drm/i915: fix checks inside haswell_crtc_{enable, disable}
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 47static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
49
50typedef struct {
0206e353
AJ
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
79e53945
JB
60} intel_clock_t;
61
62typedef struct {
0206e353 63 int min, max;
79e53945
JB
64} intel_range_t;
65
66typedef struct {
0206e353
AJ
67 int dot_limit;
68 int p2_slow, p2_fast;
79e53945
JB
69} intel_p2_t;
70
71#define INTEL_P2_NUM 2
d4906093
ML
72typedef struct intel_limit intel_limit_t;
73struct intel_limit {
0206e353
AJ
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 77 int, int, intel_clock_t *, intel_clock_t *);
d4906093 78};
79e53945 79
2377b741
JB
80/* FDI */
81#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
d2acd215
DV
83int
84intel_pch_rawclk(struct drm_device *dev)
85{
86 struct drm_i915_private *dev_priv = dev->dev_private;
87
88 WARN_ON(!HAS_PCH_SPLIT(dev));
89
90 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91}
92
d4906093
ML
93static bool
94intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
d4906093
ML
97static bool
98intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
79e53945 101
a4fc5ed6
KP
102static bool
103intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
104 int target, int refclk, intel_clock_t *match_clock,
105 intel_clock_t *best_clock);
5eb08b69 106static bool
f2b115e6 107intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
108 int target, int refclk, intel_clock_t *match_clock,
109 intel_clock_t *best_clock);
a4fc5ed6 110
a0c4da24
JB
111static bool
112intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
115
021357ac
CW
116static inline u32 /* units of 100MHz */
117intel_fdi_link_freq(struct drm_device *dev)
118{
8b99e68c
CW
119 if (IS_GEN5(dev)) {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122 } else
123 return 27;
021357ac
CW
124}
125
e4b36699 126static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 4, .p2_fast = 2 },
d4906093 137 .find_pll = intel_find_best_PLL,
e4b36699
KP
138};
139
140static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 14, .p2_fast = 7 },
d4906093 151 .find_pll = intel_find_best_PLL,
e4b36699 152};
273e27ca 153
e4b36699 154static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 5, .max = 80 },
162 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
163 .p2 = { .dot_limit = 200000,
164 .p2_slow = 10, .p2_fast = 5 },
d4906093 165 .find_pll = intel_find_best_PLL,
e4b36699
KP
166};
167
168static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 10, .max = 22 },
174 .m2 = { .min = 5, .max = 9 },
175 .p = { .min = 7, .max = 98 },
176 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
177 .p2 = { .dot_limit = 112000,
178 .p2_slow = 14, .p2_fast = 7 },
d4906093 179 .find_pll = intel_find_best_PLL,
e4b36699
KP
180};
181
273e27ca 182
e4b36699 183static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
184 .dot = { .min = 25000, .max = 270000 },
185 .vco = { .min = 1750000, .max = 3500000},
186 .n = { .min = 1, .max = 4 },
187 .m = { .min = 104, .max = 138 },
188 .m1 = { .min = 17, .max = 23 },
189 .m2 = { .min = 5, .max = 11 },
190 .p = { .min = 10, .max = 30 },
191 .p1 = { .min = 1, .max = 3},
192 .p2 = { .dot_limit = 270000,
193 .p2_slow = 10,
194 .p2_fast = 10
044c7c41 195 },
d4906093 196 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
200 .dot = { .min = 22000, .max = 400000 },
201 .vco = { .min = 1750000, .max = 3500000},
202 .n = { .min = 1, .max = 4 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 16, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 5, .max = 80 },
207 .p1 = { .min = 1, .max = 8},
208 .p2 = { .dot_limit = 165000,
209 .p2_slow = 10, .p2_fast = 5 },
d4906093 210 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
211};
212
213static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
214 .dot = { .min = 20000, .max = 115000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 28, .max = 112 },
221 .p1 = { .min = 2, .max = 8 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 14, .p2_fast = 14
044c7c41 224 },
d4906093 225 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
226};
227
228static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
229 .dot = { .min = 80000, .max = 224000 },
230 .vco = { .min = 1750000, .max = 3500000 },
231 .n = { .min = 1, .max = 3 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 17, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 14, .max = 42 },
236 .p1 = { .min = 2, .max = 6 },
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 7, .p2_fast = 7
