drm/i915: move is_dual_link_lvds to intel_lvds.c
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
0206e353 44bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 45static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 46static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
47
48typedef struct {
0206e353
AJ
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
79e53945
JB
58} intel_clock_t;
59
60typedef struct {
0206e353 61 int min, max;
79e53945
JB
62} intel_range_t;
63
64typedef struct {
0206e353
AJ
65 int dot_limit;
66 int p2_slow, p2_fast;
79e53945
JB
67} intel_p2_t;
68
69#define INTEL_P2_NUM 2
d4906093
ML
70typedef struct intel_limit intel_limit_t;
71struct intel_limit {
0206e353
AJ
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 75 int, int, intel_clock_t *, intel_clock_t *);
d4906093 76};
79e53945 77
2377b741
JB
78/* FDI */
79#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
80
d2acd215
DV
81int
82intel_pch_rawclk(struct drm_device *dev)
83{
84 struct drm_i915_private *dev_priv = dev->dev_private;
85
86 WARN_ON(!HAS_PCH_SPLIT(dev));
87
88 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89}
90
d4906093
ML
91static bool
92intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
93 int target, int refclk, intel_clock_t *match_clock,
94 intel_clock_t *best_clock);
d4906093
ML
95static bool
96intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
97 int target, int refclk, intel_clock_t *match_clock,
98 intel_clock_t *best_clock);
79e53945 99
a4fc5ed6
KP
100static bool
101intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
102 int target, int refclk, intel_clock_t *match_clock,
103 intel_clock_t *best_clock);
5eb08b69 104static bool
f2b115e6 105intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
106 int target, int refclk, intel_clock_t *match_clock,
107 intel_clock_t *best_clock);
a4fc5ed6 108
a0c4da24
JB
109static bool
110intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111 int target, int refclk, intel_clock_t *match_clock,
112 intel_clock_t *best_clock);
113
021357ac
CW
114static inline u32 /* units of 100MHz */
115intel_fdi_link_freq(struct drm_device *dev)
116{
8b99e68c
CW
117 if (IS_GEN5(dev)) {
118 struct drm_i915_private *dev_priv = dev->dev_private;
119 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120 } else
121 return 27;
021357ac
CW
122}
123
e4b36699 124static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
125 .dot = { .min = 25000, .max = 350000 },
126 .vco = { .min = 930000, .max = 1400000 },
127 .n = { .min = 3, .max = 16 },
128 .m = { .min = 96, .max = 140 },
129 .m1 = { .min = 18, .max = 26 },
130 .m2 = { .min = 6, .max = 16 },
131 .p = { .min = 4, .max = 128 },
132 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 4, .p2_fast = 2 },
d4906093 135 .find_pll = intel_find_best_PLL,
e4b36699
KP
136};
137
138static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
139 .dot = { .min = 25000, .max = 350000 },
140 .vco = { .min = 930000, .max = 1400000 },
141 .n = { .min = 3, .max = 16 },
142 .m = { .min = 96, .max = 140 },
143 .m1 = { .min = 18, .max = 26 },
144 .m2 = { .min = 6, .max = 16 },
145 .p = { .min = 4, .max = 128 },
146 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
147 .p2 = { .dot_limit = 165000,
148 .p2_slow = 14, .p2_fast = 7 },
d4906093 149 .find_pll = intel_find_best_PLL,
e4b36699 150};
273e27ca 151
e4b36699 152static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
153 .dot = { .min = 20000, .max = 400000 },
154 .vco = { .min = 1400000, .max = 2800000 },
155 .n = { .min = 1, .max = 6 },
156 .m = { .min = 70, .max = 120 },
157 .m1 = { .min = 10, .max = 22 },
158 .m2 = { .min = 5, .max = 9 },
159 .p = { .min = 5, .max = 80 },
160 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
161 .p2 = { .dot_limit = 200000,
162 .p2_slow = 10, .p2_fast = 5 },
d4906093 163 .find_pll = intel_find_best_PLL,
e4b36699
KP
164};
165
166static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
167 .dot = { .min = 20000, .max = 400000 },
168 .vco = { .min = 1400000, .max = 2800000 },
169 .n = { .min = 1, .max = 6 },
170 .m = { .min = 70, .max = 120 },
171 .m1 = { .min = 10, .max = 22 },
172 .m2 = { .min = 5, .max = 9 },
173 .p = { .min = 7, .max = 98 },
174 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
175 .p2 = { .dot_limit = 112000,
176 .p2_slow = 14, .p2_fast = 7 },
d4906093 177 .find_pll = intel_find_best_PLL,
e4b36699
KP
178};
179
273e27ca 180
e4b36699 181static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
182 .dot = { .min = 25000, .max = 270000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 17, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 10, .max = 30 },
189 .p1 = { .min = 1, .max = 3},
190 .p2 = { .dot_limit = 270000,
191 .p2_slow = 10,
192 .p2_fast = 10
044c7c41 193 },
d4906093 194 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
195};
196
197static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
198 .dot = { .min = 22000, .max = 400000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 16, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 5, .max = 80 },
205 .p1 = { .min = 1, .max = 8},
206 .p2 = { .dot_limit = 165000,
207 .p2_slow = 10, .p2_fast = 5 },
d4906093 208 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
209};
210
211static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
212 .dot = { .min = 20000, .max = 115000 },
213 .vco = { .min = 1750000, .max = 3500000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 0,
221 .p2_slow = 14, .p2_fast = 14
044c7c41 222 },
d4906093 223 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
224};
225
226static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
227 .dot = { .min = 80000, .max = 224000 },
228 .vco = { .min = 1750000, .max = 3500000 },
229 .n = { .min = 1, .max = 3 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 17, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 14, .max = 42 },
234 .p1 = { .min = 2, .max = 6 },
235 .p2 = { .dot_limit = 0,
236 .p2_slow = 7, .p2_fast = 7
044c7c41 237 },
d4906093 238 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
242 .dot = { .min = 161670, .max = 227000 },
243 .vco = { .min = 1750000, .max = 3500000},
244 .n = { .min = 1, .max = 2 },
245 .m = { .min = 97, .max = 108 },
246 .m1 = { .min = 0x10, .max = 0x12 },
247 .m2 = { .min = 0x05, .max = 0x06 },
248 .p = { .min = 10, .max = 20 },
249 .p1 = { .min = 1, .max = 2},
250 .p2 = { .dot_limit = 0,
273e27ca 251 .p2_slow = 10, .p2_fast = 10 },
0206e353 252 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
253};
254
f2b115e6 255static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
256 .dot = { .min = 20000, .max = 400000},
257 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 258 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
259 .n = { .min = 3, .max = 6 },
260 .m = { .min = 2, .max = 256 },
273e27ca 261 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
262 .m1 = { .min = 0, .max = 0 },
263 .m2 = { .min = 0, .max = 254 },
264 .p = { .min = 5, .max = 80 },
265 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
266 .p2 = { .dot_limit = 200000,
267 .p2_slow = 10, .p2_fast = 5 },
6115707b 268 .find_pll = intel_find_best_PLL,
e4b36699
KP
269};
270
f2b115e6 271static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
272 .dot = { .min = 20000, .max = 400000 },
273 .vco = { .min = 1700000, .max = 3500000 },
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 7, .max = 112 },
279 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
280 .p2 = { .dot_limit = 112000,
281 .p2_slow = 14, .p2_fast = 14 },
6115707b 282 .find_pll = intel_find_best_PLL,
e4b36699
KP
283};
284
273e27ca
EA
285/* Ironlake / Sandybridge
286 *
287 * We calculate clock using (register_value + 2) for N/M1/M2, so here
288 * the range value for them is (actual_value - 2).
289 */
b91ad0ec 290static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 5 },
294 .m = { .min = 79, .max = 127 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 10, .p2_fast = 5 },
4547668a 301 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
302};
303
b91ad0ec 304static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
305 .dot = { .min = 25000, .max = 350000 },
306 .vco = { .min = 1760000, .max = 3510000 },
307 .n = { .min = 1, .max = 3 },
308 .m = { .min = 79, .max = 118 },
309 .m1 = { .min = 12, .max = 22 },
310 .m2 = { .min = 5, .max = 9 },
311 .p = { .min = 28, .max = 112 },
312 .p1 = { .min = 2, .max = 8 },
313 .p2 = { .dot_limit = 225000,
314 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
315 .find_pll = intel_g4x_find_best_PLL,
316};
317
318static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 127 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 14, .max = 56 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
329 .find_pll = intel_g4x_find_best_PLL,
330};
331
273e27ca 332/* LVDS 100mhz refclk limits. */
b91ad0ec 333static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
334 .dot = { .min = 25000, .max = 350000 },
335 .vco = { .min = 1760000, .max = 3510000 },
336 .n = { .min = 1, .max = 2 },
337 .m = { .min = 79, .max = 126 },
338 .m1 = { .min = 12, .max = 22 },
339 .m2 = { .min = 5, .max = 9 },
340 .p = { .min = 28, .max = 112 },
0206e353 341 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
342 .p2 = { .dot_limit = 225000,
343 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
344 .find_pll = intel_g4x_find_best_PLL,
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358 .find_pll = intel_g4x_find_best_PLL,
359};
360
361static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
362 .dot = { .min = 25000, .max = 350000 },
363 .vco = { .min = 1760000, .max = 3510000},
364 .n = { .min = 1, .max = 2 },
365 .m = { .min = 81, .max = 90 },
366 .m1 = { .min = 12, .max = 22 },
367 .m2 = { .min = 5, .max = 9 },
368 .p = { .min = 10, .max = 20 },
369 .p1 = { .min = 1, .max = 2},
370 .p2 = { .dot_limit = 0,
273e27ca 371 .p2_slow = 10, .p2_fast = 10 },
0206e353 372 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
373};
374
a0c4da24
JB
375static const intel_limit_t intel_limits_vlv_dac = {
376 .dot = { .min = 25000, .max = 270000 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m = { .min = 22, .max = 450 }, /* guess */
380 .m1 = { .min = 2, .max = 3 },
381 .m2 = { .min = 11, .max = 156 },
382 .p = { .min = 10, .max = 30 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .dot_limit = 270000,
385 .p2_slow = 2, .p2_fast = 20 },
386 .find_pll = intel_vlv_find_best_pll,
387};
388
389static const intel_limit_t intel_limits_vlv_hdmi = {
390 .dot = { .min = 20000, .max = 165000 },
17dc9257 391 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
392 .n = { .min = 1, .max = 7 },
393 .m = { .min = 60, .max = 300 }, /* guess */
394 .m1 = { .min = 2, .max = 3 },
395 .m2 = { .min = 11, .max = 156 },
396 .p = { .min = 10, .max = 30 },
397 .p1 = { .min = 2, .max = 3 },
398 .p2 = { .dot_limit = 270000,
399 .p2_slow = 2, .p2_fast = 20 },
400 .find_pll = intel_vlv_find_best_pll,
401};
402
403static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
404 .dot = { .min = 25000, .max = 270000 },
405 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 406 .n = { .min = 1, .max = 7 },
74a4dd2e 407 .m = { .min = 22, .max = 450 },
a0c4da24
JB
408 .m1 = { .min = 2, .max = 3 },
409 .m2 = { .min = 11, .max = 156 },
410 .p = { .min = 10, .max = 30 },
411 .p1 = { .min = 2, .max = 3 },
412 .p2 = { .dot_limit = 270000,
413 .p2_slow = 2, .p2_fast = 20 },
414 .find_pll = intel_vlv_find_best_pll,
415};
416
57f350b6
JB
417u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418{
419 unsigned long flags;
420 u32 val = 0;
421
422 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO idle wait timed out\n");
425 goto out_unlock;
426 }
427
428 I915_WRITE(DPIO_REG, reg);
429 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430 DPIO_BYTE);
431 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432 DRM_ERROR("DPIO read wait timed out\n");
433 goto out_unlock;
434 }
435 val = I915_READ(DPIO_DATA);
436
437out_unlock:
438 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439 return val;
440}
441
a0c4da24
JB
442static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443 u32 val)
444{
445 unsigned long flags;
446
447 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449 DRM_ERROR("DPIO idle wait timed out\n");
450 goto out_unlock;
451 }
452
453 I915_WRITE(DPIO_DATA, val);
454 I915_WRITE(DPIO_REG, reg);
455 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456 DPIO_BYTE);
457 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458 DRM_ERROR("DPIO write wait timed out\n");
459
460out_unlock:
461 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462}
463
57f350b6
JB
464static void vlv_init_dpio(struct drm_device *dev)
465{
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 /* Reset the DPIO config */
469 I915_WRITE(DPIO_CTL, 0);
470 POSTING_READ(DPIO_CTL);
471 I915_WRITE(DPIO_CTL, 1);
472 POSTING_READ(DPIO_CTL);
473}
474
1b894b59
CW
475static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
476 int refclk)
2c07245f 477{
b91ad0ec 478 struct drm_device *dev = crtc->dev;
2c07245f 479 const intel_limit_t *limit;
b91ad0ec
ZW
480
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 482 if (intel_is_dual_link_lvds(dev)) {
b91ad0ec 483 /* LVDS dual channel */
1b894b59 484 if (refclk == 100000)
b91ad0ec
ZW
485 limit = &intel_limits_ironlake_dual_lvds_100m;
486 else
487 limit = &intel_limits_ironlake_dual_lvds;
488 } else {
1b894b59 489 if (refclk == 100000)
b91ad0ec
ZW
490 limit = &intel_limits_ironlake_single_lvds_100m;
491 else
492 limit = &intel_limits_ironlake_single_lvds;
493 }
494 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
547dc041 495 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
4547668a 496 limit = &intel_limits_ironlake_display_port;
2c07245f 497 else
b91ad0ec 498 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
499
500 return limit;
501}
502
044c7c41
ML
503static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
504{
505 struct drm_device *dev = crtc->dev;
044c7c41
ML
506 const intel_limit_t *limit;
507
508 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 509 if (intel_is_dual_link_lvds(dev))
044c7c41 510 /* LVDS with dual channel */
e4b36699 511 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
512 else
513 /* LVDS with dual channel */
e4b36699 514 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
515 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
516 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 517 limit = &intel_limits_g4x_hdmi;
044c7c41 518 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 519 limit = &intel_limits_g4x_sdvo;
0206e353 520 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 521 limit = &intel_limits_g4x_display_port;
044c7c41 522 } else /* The option is for other outputs */
e4b36699 523 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
524
525 return limit;
526}
527
1b894b59 528static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
529{
530 struct drm_device *dev = crtc->dev;
531 const intel_limit_t *limit;
532
bad720ff 533 if (HAS_PCH_SPLIT(dev))
1b894b59 534 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 535 else if (IS_G4X(dev)) {
044c7c41 536 limit = intel_g4x_limit(crtc);
f2b115e6 537 } else if (IS_PINEVIEW(dev)) {
2177832f 538 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 539 limit = &intel_limits_pineview_lvds;
2177832f 540 else
f2b115e6 541 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
542 } else if (IS_VALLEYVIEW(dev)) {
543 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
544 limit = &intel_limits_vlv_dac;
545 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
546 limit = &intel_limits_vlv_hdmi;
547 else
548 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
549 } else if (!IS_GEN2(dev)) {
550 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
551 limit = &intel_limits_i9xx_lvds;
552 else
553 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
554 } else {
555 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 556 limit = &intel_limits_i8xx_lvds;
79e53945 557 else
e4b36699 558 limit = &intel_limits_i8xx_dvo;
79e53945
JB
559 }
560 return limit;
561}
562
f2b115e6
AJ
563/* m1 is reserved as 0 in Pineview, n is a ring counter */
564static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 565{
2177832f
SL
566 clock->m = clock->m2 + 2;
567 clock->p = clock->p1 * clock->p2;
568 clock->vco = refclk * clock->m / clock->n;
569 clock->dot = clock->vco / clock->p;
570}
571
572static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
573{
f2b115e6
AJ
574 if (IS_PINEVIEW(dev)) {
575 pineview_clock(refclk, clock);
2177832f
SL
576 return;
577 }
79e53945
JB
578 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
579 clock->p = clock->p1 * clock->p2;
580 clock->vco = refclk * clock->m / (clock->n + 2);
581 clock->dot = clock->vco / clock->p;
582}
583
79e53945
JB
584/**
585 * Returns whether any output on the specified pipe is of the specified type
586 */
4ef69c7a 587bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 588{
4ef69c7a 589 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
590 struct intel_encoder *encoder;
591
6c2b7c12
DV
592 for_each_encoder_on_crtc(dev, crtc, encoder)
593 if (encoder->type == type)
4ef69c7a
CW
594 return true;
595
596 return false;
79e53945
JB
597}
598
7c04d1d9 599#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
600/**
601 * Returns whether the given set of divisors are valid for a given refclk with
602 * the given connectors.
603 */
604
1b894b59
CW
605static bool intel_PLL_is_valid(struct drm_device *dev,
606 const intel_limit_t *limit,
607 const intel_clock_t *clock)
79e53945 608{
79e53945 609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 610 INTELPllInvalid("p1 out of range\n");
79e53945 611 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 612 INTELPllInvalid("p out of range\n");
79e53945 613 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 614 INTELPllInvalid("m2 out of range\n");
79e53945 615 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 616 INTELPllInvalid("m1 out of range\n");
f2b115e6 617 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 618 INTELPllInvalid("m1 <= m2\n");
79e53945 619 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 620 INTELPllInvalid("m out of range\n");
79e53945 621 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 622 INTELPllInvalid("n out of range\n");
79e53945 623 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 624 INTELPllInvalid("vco out of range\n");
79e53945
JB
625 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
626 * connector, etc., rather than just a single range.
627 */
628 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 629 INTELPllInvalid("dot out of range\n");
79e53945
JB
630
631 return true;
632}
633
d4906093
ML
634static bool
635intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
636 int target, int refclk, intel_clock_t *match_clock,
637 intel_clock_t *best_clock)
d4906093 638
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
667 /* m1 is always 0 in Pineview */
668 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
669 break;
670 for (clock.n = limit->n.min;
671 clock.n <= limit->n.max; clock.n++) {
672 for (clock.p1 = limit->p1.min;
673 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
674 int this_err;
675
2177832f 676 intel_clock(dev, refclk, &clock);
1b894b59
CW
677 if (!intel_PLL_is_valid(dev, limit,
678 &clock))
79e53945 679 continue;
cec2f356
SP
680 if (match_clock &&
681 clock.p != match_clock->p)
682 continue;
79e53945
JB
683
684 this_err = abs(clock.dot - target);
685 if (this_err < err) {
686 *best_clock = clock;
687 err = this_err;
688 }
689 }
690 }
691 }
692 }
693
694 return (err != target);
695}
696
d4906093
ML
697static bool
698intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
699 int target, int refclk, intel_clock_t *match_clock,
700 intel_clock_t *best_clock)
d4906093
ML
701{
702 struct drm_device *dev = crtc->dev;
d4906093
ML
703 intel_clock_t clock;
704 int max_n;
705 bool found;
6ba770dc
AJ
706 /* approximately equals target * 0.00585 */
707 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
708 found = false;
709
710 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
711 int lvds_reg;
712
c619eed4 713 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
714 lvds_reg = PCH_LVDS;
715 else
716 lvds_reg = LVDS;
1974cad0 717 if (intel_is_dual_link_lvds(dev))
d4906093
ML
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
f77f13e2 730 /* based on hardware requirement, prefer smaller n to precision */
d4906093 731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 732 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
2177832f 741 intel_clock(dev, refclk, &clock);
1b894b59
CW
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
d4906093 744 continue;
cec2f356
SP
745 if (match_clock &&
746 clock.p != match_clock->p)
747 continue;
1b894b59
CW
748
749 this_err = abs(clock.dot - target);
d4906093
ML
750 if (this_err < err_most) {
751 *best_clock = clock;
752 err_most = this_err;
753 max_n = clock.n;
754 found = true;
755 }
756 }
757 }
758 }
759 }
2c07245f
ZW
760 return found;
761}
762
5eb08b69 763static bool
f2b115e6 764intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
765 int target, int refclk, intel_clock_t *match_clock,
766 intel_clock_t *best_clock)
5eb08b69
ZW
767{
768 struct drm_device *dev = crtc->dev;
769 intel_clock_t clock;
4547668a 770
5eb08b69
ZW
771 if (target < 200000) {
772 clock.n = 1;
773 clock.p1 = 2;
774 clock.p2 = 10;
775 clock.m1 = 12;
776 clock.m2 = 9;
777 } else {
778 clock.n = 2;
779 clock.p1 = 1;
780 clock.p2 = 10;
781 clock.m1 = 14;
782 clock.m2 = 8;
783 }
784 intel_clock(dev, refclk, &clock);
785 memcpy(best_clock, &clock, sizeof(intel_clock_t));
786 return true;
787}
788
a4fc5ed6
KP
789/* DisplayPort has only two frequencies, 162MHz and 270MHz */
790static bool
791intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
792 int target, int refclk, intel_clock_t *match_clock,
793 intel_clock_t *best_clock)
a4fc5ed6 794{
5eddb70b
CW
795 intel_clock_t clock;
796 if (target < 200000) {
797 clock.p1 = 2;
798 clock.p2 = 10;
799 clock.n = 2;
800 clock.m1 = 23;
801 clock.m2 = 8;
802 } else {
803 clock.p1 = 1;
804 clock.p2 = 10;
805 clock.n = 1;
806 clock.m1 = 14;
807 clock.m2 = 2;
808 }
809 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
810 clock.p = (clock.p1 * clock.p2);
811 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
812 clock.vco = 0;
813 memcpy(best_clock, &clock, sizeof(intel_clock_t));
814 return true;
a4fc5ed6 815}
a0c4da24
JB
816static bool
817intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
820{
821 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
822 u32 m, n, fastclk;
823 u32 updrate, minupdate, fracbits, p;
824 unsigned long bestppm, ppm, absppm;
825 int dotclk, flag;
826
af447bd3 827 flag = 0;
a0c4da24
JB
828 dotclk = target * 1000;
829 bestppm = 1000000;
830 ppm = absppm = 0;
831 fastclk = dotclk / (2*100);
832 updrate = 0;
833 minupdate = 19200;
834 fracbits = 1;
835 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
836 bestm1 = bestm2 = bestp1 = bestp2 = 0;
837
838 /* based on hardware requirement, prefer smaller n to precision */
839 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
840 updrate = refclk / n;
841 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
842 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
843 if (p2 > 10)
844 p2 = p2 - 1;
845 p = p1 * p2;
846 /* based on hardware requirement, prefer bigger m1,m2 values */
847 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
848 m2 = (((2*(fastclk * p * n / m1 )) +
849 refclk) / (2*refclk));
850 m = m1 * m2;
851 vco = updrate * m;
852 if (vco >= limit->vco.min && vco < limit->vco.max) {
853 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
854 absppm = (ppm > 0) ? ppm : (-ppm);
855 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
856 bestppm = 0;
857 flag = 1;
858 }
859 if (absppm < bestppm - 10) {
860 bestppm = absppm;
861 flag = 1;
862 }
863 if (flag) {
864 bestn = n;
865 bestm1 = m1;
866 bestm2 = m2;
867 bestp1 = p1;
868 bestp2 = p2;
869 flag = 0;
870 }
871 }
872 }
873 }
874 }
875 }
876 best_clock->n = bestn;
877 best_clock->m1 = bestm1;
878 best_clock->m2 = bestm2;
879 best_clock->p1 = bestp1;
880 best_clock->p2 = bestp2;
881
882 return true;
883}
a4fc5ed6 884
a5c961d1
PZ
885enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886 enum pipe pipe)
887{
888 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 return intel_crtc->cpu_transcoder;
892}
893
a928d536
PZ
894static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
895{
896 struct drm_i915_private *dev_priv = dev->dev_private;
897 u32 frame, frame_reg = PIPEFRAME(pipe);
898
899 frame = I915_READ(frame_reg);
900
901 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
902 DRM_DEBUG_KMS("vblank wait timed out\n");
903}
904
9d0498a2
JB
905/**
906 * intel_wait_for_vblank - wait for vblank on a given pipe
907 * @dev: drm device
908 * @pipe: pipe to wait for
909 *
910 * Wait for vblank to occur on a given pipe. Needed for various bits of
911 * mode setting code.
912 */
913void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 914{
9d0498a2 915 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 916 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 917
a928d536
PZ
918 if (INTEL_INFO(dev)->gen >= 5) {
919 ironlake_wait_for_vblank(dev, pipe);
920 return;
921 }
922
300387c0
CW
923 /* Clear existing vblank status. Note this will clear any other
924 * sticky status fields as well.
925 *
926 * This races with i915_driver_irq_handler() with the result
927 * that either function could miss a vblank event. Here it is not
928 * fatal, as we will either wait upon the next vblank interrupt or
929 * timeout. Generally speaking intel_wait_for_vblank() is only
930 * called during modeset at which time the GPU should be idle and
931 * should *not* be performing page flips and thus not waiting on
932 * vblanks...
933 * Currently, the result of us stealing a vblank from the irq
934 * handler is that a single frame will be skipped during swapbuffers.
935 */
936 I915_WRITE(pipestat_reg,
937 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
9d0498a2 939 /* Wait for vblank interrupt bit to set */
481b6af3
CW
940 if (wait_for(I915_READ(pipestat_reg) &
941 PIPE_VBLANK_INTERRUPT_STATUS,
942 50))
9d0498a2
JB
943 DRM_DEBUG_KMS("vblank wait timed out\n");
944}
945
ab7ad7f6
KP
946/*
947 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
948 * @dev: drm device
949 * @pipe: pipe to wait for
950 *
951 * After disabling a pipe, we can't wait for vblank in the usual way,
952 * spinning on the vblank interrupt status bit, since we won't actually
953 * see an interrupt when the pipe is disabled.
954 *
ab7ad7f6
KP
955 * On Gen4 and above:
956 * wait for the pipe register state bit to turn off
957 *
958 * Otherwise:
959 * wait for the display line value to settle (it usually
960 * ends up stopping at the start of the next frame).
58e10eb9 961 *
9d0498a2 962 */
58e10eb9 963void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
964{
965 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
966 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
967 pipe);
ab7ad7f6
KP
968
969 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 970 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
971
972 /* Wait for the Pipe State to go off */
58e10eb9
CW
973 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
974 100))
284637d9 975 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 976 } else {
837ba00f 977 u32 last_line, line_mask;
58e10eb9 978 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
979 unsigned long timeout = jiffies + msecs_to_jiffies(100);
980
837ba00f
PZ
981 if (IS_GEN2(dev))
982 line_mask = DSL_LINEMASK_GEN2;
983 else
984 line_mask = DSL_LINEMASK_GEN3;
985
ab7ad7f6
KP
986 /* Wait for the display line to settle */
987 do {
837ba00f 988 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 989 mdelay(5);
837ba00f 990 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
991 time_after(timeout, jiffies));
992 if (time_after(jiffies, timeout))
284637d9 993 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 994 }
79e53945
JB
995}
996
b24e7179
JB
997static const char *state_string(bool enabled)
998{
999 return enabled ? "on" : "off";
1000}
1001
1002/* Only for pre-ILK configs */
1003static void assert_pll(struct drm_i915_private *dev_priv,
1004 enum pipe pipe, bool state)
1005{
1006 int reg;
1007 u32 val;
1008 bool cur_state;
1009
1010 reg = DPLL(pipe);
1011 val = I915_READ(reg);
1012 cur_state = !!(val & DPLL_VCO_ENABLE);
1013 WARN(cur_state != state,
1014 "PLL state assertion failure (expected %s, current %s)\n",
1015 state_string(state), state_string(cur_state));
1016}
1017#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1018#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1019
040484af
JB
1020/* For ILK+ */
1021static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1022 struct intel_pch_pll *pll,
1023 struct intel_crtc *crtc,
1024 bool state)
040484af 1025{
040484af
JB
1026 u32 val;
1027 bool cur_state;
1028
9d82aa17
ED
1029 if (HAS_PCH_LPT(dev_priv->dev)) {
1030 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1031 return;
1032 }
1033
92b27b08
CW
1034 if (WARN (!pll,
1035 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1036 return;
ee7b9f93 1037
92b27b08
CW
1038 val = I915_READ(pll->pll_reg);
1039 cur_state = !!(val & DPLL_VCO_ENABLE);
1040 WARN(cur_state != state,
1041 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1042 pll->pll_reg, state_string(state), state_string(cur_state), val);
1043
1044 /* Make sure the selected PLL is correctly attached to the transcoder */
1045 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1046 u32 pch_dpll;
1047
1048 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1049 cur_state = pll->pll_reg == _PCH_DPLL_B;
1050 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1051 "PLL[%d] not attached to this transcoder %d: %08x\n",
1052 cur_state, crtc->pipe, pch_dpll)) {
1053 cur_state = !!(val >> (4*crtc->pipe + 3));
1054 WARN(cur_state != state,
1055 "PLL[%d] not %s on this transcoder %d: %08x\n",
1056 pll->pll_reg == _PCH_DPLL_B,
1057 state_string(state),
1058 crtc->pipe,
1059 val);
1060 }
d3ccbe86 1061 }
040484af 1062}
92b27b08
CW
1063#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1064#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1065
1066static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1067 enum pipe pipe, bool state)
1068{
1069 int reg;
1070 u32 val;
1071 bool cur_state;
ad80a810
PZ
1072 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1073 pipe);
040484af 1074
bf507ef7
ED
1075 if (IS_HASWELL(dev_priv->dev)) {
1076 /* On Haswell, DDI is used instead of FDI_TX_CTL */
ad80a810 1077 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1078 val = I915_READ(reg);
ad80a810 1079 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1080 } else {
1081 reg = FDI_TX_CTL(pipe);
1082 val = I915_READ(reg);
1083 cur_state = !!(val & FDI_TX_ENABLE);
1084 }
040484af
JB
1085 WARN(cur_state != state,
1086 "FDI TX state assertion failure (expected %s, current %s)\n",
1087 state_string(state), state_string(cur_state));
1088}
1089#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1090#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1091
1092static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1093 enum pipe pipe, bool state)
1094{
1095 int reg;
1096 u32 val;
1097 bool cur_state;
1098
d63fa0dc
PZ
1099 reg = FDI_RX_CTL(pipe);
1100 val = I915_READ(reg);
1101 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1102 WARN(cur_state != state,
1103 "FDI RX state assertion failure (expected %s, current %s)\n",
1104 state_string(state), state_string(cur_state));
1105}
1106#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1107#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1108
1109static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1110 enum pipe pipe)
1111{
1112 int reg;
1113 u32 val;
1114
1115 /* ILK FDI PLL is always enabled */
1116 if (dev_priv->info->gen == 5)
1117 return;
1118
bf507ef7
ED
1119 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1120 if (IS_HASWELL(dev_priv->dev))
1121 return;
1122
040484af
JB
1123 reg = FDI_TX_CTL(pipe);
1124 val = I915_READ(reg);
1125 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1126}
1127
1128static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1129 enum pipe pipe)
1130{
1131 int reg;
1132 u32 val;
1133
1134 reg = FDI_RX_CTL(pipe);
1135 val = I915_READ(reg);
1136 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1137}
1138
ea0760cf
JB
1139static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1140 enum pipe pipe)
1141{
1142 int pp_reg, lvds_reg;
1143 u32 val;
1144 enum pipe panel_pipe = PIPE_A;
0de3b485 1145 bool locked = true;
ea0760cf
JB
1146
1147 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1148 pp_reg = PCH_PP_CONTROL;
1149 lvds_reg = PCH_LVDS;
1150 } else {
1151 pp_reg = PP_CONTROL;
1152 lvds_reg = LVDS;
1153 }
1154
1155 val = I915_READ(pp_reg);
1156 if (!(val & PANEL_POWER_ON) ||
1157 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1158 locked = false;
1159
1160 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1161 panel_pipe = PIPE_B;
1162
1163 WARN(panel_pipe == pipe && locked,
1164 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1165 pipe_name(pipe));
ea0760cf
JB
1166}
1167
b840d907
JB
1168void assert_pipe(struct drm_i915_private *dev_priv,
1169 enum pipe pipe, bool state)
b24e7179
JB
1170{
1171 int reg;
1172 u32 val;
63d7bbe9 1173 bool cur_state;
702e7a56
PZ
1174 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1175 pipe);
b24e7179 1176
8e636784
DV
1177 /* if we need the pipe A quirk it must be always on */
1178 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1179 state = true;
1180
702e7a56 1181 reg = PIPECONF(cpu_transcoder);
b24e7179 1182 val = I915_READ(reg);
63d7bbe9
JB
1183 cur_state = !!(val & PIPECONF_ENABLE);
1184 WARN(cur_state != state,
1185 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1186 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1187}
1188
931872fc
CW
1189static void assert_plane(struct drm_i915_private *dev_priv,
1190 enum plane plane, bool state)
b24e7179
JB
1191{
1192 int reg;
1193 u32 val;
931872fc 1194 bool cur_state;
b24e7179
JB
1195
1196 reg = DSPCNTR(plane);
1197 val = I915_READ(reg);
931872fc
CW
1198 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1199 WARN(cur_state != state,
1200 "plane %c assertion failure (expected %s, current %s)\n",
1201 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1202}
1203
931872fc
CW
1204#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1205#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1206
b24e7179
JB
1207static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1208 enum pipe pipe)
1209{
1210 int reg, i;
1211 u32 val;
1212 int cur_pipe;
1213
19ec1358 1214 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1215 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1216 reg = DSPCNTR(pipe);
1217 val = I915_READ(reg);
1218 WARN((val & DISPLAY_PLANE_ENABLE),
1219 "plane %c assertion failure, should be disabled but not\n",
1220 plane_name(pipe));
19ec1358 1221 return;
28c05794 1222 }
19ec1358 1223
b24e7179
JB
1224 /* Need to check both planes against the pipe */
1225 for (i = 0; i < 2; i++) {
1226 reg = DSPCNTR(i);
1227 val = I915_READ(reg);
1228 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1229 DISPPLANE_SEL_PIPE_SHIFT;
1230 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1231 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1232 plane_name(i), pipe_name(pipe));
b24e7179
JB
1233 }
1234}
1235
92f2584a
JB
1236static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1237{
1238 u32 val;
1239 bool enabled;
1240
9d82aa17
ED
1241 if (HAS_PCH_LPT(dev_priv->dev)) {
1242 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1243 return;
1244 }
1245
92f2584a
JB
1246 val = I915_READ(PCH_DREF_CONTROL);
1247 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1248 DREF_SUPERSPREAD_SOURCE_MASK));
1249 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1250}
1251
1252static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1253 enum pipe pipe)
1254{
1255 int reg;
1256 u32 val;
1257 bool enabled;
1258
1259 reg = TRANSCONF(pipe);
1260 val = I915_READ(reg);
1261 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1262 WARN(enabled,
1263 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1264 pipe_name(pipe));
92f2584a
JB
1265}
1266
4e634389
KP
1267static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1268 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1269{
1270 if ((val & DP_PORT_EN) == 0)
1271 return false;
1272
1273 if (HAS_PCH_CPT(dev_priv->dev)) {
1274 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1275 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1276 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1277 return false;
1278 } else {
1279 if ((val & DP_PIPE_MASK) != (pipe << 30))
1280 return false;
1281 }
1282 return true;
1283}
1284
1519b995
KP
1285static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1286 enum pipe pipe, u32 val)
1287{
1288 if ((val & PORT_ENABLE) == 0)
1289 return false;
1290
1291 if (HAS_PCH_CPT(dev_priv->dev)) {
1292 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1293 return false;
1294 } else {
1295 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1296 return false;
1297 }
1298 return true;
1299}
1300
1301static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe, u32 val)
1303{
1304 if ((val & LVDS_PORT_EN) == 0)
1305 return false;
1306
1307 if (HAS_PCH_CPT(dev_priv->dev)) {
1308 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1309 return false;
1310 } else {
1311 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1312 return false;
1313 }
1314 return true;
1315}
1316
1317static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1318 enum pipe pipe, u32 val)
1319{
1320 if ((val & ADPA_DAC_ENABLE) == 0)
1321 return false;
1322 if (HAS_PCH_CPT(dev_priv->dev)) {
1323 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1324 return false;
1325 } else {
1326 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1327 return false;
1328 }
1329 return true;
1330}
1331
291906f1 1332static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1333 enum pipe pipe, int reg, u32 port_sel)
291906f1 1334{
47a05eca 1335 u32 val = I915_READ(reg);
4e634389 1336 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1337 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1338 reg, pipe_name(pipe));
de9a35ab 1339
75c5da27
DV
1340 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1341 && (val & DP_PIPEB_SELECT),
de9a35ab 1342 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1343}
1344
1345static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1346 enum pipe pipe, int reg)
1347{
47a05eca 1348 u32 val = I915_READ(reg);
b70ad586 1349 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1350 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1351 reg, pipe_name(pipe));
de9a35ab 1352
75c5da27
DV
1353 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1354 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1355 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1356}
1357
1358static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1359 enum pipe pipe)
1360{
1361 int reg;
1362 u32 val;
291906f1 1363
f0575e92
KP
1364 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1365 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1366 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1367
1368 reg = PCH_ADPA;
1369 val = I915_READ(reg);
b70ad586 1370 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1371 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1372 pipe_name(pipe));
291906f1
JB
1373
1374 reg = PCH_LVDS;
1375 val = I915_READ(reg);
b70ad586 1376 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1377 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1378 pipe_name(pipe));
291906f1
JB
1379
1380 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1381 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1382 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1383}
1384
63d7bbe9
JB
1385/**
1386 * intel_enable_pll - enable a PLL
1387 * @dev_priv: i915 private structure
1388 * @pipe: pipe PLL to enable
1389 *
1390 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1391 * make sure the PLL reg is writable first though, since the panel write
1392 * protect mechanism may be enabled.
