, just skip all
1545 * this.
076ed3b2 1546 */
57021059
JB
1547 if (I915_READ(DPIO_CTL) & DPIO_CMNRST)
1548 return;
1549
1550 /*
1551 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1552 * Need to assert and de-assert PHY SB reset by gating the
1553 * common lane power, then un-gating it.
1554 * Simply ungating isn't enough to reset the PHY enough to get
1555 * ports and lanes running.
1556 */
1557 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1558 false);
1559 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1560 true);
076ed3b2 1561 }
40e9cf64
JB
1562}
1563
426115cf 1564static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1565{
426115cf
DV
1566 struct drm_device *dev = crtc->base.dev;
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 int reg = DPLL(crtc->pipe);
1569 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1570
426115cf 1571 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1572
1573 /* No really, not for ILK+ */
1574 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1575
1576 /* PLL is protected by panel, make sure we can write it */
1577 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1578 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1579
426115cf
DV
1580 I915_WRITE(reg, dpll);
1581 POSTING_READ(reg);
1582 udelay(150);
1583
1584 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1585 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1586
1587 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1588 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1589
1590 /* We do this three times for luck */
426115cf 1591 I915_WRITE(reg, dpll);
87442f73
DV
1592 POSTING_READ(reg);
1593 udelay(150); /* wait for warmup */
426115cf 1594 I915_WRITE(reg, dpll);
87442f73
DV
1595 POSTING_READ(reg);
1596 udelay(150); /* wait for warmup */
426115cf 1597 I915_WRITE(reg, dpll);
87442f73
DV
1598 POSTING_READ(reg);
1599 udelay(150); /* wait for warmup */
1600}
1601
9d556c99
CML
1602static void chv_enable_pll(struct intel_crtc *crtc)
1603{
1604 struct drm_device *dev = crtc->base.dev;
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 int pipe = crtc->pipe;
1607 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1608 u32 tmp;
1609
1610 assert_pipe_disabled(dev_priv, crtc->pipe);
1611
1612 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1613
1614 mutex_lock(&dev_priv->dpio_lock);
1615
1616 /* Enable back the 10bit clock to display controller */
1617 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1618 tmp |= DPIO_DCLKP_EN;
1619 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1620
1621 /*
1622 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1623 */
1624 udelay(1);
1625
1626 /* Enable PLL */
a11b0703 1627 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1628
1629 /* Check PLL is locked */
a11b0703 1630 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1631 DRM_ERROR("PLL %d failed to lock\n", pipe);
1632
a11b0703
VS
1633 /* not sure when this should be written */
1634 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1635 POSTING_READ(DPLL_MD(pipe));
1636
9d556c99
CML
1637 mutex_unlock(&dev_priv->dpio_lock);
1638}
1639
66e3d5c0 1640static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1641{
66e3d5c0
DV
1642 struct drm_device *dev = crtc->base.dev;
1643 struct drm_i915_private *dev_priv = dev->dev_private;
1644 int reg = DPLL(crtc->pipe);
1645 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1646
66e3d5c0 1647 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1648
63d7bbe9 1649 /* No really, not for ILK+ */
3d13ef2e 1650 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1651
1652 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1653 if (IS_MOBILE(dev) && !IS_I830(dev))
1654 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1655
66e3d5c0
DV
1656 I915_WRITE(reg, dpll);
1657
1658 /* Wait for the clocks to stabilize. */
1659 POSTING_READ(reg);
1660 udelay(150);
1661
1662 if (INTEL_INFO(dev)->gen >= 4) {
1663 I915_WRITE(DPLL_MD(crtc->pipe),
1664 crtc->config.dpll_hw_state.dpll_md);
1665 } else {
1666 /* The pixel multiplier can only be updated once the
1667 * DPLL is enabled and the clocks are stable.
1668 *
1669 * So write it again.
1670 */
1671 I915_WRITE(reg, dpll);
1672 }
63d7bbe9
JB
1673
1674 /* We do this three times for luck */
66e3d5c0 1675 I915_WRITE(reg, dpll);
63d7bbe9
JB
1676 POSTING_READ(reg);
1677 udelay(150); /* wait for warmup */
66e3d5c0 1678 I915_WRITE(reg, dpll);
63d7bbe9
JB
1679 POSTING_READ(reg);
1680 udelay(150); /* wait for warmup */
66e3d5c0 1681 I915_WRITE(reg, dpll);
63d7bbe9
JB
1682 POSTING_READ(reg);
1683 udelay(150); /* wait for warmup */
1684}
1685
1686/**
50b44a44 1687 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1688 * @dev_priv: i915 private structure
1689 * @pipe: pipe PLL to disable
1690 *
1691 * Disable the PLL for @pipe, making sure the pipe is off first.
1692 *
1693 * Note! This is for pre-ILK only.
1694 */
50b44a44 1695static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1696{
63d7bbe9
JB
1697 /* Don't disable pipe A or pipe A PLLs if needed */
1698 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1699 return;
1700
1701 /* Make sure the pipe isn't still relying on us */
1702 assert_pipe_disabled(dev_priv, pipe);
1703
50b44a44
DV
1704 I915_WRITE(DPLL(pipe), 0);
1705 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1706}
1707
f6071166
JB
1708static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1709{
1710 u32 val = 0;
1711
1712 /* Make sure the pipe isn't still relying on us */
1713 assert_pipe_disabled(dev_priv, pipe);
1714
e5cbfbfb
ID
1715 /*
1716 * Leave integrated clock source and reference clock enabled for pipe B.
1717 * The latter is needed for VGA hotplug / manual detection.
1718 */
f6071166 1719 if (pipe == PIPE_B)
e5cbfbfb 1720 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1723
1724}
1725
1726static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1727{
d752048d 1728 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1729 u32 val;
1730
a11b0703
VS
1731 /* Make sure the pipe isn't still relying on us */
1732 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1733
a11b0703
VS
1734 /* Set PLL en = 0 */
1735 val = DPLL_SSC_REF_CLOCK_CHV;
1736 if (pipe != PIPE_A)
1737 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1738 I915_WRITE(DPLL(pipe), val);
1739 POSTING_READ(DPLL(pipe));
d752048d
VS
1740
1741 mutex_lock(&dev_priv->dpio_lock);
1742
1743 /* Disable 10bit clock to display controller */
1744 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1745 val &= ~DPIO_DCLKP_EN;
1746 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1747
61407f6d
VS
1748 /* disable left/right clock distribution */
1749 if (pipe != PIPE_B) {
1750 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1751 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1752 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1753 } else {
1754 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1755 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1756 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1757 }
1758
d752048d 1759 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1760}
1761
e4607fcf
CML
1762void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1763 struct intel_digital_port *dport)
89b667f8
JB
1764{
1765 u32 port_mask;
00fc31b7 1766 int dpll_reg;
89b667f8 1767
e4607fcf
CML
1768 switch (dport->port) {
1769 case PORT_B:
89b667f8 1770 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1771 dpll_reg = DPLL(0);
e4607fcf
CML
1772 break;
1773 case PORT_C:
89b667f8 1774 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1775 dpll_reg = DPLL(0);
1776 break;
1777 case PORT_D:
1778 port_mask = DPLL_PORTD_READY_MASK;
1779 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1780 break;
1781 default:
1782 BUG();
1783 }
89b667f8 1784
00fc31b7 1785 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1786 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1787 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1788}
1789
b14b1055
DV
1790static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1791{
1792 struct drm_device *dev = crtc->base.dev;
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1795
be19f0ff
CW
1796 if (WARN_ON(pll == NULL))
1797 return;
1798
b14b1055
DV
1799 WARN_ON(!pll->refcount);
1800 if (pll->active == 0) {
1801 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1802 WARN_ON(pll->on);
1803 assert_shared_dpll_disabled(dev_priv, pll);
1804
1805 pll->mode_set(dev_priv, pll);
1806 }
1807}
1808
92f2584a 1809/**
85b3894f 1810 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1811 * @dev_priv: i915 private structure
1812 * @pipe: pipe PLL to enable
1813 *
1814 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1815 * drives the transcoder clock.
1816 */
85b3894f 1817static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1818{
3d13ef2e
DL
1819 struct drm_device *dev = crtc->base.dev;
1820 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1821 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1822
87a875bb 1823 if (WARN_ON(pll == NULL))
48da64a8
CW
1824 return;
1825
1826 if (WARN_ON(pll->refcount == 0))
1827 return;
ee7b9f93 1828
46edb027
DV
1829 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1830 pll->name, pll->active, pll->on,
e2b78267 1831 crtc->base.base.id);
92f2584a 1832
cdbd2316
DV
1833 if (pll->active++) {
1834 WARN_ON(!pll->on);
e9d6944e 1835 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1836 return;
1837 }
f4a091c7 1838 WARN_ON(pll->on);
ee7b9f93 1839
46edb027 1840 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1841 pll->enable(dev_priv, pll);
ee7b9f93 1842 pll->on = true;
92f2584a
JB
1843}
1844
e2b78267 1845static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1846{
3d13ef2e
DL
1847 struct drm_device *dev = crtc->base.dev;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1849 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1850
92f2584a 1851 /* PCH only available on ILK+ */
3d13ef2e 1852 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1853 if (WARN_ON(pll == NULL))
ee7b9f93 1854 return;
92f2584a 1855
48da64a8
CW
1856 if (WARN_ON(pll->refcount == 0))
1857 return;
7a419866 1858
46edb027
DV
1859 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1860 pll->name, pll->active, pll->on,
e2b78267 1861 crtc->base.base.id);
7a419866 1862
48da64a8 1863 if (WARN_ON(pll->active == 0)) {
e9d6944e 1864 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1865 return;
1866 }
1867
e9d6944e 1868 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1869 WARN_ON(!pll->on);
cdbd2316 1870 if (--pll->active)
7a419866 1871 return;
ee7b9f93 1872
46edb027 1873 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1874 pll->disable(dev_priv, pll);
ee7b9f93 1875 pll->on = false;
92f2584a
JB
1876}
1877
b8a4f404
PZ
1878static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1879 enum pipe pipe)
040484af 1880{
23670b32 1881 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1882 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1884 uint32_t reg, val, pipeconf_val;
040484af
JB
1885
1886 /* PCH only available on ILK+ */
3d13ef2e 1887 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1888
1889 /* Make sure PCH DPLL is enabled */
e72f9fbf 1890 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1891 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1892
1893 /* FDI must be feeding us bits for PCH ports */
1894 assert_fdi_tx_enabled(dev_priv, pipe);
1895 assert_fdi_rx_enabled(dev_priv, pipe);
1896
23670b32
DV
1897 if (HAS_PCH_CPT(dev)) {
1898 /* Workaround: Set the timing override bit before enabling the
1899 * pch transcoder. */
1900 reg = TRANS_CHICKEN2(pipe);
1901 val = I915_READ(reg);
1902 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1903 I915_WRITE(reg, val);
59c859d6 1904 }
23670b32 1905
ab9412ba 1906 reg = PCH_TRANSCONF(pipe);
040484af 1907 val = I915_READ(reg);
5f7f726d 1908 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1909
1910 if (HAS_PCH_IBX(dev_priv->dev)) {
1911 /*
1912 * make the BPC in transcoder be consistent with
1913 * that in pipeconf reg.
1914 */
dfd07d72
DV
1915 val &= ~PIPECONF_BPC_MASK;
1916 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1917 }
5f7f726d
PZ
1918
1919 val &= ~TRANS_INTERLACE_MASK;
1920 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1921 if (HAS_PCH_IBX(dev_priv->dev) &&
1922 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1923 val |= TRANS_LEGACY_INTERLACED_ILK;
1924 else
1925 val |= TRANS_INTERLACED;
5f7f726d
PZ
1926 else
1927 val |= TRANS_PROGRESSIVE;
1928
040484af
JB
1929 I915_WRITE(reg, val | TRANS_ENABLE);
1930 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1931 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1932}
1933
8fb033d7 1934static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1935 enum transcoder cpu_transcoder)
040484af 1936{
8fb033d7 1937 u32 val, pipeconf_val;
8fb033d7
PZ
1938
1939 /* PCH only available on ILK+ */
3d13ef2e 1940 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1941
8fb033d7 1942 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1943 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1944 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1945
223a6fdf
PZ
1946 /* Workaround: set timing override bit. */
1947 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1948 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1949 I915_WRITE(_TRANSA_CHICKEN2, val);
1950
25f3ef11 1951 val = TRANS_ENABLE;
937bb610 1952 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1953
9a76b1c6
PZ
1954 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1955 PIPECONF_INTERLACED_ILK)
a35f2679 1956 val |= TRANS_INTERLACED;
8fb033d7
PZ
1957 else
1958 val |= TRANS_PROGRESSIVE;
1959
ab9412ba
DV
1960 I915_WRITE(LPT_TRANSCONF, val);
1961 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1962 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1963}
1964
b8a4f404
PZ
1965static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1966 enum pipe pipe)
040484af 1967{
23670b32
DV
1968 struct drm_device *dev = dev_priv->dev;
1969 uint32_t reg, val;
040484af
JB
1970
1971 /* FDI relies on the transcoder */
1972 assert_fdi_tx_disabled(dev_priv, pipe);
1973 assert_fdi_rx_disabled(dev_priv, pipe);
1974
291906f1
JB
1975 /* Ports must be off as well */
1976 assert_pch_ports_disabled(dev_priv, pipe);
1977
ab9412ba 1978 reg = PCH_TRANSCONF(pipe);
040484af
JB
1979 val = I915_READ(reg);
1980 val &= ~TRANS_ENABLE;
1981 I915_WRITE(reg, val);
1982 /* wait for PCH transcoder off, transcoder state */
1983 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1984 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1985
1986 if (!HAS_PCH_IBX(dev)) {
1987 /* Workaround: Clear the timing override chicken bit again. */
1988 reg = TRANS_CHICKEN2(pipe);
1989 val = I915_READ(reg);
1990 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1991 I915_WRITE(reg, val);
1992 }
040484af
JB
1993}
1994
ab4d966c 1995static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1996{
8fb033d7
PZ
1997 u32 val;
1998
ab9412ba 1999 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2000 val &= ~TRANS_ENABLE;
ab9412ba 2001 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2002 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2003 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2004 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2005
2006 /* Workaround: clear timing override bit. */
2007 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2008 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2009 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2010}
2011
b24e7179 2012/**
309cfea8 2013 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2014 * @crtc: crtc responsible for the pipe
b24e7179 2015 *
0372264a 2016 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2017 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2018 */
e1fdc473 2019static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2020{
0372264a
PZ
2021 struct drm_device *dev = crtc->base.dev;
2022 struct drm_i915_private *dev_priv = dev->dev_private;
2023 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2024 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2025 pipe);
1a240d4d 2026 enum pipe pch_transcoder;
b24e7179
JB
2027 int reg;
2028 u32 val;
2029
58c6eaa2 2030 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2031 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2032 assert_sprites_disabled(dev_priv, pipe);
2033
681e5811 2034 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2035 pch_transcoder = TRANSCODER_A;
2036 else
2037 pch_transcoder = pipe;
2038
b24e7179
JB
2039 /*
2040 * A pipe without a PLL won't actually be able to drive bits from
2041 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2042 * need the check.
2043 */
2044 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2045 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2046 assert_dsi_pll_enabled(dev_priv);
2047 else
2048 assert_pll_enabled(dev_priv, pipe);
040484af 2049 else {
30421c4f 2050 if (crtc->config.has_pch_encoder) {
040484af 2051 /* if driving the PCH, we need FDI enabled */
cc391bbb 2052 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2053 assert_fdi_tx_pll_enabled(dev_priv,
2054 (enum pipe) cpu_transcoder);
040484af
JB
2055 }
2056 /* FIXME: assert CPU port conditions for SNB+ */
2057 }
b24e7179 2058
702e7a56 2059 reg = PIPECONF(cpu_transcoder);
b24e7179 2060 val = I915_READ(reg);
7ad25d48
PZ
2061 if (val & PIPECONF_ENABLE) {
2062 WARN_ON(!(pipe == PIPE_A &&
2063 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2064 return;
7ad25d48 2065 }
00d70b15
CW
2066
2067 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2068 POSTING_READ(reg);
b24e7179
JB
2069}
2070
2071/**
309cfea8 2072 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2073 * @dev_priv: i915 private structure
2074 * @pipe: pipe to disable
2075 *
2076 * Disable @pipe, making sure that various hardware specific requirements
2077 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2078 *
2079 * @pipe should be %PIPE_A or %PIPE_B.
2080 *
2081 * Will wait until the pipe has shut down before returning.
2082 */
2083static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2084 enum pipe pipe)
2085{
702e7a56
PZ
2086 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2087 pipe);
b24e7179
JB
2088 int reg;
2089 u32 val;
2090
2091 /*
2092 * Make sure planes won't keep trying to pump pixels to us,
2093 * or we might hang the display.
2094 */
2095 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2096 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2097 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2098
2099 /* Don't disable pipe A or pipe A PLLs if needed */
2100 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2101 return;
2102
702e7a56 2103 reg = PIPECONF(cpu_transcoder);
b24e7179 2104 val = I915_READ(reg);
00d70b15
CW
2105 if ((val & PIPECONF_ENABLE) == 0)
2106 return;
2107
2108 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2109 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2110}
2111
d74362c9
KP
2112/*
2113 * Plane regs are double buffered, going from enabled->disabled needs a
2114 * trigger in order to latch. The display address reg provides this.
2115 */
1dba99f4
VS
2116void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2117 enum plane plane)
d74362c9 2118{
3d13ef2e
DL
2119 struct drm_device *dev = dev_priv->dev;
2120 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2121
2122 I915_WRITE(reg, I915_READ(reg));
2123 POSTING_READ(reg);
d74362c9
KP
2124}
2125
b24e7179 2126/**
262ca2b0 2127 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2128 * @dev_priv: i915 private structure
2129 * @plane: plane to enable
2130 * @pipe: pipe being fed
2131 *
2132 * Enable @plane on @pipe, making sure that @pipe is running first.
2133 */
262ca2b0
MR
2134static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2135 enum plane plane, enum pipe pipe)
b24e7179 2136{
939c2fe8
VS
2137 struct intel_crtc *intel_crtc =
2138 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2139 int reg;
2140 u32 val;
2141
2142 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2143 assert_pipe_enabled(dev_priv, pipe);
2144
98ec7739
VS
2145 if (intel_crtc->primary_enabled)
2146 return;
0037f71c 2147
4c445e0e 2148 intel_crtc->primary_enabled = true;
939c2fe8 2149
b24e7179
JB
2150 reg = DSPCNTR(plane);
2151 val = I915_READ(reg);
10efa932 2152 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2153
2154 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2155 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2156}
2157
b24e7179 2158/**
262ca2b0 2159 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2160 * @dev_priv: i915 private structure
2161 * @plane: plane to disable
2162 * @pipe: pipe consuming the data
2163 *
2164 * Disable @plane; should be an independent operation.
2165 */
262ca2b0
MR
2166static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2167 enum plane plane, enum pipe pipe)
b24e7179 2168{
939c2fe8
VS
2169 struct intel_crtc *intel_crtc =
2170 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2171 int reg;
2172 u32 val;
2173
98ec7739
VS
2174 if (!intel_crtc->primary_enabled)
2175 return;
0037f71c 2176
4c445e0e 2177 intel_crtc->primary_enabled = false;
939c2fe8 2178
b24e7179
JB
2179 reg = DSPCNTR(plane);
2180 val = I915_READ(reg);
10efa932 2181 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2182
2183 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2184 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2185}
2186
693db184
CW
2187static bool need_vtd_wa(struct drm_device *dev)
2188{
2189#ifdef CONFIG_INTEL_IOMMU
2190 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2191 return true;
2192#endif
2193 return false;
2194}
2195
a57ce0b2
JB
2196static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2197{
2198 int tile_height;
2199
2200 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2201 return ALIGN(height, tile_height);
2202}
2203
127bd2ac 2204int
48b956c5 2205intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2206 struct drm_i915_gem_object *obj,
a4872ba6 2207 struct intel_engine_cs *pipelined)
6b95a207 2208{
ce453d81 2209 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2210 u32 alignment;
2211 int ret;
2212
05394f39 2213 switch (obj->tiling_mode) {
6b95a207 2214 case I915_TILING_NONE:
534843da
CW
2215 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2216 alignment = 128 * 1024;
a6c45cf0 2217 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2218 alignment = 4 * 1024;
2219 else
2220 alignment = 64 * 1024;
6b95a207
KH
2221 break;
2222 case I915_TILING_X:
2223 /* pin() will align the object as required by fence */
2224 alignment = 0;
2225 break;
2226 case I915_TILING_Y:
80075d49 2227 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2228 return -EINVAL;
2229 default:
2230 BUG();
2231 }
2232
693db184
CW
2233 /* Note that the w/a also requires 64 PTE of padding following the
2234 * bo. We currently fill all unused PTE with the shadow page and so
2235 * we should always have valid PTE following the scanout preventing
2236 * the VT-d warning.
2237 */
2238 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2239 alignment = 256 * 1024;
2240
ce453d81 2241 dev_priv->mm.interruptible = false;
2da3b9b9 2242 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2243 if (ret)
ce453d81 2244 goto err_interruptible;
6b95a207
KH
2245
2246 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2247 * fence, whereas 965+ only requires a fence if using
2248 * framebuffer compression. For simplicity, we always install
2249 * a fence as the cost is not that onerous.
2250 */
06d98131 2251 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2252 if (ret)
2253 goto err_unpin;
1690e1eb 2254
9a5a53b3 2255 i915_gem_object_pin_fence(obj);
6b95a207 2256
ce453d81 2257 dev_priv->mm.interruptible = true;
6b95a207 2258 return 0;
48b956c5
CW
2259
2260err_unpin:
cc98b413 2261 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2262err_interruptible:
2263 dev_priv->mm.interruptible = true;
48b956c5 2264 return ret;
6b95a207
KH
2265}
2266
1690e1eb
CW
2267void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2268{
2269 i915_gem_object_unpin_fence(obj);
cc98b413 2270 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2271}
2272
c2c75131
DV
2273/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2274 * is assumed to be a power-of-two. */
bc752862
CW
2275unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2276 unsigned int tiling_mode,
2277 unsigned int cpp,
2278 unsigned int pitch)
c2c75131 2279{
bc752862
CW
2280 if (tiling_mode != I915_TILING_NONE) {
2281 unsigned int tile_rows, tiles;
c2c75131 2282
bc752862
CW
2283 tile_rows = *y / 8;
2284 *y %= 8;
c2c75131 2285
bc752862
CW
2286 tiles = *x / (512/cpp);
2287 *x %= 512/cpp;
2288
2289 return tile_rows * pitch * 8 + tiles * 4096;
2290 } else {
2291 unsigned int offset;
2292
2293 offset = *y * pitch + *x * cpp;
2294 *y = 0;
2295 *x = (offset & 4095) / cpp;
2296 return offset & -4096;
2297 }
c2c75131
DV
2298}
2299
46f297fb
JB
2300int intel_format_to_fourcc(int format)
2301{
2302 switch (format) {
2303 case DISPPLANE_8BPP:
2304 return DRM_FORMAT_C8;
2305 case DISPPLANE_BGRX555:
2306 return DRM_FORMAT_XRGB1555;
2307 case DISPPLANE_BGRX565:
2308 return DRM_FORMAT_RGB565;
2309 default:
2310 case DISPPLANE_BGRX888:
2311 return DRM_FORMAT_XRGB8888;
2312 case DISPPLANE_RGBX888:
2313 return DRM_FORMAT_XBGR8888;
2314 case DISPPLANE_BGRX101010:
2315 return DRM_FORMAT_XRGB2101010;
2316 case DISPPLANE_RGBX101010:
2317 return DRM_FORMAT_XBGR2101010;
2318 }
2319}
2320
484b41dd 2321static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2322 struct intel_plane_config *plane_config)
2323{
2324 struct drm_device *dev = crtc->base.dev;
2325 struct drm_i915_gem_object *obj = NULL;
2326 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2327 u32 base = plane_config->base;
2328
ff2652ea
CW
2329 if (plane_config->size == 0)
2330 return false;
2331
46f297fb
JB
2332 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2333 plane_config->size);
2334 if (!obj)
484b41dd 2335 return false;
46f297fb
JB
2336
2337 if (plane_config->tiled) {
2338 obj->tiling_mode = I915_TILING_X;
66e514c1 2339 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2340 }
2341
66e514c1
DA
2342 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2343 mode_cmd.width = crtc->base.primary->fb->width;
2344 mode_cmd.height = crtc->base.primary->fb->height;
2345 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2346
2347 mutex_lock(&dev->struct_mutex);
2348
66e514c1 2349 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2350 &mode_cmd, obj)) {
46f297fb
JB
2351 DRM_DEBUG_KMS("intel fb init failed\n");
2352 goto out_unref_obj;
2353 }
2354
a071fa00 2355 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2356 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2357
2358 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2359 return true;
46f297fb
JB
2360
2361out_unref_obj:
2362 drm_gem_object_unreference(&obj->base);
2363 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2364 return false;
2365}
2366
2367static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2368 struct intel_plane_config *plane_config)
2369{
2370 struct drm_device *dev = intel_crtc->base.dev;
2371 struct drm_crtc *c;
2372 struct intel_crtc *i;
2373 struct intel_framebuffer *fb;
2374
66e514c1 2375 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2376 return;
2377
2378 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2379 return;
2380
66e514c1
DA
2381 kfree(intel_crtc->base.primary->fb);
2382 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2383
2384 /*
2385 * Failed to alloc the obj, check to see if we should share
2386 * an fb with another CRTC instead
2387 */
70e1e0ec 2388 for_each_crtc(dev, c) {
484b41dd
JB
2389 i = to_intel_crtc(c);
2390
2391 if (c == &intel_crtc->base)
2392 continue;
2393
66e514c1 2394 if (!i->active || !c->primary->fb)
484b41dd
JB
2395 continue;
2396
66e514c1 2397 fb = to_intel_framebuffer(c->primary->fb);
484b41dd 2398 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
66e514c1
DA
2399 drm_framebuffer_reference(c->primary->fb);
2400 intel_crtc->base.primary->fb = c->primary->fb;
a071fa00 2401 fb->obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2402 break;
2403 }
2404 }
46f297fb
JB
2405}
2406
29b9bde6
DV
2407static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2408 struct drm_framebuffer *fb,
2409 int x, int y)
81255565
JB
2410{
2411 struct drm_device *dev = crtc->dev;
2412 struct drm_i915_private *dev_priv = dev->dev_private;
2413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2414 struct intel_framebuffer *intel_fb;
05394f39 2415 struct drm_i915_gem_object *obj;
81255565 2416 int plane = intel_crtc->plane;
e506a0c6 2417 unsigned long linear_offset;
81255565 2418 u32 dspcntr;
5eddb70b 2419 u32 reg;
81255565 2420
81255565
JB
2421 intel_fb = to_intel_framebuffer(fb);
2422 obj = intel_fb->obj;
81255565 2423
5eddb70b
CW
2424 reg = DSPCNTR(plane);
2425 dspcntr = I915_READ(reg);
81255565
JB
2426 /* Mask out pixel format bits in case we change it */
2427 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2428 switch (fb->pixel_format) {
2429 case DRM_FORMAT_C8:
81255565
JB
2430 dspcntr |= DISPPLANE_8BPP;
2431 break;
57779d06
VS
2432 case DRM_FORMAT_XRGB1555:
2433 case DRM_FORMAT_ARGB1555:
2434 dspcntr |= DISPPLANE_BGRX555;
81255565 2435 break;
57779d06
VS
2436 case DRM_FORMAT_RGB565:
2437 dspcntr |= DISPPLANE_BGRX565;
2438 break;
2439 case DRM_FORMAT_XRGB8888:
2440 case DRM_FORMAT_ARGB8888:
2441 dspcntr |= DISPPLANE_BGRX888;
2442 break;
2443 case DRM_FORMAT_XBGR8888:
2444 case DRM_FORMAT_ABGR8888:
2445 dspcntr |= DISPPLANE_RGBX888;
2446 break;
2447 case DRM_FORMAT_XRGB2101010:
2448 case DRM_FORMAT_ARGB2101010:
2449 dspcntr |= DISPPLANE_BGRX101010;
2450 break;
2451 case DRM_FORMAT_XBGR2101010:
2452 case DRM_FORMAT_ABGR2101010:
2453 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2454 break;
2455 default:
baba133a 2456 BUG();
81255565 2457 }
57779d06 2458
a6c45cf0 2459 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2460 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2461 dspcntr |= DISPPLANE_TILED;
2462 else
2463 dspcntr &= ~DISPPLANE_TILED;
2464 }
2465
de1aa629
VS
2466 if (IS_G4X(dev))
2467 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2468
5eddb70b 2469 I915_WRITE(reg, dspcntr);
81255565 2470
e506a0c6 2471 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2472
c2c75131
DV
2473 if (INTEL_INFO(dev)->gen >= 4) {
2474 intel_crtc->dspaddr_offset =
bc752862
CW
2475 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2476 fb->bits_per_pixel / 8,
2477 fb->pitches[0]);
c2c75131
DV
2478 linear_offset -= intel_crtc->dspaddr_offset;
2479 } else {
e506a0c6 2480 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2481 }
e506a0c6 2482
f343c5f6
BW
2483 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2484 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2485 fb->pitches[0]);
01f2c773 2486 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2487 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2488 I915_WRITE(DSPSURF(plane),
2489 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2490 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2491 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2492 } else
f343c5f6 2493 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2494 POSTING_READ(reg);
17638cd6
JB
2495}
2496
29b9bde6
DV
2497static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2498 struct drm_framebuffer *fb,
2499 int x, int y)
17638cd6
JB
2500{
2501 struct drm_device *dev = crtc->dev;
2502 struct drm_i915_private *dev_priv = dev->dev_private;
2503 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2504 struct intel_framebuffer *intel_fb;
2505 struct drm_i915_gem_object *obj;
2506 int plane = intel_crtc->plane;
e506a0c6 2507 unsigned long linear_offset;
17638cd6
JB
2508 u32 dspcntr;
2509 u32 reg;
2510
17638cd6
JB
2511 intel_fb = to_intel_framebuffer(fb);
2512 obj = intel_fb->obj;
2513
2514 reg = DSPCNTR(plane);
2515 dspcntr = I915_READ(reg);
2516 /* Mask out pixel format bits in case we change it */
2517 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2518 switch (fb->pixel_format) {
2519 case DRM_FORMAT_C8:
17638cd6
JB
2520 dspcntr |= DISPPLANE_8BPP;
2521 break;
57779d06
VS
2522 case DRM_FORMAT_RGB565:
2523 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2524 break;
57779d06
VS
2525 case DRM_FORMAT_XRGB8888:
2526 case DRM_FORMAT_ARGB8888:
2527 dspcntr |= DISPPLANE_BGRX888;
2528 break;
2529 case DRM_FORMAT_XBGR8888:
2530 case DRM_FORMAT_ABGR8888:
2531 dspcntr |= DISPPLANE_RGBX888;
2532 break;
2533 case DRM_FORMAT_XRGB2101010:
2534 case DRM_FORMAT_ARGB2101010:
2535 dspcntr |= DISPPLANE_BGRX101010;
2536 break;
2537 case DRM_FORMAT_XBGR2101010:
2538 case DRM_FORMAT_ABGR2101010:
2539 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2540 break;
2541 default:
baba133a 2542 BUG();
17638cd6
JB
2543 }
2544
2545 if (obj->tiling_mode != I915_TILING_NONE)
2546 dspcntr |= DISPPLANE_TILED;
2547 else
2548 dspcntr &= ~DISPPLANE_TILED;
2549
b42c6009 2550 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2551 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2552 else
2553 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2554
2555 I915_WRITE(reg, dspcntr);
2556
e506a0c6 2557 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2558 intel_crtc->dspaddr_offset =
bc752862
CW
2559 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2560 fb->bits_per_pixel / 8,
2561 fb->pitches[0]);
c2c75131 2562 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2563
f343c5f6
BW
2564 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2565 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2566 fb->pitches[0]);
01f2c773 2567 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2568 I915_WRITE(DSPSURF(plane),
2569 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2570 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2571 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2572 } else {
2573 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2574 I915_WRITE(DSPLINOFF(plane), linear_offset);
2575 }
17638cd6 2576 POSTING_READ(reg);
17638cd6
JB
2577}
2578
2579/* Assume fb object is pinned & idle & fenced and just update base pointers */
2580static int
2581intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2582 int x, int y, enum mode_set_atomic state)
2583{
2584 struct drm_device *dev = crtc->dev;
2585 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2586
6b8e6ed0
CW
2587 if (dev_priv->display.disable_fbc)
2588 dev_priv->display.disable_fbc(dev);
cc36513c 2589 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2590
29b9bde6
DV
2591 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2592
2593 return 0;
81255565
JB
2594}
2595
96a02917
VS
2596void intel_display_handle_reset(struct drm_device *dev)
2597{
2598 struct drm_i915_private *dev_priv = dev->dev_private;
2599 struct drm_crtc *crtc;
2600
2601 /*
2602 * Flips in the rings have been nuked by the reset,
2603 * so complete all pending flips so that user space
2604 * will get its events and not get stuck.
2605 *
2606 * Also update the base address of all primary
2607 * planes to the the last fb to make sure we're
2608 * showing the correct fb after a reset.
2609 *
2610 * Need to make two loops over the crtcs so that we
2611 * don't try to grab a crtc mutex before the
2612 * pending_flip_queue really got woken up.
2613 */
2614
70e1e0ec 2615 for_each_crtc(dev, crtc) {
96a02917
VS
2616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2617 enum plane plane = intel_crtc->plane;
2618
2619 intel_prepare_page_flip(dev, plane);
2620 intel_finish_page_flip_plane(dev, plane);
2621 }
2622
70e1e0ec 2623 for_each_crtc(dev, crtc) {
96a02917
VS
2624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2625
51fd371b 2626 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2627 /*
2628 * FIXME: Once we have proper support for primary planes (and
2629 * disabling them without disabling the entire crtc) allow again
66e514c1 2630 * a NULL crtc->primary->fb.
947fdaad 2631 */
f4510a27 2632 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2633 dev_priv->display.update_primary_plane(crtc,
66e514c1 2634 crtc->primary->fb,
262ca2b0
MR
2635 crtc->x,
2636 crtc->y);
51fd371b 2637 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2638 }
2639}
2640
14667a4b
CW
2641static int
2642intel_finish_fb(struct drm_framebuffer *old_fb)
2643{
2644 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2645 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2646 bool was_interruptible = dev_priv->mm.interruptible;
2647 int ret;
2648
14667a4b
CW
2649 /* Big Hammer, we also need to ensure that any pending
2650 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2651 * current scanout is retired before unpinning the old
2652 * framebuffer.
2653 *
2654 * This should only fail upon a hung GPU, in which case we
2655 * can safely continue.
2656 */
2657 dev_priv->mm.interruptible = false;
2658 ret = i915_gem_object_finish_gpu(obj);
2659 dev_priv->mm.interruptible = was_interruptible;
2660
2661 return ret;
2662}
2663
7d5e3799
CW
2664static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2665{
2666 struct drm_device *dev = crtc->dev;
2667 struct drm_i915_private *dev_priv = dev->dev_private;
2668 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2669 unsigned long flags;
2670 bool pending;
2671
2672 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2673 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2674 return false;
2675
2676 spin_lock_irqsave(&dev->event_lock, flags);
2677 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2678 spin_unlock_irqrestore(&dev->event_lock, flags);
2679
2680 return pending;
2681}
2682
5c3b82e2 2683static int
3c4fdcfb 2684intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2685 struct drm_framebuffer *fb)
79e53945
JB
2686{
2687 struct drm_device *dev = crtc->dev;
6b8e6ed0 2688 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2690 enum pipe pipe = intel_crtc->pipe;
94352cf9 2691 struct drm_framebuffer *old_fb;
a071fa00 2692 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
91565c85 2693 struct drm_i915_gem_object *old_obj;
5c3b82e2 2694 int ret;
79e53945 2695
7d5e3799
CW
2696 if (intel_crtc_has_pending_flip(crtc)) {
2697 DRM_ERROR("pipe is still busy with an old pageflip\n");
2698 return -EBUSY;
2699 }
2700
79e53945 2701 /* no fb bound */
94352cf9 2702 if (!fb) {
a5071c2f 2703 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2704 return 0;
2705 }
2706
7eb552ae 2707 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2708 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2709 plane_name(intel_crtc->plane),
2710 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2711 return -EINVAL;
79e53945
JB
2712 }
2713
a071fa00 2714 old_fb = crtc->primary->fb;
91565c85 2715 old_obj = old_fb ? to_intel_framebuffer(old_fb)->obj : NULL;
a071fa00 2716
5c3b82e2 2717 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2718 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2719 if (ret == 0)
91565c85 2720 i915_gem_track_fb(old_obj, obj,
a071fa00 2721 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2722 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2723 if (ret != 0) {
a5071c2f 2724 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2725 return ret;
2726 }
79e53945 2727
bb2043de
DL
2728 /*
2729 * Update pipe size and adjust fitter if needed: the reason for this is
2730 * that in compute_mode_changes we check the native mode (not the pfit
2731 * mode) to see if we can flip rather than do a full mode set. In the
2732 * fastboot case, we'll flip, but if we don't update the pipesrc and
2733 * pfit state, we'll end up with a big fb scanned out into the wrong
2734 * sized surface.
2735 *
2736 * To fix this properly, we need to hoist the checks up into
2737 * compute_mode_changes (or above), check the actual pfit state and
2738 * whether the platform allows pfit disable with pipe active, and only
2739 * then update the pipesrc and pfit state, even on the flip path.
2740 */
d330a953 2741 if (i915.fastboot) {
d7bf63f2
DL
2742 const struct drm_display_mode *adjusted_mode =
2743 &intel_crtc->config.adjusted_mode;
2744
4d6a3e63 2745 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2746 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2747 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2748 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2749 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2750 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2751 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2752 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2753 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2754 }
0637d60d
JB
2755 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2756 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2757 }
2758
29b9bde6 2759 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2760
f99d7069
DV
2761 if (intel_crtc->active)
2762 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2763
f4510a27 2764 crtc->primary->fb = fb;
6c4c86f5
DV
2765 crtc->x = x;
2766 crtc->y = y;
94352cf9 2767
b7f1de28 2768 if (old_fb) {
d7697eea
DV
2769 if (intel_crtc->active && old_fb != fb)
2770 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2771 mutex_lock(&dev->struct_mutex);
1690e1eb 2772 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
8ac36ec1 2773 mutex_unlock(&dev->struct_mutex);
b7f1de28 2774 }
652c393a 2775
8ac36ec1 2776 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2777 intel_update_fbc(dev);
5c3b82e2 2778 mutex_unlock(&dev->struct_mutex);
79e53945 2779
5c3b82e2 2780 return 0;
79e53945
JB
2781}
2782
5e84e1a4
ZW
2783static void intel_fdi_normal_train(struct drm_crtc *crtc)
2784{
2785 struct drm_device *dev = crtc->dev;
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788 int pipe = intel_crtc->pipe;
2789 u32 reg, temp;
2790
2791 /* enable normal train */
2792 reg = FDI_TX_CTL(pipe);
2793 temp = I915_READ(reg);
61e499bf 2794 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2795 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2796 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2797 } else {
2798 temp &= ~FDI_LINK_TRAIN_NONE;
2799 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2800 }
5e84e1a4
ZW
2801 I915_WRITE(reg, temp);
2802
2803 reg = FDI_RX_CTL(pipe);
2804 temp = I915_READ(reg);
2805 if (HAS_PCH_CPT(dev)) {
2806 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2807 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2808 } else {
2809 temp &= ~FDI_LINK_TRAIN_NONE;
2810 temp |= FDI_LINK_TRAIN_NONE;
2811 }
2812 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2813
2814 /* wait one idle pattern time */
2815 POSTING_READ(reg);
2816 udelay(1000);
357555c0
JB
2817
2818 /* IVB wants error correction enabled */
2819 if (IS_IVYBRIDGE(dev))
2820 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2821 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2822}
2823
1fbc0d78 2824static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2825{
1fbc0d78
DV
2826 return crtc->base.enabled && crtc->active &&
2827 crtc->config.has_pch_encoder;
1e833f40
DV
2828}
2829
01a415fd
DV
2830static void ivb_modeset_global_resources(struct drm_device *dev)
2831{
2832 struct drm_i915_private *dev_priv = dev->dev_private;
2833 struct intel_crtc *pipe_B_crtc =
2834 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2835 struct intel_crtc *pipe_C_crtc =
2836 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2837 uint32_t temp;
2838
1e833f40
DV
2839 /*
2840 * When everything is off disable fdi C so that we could enable fdi B
2841 * with all lanes. Note that we don't care about enabled pipes without
2842 * an enabled pch encoder.