044c7c41 239 },
d4906093 240 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
241};
242
243static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
244 .dot = { .min = 161670, .max = 227000 },
245 .vco = { .min = 1750000, .max = 3500000},
246 .n = { .min = 1, .max = 2 },
247 .m = { .min = 97, .max = 108 },
248 .m1 = { .min = 0x10, .max = 0x12 },
249 .m2 = { .min = 0x05, .max = 0x06 },
250 .p = { .min = 10, .max = 20 },
251 .p1 = { .min = 1, .max = 2},
252 .p2 = { .dot_limit = 0,
273e27ca 253 .p2_slow = 10, .p2_fast = 10 },
0206e353 254 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
255};
256
f2b115e6 257static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
258 .dot = { .min = 20000, .max = 400000},
259 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 260 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
273e27ca 263 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 5, .max = 80 },
267 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
268 .p2 = { .dot_limit = 200000,
269 .p2_slow = 10, .p2_fast = 5 },
6115707b 270 .find_pll = intel_find_best_PLL,
e4b36699
KP
271};
272
f2b115e6 273static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
274 .dot = { .min = 20000, .max = 400000 },
275 .vco = { .min = 1700000, .max = 3500000 },
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 7, .max = 112 },
281 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
282 .p2 = { .dot_limit = 112000,
283 .p2_slow = 14, .p2_fast = 14 },
6115707b 284 .find_pll = intel_find_best_PLL,
e4b36699
KP
285};
286
273e27ca
EA
287/* Ironlake / Sandybridge
288 *
289 * We calculate clock using (register_value + 2) for N/M1/M2, so here
290 * the range value for them is (actual_value - 2).
291 */
b91ad0ec 292static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 5 },
296 .m = { .min = 79, .max = 127 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 5, .max = 80 },
300 .p1 = { .min = 1, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 10, .p2_fast = 5 },
4547668a 303 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
304};
305
b91ad0ec 306static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 118 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 28, .max = 112 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
317 .find_pll = intel_g4x_find_best_PLL,
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331 .find_pll = intel_g4x_find_best_PLL,
332};
333
273e27ca 334/* LVDS 100mhz refclk limits. */
b91ad0ec 335static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 2 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 28, .max = 112 },
0206e353 343 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
346 .find_pll = intel_g4x_find_best_PLL,
347};
348
349static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 3 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 14, .max = 42 },
0206e353 357 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
360 .find_pll = intel_g4x_find_best_PLL,
361};
362
363static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000},
366 .n = { .min = 1, .max = 2 },
367 .m = { .min = 81, .max = 90 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 10, .max = 20 },
371 .p1 = { .min = 1, .max = 2},
372 .p2 = { .dot_limit = 0,
273e27ca 373 .p2_slow = 10, .p2_fast = 10 },
0206e353 374 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
375};
376
a0c4da24
JB
377static const intel_limit_t intel_limits_vlv_dac = {
378 .dot = { .min = 25000, .max = 270000 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m = { .min = 22, .max = 450 }, /* guess */
382 .m1 = { .min = 2, .max = 3 },
383 .m2 = { .min = 11, .max = 156 },
384 .p = { .min = 10, .max = 30 },
385 .p1 = { .min = 2, .max = 3 },
386 .p2 = { .dot_limit = 270000,
387 .p2_slow = 2, .p2_fast = 20 },
388 .find_pll = intel_vlv_find_best_pll,
389};
390
391static const intel_limit_t intel_limits_vlv_hdmi = {
392 .dot = { .min = 20000, .max = 165000 },
17dc9257 393 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 60, .max = 300 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
403};
404
405static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
406 .dot = { .min = 25000, .max = 270000 },
407 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 408 .n = { .min = 1, .max = 7 },
74a4dd2e 409 .m = { .min = 22, .max = 450 },
a0c4da24
JB
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
417};
418
57f350b6
JB
419u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420{
421 unsigned long flags;
422 u32 val = 0;
423