1393 *
1394 * Note! This is for pre-ILK only.
7434a255
TR
1395 *
1396 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9
JB
1397 */
1398static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1399{
1400 int reg;
1401 u32 val;
1402
1403 /* No really, not for ILK+ */
a0c4da24 1404 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1405
1406 /* PLL is protected by panel, make sure we can write it */
1407 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1408 assert_panel_unlocked(dev_priv, pipe);
1409
1410 reg = DPLL(pipe);
1411 val = I915_READ(reg);
1412 val |= DPLL_VCO_ENABLE;
1413
1414 /* We do this three times for luck */
1415 I915_WRITE(reg, val);
1416 POSTING_READ(reg);
1417 udelay(150); /* wait for warmup */
1418 I915_WRITE(reg, val);
1419 POSTING_READ(reg);
1420 udelay(150); /* wait for warmup */
1421 I915_WRITE(reg, val);
1422 POSTING_READ(reg);
1423 udelay(150); /* wait for warmup */
1424}
1425
1426/**
1427 * intel_disable_pll - disable a PLL
1428 * @dev_priv: i915 private structure
1429 * @pipe: pipe PLL to disable
1430 *
1431 * Disable the PLL for @pipe, making sure the pipe is off first.
1432 *
1433 * Note! This is for pre-ILK only.
1434 */
1435static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1436{
1437 int reg;
1438 u32 val;
1439
1440 /* Don't disable pipe A or pipe A PLLs if needed */
1441 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1442 return;
1443
1444 /* Make sure the pipe isn't still relying on us */
1445 assert_pipe_disabled(dev_priv, pipe);
1446
1447 reg = DPLL(pipe);
1448 val = I915_READ(reg);
1449 val &= ~DPLL_VCO_ENABLE;
1450 I915_WRITE(reg, val);
1451 POSTING_READ(reg);
1452}
1453
a416edef
ED
1454/* SBI access */
1455static void
1456intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1457{
1458 unsigned long flags;
1459
1460 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1461 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1462 100)) {
1463 DRM_ERROR("timeout waiting for SBI to become ready\n");
1464 goto out_unlock;
1465 }
1466
1467 I915_WRITE(SBI_ADDR,
1468 (reg << 16));
1469 I915_WRITE(SBI_DATA,
1470 value);
1471 I915_WRITE(SBI_CTL_STAT,
1472 SBI_BUSY |
1473 SBI_CTL_OP_CRWR);
1474
39fb50f6 1475 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1476 100)) {
1477 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1478 goto out_unlock;
1479 }
1480
1481out_unlock:
1482 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1483}
1484
1485static u32
1486intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1487{
1488 unsigned long flags;
39fb50f6 1489 u32 value = 0;
a416edef
ED
1490
1491 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1492 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1493 100)) {
1494 DRM_ERROR("timeout waiting for SBI to become ready\n");
1495 goto out_unlock;
1496 }
1497
1498 I915_WRITE(SBI_ADDR,
1499 (reg << 16));
1500 I915_WRITE(SBI_CTL_STAT,
1501 SBI_BUSY |
1502 SBI_CTL_OP_CRRD);
1503
39fb50f6 1504 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1505 100)) {
1506 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1507 goto out_unlock;
1508 }
1509
1510 value = I915_READ(SBI_DATA);
1511
1512out_unlock:
1513 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1514 return value;
1515}
1516
92f2584a 1517/**
b6b4e185 1518 * ironlake_enable_pch_pll - enable PCH PLL
92f2584a
JB
1519 * @dev_priv: i915 private structure
1520 * @pipe: pipe PLL to enable
1521 *
1522 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1523 * drives the transcoder clock.
1524 */
b6b4e185 1525static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1526{
ee7b9f93 1527 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1528 struct intel_pch_pll *pll;
92f2584a
JB
1529 int reg;
1530 u32 val;
1531
48da64a8 1532 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1533 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1534 pll = intel_crtc->pch_pll;
1535 if (pll == NULL)
1536 return;
1537
1538 if (WARN_ON(pll->refcount == 0))
1539 return;
ee7b9f93
JB
1540
1541 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1542 pll->pll_reg, pll->active, pll->on,
1543 intel_crtc->base.base.id);
92f2584a
JB
1544
1545 /* PCH refclock must be enabled first */
1546 assert_pch_refclk_enabled(dev_priv);
1547
ee7b9f93 1548 if (pll->active++ && pll->on) {
92b27b08 1549 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1550 return;
1551 }
1552
1553 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1554
1555 reg = pll->pll_reg;
92f2584a
JB
1556 val = I915_READ(reg);
1557 val |= DPLL_VCO_ENABLE;
1558 I915_WRITE(reg, val);
1559 POSTING_READ(reg);
1560 udelay(200);
ee7b9f93
JB
1561
1562 pll->on = true;
92f2584a
JB
1563}
1564
ee7b9f93 1565static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1566{
ee7b9f93
JB
1567 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1568 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1569 int reg;
ee7b9f93 1570 u32 val;
4c609cb8 1571
92f2584a
JB
1572 /* PCH only available on ILK+ */
1573 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1574 if (pll == NULL)
1575 return;
92f2584a 1576
48da64a8
CW
1577 if (WARN_ON(pll->refcount == 0))
1578 return;
7a419866 1579
ee7b9f93
JB
1580 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1581 pll->pll_reg, pll->active, pll->on,
1582 intel_crtc->base.base.id);
7a419866 1583
48da64a8 1584 if (WARN_ON(pll->active == 0)) {
92b27b08 1585 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1586 return;
1587 }
1588
ee7b9f93 1589 if (--pll->active) {
92b27b08 1590 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1591 return;
ee7b9f93
JB
1592 }
1593
1594 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1595
1596 /* Make sure transcoder isn't still depending on us */
1597 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1598
ee7b9f93 1599 reg = pll->pll_reg;
92f2584a
JB
1600 val = I915_READ(reg);
1601 val &= ~DPLL_VCO_ENABLE;
1602 I915_WRITE(reg, val);
1603 POSTING_READ(reg);
1604 udelay(200);
ee7b9f93
JB
1605
1606 pll->on = false;
92f2584a
JB
1607}
1608
b8a4f404
PZ
1609static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1610 enum pipe pipe)
040484af 1611{
23670b32 1612 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1613 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
23670b32 1614 uint32_t reg, val, pipeconf_val;
040484af
JB
1615
1616 /* PCH only available on ILK+ */
1617 BUG_ON(dev_priv->info->gen < 5);
1618
1619 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1620 assert_pch_pll_enabled(dev_priv,
1621 to_intel_crtc(crtc)->pch_pll,
1622 to_intel_crtc(crtc));
040484af
JB
1623
1624 /* FDI must be feeding us bits for PCH ports */
1625 assert_fdi_tx_enabled(dev_priv, pipe);
1626 assert_fdi_rx_enabled(dev_priv, pipe);
1627
23670b32
DV
1628 if (HAS_PCH_CPT(dev)) {
1629 /* Workaround: Set the timing override bit before enabling the
1630 * pch transcoder. */
1631 reg = TRANS_CHICKEN2(pipe);
1632 val = I915_READ(reg);
1633 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1634 I915_WRITE(reg, val);
59c859d6 1635 }
23670b32 1636
040484af
JB
1637 reg = TRANSCONF(pipe);
1638 val = I915_READ(reg);
5f7f726d 1639 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1640
1641 if (HAS_PCH_IBX(dev_priv->dev)) {
1642 /*
1643 * make the BPC in transcoder be consistent with
1644 * that in pipeconf reg.
1645 */
1646 val &= ~PIPE_BPC_MASK;
5f7f726d 1647 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1648 }
5f7f726d
PZ
1649
1650 val &= ~TRANS_INTERLACE_MASK;
1651 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1652 if (HAS_PCH_IBX(dev_priv->dev) &&
1653 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1654 val |= TRANS_LEGACY_INTERLACED_ILK;
1655 else
1656 val |= TRANS_INTERLACED;
5f7f726d
PZ
1657 else
1658 val |= TRANS_PROGRESSIVE;
1659
040484af
JB
1660 I915_WRITE(reg, val | TRANS_ENABLE);
1661 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1662 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1663}
1664
8fb033d7 1665static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1666 enum transcoder cpu_transcoder)
040484af 1667{
8fb033d7 1668 u32 val, pipeconf_val;
8fb033d7
PZ
1669
1670 /* PCH only available on ILK+ */
1671 BUG_ON(dev_priv->info->gen < 5);
1672
8fb033d7 1673 /* FDI must be feeding us bits for PCH ports */
937bb610
PZ
1674 assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1675 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1676
223a6fdf
PZ
1677 /* Workaround: set timing override bit. */
1678 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1679 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1680 I915_WRITE(_TRANSA_CHICKEN2, val);
1681
25f3ef11 1682 val = TRANS_ENABLE;
937bb610 1683 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1684
9a76b1c6
PZ
1685 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1686 PIPECONF_INTERLACED_ILK)
a35f2679 1687 val |= TRANS_INTERLACED;
8fb033d7
PZ
1688 else
1689 val |= TRANS_PROGRESSIVE;
1690
25f3ef11 1691 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
937bb610
PZ
1692 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1693 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1694}
1695
b8a4f404
PZ
1696static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1697 enum pipe pipe)
040484af 1698{
23670b32
DV
1699 struct drm_device *dev = dev_priv->dev;
1700 uint32_t reg, val;
040484af
JB
1701
1702 /* FDI relies on the transcoder */
1703 assert_fdi_tx_disabled(dev_priv, pipe);
1704 assert_fdi_rx_disabled(dev_priv, pipe);
1705
291906f1
JB
1706 /* Ports must be off as well */
1707 assert_pch_ports_disabled(dev_priv, pipe);
1708
040484af
JB
1709 reg = TRANSCONF(pipe);
1710 val = I915_READ(reg);
1711 val &= ~TRANS_ENABLE;
1712 I915_WRITE(reg, val);
1713 /* wait for PCH transcoder off, transcoder state */
1714 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1715 DRM_ERROR("failed to disable transcoder %d\n", pipe);
23670b32
DV
1716
1717 if (!HAS_PCH_IBX(dev)) {
1718 /* Workaround: Clear the timing override chicken bit again. */
1719 reg = TRANS_CHICKEN2(pipe);
1720 val = I915_READ(reg);
1721 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1722 I915_WRITE(reg, val);
1723 }
040484af
JB
1724}
1725
ab4d966c 1726static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1727{
8fb033d7
PZ
1728 u32 val;
1729
8a52fd9f 1730 val = I915_READ(_TRANSACONF);
8fb033d7 1731 val &= ~TRANS_ENABLE;
8a52fd9f 1732 I915_WRITE(_TRANSACONF, val);
8fb033d7 1733 /* wait for PCH transcoder off, transcoder state */
8a52fd9f
PZ
1734 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1735 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1736
1737 /* Workaround: clear timing override bit. */
1738 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1739 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1740 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1741}
1742
b24e7179 1743/**
309cfea8 1744 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1745 * @dev_priv: i915 private structure
1746 * @pipe: pipe to enable
040484af 1747 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1748 *
1749 * Enable @pipe, making sure that various hardware specific requirements
1750 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1751 *
1752 * @pipe should be %PIPE_A or %PIPE_B.
1753 *
1754 * Will wait until the pipe is actually running (i.e. first vblank) before
1755 * returning.
1756 */
040484af
JB
1757static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1758 bool pch_port)
b24e7179 1759{
702e7a56
PZ
1760 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1761 pipe);
cc391bbb 1762 enum transcoder pch_transcoder;
b24e7179
JB
1763 int reg;
1764 u32 val;
1765
cc391bbb
PZ
1766 if (IS_HASWELL(dev_priv->dev))
1767 pch_transcoder = TRANSCODER_A;
1768 else
1769 pch_transcoder = pipe;
1770
b24e7179
JB
1771 /*
1772 * A pipe without a PLL won't actually be able to drive bits from
1773 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1774 * need the check.
1775 */
1776 if (!HAS_PCH_SPLIT(dev_priv->dev))
1777 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1778 else {
1779 if (pch_port) {
1780 /* if driving the PCH, we need FDI enabled */
cc391bbb
PZ
1781 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1782 assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
040484af
JB
1783 }
1784 /* FIXME: assert CPU port conditions for SNB+ */
1785 }
b24e7179 1786
702e7a56 1787 reg = PIPECONF(cpu_transcoder);
b24e7179 1788 val = I915_READ(reg);
00d70b15
CW
1789 if (val & PIPECONF_ENABLE)
1790 return;
1791
1792 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1793 intel_wait_for_vblank(dev_priv->dev, pipe);
1794}
1795
1796/**
309cfea8 1797 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1798 * @dev_priv: i915 private structure
1799 * @pipe: pipe to disable
1800 *
1801 * Disable @pipe, making sure that various hardware specific requirements
1802 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1803 *
1804 * @pipe should be %PIPE_A or %PIPE_B.
1805 *
1806 * Will wait until the pipe has shut down before returning.
1807 */
1808static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1809 enum pipe pipe)
1810{
702e7a56
PZ
1811 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1812 pipe);
b24e7179
JB
1813 int reg;
1814 u32 val;
1815
1816 /*
1817 * Make sure planes won't keep trying to pump pixels to us,
1818 * or we might hang the display.
1819 */
1820 assert_planes_disabled(dev_priv, pipe);
1821
1822 /* Don't disable pipe A or pipe A PLLs if needed */
1823 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1824 return;
1825
702e7a56 1826 reg = PIPECONF(cpu_transcoder);
b24e7179 1827 val = I915_READ(reg);
00d70b15
CW
1828 if ((val & PIPECONF_ENABLE) == 0)
1829 return;
1830
1831 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1832 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1833}
1834
d74362c9
KP
1835/*
1836 * Plane regs are double buffered, going from enabled->disabled needs a
1837 * trigger in order to latch. The display address reg provides this.
1838 */
6f1d69b0 1839void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1840 enum plane plane)
1841{
14f86147
DL
1842 if (dev_priv->info->gen >= 4)
1843 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1844 else
1845 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
d74362c9
KP
1846}
1847
b24e7179
JB
1848/**
1849 * intel_enable_plane - enable a display plane on a given pipe
1850 * @dev_priv: i915 private structure
1851 * @plane: plane to enable
1852 * @pipe: pipe being fed
1853 *
1854 * Enable @plane on @pipe, making sure that @pipe is running first.
1855 */
1856static void intel_enable_plane(struct drm_i915_private *dev_priv,
1857 enum plane plane, enum pipe pipe)
1858{
1859 int reg;
1860 u32 val;
1861
1862 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1863 assert_pipe_enabled(dev_priv, pipe);
1864
1865 reg = DSPCNTR(plane);
1866 val = I915_READ(reg);
00d70b15
CW
1867 if (val & DISPLAY_PLANE_ENABLE)
1868 return;
1869
1870 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1871 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1872 intel_wait_for_vblank(dev_priv->dev, pipe);
1873}
1874
b24e7179
JB
1875/**
1876 * intel_disable_plane - disable a display plane
1877 * @dev_priv: i915 private structure
1878 * @plane: plane to disable
1879 * @pipe: pipe consuming the data
1880 *
1881 * Disable @plane; should be an independent operation.
1882 */
1883static void intel_disable_plane(struct drm_i915_private *dev_priv,
1884 enum plane plane, enum pipe pipe)
1885{
1886 int reg;
1887 u32 val;
1888
1889 reg = DSPCNTR(plane);
1890 val = I915_READ(reg);
00d70b15
CW
1891 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1892 return;
1893
1894 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1895 intel_flush_display_plane(dev_priv, plane);
1896 intel_wait_for_vblank(dev_priv->dev, pipe);
1897}
1898
127bd2ac 1899int
48b956c5 1900intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1901 struct drm_i915_gem_object *obj,
919926ae 1902 struct intel_ring_buffer *pipelined)
6b95a207 1903{
ce453d81 1904 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1905 u32 alignment;
1906 int ret;
1907
05394f39 1908 switch (obj->tiling_mode) {
6b95a207 1909 case I915_TILING_NONE:
534843da
CW
1910 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1911 alignment = 128 * 1024;
a6c45cf0 1912 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1913 alignment = 4 * 1024;
1914 else
1915 alignment = 64 * 1024;
6b95a207
KH
1916 break;
1917 case I915_TILING_X:
1918 /* pin() will align the object as required by fence */
1919 alignment = 0;
1920 break;
1921 case I915_TILING_Y:
1922 /* FIXME: Is this true? */
1923 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1924 return -EINVAL;
1925 default:
1926 BUG();
1927 }
1928
ce453d81 1929 dev_priv->mm.interruptible = false;
2da3b9b9 1930 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1931 if (ret)
ce453d81 1932 goto err_interruptible;
6b95a207
KH
1933
1934 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1935 * fence, whereas 965+ only requires a fence if using
1936 * framebuffer compression. For simplicity, we always install
1937 * a fence as the cost is not that onerous.
1938 */
06d98131 1939 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1940 if (ret)
1941 goto err_unpin;
1690e1eb 1942
9a5a53b3 1943 i915_gem_object_pin_fence(obj);
6b95a207 1944
ce453d81 1945 dev_priv->mm.interruptible = true;
6b95a207 1946 return 0;
48b956c5
CW
1947
1948err_unpin:
1949 i915_gem_object_unpin(obj);
ce453d81
CW
1950err_interruptible:
1951 dev_priv->mm.interruptible = true;
48b956c5 1952 return ret;
6b95a207
KH
1953}
1954
1690e1eb
CW
1955void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1956{
1957 i915_gem_object_unpin_fence(obj);
1958 i915_gem_object_unpin(obj);
1959}
1960
c2c75131
DV
1961/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1962 * is assumed to be a power-of-two. */
5a35e99e
DL
1963unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1964 unsigned int bpp,
1965 unsigned int pitch)
c2c75131
DV
1966{
1967 int tile_rows, tiles;
1968
1969 tile_rows = *y / 8;
1970 *y %= 8;
1971 tiles = *x / (512/bpp);
1972 *x %= 512/bpp;
1973
1974 return tile_rows * pitch * 8 + tiles * 4096;
1975}
1976
17638cd6
JB
1977static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1978 int x, int y)
81255565
JB
1979{
1980 struct drm_device *dev = crtc->dev;
1981 struct drm_i915_private *dev_priv = dev->dev_private;
1982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1983 struct intel_framebuffer *intel_fb;
05394f39 1984 struct drm_i915_gem_object *obj;
81255565 1985 int plane = intel_crtc->plane;
e506a0c6 1986 unsigned long linear_offset;
81255565 1987 u32 dspcntr;
5eddb70b 1988 u32 reg;
81255565
JB
1989
1990 switch (plane) {
1991 case 0:
1992 case 1:
1993 break;
1994 default:
1995 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1996 return -EINVAL;
1997 }
1998
1999 intel_fb = to_intel_framebuffer(fb);
2000 obj = intel_fb->obj;
81255565 2001
5eddb70b
CW
2002 reg = DSPCNTR(plane);
2003 dspcntr = I915_READ(reg);
81255565
JB
2004 /* Mask out pixel format bits in case we change it */
2005 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2006 switch (fb->pixel_format) {
2007 case DRM_FORMAT_C8:
81255565
JB
2008 dspcntr |= DISPPLANE_8BPP;
2009 break;
57779d06
VS
2010 case DRM_FORMAT_XRGB1555:
2011 case DRM_FORMAT_ARGB1555:
2012 dspcntr |= DISPPLANE_BGRX555;
81255565 2013 break;
57779d06
VS
2014 case DRM_FORMAT_RGB565:
2015 dspcntr |= DISPPLANE_BGRX565;
2016 break;
2017 case DRM_FORMAT_XRGB8888:
2018 case DRM_FORMAT_ARGB8888:
2019 dspcntr |= DISPPLANE_BGRX888;
2020 break;
2021 case DRM_FORMAT_XBGR8888:
2022 case DRM_FORMAT_ABGR8888:
2023 dspcntr |= DISPPLANE_RGBX888;
2024 break;
2025 case DRM_FORMAT_XRGB2101010:
2026 case DRM_FORMAT_ARGB2101010:
2027 dspcntr |= DISPPLANE_BGRX101010;
2028 break;
2029 case DRM_FORMAT_XBGR2101010:
2030 case DRM_FORMAT_ABGR2101010:
2031 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2032 break;
2033 default:
57779d06 2034 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
81255565
JB
2035 return -EINVAL;
2036 }
57779d06 2037
a6c45cf0 2038 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2039 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2040 dspcntr |= DISPPLANE_TILED;
2041 else
2042 dspcntr &= ~DISPPLANE_TILED;
2043 }
2044
5eddb70b 2045 I915_WRITE(reg, dspcntr);
81255565 2046
e506a0c6 2047 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2048
c2c75131
DV
2049 if (INTEL_INFO(dev)->gen >= 4) {
2050 intel_crtc->dspaddr_offset =
5a35e99e
DL
2051 intel_gen4_compute_offset_xtiled(&x, &y,
2052 fb->bits_per_pixel / 8,
2053 fb->pitches[0]);
c2c75131
DV
2054 linear_offset -= intel_crtc->dspaddr_offset;
2055 } else {
e506a0c6 2056 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2057 }
e506a0c6
DV
2058
2059 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2060 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2061 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2062 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2063 I915_MODIFY_DISPBASE(DSPSURF(plane),
2064 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2065 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2066 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2067 } else
e506a0c6 2068 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2069 POSTING_READ(reg);
81255565 2070
17638cd6
JB
2071 return 0;
2072}
2073
2074static int ironlake_update_plane(struct drm_crtc *crtc,
2075 struct drm_framebuffer *fb, int x, int y)
2076{
2077 struct drm_device *dev = crtc->dev;
2078 struct drm_i915_private *dev_priv = dev->dev_private;
2079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2080 struct intel_framebuffer *intel_fb;
2081 struct drm_i915_gem_object *obj;
2082 int plane = intel_crtc->plane;
e506a0c6 2083 unsigned long linear_offset;
17638cd6
JB
2084 u32 dspcntr;
2085 u32 reg;
2086
2087 switch (plane) {
2088 case 0:
2089 case 1:
27f8227b 2090 case 2:
17638cd6
JB
2091 break;
2092 default:
2093 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2094 return -EINVAL;
2095 }
2096
2097 intel_fb = to_intel_framebuffer(fb);
2098 obj = intel_fb->obj;
2099
2100 reg = DSPCNTR(plane);
2101 dspcntr = I915_READ(reg);
2102 /* Mask out pixel format bits in case we change it */
2103 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2104 switch (fb->pixel_format) {
2105 case DRM_FORMAT_C8:
17638cd6
JB
2106 dspcntr |= DISPPLANE_8BPP;
2107 break;
57779d06
VS
2108 case DRM_FORMAT_RGB565:
2109 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2110 break;
57779d06
VS
2111 case DRM_FORMAT_XRGB8888:
2112 case DRM_FORMAT_ARGB8888:
2113 dspcntr |= DISPPLANE_BGRX888;
2114 break;
2115 case DRM_FORMAT_XBGR8888:
2116 case DRM_FORMAT_ABGR8888:
2117 dspcntr |= DISPPLANE_RGBX888;
2118 break;
2119 case DRM_FORMAT_XRGB2101010:
2120 case DRM_FORMAT_ARGB2101010:
2121 dspcntr |= DISPPLANE_BGRX101010;
2122 break;
2123 case DRM_FORMAT_XBGR2101010:
2124 case DRM_FORMAT_ABGR2101010:
2125 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2126 break;
2127 default:
57779d06 2128 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
17638cd6
JB
2129 return -EINVAL;
2130 }
2131
2132 if (obj->tiling_mode != I915_TILING_NONE)
2133 dspcntr |= DISPPLANE_TILED;
2134 else
2135 dspcntr &= ~DISPPLANE_TILED;
2136
2137 /* must disable */
2138 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2139
2140 I915_WRITE(reg, dspcntr);
2141
e506a0c6 2142 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2143 intel_crtc->dspaddr_offset =
5a35e99e
DL
2144 intel_gen4_compute_offset_xtiled(&x, &y,
2145 fb->bits_per_pixel / 8,
2146 fb->pitches[0]);
c2c75131 2147 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2148
e506a0c6
DV
2149 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2150 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2151 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2152 I915_MODIFY_DISPBASE(DSPSURF(plane),
2153 obj->gtt_offset + intel_crtc->dspaddr_offset);
bc1c91eb
DL
2154 if (IS_HASWELL(dev)) {
2155 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2156 } else {
2157 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2158 I915_WRITE(DSPLINOFF(plane), linear_offset);
2159 }
17638cd6
JB
2160 POSTING_READ(reg);
2161
2162 return 0;
2163}
2164
2165/* Assume fb object is pinned & idle & fenced and just update base pointers */
2166static int
2167intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2168 int x, int y, enum mode_set_atomic state)
2169{
2170 struct drm_device *dev = crtc->dev;
2171 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2172
6b8e6ed0
CW
2173 if (dev_priv->display.disable_fbc)
2174 dev_priv->display.disable_fbc(dev);
3dec0095 2175 intel_increase_pllclock(crtc);
81255565 2176
6b8e6ed0 2177 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2178}
2179
14667a4b
CW
2180static int
2181intel_finish_fb(struct drm_framebuffer *old_fb)
2182{
2183 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2184 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2185 bool was_interruptible = dev_priv->mm.interruptible;
2186 int ret;
2187
2188 wait_event(dev_priv->pending_flip_queue,
2189 atomic_read(&dev_priv->mm.wedged) ||
2190 atomic_read(&obj->pending_flip) == 0);
2191
2192 /* Big Hammer, we also need to ensure that any pending
2193 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2194 * current scanout is retired before unpinning the old
2195 * framebuffer.
2196 *
2197 * This should only fail upon a hung GPU, in which case we
2198 * can safely continue.