2843 */
2844 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2845 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2846 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2847 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2848
2849 temp = I915_READ(SOUTH_CHICKEN1);
2850 temp &= ~FDI_BC_BIFURCATION_SELECT;
2851 DRM_DEBUG_KMS("disabling fdi C rx\n");
2852 I915_WRITE(SOUTH_CHICKEN1, temp);
2853 }
2854}
2855
8db9d77b
ZW
2856/* The FDI link training functions for ILK/Ibexpeak. */
2857static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2858{
2859 struct drm_device *dev = crtc->dev;
2860 struct drm_i915_private *dev_priv = dev->dev_private;
2861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2862 int pipe = intel_crtc->pipe;
5eddb70b 2863 u32 reg, temp, tries;
8db9d77b 2864
1c8562f6 2865 /* FDI needs bits from pipe first */
0fc932b8 2866 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2867
e1a44743
AJ
2868 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2869 for train result */
5eddb70b
CW
2870 reg = FDI_RX_IMR(pipe);
2871 temp = I915_READ(reg);
e1a44743
AJ
2872 temp &= ~FDI_RX_SYMBOL_LOCK;
2873 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2874 I915_WRITE(reg, temp);
2875 I915_READ(reg);
e1a44743
AJ
2876 udelay(150);
2877
8db9d77b 2878 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2879 reg = FDI_TX_CTL(pipe);
2880 temp = I915_READ(reg);
627eb5a3
DV
2881 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2882 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2883 temp &= ~FDI_LINK_TRAIN_NONE;
2884 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2885 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2886
5eddb70b
CW
2887 reg = FDI_RX_CTL(pipe);
2888 temp = I915_READ(reg);
8db9d77b
ZW
2889 temp &= ~FDI_LINK_TRAIN_NONE;
2890 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2891 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2892
2893 POSTING_READ(reg);
8db9d77b
ZW
2894 udelay(150);
2895
5b2adf89 2896 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2897 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2898 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2899 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2900
5eddb70b 2901 reg = FDI_RX_IIR(pipe);
e1a44743 2902 for (tries = 0; tries < 5; tries++) {
5eddb70b 2903 temp = I915_READ(reg);
8db9d77b
ZW
2904 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2905
2906 if ((temp & FDI_RX_BIT_LOCK)) {
2907 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2908 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2909 break;
2910 }
8db9d77b 2911 }
e1a44743 2912 if (tries == 5)
5eddb70b 2913 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2914
2915 /* Train 2 */
5eddb70b
CW
2916 reg = FDI_TX_CTL(pipe);
2917 temp = I915_READ(reg);
8db9d77b
ZW
2918 temp &= ~FDI_LINK_TRAIN_NONE;
2919 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2920 I915_WRITE(reg, temp);
8db9d77b 2921
5eddb70b
CW
2922 reg = FDI_RX_CTL(pipe);
2923 temp = I915_READ(reg);
8db9d77b
ZW
2924 temp &= ~FDI_LINK_TRAIN_NONE;
2925 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2926 I915_WRITE(reg, temp);
8db9d77b 2927
5eddb70b
CW
2928 POSTING_READ(reg);
2929 udelay(150);
8db9d77b 2930
5eddb70b 2931 reg = FDI_RX_IIR(pipe);
e1a44743 2932 for (tries = 0; tries < 5; tries++) {
5eddb70b 2933 temp = I915_READ(reg);
8db9d77b
ZW
2934 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2935
2936 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2937 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2938 DRM_DEBUG_KMS("FDI train 2 done.\n");
2939 break;
2940 }
8db9d77b 2941 }
e1a44743 2942 if (tries == 5)
5eddb70b 2943 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2944
2945 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2946
8db9d77b
ZW
2947}
2948
0206e353 2949static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2950 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2951 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2952 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2953 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2954};
2955
2956/* The FDI link training functions for SNB/Cougarpoint. */
2957static void gen6_fdi_link_train(struct drm_crtc *crtc)
2958{
2959 struct drm_device *dev = crtc->dev;
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2962 int pipe = intel_crtc->pipe;
fa37d39e 2963 u32 reg, temp, i, retry;
8db9d77b 2964
e1a44743
AJ
2965 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2966 for train result */
5eddb70b
CW
2967 reg = FDI_RX_IMR(pipe);
2968 temp = I915_READ(reg);
e1a44743
AJ
2969 temp &= ~FDI_RX_SYMBOL_LOCK;
2970 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2971 I915_WRITE(reg, temp);
2972
2973 POSTING_READ(reg);
e1a44743
AJ
2974 udelay(150);
2975
8db9d77b 2976 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2977 reg = FDI_TX_CTL(pipe);
2978 temp = I915_READ(reg);
627eb5a3
DV
2979 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2980 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2981 temp &= ~FDI_LINK_TRAIN_NONE;
2982 temp |= FDI_LINK_TRAIN_PATTERN_1;
2983 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2984 /* SNB-B */
2985 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2986 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2987
d74cf324
DV
2988 I915_WRITE(FDI_RX_MISC(pipe),
2989 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2990
5eddb70b
CW
2991 reg = FDI_RX_CTL(pipe);
2992 temp = I915_READ(reg);
8db9d77b
ZW
2993 if (HAS_PCH_CPT(dev)) {
2994 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2995 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2996 } else {
2997 temp &= ~FDI_LINK_TRAIN_NONE;
2998 temp |= FDI_LINK_TRAIN_PATTERN_1;
2999 }
5eddb70b
CW
3000 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3001
3002 POSTING_READ(reg);
8db9d77b
ZW
3003 udelay(150);
3004
0206e353 3005 for (i = 0; i < 4; i++) {
5eddb70b
CW
3006 reg = FDI_TX_CTL(pipe);
3007 temp = I915_READ(reg);
8db9d77b
ZW
3008 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3009 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3010 I915_WRITE(reg, temp);
3011
3012 POSTING_READ(reg);
8db9d77b
ZW
3013 udelay(500);
3014
fa37d39e
SP
3015 for (retry = 0; retry < 5; retry++) {
3016 reg = FDI_RX_IIR(pipe);
3017 temp = I915_READ(reg);
3018 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3019 if (temp & FDI_RX_BIT_LOCK) {
3020 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3021 DRM_DEBUG_KMS("FDI train 1 done.\n");
3022 break;
3023 }
3024 udelay(50);
8db9d77b 3025 }
fa37d39e
SP
3026 if (retry < 5)
3027 break;
8db9d77b
ZW
3028 }
3029 if (i == 4)
5eddb70b 3030 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3031
3032 /* Train 2 */
5eddb70b
CW
3033 reg = FDI_TX_CTL(pipe);
3034 temp = I915_READ(reg);
8db9d77b
ZW
3035 temp &= ~FDI_LINK_TRAIN_NONE;
3036 temp |= FDI_LINK_TRAIN_PATTERN_2;
3037 if (IS_GEN6(dev)) {
3038 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3039 /* SNB-B */
3040 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3041 }
5eddb70b 3042 I915_WRITE(reg, temp);
8db9d77b 3043
5eddb70b
CW
3044 reg = FDI_RX_CTL(pipe);
3045 temp = I915_READ(reg);
8db9d77b
ZW
3046 if (HAS_PCH_CPT(dev)) {
3047 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3048 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3049 } else {
3050 temp &= ~FDI_LINK_TRAIN_NONE;
3051 temp |= FDI_LINK_TRAIN_PATTERN_2;
3052 }
5eddb70b
CW
3053 I915_WRITE(reg, temp);
3054
3055 POSTING_READ(reg);
8db9d77b
ZW
3056 udelay(150);
3057
0206e353 3058 for (i = 0; i < 4; i++) {
5eddb70b
CW
3059 reg = FDI_TX_CTL(pipe);
3060 temp = I915_READ(reg);
8db9d77b
ZW
3061 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3062 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3063 I915_WRITE(reg, temp);
3064
3065 POSTING_READ(reg);
8db9d77b
ZW
3066 udelay(500);
3067
fa37d39e
SP
3068 for (retry = 0; retry < 5; retry++) {
3069 reg = FDI_RX_IIR(pipe);
3070 temp = I915_READ(reg);
3071 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3072 if (temp & FDI_RX_SYMBOL_LOCK) {
3073 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3074 DRM_DEBUG_KMS("FDI train 2 done.\n");
3075 break;
3076 }
3077 udelay(50);
8db9d77b 3078 }
fa37d39e
SP
3079 if (retry < 5)
3080 break;
8db9d77b
ZW
3081 }
3082 if (i == 4)
5eddb70b 3083 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3084
3085 DRM_DEBUG_KMS("FDI train done.\n");
3086}
3087
357555c0
JB
3088/* Manual link training for Ivy Bridge A0 parts */
3089static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3090{
3091 struct drm_device *dev = crtc->dev;
3092 struct drm_i915_private *dev_priv = dev->dev_private;
3093 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3094 int pipe = intel_crtc->pipe;
139ccd3f 3095 u32 reg, temp, i, j;
357555c0
JB
3096
3097 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3098 for train result */
3099 reg = FDI_RX_IMR(pipe);
3100 temp = I915_READ(reg);
3101 temp &= ~FDI_RX_SYMBOL_LOCK;
3102 temp &= ~FDI_RX_BIT_LOCK;
3103 I915_WRITE(reg, temp);
3104
3105 POSTING_READ(reg);
3106 udelay(150);
3107
01a415fd
DV
3108 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3109 I915_READ(FDI_RX_IIR(pipe)));
3110
139ccd3f
JB
3111 /* Try each vswing and preemphasis setting twice before moving on */
3112 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3113 /* disable first in case we need to retry */
3114 reg = FDI_TX_CTL(pipe);
3115 temp = I915_READ(reg);
3116 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3117 temp &= ~FDI_TX_ENABLE;
3118 I915_WRITE(reg, temp);
357555c0 3119
139ccd3f
JB
3120 reg = FDI_RX_CTL(pipe);
3121 temp = I915_READ(reg);
3122 temp &= ~FDI_LINK_TRAIN_AUTO;
3123 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3124 temp &= ~FDI_RX_ENABLE;
3125 I915_WRITE(reg, temp);
357555c0 3126
139ccd3f 3127 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3128 reg = FDI_TX_CTL(pipe);
3129 temp = I915_READ(reg);
139ccd3f
JB
3130 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3131 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3132 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3133 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3134 temp |= snb_b_fdi_train_param[j/2];
3135 temp |= FDI_COMPOSITE_SYNC;
3136 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3137
139ccd3f
JB
3138 I915_WRITE(FDI_RX_MISC(pipe),
3139 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3140
139ccd3f 3141 reg = FDI_RX_CTL(pipe);
357555c0 3142 temp = I915_READ(reg);
139ccd3f
JB
3143 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3144 temp |= FDI_COMPOSITE_SYNC;
3145 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3146
139ccd3f
JB
3147 POSTING_READ(reg);
3148 udelay(1); /* should be 0.5us */
357555c0 3149
139ccd3f
JB
3150 for (i = 0; i < 4; i++) {
3151 reg = FDI_RX_IIR(pipe);
3152 temp = I915_READ(reg);
3153 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3154
139ccd3f
JB
3155 if (temp & FDI_RX_BIT_LOCK ||
3156 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3157 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3158 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3159 i);
3160 break;
3161 }
3162 udelay(1); /* should be 0.5us */
3163 }
3164 if (i == 4) {
3165 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3166 continue;
3167 }
357555c0 3168
139ccd3f 3169 /* Train 2 */
357555c0
JB
3170 reg = FDI_TX_CTL(pipe);
3171 temp = I915_READ(reg);
139ccd3f
JB
3172 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3173 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3174 I915_WRITE(reg, temp);
3175
3176 reg = FDI_RX_CTL(pipe);
3177 temp = I915_READ(reg);
3178 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3179 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3180 I915_WRITE(reg, temp);
3181
3182 POSTING_READ(reg);
139ccd3f 3183 udelay(2); /* should be 1.5us */
357555c0 3184
139ccd3f
JB
3185 for (i = 0; i < 4; i++) {
3186 reg = FDI_RX_IIR(pipe);
3187 temp = I915_READ(reg);
3188 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3189
139ccd3f
JB
3190 if (temp & FDI_RX_SYMBOL_LOCK ||
3191 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3192 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3193 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3194 i);
3195 goto train_done;
3196 }
3197 udelay(2); /* should be 1.5us */
357555c0 3198 }
139ccd3f
JB
3199 if (i == 4)
3200 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3201 }
357555c0 3202
139ccd3f 3203train_done:
357555c0
JB
3204 DRM_DEBUG_KMS("FDI train done.\n");
3205}
3206
88cefb6c 3207static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3208{
88cefb6c 3209 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3210 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3211 int pipe = intel_crtc->pipe;
5eddb70b 3212 u32 reg, temp;
79e53945 3213
c64e311e 3214
c98e9dcf 3215 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3216 reg = FDI_RX_CTL(pipe);
3217 temp = I915_READ(reg);
627eb5a3
DV
3218 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3219 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3220 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3221 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3222
3223 POSTING_READ(reg);
c98e9dcf
JB
3224 udelay(200);
3225
3226 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3227 temp = I915_READ(reg);
3228 I915_WRITE(reg, temp | FDI_PCDCLK);
3229
3230 POSTING_READ(reg);
c98e9dcf
JB
3231 udelay(200);
3232
20749730
PZ
3233 /* Enable CPU FDI TX PLL, always on for Ironlake */
3234 reg = FDI_TX_CTL(pipe);
3235 temp = I915_READ(reg);
3236 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3237 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3238
20749730
PZ
3239 POSTING_READ(reg);
3240 udelay(100);
6be4a607 3241 }
0e23b99d
JB
3242}
3243
88cefb6c
DV
3244static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3245{
3246 struct drm_device *dev = intel_crtc->base.dev;
3247 struct drm_i915_private *dev_priv = dev->dev_private;
3248 int pipe = intel_crtc->pipe;
3249 u32 reg, temp;
3250
3251 /* Switch from PCDclk to Rawclk */
3252 reg = FDI_RX_CTL(pipe);
3253 temp = I915_READ(reg);
3254 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3255
3256 /* Disable CPU FDI TX PLL */
3257 reg = FDI_TX_CTL(pipe);
3258 temp = I915_READ(reg);
3259 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3260
3261 POSTING_READ(reg);
3262 udelay(100);
3263
3264 reg = FDI_RX_CTL(pipe);
3265 temp = I915_READ(reg);
3266 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3267
3268 /* Wait for the clocks to turn off. */
3269 POSTING_READ(reg);
3270 udelay(100);
3271}
3272
0fc932b8
JB
3273static void ironlake_fdi_disable(struct drm_crtc *crtc)
3274{
3275 struct drm_device *dev = crtc->dev;
3276 struct drm_i915_private *dev_priv = dev->dev_private;
3277 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3278 int pipe = intel_crtc->pipe;
3279 u32 reg, temp;
3280
3281 /* disable CPU FDI tx and PCH FDI rx */
3282 reg = FDI_TX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3285 POSTING_READ(reg);
3286
3287 reg = FDI_RX_CTL(pipe);
3288 temp = I915_READ(reg);
3289 temp &= ~(0x7 << 16);
dfd07d72 3290 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3291 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3292
3293 POSTING_READ(reg);
3294 udelay(100);
3295
3296 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3297 if (HAS_PCH_IBX(dev))
6f06ce18 3298 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3299
3300 /* still set train pattern 1 */
3301 reg = FDI_TX_CTL(pipe);
3302 temp = I915_READ(reg);
3303 temp &= ~FDI_LINK_TRAIN_NONE;
3304 temp |= FDI_LINK_TRAIN_PATTERN_1;
3305 I915_WRITE(reg, temp);
3306
3307 reg = FDI_RX_CTL(pipe);
3308 temp = I915_READ(reg);
3309 if (HAS_PCH_CPT(dev)) {
3310 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3311 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3312 } else {
3313 temp &= ~FDI_LINK_TRAIN_NONE;
3314 temp |= FDI_LINK_TRAIN_PATTERN_1;
3315 }
3316 /* BPC in FDI rx is consistent with that in PIPECONF */
3317 temp &= ~(0x07 << 16);
dfd07d72 3318 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3319 I915_WRITE(reg, temp);
3320
3321 POSTING_READ(reg);
3322 udelay(100);
3323}
3324
5dce5b93
CW
3325bool intel_has_pending_fb_unpin(struct drm_device *dev)
3326{
3327 struct intel_crtc *crtc;
3328
3329 /* Note that we don't need to be called with mode_config.lock here
3330 * as our list of CRTC objects is static for the lifetime of the
3331 * device and so cannot disappear as we iterate. Similarly, we can
3332 * happily treat the predicates as racy, atomic checks as userspace
3333 * cannot claim and pin a new fb without at least acquring the
3334 * struct_mutex and so serialising with us.
3335 */
d3fcc808 3336 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3337 if (atomic_read(&crtc->unpin_work_count) == 0)
3338 continue;
3339
3340 if (crtc->unpin_work)
3341 intel_wait_for_vblank(dev, crtc->pipe);
3342
3343 return true;
3344 }
3345
3346 return false;
3347}
3348
46a55d30 3349void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3350{
0f91128d 3351 struct drm_device *dev = crtc->dev;
5bb61643 3352 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3353
f4510a27 3354 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3355 return;
3356
2c10d571
DV
3357 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3358
eed6d67d
DV
3359 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3360 !intel_crtc_has_pending_flip(crtc),
3361 60*HZ) == 0);
5bb61643 3362
0f91128d 3363 mutex_lock(&dev->struct_mutex);
f4510a27 3364 intel_finish_fb(crtc->primary->fb);
0f91128d 3365 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3366}
3367
e615efe4
ED
3368/* Program iCLKIP clock to the desired frequency */
3369static void lpt_program_iclkip(struct drm_crtc *crtc)
3370{
3371 struct drm_device *dev = crtc->dev;
3372 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3373 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3374 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3375 u32 temp;
3376
09153000
DV
3377 mutex_lock(&dev_priv->dpio_lock);
3378
e615efe4
ED
3379 /* It is necessary to ungate the pixclk gate prior to programming
3380 * the divisors, and gate it back when it is done.
3381 */
3382 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3383
3384 /* Disable SSCCTL */
3385 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3386 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3387 SBI_SSCCTL_DISABLE,
3388 SBI_ICLK);
e615efe4
ED
3389
3390 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3391 if (clock == 20000) {
e615efe4
ED
3392 auxdiv = 1;
3393 divsel = 0x41;
3394 phaseinc = 0x20;
3395 } else {
3396 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3397 * but the adjusted_mode->crtc_clock in in KHz. To get the
3398 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3399 * convert the virtual clock precision to KHz here for higher
3400 * precision.
3401 */
3402 u32 iclk_virtual_root_freq = 172800 * 1000;
3403 u32 iclk_pi_range = 64;
3404 u32 desired_divisor, msb_divisor_value, pi_value;
3405
12d7ceed 3406 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3407 msb_divisor_value = desired_divisor / iclk_pi_range;
3408 pi_value = desired_divisor % iclk_pi_range;
3409
3410 auxdiv = 0;
3411 divsel = msb_divisor_value - 2;
3412 phaseinc = pi_value;
3413 }
3414
3415 /* This should not happen with any sane values */
3416 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3417 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3418 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3419 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3420
3421 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3422 clock,
e615efe4
ED
3423 auxdiv,
3424 divsel,
3425 phasedir,
3426 phaseinc);
3427
3428 /* Program SSCDIVINTPHASE6 */
988d6ee8 3429 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3430 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3431 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3432 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3433 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3434 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3435 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3436 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3437
3438 /* Program SSCAUXDIV */
988d6ee8 3439 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3440 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3441 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3442 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3443
3444 /* Enable modulator and associated divider */
988d6ee8 3445 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3446 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3447 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3448
3449 /* Wait for initialization time */
3450 udelay(24);
3451
3452 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3453
3454 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3455}
3456
275f01b2
DV
3457static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3458 enum pipe pch_transcoder)
3459{
3460 struct drm_device *dev = crtc->base.dev;
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3463
3464 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3465 I915_READ(HTOTAL(cpu_transcoder)));
3466 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3467 I915_READ(HBLANK(cpu_transcoder)));
3468 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3469 I915_READ(HSYNC(cpu_transcoder)));
3470
3471 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3472 I915_READ(VTOTAL(cpu_transcoder)));
3473 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3474 I915_READ(VBLANK(cpu_transcoder)));
3475 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3476 I915_READ(VSYNC(cpu_transcoder)));
3477 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3478 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3479}
3480
1fbc0d78
DV
3481static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3482{
3483 struct drm_i915_private *dev_priv = dev->dev_private;
3484 uint32_t temp;
3485
3486 temp = I915_READ(SOUTH_CHICKEN1);
3487 if (temp & FDI_BC_BIFURCATION_SELECT)
3488 return;
3489
3490 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3491 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3492
3493 temp |= FDI_BC_BIFURCATION_SELECT;
3494 DRM_DEBUG_KMS("enabling fdi C rx\n");
3495 I915_WRITE(SOUTH_CHICKEN1, temp);
3496 POSTING_READ(SOUTH_CHICKEN1);
3497}
3498
3499static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3500{
3501 struct drm_device *dev = intel_crtc->base.dev;
3502 struct drm_i915_private *dev_priv = dev->dev_private;
3503
3504 switch (intel_crtc->pipe) {
3505 case PIPE_A:
3506 break;
3507 case PIPE_B:
3508 if (intel_crtc->config.fdi_lanes > 2)
3509 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3510 else
3511 cpt_enable_fdi_bc_bifurcation(dev);
3512
3513 break;
3514 case PIPE_C:
3515 cpt_enable_fdi_bc_bifurcation(dev);
3516
3517 break;
3518 default:
3519 BUG();
3520 }
3521}
3522
f67a559d
JB
3523/*
3524 * Enable PCH resources required for PCH ports:
3525 * - PCH PLLs
3526 * - FDI training & RX/TX
3527 * - update transcoder timings
3528 * - DP transcoding bits
3529 * - transcoder
3530 */
3531static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3532{
3533 struct drm_device *dev = crtc->dev;
3534 struct drm_i915_private *dev_priv = dev->dev_private;
3535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3536 int pipe = intel_crtc->pipe;
ee7b9f93 3537 u32 reg, temp;
2c07245f 3538
ab9412ba 3539 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3540
1fbc0d78
DV
3541 if (IS_IVYBRIDGE(dev))
3542 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3543
cd986abb
DV
3544 /* Write the TU size bits before fdi link training, so that error
3545 * detection works. */
3546 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3547 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3548
c98e9dcf 3549 /* For PCH output, training FDI link */
674cf967 3550 dev_priv->display.fdi_link_train(crtc);
2c07245f 3551
3ad8a208
DV
3552 /* We need to program the right clock selection before writing the pixel
3553 * mutliplier into the DPLL. */
303b81e0 3554 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3555 u32 sel;
4b645f14 3556
c98e9dcf 3557 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3558 temp |= TRANS_DPLL_ENABLE(pipe);
3559 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3560 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3561 temp |= sel;
3562 else
3563 temp &= ~sel;
c98e9dcf 3564 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3565 }
5eddb70b 3566
3ad8a208
DV
3567 /* XXX: pch pll's can be enabled any time before we enable the PCH
3568 * transcoder, and we actually should do this to not upset any PCH
3569 * transcoder that already use the clock when we share it.
3570 *
3571 * Note that enable_shared_dpll tries to do the right thing, but
3572 * get_shared_dpll unconditionally resets the pll - we need that to have
3573 * the right LVDS enable sequence. */
85b3894f 3574 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3575
d9b6cb56
JB
3576 /* set transcoder timing, panel must allow it */
3577 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3578 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3579
303b81e0 3580 intel_fdi_normal_train(crtc);
5e84e1a4 3581
c98e9dcf
JB
3582 /* For PCH DP, enable TRANS_DP_CTL */
3583 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3584 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3585 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3586 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3587 reg = TRANS_DP_CTL(pipe);
3588 temp = I915_READ(reg);
3589 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3590 TRANS_DP_SYNC_MASK |
3591 TRANS_DP_BPC_MASK);
5eddb70b
CW
3592 temp |= (TRANS_DP_OUTPUT_ENABLE |
3593 TRANS_DP_ENH_FRAMING);
9325c9f0 3594 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3595
3596 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3597 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3598 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3599 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3600
3601 switch (intel_trans_dp_port_sel(crtc)) {
3602 case PCH_DP_B:
5eddb70b 3603 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3604 break;
3605 case PCH_DP_C:
5eddb70b 3606 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3607 break;
3608 case PCH_DP_D:
5eddb70b 3609 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3610 break;
3611 default:
e95d41e1 3612 BUG();
32f9d658 3613 }
2c07245f 3614
5eddb70b 3615 I915_WRITE(reg, temp);
6be4a607 3616 }
b52eb4dc 3617
b8a4f404 3618 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3619}
3620
1507e5bd
PZ
3621static void lpt_pch_enable(struct drm_crtc *crtc)
3622{
3623 struct drm_device *dev = crtc->dev;
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3626 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3627
ab9412ba 3628 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3629
8c52b5e8 3630 lpt_program_iclkip(crtc);
1507e5bd 3631
0540e488 3632 /* Set transcoder timing. */
275f01b2 3633 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3634
937bb610 3635 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3636}
3637
e2b78267 3638static void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3639{
e2b78267 3640 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3641
3642 if (pll == NULL)
3643 return;
3644
3645 if (pll->refcount == 0) {
46edb027 3646 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3647 return;
3648 }
3649
f4a091c7
DV
3650 if (--pll->refcount == 0) {
3651 WARN_ON(pll->on);
3652 WARN_ON(pll->active);
3653 }
3654
a43f6e0f 3655 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3656}
3657
b89a1d39 3658static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3659{
e2b78267
DV
3660 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3661 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3662 enum intel_dpll_id i;
ee7b9f93 3663
ee7b9f93 3664 if (pll) {
46edb027
DV
3665 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3666 crtc->base.base.id, pll->name);
e2b78267 3667 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3668 }
3669
98b6bd99
DV
3670 if (HAS_PCH_IBX(dev_priv->dev)) {
3671 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3672 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3673 pll = &dev_priv->shared_dplls[i];
98b6bd99 3674
46edb027
DV
3675 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3676 crtc->base.base.id, pll->name);
98b6bd99 3677
f2a69f44
DV
3678 WARN_ON(pll->refcount);
3679
98b6bd99
DV
3680 goto found;
3681 }
3682
e72f9fbf
DV
3683 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3684 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3685
3686 /* Only want to check enabled timings first */
3687 if (pll->refcount == 0)
3688 continue;
3689
b89a1d39
DV
3690 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3691 sizeof(pll->hw_state)) == 0) {
46edb027 3692 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3693 crtc->base.base.id,
46edb027 3694 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3695
3696 goto found;
3697 }
3698 }
3699
3700 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3701 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3702 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3703 if (pll->refcount == 0) {
46edb027
DV
3704 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3705 crtc->base.base.id, pll->name);
ee7b9f93
JB
3706 goto found;
3707 }
3708 }
3709
3710 return NULL;
3711
3712found:
f2a69f44
DV
3713 if (pll->refcount == 0)
3714 pll->hw_state = crtc->config.dpll_hw_state;
3715
a43f6e0f 3716 crtc->config.shared_dpll = i;
46edb027
DV
3717 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3718 pipe_name(crtc->pipe));
ee7b9f93 3719
cdbd2316 3720 pll->refcount++;
e04c7350 3721
ee7b9f93
JB
3722 return pll;
3723}
3724
a1520318 3725static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3726{
3727 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3728 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3729 u32 temp;
3730
3731 temp = I915_READ(dslreg);
3732 udelay(500);
3733 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3734 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3735 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3736 }
3737}
3738
b074cec8
JB
3739static void ironlake_pfit_enable(struct intel_crtc *crtc)
3740{
3741 struct drm_device *dev = crtc->base.dev;
3742 struct drm_i915_private *dev_priv = dev->dev_private;
3743 int pipe = crtc->pipe;
3744
fd4daa9c 3745 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3746 /* Force use of hard-coded filter coefficients
3747 * as some pre-programmed values are broken,
3748 * e.g. x201.
3749 */
3750 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3751 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3752 PF_PIPE_SEL_IVB(pipe));
3753 else
3754 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3755 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3756 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3757 }
3758}
3759
bb53d4ae
VS
3760static void intel_enable_planes(struct drm_crtc *crtc)
3761{
3762 struct drm_device *dev = crtc->dev;
3763 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3764 struct drm_plane *plane;
bb53d4ae
VS
3765 struct intel_plane *intel_plane;
3766
af2b653b
MR
3767 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3768 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3769 if (intel_plane->pipe == pipe)
3770 intel_plane_restore(&intel_plane->base);
af2b653b 3771 }
bb53d4ae
VS
3772}
3773
3774static void intel_disable_planes(struct drm_crtc *crtc)
3775{
3776 struct drm_device *dev = crtc->dev;
3777 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3778 struct drm_plane *plane;
bb53d4ae
VS
3779 struct intel_plane *intel_plane;
3780
af2b653b
MR
3781 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3782 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3783 if (intel_plane->pipe == pipe)
3784 intel_plane_disable(&intel_plane->base);
af2b653b 3785 }
bb53d4ae
VS
3786}
3787
20bc8673 3788void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3789{
cea165c3
VS
3790 struct drm_device *dev = crtc->base.dev;
3791 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3792
3793 if (!crtc->config.ips_enabled)
3794 return;
3795
cea165c3
VS
3796 /* We can only enable IPS after we enable a plane and wait for a vblank */
3797 intel_wait_for_vblank(dev, crtc->pipe);
3798
d77e4531 3799 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3800 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3801 mutex_lock(&dev_priv->rps.hw_lock);
3802 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3803 mutex_unlock(&dev_priv->rps.hw_lock);
3804 /* Quoting Art Runyan: "its not safe to expect any particular
3805 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3806 * mailbox." Moreover, the mailbox may return a bogus state,
3807 * so we need to just enable it and continue on.
2a114cc1
BW
3808 */
3809 } else {
3810 I915_WRITE(IPS_CTL, IPS_ENABLE);
3811 /* The bit only becomes 1 in the next vblank, so this wait here
3812 * is essentially intel_wait_for_vblank. If we don't have this
3813 * and don't wait for vblanks until the end of crtc_enable, then
3814 * the HW state readout code will complain that the expected
3815 * IPS_CTL value is not the one we read. */
3816 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3817 DRM_ERROR("Timed out waiting for IPS enable\n");
3818 }
d77e4531
PZ
3819}
3820
20bc8673 3821void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3822{
3823 struct drm_device *dev = crtc->base.dev;
3824 struct drm_i915_private *dev_priv = dev->dev_private;
3825
3826 if (!crtc->config.ips_enabled)
3827 return;
3828
3829 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3830 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3831 mutex_lock(&dev_priv->rps.hw_lock);
3832 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3833 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3834 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3835 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3836 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3837 } else {
2a114cc1 3838 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3839 POSTING_READ(IPS_CTL);
3840 }
d77e4531
PZ
3841
3842 /* We need to wait for a vblank before we can disable the plane. */
3843 intel_wait_for_vblank(dev, crtc->pipe);
3844}
3845
3846/** Loads the palette/gamma unit for the CRTC with the prepared values */
3847static void intel_crtc_load_lut(struct drm_crtc *crtc)
3848{
3849 struct drm_device *dev = crtc->dev;
3850 struct drm_i915_private *dev_priv = dev->dev_private;
3851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3852 enum pipe pipe = intel_crtc->pipe;
3853 int palreg = PALETTE(pipe);
3854 int i;
3855 bool reenable_ips = false;
3856
3857 /* The clocks have to be on to load the palette. */
3858 if (!crtc->enabled || !intel_crtc->active)
3859 return;
3860
3861 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3862 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3863 assert_dsi_pll_enabled(dev_priv);
3864 else
3865 assert_pll_enabled(dev_priv, pipe);
3866 }
3867
3868 /* use legacy palette for Ironlake */
3869 if (HAS_PCH_SPLIT(dev))
3870 palreg = LGC_PALETTE(pipe);
3871
3872 /* Workaround : Do not read or write the pipe palette/gamma data while
3873 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3874 */
41e6fc4c 3875 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3876 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3877 GAMMA_MODE_MODE_SPLIT)) {
3878 hsw_disable_ips(intel_crtc);
3879 reenable_ips = true;
3880 }
3881
3882 for (i = 0; i < 256; i++) {
3883 I915_WRITE(palreg + 4 * i,
3884 (intel_crtc->lut_r[i] << 16) |
3885 (intel_crtc->lut_g[i] << 8) |
3886 intel_crtc->lut_b[i]);
3887 }
3888
3889 if (reenable_ips)
3890 hsw_enable_ips(intel_crtc);
3891}
3892
d3eedb1a
VS
3893static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3894{
3895 if (!enable && intel_crtc->overlay) {
3896 struct drm_device *dev = intel_crtc->base.dev;
3897 struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899 mutex_lock(&dev->struct_mutex);
3900 dev_priv->mm.interruptible = false;
3901 (void) intel_overlay_switch_off(intel_crtc->overlay);
3902 dev_priv->mm.interruptible = true;
3903 mutex_unlock(&dev->struct_mutex);
3904 }
3905
3906 /* Let userspace switch the overlay on again. In most cases userspace
3907 * has to recompute where to put it anyway.
3908 */
3909}
3910
3911/**
3912 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3913 * cursor plane briefly if not already running after enabling the display
3914 * plane.
3915 * This workaround avoids occasional blank screens when self refresh is
3916 * enabled.
3917 */
3918static void
3919g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3920{
3921 u32 cntl = I915_READ(CURCNTR(pipe));
3922
3923 if ((cntl & CURSOR_MODE) == 0) {
3924 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3925
3926 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3927 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3928 intel_wait_for_vblank(dev_priv->dev, pipe);
3929 I915_WRITE(CURCNTR(pipe), cntl);
3930 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3931 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3932 }
3933}
3934
3935static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3936{
3937 struct drm_device *dev = crtc->dev;
3938 struct drm_i915_private *dev_priv = dev->dev_private;
3939 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3940 int pipe = intel_crtc->pipe;
3941 int plane = intel_crtc->plane;
3942
f98551ae
VS
3943 drm_vblank_on(dev, pipe);
3944
a5c4d7bc
VS
3945 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3946 intel_enable_planes(crtc);
d3eedb1a
VS
3947 /* The fixup needs to happen before cursor is enabled */
3948 if (IS_G4X(dev))
3949 g4x_fixup_plane(dev_priv, pipe);
a5c4d7bc 3950 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3951 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3952
3953 hsw_enable_ips(intel_crtc);
3954
3955 mutex_lock(&dev->struct_mutex);
3956 intel_update_fbc(dev);
3957 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3958
3959 /*
3960 * FIXME: Once we grow proper nuclear flip support out of this we need
3961 * to compute the mask of flip planes precisely. For the time being
3962 * consider this a flip from a NULL plane.
3963 */
3964 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3965}
3966
d3eedb1a 3967static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3968{
3969 struct drm_device *dev = crtc->dev;
3970 struct drm_i915_private *dev_priv = dev->dev_private;
3971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3972 int pipe = intel_crtc->pipe;
3973 int plane = intel_crtc->plane;
3974
3975 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3976
3977 if (dev_priv->fbc.plane == plane)
3978 intel_disable_fbc(dev);
3979
3980 hsw_disable_ips(intel_crtc);
3981
d3eedb1a 3982 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3983 intel_crtc_update_cursor(crtc, false);
3984 intel_disable_planes(crtc);
3985 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3986
f99d7069
DV
3987 /*
3988 * FIXME: Once we grow proper nuclear flip support out of this we need
3989 * to compute the mask of flip planes precisely. For the time being
3990 * consider this a flip to a NULL plane.
3991 */
3992 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3993
f98551ae 3994 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3995}
3996
f67a559d
JB
3997static void ironlake_crtc_enable(struct drm_crtc *crtc)
3998{
3999 struct drm_device *dev = crtc->dev;
4000 struct drm_i915_private *dev_priv = dev->dev_private;
4001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4002 struct intel_encoder *encoder;
f67a559d 4003 int pipe = intel_crtc->pipe;
29407aab 4004 enum plane plane = intel_crtc->plane;
f67a559d 4005
08a48469
DV
4006 WARN_ON(!crtc->enabled);
4007
f67a559d
JB
4008 if (intel_crtc->active)
4009 return;
4010
b14b1055
DV
4011 if (intel_crtc->config.has_pch_encoder)
4012 intel_prepare_shared_dpll(intel_crtc);
4013
29407aab
DV
4014 if (intel_crtc->config.has_dp_encoder)
4015 intel_dp_set_m_n(intel_crtc);
4016
4017 intel_set_pipe_timings(intel_crtc);
4018
4019 if (intel_crtc->config.has_pch_encoder) {
4020 intel_cpu_transcoder_set_m_n(intel_crtc,
4021 &intel_crtc->config.fdi_m_n);
4022 }
4023
4024 ironlake_set_pipeconf(crtc);
4025
4026 /* Set up the display plane register */
4027 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
4028 POSTING_READ(DSPCNTR(plane));
4029
4030 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4031 crtc->x, crtc->y);
4032
f67a559d 4033 intel_crtc->active = true;
8664281b
PZ
4034
4035 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4036 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4037
f6736a1a 4038 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4039 if (encoder->pre_enable)
4040 encoder->pre_enable(encoder);
f67a559d 4041
5bfe2ac0 4042 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4043 /* Note: FDI PLL enabling _must_ be done before we enable the
4044 * cpu pipes, hence this is separate from all the other fdi/pch
4045 * enabling. */
88cefb6c 4046 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4047 } else {
4048 assert_fdi_tx_disabled(dev_priv, pipe);
4049 assert_fdi_rx_disabled(dev_priv, pipe);
4050 }
f67a559d 4051
b074cec8 4052 ironlake_pfit_enable(intel_crtc);
f67a559d 4053
9c54c0dd
JB
4054 /*
4055 * On ILK+ LUT must be loaded before the pipe is running but with
4056 * clocks enabled
4057 */
4058 intel_crtc_load_lut(crtc);
4059
f37fcc2a 4060 intel_update_watermarks(crtc);
e1fdc473 4061 intel_enable_pipe(intel_crtc);
f67a559d 4062
5bfe2ac0 4063 if (intel_crtc->config.has_pch_encoder)
f67a559d 4064 ironlake_pch_enable(crtc);
c98e9dcf 4065
fa5c73b1
DV
4066 for_each_encoder_on_crtc(dev, crtc, encoder)
4067 encoder->enable(encoder);
61b77ddd
DV
4068
4069 if (HAS_PCH_CPT(dev))
a1520318 4070 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4071
d3eedb1a 4072 intel_crtc_enable_planes(crtc);
6be4a607
JB
4073}
4074
42db64ef
PZ
4075/* IPS only exists on ULT machines and is tied to pipe A. */
4076static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4077{
f5adf94e 4078 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4079}
4080
e4916946
PZ
4081/*
4082 * This implements the workaround described in the "notes" section of the mode
4083 * set sequence documentation. When going from no pipes or single pipe to
4084 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4085 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4086 */
4087static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4088{
4089 struct drm_device *dev = crtc->base.dev;
4090 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4091
4092 /* We want to get the other_active_crtc only if there's only 1 other
4093 * active crtc. */
d3fcc808 4094 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4095 if (!crtc_it->active || crtc_it == crtc)
4096 continue;
4097
4098 if (other_active_crtc)
4099 return;
4100
4101 other_active_crtc = crtc_it;
4102 }
4103 if (!other_active_crtc)
4104 return;
4105
4106 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4107 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4108}
4109
4f771f10
PZ
4110static void haswell_crtc_enable(struct drm_crtc *crtc)
4111{
4112 struct drm_device *dev = crtc->dev;
4113 struct drm_i915_private *dev_priv = dev->dev_private;
4114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4115 struct intel_encoder *encoder;
4116 int pipe = intel_crtc->pipe;
229fca97 4117 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4118
4119 WARN_ON(!crtc->enabled);
4120
4121 if (intel_crtc->active)
4122 return;
4123
229fca97
DV
4124 if (intel_crtc->config.has_dp_encoder)
4125 intel_dp_set_m_n(intel_crtc);
4126
4127 intel_set_pipe_timings(intel_crtc);
4128
4129 if (intel_crtc->config.has_pch_encoder) {
4130 intel_cpu_transcoder_set_m_n(intel_crtc,
4131 &intel_crtc->config.fdi_m_n);
4132 }
4133
4134 haswell_set_pipeconf(crtc);
4135
4136 intel_set_pipe_csc(crtc);
4137
4138 /* Set up the display plane register */
4139 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4140 POSTING_READ(DSPCNTR(plane));
4141
4142 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4143 crtc->x, crtc->y);
4144
4f771f10 4145 intel_crtc->active = true;
8664281b
PZ
4146
4147 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4148 if (intel_crtc->config.has_pch_encoder)
4149 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4150
5bfe2ac0 4151 if (intel_crtc->config.has_pch_encoder)
04945641 4152 dev_priv->display.fdi_link_train(crtc);
4f771f10
PZ
4153
4154 for_each_encoder_on_crtc(dev, crtc, encoder)
4155 if (encoder->pre_enable)
4156 encoder->pre_enable(encoder);
4157
1f544388 4158 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4159
b074cec8 4160 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4161
4162 /*
4163 * On ILK+ LUT must be loaded before the pipe is running but with
4164 * clocks enabled
4165 */
4166 intel_crtc_load_lut(crtc);
4167
1f544388 4168 intel_ddi_set_pipe_settings(crtc);
8228c251 4169 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4170
f37fcc2a 4171 intel_update_watermarks(crtc);
e1fdc473 4172 intel_enable_pipe(intel_crtc);
42db64ef 4173
5bfe2ac0 4174 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4175 lpt_pch_enable(crtc);
4f771f10 4176
8807e55b 4177 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4178 encoder->enable(encoder);
8807e55b
JN
4179 intel_opregion_notify_encoder(encoder, true);
4180 }
4f771f10 4181
e4916946
PZ
4182 /* If we change the relative order between pipe/planes enabling, we need
4183 * to change the workaround. */
4184 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4185 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4186}
4187
3f8dce3a
DV
4188static void ironlake_pfit_disable(struct intel_crtc *crtc)
4189{
4190 struct drm_device *dev = crtc->base.dev;
4191 struct drm_i915_private *dev_priv = dev->dev_private;
4192 int pipe = crtc->pipe;
4193
4194 /* To avoid upsetting the power well on haswell only disable the pfit if
4195 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4196 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4197 I915_WRITE(PF_CTL(pipe), 0);
4198 I915_WRITE(PF_WIN_POS(pipe), 0);
4199 I915_WRITE(PF_WIN_SZ(pipe), 0);
4200 }
4201}
4202
6be4a607
JB
4203static void ironlake_crtc_disable(struct drm_crtc *crtc)
4204{
4205 struct drm_device *dev = crtc->dev;
4206 struct drm_i915_private *dev_priv = dev->dev_private;
4207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4208 struct intel_encoder *encoder;
6be4a607 4209 int pipe = intel_crtc->pipe;
5eddb70b 4210 u32 reg, temp;
b52eb4dc 4211
f7abfe8b
CW
4212 if (!intel_crtc->active)
4213 return;
4214
d3eedb1a 4215 intel_crtc_disable_planes(crtc);
a5c4d7bc 4216
ea9d758d
DV
4217 for_each_encoder_on_crtc(dev, crtc, encoder)
4218 encoder->disable(encoder);
4219
d925c59a
DV
4220 if (intel_crtc->config.has_pch_encoder)
4221 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4222
b24e7179 4223 intel_disable_pipe(dev_priv, pipe);
32f9d658 4224
3f8dce3a 4225 ironlake_pfit_disable(intel_crtc);
2c07245f 4226
bf49ec8c
DV
4227 for_each_encoder_on_crtc(dev, crtc, encoder)
4228 if (encoder->post_disable)
4229 encoder->post_disable(encoder);
2c07245f 4230
d925c59a
DV
4231 if (intel_crtc->config.has_pch_encoder) {
4232 ironlake_fdi_disable(crtc);
913d8d11 4233
d925c59a
DV
4234 ironlake_disable_pch_transcoder(dev_priv, pipe);
4235 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4236
d925c59a
DV
4237 if (HAS_PCH_CPT(dev)) {
4238 /* disable TRANS_DP_CTL */
4239 reg = TRANS_DP_CTL(pipe);
4240 temp = I915_READ(reg);
4241 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4242 TRANS_DP_PORT_SEL_MASK);
4243 temp |= TRANS_DP_PORT_SEL_NONE;
4244 I915_WRITE(reg, temp);
4245
4246 /* disable DPLL_SEL */
4247 temp = I915_READ(PCH_DPLL_SEL);
11887397 4248 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4249 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4250 }
e3421a18 4251
d925c59a 4252 /* disable PCH DPLL */
e72f9fbf 4253 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4254
d925c59a
DV
4255 ironlake_fdi_pll_disable(intel_crtc);
4256 }
6b383a7f 4257
f7abfe8b 4258 intel_crtc->active = false;
46ba614c 4259 intel_update_watermarks(crtc);
d1ebd816
BW
4260
4261 mutex_lock(&dev->struct_mutex);
6b383a7f 4262 intel_update_fbc(dev);
d1ebd816 4263 mutex_unlock(&dev->struct_mutex);
6be4a607 4264}
1b3c7a47 4265
4f771f10 4266static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4267{
4f771f10
PZ
4268 struct drm_device *dev = crtc->dev;
4269 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4271 struct intel_encoder *encoder;
4272 int pipe = intel_crtc->pipe;
3b117c8f 4273 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4274
4f771f10
PZ
4275 if (!intel_crtc->active)
4276 return;
4277
d3eedb1a 4278 intel_crtc_disable_planes(crtc);
dda9a66a 4279
8807e55b
JN
4280 for_each_encoder_on_crtc(dev, crtc, encoder) {
4281 intel_opregion_notify_encoder(encoder, false);
4f771f10 4282 encoder->disable(encoder);
8807e55b 4283 }
4f771f10 4284
8664281b
PZ
4285 if (intel_crtc->config.has_pch_encoder)
4286 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4287 intel_disable_pipe(dev_priv, pipe);
4288
ad80a810 4289 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4290
3f8dce3a 4291 ironlake_pfit_disable(intel_crtc);
4f771f10 4292
1f544388 4293 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
4294
4295 for_each_encoder_on_crtc(dev, crtc, encoder)
4296 if (encoder->post_disable)
4297 encoder->post_disable(encoder);
4298
88adfff1 4299 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4300 lpt_disable_pch_transcoder(dev_priv);
8664281b 4301 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4302 intel_ddi_fdi_disable(crtc);
83616634 4303 }
4f771f10
PZ
4304
4305 intel_crtc->active = false;
46ba614c 4306 intel_update_watermarks(crtc);
4f771f10
PZ
4307
4308 mutex_lock(&dev->struct_mutex);
4309 intel_update_fbc(dev);
4310 mutex_unlock(&dev->struct_mutex);
4311}
4312
ee7b9f93
JB
4313static void ironlake_crtc_off(struct drm_crtc *crtc)
4314{
4315 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4316 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4317}
4318
6441ab5f
PZ
4319static void haswell_crtc_off(struct drm_crtc *crtc)
4320{
4321 intel_ddi_put_crtc_pll(crtc);
4322}
4323
2dd24552
JB
4324static void i9xx_pfit_enable(struct intel_crtc *crtc)
4325{
4326 struct drm_device *dev = crtc->base.dev;
4327 struct drm_i915_private *dev_priv = dev->dev_private;
4328 struct intel_crtc_config *pipe_config = &crtc->config;
4329
328d8e82 4330 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4331 return;
4332
2dd24552 4333 /*
c0b03411
DV
4334 * The panel fitter should only be adjusted whilst the pipe is disabled,
4335 * according to register description and PRM.
2dd24552 4336 */
c0b03411
DV
4337 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4338 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4339
b074cec8
JB
4340 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4341 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4342
4343 /* Border color in case we don't scale up to the full screen. Black by
4344 * default, change to something else for debugging. */
4345 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4346}
4347
77d22dca
ID
4348#define for_each_power_domain(domain, mask) \
4349 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4350 if ((1 << (domain)) & (mask))
4351
319be8ae
ID
4352enum intel_display_power_domain
4353intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4354{
4355 struct drm_device *dev = intel_encoder->base.dev;
4356 struct intel_digital_port *intel_dig_port;
4357
4358 switch (intel_encoder->type) {
4359 case INTEL_OUTPUT_UNKNOWN:
4360 /* Only DDI platforms should ever use this output type */
4361 WARN_ON_ONCE(!HAS_DDI(dev));
4362 case INTEL_OUTPUT_DISPLAYPORT:
4363 case INTEL_OUTPUT_HDMI:
4364 case INTEL_OUTPUT_EDP:
4365 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4366 switch (intel_dig_port->port) {
4367 case PORT_A:
4368 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4369 case PORT_B:
4370 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4371 case PORT_C:
4372 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4373 case PORT_D:
4374 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4375 default:
4376 WARN_ON_ONCE(1);
4377 return POWER_DOMAIN_PORT_OTHER;
4378 }
4379 case INTEL_OUTPUT_ANALOG:
4380 return POWER_DOMAIN_PORT_CRT;
4381 case INTEL_OUTPUT_DSI:
4382 return POWER_DOMAIN_PORT_DSI;
4383 default:
4384 return POWER_DOMAIN_PORT_OTHER;
4385 }
4386}
4387
4388static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4389{
319be8ae
ID
4390 struct drm_device *dev = crtc->dev;
4391 struct intel_encoder *intel_encoder;
4392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4393 enum pipe pipe = intel_crtc->pipe;
4394 bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
77d22dca
ID
4395 unsigned long mask;
4396 enum transcoder transcoder;
4397
4398 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4399
4400 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4401 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4402 if (pfit_enabled)
4403 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4404
319be8ae
ID
4405 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4406 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4407
77d22dca
ID
4408 return mask;
4409}
4410
4411void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4412 bool enable)
4413{
4414 if (dev_priv->power_domains.init_power_on == enable)
4415 return;
4416
4417 if (enable)
4418 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4419 else
4420 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4421
4422 dev_priv->power_domains.init_power_on = enable;
4423}
4424
4425static void modeset_update_crtc_power_domains(struct drm_device *dev)
4426{
4427 struct drm_i915_private *dev_priv = dev->dev_private;
4428 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4429 struct intel_crtc *crtc;
4430
4431 /*
4432 * First get all needed power domains, then put all unneeded, to avoid
4433 * any unnecessary toggling of the power wells.