424 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426 DRM_ERROR("DPIO idle wait timed out\n");
427 goto out_unlock;
428 }
429
430 I915_WRITE(DPIO_REG, reg);
431 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432 DPIO_BYTE);
433 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434 DRM_ERROR("DPIO read wait timed out\n");
435 goto out_unlock;
436 }
437 val = I915_READ(DPIO_DATA);
438
439out_unlock:
440 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441 return val;
442}
443
a0c4da24
JB
444static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445 u32 val)
446{
447 unsigned long flags;
448
449 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451 DRM_ERROR("DPIO idle wait timed out\n");
452 goto out_unlock;
453 }
454
455 I915_WRITE(DPIO_DATA, val);
456 I915_WRITE(DPIO_REG, reg);
457 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458 DPIO_BYTE);
459 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460 DRM_ERROR("DPIO write wait timed out\n");
461
462out_unlock:
463 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464}
465
57f350b6
JB
466static void vlv_init_dpio(struct drm_device *dev)
467{
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 /* Reset the DPIO config */
471 I915_WRITE(DPIO_CTL, 0);
472 POSTING_READ(DPIO_CTL);
473 I915_WRITE(DPIO_CTL, 1);
474 POSTING_READ(DPIO_CTL);
475}
476
618563e3
DV
477static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478{
479 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480 return 1;
481}
482
483static const struct dmi_system_id intel_dual_link_lvds[] = {
484 {
485 .callback = intel_dual_link_lvds_callback,
486 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490 },
491 },
492 { } /* terminating entry */
493};
494
b0354385
TI
495static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496 unsigned int reg)
497{
498 unsigned int val;
499
121d527a
TI
500 /* use the module option value if specified */
501 if (i915_lvds_channel_mode > 0)
502 return i915_lvds_channel_mode == 2;
503
618563e3
DV
504 if (dmi_check_system(intel_dual_link_lvds))
505 return true;
506
b0354385
TI
507 if (dev_priv->lvds_val)
508 val = dev_priv->lvds_val;
509 else {
510 /* BIOS should set the proper LVDS register value at boot, but
511 * in reality, it doesn't set the value when the lid is closed;
512 * we need to check "the value to be set" in VBT when LVDS
513 * register is uninitialized.
514 */
515 val = I915_READ(reg);
14d94a3d 516 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
517 val = dev_priv->bios_lvds_val;
518 dev_priv->lvds_val = val;
519 }
520 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521}
522
1b894b59
CW
523static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524 int refclk)
2c07245f 525{
b91ad0ec
ZW
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 528 const intel_limit_t *limit;
b91ad0ec
ZW
529
530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 531 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 532 /* LVDS dual channel */
1b894b59 533 if (refclk == 100000)
b91ad0ec
ZW
534 limit = &intel_limits_ironlake_dual_lvds_100m;
535 else
536 limit = &intel_limits_ironlake_dual_lvds;
537 } else {
1b894b59 538 if (refclk == 100000)
b91ad0ec
ZW
539 limit = &intel_limits_ironlake_single_lvds_100m;
540 else
541 limit = &intel_limits_ironlake_single_lvds;
542 }
543 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
544 HAS_eDP)
545 limit = &intel_limits_ironlake_display_port;
2c07245f 546 else
b91ad0ec 547 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
548
549 return limit;
550}
551
044c7c41
ML
552static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553{
554 struct drm_device *dev = crtc->dev;
555 struct drm_i915_private *dev_priv = dev->dev_private;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 559 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 560 /* LVDS with dual channel */
e4b36699 561 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
562 else
563 /* LVDS with dual channel */
e4b36699 564 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
565 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 567 limit = &intel_limits_g4x_hdmi;
044c7c41 568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 569 limit = &intel_limits_g4x_sdvo;
0206e353 570 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 571 limit = &intel_limits_g4x_display_port;
044c7c41 572 } else /* The option is for other outputs */
e4b36699 573 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
574
575 return limit;
576}
577
1b894b59 578static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
579{
580 struct drm_device *dev = crtc->dev;