2199 */
2200 dev_priv->mm.interruptible = false;
2201 ret = i915_gem_object_finish_gpu(obj);
2202 dev_priv->mm.interruptible = was_interruptible;
2203
2204 return ret;
2205}
2206
198598d0
VS
2207static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2208{
2209 struct drm_device *dev = crtc->dev;
2210 struct drm_i915_master_private *master_priv;
2211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2212
2213 if (!dev->primary->master)
2214 return;
2215
2216 master_priv = dev->primary->master->driver_priv;
2217 if (!master_priv->sarea_priv)
2218 return;
2219
2220 switch (intel_crtc->pipe) {
2221 case 0:
2222 master_priv->sarea_priv->pipeA_x = x;
2223 master_priv->sarea_priv->pipeA_y = y;
2224 break;
2225 case 1:
2226 master_priv->sarea_priv->pipeB_x = x;
2227 master_priv->sarea_priv->pipeB_y = y;
2228 break;
2229 default:
2230 break;
2231 }
2232}
2233
5c3b82e2 2234static int
3c4fdcfb 2235intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2236 struct drm_framebuffer *fb)
79e53945
JB
2237{
2238 struct drm_device *dev = crtc->dev;
6b8e6ed0 2239 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2241 struct drm_framebuffer *old_fb;
5c3b82e2 2242 int ret;
79e53945
JB
2243
2244 /* no fb bound */
94352cf9 2245 if (!fb) {
a5071c2f 2246 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2247 return 0;
2248 }
2249
5826eca5
ED
2250 if(intel_crtc->plane > dev_priv->num_pipe) {
2251 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2252 intel_crtc->plane,
2253 dev_priv->num_pipe);
5c3b82e2 2254 return -EINVAL;
79e53945
JB
2255 }
2256
5c3b82e2 2257 mutex_lock(&dev->struct_mutex);
265db958 2258 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2259 to_intel_framebuffer(fb)->obj,
919926ae 2260 NULL);
5c3b82e2
CW
2261 if (ret != 0) {
2262 mutex_unlock(&dev->struct_mutex);
a5071c2f 2263 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2264 return ret;
2265 }
79e53945 2266
94352cf9
DV
2267 if (crtc->fb)
2268 intel_finish_fb(crtc->fb);
265db958 2269
94352cf9 2270 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2271 if (ret) {
94352cf9 2272 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2273 mutex_unlock(&dev->struct_mutex);
a5071c2f 2274 DRM_ERROR("failed to update base address\n");
4e6cfefc 2275 return ret;
79e53945 2276 }
3c4fdcfb 2277
94352cf9
DV
2278 old_fb = crtc->fb;
2279 crtc->fb = fb;
6c4c86f5
DV
2280 crtc->x = x;
2281 crtc->y = y;
94352cf9 2282
b7f1de28
CW
2283 if (old_fb) {
2284 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2285 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2286 }
652c393a 2287
6b8e6ed0 2288 intel_update_fbc(dev);
5c3b82e2 2289 mutex_unlock(&dev->struct_mutex);
79e53945 2290
198598d0 2291 intel_crtc_update_sarea_pos(crtc, x, y);
5c3b82e2
CW
2292
2293 return 0;
79e53945
JB
2294}
2295
5eddb70b 2296static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2297{
2298 struct drm_device *dev = crtc->dev;
2299 struct drm_i915_private *dev_priv = dev->dev_private;
2300 u32 dpa_ctl;
2301
28c97730 2302 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2303 dpa_ctl = I915_READ(DP_A);
2304 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2305
2306 if (clock < 200000) {
2307 u32 temp;
2308 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2309 /* workaround for 160Mhz:
2310 1) program 0x4600c bits 15:0 = 0x8124
2311 2) program 0x46010 bit 0 = 1
2312 3) program 0x46034 bit 24 = 1
2313 4) program 0x64000 bit 14 = 1
2314 */
2315 temp = I915_READ(0x4600c);
2316 temp &= 0xffff0000;
2317 I915_WRITE(0x4600c, temp | 0x8124);
2318
2319 temp = I915_READ(0x46010);
2320 I915_WRITE(0x46010, temp | 1);
2321
2322 temp = I915_READ(0x46034);
2323 I915_WRITE(0x46034, temp | (1 << 24));
2324 } else {
2325 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2326 }
2327 I915_WRITE(DP_A, dpa_ctl);
2328
5eddb70b 2329 POSTING_READ(DP_A);
32f9d658
ZW
2330 udelay(500);
2331}
2332
5e84e1a4
ZW
2333static void intel_fdi_normal_train(struct drm_crtc *crtc)
2334{
2335 struct drm_device *dev = crtc->dev;
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2338 int pipe = intel_crtc->pipe;
2339 u32 reg, temp;
2340
2341 /* enable normal train */
2342 reg = FDI_TX_CTL(pipe);
2343 temp = I915_READ(reg);
61e499bf 2344 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2345 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2346 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2347 } else {
2348 temp &= ~FDI_LINK_TRAIN_NONE;
2349 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2350 }
5e84e1a4
ZW
2351 I915_WRITE(reg, temp);
2352
2353 reg = FDI_RX_CTL(pipe);
2354 temp = I915_READ(reg);
2355 if (HAS_PCH_CPT(dev)) {
2356 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2357 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2358 } else {
2359 temp &= ~FDI_LINK_TRAIN_NONE;
2360 temp |= FDI_LINK_TRAIN_NONE;
2361 }
2362 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2363
2364 /* wait one idle pattern time */
2365 POSTING_READ(reg);
2366 udelay(1000);
357555c0
JB
2367
2368 /* IVB wants error correction enabled */
2369 if (IS_IVYBRIDGE(dev))
2370 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2371 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2372}
2373
291427f5
JB
2374static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2375{
2376 struct drm_i915_private *dev_priv = dev->dev_private;
2377 u32 flags = I915_READ(SOUTH_CHICKEN1);
2378
2379 flags |= FDI_PHASE_SYNC_OVR(pipe);
2380 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2381 flags |= FDI_PHASE_SYNC_EN(pipe);
2382 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2383 POSTING_READ(SOUTH_CHICKEN1);
2384}
2385
01a415fd
DV
2386static void ivb_modeset_global_resources(struct drm_device *dev)
2387{
2388 struct drm_i915_private *dev_priv = dev->dev_private;
2389 struct intel_crtc *pipe_B_crtc =
2390 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2391 struct intel_crtc *pipe_C_crtc =
2392 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2393 uint32_t temp;
2394
2395 /* When everything is off disable fdi C so that we could enable fdi B
2396 * with all lanes. XXX: This misses the case where a pipe is not using
2397 * any pch resources and so doesn't need any fdi lanes. */
2398 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2399 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2400 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2401
2402 temp = I915_READ(SOUTH_CHICKEN1);
2403 temp &= ~FDI_BC_BIFURCATION_SELECT;
2404 DRM_DEBUG_KMS("disabling fdi C rx\n");
2405 I915_WRITE(SOUTH_CHICKEN1, temp);
2406 }
2407}
2408
8db9d77b
ZW
2409/* The FDI link training functions for ILK/Ibexpeak. */
2410static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2411{
2412 struct drm_device *dev = crtc->dev;
2413 struct drm_i915_private *dev_priv = dev->dev_private;
2414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2415 int pipe = intel_crtc->pipe;
0fc932b8 2416 int plane = intel_crtc->plane;
5eddb70b 2417 u32 reg, temp, tries;
8db9d77b 2418
0fc932b8
JB
2419 /* FDI needs bits from pipe & plane first */
2420 assert_pipe_enabled(dev_priv, pipe);
2421 assert_plane_enabled(dev_priv, plane);
2422
e1a44743
AJ
2423 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2424 for train result */
5eddb70b
CW
2425 reg = FDI_RX_IMR(pipe);
2426 temp = I915_READ(reg);
e1a44743
AJ
2427 temp &= ~FDI_RX_SYMBOL_LOCK;
2428 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2429 I915_WRITE(reg, temp);
2430 I915_READ(reg);
e1a44743
AJ
2431 udelay(150);
2432
8db9d77b 2433 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2434 reg = FDI_TX_CTL(pipe);
2435 temp = I915_READ(reg);
77ffb597
AJ
2436 temp &= ~(7 << 19);
2437 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2438 temp &= ~FDI_LINK_TRAIN_NONE;
2439 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2440 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2441
5eddb70b
CW
2442 reg = FDI_RX_CTL(pipe);
2443 temp = I915_READ(reg);
8db9d77b
ZW
2444 temp &= ~FDI_LINK_TRAIN_NONE;
2445 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2446 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2447
2448 POSTING_READ(reg);
8db9d77b
ZW
2449 udelay(150);
2450
5b2adf89 2451 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2452 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2453 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2454 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2455
5eddb70b 2456 reg = FDI_RX_IIR(pipe);
e1a44743 2457 for (tries = 0; tries < 5; tries++) {
5eddb70b 2458 temp = I915_READ(reg);
8db9d77b
ZW
2459 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2460
2461 if ((temp & FDI_RX_BIT_LOCK)) {
2462 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2463 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2464 break;
2465 }
8db9d77b 2466 }
e1a44743 2467 if (tries == 5)
5eddb70b 2468 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2469
2470 /* Train 2 */
5eddb70b
CW
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
8db9d77b
ZW
2473 temp &= ~FDI_LINK_TRAIN_NONE;
2474 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2475 I915_WRITE(reg, temp);
8db9d77b 2476
5eddb70b
CW
2477 reg = FDI_RX_CTL(pipe);
2478 temp = I915_READ(reg);
8db9d77b
ZW
2479 temp &= ~FDI_LINK_TRAIN_NONE;
2480 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2481 I915_WRITE(reg, temp);
8db9d77b 2482
5eddb70b
CW
2483 POSTING_READ(reg);
2484 udelay(150);
8db9d77b 2485
5eddb70b 2486 reg = FDI_RX_IIR(pipe);
e1a44743 2487 for (tries = 0; tries < 5; tries++) {
5eddb70b 2488 temp = I915_READ(reg);
8db9d77b
ZW
2489 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2490
2491 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2492 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2493 DRM_DEBUG_KMS("FDI train 2 done.\n");
2494 break;
2495 }
8db9d77b 2496 }
e1a44743 2497 if (tries == 5)
5eddb70b 2498 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2499
2500 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2501
8db9d77b
ZW
2502}
2503
0206e353 2504static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2505 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2506 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2507 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2508 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2509};
2510
2511/* The FDI link training functions for SNB/Cougarpoint. */
2512static void gen6_fdi_link_train(struct drm_crtc *crtc)
2513{
2514 struct drm_device *dev = crtc->dev;
2515 struct drm_i915_private *dev_priv = dev->dev_private;
2516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2517 int pipe = intel_crtc->pipe;
fa37d39e 2518 u32 reg, temp, i, retry;
8db9d77b 2519
e1a44743
AJ
2520 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2521 for train result */
5eddb70b
CW
2522 reg = FDI_RX_IMR(pipe);
2523 temp = I915_READ(reg);
e1a44743
AJ
2524 temp &= ~FDI_RX_SYMBOL_LOCK;
2525 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2526 I915_WRITE(reg, temp);
2527
2528 POSTING_READ(reg);
e1a44743
AJ
2529 udelay(150);
2530
8db9d77b 2531 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2532 reg = FDI_TX_CTL(pipe);
2533 temp = I915_READ(reg);
77ffb597
AJ
2534 temp &= ~(7 << 19);
2535 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2536 temp &= ~FDI_LINK_TRAIN_NONE;
2537 temp |= FDI_LINK_TRAIN_PATTERN_1;
2538 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2539 /* SNB-B */
2540 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2541 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2542
d74cf324
DV
2543 I915_WRITE(FDI_RX_MISC(pipe),
2544 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2545
5eddb70b
CW
2546 reg = FDI_RX_CTL(pipe);
2547 temp = I915_READ(reg);
8db9d77b
ZW
2548 if (HAS_PCH_CPT(dev)) {
2549 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2550 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2551 } else {
2552 temp &= ~FDI_LINK_TRAIN_NONE;
2553 temp |= FDI_LINK_TRAIN_PATTERN_1;
2554 }
5eddb70b
CW
2555 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2556
2557 POSTING_READ(reg);
8db9d77b
ZW
2558 udelay(150);
2559
8f5718a6 2560 cpt_phase_pointer_enable(dev, pipe);
291427f5 2561
0206e353 2562 for (i = 0; i < 4; i++) {
5eddb70b
CW
2563 reg = FDI_TX_CTL(pipe);
2564 temp = I915_READ(reg);
8db9d77b
ZW
2565 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2567 I915_WRITE(reg, temp);
2568
2569 POSTING_READ(reg);
8db9d77b
ZW
2570 udelay(500);
2571
fa37d39e
SP
2572 for (retry = 0; retry < 5; retry++) {
2573 reg = FDI_RX_IIR(pipe);
2574 temp = I915_READ(reg);
2575 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2576 if (temp & FDI_RX_BIT_LOCK) {
2577 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2578 DRM_DEBUG_KMS("FDI train 1 done.\n");
2579 break;
2580 }
2581 udelay(50);
8db9d77b 2582 }
fa37d39e
SP
2583 if (retry < 5)
2584 break;
8db9d77b
ZW
2585 }
2586 if (i == 4)
5eddb70b 2587 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2588
2589 /* Train 2 */
5eddb70b
CW
2590 reg = FDI_TX_CTL(pipe);
2591 temp = I915_READ(reg);
8db9d77b
ZW
2592 temp &= ~FDI_LINK_TRAIN_NONE;
2593 temp |= FDI_LINK_TRAIN_PATTERN_2;
2594 if (IS_GEN6(dev)) {
2595 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2596 /* SNB-B */
2597 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2598 }
5eddb70b 2599 I915_WRITE(reg, temp);
8db9d77b 2600
5eddb70b
CW
2601 reg = FDI_RX_CTL(pipe);
2602 temp = I915_READ(reg);
8db9d77b
ZW
2603 if (HAS_PCH_CPT(dev)) {
2604 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2605 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2606 } else {
2607 temp &= ~FDI_LINK_TRAIN_NONE;
2608 temp |= FDI_LINK_TRAIN_PATTERN_2;
2609 }
5eddb70b
CW
2610 I915_WRITE(reg, temp);
2611
2612 POSTING_READ(reg);
8db9d77b
ZW
2613 udelay(150);
2614
0206e353 2615 for (i = 0; i < 4; i++) {
5eddb70b
CW
2616 reg = FDI_TX_CTL(pipe);
2617 temp = I915_READ(reg);
8db9d77b
ZW
2618 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2620 I915_WRITE(reg, temp);
2621
2622 POSTING_READ(reg);
8db9d77b
ZW
2623 udelay(500);
2624
fa37d39e
SP
2625 for (retry = 0; retry < 5; retry++) {
2626 reg = FDI_RX_IIR(pipe);
2627 temp = I915_READ(reg);
2628 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629 if (temp & FDI_RX_SYMBOL_LOCK) {
2630 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2631 DRM_DEBUG_KMS("FDI train 2 done.\n");
2632 break;
2633 }
2634 udelay(50);
8db9d77b 2635 }
fa37d39e
SP
2636 if (retry < 5)
2637 break;
8db9d77b
ZW
2638 }
2639 if (i == 4)
5eddb70b 2640 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2641
2642 DRM_DEBUG_KMS("FDI train done.\n");
2643}
2644
357555c0
JB
2645/* Manual link training for Ivy Bridge A0 parts */
2646static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2647{
2648 struct drm_device *dev = crtc->dev;
2649 struct drm_i915_private *dev_priv = dev->dev_private;
2650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651 int pipe = intel_crtc->pipe;
2652 u32 reg, temp, i;
2653
2654 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2655 for train result */
2656 reg = FDI_RX_IMR(pipe);
2657 temp = I915_READ(reg);
2658 temp &= ~FDI_RX_SYMBOL_LOCK;
2659 temp &= ~FDI_RX_BIT_LOCK;
2660 I915_WRITE(reg, temp);
2661
2662 POSTING_READ(reg);
2663 udelay(150);
2664
01a415fd
DV
2665 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2666 I915_READ(FDI_RX_IIR(pipe)));
2667
357555c0
JB
2668 /* enable CPU FDI TX and PCH FDI RX */
2669 reg = FDI_TX_CTL(pipe);
2670 temp = I915_READ(reg);
2671 temp &= ~(7 << 19);
2672 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2673 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2674 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2675 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2677 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2678 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2679
d74cf324
DV
2680 I915_WRITE(FDI_RX_MISC(pipe),
2681 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2682
357555c0
JB
2683 reg = FDI_RX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 temp &= ~FDI_LINK_TRAIN_AUTO;
2686 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2688 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2689 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2690
2691 POSTING_READ(reg);
2692 udelay(150);
2693
8f5718a6 2694 cpt_phase_pointer_enable(dev, pipe);
291427f5 2695
0206e353 2696 for (i = 0; i < 4; i++) {
357555c0
JB
2697 reg = FDI_TX_CTL(pipe);
2698 temp = I915_READ(reg);
2699 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2700 temp |= snb_b_fdi_train_param[i];
2701 I915_WRITE(reg, temp);
2702
2703 POSTING_READ(reg);
2704 udelay(500);
2705
2706 reg = FDI_RX_IIR(pipe);
2707 temp = I915_READ(reg);
2708 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2709
2710 if (temp & FDI_RX_BIT_LOCK ||
2711 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2712 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
01a415fd 2713 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
357555c0
JB
2714 break;
2715 }
2716 }
2717 if (i == 4)
2718 DRM_ERROR("FDI train 1 fail!\n");
2719
2720 /* Train 2 */
2721 reg = FDI_TX_CTL(pipe);
2722 temp = I915_READ(reg);
2723 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2724 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2725 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2726 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2727 I915_WRITE(reg, temp);
2728
2729 reg = FDI_RX_CTL(pipe);
2730 temp = I915_READ(reg);
2731 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2732 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2733 I915_WRITE(reg, temp);
2734
2735 POSTING_READ(reg);
2736 udelay(150);
2737
0206e353 2738 for (i = 0; i < 4; i++) {
357555c0
JB
2739 reg = FDI_TX_CTL(pipe);
2740 temp = I915_READ(reg);
2741 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2742 temp |= snb_b_fdi_train_param[i];
2743 I915_WRITE(reg, temp);
2744
2745 POSTING_READ(reg);
2746 udelay(500);
2747
2748 reg = FDI_RX_IIR(pipe);
2749 temp = I915_READ(reg);
2750 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2751
2752 if (temp & FDI_RX_SYMBOL_LOCK) {
2753 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
01a415fd 2754 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
357555c0
JB
2755 break;
2756 }
2757 }
2758 if (i == 4)
2759 DRM_ERROR("FDI train 2 fail!\n");
2760
2761 DRM_DEBUG_KMS("FDI train done.\n");
2762}
2763
88cefb6c 2764static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2765{
88cefb6c 2766 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2767 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2768 int pipe = intel_crtc->pipe;
5eddb70b 2769 u32 reg, temp;
79e53945 2770
c64e311e 2771
c98e9dcf 2772 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2773 reg = FDI_RX_CTL(pipe);
2774 temp = I915_READ(reg);
2775 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2776 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2777 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2778 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2779
2780 POSTING_READ(reg);
c98e9dcf
JB
2781 udelay(200);
2782
2783 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2784 temp = I915_READ(reg);
2785 I915_WRITE(reg, temp | FDI_PCDCLK);
2786
2787 POSTING_READ(reg);
c98e9dcf
JB
2788 udelay(200);
2789
bf507ef7
ED
2790 /* On Haswell, the PLL configuration for ports and pipes is handled
2791 * separately, as part of DDI setup */
2792 if (!IS_HASWELL(dev)) {
2793 /* Enable CPU FDI TX PLL, always on for Ironlake */
2794 reg = FDI_TX_CTL(pipe);
2795 temp = I915_READ(reg);
2796 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2797 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2798
bf507ef7
ED
2799 POSTING_READ(reg);
2800 udelay(100);
2801 }
6be4a607 2802 }
0e23b99d
JB
2803}
2804
88cefb6c
DV
2805static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2806{
2807 struct drm_device *dev = intel_crtc->base.dev;
2808 struct drm_i915_private *dev_priv = dev->dev_private;
2809 int pipe = intel_crtc->pipe;
2810 u32 reg, temp;
2811
2812 /* Switch from PCDclk to Rawclk */
2813 reg = FDI_RX_CTL(pipe);
2814 temp = I915_READ(reg);
2815 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2816
2817 /* Disable CPU FDI TX PLL */
2818 reg = FDI_TX_CTL(pipe);
2819 temp = I915_READ(reg);
2820 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2821
2822 POSTING_READ(reg);
2823 udelay(100);
2824
2825 reg = FDI_RX_CTL(pipe);
2826 temp = I915_READ(reg);
2827 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2828
2829 /* Wait for the clocks to turn off. */
2830 POSTING_READ(reg);
2831 udelay(100);
2832}
2833
291427f5
JB
2834static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2835{
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 u32 flags = I915_READ(SOUTH_CHICKEN1);
2838
2839 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2840 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2841 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2842 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2843 POSTING_READ(SOUTH_CHICKEN1);
2844}
0fc932b8
JB
2845static void ironlake_fdi_disable(struct drm_crtc *crtc)
2846{
2847 struct drm_device *dev = crtc->dev;
2848 struct drm_i915_private *dev_priv = dev->dev_private;
2849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2850 int pipe = intel_crtc->pipe;
2851 u32 reg, temp;
2852
2853 /* disable CPU FDI tx and PCH FDI rx */
2854 reg = FDI_TX_CTL(pipe);
2855 temp = I915_READ(reg);
2856 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2857 POSTING_READ(reg);
2858
2859 reg = FDI_RX_CTL(pipe);
2860 temp = I915_READ(reg);
2861 temp &= ~(0x7 << 16);
2862 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2863 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2864
2865 POSTING_READ(reg);
2866 udelay(100);
2867
2868 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2869 if (HAS_PCH_IBX(dev)) {
2870 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
291427f5
JB
2871 } else if (HAS_PCH_CPT(dev)) {
2872 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2873 }
0fc932b8
JB
2874
2875 /* still set train pattern 1 */
2876 reg = FDI_TX_CTL(pipe);
2877 temp = I915_READ(reg);
2878 temp &= ~FDI_LINK_TRAIN_NONE;
2879 temp |= FDI_LINK_TRAIN_PATTERN_1;
2880 I915_WRITE(reg, temp);
2881
2882 reg = FDI_RX_CTL(pipe);
2883 temp = I915_READ(reg);
2884 if (HAS_PCH_CPT(dev)) {
2885 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2886 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2887 } else {
2888 temp &= ~FDI_LINK_TRAIN_NONE;
2889 temp |= FDI_LINK_TRAIN_PATTERN_1;
2890 }
2891 /* BPC in FDI rx is consistent with that in PIPECONF */
2892 temp &= ~(0x07 << 16);
2893 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2894 I915_WRITE(reg, temp);
2895
2896 POSTING_READ(reg);
2897 udelay(100);
2898}
2899
5bb61643
CW
2900static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2901{
2902 struct drm_device *dev = crtc->dev;
2903 struct drm_i915_private *dev_priv = dev->dev_private;
2904 unsigned long flags;
2905 bool pending;
2906
2907 if (atomic_read(&dev_priv->mm.wedged))
2908 return false;
2909
2910 spin_lock_irqsave(&dev->event_lock, flags);
2911 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2912 spin_unlock_irqrestore(&dev->event_lock, flags);
2913
2914 return pending;
2915}
2916
e6c3a2a6
CW
2917static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2918{
0f91128d 2919 struct drm_device *dev = crtc->dev;
5bb61643 2920 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6
CW
2921
2922 if (crtc->fb == NULL)
2923 return;
2924
5bb61643
CW
2925 wait_event(dev_priv->pending_flip_queue,
2926 !intel_crtc_has_pending_flip(crtc));
2927
0f91128d
CW
2928 mutex_lock(&dev->struct_mutex);
2929 intel_finish_fb(crtc->fb);
2930 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2931}
2932
fc316cbe 2933static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
040484af
JB
2934{
2935 struct drm_device *dev = crtc->dev;
228d3e36 2936 struct intel_encoder *intel_encoder;
040484af
JB
2937
2938 /*
2939 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2940 * must be driven by its own crtc; no sharing is possible.
2941 */
228d3e36 2942 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
228d3e36 2943 switch (intel_encoder->type) {
040484af 2944 case INTEL_OUTPUT_EDP:
228d3e36 2945 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2946 return false;
2947 continue;
2948 }
2949 }
2950
2951 return true;
2952}
2953
fc316cbe
PZ
2954static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2955{
2956 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2957}
2958
e615efe4
ED
2959/* Program iCLKIP clock to the desired frequency */
2960static void lpt_program_iclkip(struct drm_crtc *crtc)
2961{
2962 struct drm_device *dev = crtc->dev;
2963 struct drm_i915_private *dev_priv = dev->dev_private;
2964 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2965 u32 temp;
2966
2967 /* It is necessary to ungate the pixclk gate prior to programming
2968 * the divisors, and gate it back when it is done.
2969 */
2970 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2971
2972 /* Disable SSCCTL */
2973 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2974 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2975 SBI_SSCCTL_DISABLE);
2976
2977 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2978 if (crtc->mode.clock == 20000) {
2979 auxdiv = 1;
2980 divsel = 0x41;
2981 phaseinc = 0x20;
2982 } else {
2983 /* The iCLK virtual clock root frequency is in MHz,
2984 * but the crtc->mode.clock in in KHz. To get the divisors,
2985 * it is necessary to divide one by another, so we
2986 * convert the virtual clock precision to KHz here for higher
2987 * precision.
2988 */
2989 u32 iclk_virtual_root_freq = 172800 * 1000;
2990 u32 iclk_pi_range = 64;
2991 u32 desired_divisor, msb_divisor_value, pi_value;
2992
2993 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2994 msb_divisor_value = desired_divisor / iclk_pi_range;
2995 pi_value = desired_divisor % iclk_pi_range;
2996
2997 auxdiv = 0;
2998 divsel = msb_divisor_value - 2;
2999 phaseinc = pi_value;
3000 }
3001
3002 /* This should not happen with any sane values */
3003 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3004 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3005 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3006 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3007
3008 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3009 crtc->mode.clock,
3010 auxdiv,
3011 divsel,
3012 phasedir,
3013 phaseinc);
3014
3015 /* Program SSCDIVINTPHASE6 */
3016 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3017 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3018 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3019 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3020 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3021 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3022 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3023
3024 intel_sbi_write(dev_priv,
3025 SBI_SSCDIVINTPHASE6,
3026 temp);
3027
3028 /* Program SSCAUXDIV */
3029 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3030 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3031 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3032 intel_sbi_write(dev_priv,
3033 SBI_SSCAUXDIV6,
3034 temp);
3035
3036
3037 /* Enable modulator and associated divider */
3038 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3039 temp &= ~SBI_SSCCTL_DISABLE;
3040 intel_sbi_write(dev_priv,
3041 SBI_SSCCTL6,
3042 temp);
3043
3044 /* Wait for initialization time */
3045 udelay(24);
3046
3047 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3048}
3049
f67a559d
JB
3050/*
3051 * Enable PCH resources required for PCH ports:
3052 * - PCH PLLs
3053 * - FDI training & RX/TX
3054 * - update transcoder timings
3055 * - DP transcoding bits
3056 * - transcoder
3057 */
3058static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3059{
3060 struct drm_device *dev = crtc->dev;
3061 struct drm_i915_private *dev_priv = dev->dev_private;
3062 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3063 int pipe = intel_crtc->pipe;
ee7b9f93 3064 u32 reg, temp;
2c07245f 3065
e7e164db
CW
3066 assert_transcoder_disabled(dev_priv, pipe);
3067
cd986abb
DV
3068 /* Write the TU size bits before fdi link training, so that error
3069 * detection works. */
3070 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3071 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3072
c98e9dcf 3073 /* For PCH output, training FDI link */
674cf967 3074 dev_priv->display.fdi_link_train(crtc);
2c07245f 3075
572deb37
DV
3076 /* XXX: pch pll's can be enabled any time before we enable the PCH
3077 * transcoder, and we actually should do this to not upset any PCH
3078 * transcoder that already use the clock when we share it.
3079 *
3080 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3081 * unconditionally resets the pll - we need that to have the right LVDS
3082 * enable sequence. */
b6b4e185 3083 ironlake_enable_pch_pll(intel_crtc);
6f13b7b5 3084
303b81e0 3085 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3086 u32 sel;
4b645f14 3087
c98e9dcf 3088 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
3089 switch (pipe) {
3090 default:
3091 case 0:
3092 temp |= TRANSA_DPLL_ENABLE;
3093 sel = TRANSA_DPLLB_SEL;
3094 break;
3095 case 1:
3096 temp |= TRANSB_DPLL_ENABLE;
3097 sel = TRANSB_DPLLB_SEL;
3098 break;
3099 case 2:
3100 temp |= TRANSC_DPLL_ENABLE;
3101 sel = TRANSC_DPLLB_SEL;
3102 break;
d64311ab 3103 }
ee7b9f93
JB
3104 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3105 temp |= sel;
3106 else
3107 temp &= ~sel;
c98e9dcf 3108 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3109 }
5eddb70b 3110
d9b6cb56
JB
3111 /* set transcoder timing, panel must allow it */
3112 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3113 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3114 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3115 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3116
5eddb70b
CW
3117 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3118 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3119 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3120 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3121
303b81e0 3122 intel_fdi_normal_train(crtc);
5e84e1a4 3123
c98e9dcf
JB
3124 /* For PCH DP, enable TRANS_DP_CTL */
3125 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3126 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3127 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3128 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3129 reg = TRANS_DP_CTL(pipe);
3130 temp = I915_READ(reg);
3131 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3132 TRANS_DP_SYNC_MASK |
3133 TRANS_DP_BPC_MASK);
5eddb70b
CW
3134 temp |= (TRANS_DP_OUTPUT_ENABLE |
3135 TRANS_DP_ENH_FRAMING);
9325c9f0 3136 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3137
3138 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3139 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3140 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3141 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3142
3143 switch (intel_trans_dp_port_sel(crtc)) {
3144 case PCH_DP_B:
5eddb70b 3145 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3146 break;
3147 case PCH_DP_C:
5eddb70b 3148 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3149 break;
3150 case PCH_DP_D:
5eddb70b 3151 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3152 break;
3153 default:
e95d41e1 3154 BUG();
32f9d658 3155 }
2c07245f 3156
5eddb70b 3157 I915_WRITE(reg, temp);
6be4a607 3158 }
b52eb4dc 3159
b8a4f404 3160 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3161}
3162
1507e5bd
PZ
3163static void lpt_pch_enable(struct drm_crtc *crtc)
3164{
3165 struct drm_device *dev = crtc->dev;
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
daed2dbb 3168 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
1507e5bd 3169
daed2dbb 3170 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3171
8c52b5e8 3172 lpt_program_iclkip(crtc);
1507e5bd 3173
0540e488 3174 /* Set transcoder timing. */
daed2dbb
PZ
3175 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3176 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3177 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
1507e5bd 3178
daed2dbb
PZ
3179 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3180 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3181 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3182 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
1507e5bd 3183
937bb610 3184 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3185}
3186
ee7b9f93
JB
3187static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3188{
3189 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3190
3191 if (pll == NULL)
3192 return;
3193
3194 if (pll->refcount == 0) {
3195 WARN(1, "bad PCH PLL refcount\n");
3196 return;
3197 }
3198
3199 --pll->refcount;
3200 intel_crtc->pch_pll = NULL;
3201}
3202
3203static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3204{
3205 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3206 struct intel_pch_pll *pll;
3207 int i;
3208
3209 pll = intel_crtc->pch_pll;
3210 if (pll) {
3211 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3212 intel_crtc->base.base.id, pll->pll_reg);
3213 goto prepare;
3214 }
3215
98b6bd99
DV
3216 if (HAS_PCH_IBX(dev_priv->dev)) {
3217 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3218 i = intel_crtc->pipe;
3219 pll = &dev_priv->pch_plls[i];
3220
3221 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3222 intel_crtc->base.base.id, pll->pll_reg);
3223
3224 goto found;
3225 }
3226
ee7b9f93
JB
3227 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3228 pll = &dev_priv->pch_plls[i];
3229
3230 /* Only want to check enabled timings first */
3231 if (pll->refcount == 0)
3232 continue;
3233
3234 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3235 fp == I915_READ(pll->fp0_reg)) {
3236 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3237 intel_crtc->base.base.id,
3238 pll->pll_reg, pll->refcount, pll->active);
3239
3240 goto found;
3241 }
3242 }
3243
3244 /* Ok no matching timings, maybe there's a free one? */
3245 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3246 pll = &dev_priv->pch_plls[i];
3247 if (pll->refcount == 0) {
3248 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3249 intel_crtc->base.base.id, pll->pll_reg);
3250 goto found;
3251 }
3252 }
3253
3254 return NULL;
3255
3256found:
3257 intel_crtc->pch_pll = pll;
3258 pll->refcount++;
3259 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3260prepare: /* separate function? */
3261 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3262
e04c7350
CW
3263 /* Wait for the clocks to stabilize before rewriting the regs */
3264 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3265 POSTING_READ(pll->pll_reg);
3266 udelay(150);
e04c7350
CW
3267
3268 I915_WRITE(pll->fp0_reg, fp);
3269 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3270 pll->on = false;
3271 return pll;
3272}
3273
d4270e57
JB
3274void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3275{
3276 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3277 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3278 u32 temp;
3279
3280 temp = I915_READ(dslreg);
3281 udelay(500);
3282 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57
JB
3283 if (wait_for(I915_READ(dslreg) != temp, 5))
3284 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3285 }
3286}
3287
f67a559d
JB
3288static void ironlake_crtc_enable(struct drm_crtc *crtc)
3289{
3290 struct drm_device *dev = crtc->dev;
3291 struct drm_i915_private *dev_priv = dev->dev_private;
3292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3293 struct intel_encoder *encoder;
f67a559d
JB
3294 int pipe = intel_crtc->pipe;
3295 int plane = intel_crtc->plane;
3296 u32 temp;
3297 bool is_pch_port;
3298
08a48469
DV
3299 WARN_ON(!crtc->enabled);
3300
f67a559d
JB
3301 if (intel_crtc->active)
3302 return;
3303
3304 intel_crtc->active = true;
3305 intel_update_watermarks(dev);
3306
3307 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3308 temp = I915_READ(PCH_LVDS);
3309 if ((temp & LVDS_PORT_EN) == 0)
3310 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3311 }
3312
fc316cbe 3313 is_pch_port = ironlake_crtc_driving_pch(crtc);
f67a559d 3314
46b6f814 3315 if (is_pch_port) {
fff367c7
DV
3316 /* Note: FDI PLL enabling _must_ be done before we enable the
3317 * cpu pipes, hence this is separate from all the other fdi/pch
3318 * enabling. */
88cefb6c 3319 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3320 } else {
3321 assert_fdi_tx_disabled(dev_priv, pipe);
3322 assert_fdi_rx_disabled(dev_priv, pipe);
3323 }
f67a559d 3324
bf49ec8c
DV
3325 for_each_encoder_on_crtc(dev, crtc, encoder)
3326 if (encoder->pre_enable)
3327 encoder->pre_enable(encoder);
f67a559d
JB
3328
3329 /* Enable panel fitting for LVDS */
3330 if (dev_priv->pch_pf_size &&
547dc041
JN
3331 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3332 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
f67a559d
JB
3333 /* Force use of hard-coded filter coefficients
3334 * as some pre-programmed values are broken,
3335 * e.g. x201.
3336 */
13888d78
PZ
3337 if (IS_IVYBRIDGE(dev))
3338 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3339 PF_PIPE_SEL_IVB(pipe));
3340 else
3341 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
9db4a9c7
JB
3342 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3343 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3344 }
3345
9c54c0dd
JB
3346 /*
3347 * On ILK+ LUT must be loaded before the pipe is running but with
3348 * clocks enabled
3349 */
3350 intel_crtc_load_lut(crtc);
3351
f67a559d
JB
3352 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3353 intel_enable_plane(dev_priv, plane, pipe);
3354
3355 if (is_pch_port)
3356 ironlake_pch_enable(crtc);
c98e9dcf 3357
d1ebd816 3358 mutex_lock(&dev->struct_mutex);
bed4a673 3359 intel_update_fbc(dev);
d1ebd816
BW
3360 mutex_unlock(&dev->struct_mutex);
3361
6b383a7f 3362 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3363
fa5c73b1
DV
3364 for_each_encoder_on_crtc(dev, crtc, encoder)
3365 encoder->enable(encoder);
61b77ddd
DV
3366
3367 if (HAS_PCH_CPT(dev))
3368 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100
DV
3369
3370 /*
3371 * There seems to be a race in PCH platform hw (at least on some
3372 * outputs) where an enabled pipe still completes any pageflip right
3373 * away (as if the pipe is off) instead of waiting for vblank. As soon
3374 * as the first vblank happend, everything works as expected. Hence just
3375 * wait for one vblank before returning to avoid strange things
3376 * happening.
3377 */
3378 intel_wait_for_vblank(dev, intel_crtc->pipe);
6be4a607
JB
3379}
3380
4f771f10
PZ
3381static void haswell_crtc_enable(struct drm_crtc *crtc)
3382{
3383 struct drm_device *dev = crtc->dev;
3384 struct drm_i915_private *dev_priv = dev->dev_private;
3385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386 struct intel_encoder *encoder;
3387 int pipe = intel_crtc->pipe;
3388 int plane = intel_crtc->plane;
4f771f10
PZ
3389 bool is_pch_port;
3390
3391 WARN_ON(!crtc->enabled);
3392
3393 if (intel_crtc->active)
3394 return;
3395
3396 intel_crtc->active = true;
3397 intel_update_watermarks(dev);
3398
fc316cbe 3399 is_pch_port = haswell_crtc_driving_pch(crtc);
4f771f10 3400
83616634 3401 if (is_pch_port)
04945641 3402 dev_priv->display.fdi_link_train(crtc);
4f771f10
PZ
3403
3404 for_each_encoder_on_crtc(dev, crtc, encoder)
3405 if (encoder->pre_enable)
3406 encoder->pre_enable(encoder);
3407
1f544388 3408 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 3409
1f544388 3410 /* Enable panel fitting for eDP */
547dc041
JN
3411 if (dev_priv->pch_pf_size &&
3412 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4f771f10
PZ
3413 /* Force use of hard-coded filter coefficients
3414 * as some pre-programmed values are broken,
3415 * e.g. x201.
3416 */
54075a7d
PZ
3417 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3418 PF_PIPE_SEL_IVB(pipe));
4f771f10
PZ
3419 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3420 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3421 }
3422
3423 /*
3424 * On ILK+ LUT must be loaded before the pipe is running but with
3425 * clocks enabled
3426 */
3427 intel_crtc_load_lut(crtc);
3428
1f544388
PZ
3429 intel_ddi_set_pipe_settings(crtc);
3430 intel_ddi_enable_pipe_func(crtc);
4f771f10
PZ
3431
3432 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3433 intel_enable_plane(dev_priv, plane, pipe);
3434
3435 if (is_pch_port)
1507e5bd 3436 lpt_pch_enable(crtc);
4f771f10
PZ
3437
3438 mutex_lock(&dev->struct_mutex);
3439 intel_update_fbc(dev);
3440 mutex_unlock(&dev->struct_mutex);
3441
3442 intel_crtc_update_cursor(crtc, true);
3443
3444 for_each_encoder_on_crtc(dev, crtc, encoder)
3445 encoder->enable(encoder);
3446
4f771f10
PZ
3447 /*
3448 * There seems to be a race in PCH platform hw (at least on some
3449 * outputs) where an enabled pipe still completes any pageflip right
3450 * away (as if the pipe is off) instead of waiting for vblank. As soon
3451 * as the first vblank happend, everything works as expected. Hence just
3452 * wait for one vblank before returning to avoid strange things
3453 * happening.
3454 */
3455 intel_wait_for_vblank(dev, intel_crtc->pipe);
3456}
3457
6be4a607
JB
3458static void ironlake_crtc_disable(struct drm_crtc *crtc)
3459{
3460 struct drm_device *dev = crtc->dev;
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3463 struct intel_encoder *encoder;
6be4a607
JB
3464 int pipe = intel_crtc->pipe;
3465 int plane = intel_crtc->plane;
5eddb70b 3466 u32 reg, temp;
b52eb4dc 3467
ef9c3aee 3468
f7abfe8b
CW
3469 if (!intel_crtc->active)
3470 return;
3471
ea9d758d
DV
3472 for_each_encoder_on_crtc(dev, crtc, encoder)
3473 encoder->disable(encoder);
3474
e6c3a2a6 3475 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3476 drm_vblank_off(dev, pipe);
6b383a7f 3477 intel_crtc_update_cursor(crtc, false);
5eddb70b 3478
b24e7179 3479 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3480
973d04f9
CW
3481 if (dev_priv->cfb_plane == plane)
3482 intel_disable_fbc(dev);
2c07245f 3483
b24e7179 3484 intel_disable_pipe(dev_priv, pipe);
32f9d658 3485
6be4a607 3486 /* Disable PF */
9db4a9c7
JB
3487 I915_WRITE(PF_CTL(pipe), 0);
3488 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3489
bf49ec8c
DV
3490 for_each_encoder_on_crtc(dev, crtc, encoder)
3491 if (encoder->post_disable)
3492 encoder->post_disable(encoder);
2c07245f 3493
0fc932b8 3494 ironlake_fdi_disable(crtc);
249c0e64 3495
b8a4f404 3496 ironlake_disable_pch_transcoder(dev_priv, pipe);
913d8d11 3497
6be4a607
JB
3498 if (HAS_PCH_CPT(dev)) {
3499 /* disable TRANS_DP_CTL */
5eddb70b
CW
3500 reg = TRANS_DP_CTL(pipe);
3501 temp = I915_READ(reg);
3502 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3503 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3504 I915_WRITE(reg, temp);
6be4a607
JB
3505
3506 /* disable DPLL_SEL */
3507 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3508 switch (pipe) {
3509 case 0:
d64311ab 3510 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3511 break;
3512 case 1:
6be4a607 3513 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3514 break;
3515 case 2:
4b645f14 3516 /* C shares PLL A or B */
d64311ab 3517 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3518 break;
3519 default:
3520 BUG(); /* wtf */
3521 }
6be4a607 3522 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3523 }
e3421a18 3524
6be4a607 3525 /* disable PCH DPLL */
ee7b9f93 3526 intel_disable_pch_pll(intel_crtc);
8db9d77b 3527
88cefb6c 3528 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3529
f7abfe8b 3530 intel_crtc->active = false;
6b383a7f 3531 intel_update_watermarks(dev);
d1ebd816
BW
3532
3533 mutex_lock(&dev->struct_mutex);
6b383a7f 3534 intel_update_fbc(dev);
d1ebd816 3535 mutex_unlock(&dev->struct_mutex);
6be4a607 3536}
1b3c7a47 3537
4f771f10 3538static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 3539{
4f771f10
PZ
3540 struct drm_device *dev = crtc->dev;
3541 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 3542 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
3543 struct intel_encoder *encoder;
3544 int pipe = intel_crtc->pipe;
3545 int plane = intel_crtc->plane;
ad80a810 3546 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
83616634 3547 bool is_pch_port;
ee7b9f93 3548
4f771f10
PZ
3549 if (!intel_crtc->active)
3550 return;
3551
83616634
PZ
3552 is_pch_port = haswell_crtc_driving_pch(crtc);
3553
4f771f10
PZ
3554 for_each_encoder_on_crtc(dev, crtc, encoder)
3555 encoder->disable(encoder);
3556
3557 intel_crtc_wait_for_pending_flips(crtc);
3558 drm_vblank_off(dev, pipe);
3559 intel_crtc_update_cursor(crtc, false);
3560
3561 intel_disable_plane(dev_priv, plane, pipe);
3562
3563 if (dev_priv->cfb_plane == plane)
3564 intel_disable_fbc(dev);
3565
3566 intel_disable_pipe(dev_priv, pipe);
3567
ad80a810 3568 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10
PZ
3569
3570 /* Disable PF */
3571 I915_WRITE(PF_CTL(pipe), 0);
3572 I915_WRITE(PF_WIN_SZ(pipe), 0);
3573
1f544388 3574 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
3575
3576 for_each_encoder_on_crtc(dev, crtc, encoder)
3577 if (encoder->post_disable)
3578 encoder->post_disable(encoder);
3579
83616634 3580 if (is_pch_port) {
ab4d966c 3581 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 3582 intel_ddi_fdi_disable(crtc);
83616634 3583 }
4f771f10
PZ
3584
3585 intel_crtc->active = false;
3586 intel_update_watermarks(dev);
3587
3588 mutex_lock(&dev->struct_mutex);
3589 intel_update_fbc(dev);
3590 mutex_unlock(&dev->struct_mutex);
3591}
3592
ee7b9f93
JB
3593static void ironlake_crtc_off(struct drm_crtc *crtc)
3594{
3595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3596 intel_put_pch_pll(intel_crtc);
3597}
3598
6441ab5f
PZ
3599static void haswell_crtc_off(struct drm_crtc *crtc)
3600{
a5c961d1
PZ
3601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3602
3603 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3604 * start using it. */
3605 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3606
6441ab5f
PZ
3607 intel_ddi_put_crtc_pll(crtc);
3608}
3609
02e792fb
DV
3610static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3611{
02e792fb 3612 if (!enable && intel_crtc->overlay) {
23f09ce3 3613 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3614 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3615
23f09ce3 3616 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3617 dev_priv->mm.interruptible = false;
3618 (void) intel_overlay_switch_off(intel_crtc->overlay);
3619 dev_priv->mm.interruptible = true;
23f09ce3 3620 mutex_unlock(&dev->struct_mutex);
02e792fb 3621 }
02e792fb 3622
5dcdbcb0
CW
3623 /* Let userspace switch the overlay on again. In most cases userspace
3624 * has to recompute where to put it anyway.