4434 */
d3fcc808 4435 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4436 enum intel_display_power_domain domain;
4437
4438 if (!crtc->base.enabled)
4439 continue;
4440
319be8ae 4441 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4442
4443 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4444 intel_display_power_get(dev_priv, domain);
4445 }
4446
d3fcc808 4447 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4448 enum intel_display_power_domain domain;
4449
4450 for_each_power_domain(domain, crtc->enabled_power_domains)
4451 intel_display_power_put(dev_priv, domain);
4452
4453 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4454 }
4455
4456 intel_display_set_init_power(dev_priv, false);
4457}
4458
586f49dc 4459int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4460{
586f49dc 4461 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4462
586f49dc
JB
4463 /* Obtain SKU information */
4464 mutex_lock(&dev_priv->dpio_lock);
4465 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4466 CCK_FUSE_HPLL_FREQ_MASK;
4467 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4468
586f49dc 4469 return vco_freq[hpll_freq];
30a970c6
JB
4470}
4471
4472/* Adjust CDclk dividers to allow high res or save power if possible */
4473static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4474{
4475 struct drm_i915_private *dev_priv = dev->dev_private;
4476 u32 val, cmd;
4477
d60c4473
ID
4478 WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4479 dev_priv->vlv_cdclk_freq = cdclk;
4480
30a970c6
JB
4481 if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4482 cmd = 2;
4483 else if (cdclk == 266)
4484 cmd = 1;
4485 else
4486 cmd = 0;
4487
4488 mutex_lock(&dev_priv->rps.hw_lock);
4489 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4490 val &= ~DSPFREQGUAR_MASK;
4491 val |= (cmd << DSPFREQGUAR_SHIFT);
4492 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4493 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4494 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4495 50)) {
4496 DRM_ERROR("timed out waiting for CDclk change\n");
4497 }
4498 mutex_unlock(&dev_priv->rps.hw_lock);
4499
4500 if (cdclk == 400) {
4501 u32 divider, vco;
4502
4503 vco = valleyview_get_vco(dev_priv);
4504 divider = ((vco << 1) / cdclk) - 1;
4505
4506 mutex_lock(&dev_priv->dpio_lock);
4507 /* adjust cdclk divider */
4508 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4509 val &= ~0xf;
4510 val |= divider;
4511 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4512 mutex_unlock(&dev_priv->dpio_lock);
4513 }
4514
4515 mutex_lock(&dev_priv->dpio_lock);
4516 /* adjust self-refresh exit latency value */
4517 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4518 val &= ~0x7f;
4519
4520 /*
4521 * For high bandwidth configs, we set a higher latency in the bunit
4522 * so that the core display fetch happens in time to avoid underruns.
4523 */
4524 if (cdclk == 400)
4525 val |= 4500 / 250; /* 4.5 usec */
4526 else
4527 val |= 3000 / 250; /* 3.0 usec */
4528 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4529 mutex_unlock(&dev_priv->dpio_lock);
4530
4531 /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4532 intel_i2c_reset(dev);
4533}
4534
d60c4473 4535int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4536{
4537 int cur_cdclk, vco;
4538 int divider;
4539
4540 vco = valleyview_get_vco(dev_priv);
4541
4542 mutex_lock(&dev_priv->dpio_lock);
4543 divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4544 mutex_unlock(&dev_priv->dpio_lock);
4545
4546 divider &= 0xf;
4547
4548 cur_cdclk = (vco << 1) / (divider + 1);
4549
4550 return cur_cdclk;
4551}
4552
4553static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4554 int max_pixclk)
4555{
30a970c6
JB
4556 /*
4557 * Really only a few cases to deal with, as only 4 CDclks are supported:
4558 * 200MHz
4559 * 267MHz
4560 * 320MHz
4561 * 400MHz
4562 * So we check to see whether we're above 90% of the lower bin and
4563 * adjust if needed.
4564 */
4565 if (max_pixclk > 288000) {
4566 return 400;
4567 } else if (max_pixclk > 240000) {
4568 return 320;
4569 } else
4570 return 266;
4571 /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4572}
4573
2f2d7aa1
VS
4574/* compute the max pixel clock for new configuration */
4575static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4576{
4577 struct drm_device *dev = dev_priv->dev;
4578 struct intel_crtc *intel_crtc;
4579 int max_pixclk = 0;
4580
d3fcc808 4581 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4582 if (intel_crtc->new_enabled)
30a970c6 4583 max_pixclk = max(max_pixclk,
2f2d7aa1 4584 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4585 }
4586
4587 return max_pixclk;
4588}
4589
4590static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4591 unsigned *prepare_pipes)
30a970c6
JB
4592{
4593 struct drm_i915_private *dev_priv = dev->dev_private;
4594 struct intel_crtc *intel_crtc;
2f2d7aa1 4595 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4596
d60c4473
ID
4597 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4598 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4599 return;
4600
2f2d7aa1 4601 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4602 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4603 if (intel_crtc->base.enabled)
4604 *prepare_pipes |= (1 << intel_crtc->pipe);
4605}
4606
4607static void valleyview_modeset_global_resources(struct drm_device *dev)
4608{
4609 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4610 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4611 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4612
d60c4473 4613 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4614 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4615 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4616}
4617
89b667f8
JB
4618static void valleyview_crtc_enable(struct drm_crtc *crtc)
4619{
4620 struct drm_device *dev = crtc->dev;
5b18e57c 4621 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4623 struct intel_encoder *encoder;
4624 int pipe = intel_crtc->pipe;
5b18e57c 4625 int plane = intel_crtc->plane;
23538ef1 4626 bool is_dsi;
5b18e57c 4627 u32 dspcntr;
89b667f8
JB
4628
4629 WARN_ON(!crtc->enabled);
4630
4631 if (intel_crtc->active)
4632 return;
4633
bdd4b6a6
DV
4634 vlv_prepare_pll(intel_crtc);
4635
5b18e57c
DV
4636 /* Set up the display plane register */
4637 dspcntr = DISPPLANE_GAMMA_ENABLE;
4638
4639 if (intel_crtc->config.has_dp_encoder)
4640 intel_dp_set_m_n(intel_crtc);
4641
4642 intel_set_pipe_timings(intel_crtc);
4643
4644 /* pipesrc and dspsize control the size that is scaled from,
4645 * which should always be the user's requested size.
4646 */
4647 I915_WRITE(DSPSIZE(plane),
4648 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4649 (intel_crtc->config.pipe_src_w - 1));
4650 I915_WRITE(DSPPOS(plane), 0);
4651
4652 i9xx_set_pipeconf(intel_crtc);
4653
4654 I915_WRITE(DSPCNTR(plane), dspcntr);
4655 POSTING_READ(DSPCNTR(plane));
4656
4657 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4658 crtc->x, crtc->y);
4659
89b667f8 4660 intel_crtc->active = true;
89b667f8 4661
4a3436e8
VS
4662 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4663
89b667f8
JB
4664 for_each_encoder_on_crtc(dev, crtc, encoder)
4665 if (encoder->pre_pll_enable)
4666 encoder->pre_pll_enable(encoder);
4667
23538ef1
JN
4668 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4669
9d556c99
CML
4670 if (!is_dsi) {
4671 if (IS_CHERRYVIEW(dev))
4672 chv_enable_pll(intel_crtc);
4673 else
4674 vlv_enable_pll(intel_crtc);
4675 }
89b667f8
JB
4676
4677 for_each_encoder_on_crtc(dev, crtc, encoder)
4678 if (encoder->pre_enable)
4679 encoder->pre_enable(encoder);
4680
2dd24552
JB
4681 i9xx_pfit_enable(intel_crtc);
4682
63cbb074
VS
4683 intel_crtc_load_lut(crtc);
4684
f37fcc2a 4685 intel_update_watermarks(crtc);
e1fdc473 4686 intel_enable_pipe(intel_crtc);
be6a6f8e 4687
5004945f
JN
4688 for_each_encoder_on_crtc(dev, crtc, encoder)
4689 encoder->enable(encoder);
9ab0460b
VS
4690
4691 intel_crtc_enable_planes(crtc);
d40d9187 4692
56b80e1f
VS
4693 /* Underruns don't raise interrupts, so check manually. */
4694 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4695}
4696
f13c2ef3
DV
4697static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4698{
4699 struct drm_device *dev = crtc->base.dev;
4700 struct drm_i915_private *dev_priv = dev->dev_private;
4701
4702 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4703 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4704}
4705
0b8765c6 4706static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4707{
4708 struct drm_device *dev = crtc->dev;
5b18e57c 4709 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4711 struct intel_encoder *encoder;
79e53945 4712 int pipe = intel_crtc->pipe;
5b18e57c
DV
4713 int plane = intel_crtc->plane;
4714 u32 dspcntr;
79e53945 4715
08a48469
DV
4716 WARN_ON(!crtc->enabled);
4717
f7abfe8b
CW
4718 if (intel_crtc->active)
4719 return;
4720
f13c2ef3
DV
4721 i9xx_set_pll_dividers(intel_crtc);
4722
5b18e57c
DV
4723 /* Set up the display plane register */
4724 dspcntr = DISPPLANE_GAMMA_ENABLE;
4725
4726 if (pipe == 0)
4727 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4728 else
4729 dspcntr |= DISPPLANE_SEL_PIPE_B;
4730
4731 if (intel_crtc->config.has_dp_encoder)
4732 intel_dp_set_m_n(intel_crtc);
4733
4734 intel_set_pipe_timings(intel_crtc);
4735
4736 /* pipesrc and dspsize control the size that is scaled from,
4737 * which should always be the user's requested size.
4738 */
4739 I915_WRITE(DSPSIZE(plane),
4740 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4741 (intel_crtc->config.pipe_src_w - 1));
4742 I915_WRITE(DSPPOS(plane), 0);
4743
4744 i9xx_set_pipeconf(intel_crtc);
4745
4746 I915_WRITE(DSPCNTR(plane), dspcntr);
4747 POSTING_READ(DSPCNTR(plane));
4748
4749 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4750 crtc->x, crtc->y);
4751
f7abfe8b 4752 intel_crtc->active = true;
6b383a7f 4753
4a3436e8
VS
4754 if (!IS_GEN2(dev))
4755 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4756
9d6d9f19
MK
4757 for_each_encoder_on_crtc(dev, crtc, encoder)
4758 if (encoder->pre_enable)
4759 encoder->pre_enable(encoder);
4760
f6736a1a
DV
4761 i9xx_enable_pll(intel_crtc);
4762
2dd24552
JB
4763 i9xx_pfit_enable(intel_crtc);
4764
63cbb074
VS
4765 intel_crtc_load_lut(crtc);
4766
f37fcc2a 4767 intel_update_watermarks(crtc);
e1fdc473 4768 intel_enable_pipe(intel_crtc);
be6a6f8e 4769
fa5c73b1
DV
4770 for_each_encoder_on_crtc(dev, crtc, encoder)
4771 encoder->enable(encoder);
9ab0460b
VS
4772
4773 intel_crtc_enable_planes(crtc);
d40d9187 4774
4a3436e8
VS
4775 /*
4776 * Gen2 reports pipe underruns whenever all planes are disabled.
4777 * So don't enable underrun reporting before at least some planes
4778 * are enabled.
4779 * FIXME: Need to fix the logic to work when we turn off all planes
4780 * but leave the pipe running.
4781 */
4782 if (IS_GEN2(dev))
4783 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4784
56b80e1f
VS
4785 /* Underruns don't raise interrupts, so check manually. */
4786 i9xx_check_fifo_underruns(dev);
0b8765c6 4787}
79e53945 4788
87476d63
DV
4789static void i9xx_pfit_disable(struct intel_crtc *crtc)
4790{
4791 struct drm_device *dev = crtc->base.dev;
4792 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4793
328d8e82
DV
4794 if (!crtc->config.gmch_pfit.control)
4795 return;
87476d63 4796
328d8e82 4797 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4798
328d8e82
DV
4799 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4800 I915_READ(PFIT_CONTROL));
4801 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4802}
4803
0b8765c6
JB
4804static void i9xx_crtc_disable(struct drm_crtc *crtc)
4805{
4806 struct drm_device *dev = crtc->dev;
4807 struct drm_i915_private *dev_priv = dev->dev_private;
4808 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4809 struct intel_encoder *encoder;
0b8765c6 4810 int pipe = intel_crtc->pipe;
ef9c3aee 4811
f7abfe8b
CW
4812 if (!intel_crtc->active)
4813 return;
4814
4a3436e8
VS
4815 /*
4816 * Gen2 reports pipe underruns whenever all planes are disabled.
4817 * So diasble underrun reporting before all the planes get disabled.
4818 * FIXME: Need to fix the logic to work when we turn off all planes
4819 * but leave the pipe running.
4820 */
4821 if (IS_GEN2(dev))
4822 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4823
9ab0460b
VS
4824 intel_crtc_disable_planes(crtc);
4825
ea9d758d
DV
4826 for_each_encoder_on_crtc(dev, crtc, encoder)
4827 encoder->disable(encoder);
4828
6304cd91
VS
4829 /*
4830 * On gen2 planes are double buffered but the pipe isn't, so we must
4831 * wait for planes to fully turn off before disabling the pipe.
4832 */
4833 if (IS_GEN2(dev))
4834 intel_wait_for_vblank(dev, pipe);
4835
b24e7179 4836 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4837
87476d63 4838 i9xx_pfit_disable(intel_crtc);
24a1f16d 4839
89b667f8
JB
4840 for_each_encoder_on_crtc(dev, crtc, encoder)
4841 if (encoder->post_disable)
4842 encoder->post_disable(encoder);
4843
076ed3b2
CML
4844 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4845 if (IS_CHERRYVIEW(dev))
4846 chv_disable_pll(dev_priv, pipe);
4847 else if (IS_VALLEYVIEW(dev))
4848 vlv_disable_pll(dev_priv, pipe);
4849 else
4850 i9xx_disable_pll(dev_priv, pipe);
4851 }
0b8765c6 4852
4a3436e8
VS
4853 if (!IS_GEN2(dev))
4854 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4855
f7abfe8b 4856 intel_crtc->active = false;
46ba614c 4857 intel_update_watermarks(crtc);
f37fcc2a 4858
efa9624e 4859 mutex_lock(&dev->struct_mutex);
6b383a7f 4860 intel_update_fbc(dev);
efa9624e 4861 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4862}
4863
ee7b9f93
JB
4864static void i9xx_crtc_off(struct drm_crtc *crtc)
4865{
4866}
4867
976f8a20
DV
4868static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4869 bool enabled)
2c07245f
ZW
4870{
4871 struct drm_device *dev = crtc->dev;
4872 struct drm_i915_master_private *master_priv;
4873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4874 int pipe = intel_crtc->pipe;
79e53945
JB
4875
4876 if (!dev->primary->master)
4877 return;
4878
4879 master_priv = dev->primary->master->driver_priv;
4880 if (!master_priv->sarea_priv)
4881 return;
4882
79e53945
JB
4883 switch (pipe) {
4884 case 0:
4885 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4886 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4887 break;
4888 case 1:
4889 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4890 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4891 break;
4892 default:
9db4a9c7 4893 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4894 break;
4895 }
79e53945
JB
4896}
4897
976f8a20
DV
4898/**
4899 * Sets the power management mode of the pipe and plane.
4900 */
4901void intel_crtc_update_dpms(struct drm_crtc *crtc)
4902{
4903 struct drm_device *dev = crtc->dev;
4904 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
976f8a20 4906 struct intel_encoder *intel_encoder;
0e572fe7
DV
4907 enum intel_display_power_domain domain;
4908 unsigned long domains;
976f8a20
DV
4909 bool enable = false;
4910
4911 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4912 enable |= intel_encoder->connectors_active;
4913
0e572fe7
DV
4914 if (enable) {
4915 if (!intel_crtc->active) {
4916 /*
4917 * FIXME: DDI plls and relevant code isn't converted
4918 * yet, so do runtime PM for DPMS only for all other
4919 * platforms for now.
4920 */
4921 if (!HAS_DDI(dev)) {
4922 domains = get_crtc_power_domains(crtc);
4923 for_each_power_domain(domain, domains)
4924 intel_display_power_get(dev_priv, domain);
4925 intel_crtc->enabled_power_domains = domains;
4926 }
4927
4928 dev_priv->display.crtc_enable(crtc);
4929 }
4930 } else {
4931 if (intel_crtc->active) {
4932 dev_priv->display.crtc_disable(crtc);
4933
4934 if (!HAS_DDI(dev)) {
4935 domains = intel_crtc->enabled_power_domains;
4936 for_each_power_domain(domain, domains)
4937 intel_display_power_put(dev_priv, domain);
4938 intel_crtc->enabled_power_domains = 0;
4939 }
4940 }
4941 }
976f8a20
DV
4942
4943 intel_crtc_update_sarea(crtc, enable);
4944}
4945
cdd59983
CW
4946static void intel_crtc_disable(struct drm_crtc *crtc)
4947{
cdd59983 4948 struct drm_device *dev = crtc->dev;
976f8a20 4949 struct drm_connector *connector;
ee7b9f93 4950 struct drm_i915_private *dev_priv = dev->dev_private;
a071fa00
DV
4951 struct drm_i915_gem_object *old_obj;
4952 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4953
976f8a20
DV
4954 /* crtc should still be enabled when we disable it. */
4955 WARN_ON(!crtc->enabled);
4956
4957 dev_priv->display.crtc_disable(crtc);
4958 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4959 dev_priv->display.off(crtc);
4960
931872fc 4961 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
a071fa00
DV
4962 assert_cursor_disabled(dev_priv, pipe);
4963 assert_pipe_disabled(dev->dev_private, pipe);
cdd59983 4964
f4510a27 4965 if (crtc->primary->fb) {
a071fa00 4966 old_obj = to_intel_framebuffer(crtc->primary->fb)->obj;
cdd59983 4967 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4968 intel_unpin_fb_obj(old_obj);
4969 i915_gem_track_fb(old_obj, NULL,
4970 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4971 mutex_unlock(&dev->struct_mutex);
f4510a27 4972 crtc->primary->fb = NULL;
976f8a20
DV
4973 }
4974
4975 /* Update computed state. */
4976 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4977 if (!connector->encoder || !connector->encoder->crtc)
4978 continue;
4979
4980 if (connector->encoder->crtc != crtc)
4981 continue;
4982
4983 connector->dpms = DRM_MODE_DPMS_OFF;
4984 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4985 }
4986}
4987
ea5b213a 4988void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4989{
4ef69c7a 4990 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4991
ea5b213a
CW
4992 drm_encoder_cleanup(encoder);
4993 kfree(intel_encoder);
7e7d76c3
JB
4994}
4995
9237329d 4996/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
4997 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4998 * state of the entire output pipe. */
9237329d 4999static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5000{
5ab432ef
DV
5001 if (mode == DRM_MODE_DPMS_ON) {
5002 encoder->connectors_active = true;
5003
b2cabb0e 5004 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5005 } else {
5006 encoder->connectors_active = false;
5007
b2cabb0e 5008 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5009 }
79e53945
JB
5010}
5011
0a91ca29
DV
5012/* Cross check the actual hw state with our own modeset state tracking (and it's
5013 * internal consistency). */
b980514c 5014static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5015{
0a91ca29
DV
5016 if (connector->get_hw_state(connector)) {
5017 struct intel_encoder *encoder = connector->encoder;
5018 struct drm_crtc *crtc;
5019 bool encoder_enabled;
5020 enum pipe pipe;
5021
5022 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5023 connector->base.base.id,
c23cc417 5024 connector->base.name);
0a91ca29
DV
5025
5026 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5027 "wrong connector dpms state\n");
5028 WARN(connector->base.encoder != &encoder->base,
5029 "active connector not linked to encoder\n");
5030 WARN(!encoder->connectors_active,
5031 "encoder->connectors_active not set\n");
5032
5033 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5034 WARN(!encoder_enabled, "encoder not enabled\n");
5035 if (WARN_ON(!encoder->base.crtc))
5036 return;
5037
5038 crtc = encoder->base.crtc;
5039
5040 WARN(!crtc->enabled, "crtc not enabled\n");
5041 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5042 WARN(pipe != to_intel_crtc(crtc)->pipe,
5043 "encoder active on the wrong pipe\n");
5044 }
79e53945
JB
5045}
5046
5ab432ef
DV
5047/* Even simpler default implementation, if there's really no special case to
5048 * consider. */
5049void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5050{
5ab432ef
DV
5051 /* All the simple cases only support two dpms states. */
5052 if (mode != DRM_MODE_DPMS_ON)
5053 mode = DRM_MODE_DPMS_OFF;
d4270e57 5054
5ab432ef
DV
5055 if (mode == connector->dpms)
5056 return;
5057
5058 connector->dpms = mode;
5059
5060 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5061 if (connector->encoder)
5062 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5063
b980514c 5064 intel_modeset_check_state(connector->dev);
79e53945
JB
5065}
5066
f0947c37
DV
5067/* Simple connector->get_hw_state implementation for encoders that support only
5068 * one connector and no cloning and hence the encoder state determines the state
5069 * of the connector. */
5070bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5071{
24929352 5072 enum pipe pipe = 0;
f0947c37 5073 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5074
f0947c37 5075 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5076}
5077
1857e1da
DV
5078static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5079 struct intel_crtc_config *pipe_config)
5080{
5081 struct drm_i915_private *dev_priv = dev->dev_private;
5082 struct intel_crtc *pipe_B_crtc =
5083 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5084
5085 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5086 pipe_name(pipe), pipe_config->fdi_lanes);
5087 if (pipe_config->fdi_lanes > 4) {
5088 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5089 pipe_name(pipe), pipe_config->fdi_lanes);
5090 return false;
5091 }
5092
bafb6553 5093 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5094 if (pipe_config->fdi_lanes > 2) {
5095 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5096 pipe_config->fdi_lanes);
5097 return false;
5098 } else {
5099 return true;
5100 }
5101 }
5102
5103 if (INTEL_INFO(dev)->num_pipes == 2)
5104 return true;
5105
5106 /* Ivybridge 3 pipe is really complicated */
5107 switch (pipe) {
5108 case PIPE_A:
5109 return true;
5110 case PIPE_B:
5111 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5112 pipe_config->fdi_lanes > 2) {
5113 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5114 pipe_name(pipe), pipe_config->fdi_lanes);
5115 return false;
5116 }
5117 return true;
5118 case PIPE_C:
1e833f40 5119 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5120 pipe_B_crtc->config.fdi_lanes <= 2) {
5121 if (pipe_config->fdi_lanes > 2) {
5122 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5123 pipe_name(pipe), pipe_config->fdi_lanes);
5124 return false;
5125 }
5126 } else {
5127 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5128 return false;
5129 }
5130 return true;
5131 default:
5132 BUG();
5133 }
5134}
5135
e29c22c0
DV
5136#define RETRY 1
5137static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5138 struct intel_crtc_config *pipe_config)
877d48d5 5139{
1857e1da 5140 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5141 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5142 int lane, link_bw, fdi_dotclock;
e29c22c0 5143 bool setup_ok, needs_recompute = false;
877d48d5 5144
e29c22c0 5145retry:
877d48d5
DV
5146 /* FDI is a binary signal running at ~2.7GHz, encoding
5147 * each output octet as 10 bits. The actual frequency
5148 * is stored as a divider into a 100MHz clock, and the
5149 * mode pixel clock is stored in units of 1KHz.
5150 * Hence the bw of each lane in terms of the mode signal
5151 * is:
5152 */
5153 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5154
241bfc38 5155 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5156
2bd89a07 5157 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5158 pipe_config->pipe_bpp);
5159
5160 pipe_config->fdi_lanes = lane;
5161
2bd89a07 5162 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5163 link_bw, &pipe_config->fdi_m_n);
1857e1da 5164
e29c22c0
DV
5165 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5166 intel_crtc->pipe, pipe_config);
5167 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5168 pipe_config->pipe_bpp -= 2*3;
5169 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5170 pipe_config->pipe_bpp);
5171 needs_recompute = true;
5172 pipe_config->bw_constrained = true;
5173
5174 goto retry;
5175 }
5176
5177 if (needs_recompute)
5178 return RETRY;
5179
5180 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5181}
5182
42db64ef
PZ
5183static void hsw_compute_ips_config(struct intel_crtc *crtc,
5184 struct intel_crtc_config *pipe_config)
5185{
d330a953 5186 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5187 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5188 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5189}
5190
a43f6e0f 5191static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5192 struct intel_crtc_config *pipe_config)
79e53945 5193{
a43f6e0f 5194 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5195 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5196
ad3a4479 5197 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5198 if (INTEL_INFO(dev)->gen < 4) {
5199 struct drm_i915_private *dev_priv = dev->dev_private;
5200 int clock_limit =
5201 dev_priv->display.get_display_clock_speed(dev);
5202
5203 /*
5204 * Enable pixel doubling when the dot clock
5205 * is > 90% of the (display) core speed.
5206 *
b397c96b
VS
5207 * GDG double wide on either pipe,
5208 * otherwise pipe A only.
cf532bb2 5209 */
b397c96b 5210 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5211 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5212 clock_limit *= 2;
cf532bb2 5213 pipe_config->double_wide = true;
ad3a4479
VS
5214 }
5215
241bfc38 5216 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5217 return -EINVAL;
2c07245f 5218 }
89749350 5219
1d1d0e27
VS
5220 /*
5221 * Pipe horizontal size must be even in:
5222 * - DVO ganged mode
5223 * - LVDS dual channel mode
5224 * - Double wide pipe
5225 */
5226 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5227 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5228 pipe_config->pipe_src_w &= ~1;
5229
8693a824
DL
5230 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5231 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5232 */
5233 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5234 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5235 return -EINVAL;
44f46b42 5236
bd080ee5 5237 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5238 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5239 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5240 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5241 * for lvds. */
5242 pipe_config->pipe_bpp = 8*3;
5243 }
5244
f5adf94e 5245 if (HAS_IPS(dev))
a43f6e0f
DV
5246 hsw_compute_ips_config(crtc, pipe_config);
5247
5248 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5249 * clock survives for now. */
5250 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5251 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5252
877d48d5 5253 if (pipe_config->has_pch_encoder)
a43f6e0f 5254 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5255
e29c22c0 5256 return 0;
79e53945
JB
5257}
5258
25eb05fc
JB
5259static int valleyview_get_display_clock_speed(struct drm_device *dev)
5260{
5261 return 400000; /* FIXME */
5262}
5263
e70236a8
JB
5264static int i945_get_display_clock_speed(struct drm_device *dev)
5265{
5266 return 400000;
5267}
79e53945 5268
e70236a8 5269static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5270{
e70236a8
JB
5271 return 333000;
5272}
79e53945 5273
e70236a8
JB
5274static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5275{
5276 return 200000;
5277}
79e53945 5278
257a7ffc
DV
5279static int pnv_get_display_clock_speed(struct drm_device *dev)
5280{
5281 u16 gcfgc = 0;
5282
5283 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5284
5285 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5286 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5287 return 267000;
5288 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5289 return 333000;
5290 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5291 return 444000;
5292 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5293 return 200000;
5294 default:
5295 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5296 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5297 return 133000;
5298 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5299 return 167000;
5300 }
5301}
5302
e70236a8
JB
5303static int i915gm_get_display_clock_speed(struct drm_device *dev)
5304{
5305 u16 gcfgc = 0;
79e53945 5306
e70236a8
JB
5307 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5308
5309 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5310 return 133000;
5311 else {
5312 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5313 case GC_DISPLAY_CLOCK_333_MHZ:
5314 return 333000;
5315 default:
5316 case GC_DISPLAY_CLOCK_190_200_MHZ:
5317 return 190000;
79e53945 5318 }
e70236a8
JB
5319 }
5320}
5321
5322static int i865_get_display_clock_speed(struct drm_device *dev)
5323{
5324 return 266000;
5325}
5326
5327static int i855_get_display_clock_speed(struct drm_device *dev)
5328{
5329 u16 hpllcc = 0;
5330 /* Assume that the hardware is in the high speed state. This
5331 * should be the default.
5332 */
5333 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5334 case GC_CLOCK_133_200:
5335 case GC_CLOCK_100_200:
5336 return 200000;
5337 case GC_CLOCK_166_250:
5338 return 250000;
5339 case GC_CLOCK_100_133:
79e53945 5340 return 133000;
e70236a8 5341 }
79e53945 5342
e70236a8
JB
5343 /* Shouldn't happen */
5344 return 0;
5345}
79e53945 5346
e70236a8
JB
5347static int i830_get_display_clock_speed(struct drm_device *dev)
5348{
5349 return 133000;
79e53945
JB
5350}
5351
2c07245f 5352static void
a65851af 5353intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5354{
a65851af
VS
5355 while (*num > DATA_LINK_M_N_MASK ||
5356 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5357 *num >>= 1;
5358 *den >>= 1;
5359 }
5360}
5361
a65851af
VS
5362static void compute_m_n(unsigned int m, unsigned int n,
5363 uint32_t *ret_m, uint32_t *ret_n)
5364{
5365 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5366 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5367 intel_reduce_m_n_ratio(ret_m, ret_n);
5368}
5369
e69d0bc1
DV
5370void
5371intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5372 int pixel_clock, int link_clock,
5373 struct intel_link_m_n *m_n)
2c07245f 5374{
e69d0bc1 5375 m_n->tu = 64;
a65851af
VS
5376
5377 compute_m_n(bits_per_pixel * pixel_clock,
5378 link_clock * nlanes * 8,
5379 &m_n->gmch_m, &m_n->gmch_n);
5380
5381 compute_m_n(pixel_clock, link_clock,
5382 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5383}
5384
a7615030
CW
5385static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5386{
d330a953
JN
5387 if (i915.panel_use_ssc >= 0)
5388 return i915.panel_use_ssc != 0;
41aa3448 5389 return dev_priv->vbt.lvds_use_ssc
435793df 5390 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5391}
5392
c65d77d8
JB
5393static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5394{
5395 struct drm_device *dev = crtc->dev;
5396 struct drm_i915_private *dev_priv = dev->dev_private;
5397 int refclk;
5398
a0c4da24 5399 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5400 refclk = 100000;
a0c4da24 5401 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5402 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5403 refclk = dev_priv->vbt.lvds_ssc_freq;
5404 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5405 } else if (!IS_GEN2(dev)) {
5406 refclk = 96000;
5407 } else {
5408 refclk = 48000;
5409 }
5410
5411 return refclk;
5412}
5413
7429e9d4 5414static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5415{
7df00d7a 5416 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5417}
f47709a9 5418
7429e9d4
DV
5419static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5420{
5421 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5422}
5423
f47709a9 5424static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5425 intel_clock_t *reduced_clock)
5426{
f47709a9 5427 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5428 u32 fp, fp2 = 0;
5429
5430 if (IS_PINEVIEW(dev)) {
7429e9d4 5431 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5432 if (reduced_clock)
7429e9d4 5433 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5434 } else {
7429e9d4 5435 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5436 if (reduced_clock)
7429e9d4 5437 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5438 }
5439
8bcc2795 5440 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5441
f47709a9
DV
5442 crtc->lowfreq_avail = false;
5443 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5444 reduced_clock && i915.powersave) {
8bcc2795 5445 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5446 crtc->lowfreq_avail = true;
a7516a05 5447 } else {
8bcc2795 5448 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5449 }
5450}
5451
5e69f97f
CML
5452static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5453 pipe)
89b667f8
JB
5454{
5455 u32 reg_val;
5456
5457 /*
5458 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5459 * and set it to a reasonable value instead.
5460 */
ab3c759a 5461 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5462 reg_val &= 0xffffff00;
5463 reg_val |= 0x00000030;
ab3c759a 5464 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5465
ab3c759a 5466 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5467 reg_val &= 0x8cffffff;
5468 reg_val = 0x8c000000;
ab3c759a 5469 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5470
ab3c759a 5471 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5472 reg_val &= 0xffffff00;
ab3c759a 5473 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5474
ab3c759a 5475 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5476 reg_val &= 0x00ffffff;
5477 reg_val |= 0xb0000000;
ab3c759a 5478 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5479}
5480
b551842d
DV
5481static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5482 struct intel_link_m_n *m_n)
5483{
5484 struct drm_device *dev = crtc->base.dev;
5485 struct drm_i915_private *dev_priv = dev->dev_private;
5486 int pipe = crtc->pipe;
5487
e3b95f1e
DV
5488 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5489 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5490 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5491 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5492}
5493
5494static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5495 struct intel_link_m_n *m_n)
5496{
5497 struct drm_device *dev = crtc->base.dev;
5498 struct drm_i915_private *dev_priv = dev->dev_private;
5499 int pipe = crtc->pipe;
5500 enum transcoder transcoder = crtc->config.cpu_transcoder;
5501
5502 if (INTEL_INFO(dev)->gen >= 5) {
5503 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5504 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5505 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5506 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5507 } else {
e3b95f1e
DV
5508 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5509 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5510 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5511 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5512 }
5513}
5514
03afc4a2
DV
5515static void intel_dp_set_m_n(struct intel_crtc *crtc)
5516{
5517 if (crtc->config.has_pch_encoder)
5518 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5519 else
5520 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5521}
5522
f47709a9 5523static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5524{
5525 u32 dpll, dpll_md;
5526
5527 /*
5528 * Enable DPIO clock input. We should never disable the reference
5529 * clock for pipe B, since VGA hotplug / manual detection depends
5530 * on it.
5531 */
5532 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5533 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5534 /* We should never disable this, set it here for state tracking */
5535 if (crtc->pipe == PIPE_B)
5536 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5537 dpll |= DPLL_VCO_ENABLE;
5538 crtc->config.dpll_hw_state.dpll = dpll;
5539
5540 dpll_md = (crtc->config.pixel_multiplier - 1)
5541 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5542 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5543}
5544
5545static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5546{
f47709a9 5547 struct drm_device *dev = crtc->base.dev;
a0c4da24 5548 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5549 int pipe = crtc->pipe;
bdd4b6a6 5550 u32 mdiv;
a0c4da24 5551 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5552 u32 coreclk, reg_val;
a0c4da24 5553
09153000
DV
5554 mutex_lock(&dev_priv->dpio_lock);
5555
f47709a9
DV
5556 bestn = crtc->config.dpll.n;
5557 bestm1 = crtc->config.dpll.m1;
5558 bestm2 = crtc->config.dpll.m2;
5559 bestp1 = crtc->config.dpll.p1;
5560 bestp2 = crtc->config.dpll.p2;
a0c4da24 5561
89b667f8
JB
5562 /* See eDP HDMI DPIO driver vbios notes doc */
5563
5564 /* PLL B needs special handling */
bdd4b6a6 5565 if (pipe == PIPE_B)
5e69f97f 5566 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5567
5568 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5569 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5570
5571 /* Disable target IRef on PLL */
ab3c759a 5572 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5573 reg_val &= 0x00ffffff;
ab3c759a 5574 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5575
5576 /* Disable fast lock */
ab3c759a 5577 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5578
5579 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5580 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5581 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5582 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5583 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5584
5585 /*
5586 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5587 * but we don't support that).
5588 * Note: don't use the DAC post divider as it seems unstable.
5589 */
5590 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5591 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5592
a0c4da24 5593 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5594 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5595
89b667f8 5596 /* Set HBR and RBR LPF coefficients */
ff9a6750 5597 if (crtc->config.port_clock == 162000 ||
99750bd4 5598 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5599 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5600 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5601 0x009f0003);
89b667f8 5602 else
ab3c759a 5603 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5604 0x00d0000f);
5605
5606 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5607 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5608 /* Use SSC source */
bdd4b6a6 5609 if (pipe == PIPE_A)
ab3c759a 5610 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5611 0x0df40000);
5612 else
ab3c759a 5613 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5614 0x0df70000);
5615 } else { /* HDMI or VGA */
5616 /* Use bend source */
bdd4b6a6 5617 if (pipe == PIPE_A)
ab3c759a 5618 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5619 0x0df70000);
5620 else
ab3c759a 5621 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5622 0x0df40000);
5623 }
a0c4da24 5624
ab3c759a 5625 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5626 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5627 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5628 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5629 coreclk |= 0x01000000;
ab3c759a 5630 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5631
ab3c759a 5632 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5633 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5634}
5635
9d556c99
CML
5636static void chv_update_pll(struct intel_crtc *crtc)
5637{
5638 struct drm_device *dev = crtc->base.dev;
5639 struct drm_i915_private *dev_priv = dev->dev_private;
5640 int pipe = crtc->pipe;
5641 int dpll_reg = DPLL(crtc->pipe);
5642 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5643 u32 loopfilter, intcoeff;
9d556c99
CML
5644 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5645 int refclk;
5646
a11b0703
VS
5647 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5648 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5649 DPLL_VCO_ENABLE;
5650 if (pipe != PIPE_A)
5651 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5652
5653 crtc->config.dpll_hw_state.dpll_md =
5654 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5655
5656 bestn = crtc->config.dpll.n;
5657 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5658 bestm1 = crtc->config.dpll.m1;
5659 bestm2 = crtc->config.dpll.m2 >> 22;
5660 bestp1 = crtc->config.dpll.p1;
5661 bestp2 = crtc->config.dpll.p2;
5662
5663 /*
5664 * Enable Refclk and SSC
5665 */
a11b0703
VS
5666 I915_WRITE(dpll_reg,
5667 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5668
5669 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5670
9d556c99
CML
5671 /* p1 and p2 divider */
5672 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5673 5 << DPIO_CHV_S1_DIV_SHIFT |
5674 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5675 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5676 1 << DPIO_CHV_K_DIV_SHIFT);
5677
5678 /* Feedback post-divider - m2 */
5679 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5680
5681 /* Feedback refclk divider - n and m1 */
5682 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5683 DPIO_CHV_M1_DIV_BY_2 |
5684 1 << DPIO_CHV_N_DIV_SHIFT);
5685
5686 /* M2 fraction division */
5687 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5688
5689 /* M2 fraction division enable */
5690 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5691 DPIO_CHV_FRAC_DIV_EN |
5692 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5693
5694 /* Loop filter */
5695 refclk = i9xx_get_refclk(&crtc->base, 0);
5696 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5697 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5698 if (refclk == 100000)
5699 intcoeff = 11;
5700 else if (refclk == 38400)
5701 intcoeff = 10;
5702 else
5703 intcoeff = 9;
5704 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5705 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5706
5707 /* AFC Recal */
5708 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5709 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5710 DPIO_AFC_RECAL);
5711
5712 mutex_unlock(&dev_priv->dpio_lock);
5713}
5714
f47709a9
DV
5715static void i9xx_update_pll(struct intel_crtc *crtc,
5716 intel_clock_t *reduced_clock,
eb1cbe48
DV
5717 int num_connectors)
5718{
f47709a9 5719 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5720 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5721 u32 dpll;
5722 bool is_sdvo;
f47709a9 5723 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5724
f47709a9 5725 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5726
f47709a9
DV
5727 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5728 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5729
5730 dpll = DPLL_VGA_MODE_DIS;
5731
f47709a9 5732 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5733 dpll |= DPLLB_MODE_LVDS;
5734 else
5735 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5736
ef1b460d 5737 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5738 dpll |= (crtc->config.pixel_multiplier - 1)
5739 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5740 }
198a037f
DV
5741
5742 if (is_sdvo)
4a33e48d 5743 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5744
f47709a9 5745 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5746 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5747
5748 /* compute bitmask from p1 value */
5749 if (IS_PINEVIEW(dev))
5750 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5751 else {
5752 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5753 if (IS_G4X(dev) && reduced_clock)
5754 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5755 }
5756 switch (clock->p2) {
5757 case 5:
5758 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5759 break;
5760 case 7:
5761 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5762 break;
5763 case 10:
5764 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5765 break;
5766 case 14:
5767 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5768 break;
5769 }
5770 if (INTEL_INFO(dev)->gen >= 4)
5771 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5772
09ede541 5773 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5774 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5775 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5776 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5777 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5778 else
5779 dpll |= PLL_REF_INPUT_DREFCLK;
5780
5781 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5782 crtc->config.dpll_hw_state.dpll = dpll;
5783
eb1cbe48 5784 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5785 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5786 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5787 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5788 }
5789}
5790
f47709a9 5791static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5792 intel_clock_t *reduced_clock,
eb1cbe48
DV
5793 int num_connectors)
5794{
f47709a9 5795 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5796 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5797 u32 dpll;
f47709a9 5798 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5799
f47709a9 5800 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5801
eb1cbe48
DV
5802 dpll = DPLL_VGA_MODE_DIS;
5803
f47709a9 5804 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5805 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5806 } else {
5807 if (clock->p1 == 2)
5808 dpll |= PLL_P1_DIVIDE_BY_TWO;
5809 else
5810 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5811 if (clock->p2 == 4)
5812 dpll |= PLL_P2_DIVIDE_BY_4;
5813 }
5814
4a33e48d
DV
5815 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5816 dpll |= DPLL_DVO_2X_MODE;
5817
f47709a9 5818 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5819 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5820 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5821 else
5822 dpll |= PLL_REF_INPUT_DREFCLK;
5823
5824 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5825 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5826}
5827
8a654f3b 5828static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5829{
5830 struct drm_device *dev = intel_crtc->base.dev;
5831 struct drm_i915_private *dev_priv = dev->dev_private;
5832 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5833 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5834 struct drm_display_mode *adjusted_mode =
5835 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5836 uint32_t crtc_vtotal, crtc_vblank_end;
5837 int vsyncshift = 0;
4d8a62ea
DV
5838
5839 /* We need to be careful not to changed the adjusted mode, for otherwise
5840 * the hw state checker will get angry at the mismatch. */
5841 crtc_vtotal = adjusted_mode->crtc_vtotal;
5842 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5843
609aeaca 5844 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5845 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5846 crtc_vtotal -= 1;
5847 crtc_vblank_end -= 1;
609aeaca
VS
5848
5849 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5850 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5851 else
5852 vsyncshift = adjusted_mode->crtc_hsync_start -
5853 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5854 if (vsyncshift < 0)
5855 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5856 }
5857
5858 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5859 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5860
fe2b8f9d 5861 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5862 (adjusted_mode->crtc_hdisplay - 1) |
5863 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5864 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5865 (adjusted_mode->crtc_hblank_start - 1) |
5866 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5867 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5868 (adjusted_mode->crtc_hsync_start - 1) |
5869 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5870
fe2b8f9d 5871 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5872 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5873 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5874 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5875 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5876 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5877 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5878 (adjusted_mode->crtc_vsync_start - 1) |
5879 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5880
b5e508d4
PZ
5881 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5882 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5883 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5884 * bits. */
5885 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5886 (pipe == PIPE_B || pipe == PIPE_C))
5887 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5888
b0e77b9c
PZ
5889 /* pipesrc controls the size that is scaled from, which should
5890 * always be the user's requested size.