3625 */
02e792fb
DV
3626}
3627
0b8765c6 3628static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3629{
3630 struct drm_device *dev = crtc->dev;
79e53945
JB
3631 struct drm_i915_private *dev_priv = dev->dev_private;
3632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3633 struct intel_encoder *encoder;
79e53945 3634 int pipe = intel_crtc->pipe;
80824003 3635 int plane = intel_crtc->plane;
79e53945 3636
08a48469
DV
3637 WARN_ON(!crtc->enabled);
3638
f7abfe8b
CW
3639 if (intel_crtc->active)
3640 return;
3641
3642 intel_crtc->active = true;
6b383a7f
CW
3643 intel_update_watermarks(dev);
3644
63d7bbe9 3645 intel_enable_pll(dev_priv, pipe);
040484af 3646 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3647 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3648
0b8765c6 3649 intel_crtc_load_lut(crtc);
bed4a673 3650 intel_update_fbc(dev);
79e53945 3651
0b8765c6
JB
3652 /* Give the overlay scaler a chance to enable if it's on this pipe */
3653 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3654 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3655
fa5c73b1
DV
3656 for_each_encoder_on_crtc(dev, crtc, encoder)
3657 encoder->enable(encoder);
0b8765c6 3658}
79e53945 3659
0b8765c6
JB
3660static void i9xx_crtc_disable(struct drm_crtc *crtc)
3661{
3662 struct drm_device *dev = crtc->dev;
3663 struct drm_i915_private *dev_priv = dev->dev_private;
3664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3665 struct intel_encoder *encoder;
0b8765c6
JB
3666 int pipe = intel_crtc->pipe;
3667 int plane = intel_crtc->plane;
b690e96c 3668
ef9c3aee 3669
f7abfe8b
CW
3670 if (!intel_crtc->active)
3671 return;
3672
ea9d758d
DV
3673 for_each_encoder_on_crtc(dev, crtc, encoder)
3674 encoder->disable(encoder);
3675
0b8765c6 3676 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3677 intel_crtc_wait_for_pending_flips(crtc);
3678 drm_vblank_off(dev, pipe);
0b8765c6 3679 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3680 intel_crtc_update_cursor(crtc, false);
0b8765c6 3681
973d04f9
CW
3682 if (dev_priv->cfb_plane == plane)
3683 intel_disable_fbc(dev);
79e53945 3684
b24e7179 3685 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3686 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3687 intel_disable_pll(dev_priv, pipe);
0b8765c6 3688
f7abfe8b 3689 intel_crtc->active = false;
6b383a7f
CW
3690 intel_update_fbc(dev);
3691 intel_update_watermarks(dev);
0b8765c6
JB
3692}
3693
ee7b9f93
JB
3694static void i9xx_crtc_off(struct drm_crtc *crtc)
3695{
3696}
3697
976f8a20
DV
3698static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3699 bool enabled)
2c07245f
ZW
3700{
3701 struct drm_device *dev = crtc->dev;
3702 struct drm_i915_master_private *master_priv;
3703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3704 int pipe = intel_crtc->pipe;
79e53945
JB
3705
3706 if (!dev->primary->master)
3707 return;
3708
3709 master_priv = dev->primary->master->driver_priv;
3710 if (!master_priv->sarea_priv)
3711 return;
3712
79e53945
JB
3713 switch (pipe) {
3714 case 0:
3715 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3716 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3717 break;
3718 case 1:
3719 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3720 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3721 break;
3722 default:
9db4a9c7 3723 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3724 break;
3725 }
79e53945
JB
3726}
3727
976f8a20
DV
3728/**
3729 * Sets the power management mode of the pipe and plane.
3730 */
3731void intel_crtc_update_dpms(struct drm_crtc *crtc)
3732{
3733 struct drm_device *dev = crtc->dev;
3734 struct drm_i915_private *dev_priv = dev->dev_private;
3735 struct intel_encoder *intel_encoder;
3736 bool enable = false;
3737
3738 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3739 enable |= intel_encoder->connectors_active;
3740
3741 if (enable)
3742 dev_priv->display.crtc_enable(crtc);
3743 else
3744 dev_priv->display.crtc_disable(crtc);
3745
3746 intel_crtc_update_sarea(crtc, enable);
3747}
3748
3749static void intel_crtc_noop(struct drm_crtc *crtc)
3750{
3751}
3752
cdd59983
CW
3753static void intel_crtc_disable(struct drm_crtc *crtc)
3754{
cdd59983 3755 struct drm_device *dev = crtc->dev;
976f8a20 3756 struct drm_connector *connector;
ee7b9f93 3757 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3758
976f8a20
DV
3759 /* crtc should still be enabled when we disable it. */
3760 WARN_ON(!crtc->enabled);
3761
3762 dev_priv->display.crtc_disable(crtc);
3763 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3764 dev_priv->display.off(crtc);
3765
931872fc
CW
3766 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3767 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3768
3769 if (crtc->fb) {
3770 mutex_lock(&dev->struct_mutex);
1690e1eb 3771 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3772 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3773 crtc->fb = NULL;
3774 }
3775
3776 /* Update computed state. */
3777 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3778 if (!connector->encoder || !connector->encoder->crtc)
3779 continue;
3780
3781 if (connector->encoder->crtc != crtc)
3782 continue;
3783
3784 connector->dpms = DRM_MODE_DPMS_OFF;
3785 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3786 }
3787}
3788
a261b246 3789void intel_modeset_disable(struct drm_device *dev)
79e53945 3790{
a261b246
DV
3791 struct drm_crtc *crtc;
3792
3793 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3794 if (crtc->enabled)
3795 intel_crtc_disable(crtc);
3796 }
79e53945
JB
3797}
3798
1f703855 3799void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3800{
7e7d76c3
JB
3801}
3802
ea5b213a 3803void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3804{
4ef69c7a 3805 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3806
ea5b213a
CW
3807 drm_encoder_cleanup(encoder);
3808 kfree(intel_encoder);
7e7d76c3
JB
3809}
3810
5ab432ef
DV
3811/* Simple dpms helper for encodres with just one connector, no cloning and only
3812 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3813 * state of the entire output pipe. */
3814void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3815{
5ab432ef
DV
3816 if (mode == DRM_MODE_DPMS_ON) {
3817 encoder->connectors_active = true;
3818
b2cabb0e 3819 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3820 } else {
3821 encoder->connectors_active = false;
3822
b2cabb0e 3823 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3824 }
79e53945
JB
3825}
3826
0a91ca29
DV
3827/* Cross check the actual hw state with our own modeset state tracking (and it's
3828 * internal consistency). */
b980514c 3829static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3830{
0a91ca29
DV
3831 if (connector->get_hw_state(connector)) {
3832 struct intel_encoder *encoder = connector->encoder;
3833 struct drm_crtc *crtc;
3834 bool encoder_enabled;
3835 enum pipe pipe;
3836
3837 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3838 connector->base.base.id,
3839 drm_get_connector_name(&connector->base));
3840
3841 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3842 "wrong connector dpms state\n");
3843 WARN(connector->base.encoder != &encoder->base,
3844 "active connector not linked to encoder\n");
3845 WARN(!encoder->connectors_active,
3846 "encoder->connectors_active not set\n");
3847
3848 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3849 WARN(!encoder_enabled, "encoder not enabled\n");
3850 if (WARN_ON(!encoder->base.crtc))
3851 return;
3852
3853 crtc = encoder->base.crtc;
3854
3855 WARN(!crtc->enabled, "crtc not enabled\n");
3856 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3857 WARN(pipe != to_intel_crtc(crtc)->pipe,
3858 "encoder active on the wrong pipe\n");
3859 }
79e53945
JB
3860}
3861
5ab432ef
DV
3862/* Even simpler default implementation, if there's really no special case to
3863 * consider. */
3864void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3865{
5ab432ef 3866 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3867
5ab432ef
DV
3868 /* All the simple cases only support two dpms states. */
3869 if (mode != DRM_MODE_DPMS_ON)
3870 mode = DRM_MODE_DPMS_OFF;
d4270e57 3871
5ab432ef
DV
3872 if (mode == connector->dpms)
3873 return;
3874
3875 connector->dpms = mode;
3876
3877 /* Only need to change hw state when actually enabled */
3878 if (encoder->base.crtc)
3879 intel_encoder_dpms(encoder, mode);
3880 else
8af6cf88 3881 WARN_ON(encoder->connectors_active != false);
0a91ca29 3882
b980514c 3883 intel_modeset_check_state(connector->dev);
79e53945
JB
3884}
3885
f0947c37
DV
3886/* Simple connector->get_hw_state implementation for encoders that support only
3887 * one connector and no cloning and hence the encoder state determines the state
3888 * of the connector. */
3889bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3890{
24929352 3891 enum pipe pipe = 0;
f0947c37 3892 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3893
f0947c37 3894 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3895}
3896
79e53945 3897static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3898 const struct drm_display_mode *mode,
79e53945
JB
3899 struct drm_display_mode *adjusted_mode)
3900{
2c07245f 3901 struct drm_device *dev = crtc->dev;
89749350 3902
bad720ff 3903 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3904 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3905 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3906 return false;
2c07245f 3907 }
89749350 3908
f9bef081
DV
3909 /* All interlaced capable intel hw wants timings in frames. Note though
3910 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3911 * timings, so we need to be careful not to clobber these.*/
3912 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3913 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3914
44f46b42
CW
3915 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3916 * with a hsync front porch of 0.
3917 */
3918 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3919 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3920 return false;
3921
79e53945
JB
3922 return true;
3923}
3924
25eb05fc
JB
3925static int valleyview_get_display_clock_speed(struct drm_device *dev)
3926{
3927 return 400000; /* FIXME */
3928}
3929
e70236a8
JB
3930static int i945_get_display_clock_speed(struct drm_device *dev)
3931{
3932 return 400000;
3933}
79e53945 3934
e70236a8 3935static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3936{
e70236a8
JB
3937 return 333000;
3938}
79e53945 3939
e70236a8
JB
3940static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3941{
3942 return 200000;
3943}
79e53945 3944
e70236a8
JB
3945static int i915gm_get_display_clock_speed(struct drm_device *dev)
3946{
3947 u16 gcfgc = 0;
79e53945 3948
e70236a8
JB
3949 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3950
3951 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3952 return 133000;
3953 else {
3954 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3955 case GC_DISPLAY_CLOCK_333_MHZ:
3956 return 333000;
3957 default:
3958 case GC_DISPLAY_CLOCK_190_200_MHZ:
3959 return 190000;
79e53945 3960 }
e70236a8
JB
3961 }
3962}
3963
3964static int i865_get_display_clock_speed(struct drm_device *dev)
3965{
3966 return 266000;
3967}
3968
3969static int i855_get_display_clock_speed(struct drm_device *dev)
3970{
3971 u16 hpllcc = 0;
3972 /* Assume that the hardware is in the high speed state. This
3973 * should be the default.
3974 */
3975 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3976 case GC_CLOCK_133_200:
3977 case GC_CLOCK_100_200:
3978 return 200000;
3979 case GC_CLOCK_166_250:
3980 return 250000;
3981 case GC_CLOCK_100_133:
79e53945 3982 return 133000;
e70236a8 3983 }
79e53945 3984
e70236a8
JB
3985 /* Shouldn't happen */
3986 return 0;
3987}
79e53945 3988
e70236a8
JB
3989static int i830_get_display_clock_speed(struct drm_device *dev)
3990{
3991 return 133000;
79e53945
JB
3992}
3993
2c07245f
ZW
3994struct fdi_m_n {
3995 u32 tu;
3996 u32 gmch_m;
3997 u32 gmch_n;
3998 u32 link_m;
3999 u32 link_n;
4000};
4001
4002static void
4003fdi_reduce_ratio(u32 *num, u32 *den)
4004{
4005 while (*num > 0xffffff || *den > 0xffffff) {
4006 *num >>= 1;
4007 *den >>= 1;
4008 }
4009}
4010
2c07245f 4011static void
f2b115e6
AJ
4012ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4013 int link_clock, struct fdi_m_n *m_n)
2c07245f 4014{
2c07245f
ZW
4015 m_n->tu = 64; /* default size */
4016
22ed1113
CW
4017 /* BUG_ON(pixel_clock > INT_MAX / 36); */
4018 m_n->gmch_m = bits_per_pixel * pixel_clock;
4019 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
4020 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4021
22ed1113
CW
4022 m_n->link_m = pixel_clock;
4023 m_n->link_n = link_clock;
2c07245f
ZW
4024 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4025}
4026
a7615030
CW
4027static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4028{
72bbe58c
KP
4029 if (i915_panel_use_ssc >= 0)
4030 return i915_panel_use_ssc != 0;
4031 return dev_priv->lvds_use_ssc
435793df 4032 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4033}
4034
5a354204
JB
4035/**
4036 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4037 * @crtc: CRTC structure
3b5c78a3 4038 * @mode: requested mode
5a354204
JB
4039 *
4040 * A pipe may be connected to one or more outputs. Based on the depth of the
4041 * attached framebuffer, choose a good color depth to use on the pipe.
4042 *
4043 * If possible, match the pipe depth to the fb depth. In some cases, this
4044 * isn't ideal, because the connected output supports a lesser or restricted
4045 * set of depths. Resolve that here:
4046 * LVDS typically supports only 6bpc, so clamp down in that case
4047 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4048 * Displays may support a restricted set as well, check EDID and clamp as
4049 * appropriate.
3b5c78a3 4050 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
4051 *
4052 * RETURNS:
4053 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4054 * true if they don't match).
4055 */
4056static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 4057 struct drm_framebuffer *fb,
3b5c78a3
AJ
4058 unsigned int *pipe_bpp,
4059 struct drm_display_mode *mode)
5a354204
JB
4060{
4061 struct drm_device *dev = crtc->dev;
4062 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 4063 struct drm_connector *connector;
6c2b7c12 4064 struct intel_encoder *intel_encoder;
5a354204
JB
4065 unsigned int display_bpc = UINT_MAX, bpc;
4066
4067 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 4068 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
4069
4070 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4071 unsigned int lvds_bpc;
4072
4073 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4074 LVDS_A3_POWER_UP)
4075 lvds_bpc = 8;
4076 else
4077 lvds_bpc = 6;
4078
4079 if (lvds_bpc < display_bpc) {
82820490 4080 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
4081 display_bpc = lvds_bpc;
4082 }
4083 continue;
4084 }
4085
5a354204
JB
4086 /* Not one of the known troublemakers, check the EDID */
4087 list_for_each_entry(connector, &dev->mode_config.connector_list,
4088 head) {
6c2b7c12 4089 if (connector->encoder != &intel_encoder->base)
5a354204
JB
4090 continue;
4091
62ac41a6
JB
4092 /* Don't use an invalid EDID bpc value */
4093 if (connector->display_info.bpc &&
4094 connector->display_info.bpc < display_bpc) {
82820490 4095 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
4096 display_bpc = connector->display_info.bpc;
4097 }
4098 }
4099
4100 /*
4101 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4102 * through, clamp it down. (Note: >12bpc will be caught below.)
4103 */
4104 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4105 if (display_bpc > 8 && display_bpc < 12) {
82820490 4106 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
4107 display_bpc = 12;
4108 } else {
82820490 4109 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
4110 display_bpc = 8;
4111 }
4112 }
4113 }
4114
3b5c78a3
AJ
4115 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4116 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4117 display_bpc = 6;
4118 }
4119
5a354204
JB
4120 /*
4121 * We could just drive the pipe at the highest bpc all the time and
4122 * enable dithering as needed, but that costs bandwidth. So choose
4123 * the minimum value that expresses the full color range of the fb but
4124 * also stays within the max display bpc discovered above.
4125 */
4126
94352cf9 4127 switch (fb->depth) {
5a354204
JB
4128 case 8:
4129 bpc = 8; /* since we go through a colormap */
4130 break;
4131 case 15:
4132 case 16:
4133 bpc = 6; /* min is 18bpp */
4134 break;
4135 case 24:
578393cd 4136 bpc = 8;
5a354204
JB
4137 break;
4138 case 30:
578393cd 4139 bpc = 10;
5a354204
JB
4140 break;
4141 case 48:
578393cd 4142 bpc = 12;
5a354204
JB
4143 break;
4144 default:
4145 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4146 bpc = min((unsigned int)8, display_bpc);
4147 break;
4148 }
4149
578393cd
KP
4150 display_bpc = min(display_bpc, bpc);
4151
82820490
AJ
4152 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4153 bpc, display_bpc);
5a354204 4154
578393cd 4155 *pipe_bpp = display_bpc * 3;
5a354204
JB
4156
4157 return display_bpc != bpc;
4158}
4159
a0c4da24
JB
4160static int vlv_get_refclk(struct drm_crtc *crtc)
4161{
4162 struct drm_device *dev = crtc->dev;
4163 struct drm_i915_private *dev_priv = dev->dev_private;
4164 int refclk = 27000; /* for DP & HDMI */
4165
4166 return 100000; /* only one validated so far */
4167
4168 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4169 refclk = 96000;
4170 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4171 if (intel_panel_use_ssc(dev_priv))
4172 refclk = 100000;
4173 else
4174 refclk = 96000;
4175 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4176 refclk = 100000;
4177 }
4178
4179 return refclk;
4180}
4181
c65d77d8
JB
4182static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4183{
4184 struct drm_device *dev = crtc->dev;
4185 struct drm_i915_private *dev_priv = dev->dev_private;
4186 int refclk;
4187
a0c4da24
JB
4188 if (IS_VALLEYVIEW(dev)) {
4189 refclk = vlv_get_refclk(crtc);
4190 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
4191 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4192 refclk = dev_priv->lvds_ssc_freq * 1000;
4193 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4194 refclk / 1000);
4195 } else if (!IS_GEN2(dev)) {
4196 refclk = 96000;
4197 } else {
4198 refclk = 48000;
4199 }
4200
4201 return refclk;
4202}
4203
4204static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4205 intel_clock_t *clock)
4206{
4207 /* SDVO TV has fixed PLL values depend on its clock range,
4208 this mirrors vbios setting. */
4209 if (adjusted_mode->clock >= 100000
4210 && adjusted_mode->clock < 140500) {
4211 clock->p1 = 2;
4212 clock->p2 = 10;
4213 clock->n = 3;
4214 clock->m1 = 16;
4215 clock->m2 = 8;
4216 } else if (adjusted_mode->clock >= 140500
4217 && adjusted_mode->clock <= 200000) {
4218 clock->p1 = 1;
4219 clock->p2 = 10;
4220 clock->n = 6;
4221 clock->m1 = 12;
4222 clock->m2 = 8;
4223 }
4224}
4225
a7516a05
JB
4226static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4227 intel_clock_t *clock,
4228 intel_clock_t *reduced_clock)
4229{
4230 struct drm_device *dev = crtc->dev;
4231 struct drm_i915_private *dev_priv = dev->dev_private;
4232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4233 int pipe = intel_crtc->pipe;
4234 u32 fp, fp2 = 0;
4235
4236 if (IS_PINEVIEW(dev)) {
4237 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4238 if (reduced_clock)
4239 fp2 = (1 << reduced_clock->n) << 16 |
4240 reduced_clock->m1 << 8 | reduced_clock->m2;
4241 } else {
4242 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4243 if (reduced_clock)
4244 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4245 reduced_clock->m2;
4246 }
4247
4248 I915_WRITE(FP0(pipe), fp);
4249
4250 intel_crtc->lowfreq_avail = false;
4251 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4252 reduced_clock && i915_powersave) {
4253 I915_WRITE(FP1(pipe), fp2);
4254 intel_crtc->lowfreq_avail = true;
4255 } else {
4256 I915_WRITE(FP1(pipe), fp);
4257 }
4258}
4259
93e537a1
DV
4260static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4261 struct drm_display_mode *adjusted_mode)
4262{
4263 struct drm_device *dev = crtc->dev;
4264 struct drm_i915_private *dev_priv = dev->dev_private;
4265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4266 int pipe = intel_crtc->pipe;
284d5df5 4267 u32 temp;
93e537a1
DV
4268
4269 temp = I915_READ(LVDS);
4270 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4271 if (pipe == 1) {
4272 temp |= LVDS_PIPEB_SELECT;
4273 } else {
4274 temp &= ~LVDS_PIPEB_SELECT;
4275 }
4276 /* set the corresponsding LVDS_BORDER bit */
4277 temp |= dev_priv->lvds_border_bits;
4278 /* Set the B0-B3 data pairs corresponding to whether we're going to
4279 * set the DPLLs for dual-channel mode or not.
4280 */
4281 if (clock->p2 == 7)
4282 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4283 else
4284 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4285
4286 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4287 * appropriately here, but we need to look more thoroughly into how
4288 * panels behave in the two modes.
4289 */
4290 /* set the dithering flag on LVDS as needed */
4291 if (INTEL_INFO(dev)->gen >= 4) {
4292 if (dev_priv->lvds_dither)
4293 temp |= LVDS_ENABLE_DITHER;
4294 else
4295 temp &= ~LVDS_ENABLE_DITHER;
4296 }
284d5df5 4297 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4298 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4299 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4300 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4301 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4302 I915_WRITE(LVDS, temp);
4303}
4304
a0c4da24
JB
4305static void vlv_update_pll(struct drm_crtc *crtc,
4306 struct drm_display_mode *mode,
4307 struct drm_display_mode *adjusted_mode,
4308 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4309 int num_connectors)
a0c4da24
JB
4310{
4311 struct drm_device *dev = crtc->dev;
4312 struct drm_i915_private *dev_priv = dev->dev_private;
4313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4314 int pipe = intel_crtc->pipe;
4315 u32 dpll, mdiv, pdiv;
4316 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4317 bool is_sdvo;
4318 u32 temp;
a0c4da24 4319
2a8f64ca
VP
4320 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4321 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4322
2a8f64ca
VP
4323 dpll = DPLL_VGA_MODE_DIS;
4324 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4325 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4326 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4327
4328 I915_WRITE(DPLL(pipe), dpll);
4329 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4330
4331 bestn = clock->n;
4332 bestm1 = clock->m1;
4333 bestm2 = clock->m2;
4334 bestp1 = clock->p1;
4335 bestp2 = clock->p2;
4336
2a8f64ca
VP
4337 /*
4338 * In Valleyview PLL and program lane counter registers are exposed
4339 * through DPIO interface
4340 */
a0c4da24
JB
4341 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4342 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4343 mdiv |= ((bestn << DPIO_N_SHIFT));
4344 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4345 mdiv |= (1 << DPIO_K_SHIFT);
4346 mdiv |= DPIO_ENABLE_CALIBRATION;
4347 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4348
4349 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4350
2a8f64ca 4351 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4352 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4353 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4354 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4355 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4356
2a8f64ca 4357 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4358
4359 dpll |= DPLL_VCO_ENABLE;
4360 I915_WRITE(DPLL(pipe), dpll);
4361 POSTING_READ(DPLL(pipe));
4362 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4363 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4364
2a8f64ca
VP
4365 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4366
4367 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4368 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4369
4370 I915_WRITE(DPLL(pipe), dpll);
4371
4372 /* Wait for the clocks to stabilize. */
4373 POSTING_READ(DPLL(pipe));
4374 udelay(150);
a0c4da24 4375
2a8f64ca
VP
4376 temp = 0;
4377 if (is_sdvo) {
4378 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4379 if (temp > 1)
4380 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4381 else
4382 temp = 0;
a0c4da24 4383 }
2a8f64ca
VP
4384 I915_WRITE(DPLL_MD(pipe), temp);
4385 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4386
2a8f64ca
VP
4387 /* Now program lane control registers */
4388 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4389 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4390 {
4391 temp = 0x1000C4;
4392 if(pipe == 1)
4393 temp |= (1 << 21);
4394 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4395 }
4396 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4397 {
4398 temp = 0x1000C4;
4399 if(pipe == 1)
4400 temp |= (1 << 21);
4401 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4402 }
a0c4da24
JB
4403}
4404
eb1cbe48
DV
4405static void i9xx_update_pll(struct drm_crtc *crtc,
4406 struct drm_display_mode *mode,
4407 struct drm_display_mode *adjusted_mode,
4408 intel_clock_t *clock, intel_clock_t *reduced_clock,
4409 int num_connectors)
4410{
4411 struct drm_device *dev = crtc->dev;
4412 struct drm_i915_private *dev_priv = dev->dev_private;
4413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dafd226c 4414 struct intel_encoder *encoder;
eb1cbe48
DV
4415 int pipe = intel_crtc->pipe;
4416 u32 dpll;
4417 bool is_sdvo;
4418
2a8f64ca
VP
4419 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4420
eb1cbe48
DV
4421 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4422 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4423
4424 dpll = DPLL_VGA_MODE_DIS;
4425
4426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4427 dpll |= DPLLB_MODE_LVDS;
4428 else
4429 dpll |= DPLLB_MODE_DAC_SERIAL;
4430 if (is_sdvo) {
4431 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4432 if (pixel_multiplier > 1) {
4433 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4434 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4435 }
4436 dpll |= DPLL_DVO_HIGH_SPEED;
4437 }
4438 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4439 dpll |= DPLL_DVO_HIGH_SPEED;
4440
4441 /* compute bitmask from p1 value */
4442 if (IS_PINEVIEW(dev))
4443 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4444 else {
4445 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4446 if (IS_G4X(dev) && reduced_clock)
4447 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4448 }
4449 switch (clock->p2) {
4450 case 5:
4451 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4452 break;
4453 case 7:
4454 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4455 break;
4456 case 10:
4457 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4458 break;
4459 case 14:
4460 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4461 break;
4462 }
4463 if (INTEL_INFO(dev)->gen >= 4)
4464 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4465
4466 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4467 dpll |= PLL_REF_INPUT_TVCLKINBC;
4468 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4469 /* XXX: just matching BIOS for now */
4470 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4471 dpll |= 3;
4472 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4473 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4474 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4475 else
4476 dpll |= PLL_REF_INPUT_DREFCLK;
4477
4478 dpll |= DPLL_VCO_ENABLE;
4479 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4480 POSTING_READ(DPLL(pipe));
4481 udelay(150);
4482
dafd226c
DV
4483 for_each_encoder_on_crtc(dev, crtc, encoder)
4484 if (encoder->pre_pll_enable)
4485 encoder->pre_pll_enable(encoder);
4486
eb1cbe48
DV
4487 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4488 * This is an exception to the general rule that mode_set doesn't turn
4489 * things on.
4490 */
4491 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4492 intel_update_lvds(crtc, clock, adjusted_mode);
4493
4494 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4495 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4496
4497 I915_WRITE(DPLL(pipe), dpll);
4498
4499 /* Wait for the clocks to stabilize. */
4500 POSTING_READ(DPLL(pipe));
4501 udelay(150);
4502
4503 if (INTEL_INFO(dev)->gen >= 4) {
4504 u32 temp = 0;
4505 if (is_sdvo) {
4506 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4507 if (temp > 1)
4508 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4509 else
4510 temp = 0;
4511 }
4512 I915_WRITE(DPLL_MD(pipe), temp);
4513 } else {
4514 /* The pixel multiplier can only be updated once the
4515 * DPLL is enabled and the clocks are stable.
4516 *
4517 * So write it again.
4518 */
4519 I915_WRITE(DPLL(pipe), dpll);
4520 }
4521}
4522
4523static void i8xx_update_pll(struct drm_crtc *crtc,
4524 struct drm_display_mode *adjusted_mode,
2a8f64ca 4525 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4526 int num_connectors)
4527{
4528 struct drm_device *dev = crtc->dev;
4529 struct drm_i915_private *dev_priv = dev->dev_private;
4530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dafd226c 4531 struct intel_encoder *encoder;
eb1cbe48
DV
4532 int pipe = intel_crtc->pipe;
4533 u32 dpll;
4534
2a8f64ca
VP
4535 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4536
eb1cbe48
DV
4537 dpll = DPLL_VGA_MODE_DIS;
4538
4539 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4540 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4541 } else {
4542 if (clock->p1 == 2)
4543 dpll |= PLL_P1_DIVIDE_BY_TWO;
4544 else
4545 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4546 if (clock->p2 == 4)
4547 dpll |= PLL_P2_DIVIDE_BY_4;
4548 }
4549
4550 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4551 /* XXX: just matching BIOS for now */
4552 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4553 dpll |= 3;
4554 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4555 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4556 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4557 else
4558 dpll |= PLL_REF_INPUT_DREFCLK;
4559
4560 dpll |= DPLL_VCO_ENABLE;
4561 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4562 POSTING_READ(DPLL(pipe));
4563 udelay(150);
4564
dafd226c
DV
4565 for_each_encoder_on_crtc(dev, crtc, encoder)
4566 if (encoder->pre_pll_enable)
4567 encoder->pre_pll_enable(encoder);
4568
eb1cbe48
DV
4569 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4570 * This is an exception to the general rule that mode_set doesn't turn
4571 * things on.
4572 */
4573 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4574 intel_update_lvds(crtc, clock, adjusted_mode);
4575
5b5896e4
DV
4576 I915_WRITE(DPLL(pipe), dpll);
4577
4578 /* Wait for the clocks to stabilize. */
4579 POSTING_READ(DPLL(pipe));
4580 udelay(150);
4581
eb1cbe48
DV
4582 /* The pixel multiplier can only be updated once the
4583 * DPLL is enabled and the clocks are stable.
4584 *
4585 * So write it again.
4586 */
4587 I915_WRITE(DPLL(pipe), dpll);
4588}
4589
b0e77b9c
PZ
4590static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4591 struct drm_display_mode *mode,
4592 struct drm_display_mode *adjusted_mode)
4593{
4594 struct drm_device *dev = intel_crtc->base.dev;
4595 struct drm_i915_private *dev_priv = dev->dev_private;
4596 enum pipe pipe = intel_crtc->pipe;
fe2b8f9d 4597 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
b0e77b9c
PZ
4598 uint32_t vsyncshift;
4599
4600 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4601 /* the chip adds 2 halflines automatically */
4602 adjusted_mode->crtc_vtotal -= 1;
4603 adjusted_mode->crtc_vblank_end -= 1;
4604 vsyncshift = adjusted_mode->crtc_hsync_start
4605 - adjusted_mode->crtc_htotal / 2;
4606 } else {
4607 vsyncshift = 0;
4608 }
4609
4610 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 4611 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 4612
fe2b8f9d 4613 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
4614 (adjusted_mode->crtc_hdisplay - 1) |
4615 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 4616 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
4617 (adjusted_mode->crtc_hblank_start - 1) |
4618 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 4619 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
4620 (adjusted_mode->crtc_hsync_start - 1) |
4621 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4622
fe2b8f9d 4623 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c
PZ
4624 (adjusted_mode->crtc_vdisplay - 1) |
4625 ((adjusted_mode->crtc_vtotal - 1) << 16));
fe2b8f9d 4626 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c
PZ
4627 (adjusted_mode->crtc_vblank_start - 1) |
4628 ((adjusted_mode->crtc_vblank_end - 1) << 16));
fe2b8f9d 4629 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
4630 (adjusted_mode->crtc_vsync_start - 1) |
4631 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4632
b5e508d4
PZ
4633 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4634 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4635 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4636 * bits. */
4637 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4638 (pipe == PIPE_B || pipe == PIPE_C))
4639 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4640
b0e77b9c
PZ
4641 /* pipesrc controls the size that is scaled from, which should
4642 * always be the user's requested size.
4643 */
4644 I915_WRITE(PIPESRC(pipe),
4645 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4646}
4647
f564048e
EA
4648static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4649 struct drm_display_mode *mode,
4650 struct drm_display_mode *adjusted_mode,
4651 int x, int y,
94352cf9 4652 struct drm_framebuffer *fb)
79e53945
JB
4653{
4654 struct drm_device *dev = crtc->dev;
4655 struct drm_i915_private *dev_priv = dev->dev_private;
4656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4657 int pipe = intel_crtc->pipe;
80824003 4658 int plane = intel_crtc->plane;
c751ce4f 4659 int refclk, num_connectors = 0;
652c393a 4660 intel_clock_t clock, reduced_clock;
b0e77b9c 4661 u32 dspcntr, pipeconf;
eb1cbe48
DV
4662 bool ok, has_reduced_clock = false, is_sdvo = false;
4663 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4664 struct intel_encoder *encoder;
d4906093 4665 const intel_limit_t *limit;
5c3b82e2 4666 int ret;
79e53945 4667
6c2b7c12 4668 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4669 switch (encoder->type) {
79e53945
JB
4670 case INTEL_OUTPUT_LVDS:
4671 is_lvds = true;
4672 break;
4673 case INTEL_OUTPUT_SDVO:
7d57382e 4674 case INTEL_OUTPUT_HDMI:
79e53945 4675 is_sdvo = true;
5eddb70b 4676 if (encoder->needs_tv_clock)
e2f0ba97 4677 is_tv = true;
79e53945 4678 break;
79e53945
JB
4679 case INTEL_OUTPUT_TVOUT:
4680 is_tv = true;
4681 break;
a4fc5ed6
KP
4682 case INTEL_OUTPUT_DISPLAYPORT:
4683 is_dp = true;
4684 break;
79e53945 4685 }
43565a06 4686
c751ce4f 4687 num_connectors++;
79e53945
JB
4688 }
4689
c65d77d8 4690 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4691
d4906093
ML
4692 /*
4693 * Returns a set of divisors for the desired target clock with the given
4694 * refclk, or FALSE. The returned values represent the clock equation:
4695 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4696 */
1b894b59 4697 limit = intel_limit(crtc, refclk);
cec2f356
SP
4698 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4699 &clock);
79e53945
JB
4700 if (!ok) {
4701 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4702 return -EINVAL;
79e53945
JB
4703 }
4704
cda4b7d3 4705 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4706 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4707
ddc9003c 4708 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4709 /*
4710 * Ensure we match the reduced clock's P to the target clock.
4711 * If the clocks don't match, we can't switch the display clock
4712 * by using the FP0/FP1. In such case we will disable the LVDS
4713 * downclock feature.
4714 */
ddc9003c 4715 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4716 dev_priv->lvds_downclock,
4717 refclk,
cec2f356 4718 &clock,
5eddb70b 4719 &reduced_clock);
7026d4ac
ZW
4720 }
4721
c65d77d8
JB
4722 if (is_sdvo && is_tv)
4723 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4724
eb1cbe48 4725 if (IS_GEN2(dev))
2a8f64ca
VP
4726 i8xx_update_pll(crtc, adjusted_mode, &clock,
4727 has_reduced_clock ? &reduced_clock : NULL,
4728 num_connectors);
a0c4da24 4729 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4730 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4731 has_reduced_clock ? &reduced_clock : NULL,
4732 num_connectors);
79e53945 4733 else
eb1cbe48
DV
4734 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4735 has_reduced_clock ? &reduced_clock : NULL,
4736 num_connectors);
79e53945
JB
4737
4738 /* setup pipeconf */
5eddb70b 4739 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4740
4741 /* Set up the display plane register */
4742 dspcntr = DISPPLANE_GAMMA_ENABLE;
4743
929c77fb
EA
4744 if (pipe == 0)
4745 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4746 else
4747 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4748
a6c45cf0 4749 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4750 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4751 * core speed.
4752 *
4753 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4754 * pipe == 0 check?
4755 */
e70236a8
JB
4756 if (mode->clock >
4757 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4758 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4759 else
5eddb70b 4760 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4761 }
4762
3b5c78a3
AJ
4763 /* default to 8bpc */
4764 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4765 if (is_dp) {
0c96c65b 4766 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3b5c78a3
AJ
4767 pipeconf |= PIPECONF_BPP_6 |
4768 PIPECONF_DITHER_EN |
4769 PIPECONF_DITHER_TYPE_SP;
4770 }
4771 }
4772
19c03924
GB
4773 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4774 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4775 pipeconf |= PIPECONF_BPP_6 |
4776 PIPECONF_ENABLE |
4777 I965_PIPECONF_ACTIVE;
4778 }
4779 }
4780
28c97730 4781 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4782 drm_mode_debug_printmodeline(mode);
4783
a7516a05
JB
4784 if (HAS_PIPE_CXSR(dev)) {
4785 if (intel_crtc->lowfreq_avail) {
28c97730 4786 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4787 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4788 } else {
28c97730 4789 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4790 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4791 }
4792 }
4793
617cf884 4794 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575 4795 if (!IS_GEN2(dev) &&
b0e77b9c 4796 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
734b4157 4797 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
b0e77b9c 4798 else
617cf884 4799 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 4800
b0e77b9c 4801 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b
CW
4802
4803 /* pipesrc and dspsize control the size that is scaled from,
4804 * which should always be the user's requested size.
79e53945 4805 */
929c77fb
EA
4806 I915_WRITE(DSPSIZE(plane),
4807 ((mode->vdisplay - 1) << 16) |
4808 (mode->hdisplay - 1));
4809 I915_WRITE(DSPPOS(plane), 0);
2c07245f 4810
f564048e
EA
4811 I915_WRITE(PIPECONF(pipe), pipeconf);
4812 POSTING_READ(PIPECONF(pipe));
929c77fb 4813 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4814
4815 intel_wait_for_vblank(dev, pipe);
4816
f564048e
EA
4817 I915_WRITE(DSPCNTR(plane), dspcntr);
4818 POSTING_READ(DSPCNTR(plane));
4819
94352cf9 4820 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4821
4822 intel_update_watermarks(dev);
4823
f564048e
EA
4824 return ret;
4825}
4826
9fb526db
KP
4827/*
4828 * Initialize reference clocks when the driver loads
4829 */
4830void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4831{
4832 struct drm_i915_private *dev_priv = dev->dev_private;
4833 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4834 struct intel_encoder *encoder;
13d83a67
JB
4835 u32 temp;
4836 bool has_lvds = false;
199e5d79
KP
4837 bool has_cpu_edp = false;
4838 bool has_pch_edp = false;
4839 bool has_panel = false;
99eb6a01
KP
4840 bool has_ck505 = false;
4841 bool can_ssc = false;
13d83a67
JB
4842
4843 /* We need to take the global config into account */
199e5d79
KP
4844 list_for_each_entry(encoder, &mode_config->encoder_list,
4845 base.head) {
4846 switch (encoder->type) {
4847 case INTEL_OUTPUT_LVDS:
4848 has_panel = true;
4849 has_lvds = true;
4850 break;
4851 case INTEL_OUTPUT_EDP:
4852 has_panel = true;
4853 if (intel_encoder_is_pch_edp(&encoder->base))
4854 has_pch_edp = true;
4855 else
4856 has_cpu_edp = true;
4857 break;
13d83a67
JB
4858 }
4859 }
4860
99eb6a01
KP
4861 if (HAS_PCH_IBX(dev)) {
4862 has_ck505 = dev_priv->display_clock_mode;
4863 can_ssc = has_ck505;
4864 } else {
4865 has_ck505 = false;
4866 can_ssc = true;
4867 }
4868
4869 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4870 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4871 has_ck505);
13d83a67
JB
4872
4873 /* Ironlake: try to setup display ref clock before DPLL
4874 * enabling. This is only under driver's control after
4875 * PCH B stepping, previous chipset stepping should be
4876 * ignoring this setting.
4877 */
4878 temp = I915_READ(PCH_DREF_CONTROL);
4879 /* Always enable nonspread source */
4880 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4881
99eb6a01
KP
4882 if (has_ck505)
4883 temp |= DREF_NONSPREAD_CK505_ENABLE;
4884 else
4885 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4886
199e5d79
KP
4887 if (has_panel) {
4888 temp &= ~DREF_SSC_SOURCE_MASK;
4889 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4890
199e5d79 4891 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4892 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4893 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4894 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4895 } else
4896 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4897
4898 /* Get SSC going before enabling the outputs */
4899 I915_WRITE(PCH_DREF_CONTROL, temp);
4900 POSTING_READ(PCH_DREF_CONTROL);
4901 udelay(200);
4902
13d83a67
JB
4903 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4904
4905 /* Enable CPU source on CPU attached eDP */
199e5d79 4906 if (has_cpu_edp) {
99eb6a01 4907 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4908 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4909 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4910 }
13d83a67
JB
4911 else
4912 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4913 } else
4914 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4915
4916 I915_WRITE(PCH_DREF_CONTROL, temp);
4917 POSTING_READ(PCH_DREF_CONTROL);
4918 udelay(200);
4919 } else {
4920 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4921
4922 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4923
4924 /* Turn off CPU output */
4925 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4926
4927 I915_WRITE(PCH_DREF_CONTROL, temp);
4928 POSTING_READ(PCH_DREF_CONTROL);
4929 udelay(200);
4930
4931 /* Turn off the SSC source */
4932 temp &= ~DREF_SSC_SOURCE_MASK;
4933 temp |= DREF_SSC_SOURCE_DISABLE;
4934
4935 /* Turn off SSC1 */
4936 temp &= ~ DREF_SSC1_ENABLE;
4937
13d83a67
JB
4938 I915_WRITE(PCH_DREF_CONTROL, temp);
4939 POSTING_READ(PCH_DREF_CONTROL);
4940 udelay(200);
4941 }
4942}
4943
d9d444cb
JB
4944static int ironlake_get_refclk(struct drm_crtc *crtc)
4945{
4946 struct drm_device *dev = crtc->dev;
4947 struct drm_i915_private *dev_priv = dev->dev_private;
4948 struct intel_encoder *encoder;
d9d444cb
JB
4949 struct intel_encoder *edp_encoder = NULL;
4950 int num_connectors = 0;
4951 bool is_lvds = false;
4952
6c2b7c12 4953 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
4954 switch (encoder->type) {
4955 case INTEL_OUTPUT_LVDS:
4956 is_lvds = true;
4957 break;
4958 case INTEL_OUTPUT_EDP:
4959 edp_encoder = encoder;
4960 break;
4961 }
4962 num_connectors++;
4963 }
4964
4965 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4966 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4967 dev_priv->lvds_ssc_freq);
4968 return dev_priv->lvds_ssc_freq * 1000;
4969 }
4970
4971 return 120000;
4972}
4973
c8203565 4974static void ironlake_set_pipeconf(struct drm_crtc *crtc,
f564048e 4975 struct drm_display_mode *adjusted_mode,
c8203565 4976 bool dither)
79e53945 4977{
c8203565 4978 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
4979 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4980 int pipe = intel_crtc->pipe;
c8203565
PZ
4981 uint32_t val;
4982
4983 val = I915_READ(PIPECONF(pipe));
4984
4985 val &= ~PIPE_BPC_MASK;
4986 switch (intel_crtc->bpp) {
4987 case 18:
4988 val |= PIPE_6BPC;
4989 break;
4990 case 24:
4991 val |= PIPE_8BPC;
4992 break;
4993 case 30:
4994 val |= PIPE_10BPC;
4995 break;
4996 case 36:
4997 val |= PIPE_12BPC;
4998 break;
4999 default:
cc769b62
PZ
5000 /* Case prevented by intel_choose_pipe_bpp_dither. */
5001 BUG();
c8203565
PZ
5002 }
5003
5004 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5005 if (dither)
5006 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5007
5008 val &= ~PIPECONF_INTERLACE_MASK;
5009 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5010 val |= PIPECONF_INTERLACED_ILK;
5011 else
5012 val |= PIPECONF_PROGRESSIVE;
5013
5014 I915_WRITE(PIPECONF(pipe), val);
5015 POSTING_READ(PIPECONF(pipe));
5016}
5017
ee2b0b38
PZ
5018static void haswell_set_pipeconf(struct drm_crtc *crtc,
5019 struct drm_display_mode *adjusted_mode,
5020 bool dither)
5021{
5022 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
702e7a56 5024 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
ee2b0b38
PZ
5025 uint32_t val;
5026
702e7a56 5027 val = I915_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5028
5029 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5030 if (dither)
5031 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5032
5033 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5034 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5035 val |= PIPECONF_INTERLACED_ILK;
5036 else
5037 val |= PIPECONF_PROGRESSIVE;
5038
702e7a56
PZ
5039 I915_WRITE(PIPECONF(cpu_transcoder), val);
5040 POSTING_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5041}
5042
6591c6e4
PZ
5043static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5044 struct drm_display_mode *adjusted_mode,
5045 intel_clock_t *clock,
5046 bool *has_reduced_clock,
5047 intel_clock_t *reduced_clock)
5048{
5049 struct drm_device *dev = crtc->dev;
5050 struct drm_i915_private *dev_priv = dev->dev_private;
5051 struct intel_encoder *intel_encoder;
5052 int refclk;
d4906093 5053 const intel_limit_t *limit;
6591c6e4 5054 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
79e53945 5055
6591c6e4
PZ
5056 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5057 switch (intel_encoder->type) {
79e53945
JB
5058 case INTEL_OUTPUT_LVDS:
5059 is_lvds = true;
5060 break;
5061 case INTEL_OUTPUT_SDVO:
7d57382e 5062 case INTEL_OUTPUT_HDMI:
79e53945 5063 is_sdvo = true;
6591c6e4 5064 if (intel_encoder->needs_tv_clock)
e2f0ba97 5065 is_tv = true;
79e53945 5066 break;
79e53945
JB
5067 case INTEL_OUTPUT_TVOUT:
5068 is_tv = true;
5069 break;
79e53945
JB
5070 }
5071 }
5072
d9d444cb 5073 refclk = ironlake_get_refclk(crtc);
79e53945 5074
d4906093
ML
5075 /*
5076 * Returns a set of divisors for the desired target clock with the given
5077 * refclk, or FALSE. The returned values represent the clock equation:
5078 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5079 */
1b894b59 5080 limit = intel_limit(crtc, refclk);
6591c6e4
PZ
5081 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5082 clock);
5083 if (!ret)
5084 return false;
cda4b7d3 5085
ddc9003c 5086 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
5087 /*
5088 * Ensure we match the reduced clock's P to the target clock.
5089 * If the clocks don't match, we can't switch the display clock
5090 * by using the FP0/FP1. In such case we will disable the LVDS
5091 * downclock feature.
5092 */
6591c6e4
PZ
5093 *has_reduced_clock = limit->find_pll(limit, crtc,
5094 dev_priv->lvds_downclock,
5095 refclk,
5096 clock,
5097 reduced_clock);
652c393a 5098 }
61e9653f
DV
5099
5100 if (is_sdvo && is_tv)
6591c6e4
PZ
5101 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5102
5103 return true;
5104}
5105
01a415fd
DV
5106static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5107{
5108 struct drm_i915_private *dev_priv = dev->dev_private;
5109 uint32_t temp;
5110
5111 temp = I915_READ(SOUTH_CHICKEN1);
5112 if (temp & FDI_BC_BIFURCATION_SELECT)
5113 return;
5114
5115 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5116 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5117
5118 temp |= FDI_BC_BIFURCATION_SELECT;
5119 DRM_DEBUG_KMS("enabling fdi C rx\n");
5120 I915_WRITE(SOUTH_CHICKEN1, temp);
5121 POSTING_READ(SOUTH_CHICKEN1);
5122}
5123
5124static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5125{
5126 struct drm_device *dev = intel_crtc->base.dev;
5127 struct drm_i915_private *dev_priv = dev->dev_private;
5128 struct intel_crtc *pipe_B_crtc =
5129 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5130
5131 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5132 intel_crtc->pipe, intel_crtc->fdi_lanes);
5133 if (intel_crtc->fdi_lanes > 4) {
5134 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5135 intel_crtc->pipe, intel_crtc->fdi_lanes);
5136 /* Clamp lanes to avoid programming the hw with bogus values. */
5137 intel_crtc->fdi_lanes = 4;
5138
5139 return false;
5140 }
5141
5142 if (dev_priv->num_pipe == 2)
5143 return true;
5144
5145 switch (intel_crtc->pipe) {
5146 case PIPE_A:
5147 return true;
5148 case PIPE_B:
5149 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5150 intel_crtc->fdi_lanes > 2) {
5151 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5152 intel_crtc->pipe, intel_crtc->fdi_lanes);
5153 /* Clamp lanes to avoid programming the hw with bogus values. */
5154 intel_crtc->fdi_lanes = 2;
5155
5156 return false;
5157 }
5158
5159 if (intel_crtc->fdi_lanes > 2)
5160 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5161 else
5162 cpt_enable_fdi_bc_bifurcation(dev);
5163
5164 return true;
5165 case PIPE_C:
5166 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5167 if (intel_crtc->fdi_lanes > 2) {
5168 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5169 intel_crtc->pipe, intel_crtc->fdi_lanes);
5170 /* Clamp lanes to avoid programming the hw with bogus values. */
5171 intel_crtc->fdi_lanes = 2;
5172
5173 return false;
5174 }
5175 } else {
5176 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5177 return false;
5178 }
5179
5180 cpt_enable_fdi_bc_bifurcation(dev);
5181
5182 return true;
5183 default:
5184 BUG();
5185 }
5186}
5187
f48d8f23
PZ
5188static void ironlake_set_m_n(struct drm_crtc *crtc,
5189 struct drm_display_mode *mode,
5190 struct drm_display_mode *adjusted_mode)
79e53945
JB
5191{
5192 struct drm_device *dev = crtc->dev;
5193 struct drm_i915_private *dev_priv = dev->dev_private;
5194 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
afe2fcf5 5195 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
f48d8f23 5196 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
2c07245f 5197 struct fdi_m_n m_n = {0};
f48d8f23
PZ
5198 int target_clock, pixel_multiplier, lane, link_bw;
5199 bool is_dp = false, is_cpu_edp = false;
79e53945 5200
f48d8f23
PZ
5201 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5202 switch (intel_encoder->type) {
a4fc5ed6
KP
5203 case INTEL_OUTPUT_DISPLAYPORT:
5204 is_dp = true;
5205 break;
32f9d658 5206 case INTEL_OUTPUT_EDP:
e3aef172 5207 is_dp = true;
f48d8f23 5208 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5209 is_cpu_edp = true;
f48d8f23 5210 edp_encoder = intel_encoder;
32f9d658 5211 break;
79e53945 5212 }
79e53945 5213 }
61e9653f 5214
2c07245f 5215 /* FDI link */
8febb297
EA
5216 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5217 lane = 0;
5218 /* CPU eDP doesn't require FDI link, so just set DP M/N
5219 according to current link config */
e3aef172 5220 if (is_cpu_edp) {
e3aef172 5221 intel_edp_link_config(edp_encoder, &lane, &link_bw);
8febb297 5222 } else {
8febb297
EA
5223 /* FDI is a binary signal running at ~2.7GHz, encoding
5224 * each output octet as 10 bits. The actual frequency
5225 * is stored as a divider into a 100MHz clock, and the
5226 * mode pixel clock is stored in units of 1KHz.
5227 * Hence the bw of each lane in terms of the mode signal
5228 * is:
5229 */
5230 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5231 }
58a27471 5232
94bf2ced
DV
5233 /* [e]DP over FDI requires target mode clock instead of link clock. */
5234 if (edp_encoder)
5235 target_clock = intel_edp_target_clock(edp_encoder, mode);
5236 else if (is_dp)
5237 target_clock = mode->clock;
5238 else
5239 target_clock = adjusted_mode->clock;
5240
8febb297
EA
5241 if (!lane) {
5242 /*
5243 * Account for spread spectrum to avoid
5244 * oversubscribing the link. Max center spread
5245 * is 2.5%; use 5% for safety's sake.
5246 */
5a354204 5247 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
8febb297 5248 lane = bps / (link_bw * 8) + 1;
5eb08b69 5249 }
2c07245f 5250
8febb297
EA
5251 intel_crtc->fdi_lanes = lane;
5252
5253 if (pixel_multiplier > 1)
5254 link_bw *= pixel_multiplier;
5a354204
JB
5255 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5256 &m_n);
8febb297 5257
afe2fcf5
PZ
5258 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5259 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5260 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5261 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
f48d8f23
PZ
5262}
5263
de13a2e3
PZ
5264static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5265 struct drm_display_mode *adjusted_mode,
5266 intel_clock_t *clock, u32 fp)
79e53945 5267{
de13a2e3 5268 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
5269 struct drm_device *dev = crtc->dev;
5270 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
5271 struct intel_encoder *intel_encoder;
5272 uint32_t dpll;
5273 int factor, pixel_multiplier, num_connectors = 0;
5274 bool is_lvds = false, is_sdvo = false, is_tv = false;
5275 bool is_dp = false, is_cpu_edp = false;
79e53945 5276
de13a2e3
PZ
5277 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5278 switch (intel_encoder->type) {
79e53945
JB
5279 case INTEL_OUTPUT_LVDS:
5280 is_lvds = true;
5281 break;
5282 case INTEL_OUTPUT_SDVO:
7d57382e 5283 case INTEL_OUTPUT_HDMI:
79e53945 5284 is_sdvo = true;
de13a2e3 5285 if (intel_encoder->needs_tv_clock)
e2f0ba97 5286 is_tv = true;
79e53945 5287 break;
79e53945
JB
5288 case INTEL_OUTPUT_TVOUT:
5289 is_tv = true;
5290 break;
a4fc5ed6
KP
5291 case INTEL_OUTPUT_DISPLAYPORT:
5292 is_dp = true;
5293 break;
32f9d658 5294 case INTEL_OUTPUT_EDP:
e3aef172 5295 is_dp = true;
de13a2e3 5296 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5297 is_cpu_edp = true;
32f9d658 5298 break;
79e53945 5299 }
43565a06 5300
c751ce4f 5301 num_connectors++;
79e53945 5302 }
79e53945 5303
c1858123 5304 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5305 factor = 21;
5306 if (is_lvds) {
5307 if ((intel_panel_use_ssc(dev_priv) &&
5308 dev_priv->lvds_ssc_freq == 100) ||
1974cad0 5309 intel_is_dual_link_lvds(dev))
8febb297
EA
5310 factor = 25;
5311 } else if (is_sdvo && is_tv)
5312 factor = 20;
c1858123 5313
de13a2e3 5314 if (clock->m < factor * clock->n)
8febb297 5315 fp |= FP_CB_TUNE;
2c07245f 5316
5eddb70b 5317 dpll = 0;
2c07245f 5318
a07d6787
EA
5319 if (is_lvds)
5320 dpll |= DPLLB_MODE_LVDS;
5321 else
5322 dpll |= DPLLB_MODE_DAC_SERIAL;
5323 if (is_sdvo) {
de13a2e3 5324 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
5325 if (pixel_multiplier > 1) {
5326 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5327 }
a07d6787
EA
5328 dpll |= DPLL_DVO_HIGH_SPEED;
5329 }
e3aef172 5330 if (is_dp && !is_cpu_edp)
a07d6787 5331 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5332
a07d6787 5333 /* compute bitmask from p1 value */
de13a2e3 5334 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 5335 /* also FPA1 */
de13a2e3 5336 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 5337
de13a2e3 5338 switch (clock->p2) {
a07d6787
EA
5339 case 5:
5340 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5341 break;
5342 case 7:
5343 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5344 break;
5345 case 10:
5346 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5347 break;
5348 case 14:
5349 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5350 break;
79e53945
JB
5351 }
5352
43565a06
KH
5353 if (is_sdvo && is_tv)
5354 dpll |= PLL_REF_INPUT_TVCLKINBC;
5355 else if (is_tv)
79e53945 5356 /* XXX: just matching BIOS for now */
43565a06 5357 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5358 dpll |= 3;
a7615030 5359 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5360 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5361 else
5362 dpll |= PLL_REF_INPUT_DREFCLK;
5363
de13a2e3
PZ
5364 return dpll;
5365}
5366
5367static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5368 struct drm_display_mode *mode,
5369 struct drm_display_mode *adjusted_mode,
5370 int x, int y,
5371 struct drm_framebuffer *fb)
5372{
5373 struct drm_device *dev = crtc->dev;
5374 struct drm_i915_private *dev_priv = dev->dev_private;
5375 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5376 int pipe = intel_crtc->pipe;
5377 int plane = intel_crtc->plane;
5378 int num_connectors = 0;
5379 intel_clock_t clock, reduced_clock;
5380 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
5381 bool ok, has_reduced_clock = false;
5382 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
5383 struct intel_encoder *encoder;
5384 u32 temp;
5385 int ret;
01a415fd 5386 bool dither, fdi_config_ok;
de13a2e3
PZ
5387
5388 for_each_encoder_on_crtc(dev, crtc, encoder) {
5389 switch (encoder->type) {
5390 case INTEL_OUTPUT_LVDS:
5391 is_lvds = true;
5392 break;
de13a2e3
PZ
5393 case INTEL_OUTPUT_DISPLAYPORT:
5394 is_dp = true;
5395 break;
5396 case INTEL_OUTPUT_EDP:
5397 is_dp = true;
e2f12b07 5398 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
5399 is_cpu_edp = true;
5400 break;
5401 }
5402
5403 num_connectors++;
a07d6787 5404 }
79e53945 5405
5dc5298b
PZ
5406 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5407 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 5408
de13a2e3
PZ
5409 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5410 &has_reduced_clock, &reduced_clock);
5411 if (!ok) {
5412 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5413 return -EINVAL;
79e53945
JB
5414 }
5415
de13a2e3
PZ
5416 /* Ensure that the cursor is valid for the new mode before changing... */
5417 intel_crtc_update_cursor(crtc, true);
5418
5419 /* determine panel color depth */
c8241969
JN
5420 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5421 adjusted_mode);
de13a2e3
PZ
5422 if (is_lvds && dev_priv->lvds_dither)
5423 dither = true;
5424
5425 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5426 if (has_reduced_clock)
5427 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5428 reduced_clock.m2;
5429
5430 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
79e53945 5431
f7cb34d4 5432 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5433 drm_mode_debug_printmodeline(mode);
5434
5dc5298b
PZ
5435 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5436 if (!is_cpu_edp) {
ee7b9f93 5437 struct intel_pch_pll *pll;
4b645f14 5438
ee7b9f93
JB
5439 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5440 if (pll == NULL) {
5441 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5442 pipe);
4b645f14
JB
5443 return -EINVAL;
5444 }
ee7b9f93
JB
5445 } else
5446 intel_put_pch_pll(intel_crtc);
79e53945
JB
5447
5448 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5449 * This is an exception to the general rule that mode_set doesn't turn
5450 * things on.
5451 */
5452 if (is_lvds) {
fae14981 5453 temp = I915_READ(PCH_LVDS);
5eddb70b 5454 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5455 if (HAS_PCH_CPT(dev)) {
5456 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5457 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5458 } else {
5459 if (pipe == 1)
5460 temp |= LVDS_PIPEB_SELECT;
5461 else
5462 temp &= ~LVDS_PIPEB_SELECT;
5463 }
4b645f14 5464
a3e17eb8 5465 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5466 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5467 /* Set the B0-B3 data pairs corresponding to whether we're going to
5468 * set the DPLLs for dual-channel mode or not.
5469 */
5470 if (clock.p2 == 7)
5eddb70b 5471 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5472 else
5eddb70b 5473 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5474
5475 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5476 * appropriately here, but we need to look more thoroughly into how
5477 * panels behave in the two modes.
5478 */
284d5df5 5479 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5480 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5481 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5482 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5483 temp |= LVDS_VSYNC_POLARITY;
fae14981 5484 I915_WRITE(PCH_LVDS, temp);
79e53945 5485 }
434ed097 5486
e3aef172 5487 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5488 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5489 } else {
8db9d77b 5490 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5491 I915_WRITE(TRANSDATA_M1(pipe), 0);
5492 I915_WRITE(TRANSDATA_N1(pipe), 0);
5493 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5494 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5495 }
79e53945 5496
dafd226c
DV
5497 for_each_encoder_on_crtc(dev, crtc, encoder)
5498 if (encoder->pre_pll_enable)
5499 encoder->pre_pll_enable(encoder);
5500
ee7b9f93
JB
5501 if (intel_crtc->pch_pll) {
5502 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5503
32f9d658 5504 /* Wait for the clocks to stabilize. */
ee7b9f93 5505 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5506 udelay(150);
5507
8febb297
EA
5508 /* The pixel multiplier can only be updated once the
5509 * DPLL is enabled and the clocks are stable.
5510 *
5511 * So write it again.
5512 */
ee7b9f93 5513 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5514 }
79e53945 5515
5eddb70b 5516 intel_crtc->lowfreq_avail = false;
ee7b9f93 5517 if (intel_crtc->pch_pll) {
4b645f14 5518 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5519 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5520 intel_crtc->lowfreq_avail = true;
4b645f14 5521 } else {
ee7b9f93 5522 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5523 }
5524 }
5525
b0e77b9c 5526 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b 5527
01a415fd
DV
5528 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5529 * ironlake_check_fdi_lanes. */
f48d8f23 5530 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5531
01a415fd 5532 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
2c07245f 5533
e3aef172 5534 if (is_cpu_edp)
8febb297 5535 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5536
c8203565 5537 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5538
9d0498a2 5539 intel_wait_for_vblank(dev, pipe);
79e53945 5540
a1f9e77e
PZ
5541 /* Set up the display plane register */
5542 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5543 POSTING_READ(DSPCNTR(plane));
79e53945 5544
94352cf9 5545 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5546
5547 intel_update_watermarks(dev);
5548
1f8eeabf
ED
5549 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5550
01a415fd 5551 return fdi_config_ok ? ret : -EINVAL;
79e53945
JB
5552}
5553
09b4ddf9
PZ
5554static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5555 struct drm_display_mode *mode,
5556 struct drm_display_mode *adjusted_mode,
5557 int x, int y,
5558 struct drm_framebuffer *fb)
5559{
5560 struct drm_device *dev = crtc->dev;
5561 struct drm_i915_private *dev_priv = dev->dev_private;
5562 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5563 int pipe = intel_crtc->pipe;
5564 int plane = intel_crtc->plane;
5565 int num_connectors = 0;
5566 intel_clock_t clock, reduced_clock;
5dc5298b 5567 u32 dpll = 0, fp = 0, fp2 = 0;
09b4ddf9
PZ
5568 bool ok, has_reduced_clock = false;
5569 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5570 struct intel_encoder *encoder;
5571 u32 temp;
5572 int ret;
5573 bool dither;
5574
5575 for_each_encoder_on_crtc(dev, crtc, encoder) {
5576 switch (encoder->type) {
5577 case INTEL_OUTPUT_LVDS:
5578 is_lvds = true;
5579 break;
5580 case INTEL_OUTPUT_DISPLAYPORT:
5581 is_dp = true;
5582 break;
5583 case INTEL_OUTPUT_EDP:
5584 is_dp = true;
5585 if (!intel_encoder_is_pch_edp(&encoder->base))
5586 is_cpu_edp = true;
5587 break;
5588 }
5589
5590 num_connectors++;
5591 }
5592
a5c961d1
PZ
5593 if (is_cpu_edp)
5594 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5595 else
5596 intel_crtc->cpu_transcoder = pipe;
5597
5dc5298b
PZ
5598 /* We are not sure yet this won't happen. */
5599 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5600 INTEL_PCH_TYPE(dev));
5601
5602 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5603 num_connectors, pipe_name(pipe));
5604
702e7a56 5605 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
1ce42920
PZ
5606 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5607
5608 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5609
6441ab5f
PZ
5610 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5611 return -EINVAL;
5612
5dc5298b
PZ
5613 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5614 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5615 &has_reduced_clock,
5616 &reduced_clock);
5617 if (!ok) {
5618 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5619 return -EINVAL;
5620 }
09b4ddf9
PZ
5621 }
5622
5623 /* Ensure that the cursor is valid for the new mode before changing... */
5624 intel_crtc_update_cursor(crtc, true);
5625
5626 /* determine panel color depth */
c8241969
JN
5627 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5628 adjusted_mode);
09b4ddf9
PZ
5629 if (is_lvds && dev_priv->lvds_dither)
5630 dither = true;
5631
09b4ddf9
PZ
5632 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5633 drm_mode_debug_printmodeline(mode);
5634
5dc5298b
PZ
5635 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5636 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5637 if (has_reduced_clock)
5638 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5639 reduced_clock.m2;
5640
5641 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5642 fp);
5643
5644 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5645 * own on pre-Haswell/LPT generation */
5646 if (!is_cpu_edp) {
5647 struct intel_pch_pll *pll;
5648
5649 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5650 if (pll == NULL) {
5651 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5652 pipe);
5653 return -EINVAL;
5654 }
5655 } else
5656 intel_put_pch_pll(intel_crtc);
09b4ddf9 5657
5dc5298b
PZ
5658 /* The LVDS pin pair needs to be on before the DPLLs are
5659 * enabled. This is an exception to the general rule that
5660 * mode_set doesn't turn things on.
5661 */
5662 if (is_lvds) {
5663 temp = I915_READ(PCH_LVDS);
5664 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5665 if (HAS_PCH_CPT(dev)) {
5666 temp &= ~PORT_TRANS_SEL_MASK;
5667 temp |= PORT_TRANS_SEL_CPT(pipe);
5668 } else {
5669 if (pipe == 1)
5670 temp |= LVDS_PIPEB_SELECT;
5671 else
5672 temp &= ~LVDS_PIPEB_SELECT;
5673 }
09b4ddf9 5674
5dc5298b
PZ
5675 /* set the corresponsding LVDS_BORDER bit */
5676 temp |= dev_priv->lvds_border_bits;
5677 /* Set the B0-B3 data pairs corresponding to whether
5678 * we're going to set the DPLLs for dual-channel mode or
5679 * not.
5680 */
5681 if (clock.p2 == 7)
5682 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
09b4ddf9 5683 else
5dc5298b
PZ
5684 temp &= ~(LVDS_B0B3_POWER_UP |
5685 LVDS_CLKB_POWER_UP);
5686
5687 /* It would be nice to set 24 vs 18-bit mode
5688 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5689 * look more thoroughly into how panels behave in the
5690 * two modes.
5691 */
5692 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5693 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5694 temp |= LVDS_HSYNC_POLARITY;
5695 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5696 temp |= LVDS_VSYNC_POLARITY;
5697 I915_WRITE(PCH_LVDS, temp);
09b4ddf9 5698 }
09b4ddf9
PZ
5699 }
5700
5701 if (is_dp && !is_cpu_edp) {
5702 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5703 } else {
5dc5298b
PZ
5704 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5705 /* For non-DP output, clear any trans DP clock recovery
5706 * setting.*/
5707 I915_WRITE(TRANSDATA_M1(pipe), 0);
5708 I915_WRITE(TRANSDATA_N1(pipe), 0);
5709 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5710 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5711 }
09b4ddf9
PZ
5712 }
5713
5714 intel_crtc->lowfreq_avail = false;
5dc5298b
PZ
5715 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5716 if (intel_crtc->pch_pll) {
5717 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5718
5719 /* Wait for the clocks to stabilize. */
5720 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5721 udelay(150);
5722
5723 /* The pixel multiplier can only be updated once the
5724 * DPLL is enabled and the clocks are stable.
5725 *
5726 * So write it again.