5891 */
5892 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5893 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5894 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5895}
5896
1bd1bd80
DV
5897static void intel_get_pipe_timings(struct intel_crtc *crtc,
5898 struct intel_crtc_config *pipe_config)
5899{
5900 struct drm_device *dev = crtc->base.dev;
5901 struct drm_i915_private *dev_priv = dev->dev_private;
5902 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5903 uint32_t tmp;
5904
5905 tmp = I915_READ(HTOTAL(cpu_transcoder));
5906 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5907 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5908 tmp = I915_READ(HBLANK(cpu_transcoder));
5909 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5910 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5911 tmp = I915_READ(HSYNC(cpu_transcoder));
5912 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5913 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5914
5915 tmp = I915_READ(VTOTAL(cpu_transcoder));
5916 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5917 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5918 tmp = I915_READ(VBLANK(cpu_transcoder));
5919 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5920 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5921 tmp = I915_READ(VSYNC(cpu_transcoder));
5922 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5923 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5924
5925 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5926 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5927 pipe_config->adjusted_mode.crtc_vtotal += 1;
5928 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5929 }
5930
5931 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5932 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5933 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5934
5935 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5936 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5937}
5938
f6a83288
DV
5939void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5940 struct intel_crtc_config *pipe_config)
babea61d 5941{
f6a83288
DV
5942 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5943 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5944 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5945 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5946
f6a83288
DV
5947 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5948 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5949 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5950 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5951
f6a83288 5952 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5953
f6a83288
DV
5954 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5955 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5956}
5957
84b046f3
DV
5958static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5959{
5960 struct drm_device *dev = intel_crtc->base.dev;
5961 struct drm_i915_private *dev_priv = dev->dev_private;
5962 uint32_t pipeconf;
5963
9f11a9e4 5964 pipeconf = 0;
84b046f3 5965
67c72a12
DV
5966 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5967 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5968 pipeconf |= PIPECONF_ENABLE;
5969
cf532bb2
VS
5970 if (intel_crtc->config.double_wide)
5971 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5972
ff9ce46e
DV
5973 /* only g4x and later have fancy bpc/dither controls */
5974 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5975 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5976 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5977 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5978 PIPECONF_DITHER_TYPE_SP;
84b046f3 5979
ff9ce46e
DV
5980 switch (intel_crtc->config.pipe_bpp) {
5981 case 18:
5982 pipeconf |= PIPECONF_6BPC;
5983 break;
5984 case 24:
5985 pipeconf |= PIPECONF_8BPC;
5986 break;
5987 case 30:
5988 pipeconf |= PIPECONF_10BPC;
5989 break;
5990 default:
5991 /* Case prevented by intel_choose_pipe_bpp_dither. */
5992 BUG();
84b046f3
DV
5993 }
5994 }
5995
5996 if (HAS_PIPE_CXSR(dev)) {
5997 if (intel_crtc->lowfreq_avail) {
5998 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5999 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6000 } else {
6001 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6002 }
6003 }
6004
efc2cfff
VS
6005 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6006 if (INTEL_INFO(dev)->gen < 4 ||
6007 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6008 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6009 else
6010 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6011 } else
84b046f3
DV
6012 pipeconf |= PIPECONF_PROGRESSIVE;
6013
9f11a9e4
DV
6014 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6015 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6016
84b046f3
DV
6017 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6018 POSTING_READ(PIPECONF(intel_crtc->pipe));
6019}
6020
f564048e 6021static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6022 int x, int y,
94352cf9 6023 struct drm_framebuffer *fb)
79e53945
JB
6024{
6025 struct drm_device *dev = crtc->dev;
6026 struct drm_i915_private *dev_priv = dev->dev_private;
6027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6028 int refclk, num_connectors = 0;
652c393a 6029 intel_clock_t clock, reduced_clock;
a16af721 6030 bool ok, has_reduced_clock = false;
e9fd1c02 6031 bool is_lvds = false, is_dsi = false;
5eddb70b 6032 struct intel_encoder *encoder;
d4906093 6033 const intel_limit_t *limit;
79e53945 6034
6c2b7c12 6035 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6036 switch (encoder->type) {
79e53945
JB
6037 case INTEL_OUTPUT_LVDS:
6038 is_lvds = true;
6039 break;
e9fd1c02
JN
6040 case INTEL_OUTPUT_DSI:
6041 is_dsi = true;
6042 break;
79e53945 6043 }
43565a06 6044
c751ce4f 6045 num_connectors++;
79e53945
JB
6046 }
6047
f2335330 6048 if (is_dsi)
5b18e57c 6049 return 0;
f2335330
JN
6050
6051 if (!intel_crtc->config.clock_set) {
6052 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6053
e9fd1c02
JN
6054 /*
6055 * Returns a set of divisors for the desired target clock with
6056 * the given refclk, or FALSE. The returned values represent
6057 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6058 * 2) / p1 / p2.
6059 */
6060 limit = intel_limit(crtc, refclk);
6061 ok = dev_priv->display.find_dpll(limit, crtc,
6062 intel_crtc->config.port_clock,
6063 refclk, NULL, &clock);
f2335330 6064 if (!ok) {
e9fd1c02
JN
6065 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6066 return -EINVAL;
6067 }
79e53945 6068
f2335330
JN
6069 if (is_lvds && dev_priv->lvds_downclock_avail) {
6070 /*
6071 * Ensure we match the reduced clock's P to the target
6072 * clock. If the clocks don't match, we can't switch
6073 * the display clock by using the FP0/FP1. In such case
6074 * we will disable the LVDS downclock feature.
6075 */
6076 has_reduced_clock =
6077 dev_priv->display.find_dpll(limit, crtc,
6078 dev_priv->lvds_downclock,
6079 refclk, &clock,
6080 &reduced_clock);
6081 }
6082 /* Compat-code for transition, will disappear. */
f47709a9
DV
6083 intel_crtc->config.dpll.n = clock.n;
6084 intel_crtc->config.dpll.m1 = clock.m1;
6085 intel_crtc->config.dpll.m2 = clock.m2;
6086 intel_crtc->config.dpll.p1 = clock.p1;
6087 intel_crtc->config.dpll.p2 = clock.p2;
6088 }
7026d4ac 6089
e9fd1c02 6090 if (IS_GEN2(dev)) {
8a654f3b 6091 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6092 has_reduced_clock ? &reduced_clock : NULL,
6093 num_connectors);
9d556c99
CML
6094 } else if (IS_CHERRYVIEW(dev)) {
6095 chv_update_pll(intel_crtc);
e9fd1c02 6096 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6097 vlv_update_pll(intel_crtc);
e9fd1c02 6098 } else {
f47709a9 6099 i9xx_update_pll(intel_crtc,
eb1cbe48 6100 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6101 num_connectors);
e9fd1c02 6102 }
79e53945 6103
c8f7a0db 6104 return 0;
f564048e
EA
6105}
6106
2fa2fe9a
DV
6107static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6108 struct intel_crtc_config *pipe_config)
6109{
6110 struct drm_device *dev = crtc->base.dev;
6111 struct drm_i915_private *dev_priv = dev->dev_private;
6112 uint32_t tmp;
6113
dc9e7dec
VS
6114 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6115 return;
6116
2fa2fe9a 6117 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6118 if (!(tmp & PFIT_ENABLE))
6119 return;
2fa2fe9a 6120
06922821 6121 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6122 if (INTEL_INFO(dev)->gen < 4) {
6123 if (crtc->pipe != PIPE_B)
6124 return;
2fa2fe9a
DV
6125 } else {
6126 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6127 return;
6128 }
6129
06922821 6130 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6131 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6132 if (INTEL_INFO(dev)->gen < 5)
6133 pipe_config->gmch_pfit.lvds_border_bits =
6134 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6135}
6136
acbec814
JB
6137static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6138 struct intel_crtc_config *pipe_config)
6139{
6140 struct drm_device *dev = crtc->base.dev;
6141 struct drm_i915_private *dev_priv = dev->dev_private;
6142 int pipe = pipe_config->cpu_transcoder;
6143 intel_clock_t clock;
6144 u32 mdiv;
662c6ecb 6145 int refclk = 100000;
acbec814
JB
6146
6147 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6148 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6149 mutex_unlock(&dev_priv->dpio_lock);
6150
6151 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6152 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6153 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6154 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6155 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6156
f646628b 6157 vlv_clock(refclk, &clock);
acbec814 6158
f646628b
VS
6159 /* clock.dot is the fast clock */
6160 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6161}
6162
1ad292b5
JB
6163static void i9xx_get_plane_config(struct intel_crtc *crtc,
6164 struct intel_plane_config *plane_config)
6165{
6166 struct drm_device *dev = crtc->base.dev;
6167 struct drm_i915_private *dev_priv = dev->dev_private;
6168 u32 val, base, offset;
6169 int pipe = crtc->pipe, plane = crtc->plane;
6170 int fourcc, pixel_format;
6171 int aligned_height;
6172
66e514c1
DA
6173 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6174 if (!crtc->base.primary->fb) {
1ad292b5
JB
6175 DRM_DEBUG_KMS("failed to alloc fb\n");
6176 return;
6177 }
6178
6179 val = I915_READ(DSPCNTR(plane));
6180
6181 if (INTEL_INFO(dev)->gen >= 4)
6182 if (val & DISPPLANE_TILED)
6183 plane_config->tiled = true;
6184
6185 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6186 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6187 crtc->base.primary->fb->pixel_format = fourcc;
6188 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6189 drm_format_plane_cpp(fourcc, 0) * 8;
6190
6191 if (INTEL_INFO(dev)->gen >= 4) {
6192 if (plane_config->tiled)
6193 offset = I915_READ(DSPTILEOFF(plane));
6194 else
6195 offset = I915_READ(DSPLINOFF(plane));
6196 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6197 } else {
6198 base = I915_READ(DSPADDR(plane));
6199 }
6200 plane_config->base = base;
6201
6202 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6203 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6204 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6205
6206 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6207 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6208
66e514c1 6209 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6210 plane_config->tiled);
6211
66e514c1 6212 plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
1ad292b5
JB
6213 aligned_height, PAGE_SIZE);
6214
6215 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6216 pipe, plane, crtc->base.primary->fb->width,
6217 crtc->base.primary->fb->height,
6218 crtc->base.primary->fb->bits_per_pixel, base,
6219 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6220 plane_config->size);
6221
6222}
6223
70b23a98
VS
6224static void chv_crtc_clock_get(struct intel_crtc *crtc,
6225 struct intel_crtc_config *pipe_config)
6226{
6227 struct drm_device *dev = crtc->base.dev;
6228 struct drm_i915_private *dev_priv = dev->dev_private;
6229 int pipe = pipe_config->cpu_transcoder;
6230 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6231 intel_clock_t clock;
6232 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6233 int refclk = 100000;
6234
6235 mutex_lock(&dev_priv->dpio_lock);
6236 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6237 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6238 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6239 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6240 mutex_unlock(&dev_priv->dpio_lock);
6241
6242 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6243 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6244 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6245 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6246 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6247
6248 chv_clock(refclk, &clock);
6249
6250 /* clock.dot is the fast clock */
6251 pipe_config->port_clock = clock.dot / 5;
6252}
6253
0e8ffe1b
DV
6254static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6255 struct intel_crtc_config *pipe_config)
6256{
6257 struct drm_device *dev = crtc->base.dev;
6258 struct drm_i915_private *dev_priv = dev->dev_private;
6259 uint32_t tmp;
6260
b5482bd0
ID
6261 if (!intel_display_power_enabled(dev_priv,
6262 POWER_DOMAIN_PIPE(crtc->pipe)))
6263 return false;
6264
e143a21c 6265 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6266 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6267
0e8ffe1b
DV
6268 tmp = I915_READ(PIPECONF(crtc->pipe));
6269 if (!(tmp & PIPECONF_ENABLE))
6270 return false;
6271
42571aef
VS
6272 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6273 switch (tmp & PIPECONF_BPC_MASK) {
6274 case PIPECONF_6BPC:
6275 pipe_config->pipe_bpp = 18;
6276 break;
6277 case PIPECONF_8BPC:
6278 pipe_config->pipe_bpp = 24;
6279 break;
6280 case PIPECONF_10BPC:
6281 pipe_config->pipe_bpp = 30;
6282 break;
6283 default:
6284 break;
6285 }
6286 }
6287
b5a9fa09
DV
6288 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6289 pipe_config->limited_color_range = true;
6290
282740f7
VS
6291 if (INTEL_INFO(dev)->gen < 4)
6292 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6293
1bd1bd80
DV
6294 intel_get_pipe_timings(crtc, pipe_config);
6295
2fa2fe9a
DV
6296 i9xx_get_pfit_config(crtc, pipe_config);
6297
6c49f241
DV
6298 if (INTEL_INFO(dev)->gen >= 4) {
6299 tmp = I915_READ(DPLL_MD(crtc->pipe));
6300 pipe_config->pixel_multiplier =
6301 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6302 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6303 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6304 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6305 tmp = I915_READ(DPLL(crtc->pipe));
6306 pipe_config->pixel_multiplier =
6307 ((tmp & SDVO_MULTIPLIER_MASK)
6308 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6309 } else {
6310 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6311 * port and will be fixed up in the encoder->get_config
6312 * function. */
6313 pipe_config->pixel_multiplier = 1;
6314 }
8bcc2795
DV
6315 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6316 if (!IS_VALLEYVIEW(dev)) {
6317 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6318 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6319 } else {
6320 /* Mask out read-only status bits. */
6321 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6322 DPLL_PORTC_READY_MASK |
6323 DPLL_PORTB_READY_MASK);
8bcc2795 6324 }
6c49f241 6325
70b23a98
VS
6326 if (IS_CHERRYVIEW(dev))
6327 chv_crtc_clock_get(crtc, pipe_config);
6328 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6329 vlv_crtc_clock_get(crtc, pipe_config);
6330 else
6331 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6332
0e8ffe1b
DV
6333 return true;
6334}
6335
dde86e2d 6336static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6337{
6338 struct drm_i915_private *dev_priv = dev->dev_private;
6339 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6340 struct intel_encoder *encoder;
74cfd7ac 6341 u32 val, final;
13d83a67 6342 bool has_lvds = false;
199e5d79 6343 bool has_cpu_edp = false;
199e5d79 6344 bool has_panel = false;
99eb6a01
KP
6345 bool has_ck505 = false;
6346 bool can_ssc = false;
13d83a67
JB
6347
6348 /* We need to take the global config into account */
199e5d79
KP
6349 list_for_each_entry(encoder, &mode_config->encoder_list,
6350 base.head) {
6351 switch (encoder->type) {
6352 case INTEL_OUTPUT_LVDS:
6353 has_panel = true;
6354 has_lvds = true;
6355 break;
6356 case INTEL_OUTPUT_EDP:
6357 has_panel = true;
2de6905f 6358 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6359 has_cpu_edp = true;
6360 break;
13d83a67
JB
6361 }
6362 }
6363
99eb6a01 6364 if (HAS_PCH_IBX(dev)) {
41aa3448 6365 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6366 can_ssc = has_ck505;
6367 } else {
6368 has_ck505 = false;
6369 can_ssc = true;
6370 }
6371
2de6905f
ID
6372 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6373 has_panel, has_lvds, has_ck505);
13d83a67
JB
6374
6375 /* Ironlake: try to setup display ref clock before DPLL
6376 * enabling. This is only under driver's control after
6377 * PCH B stepping, previous chipset stepping should be
6378 * ignoring this setting.
6379 */
74cfd7ac
CW
6380 val = I915_READ(PCH_DREF_CONTROL);
6381
6382 /* As we must carefully and slowly disable/enable each source in turn,
6383 * compute the final state we want first and check if we need to
6384 * make any changes at all.
6385 */
6386 final = val;
6387 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6388 if (has_ck505)
6389 final |= DREF_NONSPREAD_CK505_ENABLE;
6390 else
6391 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6392
6393 final &= ~DREF_SSC_SOURCE_MASK;
6394 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6395 final &= ~DREF_SSC1_ENABLE;
6396
6397 if (has_panel) {
6398 final |= DREF_SSC_SOURCE_ENABLE;
6399
6400 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6401 final |= DREF_SSC1_ENABLE;
6402
6403 if (has_cpu_edp) {
6404 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6405 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6406 else
6407 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6408 } else
6409 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6410 } else {
6411 final |= DREF_SSC_SOURCE_DISABLE;
6412 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6413 }
6414
6415 if (final == val)
6416 return;
6417
13d83a67 6418 /* Always enable nonspread source */
74cfd7ac 6419 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6420
99eb6a01 6421 if (has_ck505)
74cfd7ac 6422 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6423 else
74cfd7ac 6424 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6425
199e5d79 6426 if (has_panel) {
74cfd7ac
CW
6427 val &= ~DREF_SSC_SOURCE_MASK;
6428 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6429
199e5d79 6430 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6431 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6432 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6433 val |= DREF_SSC1_ENABLE;
e77166b5 6434 } else
74cfd7ac 6435 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6436
6437 /* Get SSC going before enabling the outputs */
74cfd7ac 6438 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6439 POSTING_READ(PCH_DREF_CONTROL);
6440 udelay(200);
6441
74cfd7ac 6442 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6443
6444 /* Enable CPU source on CPU attached eDP */
199e5d79 6445 if (has_cpu_edp) {
99eb6a01 6446 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6447 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6448 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6449 } else
74cfd7ac 6450 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6451 } else
74cfd7ac 6452 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6453
74cfd7ac 6454 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6455 POSTING_READ(PCH_DREF_CONTROL);
6456 udelay(200);
6457 } else {
6458 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6459
74cfd7ac 6460 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6461
6462 /* Turn off CPU output */
74cfd7ac 6463 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6464
74cfd7ac 6465 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6466 POSTING_READ(PCH_DREF_CONTROL);
6467 udelay(200);
6468
6469 /* Turn off the SSC source */
74cfd7ac
CW
6470 val &= ~DREF_SSC_SOURCE_MASK;
6471 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6472
6473 /* Turn off SSC1 */
74cfd7ac 6474 val &= ~DREF_SSC1_ENABLE;
199e5d79 6475
74cfd7ac 6476 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6477 POSTING_READ(PCH_DREF_CONTROL);
6478 udelay(200);
6479 }
74cfd7ac
CW
6480
6481 BUG_ON(val != final);
13d83a67
JB
6482}
6483
f31f2d55 6484static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6485{
f31f2d55 6486 uint32_t tmp;
dde86e2d 6487
0ff066a9
PZ
6488 tmp = I915_READ(SOUTH_CHICKEN2);
6489 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6490 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6491
0ff066a9
PZ
6492 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6493 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6494 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6495
0ff066a9
PZ
6496 tmp = I915_READ(SOUTH_CHICKEN2);
6497 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6498 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6499
0ff066a9
PZ
6500 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6501 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6502 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6503}
6504
6505/* WaMPhyProgramming:hsw */
6506static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6507{
6508 uint32_t tmp;
dde86e2d
PZ
6509
6510 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6511 tmp &= ~(0xFF << 24);
6512 tmp |= (0x12 << 24);
6513 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6514
dde86e2d
PZ
6515 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6516 tmp |= (1 << 11);
6517 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6518
6519 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6520 tmp |= (1 << 11);
6521 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6522
dde86e2d
PZ
6523 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6524 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6525 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6526
6527 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6528 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6529 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6530
0ff066a9
PZ
6531 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6532 tmp &= ~(7 << 13);
6533 tmp |= (5 << 13);
6534 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6535
0ff066a9
PZ
6536 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6537 tmp &= ~(7 << 13);
6538 tmp |= (5 << 13);
6539 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6540
6541 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6542 tmp &= ~0xFF;
6543 tmp |= 0x1C;
6544 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6545
6546 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6547 tmp &= ~0xFF;
6548 tmp |= 0x1C;
6549 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6550
6551 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6552 tmp &= ~(0xFF << 16);
6553 tmp |= (0x1C << 16);
6554 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6555
6556 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6557 tmp &= ~(0xFF << 16);
6558 tmp |= (0x1C << 16);
6559 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6560
0ff066a9
PZ
6561 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6562 tmp |= (1 << 27);
6563 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6564
0ff066a9
PZ
6565 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6566 tmp |= (1 << 27);
6567 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6568
0ff066a9
PZ
6569 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6570 tmp &= ~(0xF << 28);
6571 tmp |= (4 << 28);
6572 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6573
0ff066a9
PZ
6574 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6575 tmp &= ~(0xF << 28);
6576 tmp |= (4 << 28);
6577 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6578}
6579
2fa86a1f
PZ
6580/* Implements 3 different sequences from BSpec chapter "Display iCLK
6581 * Programming" based on the parameters passed:
6582 * - Sequence to enable CLKOUT_DP
6583 * - Sequence to enable CLKOUT_DP without spread
6584 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6585 */
6586static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6587 bool with_fdi)
f31f2d55
PZ
6588{
6589 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6590 uint32_t reg, tmp;
6591
6592 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6593 with_spread = true;
6594 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6595 with_fdi, "LP PCH doesn't have FDI\n"))
6596 with_fdi = false;
f31f2d55
PZ
6597
6598 mutex_lock(&dev_priv->dpio_lock);
6599
6600 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6601 tmp &= ~SBI_SSCCTL_DISABLE;
6602 tmp |= SBI_SSCCTL_PATHALT;
6603 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6604
6605 udelay(24);
6606
2fa86a1f
PZ
6607 if (with_spread) {
6608 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6609 tmp &= ~SBI_SSCCTL_PATHALT;
6610 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6611
2fa86a1f
PZ
6612 if (with_fdi) {
6613 lpt_reset_fdi_mphy(dev_priv);
6614 lpt_program_fdi_mphy(dev_priv);
6615 }
6616 }
dde86e2d 6617
2fa86a1f
PZ
6618 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6619 SBI_GEN0 : SBI_DBUFF0;
6620 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6621 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6622 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6623
6624 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6625}
6626
47701c3b
PZ
6627/* Sequence to disable CLKOUT_DP */
6628static void lpt_disable_clkout_dp(struct drm_device *dev)
6629{
6630 struct drm_i915_private *dev_priv = dev->dev_private;
6631 uint32_t reg, tmp;
6632
6633 mutex_lock(&dev_priv->dpio_lock);
6634
6635 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6636 SBI_GEN0 : SBI_DBUFF0;
6637 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6638 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6639 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6640
6641 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6642 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6643 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6644 tmp |= SBI_SSCCTL_PATHALT;
6645 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6646 udelay(32);
6647 }
6648 tmp |= SBI_SSCCTL_DISABLE;
6649 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6650 }
6651
6652 mutex_unlock(&dev_priv->dpio_lock);
6653}
6654
bf8fa3d3
PZ
6655static void lpt_init_pch_refclk(struct drm_device *dev)
6656{
6657 struct drm_mode_config *mode_config = &dev->mode_config;
6658 struct intel_encoder *encoder;
6659 bool has_vga = false;
6660
6661 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6662 switch (encoder->type) {
6663 case INTEL_OUTPUT_ANALOG:
6664 has_vga = true;
6665 break;
6666 }
6667 }
6668
47701c3b
PZ
6669 if (has_vga)
6670 lpt_enable_clkout_dp(dev, true, true);
6671 else
6672 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6673}
6674
dde86e2d
PZ
6675/*
6676 * Initialize reference clocks when the driver loads
6677 */
6678void intel_init_pch_refclk(struct drm_device *dev)
6679{
6680 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6681 ironlake_init_pch_refclk(dev);
6682 else if (HAS_PCH_LPT(dev))
6683 lpt_init_pch_refclk(dev);
6684}
6685
d9d444cb
JB
6686static int ironlake_get_refclk(struct drm_crtc *crtc)
6687{
6688 struct drm_device *dev = crtc->dev;
6689 struct drm_i915_private *dev_priv = dev->dev_private;
6690 struct intel_encoder *encoder;
d9d444cb
JB
6691 int num_connectors = 0;
6692 bool is_lvds = false;
6693
6c2b7c12 6694 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6695 switch (encoder->type) {
6696 case INTEL_OUTPUT_LVDS:
6697 is_lvds = true;
6698 break;
d9d444cb
JB
6699 }
6700 num_connectors++;
6701 }
6702
6703 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6704 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6705 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6706 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6707 }
6708
6709 return 120000;
6710}
6711
6ff93609 6712static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6713{
c8203565 6714 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6716 int pipe = intel_crtc->pipe;
c8203565
PZ
6717 uint32_t val;
6718
78114071 6719 val = 0;
c8203565 6720
965e0c48 6721 switch (intel_crtc->config.pipe_bpp) {
c8203565 6722 case 18:
dfd07d72 6723 val |= PIPECONF_6BPC;
c8203565
PZ
6724 break;
6725 case 24:
dfd07d72 6726 val |= PIPECONF_8BPC;
c8203565
PZ
6727 break;
6728 case 30:
dfd07d72 6729 val |= PIPECONF_10BPC;
c8203565
PZ
6730 break;
6731 case 36:
dfd07d72 6732 val |= PIPECONF_12BPC;
c8203565
PZ
6733 break;
6734 default:
cc769b62
PZ
6735 /* Case prevented by intel_choose_pipe_bpp_dither. */
6736 BUG();
c8203565
PZ
6737 }
6738
d8b32247 6739 if (intel_crtc->config.dither)
c8203565
PZ
6740 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6741
6ff93609 6742 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6743 val |= PIPECONF_INTERLACED_ILK;
6744 else
6745 val |= PIPECONF_PROGRESSIVE;
6746
50f3b016 6747 if (intel_crtc->config.limited_color_range)
3685a8f3 6748 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6749
c8203565
PZ
6750 I915_WRITE(PIPECONF(pipe), val);
6751 POSTING_READ(PIPECONF(pipe));
6752}
6753
86d3efce
VS
6754/*
6755 * Set up the pipe CSC unit.
6756 *
6757 * Currently only full range RGB to limited range RGB conversion
6758 * is supported, but eventually this should handle various
6759 * RGB<->YCbCr scenarios as well.
6760 */
50f3b016 6761static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6762{
6763 struct drm_device *dev = crtc->dev;
6764 struct drm_i915_private *dev_priv = dev->dev_private;
6765 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6766 int pipe = intel_crtc->pipe;
6767 uint16_t coeff = 0x7800; /* 1.0 */
6768
6769 /*
6770 * TODO: Check what kind of values actually come out of the pipe
6771 * with these coeff/postoff values and adjust to get the best
6772 * accuracy. Perhaps we even need to take the bpc value into
6773 * consideration.
6774 */
6775
50f3b016 6776 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6777 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6778
6779 /*
6780 * GY/GU and RY/RU should be the other way around according
6781 * to BSpec, but reality doesn't agree. Just set them up in
6782 * a way that results in the correct picture.
6783 */
6784 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6785 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6786
6787 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6788 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6789
6790 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6791 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6792
6793 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6794 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6795 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6796
6797 if (INTEL_INFO(dev)->gen > 6) {
6798 uint16_t postoff = 0;
6799
50f3b016 6800 if (intel_crtc->config.limited_color_range)
32cf0cb0 6801 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6802
6803 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6804 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6805 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6806
6807 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6808 } else {
6809 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6810
50f3b016 6811 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6812 mode |= CSC_BLACK_SCREEN_OFFSET;
6813
6814 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6815 }
6816}
6817
6ff93609 6818static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6819{
756f85cf
PZ
6820 struct drm_device *dev = crtc->dev;
6821 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6823 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6824 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6825 uint32_t val;
6826
3eff4faa 6827 val = 0;
ee2b0b38 6828
756f85cf 6829 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6830 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6831
6ff93609 6832 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6833 val |= PIPECONF_INTERLACED_ILK;
6834 else
6835 val |= PIPECONF_PROGRESSIVE;
6836
702e7a56
PZ
6837 I915_WRITE(PIPECONF(cpu_transcoder), val);
6838 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6839
6840 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6841 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6842
6843 if (IS_BROADWELL(dev)) {
6844 val = 0;
6845
6846 switch (intel_crtc->config.pipe_bpp) {
6847 case 18:
6848 val |= PIPEMISC_DITHER_6_BPC;
6849 break;
6850 case 24:
6851 val |= PIPEMISC_DITHER_8_BPC;
6852 break;
6853 case 30:
6854 val |= PIPEMISC_DITHER_10_BPC;
6855 break;
6856 case 36:
6857 val |= PIPEMISC_DITHER_12_BPC;
6858 break;
6859 default:
6860 /* Case prevented by pipe_config_set_bpp. */
6861 BUG();
6862 }
6863
6864 if (intel_crtc->config.dither)
6865 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6866
6867 I915_WRITE(PIPEMISC(pipe), val);
6868 }
ee2b0b38
PZ
6869}
6870
6591c6e4 6871static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6872 intel_clock_t *clock,
6873 bool *has_reduced_clock,
6874 intel_clock_t *reduced_clock)
6875{
6876 struct drm_device *dev = crtc->dev;
6877 struct drm_i915_private *dev_priv = dev->dev_private;
6878 struct intel_encoder *intel_encoder;
6879 int refclk;
d4906093 6880 const intel_limit_t *limit;
a16af721 6881 bool ret, is_lvds = false;
79e53945 6882
6591c6e4
PZ
6883 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6884 switch (intel_encoder->type) {
79e53945
JB
6885 case INTEL_OUTPUT_LVDS:
6886 is_lvds = true;
6887 break;
79e53945
JB
6888 }
6889 }
6890
d9d444cb 6891 refclk = ironlake_get_refclk(crtc);
79e53945 6892
d4906093
ML
6893 /*
6894 * Returns a set of divisors for the desired target clock with the given
6895 * refclk, or FALSE. The returned values represent the clock equation:
6896 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6897 */
1b894b59 6898 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6899 ret = dev_priv->display.find_dpll(limit, crtc,
6900 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6901 refclk, NULL, clock);
6591c6e4
PZ
6902 if (!ret)
6903 return false;
cda4b7d3 6904
ddc9003c 6905 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6906 /*
6907 * Ensure we match the reduced clock's P to the target clock.
6908 * If the clocks don't match, we can't switch the display clock
6909 * by using the FP0/FP1. In such case we will disable the LVDS
6910 * downclock feature.
6911 */
ee9300bb
DV
6912 *has_reduced_clock =
6913 dev_priv->display.find_dpll(limit, crtc,
6914 dev_priv->lvds_downclock,
6915 refclk, clock,
6916 reduced_clock);
652c393a 6917 }
61e9653f 6918
6591c6e4
PZ
6919 return true;
6920}
6921
d4b1931c
PZ
6922int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6923{
6924 /*
6925 * Account for spread spectrum to avoid
6926 * oversubscribing the link. Max center spread
6927 * is 2.5%; use 5% for safety's sake.
6928 */
6929 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6930 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6931}
6932
7429e9d4 6933static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6934{
7429e9d4 6935 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6936}
6937
de13a2e3 6938static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6939 u32 *fp,
9a7c7890 6940 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6941{
de13a2e3 6942 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6943 struct drm_device *dev = crtc->dev;
6944 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6945 struct intel_encoder *intel_encoder;
6946 uint32_t dpll;
6cc5f341 6947 int factor, num_connectors = 0;
09ede541 6948 bool is_lvds = false, is_sdvo = false;
79e53945 6949
de13a2e3
PZ
6950 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6951 switch (intel_encoder->type) {
79e53945
JB
6952 case INTEL_OUTPUT_LVDS:
6953 is_lvds = true;
6954 break;
6955 case INTEL_OUTPUT_SDVO:
7d57382e 6956 case INTEL_OUTPUT_HDMI:
79e53945 6957 is_sdvo = true;
79e53945 6958 break;
79e53945 6959 }
43565a06 6960
c751ce4f 6961 num_connectors++;
79e53945 6962 }
79e53945 6963
c1858123 6964 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6965 factor = 21;
6966 if (is_lvds) {
6967 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6968 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6969 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6970 factor = 25;
09ede541 6971 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6972 factor = 20;
c1858123 6973
7429e9d4 6974 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6975 *fp |= FP_CB_TUNE;
2c07245f 6976
9a7c7890
DV
6977 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6978 *fp2 |= FP_CB_TUNE;
6979
5eddb70b 6980 dpll = 0;
2c07245f 6981
a07d6787
EA
6982 if (is_lvds)
6983 dpll |= DPLLB_MODE_LVDS;
6984 else
6985 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6986
ef1b460d
DV
6987 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6988 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
6989
6990 if (is_sdvo)
4a33e48d 6991 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 6992 if (intel_crtc->config.has_dp_encoder)
4a33e48d 6993 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 6994
a07d6787 6995 /* compute bitmask from p1 value */
7429e9d4 6996 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 6997 /* also FPA1 */
7429e9d4 6998 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 6999
7429e9d4 7000 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7001 case 5:
7002 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7003 break;
7004 case 7:
7005 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7006 break;
7007 case 10:
7008 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7009 break;
7010 case 14:
7011 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7012 break;
79e53945
JB
7013 }
7014
b4c09f3b 7015 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7016 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7017 else
7018 dpll |= PLL_REF_INPUT_DREFCLK;
7019
959e16d6 7020 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7021}
7022
7023static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7024 int x, int y,
7025 struct drm_framebuffer *fb)
7026{
7027 struct drm_device *dev = crtc->dev;
de13a2e3 7028 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7029 int num_connectors = 0;
7030 intel_clock_t clock, reduced_clock;
cbbab5bd 7031 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7032 bool ok, has_reduced_clock = false;
8b47047b 7033 bool is_lvds = false;
de13a2e3 7034 struct intel_encoder *encoder;
e2b78267 7035 struct intel_shared_dpll *pll;
de13a2e3
PZ
7036
7037 for_each_encoder_on_crtc(dev, crtc, encoder) {
7038 switch (encoder->type) {
7039 case INTEL_OUTPUT_LVDS:
7040 is_lvds = true;
7041 break;
de13a2e3
PZ
7042 }
7043
7044 num_connectors++;
a07d6787 7045 }
79e53945 7046
5dc5298b
PZ
7047 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7048 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7049
ff9a6750 7050 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7051 &has_reduced_clock, &reduced_clock);
ee9300bb 7052 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7053 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7054 return -EINVAL;
79e53945 7055 }
f47709a9
DV
7056 /* Compat-code for transition, will disappear. */
7057 if (!intel_crtc->config.clock_set) {
7058 intel_crtc->config.dpll.n = clock.n;
7059 intel_crtc->config.dpll.m1 = clock.m1;
7060 intel_crtc->config.dpll.m2 = clock.m2;
7061 intel_crtc->config.dpll.p1 = clock.p1;
7062 intel_crtc->config.dpll.p2 = clock.p2;
7063 }
79e53945 7064
5dc5298b 7065 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7066 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7067 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7068 if (has_reduced_clock)
7429e9d4 7069 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7070
7429e9d4 7071 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7072 &fp, &reduced_clock,
7073 has_reduced_clock ? &fp2 : NULL);
7074
959e16d6 7075 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7076 intel_crtc->config.dpll_hw_state.fp0 = fp;
7077 if (has_reduced_clock)
7078 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7079 else
7080 intel_crtc->config.dpll_hw_state.fp1 = fp;
7081
b89a1d39 7082 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7083 if (pll == NULL) {
84f44ce7 7084 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7085 pipe_name(intel_crtc->pipe));
4b645f14
JB
7086 return -EINVAL;
7087 }
ee7b9f93 7088 } else
e72f9fbf 7089 intel_put_shared_dpll(intel_crtc);
79e53945 7090
d330a953 7091 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7092 intel_crtc->lowfreq_avail = true;
7093 else
7094 intel_crtc->lowfreq_avail = false;
e2b78267 7095
c8f7a0db 7096 return 0;
79e53945
JB
7097}
7098
eb14cb74
VS
7099static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7100 struct intel_link_m_n *m_n)
7101{
7102 struct drm_device *dev = crtc->base.dev;
7103 struct drm_i915_private *dev_priv = dev->dev_private;
7104 enum pipe pipe = crtc->pipe;
7105
7106 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7107 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7108 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7109 & ~TU_SIZE_MASK;
7110 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7111 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7112 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7113}
7114
7115static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7116 enum transcoder transcoder,
7117 struct intel_link_m_n *m_n)
72419203
DV
7118{
7119 struct drm_device *dev = crtc->base.dev;
7120 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7121 enum pipe pipe = crtc->pipe;
72419203 7122
eb14cb74
VS
7123 if (INTEL_INFO(dev)->gen >= 5) {
7124 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7125 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7126 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7127 & ~TU_SIZE_MASK;
7128 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7129 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7130 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7131 } else {
7132 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7133 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7134 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7135 & ~TU_SIZE_MASK;
7136 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7137 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7138 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7139 }
7140}
7141
7142void intel_dp_get_m_n(struct intel_crtc *crtc,
7143 struct intel_crtc_config *pipe_config)
7144{
7145 if (crtc->config.has_pch_encoder)
7146 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7147 else
7148 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7149 &pipe_config->dp_m_n);
7150}
72419203 7151
eb14cb74
VS
7152static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7153 struct intel_crtc_config *pipe_config)
7154{
7155 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7156 &pipe_config->fdi_m_n);
72419203
DV
7157}
7158
2fa2fe9a
DV
7159static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7160 struct intel_crtc_config *pipe_config)
7161{
7162 struct drm_device *dev = crtc->base.dev;
7163 struct drm_i915_private *dev_priv = dev->dev_private;
7164 uint32_t tmp;
7165
7166 tmp = I915_READ(PF_CTL(crtc->pipe));
7167
7168 if (tmp & PF_ENABLE) {
fd4daa9c 7169 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7170 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7171 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7172
7173 /* We currently do not free assignements of panel fitters on
7174 * ivb/hsw (since we don't use the higher upscaling modes which
7175 * differentiates them) so just WARN about this case for now. */
7176 if (IS_GEN7(dev)) {
7177 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7178 PF_PIPE_SEL_IVB(crtc->pipe));
7179 }
2fa2fe9a 7180 }
79e53945
JB
7181}
7182
4c6baa59
JB
7183static void ironlake_get_plane_config(struct intel_crtc *crtc,
7184 struct intel_plane_config *plane_config)
7185{
7186 struct drm_device *dev = crtc->base.dev;
7187 struct drm_i915_private *dev_priv = dev->dev_private;
7188 u32 val, base, offset;
7189 int pipe = crtc->pipe, plane = crtc->plane;
7190 int fourcc, pixel_format;
7191 int aligned_height;
7192
66e514c1
DA
7193 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7194 if (!crtc->base.primary->fb) {
4c6baa59
JB
7195 DRM_DEBUG_KMS("failed to alloc fb\n");
7196 return;
7197 }
7198
7199 val = I915_READ(DSPCNTR(plane));
7200
7201 if (INTEL_INFO(dev)->gen >= 4)
7202 if (val & DISPPLANE_TILED)
7203 plane_config->tiled = true;
7204
7205 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7206 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7207 crtc->base.primary->fb->pixel_format = fourcc;
7208 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7209 drm_format_plane_cpp(fourcc, 0) * 8;
7210
7211 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7212 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7213 offset = I915_READ(DSPOFFSET(plane));
7214 } else {
7215 if (plane_config->tiled)
7216 offset = I915_READ(DSPTILEOFF(plane));
7217 else
7218 offset = I915_READ(DSPLINOFF(plane));
7219 }
7220 plane_config->base = base;
7221
7222 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7223 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7224 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7225
7226 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7227 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7228
66e514c1 7229 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7230 plane_config->tiled);
7231
66e514c1 7232 plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
4c6baa59
JB
7233 aligned_height, PAGE_SIZE);
7234
7235 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7236 pipe, plane, crtc->base.primary->fb->width,
7237 crtc->base.primary->fb->height,
7238 crtc->base.primary->fb->bits_per_pixel, base,
7239 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7240 plane_config->size);
7241}
7242
0e8ffe1b
DV
7243static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7244 struct intel_crtc_config *pipe_config)
7245{
7246 struct drm_device *dev = crtc->base.dev;
7247 struct drm_i915_private *dev_priv = dev->dev_private;
7248 uint32_t tmp;
7249
e143a21c 7250 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7251 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7252
0e8ffe1b
DV
7253 tmp = I915_READ(PIPECONF(crtc->pipe));
7254 if (!(tmp & PIPECONF_ENABLE))
7255 return false;
7256
42571aef
VS
7257 switch (tmp & PIPECONF_BPC_MASK) {
7258 case PIPECONF_6BPC:
7259 pipe_config->pipe_bpp = 18;
7260 break;
7261 case PIPECONF_8BPC:
7262 pipe_config->pipe_bpp = 24;
7263 break;
7264 case PIPECONF_10BPC:
7265 pipe_config->pipe_bpp = 30;
7266 break;
7267 case PIPECONF_12BPC:
7268 pipe_config->pipe_bpp = 36;
7269 break;
7270 default:
7271 break;
7272 }
7273
b5a9fa09
DV
7274 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7275 pipe_config->limited_color_range = true;
7276
ab9412ba 7277 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7278 struct intel_shared_dpll *pll;
7279
88adfff1
DV
7280 pipe_config->has_pch_encoder = true;
7281
627eb5a3
DV
7282 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7283 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7284 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7285
7286 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7287
c0d43d62 7288 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7289 pipe_config->shared_dpll =
7290 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7291 } else {
7292 tmp = I915_READ(PCH_DPLL_SEL);
7293 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7294 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7295 else
7296 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7297 }
66e985c0
DV
7298
7299 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7300
7301 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7302 &pipe_config->dpll_hw_state));
c93f54cf
DV
7303
7304 tmp = pipe_config->dpll_hw_state.dpll;
7305 pipe_config->pixel_multiplier =
7306 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7307 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7308
7309 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7310 } else {
7311 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7312 }
7313
1bd1bd80
DV
7314 intel_get_pipe_timings(crtc, pipe_config);
7315
2fa2fe9a
DV
7316 ironlake_get_pfit_config(crtc, pipe_config);
7317
0e8ffe1b
DV
7318 return true;
7319}
7320
be256dc7
PZ
7321static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7322{
7323 struct drm_device *dev = dev_priv->dev;
7324 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7325 struct intel_crtc *crtc;
be256dc7 7326
d3fcc808 7327 for_each_intel_crtc(dev, crtc)
798183c5 7328 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7329 pipe_name(crtc->pipe));
7330
7331 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7332 WARN(plls->spll_refcount, "SPLL enabled\n");
7333 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7334 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7335 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7336 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7337 "CPU PWM1 enabled\n");
7338 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7339 "CPU PWM2 enabled\n");
7340 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7341 "PCH PWM1 enabled\n");
7342 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7343 "Utility pin enabled\n");
7344 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7345
9926ada1
PZ
7346 /*
7347 * In theory we can still leave IRQs enabled, as long as only the HPD
7348 * interrupts remain enabled. We used to check for that, but since it's
7349 * gen-specific and since we only disable LCPLL after we fully disable
7350 * the interrupts, the check below should be enough.
7351 */
7352 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
be256dc7
PZ
7353}
7354
3c4c9b81
PZ
7355static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7356{
7357 struct drm_device *dev = dev_priv->dev;
7358
7359 if (IS_HASWELL(dev)) {
7360 mutex_lock(&dev_priv->rps.hw_lock);
7361 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7362 val))
7363 DRM_ERROR("Failed to disable D_COMP\n");
7364 mutex_unlock(&dev_priv->rps.hw_lock);
7365 } else {
7366 I915_WRITE(D_COMP, val);
7367 }
7368 POSTING_READ(D_COMP);
be256dc7
PZ
7369}
7370
7371/*
7372 * This function implements pieces of two sequences from BSpec:
7373 * - Sequence for display software to disable LCPLL
7374 * - Sequence for display software to allow package C8+
7375 * The steps implemented here are just the steps that actually touch the LCPLL
7376 * register. Callers should take care of disabling all the display engine
7377 * functions, doing the mode unset, fixing interrupts, etc.
7378 */
6ff58d53
PZ
7379static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7380 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7381{
7382 uint32_t val;
7383
7384 assert_can_disable_lcpll(dev_priv);
7385
7386 val = I915_READ(LCPLL_CTL);
7387
7388 if (switch_to_fclk) {
7389 val |= LCPLL_CD_SOURCE_FCLK;
7390 I915_WRITE(LCPLL_CTL, val);
7391
7392 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7393 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7394 DRM_ERROR("Switching to FCLK failed\n");
7395
7396 val = I915_READ(LCPLL_CTL);
7397 }
7398
7399 val |= LCPLL_PLL_DISABLE;
7400 I915_WRITE(LCPLL_CTL, val);
7401 POSTING_READ(LCPLL_CTL);
7402
7403 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7404 DRM_ERROR("LCPLL still locked\n");
7405
7406 val = I915_READ(D_COMP);
7407 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7408 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7409 ndelay(100);
7410
7411 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7412 DRM_ERROR("D_COMP RCOMP still in progress\n");
7413
7414 if (allow_power_down) {
7415 val = I915_READ(LCPLL_CTL);
7416 val |= LCPLL_POWER_DOWN_ALLOW;
7417 I915_WRITE(LCPLL_CTL, val);
7418 POSTING_READ(LCPLL_CTL);
7419 }
7420}
7421
7422/*
7423 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7424 * source.
7425 */
6ff58d53 7426static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7427{
7428 uint32_t val;
a8a8bd54 7429 unsigned long irqflags;
be256dc7
PZ
7430
7431 val = I915_READ(LCPLL_CTL);
7432
7433 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7434 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7435 return;
7436
a8a8bd54
PZ
7437 /*
7438 * Make sure we're not on PC8 state before disabling PC8, otherwise
7439 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7440 *
7441 * The other problem is that hsw_restore_lcpll() is called as part of
7442 * the runtime PM resume sequence, so we can't just call
7443 * gen6_gt_force_wake_get() because that function calls
7444 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7445 * while we are on the resume sequence. So to solve this problem we have
7446 * to call special forcewake code that doesn't touch runtime PM and
7447 * doesn't enable the forcewake delayed work.
7448 */
7449 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7450 if (dev_priv->uncore.forcewake_count++ == 0)
7451 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7452 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7453
be256dc7
PZ
7454 if (val & LCPLL_POWER_DOWN_ALLOW) {
7455 val &= ~LCPLL_POWER_DOWN_ALLOW;
7456 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7457 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7458 }
7459
7460 val = I915_READ(D_COMP);
7461 val |= D_COMP_COMP_FORCE;
7462 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7463 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7464
7465 val = I915_READ(LCPLL_CTL);
7466 val &= ~LCPLL_PLL_DISABLE;
7467 I915_WRITE(LCPLL_CTL, val);
7468
7469 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7470 DRM_ERROR("LCPLL not locked yet\n");
7471
7472 if (val & LCPLL_CD_SOURCE_FCLK) {
7473 val = I915_READ(LCPLL_CTL);
7474 val &= ~LCPLL_CD_SOURCE_FCLK;
7475 I915_WRITE(LCPLL_CTL, val);
7476
7477 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7478 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7479 DRM_ERROR("Switching back to LCPLL failed\n");
7480 }
215733fa 7481
a8a8bd54
PZ
7482 /* See the big comment above. */
7483 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7484 if (--dev_priv->uncore.forcewake_count == 0)
7485 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7486 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7487}
7488
765dab67
PZ
7489/*
7490 * Package states C8 and deeper are really deep PC states that can only be
7491 * reached when all the devices on the system allow it, so even if the graphics
7492 * device allows PC8+, it doesn't mean the system will actually get to these
7493 * states. Our driver only allows PC8+ when going into runtime PM.