5727 */
5728 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5729 }
5730
5731 if (intel_crtc->pch_pll) {
5732 if (is_lvds && has_reduced_clock && i915_powersave) {
5733 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5734 intel_crtc->lowfreq_avail = true;
5735 } else {
5736 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5737 }
09b4ddf9
PZ
5738 }
5739 }
5740
5741 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5742
1eb8dfec
PZ
5743 if (!is_dp || is_cpu_edp)
5744 ironlake_set_m_n(crtc, mode, adjusted_mode);
09b4ddf9 5745
5dc5298b
PZ
5746 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5747 if (is_cpu_edp)
5748 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
09b4ddf9 5749
ee2b0b38 5750 haswell_set_pipeconf(crtc, adjusted_mode, dither);
09b4ddf9 5751
09b4ddf9
PZ
5752 /* Set up the display plane register */
5753 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5754 POSTING_READ(DSPCNTR(plane));
5755
5756 ret = intel_pipe_set_base(crtc, x, y, fb);
5757
5758 intel_update_watermarks(dev);
5759
5760 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5761
1f803ee5 5762 return ret;
79e53945
JB
5763}
5764
f564048e
EA
5765static int intel_crtc_mode_set(struct drm_crtc *crtc,
5766 struct drm_display_mode *mode,
5767 struct drm_display_mode *adjusted_mode,
5768 int x, int y,
94352cf9 5769 struct drm_framebuffer *fb)
f564048e
EA
5770{
5771 struct drm_device *dev = crtc->dev;
5772 struct drm_i915_private *dev_priv = dev->dev_private;
9256aa19
DV
5773 struct drm_encoder_helper_funcs *encoder_funcs;
5774 struct intel_encoder *encoder;
0b701d27
EA
5775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5776 int pipe = intel_crtc->pipe;
f564048e
EA
5777 int ret;
5778
0b701d27 5779 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5780
f564048e 5781 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5782 x, y, fb);
79e53945 5783 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5784
9256aa19
DV
5785 if (ret != 0)
5786 return ret;
5787
5788 for_each_encoder_on_crtc(dev, crtc, encoder) {
5789 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5790 encoder->base.base.id,
5791 drm_get_encoder_name(&encoder->base),
5792 mode->base.id, mode->name);
5793 encoder_funcs = encoder->base.helper_private;
5794 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5795 }
5796
5797 return 0;
79e53945
JB
5798}
5799
3a9627f4
WF
5800static bool intel_eld_uptodate(struct drm_connector *connector,
5801 int reg_eldv, uint32_t bits_eldv,
5802 int reg_elda, uint32_t bits_elda,
5803 int reg_edid)
5804{
5805 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5806 uint8_t *eld = connector->eld;
5807 uint32_t i;
5808
5809 i = I915_READ(reg_eldv);
5810 i &= bits_eldv;
5811
5812 if (!eld[0])
5813 return !i;
5814
5815 if (!i)
5816 return false;
5817
5818 i = I915_READ(reg_elda);
5819 i &= ~bits_elda;
5820 I915_WRITE(reg_elda, i);
5821
5822 for (i = 0; i < eld[2]; i++)
5823 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5824 return false;
5825
5826 return true;
5827}
5828
e0dac65e
WF
5829static void g4x_write_eld(struct drm_connector *connector,
5830 struct drm_crtc *crtc)
5831{
5832 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5833 uint8_t *eld = connector->eld;
5834 uint32_t eldv;
5835 uint32_t len;
5836 uint32_t i;
5837
5838 i = I915_READ(G4X_AUD_VID_DID);
5839
5840 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5841 eldv = G4X_ELDV_DEVCL_DEVBLC;
5842 else
5843 eldv = G4X_ELDV_DEVCTG;
5844
3a9627f4
WF
5845 if (intel_eld_uptodate(connector,
5846 G4X_AUD_CNTL_ST, eldv,
5847 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5848 G4X_HDMIW_HDMIEDID))
5849 return;
5850
e0dac65e
WF
5851 i = I915_READ(G4X_AUD_CNTL_ST);
5852 i &= ~(eldv | G4X_ELD_ADDR);
5853 len = (i >> 9) & 0x1f; /* ELD buffer size */
5854 I915_WRITE(G4X_AUD_CNTL_ST, i);
5855
5856 if (!eld[0])
5857 return;
5858
5859 len = min_t(uint8_t, eld[2], len);
5860 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5861 for (i = 0; i < len; i++)
5862 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5863
5864 i = I915_READ(G4X_AUD_CNTL_ST);
5865 i |= eldv;
5866 I915_WRITE(G4X_AUD_CNTL_ST, i);
5867}
5868
83358c85
WX
5869static void haswell_write_eld(struct drm_connector *connector,
5870 struct drm_crtc *crtc)
5871{
5872 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5873 uint8_t *eld = connector->eld;
5874 struct drm_device *dev = crtc->dev;
5875 uint32_t eldv;
5876 uint32_t i;
5877 int len;
5878 int pipe = to_intel_crtc(crtc)->pipe;
5879 int tmp;
5880
5881 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5882 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5883 int aud_config = HSW_AUD_CFG(pipe);
5884 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5885
5886
5887 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5888
5889 /* Audio output enable */
5890 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5891 tmp = I915_READ(aud_cntrl_st2);
5892 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5893 I915_WRITE(aud_cntrl_st2, tmp);
5894
5895 /* Wait for 1 vertical blank */
5896 intel_wait_for_vblank(dev, pipe);
5897
5898 /* Set ELD valid state */
5899 tmp = I915_READ(aud_cntrl_st2);
5900 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5901 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5902 I915_WRITE(aud_cntrl_st2, tmp);
5903 tmp = I915_READ(aud_cntrl_st2);
5904 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5905
5906 /* Enable HDMI mode */
5907 tmp = I915_READ(aud_config);
5908 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5909 /* clear N_programing_enable and N_value_index */
5910 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5911 I915_WRITE(aud_config, tmp);
5912
5913 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5914
5915 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5916
5917 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5918 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5919 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5920 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5921 } else
5922 I915_WRITE(aud_config, 0);
5923
5924 if (intel_eld_uptodate(connector,
5925 aud_cntrl_st2, eldv,
5926 aud_cntl_st, IBX_ELD_ADDRESS,
5927 hdmiw_hdmiedid))
5928 return;
5929
5930 i = I915_READ(aud_cntrl_st2);
5931 i &= ~eldv;
5932 I915_WRITE(aud_cntrl_st2, i);
5933
5934 if (!eld[0])
5935 return;
5936
5937 i = I915_READ(aud_cntl_st);
5938 i &= ~IBX_ELD_ADDRESS;
5939 I915_WRITE(aud_cntl_st, i);
5940 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5941 DRM_DEBUG_DRIVER("port num:%d\n", i);
5942
5943 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5944 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5945 for (i = 0; i < len; i++)
5946 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5947
5948 i = I915_READ(aud_cntrl_st2);
5949 i |= eldv;
5950 I915_WRITE(aud_cntrl_st2, i);
5951
5952}
5953
e0dac65e
WF
5954static void ironlake_write_eld(struct drm_connector *connector,
5955 struct drm_crtc *crtc)
5956{
5957 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5958 uint8_t *eld = connector->eld;
5959 uint32_t eldv;
5960 uint32_t i;
5961 int len;
5962 int hdmiw_hdmiedid;
b6daa025 5963 int aud_config;
e0dac65e
WF
5964 int aud_cntl_st;
5965 int aud_cntrl_st2;
9b138a83 5966 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 5967
b3f33cbf 5968 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
5969 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5970 aud_config = IBX_AUD_CFG(pipe);
5971 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 5972 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 5973 } else {
9b138a83
WX
5974 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5975 aud_config = CPT_AUD_CFG(pipe);
5976 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 5977 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
5978 }
5979
9b138a83 5980 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
5981
5982 i = I915_READ(aud_cntl_st);
9b138a83 5983 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
5984 if (!i) {
5985 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5986 /* operate blindly on all ports */
1202b4c6
WF
5987 eldv = IBX_ELD_VALIDB;
5988 eldv |= IBX_ELD_VALIDB << 4;
5989 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
5990 } else {
5991 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 5992 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
5993 }
5994
3a9627f4
WF
5995 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5996 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5997 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
5998 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5999 } else
6000 I915_WRITE(aud_config, 0);
e0dac65e 6001
3a9627f4
WF
6002 if (intel_eld_uptodate(connector,
6003 aud_cntrl_st2, eldv,
6004 aud_cntl_st, IBX_ELD_ADDRESS,
6005 hdmiw_hdmiedid))
6006 return;
6007
e0dac65e
WF
6008 i = I915_READ(aud_cntrl_st2);
6009 i &= ~eldv;
6010 I915_WRITE(aud_cntrl_st2, i);
6011
6012 if (!eld[0])
6013 return;
6014
e0dac65e 6015 i = I915_READ(aud_cntl_st);
1202b4c6 6016 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
6017 I915_WRITE(aud_cntl_st, i);
6018
6019 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6020 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6021 for (i = 0; i < len; i++)
6022 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6023
6024 i = I915_READ(aud_cntrl_st2);
6025 i |= eldv;
6026 I915_WRITE(aud_cntrl_st2, i);
6027}
6028
6029void intel_write_eld(struct drm_encoder *encoder,
6030 struct drm_display_mode *mode)
6031{
6032 struct drm_crtc *crtc = encoder->crtc;
6033 struct drm_connector *connector;
6034 struct drm_device *dev = encoder->dev;
6035 struct drm_i915_private *dev_priv = dev->dev_private;
6036
6037 connector = drm_select_eld(encoder, mode);
6038 if (!connector)
6039 return;
6040
6041 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6042 connector->base.id,
6043 drm_get_connector_name(connector),
6044 connector->encoder->base.id,
6045 drm_get_encoder_name(connector->encoder));
6046
6047 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6048
6049 if (dev_priv->display.write_eld)
6050 dev_priv->display.write_eld(connector, crtc);
6051}
6052
79e53945
JB
6053/** Loads the palette/gamma unit for the CRTC with the prepared values */
6054void intel_crtc_load_lut(struct drm_crtc *crtc)
6055{
6056 struct drm_device *dev = crtc->dev;
6057 struct drm_i915_private *dev_priv = dev->dev_private;
6058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 6059 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
6060 int i;
6061
6062 /* The clocks have to be on to load the palette. */
aed3f09d 6063 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
6064 return;
6065
f2b115e6 6066 /* use legacy palette for Ironlake */
bad720ff 6067 if (HAS_PCH_SPLIT(dev))
9db4a9c7 6068 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 6069
79e53945
JB
6070 for (i = 0; i < 256; i++) {
6071 I915_WRITE(palreg + 4 * i,
6072 (intel_crtc->lut_r[i] << 16) |
6073 (intel_crtc->lut_g[i] << 8) |
6074 intel_crtc->lut_b[i]);
6075 }
6076}
6077
560b85bb
CW
6078static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6079{
6080 struct drm_device *dev = crtc->dev;
6081 struct drm_i915_private *dev_priv = dev->dev_private;
6082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6083 bool visible = base != 0;
6084 u32 cntl;
6085
6086 if (intel_crtc->cursor_visible == visible)
6087 return;
6088
9db4a9c7 6089 cntl = I915_READ(_CURACNTR);
560b85bb
CW
6090 if (visible) {
6091 /* On these chipsets we can only modify the base whilst
6092 * the cursor is disabled.
6093 */
9db4a9c7 6094 I915_WRITE(_CURABASE, base);
560b85bb
CW
6095
6096 cntl &= ~(CURSOR_FORMAT_MASK);
6097 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6098 cntl |= CURSOR_ENABLE |
6099 CURSOR_GAMMA_ENABLE |
6100 CURSOR_FORMAT_ARGB;
6101 } else
6102 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 6103 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
6104
6105 intel_crtc->cursor_visible = visible;
6106}
6107
6108static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6109{
6110 struct drm_device *dev = crtc->dev;
6111 struct drm_i915_private *dev_priv = dev->dev_private;
6112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6113 int pipe = intel_crtc->pipe;
6114 bool visible = base != 0;
6115
6116 if (intel_crtc->cursor_visible != visible) {
548f245b 6117 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
6118 if (base) {
6119 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6120 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6121 cntl |= pipe << 28; /* Connect to correct pipe */
6122 } else {
6123 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6124 cntl |= CURSOR_MODE_DISABLE;
6125 }
9db4a9c7 6126 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
6127
6128 intel_crtc->cursor_visible = visible;
6129 }
6130 /* and commit changes on next vblank */
9db4a9c7 6131 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
6132}
6133
65a21cd6
JB
6134static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6135{
6136 struct drm_device *dev = crtc->dev;
6137 struct drm_i915_private *dev_priv = dev->dev_private;
6138 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6139 int pipe = intel_crtc->pipe;
6140 bool visible = base != 0;
6141
6142 if (intel_crtc->cursor_visible != visible) {
6143 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6144 if (base) {
6145 cntl &= ~CURSOR_MODE;
6146 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6147 } else {
6148 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6149 cntl |= CURSOR_MODE_DISABLE;
6150 }
6151 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6152
6153 intel_crtc->cursor_visible = visible;
6154 }
6155 /* and commit changes on next vblank */
6156 I915_WRITE(CURBASE_IVB(pipe), base);
6157}
6158
cda4b7d3 6159/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
6160static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6161 bool on)
cda4b7d3
CW
6162{
6163 struct drm_device *dev = crtc->dev;
6164 struct drm_i915_private *dev_priv = dev->dev_private;
6165 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6166 int pipe = intel_crtc->pipe;
6167 int x = intel_crtc->cursor_x;
6168 int y = intel_crtc->cursor_y;
560b85bb 6169 u32 base, pos;
cda4b7d3
CW
6170 bool visible;
6171
6172 pos = 0;
6173
6b383a7f 6174 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
6175 base = intel_crtc->cursor_addr;
6176 if (x > (int) crtc->fb->width)
6177 base = 0;
6178
6179 if (y > (int) crtc->fb->height)
6180 base = 0;
6181 } else
6182 base = 0;
6183
6184 if (x < 0) {
6185 if (x + intel_crtc->cursor_width < 0)
6186 base = 0;
6187
6188 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6189 x = -x;
6190 }
6191 pos |= x << CURSOR_X_SHIFT;
6192
6193 if (y < 0) {
6194 if (y + intel_crtc->cursor_height < 0)
6195 base = 0;
6196
6197 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6198 y = -y;
6199 }
6200 pos |= y << CURSOR_Y_SHIFT;
6201
6202 visible = base != 0;
560b85bb 6203 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6204 return;
6205
0cd83aa9 6206 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
6207 I915_WRITE(CURPOS_IVB(pipe), pos);
6208 ivb_update_cursor(crtc, base);
6209 } else {
6210 I915_WRITE(CURPOS(pipe), pos);
6211 if (IS_845G(dev) || IS_I865G(dev))
6212 i845_update_cursor(crtc, base);
6213 else
6214 i9xx_update_cursor(crtc, base);
6215 }
cda4b7d3
CW
6216}
6217
79e53945 6218static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6219 struct drm_file *file,
79e53945
JB
6220 uint32_t handle,
6221 uint32_t width, uint32_t height)
6222{
6223 struct drm_device *dev = crtc->dev;
6224 struct drm_i915_private *dev_priv = dev->dev_private;
6225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6226 struct drm_i915_gem_object *obj;
cda4b7d3 6227 uint32_t addr;
3f8bc370 6228 int ret;
79e53945 6229
79e53945
JB
6230 /* if we want to turn off the cursor ignore width and height */
6231 if (!handle) {
28c97730 6232 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6233 addr = 0;
05394f39 6234 obj = NULL;
5004417d 6235 mutex_lock(&dev->struct_mutex);
3f8bc370 6236 goto finish;
79e53945
JB
6237 }
6238
6239 /* Currently we only support 64x64 cursors */
6240 if (width != 64 || height != 64) {
6241 DRM_ERROR("we currently only support 64x64 cursors\n");
6242 return -EINVAL;
6243 }
6244
05394f39 6245 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6246 if (&obj->base == NULL)
79e53945
JB
6247 return -ENOENT;
6248
05394f39 6249 if (obj->base.size < width * height * 4) {
79e53945 6250 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6251 ret = -ENOMEM;
6252 goto fail;
79e53945
JB
6253 }
6254
71acb5eb 6255 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6256 mutex_lock(&dev->struct_mutex);
b295d1b6 6257 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6258 if (obj->tiling_mode) {
6259 DRM_ERROR("cursor cannot be tiled\n");
6260 ret = -EINVAL;
6261 goto fail_locked;
6262 }
6263
2da3b9b9 6264 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6265 if (ret) {
6266 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6267 goto fail_locked;
e7b526bb
CW
6268 }
6269
d9e86c0e
CW
6270 ret = i915_gem_object_put_fence(obj);
6271 if (ret) {
2da3b9b9 6272 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6273 goto fail_unpin;
6274 }
6275
05394f39 6276 addr = obj->gtt_offset;
71acb5eb 6277 } else {
6eeefaf3 6278 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6279 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6280 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6281 align);
71acb5eb
DA
6282 if (ret) {
6283 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6284 goto fail_locked;
71acb5eb 6285 }
05394f39 6286 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6287 }
6288
a6c45cf0 6289 if (IS_GEN2(dev))
14b60391
JB
6290 I915_WRITE(CURSIZE, (height << 12) | width);
6291
3f8bc370 6292 finish:
3f8bc370 6293 if (intel_crtc->cursor_bo) {
b295d1b6 6294 if (dev_priv->info->cursor_needs_physical) {
05394f39 6295 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6296 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6297 } else
6298 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6299 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6300 }
80824003 6301
7f9872e0 6302 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6303
6304 intel_crtc->cursor_addr = addr;
05394f39 6305 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6306 intel_crtc->cursor_width = width;
6307 intel_crtc->cursor_height = height;
6308
6b383a7f 6309 intel_crtc_update_cursor(crtc, true);
3f8bc370 6310
79e53945 6311 return 0;
e7b526bb 6312fail_unpin:
05394f39 6313 i915_gem_object_unpin(obj);
7f9872e0 6314fail_locked:
34b8686e 6315 mutex_unlock(&dev->struct_mutex);
bc9025bd 6316fail:
05394f39 6317 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6318 return ret;
79e53945
JB
6319}
6320
6321static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6322{
79e53945 6323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6324
cda4b7d3
CW
6325 intel_crtc->cursor_x = x;
6326 intel_crtc->cursor_y = y;
652c393a 6327
6b383a7f 6328 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6329
6330 return 0;
6331}
6332
6333/** Sets the color ramps on behalf of RandR */
6334void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6335 u16 blue, int regno)
6336{
6337 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6338
6339 intel_crtc->lut_r[regno] = red >> 8;
6340 intel_crtc->lut_g[regno] = green >> 8;
6341 intel_crtc->lut_b[regno] = blue >> 8;
6342}
6343
b8c00ac5
DA
6344void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6345 u16 *blue, int regno)
6346{
6347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6348
6349 *red = intel_crtc->lut_r[regno] << 8;
6350 *green = intel_crtc->lut_g[regno] << 8;
6351 *blue = intel_crtc->lut_b[regno] << 8;
6352}
6353
79e53945 6354static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6355 u16 *blue, uint32_t start, uint32_t size)
79e53945 6356{
7203425a 6357 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6359
7203425a 6360 for (i = start; i < end; i++) {
79e53945
JB
6361 intel_crtc->lut_r[i] = red[i] >> 8;
6362 intel_crtc->lut_g[i] = green[i] >> 8;
6363 intel_crtc->lut_b[i] = blue[i] >> 8;
6364 }
6365
6366 intel_crtc_load_lut(crtc);
6367}
6368
6369/**
6370 * Get a pipe with a simple mode set on it for doing load-based monitor
6371 * detection.
6372 *
6373 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6374 * its requirements. The pipe will be connected to no other encoders.
79e53945 6375 *
c751ce4f 6376 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6377 * configured for it. In the future, it could choose to temporarily disable
6378 * some outputs to free up a pipe for its use.
6379 *
6380 * \return crtc, or NULL if no pipes are available.
6381 */
6382
6383/* VESA 640x480x72Hz mode to set on the pipe */
6384static struct drm_display_mode load_detect_mode = {
6385 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6386 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6387};
6388
d2dff872
CW
6389static struct drm_framebuffer *
6390intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6391 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6392 struct drm_i915_gem_object *obj)
6393{
6394 struct intel_framebuffer *intel_fb;
6395 int ret;
6396
6397 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6398 if (!intel_fb) {
6399 drm_gem_object_unreference_unlocked(&obj->base);
6400 return ERR_PTR(-ENOMEM);
6401 }
6402
6403 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6404 if (ret) {
6405 drm_gem_object_unreference_unlocked(&obj->base);
6406 kfree(intel_fb);
6407 return ERR_PTR(ret);
6408 }
6409
6410 return &intel_fb->base;
6411}
6412
6413static u32
6414intel_framebuffer_pitch_for_width(int width, int bpp)
6415{
6416 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6417 return ALIGN(pitch, 64);
6418}
6419
6420static u32
6421intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6422{
6423 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6424 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6425}
6426
6427static struct drm_framebuffer *
6428intel_framebuffer_create_for_mode(struct drm_device *dev,
6429 struct drm_display_mode *mode,
6430 int depth, int bpp)
6431{
6432 struct drm_i915_gem_object *obj;
0fed39bd 6433 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
6434
6435 obj = i915_gem_alloc_object(dev,
6436 intel_framebuffer_size_for_mode(mode, bpp));
6437 if (obj == NULL)
6438 return ERR_PTR(-ENOMEM);
6439
6440 mode_cmd.width = mode->hdisplay;
6441 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6442 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6443 bpp);
5ca0c34a 6444 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
6445
6446 return intel_framebuffer_create(dev, &mode_cmd, obj);
6447}
6448
6449static struct drm_framebuffer *
6450mode_fits_in_fbdev(struct drm_device *dev,
6451 struct drm_display_mode *mode)
6452{
6453 struct drm_i915_private *dev_priv = dev->dev_private;
6454 struct drm_i915_gem_object *obj;
6455 struct drm_framebuffer *fb;
6456
6457 if (dev_priv->fbdev == NULL)
6458 return NULL;
6459
6460 obj = dev_priv->fbdev->ifb.obj;
6461 if (obj == NULL)
6462 return NULL;
6463
6464 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6465 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6466 fb->bits_per_pixel))
d2dff872
CW
6467 return NULL;
6468
01f2c773 6469 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6470 return NULL;
6471
6472 return fb;
6473}
6474
d2434ab7 6475bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 6476 struct drm_display_mode *mode,
8261b191 6477 struct intel_load_detect_pipe *old)
79e53945
JB
6478{
6479 struct intel_crtc *intel_crtc;
d2434ab7
DV
6480 struct intel_encoder *intel_encoder =
6481 intel_attached_encoder(connector);
79e53945 6482 struct drm_crtc *possible_crtc;
4ef69c7a 6483 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6484 struct drm_crtc *crtc = NULL;
6485 struct drm_device *dev = encoder->dev;
94352cf9 6486 struct drm_framebuffer *fb;
79e53945
JB
6487 int i = -1;
6488
d2dff872
CW
6489 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6490 connector->base.id, drm_get_connector_name(connector),
6491 encoder->base.id, drm_get_encoder_name(encoder));
6492
79e53945
JB
6493 /*
6494 * Algorithm gets a little messy:
7a5e4805 6495 *
79e53945
JB
6496 * - if the connector already has an assigned crtc, use it (but make
6497 * sure it's on first)
7a5e4805 6498 *
79e53945
JB
6499 * - try to find the first unused crtc that can drive this connector,
6500 * and use that if we find one
79e53945
JB
6501 */
6502
6503 /* See if we already have a CRTC for this connector */
6504 if (encoder->crtc) {
6505 crtc = encoder->crtc;
8261b191 6506
24218aac 6507 old->dpms_mode = connector->dpms;
8261b191
CW
6508 old->load_detect_temp = false;
6509
6510 /* Make sure the crtc and connector are running */
24218aac
DV
6511 if (connector->dpms != DRM_MODE_DPMS_ON)
6512 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 6513
7173188d 6514 return true;
79e53945
JB
6515 }
6516
6517 /* Find an unused one (if possible) */
6518 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6519 i++;
6520 if (!(encoder->possible_crtcs & (1 << i)))
6521 continue;
6522 if (!possible_crtc->enabled) {
6523 crtc = possible_crtc;
6524 break;
6525 }
79e53945
JB
6526 }
6527
6528 /*
6529 * If we didn't find an unused CRTC, don't use any.
6530 */
6531 if (!crtc) {
7173188d
CW
6532 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6533 return false;
79e53945
JB
6534 }
6535
fc303101
DV
6536 intel_encoder->new_crtc = to_intel_crtc(crtc);
6537 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
6538
6539 intel_crtc = to_intel_crtc(crtc);
24218aac 6540 old->dpms_mode = connector->dpms;
8261b191 6541 old->load_detect_temp = true;
d2dff872 6542 old->release_fb = NULL;
79e53945 6543
6492711d
CW
6544 if (!mode)
6545 mode = &load_detect_mode;
79e53945 6546
d2dff872
CW
6547 /* We need a framebuffer large enough to accommodate all accesses
6548 * that the plane may generate whilst we perform load detection.
6549 * We can not rely on the fbcon either being present (we get called
6550 * during its initialisation to detect all boot displays, or it may
6551 * not even exist) or that it is large enough to satisfy the
6552 * requested mode.
6553 */
94352cf9
DV
6554 fb = mode_fits_in_fbdev(dev, mode);
6555 if (fb == NULL) {
d2dff872 6556 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
6557 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6558 old->release_fb = fb;
d2dff872
CW
6559 } else
6560 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 6561 if (IS_ERR(fb)) {
d2dff872 6562 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
0e8b3d3e 6563 return false;
79e53945 6564 }
79e53945 6565
94352cf9 6566 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 6567 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6568 if (old->release_fb)
6569 old->release_fb->funcs->destroy(old->release_fb);
0e8b3d3e 6570 return false;
79e53945 6571 }
7173188d 6572
79e53945 6573 /* let the connector get through one full cycle before testing */
9d0498a2 6574 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 6575 return true;
79e53945
JB
6576}
6577
d2434ab7 6578void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 6579 struct intel_load_detect_pipe *old)
79e53945 6580{
d2434ab7
DV
6581 struct intel_encoder *intel_encoder =
6582 intel_attached_encoder(connector);
4ef69c7a 6583 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 6584
d2dff872
CW
6585 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6586 connector->base.id, drm_get_connector_name(connector),
6587 encoder->base.id, drm_get_encoder_name(encoder));
6588
8261b191 6589 if (old->load_detect_temp) {
fc303101
DV
6590 struct drm_crtc *crtc = encoder->crtc;
6591
6592 to_intel_connector(connector)->new_encoder = NULL;
6593 intel_encoder->new_crtc = NULL;
6594 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
6595
6596 if (old->release_fb)
6597 old->release_fb->funcs->destroy(old->release_fb);
6598
0622a53c 6599 return;
79e53945
JB
6600 }
6601
c751ce4f 6602 /* Switch crtc and encoder back off if necessary */
24218aac
DV
6603 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6604 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
6605}
6606
6607/* Returns the clock of the currently programmed mode of the given pipe. */
6608static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6609{
6610 struct drm_i915_private *dev_priv = dev->dev_private;
6611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6612 int pipe = intel_crtc->pipe;
548f245b 6613 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6614 u32 fp;
6615 intel_clock_t clock;
6616
6617 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6618 fp = I915_READ(FP0(pipe));
79e53945 6619 else
39adb7a5 6620 fp = I915_READ(FP1(pipe));
79e53945
JB
6621
6622 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6623 if (IS_PINEVIEW(dev)) {
6624 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6625 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6626 } else {
6627 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6628 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6629 }
6630
a6c45cf0 6631 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6632 if (IS_PINEVIEW(dev))
6633 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6634 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6635 else
6636 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6637 DPLL_FPA01_P1_POST_DIV_SHIFT);
6638
6639 switch (dpll & DPLL_MODE_MASK) {
6640 case DPLLB_MODE_DAC_SERIAL:
6641 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6642 5 : 10;
6643 break;
6644 case DPLLB_MODE_LVDS:
6645 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6646 7 : 14;
6647 break;
6648 default:
28c97730 6649 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6650 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6651 return 0;
6652 }
6653
6654 /* XXX: Handle the 100Mhz refclk */
2177832f 6655 intel_clock(dev, 96000, &clock);
79e53945
JB
6656 } else {
6657 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6658
6659 if (is_lvds) {
6660 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6661 DPLL_FPA01_P1_POST_DIV_SHIFT);
6662 clock.p2 = 14;
6663
6664 if ((dpll & PLL_REF_INPUT_MASK) ==
6665 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6666 /* XXX: might not be 66MHz */
2177832f 6667 intel_clock(dev, 66000, &clock);
79e53945 6668 } else
2177832f 6669 intel_clock(dev, 48000, &clock);
79e53945
JB
6670 } else {
6671 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6672 clock.p1 = 2;
6673 else {
6674 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6675 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6676 }
6677 if (dpll & PLL_P2_DIVIDE_BY_4)
6678 clock.p2 = 4;
6679 else
6680 clock.p2 = 2;
6681
2177832f 6682 intel_clock(dev, 48000, &clock);
79e53945
JB
6683 }
6684 }
6685
6686 /* XXX: It would be nice to validate the clocks, but we can't reuse
6687 * i830PllIsValid() because it relies on the xf86_config connector
6688 * configuration being accurate, which it isn't necessarily.
6689 */
6690
6691 return clock.dot;
6692}
6693
6694/** Returns the currently programmed mode of the given pipe. */
6695struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6696 struct drm_crtc *crtc)
6697{
548f245b 6698 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 6699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
fe2b8f9d 6700 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
79e53945 6701 struct drm_display_mode *mode;
fe2b8f9d
PZ
6702 int htot = I915_READ(HTOTAL(cpu_transcoder));
6703 int hsync = I915_READ(HSYNC(cpu_transcoder));
6704 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6705 int vsync = I915_READ(VSYNC(cpu_transcoder));
79e53945
JB
6706
6707 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6708 if (!mode)
6709 return NULL;
6710
6711 mode->clock = intel_crtc_clock_get(dev, crtc);
6712 mode->hdisplay = (htot & 0xffff) + 1;
6713 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6714 mode->hsync_start = (hsync & 0xffff) + 1;
6715 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6716 mode->vdisplay = (vtot & 0xffff) + 1;
6717 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6718 mode->vsync_start = (vsync & 0xffff) + 1;
6719 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6720
6721 drm_mode_set_name(mode);
79e53945
JB
6722
6723 return mode;
6724}
6725
3dec0095 6726static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6727{
6728 struct drm_device *dev = crtc->dev;
6729 drm_i915_private_t *dev_priv = dev->dev_private;
6730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6731 int pipe = intel_crtc->pipe;
dbdc6479
JB
6732 int dpll_reg = DPLL(pipe);
6733 int dpll;
652c393a 6734
bad720ff 6735 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6736 return;
6737
6738 if (!dev_priv->lvds_downclock_avail)
6739 return;
6740
dbdc6479 6741 dpll = I915_READ(dpll_reg);
652c393a 6742 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6743 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6744
8ac5a6d5 6745 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6746
6747 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6748 I915_WRITE(dpll_reg, dpll);
9d0498a2 6749 intel_wait_for_vblank(dev, pipe);
dbdc6479 6750
652c393a
JB
6751 dpll = I915_READ(dpll_reg);
6752 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6753 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6754 }
652c393a
JB
6755}
6756
6757static void intel_decrease_pllclock(struct drm_crtc *crtc)
6758{
6759 struct drm_device *dev = crtc->dev;
6760 drm_i915_private_t *dev_priv = dev->dev_private;
6761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6762
bad720ff 6763 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6764 return;
6765
6766 if (!dev_priv->lvds_downclock_avail)
6767 return;
6768
6769 /*
6770 * Since this is called by a timer, we should never get here in
6771 * the manual case.
6772 */
6773 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6774 int pipe = intel_crtc->pipe;
6775 int dpll_reg = DPLL(pipe);
6776 int dpll;
f6e5b160 6777
44d98a61 6778 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6779
8ac5a6d5 6780 assert_panel_unlocked(dev_priv, pipe);
652c393a 6781
dc257cf1 6782 dpll = I915_READ(dpll_reg);
652c393a
JB
6783 dpll |= DISPLAY_RATE_SELECT_FPA1;
6784 I915_WRITE(dpll_reg, dpll);
9d0498a2 6785 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6786 dpll = I915_READ(dpll_reg);
6787 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6788 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6789 }
6790
6791}
6792
f047e395
CW
6793void intel_mark_busy(struct drm_device *dev)
6794{
f047e395
CW
6795 i915_update_gfx_val(dev->dev_private);
6796}
6797
6798void intel_mark_idle(struct drm_device *dev)
652c393a 6799{
f047e395
CW
6800}
6801
6802void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6803{
6804 struct drm_device *dev = obj->base.dev;
652c393a 6805 struct drm_crtc *crtc;
652c393a
JB
6806
6807 if (!i915_powersave)
6808 return;
6809
652c393a 6810 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6811 if (!crtc->fb)
6812 continue;
6813
f047e395
CW
6814 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6815 intel_increase_pllclock(crtc);
652c393a 6816 }
652c393a
JB
6817}
6818
f047e395 6819void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6820{
f047e395
CW
6821 struct drm_device *dev = obj->base.dev;
6822 struct drm_crtc *crtc;
652c393a 6823
f047e395 6824 if (!i915_powersave)
acb87dfb
CW
6825 return;
6826
652c393a
JB
6827 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6828 if (!crtc->fb)
6829 continue;
6830
f047e395
CW
6831 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6832 intel_decrease_pllclock(crtc);
652c393a
JB
6833 }
6834}
6835
79e53945
JB
6836static void intel_crtc_destroy(struct drm_crtc *crtc)
6837{
6838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6839 struct drm_device *dev = crtc->dev;
6840 struct intel_unpin_work *work;
6841 unsigned long flags;
6842
6843 spin_lock_irqsave(&dev->event_lock, flags);
6844 work = intel_crtc->unpin_work;
6845 intel_crtc->unpin_work = NULL;
6846 spin_unlock_irqrestore(&dev->event_lock, flags);
6847
6848 if (work) {
6849 cancel_work_sync(&work->work);
6850 kfree(work);
6851 }
79e53945
JB
6852
6853 drm_crtc_cleanup(crtc);
67e77c5a 6854
79e53945
JB
6855 kfree(intel_crtc);
6856}
6857
6b95a207
KH
6858static void intel_unpin_work_fn(struct work_struct *__work)
6859{
6860 struct intel_unpin_work *work =
6861 container_of(__work, struct intel_unpin_work, work);
b4a98e57 6862 struct drm_device *dev = work->crtc->dev;
6b95a207 6863
b4a98e57 6864 mutex_lock(&dev->struct_mutex);
1690e1eb 6865 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6866 drm_gem_object_unreference(&work->pending_flip_obj->base);
6867 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6868
b4a98e57
CW
6869 intel_update_fbc(dev);
6870 mutex_unlock(&dev->struct_mutex);
6871
6872 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6873 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6874
6b95a207
KH
6875 kfree(work);
6876}
6877
1afe3e9d 6878static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6879 struct drm_crtc *crtc)
6b95a207
KH
6880{
6881 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6883 struct intel_unpin_work *work;
05394f39 6884 struct drm_i915_gem_object *obj;
6b95a207
KH
6885 unsigned long flags;
6886
6887 /* Ignore early vblank irqs */
6888 if (intel_crtc == NULL)
6889 return;
6890
6891 spin_lock_irqsave(&dev->event_lock, flags);
6892 work = intel_crtc->unpin_work;
6893 if (work == NULL || !work->pending) {
6894 spin_unlock_irqrestore(&dev->event_lock, flags);
6895 return;
6896 }
6897
6898 intel_crtc->unpin_work = NULL;
6b95a207 6899
45a066eb
RC
6900 if (work->event)
6901 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 6902
0af7e4df
MK
6903 drm_vblank_put(dev, intel_crtc->pipe);
6904
6b95a207
KH
6905 spin_unlock_irqrestore(&dev->event_lock, flags);
6906
05394f39 6907 obj = work->old_fb_obj;
d9e86c0e 6908
5bb61643 6909 wake_up(&dev_priv->pending_flip_queue);
b4a98e57
CW
6910
6911 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
6912
6913 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6914}
6915
1afe3e9d
JB
6916void intel_finish_page_flip(struct drm_device *dev, int pipe)
6917{
6918 drm_i915_private_t *dev_priv = dev->dev_private;
6919 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6920
49b14a5c 6921 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6922}
6923
6924void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6925{
6926 drm_i915_private_t *dev_priv = dev->dev_private;
6927 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6928
49b14a5c 6929 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6930}
6931
6b95a207
KH
6932void intel_prepare_page_flip(struct drm_device *dev, int plane)
6933{
6934 drm_i915_private_t *dev_priv = dev->dev_private;
6935 struct intel_crtc *intel_crtc =
6936 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6937 unsigned long flags;
6938
6939 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6940 if (intel_crtc->unpin_work) {
4e5359cd
SF
6941 if ((++intel_crtc->unpin_work->pending) > 1)
6942 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6943 } else {
6944 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6945 }
6b95a207
KH
6946 spin_unlock_irqrestore(&dev->event_lock, flags);
6947}
6948
8c9f3aaf
JB
6949static int intel_gen2_queue_flip(struct drm_device *dev,
6950 struct drm_crtc *crtc,
6951 struct drm_framebuffer *fb,
6952 struct drm_i915_gem_object *obj)
6953{
6954 struct drm_i915_private *dev_priv = dev->dev_private;
6955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6956 u32 flip_mask;
6d90c952 6957 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6958 int ret;
6959
6d90c952 6960 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6961 if (ret)
83d4092b 6962 goto err;
8c9f3aaf 6963
6d90c952 6964 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6965 if (ret)
83d4092b 6966 goto err_unpin;
8c9f3aaf
JB
6967
6968 /* Can't queue multiple flips, so wait for the previous
6969 * one to finish before executing the next.
6970 */
6971 if (intel_crtc->plane)
6972 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6973 else
6974 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6975 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6976 intel_ring_emit(ring, MI_NOOP);
6977 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6978 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6979 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6980 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6981 intel_ring_emit(ring, 0); /* aux display base address, unused */
6982 intel_ring_advance(ring);
83d4092b
CW
6983 return 0;
6984
6985err_unpin:
6986 intel_unpin_fb_obj(obj);
6987err:
8c9f3aaf
JB
6988 return ret;
6989}
6990
6991static int intel_gen3_queue_flip(struct drm_device *dev,
6992 struct drm_crtc *crtc,
6993 struct drm_framebuffer *fb,
6994 struct drm_i915_gem_object *obj)
6995{
6996 struct drm_i915_private *dev_priv = dev->dev_private;
6997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6998 u32 flip_mask;
6d90c952 6999 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7000 int ret;
7001
6d90c952 7002 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7003 if (ret)
83d4092b 7004 goto err;
8c9f3aaf 7005
6d90c952 7006 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7007 if (ret)
83d4092b 7008 goto err_unpin;
8c9f3aaf
JB
7009
7010 if (intel_crtc->plane)
7011 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7012 else
7013 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7014 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7015 intel_ring_emit(ring, MI_NOOP);
7016 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7017 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7018 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7019 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
7020 intel_ring_emit(ring, MI_NOOP);
7021
7022 intel_ring_advance(ring);
83d4092b
CW
7023 return 0;
7024
7025err_unpin:
7026 intel_unpin_fb_obj(obj);
7027err:
8c9f3aaf
JB
7028 return ret;
7029}
7030
7031static int intel_gen4_queue_flip(struct drm_device *dev,
7032 struct drm_crtc *crtc,
7033 struct drm_framebuffer *fb,
7034 struct drm_i915_gem_object *obj)
7035{
7036 struct drm_i915_private *dev_priv = dev->dev_private;
7037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7038 uint32_t pf, pipesrc;
6d90c952 7039 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7040 int ret;
7041
6d90c952 7042 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7043 if (ret)
83d4092b 7044 goto err;
8c9f3aaf 7045
6d90c952 7046 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7047 if (ret)
83d4092b 7048 goto err_unpin;
8c9f3aaf
JB
7049
7050 /* i965+ uses the linear or tiled offsets from the
7051 * Display Registers (which do not change across a page-flip)
7052 * so we need only reprogram the base address.
7053 */
6d90c952
DV
7054 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7055 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7056 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
7057 intel_ring_emit(ring,
7058 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7059 obj->tiling_mode);
8c9f3aaf
JB
7060
7061 /* XXX Enabling the panel-fitter across page-flip is so far
7062 * untested on non-native modes, so ignore it for now.
7063 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7064 */
7065 pf = 0;
7066 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
7067 intel_ring_emit(ring, pf | pipesrc);
7068 intel_ring_advance(ring);
83d4092b
CW
7069 return 0;
7070
7071err_unpin:
7072 intel_unpin_fb_obj(obj);
7073err:
8c9f3aaf
JB
7074 return ret;
7075}
7076
7077static int intel_gen6_queue_flip(struct drm_device *dev,
7078 struct drm_crtc *crtc,
7079 struct drm_framebuffer *fb,
7080 struct drm_i915_gem_object *obj)
7081{
7082 struct drm_i915_private *dev_priv = dev->dev_private;
7083 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 7084 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7085 uint32_t pf, pipesrc;
7086 int ret;
7087
6d90c952 7088 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7089 if (ret)
83d4092b 7090 goto err;
8c9f3aaf 7091
6d90c952 7092 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7093 if (ret)
83d4092b 7094 goto err_unpin;
8c9f3aaf 7095
6d90c952
DV
7096 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7097 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7098 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 7099 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 7100
dc257cf1
DV
7101 /* Contrary to the suggestions in the documentation,
7102 * "Enable Panel Fitter" does not seem to be required when page
7103 * flipping with a non-native mode, and worse causes a normal
7104 * modeset to fail.
7105 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7106 */
7107 pf = 0;
8c9f3aaf 7108 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
7109 intel_ring_emit(ring, pf | pipesrc);
7110 intel_ring_advance(ring);
83d4092b
CW
7111 return 0;
7112
7113err_unpin:
7114 intel_unpin_fb_obj(obj);
7115err:
8c9f3aaf
JB
7116 return ret;
7117}
7118
7c9017e5
JB
7119/*
7120 * On gen7 we currently use the blit ring because (in early silicon at least)
7121 * the render ring doesn't give us interrpts for page flip completion, which
7122 * means clients will hang after the first flip is queued. Fortunately the
7123 * blit ring generates interrupts properly, so use it instead.
7124 */
7125static int intel_gen7_queue_flip(struct drm_device *dev,
7126 struct drm_crtc *crtc,
7127 struct drm_framebuffer *fb,
7128 struct drm_i915_gem_object *obj)
7129{
7130 struct drm_i915_private *dev_priv = dev->dev_private;
7131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7132 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 7133 uint32_t plane_bit = 0;
7c9017e5
JB
7134 int ret;
7135
7136 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7137 if (ret)
83d4092b 7138 goto err;
7c9017e5 7139
cb05d8de
DV
7140 switch(intel_crtc->plane) {
7141 case PLANE_A:
7142 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7143 break;
7144 case PLANE_B:
7145 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7146 break;
7147 case PLANE_C:
7148 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7149 break;
7150 default:
7151 WARN_ONCE(1, "unknown plane in flip command\n");
7152 ret = -ENODEV;
ab3951eb 7153 goto err_unpin;
cb05d8de
DV
7154 }
7155
7c9017e5
JB
7156 ret = intel_ring_begin(ring, 4);
7157 if (ret)
83d4092b 7158 goto err_unpin;
7c9017e5 7159
cb05d8de 7160 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 7161 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 7162 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5
JB
7163 intel_ring_emit(ring, (MI_NOOP));
7164 intel_ring_advance(ring);
83d4092b
CW
7165 return 0;
7166
7167err_unpin:
7168 intel_unpin_fb_obj(obj);
7169err:
7c9017e5
JB
7170 return ret;
7171}
7172
8c9f3aaf
JB
7173static int intel_default_queue_flip(struct drm_device *dev,
7174 struct drm_crtc *crtc,
7175 struct drm_framebuffer *fb,
7176 struct drm_i915_gem_object *obj)
7177{
7178 return -ENODEV;
7179}
7180
6b95a207
KH
7181static int intel_crtc_page_flip(struct drm_crtc *crtc,
7182 struct drm_framebuffer *fb,
7183 struct drm_pending_vblank_event *event)
7184{
7185 struct drm_device *dev = crtc->dev;
7186 struct drm_i915_private *dev_priv = dev->dev_private;
7187 struct intel_framebuffer *intel_fb;
05394f39 7188 struct drm_i915_gem_object *obj;
6b95a207
KH
7189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7190 struct intel_unpin_work *work;
8c9f3aaf 7191 unsigned long flags;
52e68630 7192 int ret;
6b95a207 7193
e6a595d2
VS
7194 /* Can't change pixel format via MI display flips. */
7195 if (fb->pixel_format != crtc->fb->pixel_format)
7196 return -EINVAL;
7197
7198 /*
7199 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7200 * Note that pitch changes could also affect these register.
7201 */
7202 if (INTEL_INFO(dev)->gen > 3 &&
7203 (fb->offsets[0] != crtc->fb->offsets[0] ||
7204 fb->pitches[0] != crtc->fb->pitches[0]))
7205 return -EINVAL;
7206
6b95a207
KH
7207 work = kzalloc(sizeof *work, GFP_KERNEL);
7208 if (work == NULL)
7209 return -ENOMEM;
7210
6b95a207 7211 work->event = event;
b4a98e57 7212 work->crtc = crtc;
6b95a207 7213 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7214 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7215 INIT_WORK(&work->work, intel_unpin_work_fn);
7216
7317c75e
JB
7217 ret = drm_vblank_get(dev, intel_crtc->pipe);
7218 if (ret)
7219 goto free_work;
7220
6b95a207
KH
7221 /* We borrow the event spin lock for protecting unpin_work */
7222 spin_lock_irqsave(&dev->event_lock, flags);
7223 if (intel_crtc->unpin_work) {
7224 spin_unlock_irqrestore(&dev->event_lock, flags);
7225 kfree(work);
7317c75e 7226 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
7227
7228 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7229 return -EBUSY;
7230 }
7231 intel_crtc->unpin_work = work;
7232 spin_unlock_irqrestore(&dev->event_lock, flags);
7233
7234 intel_fb = to_intel_framebuffer(fb);
7235 obj = intel_fb->obj;
7236
b4a98e57
CW
7237 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7238 flush_workqueue(dev_priv->wq);
7239
79158103
CW
7240 ret = i915_mutex_lock_interruptible(dev);
7241 if (ret)
7242 goto cleanup;
6b95a207 7243
75dfca80 7244 /* Reference the objects for the scheduled work. */
05394f39
CW
7245 drm_gem_object_reference(&work->old_fb_obj->base);
7246 drm_gem_object_reference(&obj->base);
6b95a207
KH
7247
7248 crtc->fb = fb;
96b099fd 7249
e1f99ce6 7250 work->pending_flip_obj = obj;
e1f99ce6 7251
4e5359cd
SF
7252 work->enable_stall_check = true;
7253
b4a98e57 7254 atomic_inc(&intel_crtc->unpin_work_count);
e1f99ce6 7255
8c9f3aaf
JB
7256 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7257 if (ret)
7258 goto cleanup_pending;
6b95a207 7259
7782de3b 7260 intel_disable_fbc(dev);
f047e395 7261 intel_mark_fb_busy(obj);
6b95a207
KH
7262 mutex_unlock(&dev->struct_mutex);
7263
e5510fac
JB
7264 trace_i915_flip_request(intel_crtc->plane, obj);
7265
6b95a207 7266 return 0;
96b099fd 7267
8c9f3aaf 7268cleanup_pending:
b4a98e57 7269 atomic_dec(&intel_crtc->unpin_work_count);
05394f39
CW
7270 drm_gem_object_unreference(&work->old_fb_obj->base);
7271 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7272 mutex_unlock(&dev->struct_mutex);
7273
79158103 7274cleanup:
96b099fd
CW
7275 spin_lock_irqsave(&dev->event_lock, flags);
7276 intel_crtc->unpin_work = NULL;
7277 spin_unlock_irqrestore(&dev->event_lock, flags);
7278
7317c75e
JB
7279 drm_vblank_put(dev, intel_crtc->pipe);
7280free_work:
96b099fd
CW
7281 kfree(work);
7282
7283 return ret;
6b95a207
KH
7284}
7285
f6e5b160 7286static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
7287 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7288 .load_lut = intel_crtc_load_lut,
976f8a20 7289 .disable = intel_crtc_noop,
f6e5b160
CW
7290};
7291
6ed0f796 7292bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 7293{
6ed0f796
DV
7294 struct intel_encoder *other_encoder;
7295 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 7296
6ed0f796
DV
7297 if (WARN_ON(!crtc))
7298 return false;
7299
7300 list_for_each_entry(other_encoder,
7301 &crtc->dev->mode_config.encoder_list,
7302 base.head) {
7303
7304 if (&other_encoder->new_crtc->base != crtc ||
7305 encoder == other_encoder)
7306 continue;
7307 else
7308 return true;
f47166d2
CW
7309 }
7310
6ed0f796
DV
7311 return false;
7312}
47f1c6c9 7313
50f56119
DV
7314static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7315 struct drm_crtc *crtc)
7316{
7317 struct drm_device *dev;
7318 struct drm_crtc *tmp;
7319 int crtc_mask = 1;
47f1c6c9 7320
50f56119 7321 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 7322
50f56119 7323 dev = crtc->dev;
47f1c6c9 7324
50f56119
DV
7325 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7326 if (tmp == crtc)
7327 break;
7328 crtc_mask <<= 1;
7329 }
47f1c6c9 7330
50f56119
DV
7331 if (encoder->possible_crtcs & crtc_mask)
7332 return true;
7333 return false;
47f1c6c9 7334}
79e53945 7335
9a935856
DV
7336/**
7337 * intel_modeset_update_staged_output_state
7338 *
7339 * Updates the staged output configuration state, e.g. after we've read out the
7340 * current hw state.
7341 */
7342static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 7343{
9a935856
DV
7344 struct intel_encoder *encoder;
7345 struct intel_connector *connector;
f6e5b160 7346
9a935856
DV
7347 list_for_each_entry(connector, &dev->mode_config.connector_list,
7348 base.head) {
7349 connector->new_encoder =
7350 to_intel_encoder(connector->base.encoder);
7351 }
f6e5b160 7352
9a935856
DV
7353 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7354 base.head) {
7355 encoder->new_crtc =
7356 to_intel_crtc(encoder->base.crtc);
7357 }
f6e5b160
CW
7358}
7359
9a935856
DV
7360/**
7361 * intel_modeset_commit_output_state
7362 *
7363 * This function copies the stage display pipe configuration to the real one.
7364 */
7365static void intel_modeset_commit_output_state(struct drm_device *dev)
7366{
7367 struct intel_encoder *encoder;
7368 struct intel_connector *connector;
f6e5b160 7369
9a935856
DV
7370 list_for_each_entry(connector, &dev->mode_config.connector_list,
7371 base.head) {
7372 connector->base.encoder = &connector->new_encoder->base;
7373 }
f6e5b160 7374
9a935856
DV
7375 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7376 base.head) {
7377 encoder->base.crtc = &encoder->new_crtc->base;
7378 }
7379}
7380
7758a113
DV
7381static struct drm_display_mode *
7382intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7383 struct drm_display_mode *mode)
ee7b9f93 7384{
7758a113
DV
7385 struct drm_device *dev = crtc->dev;
7386 struct drm_display_mode *adjusted_mode;
7387 struct drm_encoder_helper_funcs *encoder_funcs;
7388 struct intel_encoder *encoder;
ee7b9f93 7389
7758a113
DV
7390 adjusted_mode = drm_mode_duplicate(dev, mode);
7391 if (!adjusted_mode)
7392 return ERR_PTR(-ENOMEM);
7393
7394 /* Pass our mode to the connectors and the CRTC to give them a chance to
7395 * adjust it according to limitations or connector properties, and also
7396 * a chance to reject the mode entirely.
47f1c6c9 7397 */
7758a113
DV
7398 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7399 base.head) {
47f1c6c9 7400
7758a113
DV
7401 if (&encoder->new_crtc->base != crtc)
7402 continue;
7403 encoder_funcs = encoder->base.helper_private;
7404 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7405 adjusted_mode))) {
7406 DRM_DEBUG_KMS("Encoder fixup failed\n");
7407 goto fail;
7408 }
ee7b9f93 7409 }
47f1c6c9 7410
7758a113
DV
7411 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7412 DRM_DEBUG_KMS("CRTC fixup failed\n");
7413 goto fail;
ee7b9f93 7414 }
7758a113 7415 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
47f1c6c9 7416
7758a113
DV
7417 return adjusted_mode;
7418fail:
7419 drm_mode_destroy(dev, adjusted_mode);
7420 return ERR_PTR(-EINVAL);
ee7b9f93 7421}
47f1c6c9 7422
e2e1ed41
DV
7423/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7424 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7425static void
7426intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7427 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
7428{
7429 struct intel_crtc *intel_crtc;
e2e1ed41
DV
7430 struct drm_device *dev = crtc->dev;
7431 struct intel_encoder *encoder;
7432 struct intel_connector *connector;
7433 struct drm_crtc *tmp_crtc;
79e53945 7434
e2e1ed41 7435 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 7436
e2e1ed41
DV
7437 /* Check which crtcs have changed outputs connected to them, these need
7438 * to be part of the prepare_pipes mask. We don't (yet) support global
7439 * modeset across multiple crtcs, so modeset_pipes will only have one
7440 * bit set at most. */
7441 list_for_each_entry(connector, &dev->mode_config.connector_list,
7442 base.head) {
7443 if (connector->base.encoder == &connector->new_encoder->base)
7444 continue;
79e53945 7445
e2e1ed41
DV
7446 if (connector->base.encoder) {
7447 tmp_crtc = connector->base.encoder->crtc;
7448
7449 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7450 }
7451
7452 if (connector->new_encoder)
7453 *prepare_pipes |=
7454 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
7455 }
7456
e2e1ed41
DV
7457 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7458 base.head) {
7459 if (encoder->base.crtc == &encoder->new_crtc->base)
7460 continue;
7461
7462 if (encoder->base.crtc) {
7463 tmp_crtc = encoder->base.crtc;
7464
7465 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7466 }
7467
7468 if (encoder->new_crtc)
7469 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
7470 }
7471
e2e1ed41
DV
7472 /* Check for any pipes that will be fully disabled ... */
7473 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7474 base.head) {
7475 bool used = false;
22fd0fab 7476
e2e1ed41
DV
7477 /* Don't try to disable disabled crtcs. */
7478 if (!intel_crtc->base.enabled)
7479 continue;
7e7d76c3 7480
e2e1ed41
DV
7481 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7482 base.head) {
7483 if (encoder->new_crtc == intel_crtc)
7484 used = true;
7485 }
7486
7487 if (!used)
7488 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
7489 }
7490
e2e1ed41
DV
7491
7492 /* set_mode is also used to update properties on life display pipes. */
7493 intel_crtc = to_intel_crtc(crtc);
7494 if (crtc->enabled)
7495 *prepare_pipes |= 1 << intel_crtc->pipe;
7496
7497 /* We only support modeset on one single crtc, hence we need to do that
7498 * only for the passed in crtc iff we change anything else than just
7499 * disable crtcs.
7500 *
7501 * This is actually not true, to be fully compatible with the old crtc
7502 * helper we automatically disable _any_ output (i.e. doesn't need to be
7503 * connected to the crtc we're modesetting on) if it's disconnected.
7504 * Which is a rather nutty api (since changed the output configuration
7505 * without userspace's explicit request can lead to confusion), but
7506 * alas. Hence we currently need to modeset on all pipes we prepare. */
7507 if (*prepare_pipes)
7508 *modeset_pipes = *prepare_pipes;
7509
7510 /* ... and mask these out. */
7511 *modeset_pipes &= ~(*disable_pipes);
7512 *prepare_pipes &= ~(*disable_pipes);
47f1c6c9 7513}
79e53945 7514
ea9d758d 7515static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 7516{
ea9d758d 7517 struct drm_encoder *encoder;
f6e5b160 7518 struct drm_device *dev = crtc->dev;
f6e5b160 7519
ea9d758d
DV
7520 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7521 if (encoder->crtc == crtc)
7522 return true;
7523
7524 return false;
7525}
7526
7527static void
7528intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7529{
7530 struct intel_encoder *intel_encoder;
7531 struct intel_crtc *intel_crtc;
7532 struct drm_connector *connector;
7533
7534 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7535 base.head) {
7536 if (!intel_encoder->base.crtc)
7537 continue;
7538
7539 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7540
7541 if (prepare_pipes & (1 << intel_crtc->pipe))
7542 intel_encoder->connectors_active = false;
7543 }
7544
7545 intel_modeset_commit_output_state(dev);
7546
7547 /* Update computed state. */
7548 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7549 base.head) {
7550 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7551 }
7552
7553 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7554 if (!connector->encoder || !connector->encoder->crtc)
7555 continue;
7556
7557 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7558
7559 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
7560 struct drm_property *dpms_property =
7561 dev->mode_config.dpms_property;
7562
ea9d758d 7563 connector->dpms = DRM_MODE_DPMS_ON;
662595df 7564 drm_object_property_set_value(&connector->base,
68d34720
DV
7565 dpms_property,
7566 DRM_MODE_DPMS_ON);
ea9d758d
DV
7567
7568 intel_encoder = to_intel_encoder(connector->encoder);
7569 intel_encoder->connectors_active = true;
7570 }
7571 }
7572
7573}
7574
25c5b266
DV
7575#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7576 list_for_each_entry((intel_crtc), \
7577 &(dev)->mode_config.crtc_list, \
7578 base.head) \
7579 if (mask & (1 <<(intel_crtc)->pipe)) \
7580
b980514c 7581void
8af6cf88
DV
7582intel_modeset_check_state(struct drm_device *dev)
7583{
7584 struct intel_crtc *crtc;
7585 struct intel_encoder *encoder;
7586 struct intel_connector *connector;
7587
7588 list_for_each_entry(connector, &dev->mode_config.connector_list,
7589 base.head) {
7590 /* This also checks the encoder/connector hw state with the
7591 * ->get_hw_state callbacks. */
7592 intel_connector_check_state(connector);
7593
7594 WARN(&connector->new_encoder->base != connector->base.encoder,
7595 "connector's staged encoder doesn't match current encoder\n");
7596 }
7597
7598 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7599 base.head) {
7600 bool enabled = false;
7601 bool active = false;
7602 enum pipe pipe, tracked_pipe;
7603
7604 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7605 encoder->base.base.id,
7606 drm_get_encoder_name(&encoder->base));
7607
7608 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7609 "encoder's stage crtc doesn't match current crtc\n");
7610 WARN(encoder->connectors_active && !encoder->base.crtc,
7611 "encoder's active_connectors set, but no crtc\n");
7612
7613 list_for_each_entry(connector, &dev->mode_config.connector_list,
7614 base.head) {
7615 if (connector->base.encoder != &encoder->base)
7616 continue;
7617 enabled = true;
7618 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7619 active = true;
7620 }
7621 WARN(!!encoder->base.crtc != enabled,
7622 "encoder's enabled state mismatch "
7623 "(expected %i, found %i)\n",
7624 !!encoder->base.crtc, enabled);
7625 WARN(active && !encoder->base.crtc,
7626 "active encoder with no crtc\n");
7627
7628 WARN(encoder->connectors_active != active,
7629 "encoder's computed active state doesn't match tracked active state "
7630 "(expected %i, found %i)\n", active, encoder->connectors_active);
7631
7632 active = encoder->get_hw_state(encoder, &pipe);
7633 WARN(active != encoder->connectors_active,
7634 "encoder's hw state doesn't match sw tracking "
7635 "(expected %i, found %i)\n",
7636 encoder->connectors_active, active);
7637
7638 if (!encoder->base.crtc)
7639 continue;
7640
7641 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7642 WARN(active && pipe != tracked_pipe,
7643 "active encoder's pipe doesn't match"
7644 "(expected %i, found %i)\n",
7645 tracked_pipe, pipe);
7646
7647 }
7648
7649 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7650 base.head) {
7651 bool enabled = false;
7652 bool active = false;
7653
7654 DRM_DEBUG_KMS("[CRTC:%d]\n",
7655 crtc->base.base.id);
7656
7657 WARN(crtc->active && !crtc->base.enabled,
7658 "active crtc, but not enabled in sw tracking\n");
7659
7660 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7661 base.head) {
7662 if (encoder->base.crtc != &crtc->base)
7663 continue;
7664 enabled = true;
7665 if (encoder->connectors_active)
7666 active = true;
7667 }
7668 WARN(active != crtc->active,
7669 "crtc's computed active state doesn't match tracked active state "
7670 "(expected %i, found %i)\n", active, crtc->active);
7671 WARN(enabled != crtc->base.enabled,
7672 "crtc's computed enabled state doesn't match tracked enabled state "
7673 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7674
7675 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7676 }
7677}
7678
a6778b3c
DV
7679bool intel_set_mode(struct drm_crtc *crtc,
7680 struct drm_display_mode *mode,
94352cf9 7681 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7682{
7683 struct drm_device *dev = crtc->dev;
dbf2b54e 7684 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7685 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
25c5b266
DV
7686 struct intel_crtc *intel_crtc;
7687 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7688 bool ret = true;
7689
e2e1ed41 7690 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7691 &prepare_pipes, &disable_pipes);
7692
7693 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7694 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7695
976f8a20
DV
7696 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7697 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7698
a6778b3c
DV
7699 saved_hwmode = crtc->hwmode;
7700 saved_mode = crtc->mode;
a6778b3c 7701
25c5b266
DV
7702 /* Hack: Because we don't (yet) support global modeset on multiple
7703 * crtcs, we don't keep track of the new mode for more than one crtc.
7704 * Hence simply check whether any bit is set in modeset_pipes in all the
7705 * pieces of code that are not yet converted to deal with mutliple crtcs
7706 * changing their mode at the same time. */
7707 adjusted_mode = NULL;
7708 if (modeset_pipes) {
7709 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7710 if (IS_ERR(adjusted_mode)) {
7711 return false;
7712 }
25c5b266 7713 }
a6778b3c 7714
ea9d758d
DV
7715 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7716 if (intel_crtc->base.enabled)
7717 dev_priv->display.crtc_disable(&intel_crtc->base);
7718 }
a6778b3c 7719
6c4c86f5
DV
7720 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7721 * to set it here already despite that we pass it down the callchain.
f6e5b160 7722 */
6c4c86f5 7723 if (modeset_pipes)
25c5b266 7724 crtc->mode = *mode;
7758a113 7725
ea9d758d
DV
7726 /* Only after disabling all output pipelines that will be changed can we
7727 * update the the output configuration. */
7728 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 7729
47fab737
DV
7730 if (dev_priv->display.modeset_global_resources)
7731 dev_priv->display.modeset_global_resources(dev);
7732
a6778b3c
DV
7733 /* Set up the DPLL and any encoders state that needs to adjust or depend
7734 * on the DPLL.
f6e5b160 7735 */
25c5b266
DV
7736 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7737 ret = !intel_crtc_mode_set(&intel_crtc->base,
7738 mode, adjusted_mode,
7739 x, y, fb);
7740 if (!ret)
7741 goto done;
a6778b3c
DV
7742 }
7743
7744 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7745 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7746 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7747
25c5b266
DV
7748 if (modeset_pipes) {
7749 /* Store real post-adjustment hardware mode. */
7750 crtc->hwmode = *adjusted_mode;
a6778b3c 7751
25c5b266
DV
7752 /* Calculate and store various constants which
7753 * are later needed by vblank and swap-completion
7754 * timestamping. They are derived from true hwmode.
7755 */
7756 drm_calc_timestamping_constants(crtc);
7757 }
a6778b3c
DV
7758
7759 /* FIXME: add subpixel order */
7760done:
7761 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7762 if (!ret && crtc->enabled) {
a6778b3c
DV
7763 crtc->hwmode = saved_hwmode;
7764 crtc->mode = saved_mode;
8af6cf88
DV
7765 } else {
7766 intel_modeset_check_state(dev);
a6778b3c
DV
7767 }
7768
7769 return ret;
f6e5b160
CW
7770}
7771
25c5b266
DV
7772#undef for_each_intel_crtc_masked
7773
d9e55608
DV
7774static void intel_set_config_free(struct intel_set_config *config)
7775{
7776 if (!config)
7777 return;
7778
1aa4b628
DV
7779 kfree(config->save_connector_encoders);
7780 kfree(config->save_encoder_crtcs);
d9e55608
DV
7781 kfree(config);
7782}
7783
85f9eb71
DV
7784static int intel_set_config_save_state(struct drm_device *dev,
7785 struct intel_set_config *config)
7786{
85f9eb71
DV
7787 struct drm_encoder *encoder;
7788 struct drm_connector *connector;
7789 int count;
7790
1aa4b628
DV
7791 config->save_encoder_crtcs =
7792 kcalloc(dev->mode_config.num_encoder,
7793 sizeof(struct drm_crtc *), GFP_KERNEL);
7794 if (!config->save_encoder_crtcs)
85f9eb71
DV
7795 return -ENOMEM;
7796
1aa4b628
DV
7797 config->save_connector_encoders =
7798 kcalloc(dev->mode_config.num_connector,
7799 sizeof(struct drm_encoder *), GFP_KERNEL);
7800 if (!config->save_connector_encoders)
85f9eb71
DV
7801 return -ENOMEM;
7802
7803 /* Copy data. Note that driver private data is not affected.
7804 * Should anything bad happen only the expected state is
7805 * restored, not the drivers personal bookkeeping.
7806 */
85f9eb71
DV
7807 count = 0;
7808 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7809 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7810 }
7811
7812 count = 0;
7813 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7814 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7815 }
7816
7817 return 0;
7818}
7819
7820static void intel_set_config_restore_state(struct drm_device *dev,
7821 struct intel_set_config *config)
7822{
9a935856
DV
7823 struct intel_encoder *encoder;
7824 struct intel_connector *connector;
85f9eb71
DV
7825 int count;
7826
85f9eb71 7827 count = 0;
9a935856
DV
7828 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7829 encoder->new_crtc =
7830 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7831 }
7832
7833 count = 0;
9a935856
DV
7834 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7835 connector->new_encoder =
7836 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7837 }
7838}
7839
5e2b584e
DV
7840static void
7841intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7842 struct intel_set_config *config)
7843{
7844
7845 /* We should be able to check here if the fb has the same properties
7846 * and then just flip_or_move it */
7847 if (set->crtc->fb != set->fb) {
7848 /* If we have no fb then treat it as a full mode set */
7849 if (set->crtc->fb == NULL) {
7850 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7851 config->mode_changed = true;
7852 } else if (set->fb == NULL) {
7853 config->mode_changed = true;
7854 } else if (set->fb->depth != set->crtc->fb->depth) {
7855 config->mode_changed = true;
7856 } else if (set->fb->bits_per_pixel !=
7857 set->crtc->fb->bits_per_pixel) {
7858 config->mode_changed = true;
7859 } else
7860 config->fb_changed = true;
7861 }
7862
835c5873 7863 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7864 config->fb_changed = true;
7865
7866 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7867 DRM_DEBUG_KMS("modes are different, full mode set\n");
7868 drm_mode_debug_printmodeline(&set->crtc->mode);
7869 drm_mode_debug_printmodeline(set->mode);
7870 config->mode_changed = true;
7871 }
7872}
7873
2e431051 7874static int
9a935856
DV
7875intel_modeset_stage_output_state(struct drm_device *dev,
7876 struct drm_mode_set *set,
7877 struct intel_set_config *config)
50f56119 7878{
85f9eb71 7879 struct drm_crtc *new_crtc;
9a935856
DV
7880 struct intel_connector *connector;
7881 struct intel_encoder *encoder;
2e431051 7882 int count, ro;
50f56119 7883
9a935856
DV
7884 /* The upper layers ensure that we either disabl a crtc or have a list
7885 * of connectors. For paranoia, double-check this. */
7886 WARN_ON(!set->fb && (set->num_connectors != 0));
7887 WARN_ON(set->fb && (set->num_connectors == 0));
7888
50f56119 7889 count = 0;
9a935856
DV
7890 list_for_each_entry(connector, &dev->mode_config.connector_list,
7891 base.head) {
7892 /* Otherwise traverse passed in connector list and get encoders
7893 * for them. */
50f56119 7894 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7895 if (set->connectors[ro] == &connector->base) {
7896 connector->new_encoder = connector->encoder;
50f56119
DV
7897 break;
7898 }
7899 }
7900
9a935856
DV
7901 /* If we disable the crtc, disable all its connectors. Also, if
7902 * the connector is on the changing crtc but not on the new
7903 * connector list, disable it. */
7904 if ((!set->fb || ro == set->num_connectors) &&
7905 connector->base.encoder &&
7906 connector->base.encoder->crtc == set->crtc) {
7907 connector->new_encoder = NULL;
7908
7909 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7910 connector->base.base.id,
7911 drm_get_connector_name(&connector->base));
7912 }
7913
7914
7915 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 7916 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 7917 config->mode_changed = true;
50f56119 7918 }
9a935856
DV
7919
7920 /* Disable all disconnected encoders. */
7921 if (connector->base.status == connector_status_disconnected)
7922 connector->new_encoder = NULL;
50f56119 7923 }
9a935856 7924 /* connector->new_encoder is now updated for all connectors. */
50f56119 7925
9a935856 7926 /* Update crtc of enabled connectors. */
50f56119 7927 count = 0;
9a935856
DV
7928 list_for_each_entry(connector, &dev->mode_config.connector_list,
7929 base.head) {
7930 if (!connector->new_encoder)
50f56119
DV
7931 continue;
7932
9a935856 7933 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
7934
7935 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 7936 if (set->connectors[ro] == &connector->base)
50f56119
DV
7937 new_crtc = set->crtc;
7938 }
7939
7940 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
7941 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7942 new_crtc)) {
5e2b584e 7943 return -EINVAL;
50f56119 7944 }
9a935856
DV
7945 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7946
7947 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7948 connector->base.base.id,
7949 drm_get_connector_name(&connector->base),
7950 new_crtc->base.id);
7951 }
7952
7953 /* Check for any encoders that needs to be disabled. */
7954 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7955 base.head) {
7956 list_for_each_entry(connector,
7957 &dev->mode_config.connector_list,
7958 base.head) {
7959 if (connector->new_encoder == encoder) {
7960 WARN_ON(!connector->new_encoder->new_crtc);
7961
7962 goto next_encoder;
7963 }
7964 }
7965 encoder->new_crtc = NULL;
7966next_encoder:
7967 /* Only now check for crtc changes so we don't miss encoders
7968 * that will be disabled. */
7969 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 7970 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 7971 config->mode_changed = true;
50f56119
DV
7972 }
7973 }
9a935856 7974 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 7975
2e431051
DV
7976 return 0;
7977}
7978
7979static int intel_crtc_set_config(struct drm_mode_set *set)
7980{
7981 struct drm_device *dev;
2e431051
DV
7982 struct drm_mode_set save_set;
7983 struct intel_set_config *config;
7984 int ret;
2e431051 7985
8d3e375e
DV
7986 BUG_ON(!set);
7987 BUG_ON(!set->crtc);
7988 BUG_ON(!set->crtc->helper_private);
2e431051
DV
7989
7990 if (!set->mode)
7991 set->fb = NULL;
7992
431e50f7
DV
7993 /* The fb helper likes to play gross jokes with ->mode_set_config.