7494 *
7495 * The requirements for PC8+ are that all the outputs are disabled, the power
7496 * well is disabled and most interrupts are disabled, and these are also
7497 * requirements for runtime PM. When these conditions are met, we manually do
7498 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7499 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7500 * hang the machine.
7501 *
7502 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7503 * the state of some registers, so when we come back from PC8+ we need to
7504 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7505 * need to take care of the registers kept by RC6. Notice that this happens even
7506 * if we don't put the device in PCI D3 state (which is what currently happens
7507 * because of the runtime PM support).
7508 *
7509 * For more, read "Display Sequences for Package C8" on the hardware
7510 * documentation.
7511 */
a14cb6fc 7512void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7513{
c67a470b
PZ
7514 struct drm_device *dev = dev_priv->dev;
7515 uint32_t val;
7516
c67a470b
PZ
7517 DRM_DEBUG_KMS("Enabling package C8+\n");
7518
c67a470b
PZ
7519 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7520 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7521 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7522 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7523 }
7524
7525 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7526 hsw_disable_lcpll(dev_priv, true, true);
7527}
7528
a14cb6fc 7529void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7530{
7531 struct drm_device *dev = dev_priv->dev;
7532 uint32_t val;
7533
c67a470b
PZ
7534 DRM_DEBUG_KMS("Disabling package C8+\n");
7535
7536 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7537 lpt_init_pch_refclk(dev);
7538
7539 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7540 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7541 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7542 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7543 }
7544
7545 intel_prepare_ddi(dev);
c67a470b
PZ
7546}
7547
9a952a0d
PZ
7548static void snb_modeset_global_resources(struct drm_device *dev)
7549{
7550 modeset_update_crtc_power_domains(dev);
7551}
7552
4f074129
ID
7553static void haswell_modeset_global_resources(struct drm_device *dev)
7554{
da723569 7555 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7556}
7557
09b4ddf9 7558static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7559 int x, int y,
7560 struct drm_framebuffer *fb)
7561{
09b4ddf9 7562 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7563
566b734a 7564 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7565 return -EINVAL;
566b734a 7566 intel_ddi_pll_enable(intel_crtc);
6441ab5f 7567
644cef34
DV
7568 intel_crtc->lowfreq_avail = false;
7569
c8f7a0db 7570 return 0;
79e53945
JB
7571}
7572
0e8ffe1b
DV
7573static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7574 struct intel_crtc_config *pipe_config)
7575{
7576 struct drm_device *dev = crtc->base.dev;
7577 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7578 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7579 uint32_t tmp;
7580
b5482bd0
ID
7581 if (!intel_display_power_enabled(dev_priv,
7582 POWER_DOMAIN_PIPE(crtc->pipe)))
7583 return false;
7584
e143a21c 7585 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7586 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7587
eccb140b
DV
7588 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7589 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7590 enum pipe trans_edp_pipe;
7591 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7592 default:
7593 WARN(1, "unknown pipe linked to edp transcoder\n");
7594 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7595 case TRANS_DDI_EDP_INPUT_A_ON:
7596 trans_edp_pipe = PIPE_A;
7597 break;
7598 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7599 trans_edp_pipe = PIPE_B;
7600 break;
7601 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7602 trans_edp_pipe = PIPE_C;
7603 break;
7604 }
7605
7606 if (trans_edp_pipe == crtc->pipe)
7607 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7608 }
7609
da7e29bd 7610 if (!intel_display_power_enabled(dev_priv,
eccb140b 7611 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7612 return false;
7613
eccb140b 7614 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7615 if (!(tmp & PIPECONF_ENABLE))
7616 return false;
7617
88adfff1 7618 /*
f196e6be 7619 * Haswell has only FDI/PCH transcoder A. It is which is connected to
88adfff1
DV
7620 * DDI E. So just check whether this pipe is wired to DDI E and whether
7621 * the PCH transcoder is on.
7622 */
eccb140b 7623 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
88adfff1 7624 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
ab9412ba 7625 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
88adfff1
DV
7626 pipe_config->has_pch_encoder = true;
7627
627eb5a3
DV
7628 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7629 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7630 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7631
7632 ironlake_get_fdi_m_n_config(crtc, pipe_config);
627eb5a3
DV
7633 }
7634
1bd1bd80
DV
7635 intel_get_pipe_timings(crtc, pipe_config);
7636
2fa2fe9a 7637 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7638 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7639 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7640
e59150dc
JB
7641 if (IS_HASWELL(dev))
7642 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7643 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7644
6c49f241
DV
7645 pipe_config->pixel_multiplier = 1;
7646
0e8ffe1b
DV
7647 return true;
7648}
7649
1a91510d
JN
7650static struct {
7651 int clock;
7652 u32 config;
7653} hdmi_audio_clock[] = {
7654 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7655 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7656 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7657 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7658 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7659 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7660 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7661 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7662 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7663 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7664};
7665
7666/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7667static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7668{
7669 int i;
7670
7671 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7672 if (mode->clock == hdmi_audio_clock[i].clock)
7673 break;
7674 }
7675
7676 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7677 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7678 i = 1;
7679 }
7680
7681 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7682 hdmi_audio_clock[i].clock,
7683 hdmi_audio_clock[i].config);
7684
7685 return hdmi_audio_clock[i].config;
7686}
7687
3a9627f4
WF
7688static bool intel_eld_uptodate(struct drm_connector *connector,
7689 int reg_eldv, uint32_t bits_eldv,
7690 int reg_elda, uint32_t bits_elda,
7691 int reg_edid)
7692{
7693 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7694 uint8_t *eld = connector->eld;
7695 uint32_t i;
7696
7697 i = I915_READ(reg_eldv);
7698 i &= bits_eldv;
7699
7700 if (!eld[0])
7701 return !i;
7702
7703 if (!i)
7704 return false;
7705
7706 i = I915_READ(reg_elda);
7707 i &= ~bits_elda;
7708 I915_WRITE(reg_elda, i);
7709
7710 for (i = 0; i < eld[2]; i++)
7711 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7712 return false;
7713
7714 return true;
7715}
7716
e0dac65e 7717static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7718 struct drm_crtc *crtc,
7719 struct drm_display_mode *mode)
e0dac65e
WF
7720{
7721 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7722 uint8_t *eld = connector->eld;
7723 uint32_t eldv;
7724 uint32_t len;
7725 uint32_t i;
7726
7727 i = I915_READ(G4X_AUD_VID_DID);
7728
7729 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7730 eldv = G4X_ELDV_DEVCL_DEVBLC;
7731 else
7732 eldv = G4X_ELDV_DEVCTG;
7733
3a9627f4
WF
7734 if (intel_eld_uptodate(connector,
7735 G4X_AUD_CNTL_ST, eldv,
7736 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7737 G4X_HDMIW_HDMIEDID))
7738 return;
7739
e0dac65e
WF
7740 i = I915_READ(G4X_AUD_CNTL_ST);
7741 i &= ~(eldv | G4X_ELD_ADDR);
7742 len = (i >> 9) & 0x1f; /* ELD buffer size */
7743 I915_WRITE(G4X_AUD_CNTL_ST, i);
7744
7745 if (!eld[0])
7746 return;
7747
7748 len = min_t(uint8_t, eld[2], len);
7749 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7750 for (i = 0; i < len; i++)
7751 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7752
7753 i = I915_READ(G4X_AUD_CNTL_ST);
7754 i |= eldv;
7755 I915_WRITE(G4X_AUD_CNTL_ST, i);
7756}
7757
83358c85 7758static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7759 struct drm_crtc *crtc,
7760 struct drm_display_mode *mode)
83358c85
WX
7761{
7762 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7763 uint8_t *eld = connector->eld;
83358c85
WX
7764 uint32_t eldv;
7765 uint32_t i;
7766 int len;
7767 int pipe = to_intel_crtc(crtc)->pipe;
7768 int tmp;
7769
7770 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7771 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7772 int aud_config = HSW_AUD_CFG(pipe);
7773 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7774
83358c85
WX
7775 /* Audio output enable */
7776 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7777 tmp = I915_READ(aud_cntrl_st2);
7778 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7779 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7780 POSTING_READ(aud_cntrl_st2);
83358c85 7781
c7905792 7782 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7783
7784 /* Set ELD valid state */
7785 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7786 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7787 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7788 I915_WRITE(aud_cntrl_st2, tmp);
7789 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7790 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7791
7792 /* Enable HDMI mode */
7793 tmp = I915_READ(aud_config);
7e7cb34f 7794 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7795 /* clear N_programing_enable and N_value_index */
7796 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7797 I915_WRITE(aud_config, tmp);
7798
7799 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7800
7801 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7802
7803 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7804 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7805 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7806 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7807 } else {
7808 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7809 }
83358c85
WX
7810
7811 if (intel_eld_uptodate(connector,
7812 aud_cntrl_st2, eldv,
7813 aud_cntl_st, IBX_ELD_ADDRESS,
7814 hdmiw_hdmiedid))
7815 return;
7816
7817 i = I915_READ(aud_cntrl_st2);
7818 i &= ~eldv;
7819 I915_WRITE(aud_cntrl_st2, i);
7820
7821 if (!eld[0])
7822 return;
7823
7824 i = I915_READ(aud_cntl_st);
7825 i &= ~IBX_ELD_ADDRESS;
7826 I915_WRITE(aud_cntl_st, i);
7827 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7828 DRM_DEBUG_DRIVER("port num:%d\n", i);
7829
7830 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7831 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7832 for (i = 0; i < len; i++)
7833 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7834
7835 i = I915_READ(aud_cntrl_st2);
7836 i |= eldv;
7837 I915_WRITE(aud_cntrl_st2, i);
7838
7839}
7840
e0dac65e 7841static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7842 struct drm_crtc *crtc,
7843 struct drm_display_mode *mode)
e0dac65e
WF
7844{
7845 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7846 uint8_t *eld = connector->eld;
7847 uint32_t eldv;
7848 uint32_t i;
7849 int len;
7850 int hdmiw_hdmiedid;
b6daa025 7851 int aud_config;
e0dac65e
WF
7852 int aud_cntl_st;
7853 int aud_cntrl_st2;
9b138a83 7854 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7855
b3f33cbf 7856 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7857 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7858 aud_config = IBX_AUD_CFG(pipe);
7859 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7860 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7861 } else if (IS_VALLEYVIEW(connector->dev)) {
7862 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7863 aud_config = VLV_AUD_CFG(pipe);
7864 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7865 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7866 } else {
9b138a83
WX
7867 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7868 aud_config = CPT_AUD_CFG(pipe);
7869 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7870 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7871 }
7872
9b138a83 7873 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7874
9ca2fe73
ML
7875 if (IS_VALLEYVIEW(connector->dev)) {
7876 struct intel_encoder *intel_encoder;
7877 struct intel_digital_port *intel_dig_port;
7878
7879 intel_encoder = intel_attached_encoder(connector);
7880 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7881 i = intel_dig_port->port;
7882 } else {
7883 i = I915_READ(aud_cntl_st);
7884 i = (i >> 29) & DIP_PORT_SEL_MASK;
7885 /* DIP_Port_Select, 0x1 = PortB */
7886 }
7887
e0dac65e
WF
7888 if (!i) {
7889 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7890 /* operate blindly on all ports */
1202b4c6
WF
7891 eldv = IBX_ELD_VALIDB;
7892 eldv |= IBX_ELD_VALIDB << 4;
7893 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7894 } else {
2582a850 7895 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7896 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7897 }
7898
3a9627f4
WF
7899 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7900 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7901 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7902 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7903 } else {
7904 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7905 }
e0dac65e 7906
3a9627f4
WF
7907 if (intel_eld_uptodate(connector,
7908 aud_cntrl_st2, eldv,
7909 aud_cntl_st, IBX_ELD_ADDRESS,
7910 hdmiw_hdmiedid))
7911 return;
7912
e0dac65e
WF
7913 i = I915_READ(aud_cntrl_st2);
7914 i &= ~eldv;
7915 I915_WRITE(aud_cntrl_st2, i);
7916
7917 if (!eld[0])
7918 return;
7919
e0dac65e 7920 i = I915_READ(aud_cntl_st);
1202b4c6 7921 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7922 I915_WRITE(aud_cntl_st, i);
7923
7924 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7925 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7926 for (i = 0; i < len; i++)
7927 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7928
7929 i = I915_READ(aud_cntrl_st2);
7930 i |= eldv;
7931 I915_WRITE(aud_cntrl_st2, i);
7932}
7933
7934void intel_write_eld(struct drm_encoder *encoder,
7935 struct drm_display_mode *mode)
7936{
7937 struct drm_crtc *crtc = encoder->crtc;
7938 struct drm_connector *connector;
7939 struct drm_device *dev = encoder->dev;
7940 struct drm_i915_private *dev_priv = dev->dev_private;
7941
7942 connector = drm_select_eld(encoder, mode);
7943 if (!connector)
7944 return;
7945
7946 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7947 connector->base.id,
c23cc417 7948 connector->name,
e0dac65e 7949 connector->encoder->base.id,
8e329a03 7950 connector->encoder->name);
e0dac65e
WF
7951
7952 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7953
7954 if (dev_priv->display.write_eld)
34427052 7955 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
7956}
7957
560b85bb
CW
7958static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7959{
7960 struct drm_device *dev = crtc->dev;
7961 struct drm_i915_private *dev_priv = dev->dev_private;
7962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 7963 uint32_t cntl;
560b85bb 7964
4b0e333e 7965 if (base != intel_crtc->cursor_base) {
560b85bb
CW
7966 /* On these chipsets we can only modify the base whilst
7967 * the cursor is disabled.
7968 */
4b0e333e
CW
7969 if (intel_crtc->cursor_cntl) {
7970 I915_WRITE(_CURACNTR, 0);
7971 POSTING_READ(_CURACNTR);
7972 intel_crtc->cursor_cntl = 0;
7973 }
7974
9db4a9c7 7975 I915_WRITE(_CURABASE, base);
4b0e333e
CW
7976 POSTING_READ(_CURABASE);
7977 }
560b85bb 7978
4b0e333e
CW
7979 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7980 cntl = 0;
7981 if (base)
7982 cntl = (CURSOR_ENABLE |
560b85bb 7983 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
7984 CURSOR_FORMAT_ARGB);
7985 if (intel_crtc->cursor_cntl != cntl) {
7986 I915_WRITE(_CURACNTR, cntl);
7987 POSTING_READ(_CURACNTR);
7988 intel_crtc->cursor_cntl = cntl;
7989 }
560b85bb
CW
7990}
7991
7992static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7993{
7994 struct drm_device *dev = crtc->dev;
7995 struct drm_i915_private *dev_priv = dev->dev_private;
7996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7997 int pipe = intel_crtc->pipe;
4b0e333e 7998 uint32_t cntl;
4726e0b0 7999
4b0e333e
CW
8000 cntl = 0;
8001 if (base) {
8002 cntl = MCURSOR_GAMMA_ENABLE;
8003 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8004 case 64:
8005 cntl |= CURSOR_MODE_64_ARGB_AX;
8006 break;
8007 case 128:
8008 cntl |= CURSOR_MODE_128_ARGB_AX;
8009 break;
8010 case 256:
8011 cntl |= CURSOR_MODE_256_ARGB_AX;
8012 break;
8013 default:
8014 WARN_ON(1);
8015 return;
560b85bb 8016 }
4b0e333e
CW
8017 cntl |= pipe << 28; /* Connect to correct pipe */
8018 }
8019 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8020 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8021 POSTING_READ(CURCNTR(pipe));
8022 intel_crtc->cursor_cntl = cntl;
560b85bb 8023 }
4b0e333e 8024
560b85bb 8025 /* and commit changes on next vblank */
9db4a9c7 8026 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8027 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8028}
8029
65a21cd6
JB
8030static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8031{
8032 struct drm_device *dev = crtc->dev;
8033 struct drm_i915_private *dev_priv = dev->dev_private;
8034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8035 int pipe = intel_crtc->pipe;
4b0e333e
CW
8036 uint32_t cntl;
8037
8038 cntl = 0;
8039 if (base) {
8040 cntl = MCURSOR_GAMMA_ENABLE;
8041 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8042 case 64:
8043 cntl |= CURSOR_MODE_64_ARGB_AX;
8044 break;
8045 case 128:
8046 cntl |= CURSOR_MODE_128_ARGB_AX;
8047 break;
8048 case 256:
8049 cntl |= CURSOR_MODE_256_ARGB_AX;
8050 break;
8051 default:
8052 WARN_ON(1);
8053 return;
65a21cd6 8054 }
4b0e333e
CW
8055 }
8056 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8057 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8058
4b0e333e
CW
8059 if (intel_crtc->cursor_cntl != cntl) {
8060 I915_WRITE(CURCNTR(pipe), cntl);
8061 POSTING_READ(CURCNTR(pipe));
8062 intel_crtc->cursor_cntl = cntl;
65a21cd6 8063 }
4b0e333e 8064
65a21cd6 8065 /* and commit changes on next vblank */
5efb3e28
VS
8066 I915_WRITE(CURBASE(pipe), base);
8067 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8068}
8069
cda4b7d3 8070/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8071static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8072 bool on)
cda4b7d3
CW
8073{
8074 struct drm_device *dev = crtc->dev;
8075 struct drm_i915_private *dev_priv = dev->dev_private;
8076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8077 int pipe = intel_crtc->pipe;
3d7d6510
MR
8078 int x = crtc->cursor_x;
8079 int y = crtc->cursor_y;
d6e4db15 8080 u32 base = 0, pos = 0;
cda4b7d3 8081
d6e4db15 8082 if (on)
cda4b7d3 8083 base = intel_crtc->cursor_addr;
cda4b7d3 8084
d6e4db15
VS
8085 if (x >= intel_crtc->config.pipe_src_w)
8086 base = 0;
8087
8088 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8089 base = 0;
8090
8091 if (x < 0) {
efc9064e 8092 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8093 base = 0;
8094
8095 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8096 x = -x;
8097 }
8098 pos |= x << CURSOR_X_SHIFT;
8099
8100 if (y < 0) {
efc9064e 8101 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8102 base = 0;
8103
8104 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8105 y = -y;
8106 }
8107 pos |= y << CURSOR_Y_SHIFT;
8108
4b0e333e 8109 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8110 return;
8111
5efb3e28
VS
8112 I915_WRITE(CURPOS(pipe), pos);
8113
8114 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8115 ivb_update_cursor(crtc, base);
5efb3e28
VS
8116 else if (IS_845G(dev) || IS_I865G(dev))
8117 i845_update_cursor(crtc, base);
8118 else
8119 i9xx_update_cursor(crtc, base);
4b0e333e 8120 intel_crtc->cursor_base = base;
cda4b7d3
CW
8121}
8122
e3287951
MR
8123/*
8124 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8125 *
8126 * Note that the object's reference will be consumed if the update fails. If
8127 * the update succeeds, the reference of the old object (if any) will be
8128 * consumed.
8129 */
8130static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8131 struct drm_i915_gem_object *obj,
8132 uint32_t width, uint32_t height)
79e53945
JB
8133{
8134 struct drm_device *dev = crtc->dev;
8135 struct drm_i915_private *dev_priv = dev->dev_private;
8136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8137 enum pipe pipe = intel_crtc->pipe;
64f962e3 8138 unsigned old_width;
cda4b7d3 8139 uint32_t addr;
3f8bc370 8140 int ret;
79e53945 8141
79e53945 8142 /* if we want to turn off the cursor ignore width and height */
e3287951 8143 if (!obj) {
28c97730 8144 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8145 addr = 0;
05394f39 8146 obj = NULL;
5004417d 8147 mutex_lock(&dev->struct_mutex);
3f8bc370 8148 goto finish;
79e53945
JB
8149 }
8150
4726e0b0
SK
8151 /* Check for which cursor types we support */
8152 if (!((width == 64 && height == 64) ||
8153 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8154 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8155 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8156 return -EINVAL;
8157 }
8158
05394f39 8159 if (obj->base.size < width * height * 4) {
e3287951 8160 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8161 ret = -ENOMEM;
8162 goto fail;
79e53945
JB
8163 }
8164
71acb5eb 8165 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8166 mutex_lock(&dev->struct_mutex);
3d13ef2e 8167 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8168 unsigned alignment;
8169
d9e86c0e 8170 if (obj->tiling_mode) {
3b25b31f 8171 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8172 ret = -EINVAL;
8173 goto fail_locked;
8174 }
8175
693db184
CW
8176 /* Note that the w/a also requires 2 PTE of padding following
8177 * the bo. We currently fill all unused PTE with the shadow
8178 * page and so we should always have valid PTE following the
8179 * cursor preventing the VT-d warning.
8180 */
8181 alignment = 0;
8182 if (need_vtd_wa(dev))
8183 alignment = 64*1024;
8184
8185 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8186 if (ret) {
3b25b31f 8187 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8188 goto fail_locked;
e7b526bb
CW
8189 }
8190
d9e86c0e
CW
8191 ret = i915_gem_object_put_fence(obj);
8192 if (ret) {
3b25b31f 8193 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8194 goto fail_unpin;
8195 }
8196
f343c5f6 8197 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8198 } else {
6eeefaf3 8199 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8200 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8201 if (ret) {
3b25b31f 8202 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8203 goto fail_locked;
71acb5eb 8204 }
00731155 8205 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8206 }
8207
a6c45cf0 8208 if (IS_GEN2(dev))
14b60391
JB
8209 I915_WRITE(CURSIZE, (height << 12) | width);
8210
3f8bc370 8211 finish:
3f8bc370 8212 if (intel_crtc->cursor_bo) {
00731155 8213 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8214 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8215 }
80824003 8216
a071fa00
DV
8217 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8218 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8219 mutex_unlock(&dev->struct_mutex);
3f8bc370 8220
64f962e3
CW
8221 old_width = intel_crtc->cursor_width;
8222
3f8bc370 8223 intel_crtc->cursor_addr = addr;
05394f39 8224 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8225 intel_crtc->cursor_width = width;
8226 intel_crtc->cursor_height = height;
8227
64f962e3
CW
8228 if (intel_crtc->active) {
8229 if (old_width != width)
8230 intel_update_watermarks(crtc);
f2f5f771 8231 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8232 }
3f8bc370 8233
f99d7069
DV
8234 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8235
79e53945 8236 return 0;
e7b526bb 8237fail_unpin:
cc98b413 8238 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8239fail_locked:
34b8686e 8240 mutex_unlock(&dev->struct_mutex);
bc9025bd 8241fail:
05394f39 8242 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8243 return ret;
79e53945
JB
8244}
8245
79e53945 8246static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8247 u16 *blue, uint32_t start, uint32_t size)
79e53945 8248{
7203425a 8249 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8251
7203425a 8252 for (i = start; i < end; i++) {
79e53945
JB
8253 intel_crtc->lut_r[i] = red[i] >> 8;
8254 intel_crtc->lut_g[i] = green[i] >> 8;
8255 intel_crtc->lut_b[i] = blue[i] >> 8;
8256 }
8257
8258 intel_crtc_load_lut(crtc);
8259}
8260
79e53945
JB
8261/* VESA 640x480x72Hz mode to set on the pipe */
8262static struct drm_display_mode load_detect_mode = {
8263 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8264 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8265};
8266
a8bb6818
DV
8267struct drm_framebuffer *
8268__intel_framebuffer_create(struct drm_device *dev,
8269 struct drm_mode_fb_cmd2 *mode_cmd,
8270 struct drm_i915_gem_object *obj)
d2dff872
CW
8271{
8272 struct intel_framebuffer *intel_fb;
8273 int ret;
8274
8275 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8276 if (!intel_fb) {
8277 drm_gem_object_unreference_unlocked(&obj->base);
8278 return ERR_PTR(-ENOMEM);
8279 }
8280
8281 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8282 if (ret)
8283 goto err;
d2dff872
CW
8284
8285 return &intel_fb->base;
dd4916c5
DV
8286err:
8287 drm_gem_object_unreference_unlocked(&obj->base);
8288 kfree(intel_fb);
8289
8290 return ERR_PTR(ret);
d2dff872
CW
8291}
8292
b5ea642a 8293static struct drm_framebuffer *
a8bb6818
DV
8294intel_framebuffer_create(struct drm_device *dev,
8295 struct drm_mode_fb_cmd2 *mode_cmd,
8296 struct drm_i915_gem_object *obj)
8297{
8298 struct drm_framebuffer *fb;
8299 int ret;
8300
8301 ret = i915_mutex_lock_interruptible(dev);
8302 if (ret)
8303 return ERR_PTR(ret);
8304 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8305 mutex_unlock(&dev->struct_mutex);
8306
8307 return fb;
8308}
8309
d2dff872
CW
8310static u32
8311intel_framebuffer_pitch_for_width(int width, int bpp)
8312{
8313 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8314 return ALIGN(pitch, 64);
8315}
8316
8317static u32
8318intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8319{
8320 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8321 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
8322}
8323
8324static struct drm_framebuffer *
8325intel_framebuffer_create_for_mode(struct drm_device *dev,
8326 struct drm_display_mode *mode,
8327 int depth, int bpp)
8328{
8329 struct drm_i915_gem_object *obj;
0fed39bd 8330 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8331
8332 obj = i915_gem_alloc_object(dev,
8333 intel_framebuffer_size_for_mode(mode, bpp));
8334 if (obj == NULL)
8335 return ERR_PTR(-ENOMEM);
8336
8337 mode_cmd.width = mode->hdisplay;
8338 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8339 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8340 bpp);
5ca0c34a 8341 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8342
8343 return intel_framebuffer_create(dev, &mode_cmd, obj);
8344}
8345
8346static struct drm_framebuffer *
8347mode_fits_in_fbdev(struct drm_device *dev,
8348 struct drm_display_mode *mode)
8349{
4520f53a 8350#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8351 struct drm_i915_private *dev_priv = dev->dev_private;
8352 struct drm_i915_gem_object *obj;
8353 struct drm_framebuffer *fb;
8354
4c0e5528 8355 if (!dev_priv->fbdev)
d2dff872
CW
8356 return NULL;
8357
4c0e5528 8358 if (!dev_priv->fbdev->fb)
d2dff872
CW
8359 return NULL;
8360
4c0e5528
DV
8361 obj = dev_priv->fbdev->fb->obj;
8362 BUG_ON(!obj);
8363
8bcd4553 8364 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8365 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8366 fb->bits_per_pixel))
d2dff872
CW
8367 return NULL;
8368
01f2c773 8369 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8370 return NULL;
8371
8372 return fb;
4520f53a
DV
8373#else
8374 return NULL;
8375#endif
d2dff872
CW
8376}
8377
d2434ab7 8378bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8379 struct drm_display_mode *mode,
51fd371b
RC
8380 struct intel_load_detect_pipe *old,
8381 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8382{
8383 struct intel_crtc *intel_crtc;
d2434ab7
DV
8384 struct intel_encoder *intel_encoder =
8385 intel_attached_encoder(connector);
79e53945 8386 struct drm_crtc *possible_crtc;
4ef69c7a 8387 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8388 struct drm_crtc *crtc = NULL;
8389 struct drm_device *dev = encoder->dev;
94352cf9 8390 struct drm_framebuffer *fb;
51fd371b
RC
8391 struct drm_mode_config *config = &dev->mode_config;
8392 int ret, i = -1;
79e53945 8393
d2dff872 8394 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8395 connector->base.id, connector->name,
8e329a03 8396 encoder->base.id, encoder->name);
d2dff872 8397
51fd371b
RC
8398 drm_modeset_acquire_init(ctx, 0);
8399
8400retry:
8401 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8402 if (ret)
8403 goto fail_unlock;
6e9f798d 8404
79e53945
JB
8405 /*
8406 * Algorithm gets a little messy:
7a5e4805 8407 *
79e53945
JB
8408 * - if the connector already has an assigned crtc, use it (but make
8409 * sure it's on first)
7a5e4805 8410 *
79e53945
JB
8411 * - try to find the first unused crtc that can drive this connector,
8412 * and use that if we find one
79e53945
JB
8413 */
8414
8415 /* See if we already have a CRTC for this connector */
8416 if (encoder->crtc) {
8417 crtc = encoder->crtc;
8261b191 8418
51fd371b
RC
8419 ret = drm_modeset_lock(&crtc->mutex, ctx);
8420 if (ret)
8421 goto fail_unlock;
7b24056b 8422
24218aac 8423 old->dpms_mode = connector->dpms;
8261b191
CW
8424 old->load_detect_temp = false;
8425
8426 /* Make sure the crtc and connector are running */
24218aac
DV
8427 if (connector->dpms != DRM_MODE_DPMS_ON)
8428 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8429
7173188d 8430 return true;
79e53945
JB
8431 }
8432
8433 /* Find an unused one (if possible) */
70e1e0ec 8434 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8435 i++;
8436 if (!(encoder->possible_crtcs & (1 << i)))
8437 continue;
8438 if (!possible_crtc->enabled) {
8439 crtc = possible_crtc;
8440 break;
8441 }
79e53945
JB
8442 }
8443
8444 /*
8445 * If we didn't find an unused CRTC, don't use any.
8446 */
8447 if (!crtc) {
7173188d 8448 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8449 goto fail_unlock;
79e53945
JB
8450 }
8451
51fd371b
RC
8452 ret = drm_modeset_lock(&crtc->mutex, ctx);
8453 if (ret)
8454 goto fail_unlock;
fc303101
DV
8455 intel_encoder->new_crtc = to_intel_crtc(crtc);
8456 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8457
8458 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8459 intel_crtc->new_enabled = true;
8460 intel_crtc->new_config = &intel_crtc->config;
24218aac 8461 old->dpms_mode = connector->dpms;
8261b191 8462 old->load_detect_temp = true;
d2dff872 8463 old->release_fb = NULL;
79e53945 8464
6492711d
CW
8465 if (!mode)
8466 mode = &load_detect_mode;
79e53945 8467
d2dff872
CW
8468 /* We need a framebuffer large enough to accommodate all accesses
8469 * that the plane may generate whilst we perform load detection.
8470 * We can not rely on the fbcon either being present (we get called
8471 * during its initialisation to detect all boot displays, or it may
8472 * not even exist) or that it is large enough to satisfy the
8473 * requested mode.
8474 */
94352cf9
DV
8475 fb = mode_fits_in_fbdev(dev, mode);
8476 if (fb == NULL) {
d2dff872 8477 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8478 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8479 old->release_fb = fb;
d2dff872
CW
8480 } else
8481 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8482 if (IS_ERR(fb)) {
d2dff872 8483 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8484 goto fail;
79e53945 8485 }
79e53945 8486
c0c36b94 8487 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8488 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8489 if (old->release_fb)
8490 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8491 goto fail;
79e53945 8492 }
7173188d 8493
79e53945 8494 /* let the connector get through one full cycle before testing */
9d0498a2 8495 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8496 return true;
412b61d8
VS
8497
8498 fail:
8499 intel_crtc->new_enabled = crtc->enabled;
8500 if (intel_crtc->new_enabled)
8501 intel_crtc->new_config = &intel_crtc->config;
8502 else
8503 intel_crtc->new_config = NULL;
51fd371b
RC
8504fail_unlock:
8505 if (ret == -EDEADLK) {
8506 drm_modeset_backoff(ctx);
8507 goto retry;
8508 }
8509
8510 drm_modeset_drop_locks(ctx);
8511 drm_modeset_acquire_fini(ctx);
6e9f798d 8512
412b61d8 8513 return false;
79e53945
JB
8514}
8515
d2434ab7 8516void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8517 struct intel_load_detect_pipe *old,
8518 struct drm_modeset_acquire_ctx *ctx)
79e53945 8519{
d2434ab7
DV
8520 struct intel_encoder *intel_encoder =
8521 intel_attached_encoder(connector);
4ef69c7a 8522 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8523 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8524 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8525
d2dff872 8526 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8527 connector->base.id, connector->name,
8e329a03 8528 encoder->base.id, encoder->name);
d2dff872 8529
8261b191 8530 if (old->load_detect_temp) {
fc303101
DV
8531 to_intel_connector(connector)->new_encoder = NULL;
8532 intel_encoder->new_crtc = NULL;
412b61d8
VS
8533 intel_crtc->new_enabled = false;
8534 intel_crtc->new_config = NULL;
fc303101 8535 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8536
36206361
DV
8537 if (old->release_fb) {
8538 drm_framebuffer_unregister_private(old->release_fb);
8539 drm_framebuffer_unreference(old->release_fb);
8540 }
d2dff872 8541
51fd371b 8542 goto unlock;
0622a53c 8543 return;
79e53945
JB
8544 }
8545
c751ce4f 8546 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8547 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8548 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8549
51fd371b
RC
8550unlock:
8551 drm_modeset_drop_locks(ctx);
8552 drm_modeset_acquire_fini(ctx);
79e53945
JB
8553}
8554
da4a1efa
VS
8555static int i9xx_pll_refclk(struct drm_device *dev,
8556 const struct intel_crtc_config *pipe_config)
8557{
8558 struct drm_i915_private *dev_priv = dev->dev_private;
8559 u32 dpll = pipe_config->dpll_hw_state.dpll;
8560
8561 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8562 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8563 else if (HAS_PCH_SPLIT(dev))
8564 return 120000;
8565 else if (!IS_GEN2(dev))
8566 return 96000;
8567 else
8568 return 48000;
8569}
8570
79e53945 8571/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8572static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8573 struct intel_crtc_config *pipe_config)
79e53945 8574{
f1f644dc 8575 struct drm_device *dev = crtc->base.dev;
79e53945 8576 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8577 int pipe = pipe_config->cpu_transcoder;
293623f7 8578 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8579 u32 fp;
8580 intel_clock_t clock;
da4a1efa 8581 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8582
8583 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8584 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8585 else
293623f7 8586 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8587
8588 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8589 if (IS_PINEVIEW(dev)) {
8590 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8591 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8592 } else {
8593 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8594 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8595 }
8596
a6c45cf0 8597 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8598 if (IS_PINEVIEW(dev))
8599 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8600 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8601 else
8602 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8603 DPLL_FPA01_P1_POST_DIV_SHIFT);
8604
8605 switch (dpll & DPLL_MODE_MASK) {
8606 case DPLLB_MODE_DAC_SERIAL:
8607 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8608 5 : 10;
8609 break;
8610 case DPLLB_MODE_LVDS:
8611 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8612 7 : 14;
8613 break;
8614 default:
28c97730 8615 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8616 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8617 return;
79e53945
JB
8618 }
8619
ac58c3f0 8620 if (IS_PINEVIEW(dev))
da4a1efa 8621 pineview_clock(refclk, &clock);
ac58c3f0 8622 else
da4a1efa 8623 i9xx_clock(refclk, &clock);
79e53945 8624 } else {
0fb58223 8625 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8626 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8627
8628 if (is_lvds) {
8629 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8630 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8631
8632 if (lvds & LVDS_CLKB_POWER_UP)
8633 clock.p2 = 7;
8634 else
8635 clock.p2 = 14;
79e53945
JB
8636 } else {
8637 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8638 clock.p1 = 2;
8639 else {
8640 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8641 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8642 }
8643 if (dpll & PLL_P2_DIVIDE_BY_4)
8644 clock.p2 = 4;
8645 else
8646 clock.p2 = 2;
79e53945 8647 }
da4a1efa
VS
8648
8649 i9xx_clock(refclk, &clock);
79e53945
JB
8650 }
8651
18442d08
VS
8652 /*
8653 * This value includes pixel_multiplier. We will use
241bfc38 8654 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8655 * encoder's get_config() function.
8656 */
8657 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8658}
8659
6878da05
VS
8660int intel_dotclock_calculate(int link_freq,
8661 const struct intel_link_m_n *m_n)
f1f644dc 8662{
f1f644dc
JB
8663 /*
8664 * The calculation for the data clock is:
1041a02f 8665 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8666 * But we want to avoid losing precison if possible, so:
1041a02f 8667 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8668 *
8669 * and the link clock is simpler:
1041a02f 8670 * link_clock = (m * link_clock) / n
f1f644dc
JB
8671 */
8672
6878da05
VS
8673 if (!m_n->link_n)
8674 return 0;
f1f644dc 8675
6878da05
VS
8676 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8677}
f1f644dc 8678
18442d08
VS
8679static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8680 struct intel_crtc_config *pipe_config)
6878da05
VS
8681{
8682 struct drm_device *dev = crtc->base.dev;
79e53945 8683
18442d08
VS
8684 /* read out port_clock from the DPLL */
8685 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8686
f1f644dc 8687 /*
18442d08 8688 * This value does not include pixel_multiplier.
241bfc38 8689 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8690 * agree once we know their relationship in the encoder's
8691 * get_config() function.
79e53945 8692 */
241bfc38 8693 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8694 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8695 &pipe_config->fdi_m_n);
79e53945
JB
8696}
8697
8698/** Returns the currently programmed mode of the given pipe. */
8699struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8700 struct drm_crtc *crtc)
8701{
548f245b 8702 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8704 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8705 struct drm_display_mode *mode;
f1f644dc 8706 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8707 int htot = I915_READ(HTOTAL(cpu_transcoder));
8708 int hsync = I915_READ(HSYNC(cpu_transcoder));
8709 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8710 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8711 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8712
8713 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8714 if (!mode)
8715 return NULL;
8716
f1f644dc
JB
8717 /*
8718 * Construct a pipe_config sufficient for getting the clock info
8719 * back out of crtc_clock_get.
8720 *
8721 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8722 * to use a real value here instead.
8723 */
293623f7 8724 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8725 pipe_config.pixel_multiplier = 1;
293623f7
VS
8726 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8727 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8728 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8729 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8730
773ae034 8731 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8732 mode->hdisplay = (htot & 0xffff) + 1;
8733 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8734 mode->hsync_start = (hsync & 0xffff) + 1;
8735 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8736 mode->vdisplay = (vtot & 0xffff) + 1;
8737 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8738 mode->vsync_start = (vsync & 0xffff) + 1;
8739 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8740
8741 drm_mode_set_name(mode);
79e53945
JB
8742
8743 return mode;
8744}
8745
cc36513c
DV
8746static void intel_increase_pllclock(struct drm_device *dev,
8747 enum pipe pipe)
652c393a 8748{
fbee40df 8749 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8750 int dpll_reg = DPLL(pipe);
8751 int dpll;
652c393a 8752
bad720ff 8753 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8754 return;
8755
8756 if (!dev_priv->lvds_downclock_avail)
8757 return;
8758
dbdc6479 8759 dpll = I915_READ(dpll_reg);
652c393a 8760 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8761 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8762
8ac5a6d5 8763 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8764
8765 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8766 I915_WRITE(dpll_reg, dpll);
9d0498a2 8767 intel_wait_for_vblank(dev, pipe);
dbdc6479 8768
652c393a
JB
8769 dpll = I915_READ(dpll_reg);
8770 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8771 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8772 }
652c393a
JB
8773}
8774
8775static void intel_decrease_pllclock(struct drm_crtc *crtc)
8776{
8777 struct drm_device *dev = crtc->dev;
fbee40df 8778 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8780
bad720ff 8781 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8782 return;
8783
8784 if (!dev_priv->lvds_downclock_avail)
8785 return;
8786
8787 /*
8788 * Since this is called by a timer, we should never get here in
8789 * the manual case.
8790 */
8791 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8792 int pipe = intel_crtc->pipe;
8793 int dpll_reg = DPLL(pipe);
8794 int dpll;
f6e5b160 8795
44d98a61 8796 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8797
8ac5a6d5 8798 assert_panel_unlocked(dev_priv, pipe);
652c393a 8799
dc257cf1 8800 dpll = I915_READ(dpll_reg);
652c393a
JB
8801 dpll |= DISPLAY_RATE_SELECT_FPA1;
8802 I915_WRITE(dpll_reg, dpll);
9d0498a2 8803 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8804 dpll = I915_READ(dpll_reg);
8805 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8806 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8807 }
8808
8809}
8810
f047e395
CW
8811void intel_mark_busy(struct drm_device *dev)
8812{
c67a470b
PZ
8813 struct drm_i915_private *dev_priv = dev->dev_private;
8814
f62a0076
CW
8815 if (dev_priv->mm.busy)
8816 return;
8817
43694d69 8818 intel_runtime_pm_get(dev_priv);
c67a470b 8819 i915_update_gfx_val(dev_priv);
f62a0076 8820 dev_priv->mm.busy = true;
f047e395
CW
8821}
8822
8823void intel_mark_idle(struct drm_device *dev)
652c393a 8824{
c67a470b 8825 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8826 struct drm_crtc *crtc;
652c393a 8827
f62a0076
CW
8828 if (!dev_priv->mm.busy)
8829 return;
8830
8831 dev_priv->mm.busy = false;
8832
d330a953 8833 if (!i915.powersave)
bb4cdd53 8834 goto out;
652c393a 8835
70e1e0ec 8836 for_each_crtc(dev, crtc) {
f4510a27 8837 if (!crtc->primary->fb)
652c393a
JB
8838 continue;
8839
725a5b54 8840 intel_decrease_pllclock(crtc);
652c393a 8841 }
b29c19b6 8842
3d13ef2e 8843 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8844 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8845
8846out:
43694d69 8847 intel_runtime_pm_put(dev_priv);
652c393a
JB
8848}
8849
7c8f8a70 8850
f99d7069
DV
8851/**
8852 * intel_mark_fb_busy - mark given planes as busy
8853 * @dev: DRM device
8854 * @frontbuffer_bits: bits for the affected planes
8855 * @ring: optional ring for asynchronous commands
8856 *
8857 * This function gets called every time the screen contents change. It can be
8858 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8859 */
8860static void intel_mark_fb_busy(struct drm_device *dev,
8861 unsigned frontbuffer_bits,
8862 struct intel_engine_cs *ring)
652c393a 8863{
cc36513c 8864 enum pipe pipe;
652c393a 8865
d330a953 8866 if (!i915.powersave)
acb87dfb
CW
8867 return;
8868
cc36513c 8869 for_each_pipe(pipe) {
f99d7069 8870 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8871 continue;
8872
cc36513c 8873 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8874 if (ring && intel_fbc_enabled(dev))
8875 ring->fbc_dirty = true;
652c393a
JB
8876 }
8877}
8878
f99d7069
DV
8879/**
8880 * intel_fb_obj_invalidate - invalidate frontbuffer object
8881 * @obj: GEM object to invalidate
8882 * @ring: set for asynchronous rendering
8883 *
8884 * This function gets called every time rendering on the given object starts and
8885 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8886 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8887 * until the rendering completes or a flip on this frontbuffer plane is
8888 * scheduled.
8889 */
8890void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8891 struct intel_engine_cs *ring)
8892{
8893 struct drm_device *dev = obj->base.dev;
8894 struct drm_i915_private *dev_priv = dev->dev_private;
8895
8896 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8897
8898 if (!obj->frontbuffer_bits)
8899 return;
8900
8901 if (ring) {
8902 mutex_lock(&dev_priv->fb_tracking.lock);
8903 dev_priv->fb_tracking.busy_bits
8904 |= obj->frontbuffer_bits;
8905 dev_priv->fb_tracking.flip_bits
8906 &= ~obj->frontbuffer_bits;
8907 mutex_unlock(&dev_priv->fb_tracking.lock);
8908 }
8909
8910 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8911
8912 intel_edp_psr_exit(dev);
8913}
8914
8915/**
8916 * intel_frontbuffer_flush - flush frontbuffer
8917 * @dev: DRM device
8918 * @frontbuffer_bits: frontbuffer plane tracking bits
8919 *
8920 * This function gets called every time rendering on the given planes has
8921 * completed and frontbuffer caching can be started again. Flushes will get
8922 * delayed if they're blocked by some oustanding asynchronous rendering.
8923 *
8924 * Can be called without any locks held.
8925 */
8926void intel_frontbuffer_flush(struct drm_device *dev,
8927 unsigned frontbuffer_bits)
8928{
8929 struct drm_i915_private *dev_priv = dev->dev_private;
8930
8931 /* Delay flushing when rings are still busy.*/
8932 mutex_lock(&dev_priv->fb_tracking.lock);
8933 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8934 mutex_unlock(&dev_priv->fb_tracking.lock);
8935
8936 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8937
8938 intel_edp_psr_exit(dev);
8939}
8940
8941/**
8942 * intel_fb_obj_flush - flush frontbuffer object
8943 * @obj: GEM object to flush
8944 * @retire: set when retiring asynchronous rendering
8945 *
8946 * This function gets called every time rendering on the given object has
8947 * completed and frontbuffer caching can be started again. If @retire is true
8948 * then any delayed flushes will be unblocked.
8949 */
8950void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8951 bool retire)
8952{
8953 struct drm_device *dev = obj->base.dev;
8954 struct drm_i915_private *dev_priv = dev->dev_private;
8955 unsigned frontbuffer_bits;
8956
8957 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8958
8959 if (!obj->frontbuffer_bits)
8960 return;
8961
8962 frontbuffer_bits = obj->frontbuffer_bits;
8963
8964 if (retire) {
8965 mutex_lock(&dev_priv->fb_tracking.lock);
8966 /* Filter out new bits since rendering started. */
8967 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
8968
8969 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
8970 mutex_unlock(&dev_priv->fb_tracking.lock);
8971 }
8972
8973 intel_frontbuffer_flush(dev, frontbuffer_bits);
8974}
8975
8976/**
8977 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
8978 * @dev: DRM device
8979 * @frontbuffer_bits: frontbuffer plane tracking bits
8980 *
8981 * This function gets called after scheduling a flip on @obj. The actual
8982 * frontbuffer flushing will be delayed until completion is signalled with
8983 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
8984 * flush will be cancelled.
8985 *
8986 * Can be called without any locks held.
8987 */
8988void intel_frontbuffer_flip_prepare(struct drm_device *dev,
8989 unsigned frontbuffer_bits)
8990{
8991 struct drm_i915_private *dev_priv = dev->dev_private;
8992
8993 mutex_lock(&dev_priv->fb_tracking.lock);
8994 dev_priv->fb_tracking.flip_bits
8995 |= frontbuffer_bits;
8996 mutex_unlock(&dev_priv->fb_tracking.lock);
8997}
8998
8999/**
9000 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9001 * @dev: DRM device
9002 * @frontbuffer_bits: frontbuffer plane tracking bits
9003 *
9004 * This function gets called after the flip has been latched and will complete
9005 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9006 *
9007 * Can be called without any locks held.
9008 */
9009void intel_frontbuffer_flip_complete(struct drm_device *dev,
9010 unsigned frontbuffer_bits)
9011{
9012 struct drm_i915_private *dev_priv = dev->dev_private;
9013
9014 mutex_lock(&dev_priv->fb_tracking.lock);
9015 /* Mask any cancelled flips. */
9016 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9017 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9018 mutex_unlock(&dev_priv->fb_tracking.lock);
9019
9020 intel_frontbuffer_flush(dev, frontbuffer_bits);
9021}
9022
79e53945
JB
9023static void intel_crtc_destroy(struct drm_crtc *crtc)
9024{
9025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9026 struct drm_device *dev = crtc->dev;
9027 struct intel_unpin_work *work;
9028 unsigned long flags;
9029
9030 spin_lock_irqsave(&dev->event_lock, flags);
9031 work = intel_crtc->unpin_work;
9032 intel_crtc->unpin_work = NULL;
9033 spin_unlock_irqrestore(&dev->event_lock, flags);
9034
9035 if (work) {
9036 cancel_work_sync(&work->work);
9037 kfree(work);
9038 }
79e53945
JB
9039
9040 drm_crtc_cleanup(crtc);
67e77c5a 9041
79e53945
JB
9042 kfree(intel_crtc);
9043}
9044
6b95a207
KH
9045static void intel_unpin_work_fn(struct work_struct *__work)
9046{
9047 struct intel_unpin_work *work =
9048 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9049 struct drm_device *dev = work->crtc->dev;
f99d7069 9050 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9051
b4a98e57 9052 mutex_lock(&dev->struct_mutex);
1690e1eb 9053 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9054 drm_gem_object_unreference(&work->pending_flip_obj->base);
9055 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9056
b4a98e57
CW
9057 intel_update_fbc(dev);
9058 mutex_unlock(&dev->struct_mutex);
9059
f99d7069
DV
9060 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9061
b4a98e57
CW
9062 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9063 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9064
6b95a207
KH
9065 kfree(work);
9066}
9067
1afe3e9d 9068static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9069 struct drm_crtc *crtc)
6b95a207 9070{
fbee40df 9071 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9073 struct intel_unpin_work *work;
6b95a207
KH
9074 unsigned long flags;
9075
9076 /* Ignore early vblank irqs */
9077 if (intel_crtc == NULL)
9078 return;
9079
9080 spin_lock_irqsave(&dev->event_lock, flags);
9081 work = intel_crtc->unpin_work;
e7d841ca
CW
9082
9083 /* Ensure we don't miss a work->pending update ... */
9084 smp_rmb();
9085
9086 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9087 spin_unlock_irqrestore(&dev->event_lock, flags);
9088 return;
9089 }
9090
e7d841ca
CW
9091 /* and that the unpin work is consistent wrt ->pending. */
9092 smp_rmb();
9093
6b95a207 9094 intel_crtc->unpin_work = NULL;
6b95a207 9095
45a066eb
RC
9096 if (work->event)
9097 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9098
87b6b101 9099 drm_crtc_vblank_put(crtc);
0af7e4df 9100
6b95a207
KH
9101 spin_unlock_irqrestore(&dev->event_lock, flags);
9102
2c10d571 9103 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9104
9105 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9106
9107 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9108}
9109
1afe3e9d
JB
9110void intel_finish_page_flip(struct drm_device *dev, int pipe)
9111{
fbee40df 9112 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9113 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9114
49b14a5c 9115 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9116}
9117
9118void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9119{
fbee40df 9120 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9121 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9122
49b14a5c 9123 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9124}
9125
75f7f3ec
VS
9126/* Is 'a' after or equal to 'b'? */
9127static bool g4x_flip_count_after_eq(u32 a, u32 b)
9128{
9129 return !((a - b) & 0x80000000);
9130}
9131
9132static bool page_flip_finished(struct intel_crtc *crtc)
9133{
9134 struct drm_device *dev = crtc->base.dev;
9135 struct drm_i915_private *dev_priv = dev->dev_private;
9136
9137 /*
9138 * The relevant registers doen't exist on pre-ctg.
9139 * As the flip done interrupt doesn't trigger for mmio
9140 * flips on gmch platforms, a flip count check isn't
9141 * really needed there. But since ctg has the registers,
9142 * include it in the check anyway.
9143 */
9144 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9145 return true;
9146
9147 /*
9148 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9149 * used the same base address. In that case the mmio flip might
9150 * have completed, but the CS hasn't even executed the flip yet.
9151 *
9152 * A flip count check isn't enough as the CS might have updated
9153 * the base address just after start of vblank, but before we
9154 * managed to process the interrupt. This means we'd complete the
9155 * CS flip too soon.
9156 *
9157 * Combining both checks should get us a good enough result. It may
9158 * still happen that the CS flip has been executed, but has not
9159 * yet actually completed. But in case the base address is the same
9160 * anyway, we don't really care.
9161 */
9162 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9163 crtc->unpin_work->gtt_offset &&
9164 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9165 crtc->unpin_work->flip_count);
9166}
9167
6b95a207
KH
9168void intel_prepare_page_flip(struct drm_device *dev, int plane)
9169{
fbee40df 9170 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9171 struct intel_crtc *intel_crtc =
9172 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9173 unsigned long flags;
9174
e7d841ca
CW
9175 /* NB: An MMIO update of the plane base pointer will also
9176 * generate a page-flip completion irq, i.e. every modeset
9177 * is also accompanied by a spurious intel_prepare_page_flip().
9178 */
6b95a207 9179 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9180 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9181 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9182 spin_unlock_irqrestore(&dev->event_lock, flags);
9183}
9184
eba905b2 9185static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9186{
9187 /* Ensure that the work item is consistent when activating it ... */
9188 smp_wmb();
9189 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9190 /* and that it is marked active as soon as the irq could fire. */
9191 smp_wmb();
9192}
9193
8c9f3aaf
JB
9194static int intel_gen2_queue_flip(struct drm_device *dev,
9195 struct drm_crtc *crtc,
9196 struct drm_framebuffer *fb,
ed8d1975 9197 struct drm_i915_gem_object *obj,
a4872ba6 9198 struct intel_engine_cs *ring,
ed8d1975 9199 uint32_t flags)
8c9f3aaf 9200{
8c9f3aaf 9201 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9202 u32 flip_mask;
9203 int ret;
9204
6d90c952 9205 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9206 if (ret)
4fa62c89 9207 return ret;
8c9f3aaf
JB
9208
9209 /* Can't queue multiple flips, so wait for the previous
9210 * one to finish before executing the next.
9211 */
9212 if (intel_crtc->plane)
9213 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9214 else
9215 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9216 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9217 intel_ring_emit(ring, MI_NOOP);
9218 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9219 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9220 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9221 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9222 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9223
9224 intel_mark_page_flip_active(intel_crtc);
09246732 9225 __intel_ring_advance(ring);
83d4092b 9226 return 0;
8c9f3aaf
JB
9227}
9228
9229static int intel_gen3_queue_flip(struct drm_device *dev,
9230 struct drm_crtc *crtc,
9231 struct drm_framebuffer *fb,
ed8d1975 9232 struct drm_i915_gem_object *obj,
a4872ba6 9233 struct intel_engine_cs *ring,
ed8d1975 9234 uint32_t flags)
8c9f3aaf 9235{
8c9f3aaf 9236 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9237 u32 flip_mask;
9238 int ret;
9239
6d90c952 9240 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9241 if (ret)
4fa62c89 9242 return ret;
8c9f3aaf
JB
9243
9244 if (intel_crtc->plane)
9245 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9246 else
9247 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9248 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9249 intel_ring_emit(ring, MI_NOOP);
9250 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9251 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9252 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9253 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9254 intel_ring_emit(ring, MI_NOOP);
9255
e7d841ca 9256 intel_mark_page_flip_active(intel_crtc);
09246732 9257 __intel_ring_advance(ring);
83d4092b 9258 return 0;
8c9f3aaf
JB
9259}
9260
9261static int intel_gen4_queue_flip(struct drm_device *dev,
9262 struct drm_crtc *crtc,
9263 struct drm_framebuffer *fb,
ed8d1975 9264 struct drm_i915_gem_object *obj,
a4872ba6 9265 struct intel_engine_cs *ring,
ed8d1975 9266 uint32_t flags)
8c9f3aaf
JB
9267{
9268 struct drm_i915_private *dev_priv = dev->dev_private;
9269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9270 uint32_t pf, pipesrc;
9271 int ret;
9272
6d90c952 9273 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9274 if (ret)
4fa62c89 9275 return ret;
8c9f3aaf
JB
9276
9277 /* i965+ uses the linear or tiled offsets from the
9278 * Display Registers (which do not change across a page-flip)
9279 * so we need only reprogram the base address.
9280 */
6d90c952
DV
9281 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9282 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9283 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9284 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9285 obj->tiling_mode);
8c9f3aaf
JB
9286
9287 /* XXX Enabling the panel-fitter across page-flip is so far
9288 * untested on non-native modes, so ignore it for now.
9289 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9290 */
9291 pf = 0;
9292 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9293 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9294
9295 intel_mark_page_flip_active(intel_crtc);
09246732 9296 __intel_ring_advance(ring);
83d4092b 9297 return 0;
8c9f3aaf
JB
9298}
9299
9300static int intel_gen6_queue_flip(struct drm_device *dev,
9301 struct drm_crtc *crtc,
9302 struct drm_framebuffer *fb,
ed8d1975 9303 struct drm_i915_gem_object *obj,
a4872ba6 9304 struct intel_engine_cs *ring,
ed8d1975 9305 uint32_t flags)
8c9f3aaf
JB
9306{
9307 struct drm_i915_private *dev_priv = dev->dev_private;
9308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9309 uint32_t pf, pipesrc;
9310 int ret;
9311
6d90c952 9312 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9313 if (ret)
4fa62c89 9314 return ret;
8c9f3aaf 9315
6d90c952
DV
9316 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9317 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9318 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9319 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9320
dc257cf1
DV
9321 /* Contrary to the suggestions in the documentation,
9322 * "Enable Panel Fitter" does not seem to be required when page
9323 * flipping with a non-native mode, and worse causes a normal
9324 * modeset to fail.
9325 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9326 */
9327 pf = 0;
8c9f3aaf 9328 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9329 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9330
9331 intel_mark_page_flip_active(intel_crtc);
09246732 9332 __intel_ring_advance(ring);
83d4092b 9333 return 0;
8c9f3aaf
JB
9334}
9335
7c9017e5
JB
9336static int intel_gen7_queue_flip(struct drm_device *dev,
9337 struct drm_crtc *crtc,
9338 struct drm_framebuffer *fb,
ed8d1975 9339 struct drm_i915_gem_object *obj,
a4872ba6 9340 struct intel_engine_cs *ring,
ed8d1975 9341 uint32_t flags)
7c9017e5 9342{
7c9017e5 9343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9344 uint32_t plane_bit = 0;
ffe74d75
CW
9345 int len, ret;
9346
eba905b2 9347 switch (intel_crtc->plane) {
cb05d8de
DV
9348 case PLANE_A:
9349 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9350 break;
9351 case PLANE_B:
9352 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9353 break;
9354 case PLANE_C:
9355 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9356 break;
9357 default:
9358 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9359 return -ENODEV;
cb05d8de
DV
9360 }
9361
ffe74d75 9362 len = 4;
f476828a 9363 if (ring->id == RCS) {
ffe74d75 9364 len += 6;
f476828a
DL
9365 /*
9366 * On Gen 8, SRM is now taking an extra dword to accommodate
9367 * 48bits addresses, and we need a NOOP for the batch size to
9368 * stay even.
9369 */
9370 if (IS_GEN8(dev))
9371 len += 2;
9372 }
ffe74d75 9373
f66fab8e
VS
9374 /*
9375 * BSpec MI_DISPLAY_FLIP for IVB:
9376 * "The full packet must be contained within the same cache line."
9377 *
9378 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9379 * cacheline, if we ever start emitting more commands before
9380 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9381 * then do the cacheline alignment, and finally emit the
9382 * MI_DISPLAY_FLIP.
9383 */
9384 ret = intel_ring_cacheline_align(ring);
9385 if (ret)
4fa62c89 9386 return ret;
f66fab8e 9387
ffe74d75 9388 ret = intel_ring_begin(ring, len);
7c9017e5 9389 if (ret)
4fa62c89 9390 return ret;
7c9017e5 9391
ffe74d75
CW
9392 /* Unmask the flip-done completion message. Note that the bspec says that
9393 * we should do this for both the BCS and RCS, and that we must not unmask
9394 * more than one flip event at any time (or ensure that one flip message
9395 * can be sent by waiting for flip-done prior to queueing new flips).
9396 * Experimentation says that BCS works despite DERRMR masking all
9397 * flip-done completion events and that unmasking all planes at once
9398 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9399 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9400 */
9401 if (ring->id == RCS) {
9402 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9403 intel_ring_emit(ring, DERRMR);
9404 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9405 DERRMR_PIPEB_PRI_FLIP_DONE |
9406 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9407 if (IS_GEN8(dev))
9408 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9409 MI_SRM_LRM_GLOBAL_GTT);
9410 else
9411 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9412 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9413 intel_ring_emit(ring, DERRMR);
9414 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9415 if (IS_GEN8(dev)) {
9416 intel_ring_emit(ring, 0);
9417 intel_ring_emit(ring, MI_NOOP);
9418 }
ffe74d75
CW
9419 }
9420
cb05d8de 9421 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9422 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9423 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9424 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9425
9426 intel_mark_page_flip_active(intel_crtc);
09246732 9427 __intel_ring_advance(ring);
83d4092b 9428 return 0;
7c9017e5
JB
9429}
9430
84c33a64
SG
9431static bool use_mmio_flip(struct intel_engine_cs *ring,
9432 struct drm_i915_gem_object *obj)
9433{
9434 /*
9435 * This is not being used for older platforms, because
9436 * non-availability of flip done interrupt forces us to use
9437 * CS flips. Older platforms derive flip done using some clever
9438 * tricks involving the flip_pending status bits and vblank irqs.
9439 * So using MMIO flips there would disrupt this mechanism.
9440 */
9441
9442 if (INTEL_INFO(ring->dev)->gen < 5)
9443 return false;
9444
9445 if (i915.use_mmio_flip < 0)
9446 return false;
9447 else if (i915.use_mmio_flip > 0)
9448 return true;
9449 else
9450 return ring != obj->ring;
9451}
9452
9453static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9454{
9455 struct drm_device *dev = intel_crtc->base.dev;
9456 struct drm_i915_private *dev_priv = dev->dev_private;
9457 struct intel_framebuffer *intel_fb =
9458 to_intel_framebuffer(intel_crtc->base.primary->fb);
9459 struct drm_i915_gem_object *obj = intel_fb->obj;
9460 u32 dspcntr;
9461 u32 reg;
9462
9463 intel_mark_page_flip_active(intel_crtc);
9464
9465 reg = DSPCNTR(intel_crtc->plane);
9466 dspcntr = I915_READ(reg);
9467
9468 if (INTEL_INFO(dev)->gen >= 4) {
9469 if (obj->tiling_mode != I915_TILING_NONE)
9470 dspcntr |= DISPPLANE_TILED;
9471 else
9472 dspcntr &= ~DISPPLANE_TILED;
9473 }
9474 I915_WRITE(reg, dspcntr);
9475
9476 I915_WRITE(DSPSURF(intel_crtc->plane),
9477 intel_crtc->unpin_work->gtt_offset);
9478 POSTING_READ(DSPSURF(intel_crtc->plane));
9479}
9480
9481static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9482{
9483 struct intel_engine_cs *ring;
9484 int ret;
9485
9486 lockdep_assert_held(&obj->base.dev->struct_mutex);
9487
9488 if (!obj->last_write_seqno)
9489 return 0;
9490
9491 ring = obj->ring;
9492
9493 if (i915_seqno_passed(ring->get_seqno(ring, true),
9494 obj->last_write_seqno))
9495 return 0;
9496
9497 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9498 if (ret)
9499 return ret;
9500
9501 if (WARN_ON(!ring->irq_get(ring)))
9502 return 0;
9503
9504 return 1;
9505}
9506
9507void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9508{
9509 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9510 struct intel_crtc *intel_crtc;
9511 unsigned long irq_flags;
9512 u32 seqno;
9513
9514 seqno = ring->get_seqno(ring, false);
9515
9516 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9517 for_each_intel_crtc(ring->dev, intel_crtc) {
9518 struct intel_mmio_flip *mmio_flip;
9519
9520 mmio_flip = &intel_crtc->mmio_flip;
9521 if (mmio_flip->seqno == 0)
9522 continue;
9523
9524 if (ring->id != mmio_flip->ring_id)
9525 continue;
9526
9527 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9528 intel_do_mmio_flip(intel_crtc);
9529 mmio_flip->seqno = 0;
9530 ring->irq_put(ring);
9531 }
9532 }
9533 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9534}
9535
9536static int intel_queue_mmio_flip(struct drm_device *dev,
9537 struct drm_crtc *crtc,
9538 struct drm_framebuffer *fb,
9539 struct drm_i915_gem_object *obj,
9540 struct intel_engine_cs *ring,
9541 uint32_t flags)
9542{
9543 struct drm_i915_private *dev_priv = dev->dev_private;
9544 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9545 unsigned long irq_flags;
9546 int ret;
9547
9548 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9549 return -EBUSY;
9550
9551 ret = intel_postpone_flip(obj);
9552 if (ret < 0)
9553 return ret;
9554 if (ret == 0) {
9555 intel_do_mmio_flip(intel_crtc);
9556 return 0;
9557 }
9558
9559 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9560 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9561 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9562 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9563
9564 /*
9565 * Double check to catch cases where irq fired before
9566 * mmio flip data was ready
9567 */
9568 intel_notify_mmio_flip(obj->ring);
9569 return 0;
9570}
9571
8c9f3aaf
JB
9572static int intel_default_queue_flip(struct drm_device *dev,
9573 struct drm_crtc *crtc,
9574 struct drm_framebuffer *fb,
ed8d1975 9575 struct drm_i915_gem_object *obj,
a4872ba6 9576 struct intel_engine_cs *ring,
ed8d1975 9577 uint32_t flags)
8c9f3aaf
JB
9578{
9579 return -ENODEV;
9580}
9581
6b95a207
KH
9582static int intel_crtc_page_flip(struct drm_crtc *crtc,
9583 struct drm_framebuffer *fb,
ed8d1975
KP
9584 struct drm_pending_vblank_event *event,
9585 uint32_t page_flip_flags)
6b95a207
KH
9586{
9587 struct drm_device *dev = crtc->dev;
9588 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9589 struct drm_framebuffer *old_fb = crtc->primary->fb;
4a35f83b 9590 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
6b95a207 9591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9592 enum pipe pipe = intel_crtc->pipe;
6b95a207 9593 struct intel_unpin_work *work;
a4872ba6 9594 struct intel_engine_cs *ring;
8c9f3aaf 9595 unsigned long flags;
52e68630 9596 int ret;
6b95a207 9597
e6a595d2 9598 /* Can't change pixel format via MI display flips. */
f4510a27 9599 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9600 return -EINVAL;
9601
9602 /*
9603 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9604 * Note that pitch changes could also affect these register.
9605 */
9606 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9607 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9608 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9609 return -EINVAL;
9610
f900db47
CW
9611 if (i915_terminally_wedged(&dev_priv->gpu_error))
9612 goto out_hang;
9613
b14c5679 9614 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9615 if (work == NULL)
9616 return -ENOMEM;
9617
6b95a207 9618 work->event = event;
b4a98e57 9619 work->crtc = crtc;
4a35f83b 9620 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
6b95a207
KH
9621 INIT_WORK(&work->work, intel_unpin_work_fn);
9622
87b6b101 9623 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9624 if (ret)
9625 goto free_work;
9626
6b95a207
KH
9627 /* We borrow the event spin lock for protecting unpin_work */
9628 spin_lock_irqsave(&dev->event_lock, flags);
9629 if (intel_crtc->unpin_work) {
9630 spin_unlock_irqrestore(&dev->event_lock, flags);
9631 kfree(work);
87b6b101 9632 drm_crtc_vblank_put(crtc);
468f0b44
CW
9633
9634 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9635 return -EBUSY;
9636 }
9637 intel_crtc->unpin_work = work;
9638 spin_unlock_irqrestore(&dev->event_lock, flags);
9639
b4a98e57
CW
9640 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9641 flush_workqueue(dev_priv->wq);
9642
79158103
CW
9643 ret = i915_mutex_lock_interruptible(dev);
9644 if (ret)
9645 goto cleanup;
6b95a207 9646
75dfca80 9647 /* Reference the objects for the scheduled work. */
05394f39
CW
9648 drm_gem_object_reference(&work->old_fb_obj->base);
9649 drm_gem_object_reference(&obj->base);
6b95a207 9650
f4510a27 9651 crtc->primary->fb = fb;
96b099fd 9652
e1f99ce6 9653 work->pending_flip_obj = obj;
e1f99ce6 9654
4e5359cd
SF
9655 work->enable_stall_check = true;
9656
b4a98e57 9657 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9658 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9659
75f7f3ec 9660 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9661 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9662
4fa62c89
VS
9663 if (IS_VALLEYVIEW(dev)) {
9664 ring = &dev_priv->ring[BCS];
9665 } else if (INTEL_INFO(dev)->gen >= 7) {
9666 ring = obj->ring;
9667 if (ring == NULL || ring->id != RCS)
9668 ring = &dev_priv->ring[BCS];
9669 } else {
9670 ring = &dev_priv->ring[RCS];
9671 }
9672
9673 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9674 if (ret)
9675 goto cleanup_pending;
6b95a207 9676
4fa62c89
VS
9677 work->gtt_offset =
9678 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9679
84c33a64
SG
9680 if (use_mmio_flip(ring, obj))
9681 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9682 page_flip_flags);
9683 else
9684 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9685 page_flip_flags);
4fa62c89
VS
9686 if (ret)
9687 goto cleanup_unpin;
9688
a071fa00
DV
9689 i915_gem_track_fb(work->old_fb_obj, obj,
9690 INTEL_FRONTBUFFER_PRIMARY(pipe));
9691
7782de3b 9692 intel_disable_fbc(dev);
f99d7069 9693 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9694 mutex_unlock(&dev->struct_mutex);
9695
e5510fac
JB
9696 trace_i915_flip_request(intel_crtc->plane, obj);
9697
6b95a207 9698 return 0;
96b099fd 9699
4fa62c89
VS
9700cleanup_unpin:
9701 intel_unpin_fb_obj(obj);
8c9f3aaf 9702cleanup_pending:
b4a98e57 9703 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9704 crtc->primary->fb = old_fb;
05394f39
CW
9705 drm_gem_object_unreference(&work->old_fb_obj->base);
9706 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9707 mutex_unlock(&dev->struct_mutex);
9708
79158103 9709cleanup:
96b099fd
CW
9710 spin_lock_irqsave(&dev->event_lock, flags);
9711 intel_crtc->unpin_work = NULL;
9712 spin_unlock_irqrestore(&dev->event_lock, flags);
9713
87b6b101 9714 drm_crtc_vblank_put(crtc);
7317c75e 9715free_work:
96b099fd
CW
9716 kfree(work);
9717
f900db47
CW
9718 if (ret == -EIO) {
9719out_hang:
9720 intel_crtc_wait_for_pending_flips(crtc);
9721 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9722 if (ret == 0 && event)
a071fa00 9723 drm_send_vblank_event(dev, pipe, event);
f900db47 9724 }
96b099fd 9725 return ret;
6b95a207
KH
9726}
9727
f6e5b160 9728static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9729 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9730 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9731};
9732
9a935856
DV
9733/**
9734 * intel_modeset_update_staged_output_state
9735 *
9736 * Updates the staged output configuration state, e.g. after we've read out the
9737 * current hw state.
9738 */
9739static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9740{
7668851f 9741 struct intel_crtc *crtc;
9a935856
DV
9742 struct intel_encoder *encoder;
9743 struct intel_connector *connector;
f6e5b160 9744
9a935856
DV
9745 list_for_each_entry(connector, &dev->mode_config.connector_list,
9746 base.head) {
9747 connector->new_encoder =
9748 to_intel_encoder(connector->base.encoder);
9749 }
f6e5b160 9750
9a935856
DV
9751 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9752 base.head) {
9753 encoder->new_crtc =
9754 to_intel_crtc(encoder->base.crtc);
9755 }
7668851f 9756
d3fcc808 9757 for_each_intel_crtc(dev, crtc) {
7668851f 9758 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9759
9760 if (crtc->new_enabled)
9761 crtc->new_config = &crtc->config;
9762 else
9763 crtc->new_config = NULL;
7668851f 9764 }
f6e5b160
CW
9765}
9766
9a935856
DV
9767/**
9768 * intel_modeset_commit_output_state
9769 *
9770 * This function copies the stage display pipe configuration to the real one.
9771 */
9772static void intel_modeset_commit_output_state(struct drm_device *dev)
9773{
7668851f 9774 struct intel_crtc *crtc;
9a935856
DV
9775 struct intel_encoder *encoder;
9776 struct intel_connector *connector;
f6e5b160 9777
9a935856
DV
9778 list_for_each_entry(connector, &dev->mode_config.connector_list,
9779 base.head) {
9780 connector->base.encoder = &connector->new_encoder->base;
9781 }
f6e5b160 9782
9a935856
DV
9783 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9784 base.head) {
9785 encoder->base.crtc = &encoder->new_crtc->base;
9786 }
7668851f 9787
d3fcc808 9788 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9789 crtc->base.enabled = crtc->new_enabled;
9790 }
9a935856
DV
9791}
9792
050f7aeb 9793static void
eba905b2 9794connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9795 struct intel_crtc_config *pipe_config)
9796{
9797 int bpp = pipe_config->pipe_bpp;
9798
9799 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9800 connector->base.base.id,
c23cc417 9801 connector->base.name);
050f7aeb
DV
9802
9803 /* Don't use an invalid EDID bpc value */
9804 if (connector->base.display_info.bpc &&
9805 connector->base.display_info.bpc * 3 < bpp) {
9806 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9807 bpp, connector->base.display_info.bpc*3);
9808 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9809 }
9810
9811 /* Clamp bpp to 8 on screens without EDID 1.4 */
9812 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9813 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9814 bpp);
9815 pipe_config->pipe_bpp = 24;
9816 }
9817}
9818
4e53c2e0 9819static int
050f7aeb
DV
9820compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9821 struct drm_framebuffer *fb,
9822 struct intel_crtc_config *pipe_config)
4e53c2e0 9823{
050f7aeb
DV
9824 struct drm_device *dev = crtc->base.dev;
9825 struct intel_connector *connector;
4e53c2e0
DV
9826 int bpp;
9827
d42264b1
DV
9828 switch (fb->pixel_format) {
9829 case DRM_FORMAT_C8:
4e53c2e0
DV
9830 bpp = 8*3; /* since we go through a colormap */
9831 break;
d42264b1
DV
9832 case DRM_FORMAT_XRGB1555:
9833 case DRM_FORMAT_ARGB1555:
9834 /* checked in intel_framebuffer_init already */
9835 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9836 return -EINVAL;
9837 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9838 bpp = 6*3; /* min is 18bpp */
9839 break;
d42264b1
DV
9840 case DRM_FORMAT_XBGR8888:
9841 case DRM_FORMAT_ABGR8888:
9842 /* checked in intel_framebuffer_init already */
9843 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9844 return -EINVAL;
9845 case DRM_FORMAT_XRGB8888:
9846 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9847 bpp = 8*3;
9848 break;
d42264b1
DV
9849 case DRM_FORMAT_XRGB2101010:
9850 case DRM_FORMAT_ARGB2101010:
9851 case DRM_FORMAT_XBGR2101010:
9852 case DRM_FORMAT_ABGR2101010:
9853 /* checked in intel_framebuffer_init already */
9854 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9855 return -EINVAL;
4e53c2e0
DV
9856 bpp = 10*3;
9857 break;
baba133a 9858 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9859 default:
9860 DRM_DEBUG_KMS("unsupported depth\n");
9861 return -EINVAL;
9862 }
9863
4e53c2e0
DV
9864 pipe_config->pipe_bpp = bpp;
9865
9866 /* Clamp display bpp to EDID value */
9867 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9868 base.head) {
1b829e05
DV
9869 if (!connector->new_encoder ||
9870 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9871 continue;
9872
050f7aeb 9873 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9874 }
9875
9876 return bpp;
9877}
9878
644db711
DV
9879static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9880{
9881 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9882 "type: 0x%x flags: 0x%x\n",
1342830c 9883 mode->crtc_clock,
644db711
DV
9884 mode->crtc_hdisplay, mode->crtc_hsync_start,
9885 mode->crtc_hsync_end, mode->crtc_htotal,
9886 mode->crtc_vdisplay, mode->crtc_vsync_start,
9887 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9888}
9889
c0b03411
DV
9890static void intel_dump_pipe_config(struct intel_crtc *crtc,
9891 struct intel_crtc_config *pipe_config,
9892 const char *context)
9893{
9894 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9895 context, pipe_name(crtc->pipe));
9896
9897 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9898 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9899 pipe_config->pipe_bpp, pipe_config->dither);
9900 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9901 pipe_config->has_pch_encoder,
9902 pipe_config->fdi_lanes,
9903 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9904 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9905 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9906 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9907 pipe_config->has_dp_encoder,
9908 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9909 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9910 pipe_config->dp_m_n.tu);
c0b03411
DV
9911 DRM_DEBUG_KMS("requested mode:\n");
9912 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9913 DRM_DEBUG_KMS("adjusted mode:\n");
9914 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9915 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9916 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9917 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9918 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9919 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9920 pipe_config->gmch_pfit.control,
9921 pipe_config->gmch_pfit.pgm_ratios,
9922 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9923 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9924 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9925 pipe_config->pch_pfit.size,
9926 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9927 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9928 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9929}
9930
bc079e8b
VS
9931static bool encoders_cloneable(const struct intel_encoder *a,
9932 const struct intel_encoder *b)
accfc0c5 9933{
bc079e8b
VS
9934 /* masks could be asymmetric, so check both ways */
9935 return a == b || (a->cloneable & (1 << b->type) &&
9936 b->cloneable & (1 << a->type));
9937}
9938
9939static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9940 struct intel_encoder *encoder)
9941{
9942 struct drm_device *dev = crtc->base.dev;
9943 struct intel_encoder *source_encoder;
9944
9945 list_for_each_entry(source_encoder,
9946 &dev->mode_config.encoder_list, base.head) {
9947 if (source_encoder->new_crtc != crtc)
9948 continue;
9949
9950 if (!encoders_cloneable(encoder, source_encoder))
9951 return false;
9952 }
9953
9954 return true;
9955}
9956
9957static bool check_encoder_cloning(struct intel_crtc *crtc)
9958{
9959 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
9960 struct intel_encoder *encoder;
9961
bc079e8b
VS
9962 list_for_each_entry(encoder,
9963 &dev->mode_config.encoder_list, base.head) {
9964 if (encoder->new_crtc != crtc)
accfc0c5
DV
9965 continue;
9966
bc079e8b
VS
9967 if (!check_single_encoder_cloning(crtc, encoder))
9968 return false;
accfc0c5
DV
9969 }
9970
bc079e8b 9971 return true;
accfc0c5
DV
9972}
9973
b8cecdf5
DV
9974static struct intel_crtc_config *
9975intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 9976 struct drm_framebuffer *fb,
b8cecdf5 9977 struct drm_display_mode *mode)
ee7b9f93 9978{
7758a113 9979 struct drm_device *dev = crtc->dev;
7758a113 9980 struct intel_encoder *encoder;
b8cecdf5 9981 struct intel_crtc_config *pipe_config;
e29c22c0
DV
9982 int plane_bpp, ret = -EINVAL;
9983 bool retry = true;
ee7b9f93 9984
bc079e8b 9985 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
9986 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9987 return ERR_PTR(-EINVAL);
9988 }
9989
b8cecdf5
DV
9990 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9991 if (!pipe_config)
7758a113
DV
9992 return ERR_PTR(-ENOMEM);
9993
b8cecdf5
DV
9994 drm_mode_copy(&pipe_config->adjusted_mode, mode);
9995 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 9996
e143a21c
DV
9997 pipe_config->cpu_transcoder =
9998 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 9999 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10000
2960bc9c
ID
10001 /*
10002 * Sanitize sync polarity flags based on requested ones. If neither
10003 * positive or negative polarity is requested, treat this as meaning
10004 * negative polarity.
10005 */
10006 if (!(pipe_config->adjusted_mode.flags &
10007 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10008 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10009
10010 if (!(pipe_config->adjusted_mode.flags &
10011 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10012 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10013
050f7aeb
DV
10014 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10015 * plane pixel format and any sink constraints into account. Returns the
10016 * source plane bpp so that dithering can be selected on mismatches
10017 * after encoders and crtc also have had their say. */
10018 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10019 fb, pipe_config);
4e53c2e0
DV
10020 if (plane_bpp < 0)
10021 goto fail;
10022
e41a56be
VS
10023 /*
10024 * Determine the real pipe dimensions. Note that stereo modes can
10025 * increase the actual pipe size due to the frame doubling and
10026 * insertion of additional space for blanks between the frame. This
10027 * is stored in the crtc timings. We use the requested mode to do this
10028 * computation to clearly distinguish it from the adjusted mode, which
10029 * can be changed by the connectors in the below retry loop.
10030 */
10031 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10032 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10033 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10034
e29c22c0 10035encoder_retry:
ef1b460d 10036 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10037 pipe_config->port_clock = 0;
ef1b460d 10038 pipe_config->pixel_multiplier = 1;
ff9a6750 10039
135c81b8 10040 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10041 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10042
7758a113
DV
10043 /* Pass our mode to the connectors and the CRTC to give them a chance to
10044 * adjust it according to limitations or connector properties, and also
10045 * a chance to reject the mode entirely.
47f1c6c9 10046 */
7758a113
DV
10047 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10048 base.head) {
47f1c6c9 10049
7758a113
DV
10050 if (&encoder->new_crtc->base != crtc)
10051 continue;
7ae89233 10052
efea6e8e
DV
10053 if (!(encoder->compute_config(encoder, pipe_config))) {
10054 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10055 goto fail;
10056 }
ee7b9f93 10057 }
47f1c6c9 10058
ff9a6750
DV
10059 /* Set default port clock if not overwritten by the encoder. Needs to be
10060 * done afterwards in case the encoder adjusts the mode. */
10061 if (!pipe_config->port_clock)
241bfc38
DL
10062 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10063 * pipe_config->pixel_multiplier;
ff9a6750 10064
a43f6e0f 10065 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10066 if (ret < 0) {
7758a113
DV
10067 DRM_DEBUG_KMS("CRTC fixup failed\n");
10068 goto fail;
ee7b9f93 10069 }
e29c22c0
DV
10070
10071 if (ret == RETRY) {
10072 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10073 ret = -EINVAL;
10074 goto fail;
10075 }
10076
10077 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10078 retry = false;
10079 goto encoder_retry;
10080 }
10081
4e53c2e0
DV
10082 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10083 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10084 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10085
b8cecdf5 10086 return pipe_config;
7758a113 10087fail:
b8cecdf5 10088 kfree(pipe_config);
e29c22c0 10089 return ERR_PTR(ret);
ee7b9f93 10090}
47f1c6c9 10091
e2e1ed41
DV
10092/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10093 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10094static void
10095intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10096 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10097{
10098 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10099 struct drm_device *dev = crtc->dev;
10100 struct intel_encoder *encoder;
10101 struct intel_connector *connector;
10102 struct drm_crtc *tmp_crtc;
79e53945 10103
e2e1ed41 10104 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10105
e2e1ed41
DV
10106 /* Check which crtcs have changed outputs connected to them, these need
10107 * to be part of the prepare_pipes mask. We don't (yet) support global
10108 * modeset across multiple crtcs, so modeset_pipes will only have one
10109 * bit set at most. */
10110 list_for_each_entry(connector, &dev->mode_config.connector_list,
10111 base.head) {
10112 if (connector->base.encoder == &connector->new_encoder->base)
10113 continue;
79e53945 10114
e2e1ed41
DV
10115 if (connector->base.encoder) {
10116 tmp_crtc = connector->base.encoder->crtc;
10117
10118 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10119 }
10120
10121 if (connector->new_encoder)
10122 *prepare_pipes |=
10123 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10124 }
10125
e2e1ed41
DV
10126 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10127 base.head) {
10128 if (encoder->base.crtc == &encoder->new_crtc->base)
10129 continue;
10130
10131 if (encoder->base.crtc) {
10132 tmp_crtc = encoder->base.crtc;
10133
10134 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10135 }
10136
10137 if (encoder->new_crtc)
10138 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10139 }
10140
7668851f 10141 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10142 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10143 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10144 continue;
7e7d76c3 10145
7668851f 10146 if (!intel_crtc->new_enabled)
e2e1ed41 10147 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10148 else
10149 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10150 }
10151
e2e1ed41
DV
10152
10153 /* set_mode is also used to update properties on life display pipes. */
10154 intel_crtc = to_intel_crtc(crtc);
7668851f 10155 if (intel_crtc->new_enabled)
e2e1ed41
DV
10156 *prepare_pipes |= 1 << intel_crtc->pipe;
10157
b6c5164d
DV
10158 /*
10159 * For simplicity do a full modeset on any pipe where the output routing
10160 * changed. We could be more clever, but that would require us to be
10161 * more careful with calling the relevant encoder->mode_set functions.
10162 */
e2e1ed41
DV
10163 if (*prepare_pipes)
10164 *modeset_pipes = *prepare_pipes;
10165
10166 /* ... and mask these out. */
10167 *modeset_pipes &= ~(*disable_pipes);
10168 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10169
10170 /*
10171 * HACK: We don't (yet) fully support global modesets. intel_set_config
10172 * obies this rule, but the modeset restore mode of
10173 * intel_modeset_setup_hw_state does not.
10174 */
10175 *modeset_pipes &= 1 << intel_crtc->pipe;
10176 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10177
10178 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10179 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10180}
79e53945 10181
ea9d758d 10182static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10183{
ea9d758d 10184 struct drm_encoder *encoder;
f6e5b160 10185 struct drm_device *dev = crtc->dev;
f6e5b160 10186
ea9d758d
DV
10187 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10188 if (encoder->crtc == crtc)
10189 return true;
10190
10191 return false;
10192}
10193
10194static void
10195intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10196{
10197 struct intel_encoder *intel_encoder;
10198 struct intel_crtc *intel_crtc;
10199 struct drm_connector *connector;
10200
10201 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10202 base.head) {
10203 if (!intel_encoder->base.crtc)
10204 continue;
10205
10206 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10207
10208 if (prepare_pipes & (1 << intel_crtc->pipe))
10209 intel_encoder->connectors_active = false;
10210 }
10211
10212 intel_modeset_commit_output_state(dev);
10213
7668851f 10214 /* Double check state. */
d3fcc808 10215 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10216 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10217 WARN_ON(intel_crtc->new_config &&
10218 intel_crtc->new_config != &intel_crtc->config);
10219 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10220 }
10221
10222 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10223 if (!connector->encoder || !connector->encoder->crtc)
10224 continue;
10225
10226 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10227
10228 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10229 struct drm_property *dpms_property =
10230 dev->mode_config.dpms_property;
10231
ea9d758d 10232 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10233 drm_object_property_set_value(&connector->base,
68d34720
DV
10234 dpms_property,
10235 DRM_MODE_DPMS_ON);
ea9d758d
DV
10236
10237 intel_encoder = to_intel_encoder(connector->encoder);
10238 intel_encoder->connectors_active = true;
10239 }
10240 }
10241
10242}
10243
3bd26263 10244static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10245{
3bd26263 10246 int diff;
f1f644dc
JB
10247
10248 if (clock1 == clock2)
10249 return true;
10250
10251 if (!clock1 || !clock2)
10252 return false;
10253
10254 diff = abs(clock1 - clock2);
10255
10256 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10257 return true;
10258
10259 return false;
10260}
10261
25c5b266
DV
10262#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10263 list_for_each_entry((intel_crtc), \
10264 &(dev)->mode_config.crtc_list, \
10265 base.head) \
0973f18f 10266 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10267
0e8ffe1b 10268static bool
2fa2fe9a
DV
10269intel_pipe_config_compare(struct drm_device *dev,
10270 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10271 struct intel_crtc_config *pipe_config)
10272{
66e985c0
DV
10273#define PIPE_CONF_CHECK_X(name) \
10274 if (current_config->name != pipe_config->name) { \
10275 DRM_ERROR("mismatch in " #name " " \
10276 "(expected 0x%08x, found 0x%08x)\n", \
10277 current_config->name, \
10278 pipe_config->name); \
10279 return false; \
10280 }
10281
08a24034
DV
10282#define PIPE_CONF_CHECK_I(name) \
10283 if (current_config->name != pipe_config->name) { \
10284 DRM_ERROR("mismatch in " #name " " \
10285 "(expected %i, found %i)\n", \
10286 current_config->name, \
10287 pipe_config->name); \
10288 return false; \
88adfff1
DV
10289 }
10290
1bd1bd80
DV
10291#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10292 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10293 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10294 "(expected %i, found %i)\n", \
10295 current_config->name & (mask), \
10296 pipe_config->name & (mask)); \
10297 return false; \
10298 }
10299
5e550656
VS
10300#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10301 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10302 DRM_ERROR("mismatch in " #name " " \
10303 "(expected %i, found %i)\n", \
10304 current_config->name, \
10305 pipe_config->name); \
10306 return false; \
10307 }
10308
bb760063
DV
10309#define PIPE_CONF_QUIRK(quirk) \
10310 ((current_config->quirks | pipe_config->quirks) & (quirk))
10311
eccb140b
DV
10312 PIPE_CONF_CHECK_I(cpu_transcoder);
10313
08a24034
DV
10314 PIPE_CONF_CHECK_I(has_pch_encoder);
10315 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10316 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10317 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10318 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10319 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10320 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10321
eb14cb74
VS
10322 PIPE_CONF_CHECK_I(has_dp_encoder);
10323 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10324 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10325 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10326 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10327 PIPE_CONF_CHECK_I(dp_m_n.tu);
10328
1bd1bd80
DV
10329 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10330 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10331 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10332 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10333 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10334 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10335
10336 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10337 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10338 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10339 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10340 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10341 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10342
c93f54cf 10343 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10344 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10345 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10346 IS_VALLEYVIEW(dev))
10347 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10348
9ed109a7
DV
10349 PIPE_CONF_CHECK_I(has_audio);
10350
1bd1bd80
DV
10351 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10352 DRM_MODE_FLAG_INTERLACE);
10353
bb760063
DV
10354 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10355 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10356 DRM_MODE_FLAG_PHSYNC);
10357 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10358 DRM_MODE_FLAG_NHSYNC);
10359 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10360 DRM_MODE_FLAG_PVSYNC);
10361 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10362 DRM_MODE_FLAG_NVSYNC);
10363 }
045ac3b5 10364
37327abd
VS
10365 PIPE_CONF_CHECK_I(pipe_src_w);
10366 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10367
9953599b
DV
10368 /*
10369 * FIXME: BIOS likes to set up a cloned config with lvds+external
10370 * screen. Since we don't yet re-compute the pipe config when moving
10371 * just the lvds port away to another pipe the sw tracking won't match.
10372 *
10373 * Proper atomic modesets with recomputed global state will fix this.
10374 * Until then just don't check gmch state for inherited modes.