7994 * Unfortunately the crtc helper doesn't do much at all for this case,
7995 * so we have to cope with this madness until the fb helper is fixed up. */
7996 if (set->fb && set->num_connectors == 0)
7997 return 0;
7998
2e431051
DV
7999 if (set->fb) {
8000 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8001 set->crtc->base.id, set->fb->base.id,
8002 (int)set->num_connectors, set->x, set->y);
8003 } else {
8004 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
8005 }
8006
8007 dev = set->crtc->dev;
8008
8009 ret = -ENOMEM;
8010 config = kzalloc(sizeof(*config), GFP_KERNEL);
8011 if (!config)
8012 goto out_config;
8013
8014 ret = intel_set_config_save_state(dev, config);
8015 if (ret)
8016 goto out_config;
8017
8018 save_set.crtc = set->crtc;
8019 save_set.mode = &set->crtc->mode;
8020 save_set.x = set->crtc->x;
8021 save_set.y = set->crtc->y;
8022 save_set.fb = set->crtc->fb;
8023
8024 /* Compute whether we need a full modeset, only an fb base update or no
8025 * change at all. In the future we might also check whether only the
8026 * mode changed, e.g. for LVDS where we only change the panel fitter in
8027 * such cases. */
8028 intel_set_config_compute_mode_changes(set, config);
8029
9a935856 8030 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
8031 if (ret)
8032 goto fail;
8033
5e2b584e 8034 if (config->mode_changed) {
87f1faa6 8035 if (set->mode) {
50f56119
DV
8036 DRM_DEBUG_KMS("attempting to set mode from"
8037 " userspace\n");
8038 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
8039 }
8040
8041 if (!intel_set_mode(set->crtc, set->mode,
8042 set->x, set->y, set->fb)) {
8043 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8044 set->crtc->base.id);
8045 ret = -EINVAL;
8046 goto fail;
8047 }
5e2b584e 8048 } else if (config->fb_changed) {
4f660f49 8049 ret = intel_pipe_set_base(set->crtc,
94352cf9 8050 set->x, set->y, set->fb);
50f56119
DV
8051 }
8052
d9e55608
DV
8053 intel_set_config_free(config);
8054
50f56119
DV
8055 return 0;
8056
8057fail:
85f9eb71 8058 intel_set_config_restore_state(dev, config);
50f56119
DV
8059
8060 /* Try to restore the config */
5e2b584e 8061 if (config->mode_changed &&
a6778b3c
DV
8062 !intel_set_mode(save_set.crtc, save_set.mode,
8063 save_set.x, save_set.y, save_set.fb))
50f56119
DV
8064 DRM_ERROR("failed to restore config after modeset failure\n");
8065
d9e55608
DV
8066out_config:
8067 intel_set_config_free(config);
50f56119
DV
8068 return ret;
8069}
f6e5b160
CW
8070
8071static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
8072 .cursor_set = intel_crtc_cursor_set,
8073 .cursor_move = intel_crtc_cursor_move,
8074 .gamma_set = intel_crtc_gamma_set,
50f56119 8075 .set_config = intel_crtc_set_config,
f6e5b160
CW
8076 .destroy = intel_crtc_destroy,
8077 .page_flip = intel_crtc_page_flip,
8078};
8079
79f689aa
PZ
8080static void intel_cpu_pll_init(struct drm_device *dev)
8081{
8082 if (IS_HASWELL(dev))
8083 intel_ddi_pll_init(dev);
8084}
8085
ee7b9f93
JB
8086static void intel_pch_pll_init(struct drm_device *dev)
8087{
8088 drm_i915_private_t *dev_priv = dev->dev_private;
8089 int i;
8090
8091 if (dev_priv->num_pch_pll == 0) {
8092 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8093 return;
8094 }
8095
8096 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8097 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8098 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8099 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8100 }
8101}
8102
b358d0a6 8103static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 8104{
22fd0fab 8105 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
8106 struct intel_crtc *intel_crtc;
8107 int i;
8108
8109 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8110 if (intel_crtc == NULL)
8111 return;
8112
8113 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8114
8115 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
8116 for (i = 0; i < 256; i++) {
8117 intel_crtc->lut_r[i] = i;
8118 intel_crtc->lut_g[i] = i;
8119 intel_crtc->lut_b[i] = i;
8120 }
8121
80824003
JB
8122 /* Swap pipes & planes for FBC on pre-965 */
8123 intel_crtc->pipe = pipe;
8124 intel_crtc->plane = pipe;
a5c961d1 8125 intel_crtc->cpu_transcoder = pipe;
e2e767ab 8126 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 8127 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 8128 intel_crtc->plane = !pipe;
80824003
JB
8129 }
8130
22fd0fab
JB
8131 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8132 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8133 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8134 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8135
5a354204 8136 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 8137
79e53945 8138 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
8139}
8140
08d7b3d1 8141int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 8142 struct drm_file *file)
08d7b3d1 8143{
08d7b3d1 8144 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
8145 struct drm_mode_object *drmmode_obj;
8146 struct intel_crtc *crtc;
08d7b3d1 8147
1cff8f6b
DV
8148 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8149 return -ENODEV;
08d7b3d1 8150
c05422d5
DV
8151 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8152 DRM_MODE_OBJECT_CRTC);
08d7b3d1 8153
c05422d5 8154 if (!drmmode_obj) {
08d7b3d1
CW
8155 DRM_ERROR("no such CRTC id\n");
8156 return -EINVAL;
8157 }
8158
c05422d5
DV
8159 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8160 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 8161
c05422d5 8162 return 0;
08d7b3d1
CW
8163}
8164
66a9278e 8165static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 8166{
66a9278e
DV
8167 struct drm_device *dev = encoder->base.dev;
8168 struct intel_encoder *source_encoder;
79e53945 8169 int index_mask = 0;
79e53945
JB
8170 int entry = 0;
8171
66a9278e
DV
8172 list_for_each_entry(source_encoder,
8173 &dev->mode_config.encoder_list, base.head) {
8174
8175 if (encoder == source_encoder)
79e53945 8176 index_mask |= (1 << entry);
66a9278e
DV
8177
8178 /* Intel hw has only one MUX where enocoders could be cloned. */
8179 if (encoder->cloneable && source_encoder->cloneable)
8180 index_mask |= (1 << entry);
8181
79e53945
JB
8182 entry++;
8183 }
4ef69c7a 8184
79e53945
JB
8185 return index_mask;
8186}
8187
4d302442
CW
8188static bool has_edp_a(struct drm_device *dev)
8189{
8190 struct drm_i915_private *dev_priv = dev->dev_private;
8191
8192 if (!IS_MOBILE(dev))
8193 return false;
8194
8195 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8196 return false;
8197
8198 if (IS_GEN5(dev) &&
8199 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8200 return false;
8201
8202 return true;
8203}
8204
79e53945
JB
8205static void intel_setup_outputs(struct drm_device *dev)
8206{
725e30ad 8207 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 8208 struct intel_encoder *encoder;
cb0953d7 8209 bool dpd_is_edp = false;
f3cfcba6 8210 bool has_lvds;
79e53945 8211
f3cfcba6 8212 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
8213 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8214 /* disable the panel fitter on everything but LVDS */
8215 I915_WRITE(PFIT_CONTROL, 0);
8216 }
79e53945 8217
79935fca
PZ
8218 if (!(IS_HASWELL(dev) &&
8219 (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8220 intel_crt_init(dev);
cb0953d7 8221
0e72a5b5
ED
8222 if (IS_HASWELL(dev)) {
8223 int found;
8224
8225 /* Haswell uses DDI functions to detect digital outputs */
8226 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8227 /* DDI A only supports eDP */
8228 if (found)
8229 intel_ddi_init(dev, PORT_A);
8230
8231 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8232 * register */
8233 found = I915_READ(SFUSE_STRAP);
8234
8235 if (found & SFUSE_STRAP_DDIB_DETECTED)
8236 intel_ddi_init(dev, PORT_B);
8237 if (found & SFUSE_STRAP_DDIC_DETECTED)
8238 intel_ddi_init(dev, PORT_C);
8239 if (found & SFUSE_STRAP_DDID_DETECTED)
8240 intel_ddi_init(dev, PORT_D);
8241 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 8242 int found;
270b3042
DV
8243 dpd_is_edp = intel_dpd_is_edp(dev);
8244
8245 if (has_edp_a(dev))
8246 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 8247
30ad48b7 8248 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 8249 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 8250 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 8251 if (!found)
08d644ad 8252 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 8253 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 8254 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
8255 }
8256
8257 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 8258 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 8259
b708a1d5 8260 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 8261 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 8262
5eb08b69 8263 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 8264 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 8265
270b3042 8266 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 8267 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
8268 } else if (IS_VALLEYVIEW(dev)) {
8269 int found;
8270
19c03924
GB
8271 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8272 if (I915_READ(DP_C) & DP_DETECTED)
8273 intel_dp_init(dev, DP_C, PORT_C);
8274
4a87d65d
JB
8275 if (I915_READ(SDVOB) & PORT_DETECTED) {
8276 /* SDVOB multiplex with HDMIB */
8277 found = intel_sdvo_init(dev, SDVOB, true);
8278 if (!found)
08d644ad 8279 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 8280 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 8281 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
8282 }
8283
8284 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 8285 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 8286
103a196f 8287 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 8288 bool found = false;
7d57382e 8289
725e30ad 8290 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 8291 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 8292 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
8293 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8294 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 8295 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 8296 }
27185ae1 8297
b01f2c3a
JB
8298 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8299 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 8300 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 8301 }
725e30ad 8302 }
13520b05
KH
8303
8304 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 8305
b01f2c3a
JB
8306 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8307 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 8308 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 8309 }
27185ae1
ML
8310
8311 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8312
b01f2c3a
JB
8313 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8314 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 8315 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
8316 }
8317 if (SUPPORTS_INTEGRATED_DP(dev)) {
8318 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 8319 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 8320 }
725e30ad 8321 }
27185ae1 8322
b01f2c3a
JB
8323 if (SUPPORTS_INTEGRATED_DP(dev) &&
8324 (I915_READ(DP_D) & DP_DETECTED)) {
8325 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 8326 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 8327 }
bad720ff 8328 } else if (IS_GEN2(dev))
79e53945
JB
8329 intel_dvo_init(dev);
8330
103a196f 8331 if (SUPPORTS_TV(dev))
79e53945
JB
8332 intel_tv_init(dev);
8333
4ef69c7a
CW
8334 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8335 encoder->base.possible_crtcs = encoder->crtc_mask;
8336 encoder->base.possible_clones =
66a9278e 8337 intel_encoder_clones(encoder);
79e53945 8338 }
47356eb6 8339
40579abe 8340 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 8341 ironlake_init_pch_refclk(dev);
270b3042
DV
8342
8343 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
8344}
8345
8346static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8347{
8348 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
8349
8350 drm_framebuffer_cleanup(fb);
05394f39 8351 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
8352
8353 kfree(intel_fb);
8354}
8355
8356static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 8357 struct drm_file *file,
79e53945
JB
8358 unsigned int *handle)
8359{
8360 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 8361 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 8362
05394f39 8363 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
8364}
8365
8366static const struct drm_framebuffer_funcs intel_fb_funcs = {
8367 .destroy = intel_user_framebuffer_destroy,
8368 .create_handle = intel_user_framebuffer_create_handle,
8369};
8370
38651674
DA
8371int intel_framebuffer_init(struct drm_device *dev,
8372 struct intel_framebuffer *intel_fb,
308e5bcb 8373 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 8374 struct drm_i915_gem_object *obj)
79e53945 8375{
79e53945
JB
8376 int ret;
8377
05394f39 8378 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
8379 return -EINVAL;
8380
308e5bcb 8381 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
8382 return -EINVAL;
8383
5d7bd705
VS
8384 /* FIXME <= Gen4 stride limits are bit unclear */
8385 if (mode_cmd->pitches[0] > 32768)
8386 return -EINVAL;
8387
8388 if (obj->tiling_mode != I915_TILING_NONE &&
8389 mode_cmd->pitches[0] != obj->stride)
8390 return -EINVAL;
8391
57779d06 8392 /* Reject formats not supported by any plane early. */
308e5bcb 8393 switch (mode_cmd->pixel_format) {
57779d06 8394 case DRM_FORMAT_C8:
04b3924d
VS
8395 case DRM_FORMAT_RGB565:
8396 case DRM_FORMAT_XRGB8888:
8397 case DRM_FORMAT_ARGB8888:
57779d06
VS
8398 break;
8399 case DRM_FORMAT_XRGB1555:
8400 case DRM_FORMAT_ARGB1555:
8401 if (INTEL_INFO(dev)->gen > 3)
8402 return -EINVAL;
8403 break;
8404 case DRM_FORMAT_XBGR8888:
8405 case DRM_FORMAT_ABGR8888:
04b3924d
VS
8406 case DRM_FORMAT_XRGB2101010:
8407 case DRM_FORMAT_ARGB2101010:
57779d06
VS
8408 case DRM_FORMAT_XBGR2101010:
8409 case DRM_FORMAT_ABGR2101010:
8410 if (INTEL_INFO(dev)->gen < 4)
8411 return -EINVAL;
b5626747 8412 break;
04b3924d
VS
8413 case DRM_FORMAT_YUYV:
8414 case DRM_FORMAT_UYVY:
8415 case DRM_FORMAT_YVYU:
8416 case DRM_FORMAT_VYUY:
57779d06
VS
8417 if (INTEL_INFO(dev)->gen < 6)
8418 return -EINVAL;
57cd6508
CW
8419 break;
8420 default:
57779d06 8421 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
57cd6508
CW
8422 return -EINVAL;
8423 }
8424
90f9a336
VS
8425 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8426 if (mode_cmd->offsets[0] != 0)
8427 return -EINVAL;
8428
79e53945
JB
8429 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8430 if (ret) {
8431 DRM_ERROR("framebuffer init failed %d\n", ret);
8432 return ret;
8433 }
8434
8435 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 8436 intel_fb->obj = obj;
79e53945
JB
8437 return 0;
8438}
8439
79e53945
JB
8440static struct drm_framebuffer *
8441intel_user_framebuffer_create(struct drm_device *dev,
8442 struct drm_file *filp,
308e5bcb 8443 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 8444{
05394f39 8445 struct drm_i915_gem_object *obj;
79e53945 8446
308e5bcb
JB
8447 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8448 mode_cmd->handles[0]));
c8725226 8449 if (&obj->base == NULL)
cce13ff7 8450 return ERR_PTR(-ENOENT);
79e53945 8451
d2dff872 8452 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
8453}
8454
79e53945 8455static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 8456 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 8457 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
8458};
8459
e70236a8
JB
8460/* Set up chip specific display functions */
8461static void intel_init_display(struct drm_device *dev)
8462{
8463 struct drm_i915_private *dev_priv = dev->dev_private;
8464
8465 /* We always want a DPMS function */
09b4ddf9
PZ
8466 if (IS_HASWELL(dev)) {
8467 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
8468 dev_priv->display.crtc_enable = haswell_crtc_enable;
8469 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 8470 dev_priv->display.off = haswell_crtc_off;
09b4ddf9
PZ
8471 dev_priv->display.update_plane = ironlake_update_plane;
8472 } else if (HAS_PCH_SPLIT(dev)) {
f564048e 8473 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
8474 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8475 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 8476 dev_priv->display.off = ironlake_crtc_off;
17638cd6 8477 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8478 } else {
f564048e 8479 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
8480 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8481 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 8482 dev_priv->display.off = i9xx_crtc_off;
17638cd6 8483 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8484 }
e70236a8 8485
e70236a8 8486 /* Returns the core display clock speed */
25eb05fc
JB
8487 if (IS_VALLEYVIEW(dev))
8488 dev_priv->display.get_display_clock_speed =
8489 valleyview_get_display_clock_speed;
8490 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8491 dev_priv->display.get_display_clock_speed =
8492 i945_get_display_clock_speed;
8493 else if (IS_I915G(dev))
8494 dev_priv->display.get_display_clock_speed =
8495 i915_get_display_clock_speed;
f2b115e6 8496 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8497 dev_priv->display.get_display_clock_speed =
8498 i9xx_misc_get_display_clock_speed;
8499 else if (IS_I915GM(dev))
8500 dev_priv->display.get_display_clock_speed =
8501 i915gm_get_display_clock_speed;
8502 else if (IS_I865G(dev))
8503 dev_priv->display.get_display_clock_speed =
8504 i865_get_display_clock_speed;
f0f8a9ce 8505 else if (IS_I85X(dev))
e70236a8
JB
8506 dev_priv->display.get_display_clock_speed =
8507 i855_get_display_clock_speed;
8508 else /* 852, 830 */
8509 dev_priv->display.get_display_clock_speed =
8510 i830_get_display_clock_speed;
8511
7f8a8569 8512 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 8513 if (IS_GEN5(dev)) {
674cf967 8514 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 8515 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 8516 } else if (IS_GEN6(dev)) {
674cf967 8517 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 8518 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8519 } else if (IS_IVYBRIDGE(dev)) {
8520 /* FIXME: detect B0+ stepping and use auto training */
8521 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 8522 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
8523 dev_priv->display.modeset_global_resources =
8524 ivb_modeset_global_resources;
c82e4d26
ED
8525 } else if (IS_HASWELL(dev)) {
8526 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 8527 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
8528 } else
8529 dev_priv->display.update_wm = NULL;
6067aaea 8530 } else if (IS_G4X(dev)) {
e0dac65e 8531 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8532 }
8c9f3aaf
JB
8533
8534 /* Default just returns -ENODEV to indicate unsupported */
8535 dev_priv->display.queue_flip = intel_default_queue_flip;
8536
8537 switch (INTEL_INFO(dev)->gen) {
8538 case 2:
8539 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8540 break;
8541
8542 case 3:
8543 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8544 break;
8545
8546 case 4:
8547 case 5:
8548 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8549 break;
8550
8551 case 6:
8552 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8553 break;
7c9017e5
JB
8554 case 7:
8555 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8556 break;
8c9f3aaf 8557 }
e70236a8
JB
8558}
8559
b690e96c
JB
8560/*
8561 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8562 * resume, or other times. This quirk makes sure that's the case for
8563 * affected systems.
8564 */
0206e353 8565static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8566{
8567 struct drm_i915_private *dev_priv = dev->dev_private;
8568
8569 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 8570 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
8571}
8572
435793df
KP
8573/*
8574 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8575 */
8576static void quirk_ssc_force_disable(struct drm_device *dev)
8577{
8578 struct drm_i915_private *dev_priv = dev->dev_private;
8579 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 8580 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
8581}
8582
4dca20ef 8583/*
5a15ab5b
CE
8584 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8585 * brightness value
4dca20ef
CE
8586 */
8587static void quirk_invert_brightness(struct drm_device *dev)
8588{
8589 struct drm_i915_private *dev_priv = dev->dev_private;
8590 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 8591 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
8592}
8593
b690e96c
JB
8594struct intel_quirk {
8595 int device;
8596 int subsystem_vendor;
8597 int subsystem_device;
8598 void (*hook)(struct drm_device *dev);
8599};
8600
5f85f176
EE
8601/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8602struct intel_dmi_quirk {
8603 void (*hook)(struct drm_device *dev);
8604 const struct dmi_system_id (*dmi_id_list)[];
8605};
8606
8607static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8608{
8609 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8610 return 1;
8611}
8612
8613static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8614 {
8615 .dmi_id_list = &(const struct dmi_system_id[]) {
8616 {
8617 .callback = intel_dmi_reverse_brightness,
8618 .ident = "NCR Corporation",
8619 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8620 DMI_MATCH(DMI_PRODUCT_NAME, ""),
8621 },
8622 },
8623 { } /* terminating entry */
8624 },
8625 .hook = quirk_invert_brightness,
8626 },
8627};
8628
c43b5634 8629static struct intel_quirk intel_quirks[] = {
b690e96c 8630 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8631 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 8632
b690e96c
JB
8633 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8634 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8635
b690e96c
JB
8636 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8637 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8638
ccd0d36e 8639 /* 830/845 need to leave pipe A & dpll A up */
b690e96c 8640 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 8641 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8642
8643 /* Lenovo U160 cannot use SSC on LVDS */
8644 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8645
8646 /* Sony Vaio Y cannot use SSC on LVDS */
8647 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
8648
8649 /* Acer Aspire 5734Z must invert backlight brightness */
8650 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
8651};
8652
8653static void intel_init_quirks(struct drm_device *dev)
8654{
8655 struct pci_dev *d = dev->pdev;
8656 int i;
8657
8658 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8659 struct intel_quirk *q = &intel_quirks[i];
8660
8661 if (d->device == q->device &&
8662 (d->subsystem_vendor == q->subsystem_vendor ||
8663 q->subsystem_vendor == PCI_ANY_ID) &&
8664 (d->subsystem_device == q->subsystem_device ||
8665 q->subsystem_device == PCI_ANY_ID))
8666 q->hook(dev);
8667 }
5f85f176
EE
8668 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8669 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8670 intel_dmi_quirks[i].hook(dev);
8671 }
b690e96c
JB
8672}
8673
9cce37f4
JB
8674/* Disable the VGA plane that we never use */
8675static void i915_disable_vga(struct drm_device *dev)
8676{
8677 struct drm_i915_private *dev_priv = dev->dev_private;
8678 u8 sr1;
8679 u32 vga_reg;
8680
8681 if (HAS_PCH_SPLIT(dev))
8682 vga_reg = CPU_VGACNTRL;
8683 else
8684 vga_reg = VGACNTRL;
8685
8686 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8687 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8688 sr1 = inb(VGA_SR_DATA);
8689 outb(sr1 | 1<<5, VGA_SR_DATA);
8690 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8691 udelay(300);
8692
8693 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8694 POSTING_READ(vga_reg);
8695}
8696
f817586c
DV
8697void intel_modeset_init_hw(struct drm_device *dev)
8698{
0232e927
ED
8699 /* We attempt to init the necessary power wells early in the initialization
8700 * time, so the subsystems that expect power to be enabled can work.
8701 */
8702 intel_init_power_wells(dev);
8703
a8f78b58
ED
8704 intel_prepare_ddi(dev);
8705
f817586c
DV
8706 intel_init_clock_gating(dev);
8707
79f5b2c7 8708 mutex_lock(&dev->struct_mutex);
8090c6b9 8709 intel_enable_gt_powersave(dev);
79f5b2c7 8710 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8711}
8712
79e53945
JB
8713void intel_modeset_init(struct drm_device *dev)
8714{
652c393a 8715 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8716 int i, ret;
79e53945
JB
8717
8718 drm_mode_config_init(dev);
8719
8720 dev->mode_config.min_width = 0;
8721 dev->mode_config.min_height = 0;
8722
019d96cb
DA
8723 dev->mode_config.preferred_depth = 24;
8724 dev->mode_config.prefer_shadow = 1;
8725
e6ecefaa 8726 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8727
b690e96c
JB
8728 intel_init_quirks(dev);
8729
1fa61106
ED
8730 intel_init_pm(dev);
8731
e70236a8
JB
8732 intel_init_display(dev);
8733
a6c45cf0
CW
8734 if (IS_GEN2(dev)) {
8735 dev->mode_config.max_width = 2048;
8736 dev->mode_config.max_height = 2048;
8737 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8738 dev->mode_config.max_width = 4096;
8739 dev->mode_config.max_height = 4096;
79e53945 8740 } else {
a6c45cf0
CW
8741 dev->mode_config.max_width = 8192;
8742 dev->mode_config.max_height = 8192;
79e53945 8743 }
dd2757f8 8744 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8745
28c97730 8746 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8747 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8748
a3524f1b 8749 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8750 intel_crtc_init(dev, i);
00c2064b
JB
8751 ret = intel_plane_init(dev, i);
8752 if (ret)
8753 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8754 }
8755
79f689aa 8756 intel_cpu_pll_init(dev);
ee7b9f93
JB
8757 intel_pch_pll_init(dev);
8758
9cce37f4
JB
8759 /* Just disable it once at startup */
8760 i915_disable_vga(dev);
79e53945 8761 intel_setup_outputs(dev);
2c7111db
CW
8762}
8763
24929352
DV
8764static void
8765intel_connector_break_all_links(struct intel_connector *connector)
8766{
8767 connector->base.dpms = DRM_MODE_DPMS_OFF;
8768 connector->base.encoder = NULL;
8769 connector->encoder->connectors_active = false;
8770 connector->encoder->base.crtc = NULL;
8771}
8772
7fad798e
DV
8773static void intel_enable_pipe_a(struct drm_device *dev)
8774{
8775 struct intel_connector *connector;
8776 struct drm_connector *crt = NULL;
8777 struct intel_load_detect_pipe load_detect_temp;
8778
8779 /* We can't just switch on the pipe A, we need to set things up with a
8780 * proper mode and output configuration. As a gross hack, enable pipe A
8781 * by enabling the load detect pipe once. */
8782 list_for_each_entry(connector,
8783 &dev->mode_config.connector_list,
8784 base.head) {
8785 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8786 crt = &connector->base;
8787 break;
8788 }
8789 }
8790
8791 if (!crt)
8792 return;
8793
8794 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8795 intel_release_load_detect_pipe(crt, &load_detect_temp);
8796
652c393a 8797
7fad798e
DV
8798}
8799
fa555837
DV
8800static bool
8801intel_check_plane_mapping(struct intel_crtc *crtc)
8802{
8803 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8804 u32 reg, val;
8805
8806 if (dev_priv->num_pipe == 1)
8807 return true;
8808
8809 reg = DSPCNTR(!crtc->plane);
8810 val = I915_READ(reg);
8811
8812 if ((val & DISPLAY_PLANE_ENABLE) &&
8813 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8814 return false;
8815
8816 return true;
8817}
8818
24929352
DV
8819static void intel_sanitize_crtc(struct intel_crtc *crtc)
8820{
8821 struct drm_device *dev = crtc->base.dev;
8822 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 8823 u32 reg;
24929352 8824
24929352 8825 /* Clear any frame start delays used for debugging left by the BIOS */
702e7a56 8826 reg = PIPECONF(crtc->cpu_transcoder);
24929352
DV
8827 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8828
8829 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
8830 * disable the crtc (and hence change the state) if it is wrong. Note
8831 * that gen4+ has a fixed plane -> pipe mapping. */
8832 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
8833 struct intel_connector *connector;
8834 bool plane;
8835
24929352
DV
8836 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8837 crtc->base.base.id);
8838
8839 /* Pipe has the wrong plane attached and the plane is active.
8840 * Temporarily change the plane mapping and disable everything
8841 * ... */
8842 plane = crtc->plane;
8843 crtc->plane = !plane;
8844 dev_priv->display.crtc_disable(&crtc->base);
8845 crtc->plane = plane;
8846
8847 /* ... and break all links. */
8848 list_for_each_entry(connector, &dev->mode_config.connector_list,
8849 base.head) {
8850 if (connector->encoder->base.crtc != &crtc->base)
8851 continue;
8852
8853 intel_connector_break_all_links(connector);
8854 }
8855
8856 WARN_ON(crtc->active);
8857 crtc->base.enabled = false;
8858 }
24929352 8859
7fad798e
DV
8860 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8861 crtc->pipe == PIPE_A && !crtc->active) {
8862 /* BIOS forgot to enable pipe A, this mostly happens after
8863 * resume. Force-enable the pipe to fix this, the update_dpms
8864 * call below we restore the pipe to the right state, but leave
8865 * the required bits on. */
8866 intel_enable_pipe_a(dev);
8867 }
8868
24929352
DV
8869 /* Adjust the state of the output pipe according to whether we
8870 * have active connectors/encoders. */
8871 intel_crtc_update_dpms(&crtc->base);
8872
8873 if (crtc->active != crtc->base.enabled) {
8874 struct intel_encoder *encoder;
8875
8876 /* This can happen either due to bugs in the get_hw_state
8877 * functions or because the pipe is force-enabled due to the
8878 * pipe A quirk. */
8879 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8880 crtc->base.base.id,
8881 crtc->base.enabled ? "enabled" : "disabled",
8882 crtc->active ? "enabled" : "disabled");
8883
8884 crtc->base.enabled = crtc->active;
8885
8886 /* Because we only establish the connector -> encoder ->
8887 * crtc links if something is active, this means the
8888 * crtc is now deactivated. Break the links. connector
8889 * -> encoder links are only establish when things are
8890 * actually up, hence no need to break them. */
8891 WARN_ON(crtc->active);
8892
8893 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8894 WARN_ON(encoder->connectors_active);
8895 encoder->base.crtc = NULL;
8896 }
8897 }
8898}
8899
8900static void intel_sanitize_encoder(struct intel_encoder *encoder)
8901{
8902 struct intel_connector *connector;
8903 struct drm_device *dev = encoder->base.dev;
8904
8905 /* We need to check both for a crtc link (meaning that the
8906 * encoder is active and trying to read from a pipe) and the
8907 * pipe itself being active. */
8908 bool has_active_crtc = encoder->base.crtc &&
8909 to_intel_crtc(encoder->base.crtc)->active;
8910
8911 if (encoder->connectors_active && !has_active_crtc) {
8912 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8913 encoder->base.base.id,
8914 drm_get_encoder_name(&encoder->base));
8915
8916 /* Connector is active, but has no active pipe. This is
8917 * fallout from our resume register restoring. Disable
8918 * the encoder manually again. */
8919 if (encoder->base.crtc) {
8920 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8921 encoder->base.base.id,
8922 drm_get_encoder_name(&encoder->base));
8923 encoder->disable(encoder);
8924 }
8925
8926 /* Inconsistent output/port/pipe state happens presumably due to
8927 * a bug in one of the get_hw_state functions. Or someplace else
8928 * in our code, like the register restore mess on resume. Clamp
8929 * things to off as a safer default. */
8930 list_for_each_entry(connector,
8931 &dev->mode_config.connector_list,
8932 base.head) {
8933 if (connector->encoder != encoder)
8934 continue;
8935
8936 intel_connector_break_all_links(connector);
8937 }
8938 }
8939 /* Enabled encoders without active connectors will be fixed in
8940 * the crtc fixup. */
8941}
8942
8943/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8944 * and i915 state tracking structures. */
45e2b5f6
DV
8945void intel_modeset_setup_hw_state(struct drm_device *dev,
8946 bool force_restore)
24929352
DV
8947{
8948 struct drm_i915_private *dev_priv = dev->dev_private;
8949 enum pipe pipe;
8950 u32 tmp;
8951 struct intel_crtc *crtc;
8952 struct intel_encoder *encoder;
8953 struct intel_connector *connector;
8954
e28d54cb
PZ
8955 if (IS_HASWELL(dev)) {
8956 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8957
8958 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8959 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8960 case TRANS_DDI_EDP_INPUT_A_ON:
8961 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8962 pipe = PIPE_A;
8963 break;
8964 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8965 pipe = PIPE_B;
8966 break;
8967 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8968 pipe = PIPE_C;
8969 break;
8970 }
8971
8972 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8973 crtc->cpu_transcoder = TRANSCODER_EDP;
8974
8975 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8976 pipe_name(pipe));
8977 }
8978 }
8979
24929352
DV
8980 for_each_pipe(pipe) {
8981 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8982
702e7a56 8983 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
24929352
DV
8984 if (tmp & PIPECONF_ENABLE)
8985 crtc->active = true;
8986 else
8987 crtc->active = false;
8988
8989 crtc->base.enabled = crtc->active;
8990
8991 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8992 crtc->base.base.id,
8993 crtc->active ? "enabled" : "disabled");
8994 }
8995
6441ab5f
PZ
8996 if (IS_HASWELL(dev))
8997 intel_ddi_setup_hw_pll_state(dev);
8998
24929352
DV
8999 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9000 base.head) {
9001 pipe = 0;
9002
9003 if (encoder->get_hw_state(encoder, &pipe)) {
9004 encoder->base.crtc =
9005 dev_priv->pipe_to_crtc_mapping[pipe];
9006 } else {
9007 encoder->base.crtc = NULL;
9008 }
9009
9010 encoder->connectors_active = false;
9011 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9012 encoder->base.base.id,
9013 drm_get_encoder_name(&encoder->base),
9014 encoder->base.crtc ? "enabled" : "disabled",
9015 pipe);
9016 }
9017
9018 list_for_each_entry(connector, &dev->mode_config.connector_list,
9019 base.head) {
9020 if (connector->get_hw_state(connector)) {
9021 connector->base.dpms = DRM_MODE_DPMS_ON;
9022 connector->encoder->connectors_active = true;
9023 connector->base.encoder = &connector->encoder->base;
9024 } else {
9025 connector->base.dpms = DRM_MODE_DPMS_OFF;
9026 connector->base.encoder = NULL;
9027 }
9028 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9029 connector->base.base.id,
9030 drm_get_connector_name(&connector->base),
9031 connector->base.encoder ? "enabled" : "disabled");
9032 }
9033
9034 /* HW state is read out, now we need to sanitize this mess. */
9035 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9036 base.head) {
9037 intel_sanitize_encoder(encoder);
9038 }
9039
9040 for_each_pipe(pipe) {
9041 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9042 intel_sanitize_crtc(crtc);
9043 }
9a935856 9044
45e2b5f6
DV
9045 if (force_restore) {
9046 for_each_pipe(pipe) {
9047 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9048 intel_set_mode(&crtc->base, &crtc->base.mode,
9049 crtc->base.x, crtc->base.y, crtc->base.fb);
9050 }
9051 } else {
9052 intel_modeset_update_staged_output_state(dev);
9053 }
8af6cf88
DV
9054
9055 intel_modeset_check_state(dev);
2e938892
DV
9056
9057 drm_mode_config_reset(dev);
2c7111db
CW
9058}
9059
9060void intel_modeset_gem_init(struct drm_device *dev)
9061{
1833b134 9062 intel_modeset_init_hw(dev);
02e792fb
DV
9063
9064 intel_setup_overlay(dev);
24929352 9065
45e2b5f6 9066 intel_modeset_setup_hw_state(dev, false);
79e53945
JB
9067}
9068
9069void intel_modeset_cleanup(struct drm_device *dev)
9070{
652c393a
JB
9071 struct drm_i915_private *dev_priv = dev->dev_private;
9072 struct drm_crtc *crtc;
9073 struct intel_crtc *intel_crtc;
9074
f87ea761 9075 drm_kms_helper_poll_fini(dev);
652c393a
JB
9076 mutex_lock(&dev->struct_mutex);
9077
723bfd70
JB
9078 intel_unregister_dsm_handler();
9079
9080
652c393a
JB
9081 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9082 /* Skip inactive CRTCs */
9083 if (!crtc->fb)
9084 continue;
9085
9086 intel_crtc = to_intel_crtc(crtc);
3dec0095 9087 intel_increase_pllclock(crtc);
652c393a
JB
9088 }
9089
973d04f9 9090 intel_disable_fbc(dev);
e70236a8 9091
8090c6b9 9092 intel_disable_gt_powersave(dev);
0cdab21f 9093
930ebb46
DV
9094 ironlake_teardown_rc6(dev);
9095
57f350b6
JB
9096 if (IS_VALLEYVIEW(dev))
9097 vlv_init_dpio(dev);
9098
69341a5e
KH
9099 mutex_unlock(&dev->struct_mutex);
9100
6c0d9350
DV
9101 /* Disable the irq before mode object teardown, for the irq might
9102 * enqueue unpin/hotplug work. */
9103 drm_irq_uninstall(dev);
9104 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 9105 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 9106
1630fe75
CW
9107 /* flush any delayed tasks or pending work */
9108 flush_scheduled_work();
9109
79e53945
JB
9110 drm_mode_config_cleanup(dev);
9111}
9112
f1c79df3
ZW
9113/*
9114 * Return which encoder is currently attached for connector.
9115 */
df0e9248 9116struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 9117{
df0e9248
CW
9118 return &intel_attached_encoder(connector)->base;
9119}
f1c79df3 9120
df0e9248
CW
9121void intel_connector_attach_encoder(struct intel_connector *connector,
9122 struct intel_encoder *encoder)
9123{
9124 connector->encoder = encoder;
9125 drm_mode_connector_attach_encoder(&connector->base,
9126 &encoder->base);
79e53945 9127}
28d52043
DA
9128
9129/*
9130 * set vga decode state - true == enable VGA decode
9131 */
9132int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9133{
9134 struct drm_i915_private *dev_priv = dev->dev_private;
9135 u16 gmch_ctrl;
9136
9137 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9138 if (state)
9139 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9140 else
9141 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9142 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9143 return 0;
9144}
c4a1d9e4
CW
9145
9146#ifdef CONFIG_DEBUG_FS
9147#include <linux/seq_file.h>
9148
9149struct intel_display_error_state {
9150 struct intel_cursor_error_state {
9151 u32 control;
9152 u32 position;
9153 u32 base;
9154 u32 size;
52331309 9155 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
9156
9157 struct intel_pipe_error_state {
9158 u32 conf;
9159 u32 source;
9160
9161 u32 htotal;
9162 u32 hblank;
9163 u32 hsync;
9164 u32 vtotal;
9165 u32 vblank;
9166 u32 vsync;
52331309 9167 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
9168
9169 struct intel_plane_error_state {
9170 u32 control;
9171 u32 stride;
9172 u32 size;
9173 u32 pos;
9174 u32 addr;
9175 u32 surface;
9176 u32 tile_offset;
52331309 9177 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
9178};
9179
9180struct intel_display_error_state *
9181intel_display_capture_error_state(struct drm_device *dev)
9182{
0206e353 9183 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4 9184 struct intel_display_error_state *error;
702e7a56 9185 enum transcoder cpu_transcoder;
c4a1d9e4
CW
9186 int i;
9187
9188 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9189 if (error == NULL)
9190 return NULL;
9191
52331309 9192 for_each_pipe(i) {
702e7a56
PZ
9193 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9194
c4a1d9e4
CW
9195 error->cursor[i].control = I915_READ(CURCNTR(i));
9196 error->cursor[i].position = I915_READ(CURPOS(i));
9197 error->cursor[i].base = I915_READ(CURBASE(i));
9198
9199 error->plane[i].control = I915_READ(DSPCNTR(i));
9200 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9201 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 9202 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
9203 error->plane[i].addr = I915_READ(DSPADDR(i));
9204 if (INTEL_INFO(dev)->gen >= 4) {
9205 error->plane[i].surface = I915_READ(DSPSURF(i));
9206 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9207 }
9208
702e7a56 9209 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
c4a1d9e4 9210 error->pipe[i].source = I915_READ(PIPESRC(i));
fe2b8f9d
PZ
9211 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9212 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9213 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9214 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9215 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9216 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
9217 }
9218
9219 return error;
9220}
9221
9222void
9223intel_display_print_error_state(struct seq_file *m,
9224 struct drm_device *dev,
9225 struct intel_display_error_state *error)
9226{
52331309 9227 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
9228 int i;
9229
52331309
DL
9230 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9231 for_each_pipe(i) {
c4a1d9e4
CW
9232 seq_printf(m, "Pipe [%d]:\n", i);
9233 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9234 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9235 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9236 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9237 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9238 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9239 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9240 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9241
9242 seq_printf(m, "Plane [%d]:\n", i);
9243 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9244 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9245 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9246 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9247 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9248 if (INTEL_INFO(dev)->gen >= 4) {
9249 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9250 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9251 }
9252
9253 seq_printf(m, "Cursor [%d]:\n", i);
9254 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9255 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9256 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9257 }
9258}
9259#endif
This page took 1.722455 seconds and 5 git commands to generate.