10375 */
10376 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10377 PIPE_CONF_CHECK_I(gmch_pfit.control);
10378 /* pfit ratios are autocomputed by the hw on gen4+ */
10379 if (INTEL_INFO(dev)->gen < 4)
10380 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10381 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10382 }
10383
fd4daa9c
CW
10384 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10385 if (current_config->pch_pfit.enabled) {
10386 PIPE_CONF_CHECK_I(pch_pfit.pos);
10387 PIPE_CONF_CHECK_I(pch_pfit.size);
10388 }
2fa2fe9a 10389
e59150dc
JB
10390 /* BDW+ don't expose a synchronous way to read the state */
10391 if (IS_HASWELL(dev))
10392 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10393
282740f7
VS
10394 PIPE_CONF_CHECK_I(double_wide);
10395
c0d43d62 10396 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10397 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10398 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10399 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10400 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
c0d43d62 10401
42571aef
VS
10402 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10403 PIPE_CONF_CHECK_I(pipe_bpp);
10404
a9a7e98a
JB
10405 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10406 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10407
66e985c0 10408#undef PIPE_CONF_CHECK_X
08a24034 10409#undef PIPE_CONF_CHECK_I
1bd1bd80 10410#undef PIPE_CONF_CHECK_FLAGS
5e550656 10411#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10412#undef PIPE_CONF_QUIRK
88adfff1 10413
0e8ffe1b
DV
10414 return true;
10415}
10416
91d1b4bd
DV
10417static void
10418check_connector_state(struct drm_device *dev)
8af6cf88 10419{
8af6cf88
DV
10420 struct intel_connector *connector;
10421
10422 list_for_each_entry(connector, &dev->mode_config.connector_list,
10423 base.head) {
10424 /* This also checks the encoder/connector hw state with the
10425 * ->get_hw_state callbacks. */
10426 intel_connector_check_state(connector);
10427
10428 WARN(&connector->new_encoder->base != connector->base.encoder,
10429 "connector's staged encoder doesn't match current encoder\n");
10430 }
91d1b4bd
DV
10431}
10432
10433static void
10434check_encoder_state(struct drm_device *dev)
10435{
10436 struct intel_encoder *encoder;
10437 struct intel_connector *connector;
8af6cf88
DV
10438
10439 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10440 base.head) {
10441 bool enabled = false;
10442 bool active = false;
10443 enum pipe pipe, tracked_pipe;
10444
10445 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10446 encoder->base.base.id,
8e329a03 10447 encoder->base.name);
8af6cf88
DV
10448
10449 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10450 "encoder's stage crtc doesn't match current crtc\n");
10451 WARN(encoder->connectors_active && !encoder->base.crtc,
10452 "encoder's active_connectors set, but no crtc\n");
10453
10454 list_for_each_entry(connector, &dev->mode_config.connector_list,
10455 base.head) {
10456 if (connector->base.encoder != &encoder->base)
10457 continue;
10458 enabled = true;
10459 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10460 active = true;
10461 }
10462 WARN(!!encoder->base.crtc != enabled,
10463 "encoder's enabled state mismatch "
10464 "(expected %i, found %i)\n",
10465 !!encoder->base.crtc, enabled);
10466 WARN(active && !encoder->base.crtc,
10467 "active encoder with no crtc\n");
10468
10469 WARN(encoder->connectors_active != active,
10470 "encoder's computed active state doesn't match tracked active state "
10471 "(expected %i, found %i)\n", active, encoder->connectors_active);
10472
10473 active = encoder->get_hw_state(encoder, &pipe);
10474 WARN(active != encoder->connectors_active,
10475 "encoder's hw state doesn't match sw tracking "
10476 "(expected %i, found %i)\n",
10477 encoder->connectors_active, active);
10478
10479 if (!encoder->base.crtc)
10480 continue;
10481
10482 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10483 WARN(active && pipe != tracked_pipe,
10484 "active encoder's pipe doesn't match"
10485 "(expected %i, found %i)\n",
10486 tracked_pipe, pipe);
10487
10488 }
91d1b4bd
DV
10489}
10490
10491static void
10492check_crtc_state(struct drm_device *dev)
10493{
fbee40df 10494 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10495 struct intel_crtc *crtc;
10496 struct intel_encoder *encoder;
10497 struct intel_crtc_config pipe_config;
8af6cf88 10498
d3fcc808 10499 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10500 bool enabled = false;
10501 bool active = false;
10502
045ac3b5
JB
10503 memset(&pipe_config, 0, sizeof(pipe_config));
10504
8af6cf88
DV
10505 DRM_DEBUG_KMS("[CRTC:%d]\n",
10506 crtc->base.base.id);
10507
10508 WARN(crtc->active && !crtc->base.enabled,
10509 "active crtc, but not enabled in sw tracking\n");
10510
10511 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10512 base.head) {
10513 if (encoder->base.crtc != &crtc->base)
10514 continue;
10515 enabled = true;
10516 if (encoder->connectors_active)
10517 active = true;
10518 }
6c49f241 10519
8af6cf88
DV
10520 WARN(active != crtc->active,
10521 "crtc's computed active state doesn't match tracked active state "
10522 "(expected %i, found %i)\n", active, crtc->active);
10523 WARN(enabled != crtc->base.enabled,
10524 "crtc's computed enabled state doesn't match tracked enabled state "
10525 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10526
0e8ffe1b
DV
10527 active = dev_priv->display.get_pipe_config(crtc,
10528 &pipe_config);
d62cf62a
DV
10529
10530 /* hw state is inconsistent with the pipe A quirk */
10531 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10532 active = crtc->active;
10533
6c49f241
DV
10534 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10535 base.head) {
3eaba51c 10536 enum pipe pipe;
6c49f241
DV
10537 if (encoder->base.crtc != &crtc->base)
10538 continue;
1d37b689 10539 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10540 encoder->get_config(encoder, &pipe_config);
10541 }
10542
0e8ffe1b
DV
10543 WARN(crtc->active != active,
10544 "crtc active state doesn't match with hw state "
10545 "(expected %i, found %i)\n", crtc->active, active);
10546
c0b03411
DV
10547 if (active &&
10548 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10549 WARN(1, "pipe state doesn't match!\n");
10550 intel_dump_pipe_config(crtc, &pipe_config,
10551 "[hw state]");
10552 intel_dump_pipe_config(crtc, &crtc->config,
10553 "[sw state]");
10554 }
8af6cf88
DV
10555 }
10556}
10557
91d1b4bd
DV
10558static void
10559check_shared_dpll_state(struct drm_device *dev)
10560{
fbee40df 10561 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10562 struct intel_crtc *crtc;
10563 struct intel_dpll_hw_state dpll_hw_state;
10564 int i;
5358901f
DV
10565
10566 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10567 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10568 int enabled_crtcs = 0, active_crtcs = 0;
10569 bool active;
10570
10571 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10572
10573 DRM_DEBUG_KMS("%s\n", pll->name);
10574
10575 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10576
10577 WARN(pll->active > pll->refcount,
10578 "more active pll users than references: %i vs %i\n",
10579 pll->active, pll->refcount);
10580 WARN(pll->active && !pll->on,
10581 "pll in active use but not on in sw tracking\n");
35c95375
DV
10582 WARN(pll->on && !pll->active,
10583 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10584 WARN(pll->on != active,
10585 "pll on state mismatch (expected %i, found %i)\n",
10586 pll->on, active);
10587
d3fcc808 10588 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10589 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10590 enabled_crtcs++;
10591 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10592 active_crtcs++;
10593 }
10594 WARN(pll->active != active_crtcs,
10595 "pll active crtcs mismatch (expected %i, found %i)\n",
10596 pll->active, active_crtcs);
10597 WARN(pll->refcount != enabled_crtcs,
10598 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10599 pll->refcount, enabled_crtcs);
66e985c0
DV
10600
10601 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10602 sizeof(dpll_hw_state)),
10603 "pll hw state mismatch\n");
5358901f 10604 }
8af6cf88
DV
10605}
10606
91d1b4bd
DV
10607void
10608intel_modeset_check_state(struct drm_device *dev)
10609{
10610 check_connector_state(dev);
10611 check_encoder_state(dev);
10612 check_crtc_state(dev);
10613 check_shared_dpll_state(dev);
10614}
10615
18442d08
VS
10616void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10617 int dotclock)
10618{
10619 /*
10620 * FDI already provided one idea for the dotclock.
10621 * Yell if the encoder disagrees.
10622 */
241bfc38 10623 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10624 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10625 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10626}
10627
80715b2f
VS
10628static void update_scanline_offset(struct intel_crtc *crtc)
10629{
10630 struct drm_device *dev = crtc->base.dev;
10631
10632 /*
10633 * The scanline counter increments at the leading edge of hsync.
10634 *
10635 * On most platforms it starts counting from vtotal-1 on the
10636 * first active line. That means the scanline counter value is
10637 * always one less than what we would expect. Ie. just after
10638 * start of vblank, which also occurs at start of hsync (on the
10639 * last active line), the scanline counter will read vblank_start-1.
10640 *
10641 * On gen2 the scanline counter starts counting from 1 instead
10642 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10643 * to keep the value positive), instead of adding one.
10644 *
10645 * On HSW+ the behaviour of the scanline counter depends on the output
10646 * type. For DP ports it behaves like most other platforms, but on HDMI
10647 * there's an extra 1 line difference. So we need to add two instead of
10648 * one to the value.
10649 */
10650 if (IS_GEN2(dev)) {
10651 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10652 int vtotal;
10653
10654 vtotal = mode->crtc_vtotal;
10655 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10656 vtotal /= 2;
10657
10658 crtc->scanline_offset = vtotal - 1;
10659 } else if (HAS_DDI(dev) &&
10660 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10661 crtc->scanline_offset = 2;
10662 } else
10663 crtc->scanline_offset = 1;
10664}
10665
f30da187
DV
10666static int __intel_set_mode(struct drm_crtc *crtc,
10667 struct drm_display_mode *mode,
10668 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10669{
10670 struct drm_device *dev = crtc->dev;
fbee40df 10671 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10672 struct drm_display_mode *saved_mode;
b8cecdf5 10673 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10674 struct intel_crtc *intel_crtc;
10675 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10676 int ret = 0;
a6778b3c 10677
4b4b9238 10678 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10679 if (!saved_mode)
10680 return -ENOMEM;
a6778b3c 10681
e2e1ed41 10682 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10683 &prepare_pipes, &disable_pipes);
10684
3ac18232 10685 *saved_mode = crtc->mode;
a6778b3c 10686
25c5b266
DV
10687 /* Hack: Because we don't (yet) support global modeset on multiple
10688 * crtcs, we don't keep track of the new mode for more than one crtc.
10689 * Hence simply check whether any bit is set in modeset_pipes in all the
10690 * pieces of code that are not yet converted to deal with mutliple crtcs
10691 * changing their mode at the same time. */
25c5b266 10692 if (modeset_pipes) {
4e53c2e0 10693 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10694 if (IS_ERR(pipe_config)) {
10695 ret = PTR_ERR(pipe_config);
10696 pipe_config = NULL;
10697
3ac18232 10698 goto out;
25c5b266 10699 }
c0b03411
DV
10700 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10701 "[modeset]");
50741abc 10702 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10703 }
a6778b3c 10704
30a970c6
JB
10705 /*
10706 * See if the config requires any additional preparation, e.g.
10707 * to adjust global state with pipes off. We need to do this
10708 * here so we can get the modeset_pipe updated config for the new
10709 * mode set on this crtc. For other crtcs we need to use the
10710 * adjusted_mode bits in the crtc directly.
10711 */
c164f833 10712 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10713 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10714
c164f833
VS
10715 /* may have added more to prepare_pipes than we should */
10716 prepare_pipes &= ~disable_pipes;
10717 }
10718
460da916
DV
10719 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10720 intel_crtc_disable(&intel_crtc->base);
10721
ea9d758d
DV
10722 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10723 if (intel_crtc->base.enabled)
10724 dev_priv->display.crtc_disable(&intel_crtc->base);
10725 }
a6778b3c 10726
6c4c86f5
DV
10727 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10728 * to set it here already despite that we pass it down the callchain.
f6e5b160 10729 */
b8cecdf5 10730 if (modeset_pipes) {
25c5b266 10731 crtc->mode = *mode;
b8cecdf5
DV
10732 /* mode_set/enable/disable functions rely on a correct pipe
10733 * config. */
10734 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10735 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10736
10737 /*
10738 * Calculate and store various constants which
10739 * are later needed by vblank and swap-completion
10740 * timestamping. They are derived from true hwmode.
10741 */
10742 drm_calc_timestamping_constants(crtc,
10743 &pipe_config->adjusted_mode);
b8cecdf5 10744 }
7758a113 10745
ea9d758d
DV
10746 /* Only after disabling all output pipelines that will be changed can we
10747 * update the the output configuration. */
10748 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10749
47fab737
DV
10750 if (dev_priv->display.modeset_global_resources)
10751 dev_priv->display.modeset_global_resources(dev);
10752
a6778b3c
DV
10753 /* Set up the DPLL and any encoders state that needs to adjust or depend
10754 * on the DPLL.
f6e5b160 10755 */
25c5b266 10756 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
4c10794f 10757 struct drm_framebuffer *old_fb;
a071fa00
DV
10758 struct drm_i915_gem_object *old_obj = NULL;
10759 struct drm_i915_gem_object *obj =
10760 to_intel_framebuffer(fb)->obj;
4c10794f
DV
10761
10762 mutex_lock(&dev->struct_mutex);
10763 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10764 obj,
4c10794f
DV
10765 NULL);
10766 if (ret != 0) {
10767 DRM_ERROR("pin & fence failed\n");
10768 mutex_unlock(&dev->struct_mutex);
10769 goto done;
10770 }
10771 old_fb = crtc->primary->fb;
a071fa00
DV
10772 if (old_fb) {
10773 old_obj = to_intel_framebuffer(old_fb)->obj;
10774 intel_unpin_fb_obj(old_obj);
10775 }
10776 i915_gem_track_fb(old_obj, obj,
10777 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10778 mutex_unlock(&dev->struct_mutex);
10779
10780 crtc->primary->fb = fb;
10781 crtc->x = x;
10782 crtc->y = y;
10783
4271b753
DV
10784 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10785 x, y, fb);
c0c36b94
CW
10786 if (ret)
10787 goto done;
a6778b3c
DV
10788 }
10789
10790 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10791 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10792 update_scanline_offset(intel_crtc);
10793
25c5b266 10794 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10795 }
a6778b3c 10796
a6778b3c
DV
10797 /* FIXME: add subpixel order */
10798done:
4b4b9238 10799 if (ret && crtc->enabled)
3ac18232 10800 crtc->mode = *saved_mode;
a6778b3c 10801
3ac18232 10802out:
b8cecdf5 10803 kfree(pipe_config);
3ac18232 10804 kfree(saved_mode);
a6778b3c 10805 return ret;
f6e5b160
CW
10806}
10807
e7457a9a
DL
10808static int intel_set_mode(struct drm_crtc *crtc,
10809 struct drm_display_mode *mode,
10810 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10811{
10812 int ret;
10813
10814 ret = __intel_set_mode(crtc, mode, x, y, fb);
10815
10816 if (ret == 0)
10817 intel_modeset_check_state(crtc->dev);
10818
10819 return ret;
10820}
10821
c0c36b94
CW
10822void intel_crtc_restore_mode(struct drm_crtc *crtc)
10823{
f4510a27 10824 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10825}
10826
25c5b266
DV
10827#undef for_each_intel_crtc_masked
10828
d9e55608
DV
10829static void intel_set_config_free(struct intel_set_config *config)
10830{
10831 if (!config)
10832 return;
10833
1aa4b628
DV
10834 kfree(config->save_connector_encoders);
10835 kfree(config->save_encoder_crtcs);
7668851f 10836 kfree(config->save_crtc_enabled);
d9e55608
DV
10837 kfree(config);
10838}
10839
85f9eb71
DV
10840static int intel_set_config_save_state(struct drm_device *dev,
10841 struct intel_set_config *config)
10842{
7668851f 10843 struct drm_crtc *crtc;
85f9eb71
DV
10844 struct drm_encoder *encoder;
10845 struct drm_connector *connector;
10846 int count;
10847
7668851f
VS
10848 config->save_crtc_enabled =
10849 kcalloc(dev->mode_config.num_crtc,
10850 sizeof(bool), GFP_KERNEL);
10851 if (!config->save_crtc_enabled)
10852 return -ENOMEM;
10853
1aa4b628
DV
10854 config->save_encoder_crtcs =
10855 kcalloc(dev->mode_config.num_encoder,
10856 sizeof(struct drm_crtc *), GFP_KERNEL);
10857 if (!config->save_encoder_crtcs)
85f9eb71
DV
10858 return -ENOMEM;
10859
1aa4b628
DV
10860 config->save_connector_encoders =
10861 kcalloc(dev->mode_config.num_connector,
10862 sizeof(struct drm_encoder *), GFP_KERNEL);
10863 if (!config->save_connector_encoders)
85f9eb71
DV
10864 return -ENOMEM;
10865
10866 /* Copy data. Note that driver private data is not affected.
10867 * Should anything bad happen only the expected state is
10868 * restored, not the drivers personal bookkeeping.
10869 */
7668851f 10870 count = 0;
70e1e0ec 10871 for_each_crtc(dev, crtc) {
7668851f
VS
10872 config->save_crtc_enabled[count++] = crtc->enabled;
10873 }
10874
85f9eb71
DV
10875 count = 0;
10876 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10877 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10878 }
10879
10880 count = 0;
10881 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10882 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10883 }
10884
10885 return 0;
10886}
10887
10888static void intel_set_config_restore_state(struct drm_device *dev,
10889 struct intel_set_config *config)
10890{
7668851f 10891 struct intel_crtc *crtc;
9a935856
DV
10892 struct intel_encoder *encoder;
10893 struct intel_connector *connector;
85f9eb71
DV
10894 int count;
10895
7668851f 10896 count = 0;
d3fcc808 10897 for_each_intel_crtc(dev, crtc) {
7668851f 10898 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10899
10900 if (crtc->new_enabled)
10901 crtc->new_config = &crtc->config;
10902 else
10903 crtc->new_config = NULL;
7668851f
VS
10904 }
10905
85f9eb71 10906 count = 0;
9a935856
DV
10907 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10908 encoder->new_crtc =
10909 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10910 }
10911
10912 count = 0;
9a935856
DV
10913 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10914 connector->new_encoder =
10915 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10916 }
10917}
10918
e3de42b6 10919static bool
2e57f47d 10920is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10921{
10922 int i;
10923
2e57f47d
CW
10924 if (set->num_connectors == 0)
10925 return false;
10926
10927 if (WARN_ON(set->connectors == NULL))
10928 return false;
10929
10930 for (i = 0; i < set->num_connectors; i++)
10931 if (set->connectors[i]->encoder &&
10932 set->connectors[i]->encoder->crtc == set->crtc &&
10933 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10934 return true;
10935
10936 return false;
10937}
10938
5e2b584e
DV
10939static void
10940intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10941 struct intel_set_config *config)
10942{
10943
10944 /* We should be able to check here if the fb has the same properties
10945 * and then just flip_or_move it */
2e57f47d
CW
10946 if (is_crtc_connector_off(set)) {
10947 config->mode_changed = true;
f4510a27 10948 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
10949 /*
10950 * If we have no fb, we can only flip as long as the crtc is
10951 * active, otherwise we need a full mode set. The crtc may
10952 * be active if we've only disabled the primary plane, or
10953 * in fastboot situations.
10954 */
f4510a27 10955 if (set->crtc->primary->fb == NULL) {
319d9827
JB
10956 struct intel_crtc *intel_crtc =
10957 to_intel_crtc(set->crtc);
10958
3b150f08 10959 if (intel_crtc->active) {
319d9827
JB
10960 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10961 config->fb_changed = true;
10962 } else {
10963 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10964 config->mode_changed = true;
10965 }
5e2b584e
DV
10966 } else if (set->fb == NULL) {
10967 config->mode_changed = true;
72f4901e 10968 } else if (set->fb->pixel_format !=
f4510a27 10969 set->crtc->primary->fb->pixel_format) {
5e2b584e 10970 config->mode_changed = true;
e3de42b6 10971 } else {
5e2b584e 10972 config->fb_changed = true;
e3de42b6 10973 }
5e2b584e
DV
10974 }
10975
835c5873 10976 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
10977 config->fb_changed = true;
10978
10979 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10980 DRM_DEBUG_KMS("modes are different, full mode set\n");
10981 drm_mode_debug_printmodeline(&set->crtc->mode);
10982 drm_mode_debug_printmodeline(set->mode);
10983 config->mode_changed = true;
10984 }
a1d95703
CW
10985
10986 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10987 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
10988}
10989
2e431051 10990static int
9a935856
DV
10991intel_modeset_stage_output_state(struct drm_device *dev,
10992 struct drm_mode_set *set,
10993 struct intel_set_config *config)
50f56119 10994{
9a935856
DV
10995 struct intel_connector *connector;
10996 struct intel_encoder *encoder;
7668851f 10997 struct intel_crtc *crtc;
f3f08572 10998 int ro;
50f56119 10999
9abdda74 11000 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11001 * of connectors. For paranoia, double-check this. */
11002 WARN_ON(!set->fb && (set->num_connectors != 0));
11003 WARN_ON(set->fb && (set->num_connectors == 0));
11004
9a935856
DV
11005 list_for_each_entry(connector, &dev->mode_config.connector_list,
11006 base.head) {
11007 /* Otherwise traverse passed in connector list and get encoders
11008 * for them. */
50f56119 11009 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
11010 if (set->connectors[ro] == &connector->base) {
11011 connector->new_encoder = connector->encoder;
50f56119
DV
11012 break;
11013 }
11014 }
11015
9a935856
DV
11016 /* If we disable the crtc, disable all its connectors. Also, if
11017 * the connector is on the changing crtc but not on the new
11018 * connector list, disable it. */
11019 if ((!set->fb || ro == set->num_connectors) &&
11020 connector->base.encoder &&
11021 connector->base.encoder->crtc == set->crtc) {
11022 connector->new_encoder = NULL;
11023
11024 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11025 connector->base.base.id,
c23cc417 11026 connector->base.name);
9a935856
DV
11027 }
11028
11029
11030 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11031 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11032 config->mode_changed = true;
50f56119
DV
11033 }
11034 }
9a935856 11035 /* connector->new_encoder is now updated for all connectors. */
50f56119 11036
9a935856 11037 /* Update crtc of enabled connectors. */
9a935856
DV
11038 list_for_each_entry(connector, &dev->mode_config.connector_list,
11039 base.head) {
7668851f
VS
11040 struct drm_crtc *new_crtc;
11041
9a935856 11042 if (!connector->new_encoder)
50f56119
DV
11043 continue;
11044
9a935856 11045 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11046
11047 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11048 if (set->connectors[ro] == &connector->base)
50f56119
DV
11049 new_crtc = set->crtc;
11050 }
11051
11052 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11053 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11054 new_crtc)) {
5e2b584e 11055 return -EINVAL;
50f56119 11056 }
9a935856
DV
11057 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11058
11059 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11060 connector->base.base.id,
c23cc417 11061 connector->base.name,
9a935856
DV
11062 new_crtc->base.id);
11063 }
11064
11065 /* Check for any encoders that needs to be disabled. */
11066 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11067 base.head) {
5a65f358 11068 int num_connectors = 0;
9a935856
DV
11069 list_for_each_entry(connector,
11070 &dev->mode_config.connector_list,
11071 base.head) {
11072 if (connector->new_encoder == encoder) {
11073 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11074 num_connectors++;
9a935856
DV
11075 }
11076 }
5a65f358
PZ
11077
11078 if (num_connectors == 0)
11079 encoder->new_crtc = NULL;
11080 else if (num_connectors > 1)
11081 return -EINVAL;
11082
9a935856
DV
11083 /* Only now check for crtc changes so we don't miss encoders
11084 * that will be disabled. */
11085 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11086 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11087 config->mode_changed = true;
50f56119
DV
11088 }
11089 }
9a935856 11090 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 11091
d3fcc808 11092 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11093 crtc->new_enabled = false;
11094
11095 list_for_each_entry(encoder,
11096 &dev->mode_config.encoder_list,
11097 base.head) {
11098 if (encoder->new_crtc == crtc) {
11099 crtc->new_enabled = true;
11100 break;
11101 }
11102 }
11103
11104 if (crtc->new_enabled != crtc->base.enabled) {
11105 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11106 crtc->new_enabled ? "en" : "dis");
11107 config->mode_changed = true;
11108 }
7bd0a8e7
VS
11109
11110 if (crtc->new_enabled)
11111 crtc->new_config = &crtc->config;
11112 else
11113 crtc->new_config = NULL;
7668851f
VS
11114 }
11115
2e431051
DV
11116 return 0;
11117}
11118
7d00a1f5
VS
11119static void disable_crtc_nofb(struct intel_crtc *crtc)
11120{
11121 struct drm_device *dev = crtc->base.dev;
11122 struct intel_encoder *encoder;
11123 struct intel_connector *connector;
11124
11125 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11126 pipe_name(crtc->pipe));
11127
11128 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11129 if (connector->new_encoder &&
11130 connector->new_encoder->new_crtc == crtc)
11131 connector->new_encoder = NULL;
11132 }
11133
11134 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11135 if (encoder->new_crtc == crtc)
11136 encoder->new_crtc = NULL;
11137 }
11138
11139 crtc->new_enabled = false;
7bd0a8e7 11140 crtc->new_config = NULL;
7d00a1f5
VS
11141}
11142
2e431051
DV
11143static int intel_crtc_set_config(struct drm_mode_set *set)
11144{
11145 struct drm_device *dev;
2e431051
DV
11146 struct drm_mode_set save_set;
11147 struct intel_set_config *config;
11148 int ret;
2e431051 11149
8d3e375e
DV
11150 BUG_ON(!set);
11151 BUG_ON(!set->crtc);
11152 BUG_ON(!set->crtc->helper_private);
2e431051 11153
7e53f3a4
DV
11154 /* Enforce sane interface api - has been abused by the fb helper. */
11155 BUG_ON(!set->mode && set->fb);
11156 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11157
2e431051
DV
11158 if (set->fb) {
11159 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11160 set->crtc->base.id, set->fb->base.id,
11161 (int)set->num_connectors, set->x, set->y);
11162 } else {
11163 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11164 }
11165
11166 dev = set->crtc->dev;
11167
11168 ret = -ENOMEM;
11169 config = kzalloc(sizeof(*config), GFP_KERNEL);
11170 if (!config)
11171 goto out_config;
11172
11173 ret = intel_set_config_save_state(dev, config);
11174 if (ret)
11175 goto out_config;
11176
11177 save_set.crtc = set->crtc;
11178 save_set.mode = &set->crtc->mode;
11179 save_set.x = set->crtc->x;
11180 save_set.y = set->crtc->y;
f4510a27 11181 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11182
11183 /* Compute whether we need a full modeset, only an fb base update or no
11184 * change at all. In the future we might also check whether only the
11185 * mode changed, e.g. for LVDS where we only change the panel fitter in
11186 * such cases. */
11187 intel_set_config_compute_mode_changes(set, config);
11188
9a935856 11189 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11190 if (ret)
11191 goto fail;
11192
5e2b584e 11193 if (config->mode_changed) {
c0c36b94
CW
11194 ret = intel_set_mode(set->crtc, set->mode,
11195 set->x, set->y, set->fb);
5e2b584e 11196 } else if (config->fb_changed) {
3b150f08
MR
11197 struct drm_i915_private *dev_priv = dev->dev_private;
11198 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11199
4878cae2
VS
11200 intel_crtc_wait_for_pending_flips(set->crtc);
11201
4f660f49 11202 ret = intel_pipe_set_base(set->crtc,
94352cf9 11203 set->x, set->y, set->fb);
3b150f08
MR
11204
11205 /*
11206 * We need to make sure the primary plane is re-enabled if it
11207 * has previously been turned off.
11208 */
11209 if (!intel_crtc->primary_enabled && ret == 0) {
11210 WARN_ON(!intel_crtc->active);
11211 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11212 intel_crtc->pipe);
11213 }
11214
7ca51a3a
JB
11215 /*
11216 * In the fastboot case this may be our only check of the
11217 * state after boot. It would be better to only do it on
11218 * the first update, but we don't have a nice way of doing that
11219 * (and really, set_config isn't used much for high freq page
11220 * flipping, so increasing its cost here shouldn't be a big
11221 * deal).
11222 */
d330a953 11223 if (i915.fastboot && ret == 0)
7ca51a3a 11224 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11225 }
11226
2d05eae1 11227 if (ret) {
bf67dfeb
DV
11228 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11229 set->crtc->base.id, ret);
50f56119 11230fail:
2d05eae1 11231 intel_set_config_restore_state(dev, config);
50f56119 11232
7d00a1f5
VS
11233 /*
11234 * HACK: if the pipe was on, but we didn't have a framebuffer,
11235 * force the pipe off to avoid oopsing in the modeset code
11236 * due to fb==NULL. This should only happen during boot since
11237 * we don't yet reconstruct the FB from the hardware state.
11238 */
11239 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11240 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11241
2d05eae1
CW
11242 /* Try to restore the config */
11243 if (config->mode_changed &&
11244 intel_set_mode(save_set.crtc, save_set.mode,
11245 save_set.x, save_set.y, save_set.fb))
11246 DRM_ERROR("failed to restore config after modeset failure\n");
11247 }
50f56119 11248
d9e55608
DV
11249out_config:
11250 intel_set_config_free(config);
50f56119
DV
11251 return ret;
11252}
f6e5b160
CW
11253
11254static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11255 .gamma_set = intel_crtc_gamma_set,
50f56119 11256 .set_config = intel_crtc_set_config,
f6e5b160
CW
11257 .destroy = intel_crtc_destroy,
11258 .page_flip = intel_crtc_page_flip,
11259};
11260
79f689aa
PZ
11261static void intel_cpu_pll_init(struct drm_device *dev)
11262{
affa9354 11263 if (HAS_DDI(dev))
79f689aa
PZ
11264 intel_ddi_pll_init(dev);
11265}
11266
5358901f
DV
11267static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11268 struct intel_shared_dpll *pll,
11269 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11270{
5358901f 11271 uint32_t val;
ee7b9f93 11272
5358901f 11273 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11274 hw_state->dpll = val;
11275 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11276 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11277
11278 return val & DPLL_VCO_ENABLE;
11279}
11280
15bdd4cf
DV
11281static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11282 struct intel_shared_dpll *pll)
11283{
11284 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11285 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11286}
11287
e7b903d2
DV
11288static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11289 struct intel_shared_dpll *pll)
11290{
e7b903d2 11291 /* PCH refclock must be enabled first */
89eff4be 11292 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11293
15bdd4cf
DV
11294 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11295
11296 /* Wait for the clocks to stabilize. */
11297 POSTING_READ(PCH_DPLL(pll->id));
11298 udelay(150);
11299
11300 /* The pixel multiplier can only be updated once the
11301 * DPLL is enabled and the clocks are stable.
11302 *
11303 * So write it again.
11304 */
11305 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11306 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11307 udelay(200);
11308}
11309
11310static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11311 struct intel_shared_dpll *pll)
11312{
11313 struct drm_device *dev = dev_priv->dev;
11314 struct intel_crtc *crtc;
e7b903d2
DV
11315
11316 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11317 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11318 if (intel_crtc_to_shared_dpll(crtc) == pll)
11319 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11320 }
11321
15bdd4cf
DV
11322 I915_WRITE(PCH_DPLL(pll->id), 0);
11323 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11324 udelay(200);
11325}
11326
46edb027
DV
11327static char *ibx_pch_dpll_names[] = {
11328 "PCH DPLL A",
11329 "PCH DPLL B",
11330};
11331
7c74ade1 11332static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11333{
e7b903d2 11334 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11335 int i;
11336
7c74ade1 11337 dev_priv->num_shared_dpll = 2;
ee7b9f93 11338
e72f9fbf 11339 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11340 dev_priv->shared_dplls[i].id = i;
11341 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11342 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11343 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11344 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11345 dev_priv->shared_dplls[i].get_hw_state =
11346 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11347 }
11348}
11349
7c74ade1
DV
11350static void intel_shared_dpll_init(struct drm_device *dev)
11351{
e7b903d2 11352 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1
DV
11353
11354 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11355 ibx_pch_dpll_init(dev);
11356 else
11357 dev_priv->num_shared_dpll = 0;
11358
11359 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11360}
11361
465c120c
MR
11362static int
11363intel_primary_plane_disable(struct drm_plane *plane)
11364{
11365 struct drm_device *dev = plane->dev;
11366 struct drm_i915_private *dev_priv = dev->dev_private;
11367 struct intel_plane *intel_plane = to_intel_plane(plane);
11368 struct intel_crtc *intel_crtc;
11369
11370 if (!plane->fb)
11371 return 0;
11372
11373 BUG_ON(!plane->crtc);
11374
11375 intel_crtc = to_intel_crtc(plane->crtc);
11376
11377 /*
11378 * Even though we checked plane->fb above, it's still possible that
11379 * the primary plane has been implicitly disabled because the crtc
11380 * coordinates given weren't visible, or because we detected
11381 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11382 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11383 * In either case, we need to unpin the FB and let the fb pointer get
11384 * updated, but otherwise we don't need to touch the hardware.
11385 */
11386 if (!intel_crtc->primary_enabled)
11387 goto disable_unpin;
11388
11389 intel_crtc_wait_for_pending_flips(plane->crtc);
11390 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11391 intel_plane->pipe);
465c120c 11392disable_unpin:
a071fa00
DV
11393 i915_gem_track_fb(to_intel_framebuffer(plane->fb)->obj, NULL,
11394 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11395 intel_unpin_fb_obj(to_intel_framebuffer(plane->fb)->obj);
11396 plane->fb = NULL;
11397
11398 return 0;
11399}
11400
11401static int
11402intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11403 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11404 unsigned int crtc_w, unsigned int crtc_h,
11405 uint32_t src_x, uint32_t src_y,
11406 uint32_t src_w, uint32_t src_h)
11407{
11408 struct drm_device *dev = crtc->dev;
11409 struct drm_i915_private *dev_priv = dev->dev_private;
11410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11411 struct intel_plane *intel_plane = to_intel_plane(plane);
a071fa00 11412 struct drm_i915_gem_object *obj, *old_obj = NULL;
465c120c
MR
11413 struct drm_rect dest = {
11414 /* integer pixels */
11415 .x1 = crtc_x,
11416 .y1 = crtc_y,
11417 .x2 = crtc_x + crtc_w,
11418 .y2 = crtc_y + crtc_h,
11419 };
11420 struct drm_rect src = {
11421 /* 16.16 fixed point */
11422 .x1 = src_x,
11423 .y1 = src_y,
11424 .x2 = src_x + src_w,
11425 .y2 = src_y + src_h,
11426 };
11427 const struct drm_rect clip = {
11428 /* integer pixels */
11429 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11430 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11431 };
11432 bool visible;
11433 int ret;
11434
11435 ret = drm_plane_helper_check_update(plane, crtc, fb,
11436 &src, &dest, &clip,
11437 DRM_PLANE_HELPER_NO_SCALING,
11438 DRM_PLANE_HELPER_NO_SCALING,
11439 false, true, &visible);
11440
11441 if (ret)
11442 return ret;
11443
a071fa00
DV
11444 if (plane->fb)
11445 old_obj = to_intel_framebuffer(plane->fb)->obj;
11446 obj = to_intel_framebuffer(fb)->obj;
11447
465c120c
MR
11448 /*
11449 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11450 * updating the fb pointer, and returning without touching the
11451 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11452 * turn on the display with all planes setup as desired.
11453 */
11454 if (!crtc->enabled) {
11455 /*
11456 * If we already called setplane while the crtc was disabled,
11457 * we may have an fb pinned; unpin it.
11458 */
11459 if (plane->fb)
a071fa00
DV
11460 intel_unpin_fb_obj(old_obj);
11461
11462 i915_gem_track_fb(old_obj, obj,
11463 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11464
11465 /* Pin and return without programming hardware */
a071fa00 11466 return intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11467 }
11468
11469 intel_crtc_wait_for_pending_flips(crtc);
11470
11471 /*
11472 * If clipping results in a non-visible primary plane, we'll disable
11473 * the primary plane. Note that this is a bit different than what
11474 * happens if userspace explicitly disables the plane by passing fb=0
11475 * because plane->fb still gets set and pinned.
11476 */
11477 if (!visible) {
11478 /*
11479 * Try to pin the new fb first so that we can bail out if we
11480 * fail.
11481 */
11482 if (plane->fb != fb) {
a071fa00 11483 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11484 if (ret)
11485 return ret;
11486 }
11487
a071fa00
DV
11488 i915_gem_track_fb(old_obj, obj,
11489 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11490
465c120c
MR
11491 if (intel_crtc->primary_enabled)
11492 intel_disable_primary_hw_plane(dev_priv,
11493 intel_plane->plane,
11494 intel_plane->pipe);
11495
11496
11497 if (plane->fb != fb)
11498 if (plane->fb)
a071fa00 11499 intel_unpin_fb_obj(old_obj);
465c120c
MR
11500
11501 return 0;
11502 }
11503
11504 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11505 if (ret)
11506 return ret;
11507
11508 if (!intel_crtc->primary_enabled)
11509 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11510 intel_crtc->pipe);
11511
11512 return 0;
11513}
11514
3d7d6510
MR
11515/* Common destruction function for both primary and cursor planes */
11516static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11517{
11518 struct intel_plane *intel_plane = to_intel_plane(plane);
11519 drm_plane_cleanup(plane);
11520 kfree(intel_plane);
11521}
11522
11523static const struct drm_plane_funcs intel_primary_plane_funcs = {
11524 .update_plane = intel_primary_plane_setplane,
11525 .disable_plane = intel_primary_plane_disable,
3d7d6510 11526 .destroy = intel_plane_destroy,
465c120c
MR
11527};
11528
11529static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11530 int pipe)
11531{
11532 struct intel_plane *primary;
11533 const uint32_t *intel_primary_formats;
11534 int num_formats;
11535
11536 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11537 if (primary == NULL)
11538 return NULL;
11539
11540 primary->can_scale = false;
11541 primary->max_downscale = 1;
11542 primary->pipe = pipe;
11543 primary->plane = pipe;
11544 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11545 primary->plane = !pipe;
11546
11547 if (INTEL_INFO(dev)->gen <= 3) {
11548 intel_primary_formats = intel_primary_formats_gen2;
11549 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11550 } else {
11551 intel_primary_formats = intel_primary_formats_gen4;
11552 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11553 }
11554
11555 drm_universal_plane_init(dev, &primary->base, 0,
11556 &intel_primary_plane_funcs,
11557 intel_primary_formats, num_formats,
11558 DRM_PLANE_TYPE_PRIMARY);
11559 return &primary->base;
11560}
11561
3d7d6510
MR
11562static int
11563intel_cursor_plane_disable(struct drm_plane *plane)
11564{
11565 if (!plane->fb)
11566 return 0;
11567
11568 BUG_ON(!plane->crtc);
11569
11570 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11571}
11572
11573static int
11574intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11575 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11576 unsigned int crtc_w, unsigned int crtc_h,
11577 uint32_t src_x, uint32_t src_y,
11578 uint32_t src_w, uint32_t src_h)
11579{
11580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11581 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11582 struct drm_i915_gem_object *obj = intel_fb->obj;
11583 struct drm_rect dest = {
11584 /* integer pixels */
11585 .x1 = crtc_x,
11586 .y1 = crtc_y,
11587 .x2 = crtc_x + crtc_w,
11588 .y2 = crtc_y + crtc_h,
11589 };
11590 struct drm_rect src = {
11591 /* 16.16 fixed point */
11592 .x1 = src_x,
11593 .y1 = src_y,
11594 .x2 = src_x + src_w,
11595 .y2 = src_y + src_h,
11596 };
11597 const struct drm_rect clip = {
11598 /* integer pixels */
11599 .x2 = intel_crtc->config.pipe_src_w,
11600 .y2 = intel_crtc->config.pipe_src_h,
11601 };
11602 bool visible;
11603 int ret;
11604
11605 ret = drm_plane_helper_check_update(plane, crtc, fb,
11606 &src, &dest, &clip,
11607 DRM_PLANE_HELPER_NO_SCALING,
11608 DRM_PLANE_HELPER_NO_SCALING,
11609 true, true, &visible);
11610 if (ret)
11611 return ret;
11612
11613 crtc->cursor_x = crtc_x;
11614 crtc->cursor_y = crtc_y;
11615 if (fb != crtc->cursor->fb) {
11616 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11617 } else {
11618 intel_crtc_update_cursor(crtc, visible);
11619 return 0;
11620 }
11621}
11622static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11623 .update_plane = intel_cursor_plane_update,
11624 .disable_plane = intel_cursor_plane_disable,
11625 .destroy = intel_plane_destroy,
11626};
11627
11628static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11629 int pipe)
11630{
11631 struct intel_plane *cursor;
11632
11633 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11634 if (cursor == NULL)
11635 return NULL;
11636
11637 cursor->can_scale = false;
11638 cursor->max_downscale = 1;
11639 cursor->pipe = pipe;
11640 cursor->plane = pipe;
11641
11642 drm_universal_plane_init(dev, &cursor->base, 0,
11643 &intel_cursor_plane_funcs,
11644 intel_cursor_formats,
11645 ARRAY_SIZE(intel_cursor_formats),
11646 DRM_PLANE_TYPE_CURSOR);
11647 return &cursor->base;
11648}
11649
b358d0a6 11650static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11651{
fbee40df 11652 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11653 struct intel_crtc *intel_crtc;
3d7d6510
MR
11654 struct drm_plane *primary = NULL;
11655 struct drm_plane *cursor = NULL;
465c120c 11656 int i, ret;
79e53945 11657
955382f3 11658 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11659 if (intel_crtc == NULL)
11660 return;
11661
465c120c 11662 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11663 if (!primary)
11664 goto fail;
11665
11666 cursor = intel_cursor_plane_create(dev, pipe);
11667 if (!cursor)
11668 goto fail;
11669
465c120c 11670 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11671 cursor, &intel_crtc_funcs);
11672 if (ret)
11673 goto fail;
79e53945
JB
11674
11675 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11676 for (i = 0; i < 256; i++) {
11677 intel_crtc->lut_r[i] = i;
11678 intel_crtc->lut_g[i] = i;
11679 intel_crtc->lut_b[i] = i;
11680 }
11681
1f1c2e24
VS
11682 /*
11683 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11684 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11685 */
80824003
JB
11686 intel_crtc->pipe = pipe;
11687 intel_crtc->plane = pipe;
3a77c4c4 11688 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11689 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11690 intel_crtc->plane = !pipe;
80824003
JB
11691 }
11692
4b0e333e
CW
11693 intel_crtc->cursor_base = ~0;
11694 intel_crtc->cursor_cntl = ~0;
11695
8d7849db
VS
11696 init_waitqueue_head(&intel_crtc->vbl_wait);
11697
22fd0fab
JB
11698 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11699 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11700 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11701 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11702
79e53945 11703 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11704
11705 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11706 return;
11707
11708fail:
11709 if (primary)
11710 drm_plane_cleanup(primary);
11711 if (cursor)
11712 drm_plane_cleanup(cursor);
11713 kfree(intel_crtc);
79e53945
JB
11714}
11715
752aa88a
JB
11716enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11717{
11718 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11719 struct drm_device *dev = connector->base.dev;
752aa88a 11720
51fd371b 11721 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11722
11723 if (!encoder)
11724 return INVALID_PIPE;
11725
11726 return to_intel_crtc(encoder->crtc)->pipe;
11727}
11728
08d7b3d1 11729int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11730 struct drm_file *file)
08d7b3d1 11731{
08d7b3d1 11732 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
11733 struct drm_mode_object *drmmode_obj;
11734 struct intel_crtc *crtc;
08d7b3d1 11735
1cff8f6b
DV
11736 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11737 return -ENODEV;
08d7b3d1 11738
c05422d5
DV
11739 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11740 DRM_MODE_OBJECT_CRTC);
08d7b3d1 11741
c05422d5 11742 if (!drmmode_obj) {
08d7b3d1 11743 DRM_ERROR("no such CRTC id\n");
3f2c2057 11744 return -ENOENT;
08d7b3d1
CW
11745 }
11746
c05422d5
DV
11747 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11748 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11749
c05422d5 11750 return 0;
08d7b3d1
CW
11751}
11752
66a9278e 11753static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11754{
66a9278e
DV
11755 struct drm_device *dev = encoder->base.dev;
11756 struct intel_encoder *source_encoder;
79e53945 11757 int index_mask = 0;
79e53945
JB
11758 int entry = 0;
11759
66a9278e
DV
11760 list_for_each_entry(source_encoder,
11761 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11762 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11763 index_mask |= (1 << entry);
11764
79e53945
JB
11765 entry++;
11766 }
4ef69c7a 11767
79e53945
JB
11768 return index_mask;
11769}
11770
4d302442
CW
11771static bool has_edp_a(struct drm_device *dev)
11772{
11773 struct drm_i915_private *dev_priv = dev->dev_private;
11774
11775 if (!IS_MOBILE(dev))
11776 return false;
11777
11778 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11779 return false;
11780
e3589908 11781 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11782 return false;
11783
11784 return true;
11785}
11786
ba0fbca4
DL
11787const char *intel_output_name(int output)
11788{
11789 static const char *names[] = {
11790 [INTEL_OUTPUT_UNUSED] = "Unused",
11791 [INTEL_OUTPUT_ANALOG] = "Analog",
11792 [INTEL_OUTPUT_DVO] = "DVO",
11793 [INTEL_OUTPUT_SDVO] = "SDVO",
11794 [INTEL_OUTPUT_LVDS] = "LVDS",
11795 [INTEL_OUTPUT_TVOUT] = "TV",
11796 [INTEL_OUTPUT_HDMI] = "HDMI",
11797 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11798 [INTEL_OUTPUT_EDP] = "eDP",
11799 [INTEL_OUTPUT_DSI] = "DSI",
11800 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11801 };
11802
11803 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11804 return "Invalid";
11805
11806 return names[output];
11807}
11808
79e53945
JB
11809static void intel_setup_outputs(struct drm_device *dev)
11810{
725e30ad 11811 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11812 struct intel_encoder *encoder;
cb0953d7 11813 bool dpd_is_edp = false;
79e53945 11814
c9093354 11815 intel_lvds_init(dev);
79e53945 11816
27da3bdf 11817 if (!IS_ULT(dev) && !IS_CHERRYVIEW(dev) && dev_priv->vbt.int_crt_support)
79935fca 11818 intel_crt_init(dev);
cb0953d7 11819
affa9354 11820 if (HAS_DDI(dev)) {
0e72a5b5
ED
11821 int found;
11822
11823 /* Haswell uses DDI functions to detect digital outputs */
11824 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11825 /* DDI A only supports eDP */
11826 if (found)
11827 intel_ddi_init(dev, PORT_A);
11828
11829 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11830 * register */
11831 found = I915_READ(SFUSE_STRAP);
11832
11833 if (found & SFUSE_STRAP_DDIB_DETECTED)
11834 intel_ddi_init(dev, PORT_B);
11835 if (found & SFUSE_STRAP_DDIC_DETECTED)
11836 intel_ddi_init(dev, PORT_C);
11837 if (found & SFUSE_STRAP_DDID_DETECTED)
11838 intel_ddi_init(dev, PORT_D);
11839 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11840 int found;
5d8a7752 11841 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11842
11843 if (has_edp_a(dev))
11844 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11845
dc0fa718 11846 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11847 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11848 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11849 if (!found)
e2debe91 11850 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11851 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11852 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11853 }
11854
dc0fa718 11855 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11856 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11857
dc0fa718 11858 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11859 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11860
5eb08b69 11861 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11862 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11863
270b3042 11864 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11865 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11866 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11867 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11868 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11869 PORT_B);
11870 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11871 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11872 }
11873
6f6005a5
JB
11874 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11875 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11876 PORT_C);
11877 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 11878 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 11879 }
19c03924 11880
9418c1f1
VS
11881 if (IS_CHERRYVIEW(dev)) {
11882 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11883 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11884 PORT_D);
11885 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11886 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11887 }
11888 }
11889
3cfca973 11890 intel_dsi_init(dev);
103a196f 11891 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 11892 bool found = false;
7d57382e 11893
e2debe91 11894 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11895 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 11896 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
11897 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11898 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 11899 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 11900 }
27185ae1 11901
e7281eab 11902 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11903 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 11904 }
13520b05
KH
11905
11906 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 11907
e2debe91 11908 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11909 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 11910 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 11911 }
27185ae1 11912
e2debe91 11913 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 11914
b01f2c3a
JB
11915 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11916 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 11917 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 11918 }
e7281eab 11919 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11920 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 11921 }
27185ae1 11922
b01f2c3a 11923 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 11924 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 11925 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 11926 } else if (IS_GEN2(dev))
79e53945
JB
11927 intel_dvo_init(dev);
11928
103a196f 11929 if (SUPPORTS_TV(dev))
79e53945
JB
11930 intel_tv_init(dev);
11931
7c8f8a70
RV
11932 intel_edp_psr_init(dev);
11933
4ef69c7a
CW
11934 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11935 encoder->base.possible_crtcs = encoder->crtc_mask;
11936 encoder->base.possible_clones =
66a9278e 11937 intel_encoder_clones(encoder);
79e53945 11938 }
47356eb6 11939
dde86e2d 11940 intel_init_pch_refclk(dev);
270b3042
DV
11941
11942 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
11943}
11944
11945static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11946{
60a5ca01 11947 struct drm_device *dev = fb->dev;
79e53945 11948 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 11949
ef2d633e 11950 drm_framebuffer_cleanup(fb);
60a5ca01 11951 mutex_lock(&dev->struct_mutex);
ef2d633e 11952 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
11953 drm_gem_object_unreference(&intel_fb->obj->base);
11954 mutex_unlock(&dev->struct_mutex);
79e53945
JB
11955 kfree(intel_fb);
11956}
11957
11958static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 11959 struct drm_file *file,
79e53945
JB
11960 unsigned int *handle)
11961{
11962 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 11963 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 11964
05394f39 11965 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
11966}
11967
11968static const struct drm_framebuffer_funcs intel_fb_funcs = {
11969 .destroy = intel_user_framebuffer_destroy,
11970 .create_handle = intel_user_framebuffer_create_handle,
11971};
11972
b5ea642a
DV
11973static int intel_framebuffer_init(struct drm_device *dev,
11974 struct intel_framebuffer *intel_fb,
11975 struct drm_mode_fb_cmd2 *mode_cmd,
11976 struct drm_i915_gem_object *obj)
79e53945 11977{
a57ce0b2 11978 int aligned_height;
a35cdaa0 11979 int pitch_limit;
79e53945
JB
11980 int ret;
11981
dd4916c5
DV
11982 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11983
c16ed4be
CW
11984 if (obj->tiling_mode == I915_TILING_Y) {
11985 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 11986 return -EINVAL;
c16ed4be 11987 }
57cd6508 11988
c16ed4be
CW
11989 if (mode_cmd->pitches[0] & 63) {
11990 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
11991 mode_cmd->pitches[0]);
57cd6508 11992 return -EINVAL;
c16ed4be 11993 }
57cd6508 11994
a35cdaa0
CW
11995 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
11996 pitch_limit = 32*1024;
11997 } else if (INTEL_INFO(dev)->gen >= 4) {
11998 if (obj->tiling_mode)
11999 pitch_limit = 16*1024;
12000 else
12001 pitch_limit = 32*1024;
12002 } else if (INTEL_INFO(dev)->gen >= 3) {
12003 if (obj->tiling_mode)
12004 pitch_limit = 8*1024;
12005 else
12006 pitch_limit = 16*1024;
12007 } else
12008 /* XXX DSPC is limited to 4k tiled */
12009 pitch_limit = 8*1024;
12010
12011 if (mode_cmd->pitches[0] > pitch_limit) {
12012 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12013 obj->tiling_mode ? "tiled" : "linear",
12014 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12015 return -EINVAL;
c16ed4be 12016 }
5d7bd705
VS
12017
12018 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12019 mode_cmd->pitches[0] != obj->stride) {
12020 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12021 mode_cmd->pitches[0], obj->stride);
5d7bd705 12022 return -EINVAL;
c16ed4be 12023 }
5d7bd705 12024
57779d06 12025 /* Reject formats not supported by any plane early. */
308e5bcb 12026 switch (mode_cmd->pixel_format) {
57779d06 12027 case DRM_FORMAT_C8:
04b3924d
VS
12028 case DRM_FORMAT_RGB565:
12029 case DRM_FORMAT_XRGB8888:
12030 case DRM_FORMAT_ARGB8888:
57779d06
VS
12031 break;
12032 case DRM_FORMAT_XRGB1555:
12033 case DRM_FORMAT_ARGB1555:
c16ed4be 12034 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12035 DRM_DEBUG("unsupported pixel format: %s\n",
12036 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12037 return -EINVAL;
c16ed4be 12038 }
57779d06
VS
12039 break;
12040 case DRM_FORMAT_XBGR8888:
12041 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12042 case DRM_FORMAT_XRGB2101010:
12043 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12044 case DRM_FORMAT_XBGR2101010:
12045 case DRM_FORMAT_ABGR2101010:
c16ed4be 12046 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12047 DRM_DEBUG("unsupported pixel format: %s\n",
12048 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12049 return -EINVAL;
c16ed4be 12050 }
b5626747 12051 break;
04b3924d
VS
12052 case DRM_FORMAT_YUYV:
12053 case DRM_FORMAT_UYVY:
12054 case DRM_FORMAT_YVYU:
12055 case DRM_FORMAT_VYUY:
c16ed4be 12056 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12057 DRM_DEBUG("unsupported pixel format: %s\n",
12058 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12059 return -EINVAL;
c16ed4be 12060 }
57cd6508
CW
12061 break;
12062 default:
4ee62c76
VS
12063 DRM_DEBUG("unsupported pixel format: %s\n",
12064 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12065 return -EINVAL;
12066 }
12067
90f9a336
VS
12068 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12069 if (mode_cmd->offsets[0] != 0)
12070 return -EINVAL;
12071
a57ce0b2
JB
12072 aligned_height = intel_align_height(dev, mode_cmd->height,
12073 obj->tiling_mode);
53155c0a
DV
12074 /* FIXME drm helper for size checks (especially planar formats)? */
12075 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12076 return -EINVAL;
12077
c7d73f6a
DV
12078 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12079 intel_fb->obj = obj;
80075d49 12080 intel_fb->obj->framebuffer_references++;
c7d73f6a 12081
79e53945
JB
12082 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12083 if (ret) {
12084 DRM_ERROR("framebuffer init failed %d\n", ret);
12085 return ret;
12086 }
12087
79e53945
JB
12088 return 0;
12089}
12090
79e53945
JB
12091static struct drm_framebuffer *
12092intel_user_framebuffer_create(struct drm_device *dev,
12093 struct drm_file *filp,
308e5bcb 12094 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12095{
05394f39 12096 struct drm_i915_gem_object *obj;
79e53945 12097
308e5bcb
JB
12098 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12099 mode_cmd->handles[0]));
c8725226 12100 if (&obj->base == NULL)
cce13ff7 12101 return ERR_PTR(-ENOENT);
79e53945 12102
d2dff872 12103 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12104}
12105
4520f53a 12106#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12107static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12108{
12109}
12110#endif
12111
79e53945 12112static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12113 .fb_create = intel_user_framebuffer_create,
0632fef6 12114 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12115};
12116
e70236a8
JB
12117/* Set up chip specific display functions */
12118static void intel_init_display(struct drm_device *dev)
12119{
12120 struct drm_i915_private *dev_priv = dev->dev_private;
12121
ee9300bb
DV
12122 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12123 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12124 else if (IS_CHERRYVIEW(dev))
12125 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12126 else if (IS_VALLEYVIEW(dev))
12127 dev_priv->display.find_dpll = vlv_find_best_dpll;
12128 else if (IS_PINEVIEW(dev))
12129 dev_priv->display.find_dpll = pnv_find_best_dpll;
12130 else
12131 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12132
affa9354 12133 if (HAS_DDI(dev)) {
0e8ffe1b 12134 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12135 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12136 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12137 dev_priv->display.crtc_enable = haswell_crtc_enable;
12138 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 12139 dev_priv->display.off = haswell_crtc_off;
262ca2b0
MR
12140 dev_priv->display.update_primary_plane =
12141 ironlake_update_primary_plane;
09b4ddf9 12142 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12143 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12144 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12145 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12146 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12147 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12148 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12149 dev_priv->display.update_primary_plane =
12150 ironlake_update_primary_plane;
89b667f8
JB
12151 } else if (IS_VALLEYVIEW(dev)) {
12152 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12153 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12154 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12155 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12156 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12157 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12158 dev_priv->display.update_primary_plane =
12159 i9xx_update_primary_plane;
f564048e 12160 } else {
0e8ffe1b 12161 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12162 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12163 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12164 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12165 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12166 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12167 dev_priv->display.update_primary_plane =
12168 i9xx_update_primary_plane;
f564048e 12169 }
e70236a8 12170
e70236a8 12171 /* Returns the core display clock speed */
25eb05fc
JB
12172 if (IS_VALLEYVIEW(dev))
12173 dev_priv->display.get_display_clock_speed =
12174 valleyview_get_display_clock_speed;
12175 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12176 dev_priv->display.get_display_clock_speed =
12177 i945_get_display_clock_speed;
12178 else if (IS_I915G(dev))
12179 dev_priv->display.get_display_clock_speed =
12180 i915_get_display_clock_speed;
257a7ffc 12181 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12182 dev_priv->display.get_display_clock_speed =
12183 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12184 else if (IS_PINEVIEW(dev))
12185 dev_priv->display.get_display_clock_speed =
12186 pnv_get_display_clock_speed;
e70236a8
JB
12187 else if (IS_I915GM(dev))
12188 dev_priv->display.get_display_clock_speed =
12189 i915gm_get_display_clock_speed;
12190 else if (IS_I865G(dev))
12191 dev_priv->display.get_display_clock_speed =
12192 i865_get_display_clock_speed;
f0f8a9ce 12193 else if (IS_I85X(dev))
e70236a8
JB
12194 dev_priv->display.get_display_clock_speed =
12195 i855_get_display_clock_speed;
12196 else /* 852, 830 */
12197 dev_priv->display.get_display_clock_speed =
12198 i830_get_display_clock_speed;
12199
7f8a8569 12200 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12201 if (IS_GEN5(dev)) {
674cf967 12202 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12203 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12204 } else if (IS_GEN6(dev)) {
674cf967 12205 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12206 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12207 dev_priv->display.modeset_global_resources =
12208 snb_modeset_global_resources;
357555c0
JB
12209 } else if (IS_IVYBRIDGE(dev)) {
12210 /* FIXME: detect B0+ stepping and use auto training */
12211 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12212 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12213 dev_priv->display.modeset_global_resources =
12214 ivb_modeset_global_resources;
4e0bbc31 12215 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12216 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12217 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12218 dev_priv->display.modeset_global_resources =
12219 haswell_modeset_global_resources;
a0e63c22 12220 }
6067aaea 12221 } else if (IS_G4X(dev)) {
e0dac65e 12222 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12223 } else if (IS_VALLEYVIEW(dev)) {
12224 dev_priv->display.modeset_global_resources =
12225 valleyview_modeset_global_resources;
9ca2fe73 12226 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12227 }
8c9f3aaf
JB
12228
12229 /* Default just returns -ENODEV to indicate unsupported */
12230 dev_priv->display.queue_flip = intel_default_queue_flip;
12231
12232 switch (INTEL_INFO(dev)->gen) {
12233 case 2:
12234 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12235 break;
12236
12237 case 3:
12238 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12239 break;
12240
12241 case 4:
12242 case 5:
12243 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12244 break;
12245
12246 case 6:
12247 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12248 break;
7c9017e5 12249 case 7:
4e0bbc31 12250 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12251 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12252 break;
8c9f3aaf 12253 }
7bd688cd
JN
12254
12255 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12256}
12257
b690e96c
JB
12258/*
12259 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12260 * resume, or other times. This quirk makes sure that's the case for
12261 * affected systems.
12262 */
0206e353 12263static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12264{
12265 struct drm_i915_private *dev_priv = dev->dev_private;
12266
12267 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12268 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12269}
12270
435793df
KP
12271/*
12272 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12273 */
12274static void quirk_ssc_force_disable(struct drm_device *dev)
12275{
12276 struct drm_i915_private *dev_priv = dev->dev_private;
12277 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12278 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12279}
12280
4dca20ef 12281/*
5a15ab5b
CE
12282 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12283 * brightness value
4dca20ef
CE
12284 */
12285static void quirk_invert_brightness(struct drm_device *dev)
12286{
12287 struct drm_i915_private *dev_priv = dev->dev_private;
12288 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12289 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12290}
12291
b690e96c
JB
12292struct intel_quirk {
12293 int device;
12294 int subsystem_vendor;
12295 int subsystem_device;
12296 void (*hook)(struct drm_device *dev);
12297};
12298
5f85f176
EE
12299/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12300struct intel_dmi_quirk {
12301 void (*hook)(struct drm_device *dev);
12302 const struct dmi_system_id (*dmi_id_list)[];
12303};
12304
12305static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12306{
12307 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12308 return 1;
12309}
12310
12311static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12312 {
12313 .dmi_id_list = &(const struct dmi_system_id[]) {
12314 {
12315 .callback = intel_dmi_reverse_brightness,
12316 .ident = "NCR Corporation",
12317 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12318 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12319 },
12320 },
12321 { } /* terminating entry */
12322 },
12323 .hook = quirk_invert_brightness,
12324 },
12325};
12326
c43b5634 12327static struct intel_quirk intel_quirks[] = {
b690e96c 12328 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12329 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12330
b690e96c
JB
12331 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12332 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12333
b690e96c
JB
12334 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12335 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12336
435793df
KP
12337 /* Lenovo U160 cannot use SSC on LVDS */
12338 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12339
12340 /* Sony Vaio Y cannot use SSC on LVDS */
12341 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12342
be505f64
AH
12343 /* Acer Aspire 5734Z must invert backlight brightness */
12344 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12345
12346 /* Acer/eMachines G725 */
12347 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12348
12349 /* Acer/eMachines e725 */
12350 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12351
12352 /* Acer/Packard Bell NCL20 */
12353 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12354
12355 /* Acer Aspire 4736Z */
12356 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12357
12358 /* Acer Aspire 5336 */
12359 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
b690e96c
JB
12360};
12361
12362static void intel_init_quirks(struct drm_device *dev)
12363{
12364 struct pci_dev *d = dev->pdev;
12365 int i;
12366
12367 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12368 struct intel_quirk *q = &intel_quirks[i];
12369
12370 if (d->device == q->device &&
12371 (d->subsystem_vendor == q->subsystem_vendor ||
12372 q->subsystem_vendor == PCI_ANY_ID) &&
12373 (d->subsystem_device == q->subsystem_device ||
12374 q->subsystem_device == PCI_ANY_ID))
12375 q->hook(dev);
12376 }
5f85f176
EE
12377 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12378 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12379 intel_dmi_quirks[i].hook(dev);
12380 }
b690e96c
JB
12381}
12382
9cce37f4
JB
12383/* Disable the VGA plane that we never use */
12384static void i915_disable_vga(struct drm_device *dev)
12385{
12386 struct drm_i915_private *dev_priv = dev->dev_private;
12387 u8 sr1;
766aa1c4 12388 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12389
2b37c616 12390 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12391 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12392 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12393 sr1 = inb(VGA_SR_DATA);
12394 outb(sr1 | 1<<5, VGA_SR_DATA);
12395 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12396 udelay(300);
12397
12398 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12399 POSTING_READ(vga_reg);
12400}
12401
f817586c
DV
12402void intel_modeset_init_hw(struct drm_device *dev)
12403{
a8f78b58
ED
12404 intel_prepare_ddi(dev);
12405
f817586c
DV
12406 intel_init_clock_gating(dev);
12407
5382f5f3 12408 intel_reset_dpio(dev);
40e9cf64 12409
8090c6b9 12410 intel_enable_gt_powersave(dev);
f817586c
DV
12411}
12412
7d708ee4
ID
12413void intel_modeset_suspend_hw(struct drm_device *dev)
12414{
12415 intel_suspend_hw(dev);
12416}
12417
79e53945
JB
12418void intel_modeset_init(struct drm_device *dev)
12419{
652c393a 12420 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12421 int sprite, ret;
8cc87b75 12422 enum pipe pipe;
46f297fb 12423 struct intel_crtc *crtc;
79e53945
JB
12424
12425 drm_mode_config_init(dev);
12426
12427 dev->mode_config.min_width = 0;
12428 dev->mode_config.min_height = 0;
12429
019d96cb
DA
12430 dev->mode_config.preferred_depth = 24;
12431 dev->mode_config.prefer_shadow = 1;
12432
e6ecefaa 12433 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12434
b690e96c
JB
12435 intel_init_quirks(dev);
12436
1fa61106
ED
12437 intel_init_pm(dev);
12438
e3c74757
BW
12439 if (INTEL_INFO(dev)->num_pipes == 0)
12440 return;
12441
e70236a8
JB
12442 intel_init_display(dev);
12443
a6c45cf0
CW
12444 if (IS_GEN2(dev)) {
12445 dev->mode_config.max_width = 2048;
12446 dev->mode_config.max_height = 2048;
12447 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12448 dev->mode_config.max_width = 4096;
12449 dev->mode_config.max_height = 4096;
79e53945 12450 } else {
a6c45cf0
CW
12451 dev->mode_config.max_width = 8192;
12452 dev->mode_config.max_height = 8192;
79e53945 12453 }
068be561
DL
12454
12455 if (IS_GEN2(dev)) {
12456 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12457 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12458 } else {
12459 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12460 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12461 }
12462
5d4545ae 12463 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12464
28c97730 12465 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12466 INTEL_INFO(dev)->num_pipes,
12467 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12468
8cc87b75
DL
12469 for_each_pipe(pipe) {
12470 intel_crtc_init(dev, pipe);
1fe47785
DL
12471 for_each_sprite(pipe, sprite) {
12472 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12473 if (ret)
06da8da2 12474 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12475 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12476 }
79e53945
JB
12477 }
12478
f42bb70d 12479 intel_init_dpio(dev);
5382f5f3 12480 intel_reset_dpio(dev);
f42bb70d 12481
79f689aa 12482 intel_cpu_pll_init(dev);
e72f9fbf 12483 intel_shared_dpll_init(dev);
ee7b9f93 12484
9cce37f4
JB
12485 /* Just disable it once at startup */
12486 i915_disable_vga(dev);
79e53945 12487 intel_setup_outputs(dev);
11be49eb
CW
12488
12489 /* Just in case the BIOS is doing something questionable. */
12490 intel_disable_fbc(dev);
fa9fa083 12491
6e9f798d 12492 drm_modeset_lock_all(dev);
fa9fa083 12493 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12494 drm_modeset_unlock_all(dev);
46f297fb 12495
d3fcc808 12496 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12497 if (!crtc->active)
12498 continue;
12499
46f297fb 12500 /*
46f297fb
JB
12501 * Note that reserving the BIOS fb up front prevents us
12502 * from stuffing other stolen allocations like the ring
12503 * on top. This prevents some ugliness at boot time, and
12504 * can even allow for smooth boot transitions if the BIOS
12505 * fb is large enough for the active pipe configuration.
12506 */
12507 if (dev_priv->display.get_plane_config) {
12508 dev_priv->display.get_plane_config(crtc,
12509 &crtc->plane_config);
12510 /*
12511 * If the fb is shared between multiple heads, we'll
12512 * just get the first one.
12513 */
484b41dd 12514 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12515 }
46f297fb 12516 }
2c7111db
CW
12517}
12518
7fad798e
DV
12519static void intel_enable_pipe_a(struct drm_device *dev)
12520{
12521 struct intel_connector *connector;
12522 struct drm_connector *crt = NULL;
12523 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12524 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12525
12526 /* We can't just switch on the pipe A, we need to set things up with a
12527 * proper mode and output configuration. As a gross hack, enable pipe A
12528 * by enabling the load detect pipe once. */
12529 list_for_each_entry(connector,
12530 &dev->mode_config.connector_list,
12531 base.head) {
12532 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12533 crt = &connector->base;
12534 break;
12535 }
12536 }
12537
12538 if (!crt)
12539 return;
12540
51fd371b
RC
12541 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12542 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12543
652c393a 12544
7fad798e
DV
12545}
12546
fa555837
DV
12547static bool
12548intel_check_plane_mapping(struct intel_crtc *crtc)
12549{
7eb552ae
BW
12550 struct drm_device *dev = crtc->base.dev;
12551 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12552 u32 reg, val;
12553
7eb552ae 12554 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12555 return true;
12556
12557 reg = DSPCNTR(!crtc->plane);
12558 val = I915_READ(reg);
12559
12560 if ((val & DISPLAY_PLANE_ENABLE) &&
12561 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12562 return false;
12563
12564 return true;
12565}
12566
24929352
DV
12567static void intel_sanitize_crtc(struct intel_crtc *crtc)
12568{
12569 struct drm_device *dev = crtc->base.dev;
12570 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12571 u32 reg;
24929352 12572
24929352 12573 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12574 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12575 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12576
d3eaf884
VS
12577 /* restore vblank interrupts to correct state */
12578 if (crtc->active)
12579 drm_vblank_on(dev, crtc->pipe);
12580 else
12581 drm_vblank_off(dev, crtc->pipe);
12582
24929352 12583 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12584 * disable the crtc (and hence change the state) if it is wrong. Note
12585 * that gen4+ has a fixed plane -> pipe mapping. */
12586 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12587 struct intel_connector *connector;
12588 bool plane;
12589
24929352
DV
12590 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12591 crtc->base.base.id);
12592
12593 /* Pipe has the wrong plane attached and the plane is active.
12594 * Temporarily change the plane mapping and disable everything
12595 * ... */
12596 plane = crtc->plane;
12597 crtc->plane = !plane;
12598 dev_priv->display.crtc_disable(&crtc->base);
12599 crtc->plane = plane;
12600
12601 /* ... and break all links. */
12602 list_for_each_entry(connector, &dev->mode_config.connector_list,
12603 base.head) {
12604 if (connector->encoder->base.crtc != &crtc->base)
12605 continue;
12606
7f1950fb
EE
12607 connector->base.dpms = DRM_MODE_DPMS_OFF;
12608 connector->base.encoder = NULL;
24929352 12609 }
7f1950fb
EE
12610 /* multiple connectors may have the same encoder:
12611 * handle them and break crtc link separately */
12612 list_for_each_entry(connector, &dev->mode_config.connector_list,
12613 base.head)
12614 if (connector->encoder->base.crtc == &crtc->base) {
12615 connector->encoder->base.crtc = NULL;
12616 connector->encoder->connectors_active = false;
12617 }
24929352
DV
12618
12619 WARN_ON(crtc->active);
12620 crtc->base.enabled = false;
12621 }
24929352 12622
7fad798e
DV
12623 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12624 crtc->pipe == PIPE_A && !crtc->active) {
12625 /* BIOS forgot to enable pipe A, this mostly happens after
12626 * resume. Force-enable the pipe to fix this, the update_dpms
12627 * call below we restore the pipe to the right state, but leave
12628 * the required bits on. */
12629 intel_enable_pipe_a(dev);
12630 }
12631
24929352
DV
12632 /* Adjust the state of the output pipe according to whether we
12633 * have active connectors/encoders. */
12634 intel_crtc_update_dpms(&crtc->base);
12635
12636 if (crtc->active != crtc->base.enabled) {
12637 struct intel_encoder *encoder;
12638
12639 /* This can happen either due to bugs in the get_hw_state
12640 * functions or because the pipe is force-enabled due to the
12641 * pipe A quirk. */
12642 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12643 crtc->base.base.id,
12644 crtc->base.enabled ? "enabled" : "disabled",
12645 crtc->active ? "enabled" : "disabled");
12646
12647 crtc->base.enabled = crtc->active;
12648
12649 /* Because we only establish the connector -> encoder ->
12650 * crtc links if something is active, this means the
12651 * crtc is now deactivated. Break the links. connector
12652 * -> encoder links are only establish when things are
12653 * actually up, hence no need to break them. */
12654 WARN_ON(crtc->active);
12655
12656 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12657 WARN_ON(encoder->connectors_active);
12658 encoder->base.crtc = NULL;
12659 }
12660 }
c5ab3bc0
DV
12661
12662 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12663 /*
12664 * We start out with underrun reporting disabled to avoid races.
12665 * For correct bookkeeping mark this on active crtcs.
12666 *
c5ab3bc0
DV
12667 * Also on gmch platforms we dont have any hardware bits to
12668 * disable the underrun reporting. Which means we need to start
12669 * out with underrun reporting disabled also on inactive pipes,
12670 * since otherwise we'll complain about the garbage we read when
12671 * e.g. coming up after runtime pm.
12672 *
4cc31489
DV
12673 * No protection against concurrent access is required - at
12674 * worst a fifo underrun happens which also sets this to false.
12675 */
12676 crtc->cpu_fifo_underrun_disabled = true;
12677 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12678
12679 update_scanline_offset(crtc);
4cc31489 12680 }
24929352
DV
12681}
12682
12683static void intel_sanitize_encoder(struct intel_encoder *encoder)
12684{
12685 struct intel_connector *connector;
12686 struct drm_device *dev = encoder->base.dev;
12687
12688 /* We need to check both for a crtc link (meaning that the
12689 * encoder is active and trying to read from a pipe) and the
12690 * pipe itself being active. */
12691 bool has_active_crtc = encoder->base.crtc &&
12692 to_intel_crtc(encoder->base.crtc)->active;
12693
12694 if (encoder->connectors_active && !has_active_crtc) {
12695 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12696 encoder->base.base.id,
8e329a03 12697 encoder->base.name);
24929352
DV
12698
12699 /* Connector is active, but has no active pipe. This is
12700 * fallout from our resume register restoring. Disable
12701 * the encoder manually again. */
12702 if (encoder->base.crtc) {
12703 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12704 encoder->base.base.id,
8e329a03 12705 encoder->base.name);
24929352
DV
12706 encoder->disable(encoder);
12707 }
7f1950fb
EE
12708 encoder->base.crtc = NULL;
12709 encoder->connectors_active = false;
24929352
DV
12710
12711 /* Inconsistent output/port/pipe state happens presumably due to
12712 * a bug in one of the get_hw_state functions. Or someplace else
12713 * in our code, like the register restore mess on resume. Clamp
12714 * things to off as a safer default. */
12715 list_for_each_entry(connector,
12716 &dev->mode_config.connector_list,
12717 base.head) {
12718 if (connector->encoder != encoder)
12719 continue;
7f1950fb
EE
12720 connector->base.dpms = DRM_MODE_DPMS_OFF;
12721 connector->base.encoder = NULL;
24929352
DV
12722 }
12723 }
12724 /* Enabled encoders without active connectors will be fixed in
12725 * the crtc fixup. */
12726}
12727
04098753 12728void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12729{
12730 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12731 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12732
04098753
ID
12733 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12734 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12735 i915_disable_vga(dev);
12736 }
12737}
12738
12739void i915_redisable_vga(struct drm_device *dev)
12740{
12741 struct drm_i915_private *dev_priv = dev->dev_private;
12742
8dc8a27c
PZ
12743 /* This function can be called both from intel_modeset_setup_hw_state or
12744 * at a very early point in our resume sequence, where the power well
12745 * structures are not yet restored. Since this function is at a very
12746 * paranoid "someone might have enabled VGA while we were not looking"
12747 * level, just check if the power well is enabled instead of trying to
12748 * follow the "don't touch the power well if we don't need it" policy
12749 * the rest of the driver uses. */
04098753 12750 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12751 return;
12752
04098753 12753 i915_redisable_vga_power_on(dev);
0fde901f
KM
12754}
12755
98ec7739
VS
12756static bool primary_get_hw_state(struct intel_crtc *crtc)
12757{
12758 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12759
12760 if (!crtc->active)
12761 return false;
12762
12763 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12764}
12765
30e984df 12766static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12767{
12768 struct drm_i915_private *dev_priv = dev->dev_private;
12769 enum pipe pipe;
24929352
DV
12770 struct intel_crtc *crtc;
12771 struct intel_encoder *encoder;
12772 struct intel_connector *connector;
5358901f 12773 int i;
24929352 12774
d3fcc808 12775 for_each_intel_crtc(dev, crtc) {
88adfff1 12776 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12777
9953599b
DV
12778 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12779
0e8ffe1b
DV
12780 crtc->active = dev_priv->display.get_pipe_config(crtc,
12781 &crtc->config);
24929352
DV
12782
12783 crtc->base.enabled = crtc->active;
98ec7739 12784 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12785
12786 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12787 crtc->base.base.id,
12788 crtc->active ? "enabled" : "disabled");
12789 }
12790
5358901f 12791 /* FIXME: Smash this into the new shared dpll infrastructure. */
affa9354 12792 if (HAS_DDI(dev))
6441ab5f
PZ
12793 intel_ddi_setup_hw_pll_state(dev);
12794
5358901f
DV
12795 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12796 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12797
12798 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12799 pll->active = 0;
d3fcc808 12800 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12801 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12802 pll->active++;
12803 }
12804 pll->refcount = pll->active;
12805
35c95375
DV
12806 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12807 pll->name, pll->refcount, pll->on);
5358901f
DV
12808 }
12809
24929352
DV
12810 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12811 base.head) {
12812 pipe = 0;
12813
12814 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12815 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12816 encoder->base.crtc = &crtc->base;
1d37b689 12817 encoder->get_config(encoder, &crtc->config);
24929352
DV
12818 } else {
12819 encoder->base.crtc = NULL;
12820 }
12821
12822 encoder->connectors_active = false;
6f2bcceb 12823 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12824 encoder->base.base.id,
8e329a03 12825 encoder->base.name,
24929352 12826 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12827 pipe_name(pipe));
24929352
DV
12828 }
12829
12830 list_for_each_entry(connector, &dev->mode_config.connector_list,
12831 base.head) {
12832 if (connector->get_hw_state(connector)) {
12833 connector->base.dpms = DRM_MODE_DPMS_ON;
12834 connector->encoder->connectors_active = true;
12835 connector->base.encoder = &connector->encoder->base;
12836 } else {
12837 connector->base.dpms = DRM_MODE_DPMS_OFF;
12838 connector->base.encoder = NULL;
12839 }
12840 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12841 connector->base.base.id,
c23cc417 12842 connector->base.name,
24929352
DV
12843 connector->base.encoder ? "enabled" : "disabled");
12844 }
30e984df
DV
12845}
12846
12847/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12848 * and i915 state tracking structures. */
12849void intel_modeset_setup_hw_state(struct drm_device *dev,
12850 bool force_restore)
12851{
12852 struct drm_i915_private *dev_priv = dev->dev_private;
12853 enum pipe pipe;
30e984df
DV
12854 struct intel_crtc *crtc;
12855 struct intel_encoder *encoder;
35c95375 12856 int i;
30e984df
DV
12857
12858 intel_modeset_readout_hw_state(dev);
24929352 12859
babea61d
JB
12860 /*
12861 * Now that we have the config, copy it to each CRTC struct
12862 * Note that this could go away if we move to using crtc_config
12863 * checking everywhere.
12864 */
d3fcc808 12865 for_each_intel_crtc(dev, crtc) {
d330a953 12866 if (crtc->active && i915.fastboot) {
f6a83288 12867 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
12868 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12869 crtc->base.base.id);
12870 drm_mode_debug_printmodeline(&crtc->base.mode);
12871 }
12872 }
12873
24929352
DV
12874 /* HW state is read out, now we need to sanitize this mess. */
12875 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12876 base.head) {
12877 intel_sanitize_encoder(encoder);
12878 }
12879
12880 for_each_pipe(pipe) {
12881 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12882 intel_sanitize_crtc(crtc);
c0b03411 12883 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 12884 }
9a935856 12885
35c95375
DV
12886 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12887 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12888
12889 if (!pll->on || pll->active)
12890 continue;
12891
12892 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12893
12894 pll->disable(dev_priv, pll);
12895 pll->on = false;
12896 }
12897
96f90c54 12898 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
12899 ilk_wm_get_hw_state(dev);
12900
45e2b5f6 12901 if (force_restore) {
7d0bc1ea
VS
12902 i915_redisable_vga(dev);
12903
f30da187
DV
12904 /*
12905 * We need to use raw interfaces for restoring state to avoid
12906 * checking (bogus) intermediate states.
12907 */
45e2b5f6 12908 for_each_pipe(pipe) {
b5644d05
JB
12909 struct drm_crtc *crtc =
12910 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
12911
12912 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 12913 crtc->primary->fb);
45e2b5f6
DV
12914 }
12915 } else {
12916 intel_modeset_update_staged_output_state(dev);
12917 }
8af6cf88
DV
12918
12919 intel_modeset_check_state(dev);
2c7111db
CW
12920}
12921
12922void intel_modeset_gem_init(struct drm_device *dev)
12923{
484b41dd
JB
12924 struct drm_crtc *c;
12925 struct intel_framebuffer *fb;
12926
ae48434c
ID
12927 mutex_lock(&dev->struct_mutex);
12928 intel_init_gt_powersave(dev);
12929 mutex_unlock(&dev->struct_mutex);
12930
1833b134 12931 intel_modeset_init_hw(dev);
02e792fb
DV
12932
12933 intel_setup_overlay(dev);
484b41dd
JB
12934
12935 /*
12936 * Make sure any fbs we allocated at startup are properly
12937 * pinned & fenced. When we do the allocation it's too early
12938 * for this.
12939 */
12940 mutex_lock(&dev->struct_mutex);
70e1e0ec 12941 for_each_crtc(dev, c) {
66e514c1 12942 if (!c->primary->fb)
484b41dd
JB
12943 continue;
12944
66e514c1 12945 fb = to_intel_framebuffer(c->primary->fb);
484b41dd
JB
12946 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12947 DRM_ERROR("failed to pin boot fb on pipe %d\n",
12948 to_intel_crtc(c)->pipe);
66e514c1
DA
12949 drm_framebuffer_unreference(c->primary->fb);
12950 c->primary->fb = NULL;
484b41dd
JB
12951 }
12952 }
12953 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12954}
12955
4932e2c3
ID
12956void intel_connector_unregister(struct intel_connector *intel_connector)
12957{
12958 struct drm_connector *connector = &intel_connector->base;
12959
12960 intel_panel_destroy_backlight(connector);
12961 drm_sysfs_connector_remove(connector);
12962}
12963
79e53945
JB
12964void intel_modeset_cleanup(struct drm_device *dev)
12965{
652c393a 12966 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 12967 struct drm_connector *connector;
652c393a 12968
fd0c0642
DV
12969 /*
12970 * Interrupts and polling as the first thing to avoid creating havoc.
12971 * Too much stuff here (turning of rps, connectors, ...) would
12972 * experience fancy races otherwise.
12973 */
12974 drm_irq_uninstall(dev);
12975 cancel_work_sync(&dev_priv->hotplug_work);
12976 /*
12977 * Due to the hpd irq storm handling the hotplug work can re-arm the
12978 * poll handlers. Hence disable polling after hpd handling is shut down.
12979 */
f87ea761 12980 drm_kms_helper_poll_fini(dev);
fd0c0642 12981
652c393a
JB
12982 mutex_lock(&dev->struct_mutex);
12983
723bfd70
JB
12984 intel_unregister_dsm_handler();
12985
973d04f9 12986 intel_disable_fbc(dev);
e70236a8 12987
8090c6b9 12988 intel_disable_gt_powersave(dev);
0cdab21f 12989
930ebb46
DV
12990 ironlake_teardown_rc6(dev);
12991
69341a5e
KH
12992 mutex_unlock(&dev->struct_mutex);
12993
1630fe75
CW
12994 /* flush any delayed tasks or pending work */
12995 flush_scheduled_work();
12996
db31af1d
JN
12997 /* destroy the backlight and sysfs files before encoders/connectors */
12998 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
12999 struct intel_connector *intel_connector;
13000
13001 intel_connector = to_intel_connector(connector);
13002 intel_connector->unregister(intel_connector);
db31af1d 13003 }
d9255d57 13004
79e53945 13005 drm_mode_config_cleanup(dev);
4d7bb011
DV
13006
13007 intel_cleanup_overlay(dev);
ae48434c
ID
13008
13009 mutex_lock(&dev->struct_mutex);
13010 intel_cleanup_gt_powersave(dev);
13011 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13012}
13013
f1c79df3
ZW
13014/*
13015 * Return which encoder is currently attached for connector.
13016 */
df0e9248 13017struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13018{
df0e9248
CW
13019 return &intel_attached_encoder(connector)->base;
13020}
f1c79df3 13021
df0e9248
CW
13022void intel_connector_attach_encoder(struct intel_connector *connector,
13023 struct intel_encoder *encoder)
13024{
13025 connector->encoder = encoder;
13026 drm_mode_connector_attach_encoder(&connector->base,
13027 &encoder->base);
79e53945 13028}
28d52043
DA
13029
13030/*
13031 * set vga decode state - true == enable VGA decode
13032 */
13033int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13034{
13035 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13036 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13037 u16 gmch_ctrl;
13038
75fa041d
CW
13039 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13040 DRM_ERROR("failed to read control word\n");
13041 return -EIO;
13042 }
13043
c0cc8a55
CW
13044 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13045 return 0;
13046
28d52043
DA
13047 if (state)
13048 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13049 else
13050 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13051
13052 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13053 DRM_ERROR("failed to write control word\n");
13054 return -EIO;
13055 }
13056
28d52043
DA
13057 return 0;
13058}
c4a1d9e4 13059
c4a1d9e4 13060struct intel_display_error_state {
ff57f1b0
PZ
13061
13062 u32 power_well_driver;
13063
63b66e5b
CW
13064 int num_transcoders;
13065
c4a1d9e4
CW
13066 struct intel_cursor_error_state {
13067 u32 control;
13068 u32 position;
13069 u32 base;
13070 u32 size;
52331309 13071 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13072
13073 struct intel_pipe_error_state {
ddf9c536 13074 bool power_domain_on;
c4a1d9e4 13075 u32 source;
f301b1e1 13076 u32 stat;
52331309 13077 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13078
13079 struct intel_plane_error_state {
13080 u32 control;
13081 u32 stride;
13082 u32 size;
13083 u32 pos;
13084 u32 addr;
13085 u32 surface;
13086 u32 tile_offset;
52331309 13087 } plane[I915_MAX_PIPES];
63b66e5b
CW
13088
13089 struct intel_transcoder_error_state {
ddf9c536 13090 bool power_domain_on;
63b66e5b
CW
13091 enum transcoder cpu_transcoder;
13092
13093 u32 conf;
13094
13095 u32 htotal;
13096 u32 hblank;
13097 u32 hsync;
13098 u32 vtotal;
13099 u32 vblank;
13100 u32 vsync;
13101 } transcoder[4];
c4a1d9e4
CW
13102};
13103
13104struct intel_display_error_state *
13105intel_display_capture_error_state(struct drm_device *dev)
13106{
fbee40df 13107 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13108 struct intel_display_error_state *error;
63b66e5b
CW
13109 int transcoders[] = {
13110 TRANSCODER_A,
13111 TRANSCODER_B,
13112 TRANSCODER_C,
13113 TRANSCODER_EDP,
13114 };
c4a1d9e4
CW
13115 int i;
13116
63b66e5b
CW
13117 if (INTEL_INFO(dev)->num_pipes == 0)
13118 return NULL;
13119
9d1cb914 13120 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13121 if (error == NULL)
13122 return NULL;
13123
190be112 13124 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13125 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13126
52331309 13127 for_each_pipe(i) {
ddf9c536 13128 error->pipe[i].power_domain_on =
da7e29bd
ID
13129 intel_display_power_enabled_sw(dev_priv,
13130 POWER_DOMAIN_PIPE(i));
ddf9c536 13131 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13132 continue;
13133
5efb3e28
VS
13134 error->cursor[i].control = I915_READ(CURCNTR(i));
13135 error->cursor[i].position = I915_READ(CURPOS(i));
13136 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13137
13138 error->plane[i].control = I915_READ(DSPCNTR(i));
13139 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13140 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13141 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13142 error->plane[i].pos = I915_READ(DSPPOS(i));
13143 }
ca291363
PZ
13144 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13145 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13146 if (INTEL_INFO(dev)->gen >= 4) {
13147 error->plane[i].surface = I915_READ(DSPSURF(i));
13148 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13149 }
13150
c4a1d9e4 13151 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1
ID
13152
13153 if (!HAS_PCH_SPLIT(dev))
13154 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13155 }
13156
13157 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13158 if (HAS_DDI(dev_priv->dev))
13159 error->num_transcoders++; /* Account for eDP. */
13160
13161 for (i = 0; i < error->num_transcoders; i++) {
13162 enum transcoder cpu_transcoder = transcoders[i];
13163
ddf9c536 13164 error->transcoder[i].power_domain_on =
da7e29bd 13165 intel_display_power_enabled_sw(dev_priv,
38cc1daf 13166 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13167 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13168 continue;
13169
63b66e5b
CW
13170 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13171
13172 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13173 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13174 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13175 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13176 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13177 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13178 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13179 }
13180
13181 return error;
13182}
13183
edc3d884
MK
13184#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13185
c4a1d9e4 13186void
edc3d884 13187intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13188 struct drm_device *dev,
13189 struct intel_display_error_state *error)
13190{
13191 int i;
13192
63b66e5b
CW
13193 if (!error)
13194 return;
13195
edc3d884 13196 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13197 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13198 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13199 error->power_well_driver);
52331309 13200 for_each_pipe(i) {
edc3d884 13201 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13202 err_printf(m, " Power: %s\n",
13203 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13204 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13205 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13206
13207 err_printf(m, "Plane [%d]:\n", i);
13208 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13209 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13210 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13211 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13212 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13213 }
4b71a570 13214 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13215 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13216 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13217 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13218 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13219 }
13220
edc3d884
MK
13221 err_printf(m, "Cursor [%d]:\n", i);
13222 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13223 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13224 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13225 }
63b66e5b
CW
13226
13227 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13228 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13229 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13230 err_printf(m, " Power: %s\n",
13231 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13232 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13233 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13234 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13235 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13236 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13237 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13238 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13239 }
c4a1d9e4 13240}
This page took 2.206995 seconds and 5 git commands to generate.