581 const intel_limit_t *limit;
582
bad720ff 583 if (HAS_PCH_SPLIT(dev))
1b894b59 584 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 585 else if (IS_G4X(dev)) {
044c7c41 586 limit = intel_g4x_limit(crtc);
f2b115e6 587 } else if (IS_PINEVIEW(dev)) {
2177832f 588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 589 limit = &intel_limits_pineview_lvds;
2177832f 590 else
f2b115e6 591 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
592 } else if (IS_VALLEYVIEW(dev)) {
593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594 limit = &intel_limits_vlv_dac;
595 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596 limit = &intel_limits_vlv_hdmi;
597 else
598 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
599 } else if (!IS_GEN2(dev)) {
600 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601 limit = &intel_limits_i9xx_lvds;
602 else
603 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
604 } else {
605 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 606 limit = &intel_limits_i8xx_lvds;
79e53945 607 else
e4b36699 608 limit = &intel_limits_i8xx_dvo;
79e53945
JB
609 }
610 return limit;
611}
612
f2b115e6
AJ
613/* m1 is reserved as 0 in Pineview, n is a ring counter */
614static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 615{
2177832f
SL
616 clock->m = clock->m2 + 2;
617 clock->p = clock->p1 * clock->p2;
618 clock->vco = refclk * clock->m / clock->n;
619 clock->dot = clock->vco / clock->p;
620}
621
622static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623{
f2b115e6
AJ
624 if (IS_PINEVIEW(dev)) {
625 pineview_clock(refclk, clock);
2177832f
SL
626 return;
627 }
79e53945
JB
628 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629 clock->p = clock->p1 * clock->p2;
630 clock->vco = refclk * clock->m / (clock->n + 2);
631 clock->dot = clock->vco / clock->p;
632}
633
79e53945
JB
634/**
635 * Returns whether any output on the specified pipe is of the specified type
636 */
4ef69c7a 637bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 638{
4ef69c7a 639 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
640 struct intel_encoder *encoder;
641
6c2b7c12
DV
642 for_each_encoder_on_crtc(dev, crtc, encoder)
643 if (encoder->type == type)
4ef69c7a
CW
644 return true;
645
646 return false;
79e53945
JB
647}
648
7c04d1d9 649#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
650/**
651 * Returns whether the given set of divisors are valid for a given refclk with
652 * the given connectors.
653 */
654
1b894b59
CW
655static bool intel_PLL_is_valid(struct drm_device *dev,
656 const intel_limit_t *limit,
657 const intel_clock_t *clock)
79e53945 658{
79e53945 659 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 660 INTELPllInvalid("p1 out of range\n");
79e53945 661 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 662 INTELPllInvalid("p out of range\n");
79e53945 663 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 664 INTELPllInvalid("m2 out of range\n");
79e53945 665 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 666 INTELPllInvalid("m1 out of range\n");
f2b115e6 667 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 668 INTELPllInvalid("m1 <= m2\n");
79e53945 669 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 670 INTELPllInvalid("m out of range\n");
79e53945 671 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 672 INTELPllInvalid("n out of range\n");
79e53945 673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 674 INTELPllInvalid("vco out of range\n");
79e53945
JB
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
677 */
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 679 INTELPllInvalid("dot out of range\n");
79e53945
JB
680
681 return true;
682}
683
d4906093
ML
684static bool
685intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
686 int target, int refclk, intel_clock_t *match_clock,
687 intel_clock_t *best_clock)
d4906093 688
79e53945
JB
689{
690 struct drm_device *dev = crtc->dev;
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 intel_clock_t clock;
79e53945
JB
693 int err = target;
694
bc5e5718 695 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 696 (I915_READ(LVDS)) != 0) {
79e53945
JB
697 /*
698 * For LVDS, if the panel is on, just rely on its current
699 * settings for dual-channel. We haven't figured out how to
700 * reliably set up different single/dual channel state, if we
701 * even can.
702 */
b0354385 703 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
704 clock.p2 = limit->p2.p2_fast;
705 else
706 clock.p2 = limit->p2.p2_slow;
707 } else {
708 if (target < limit->p2.dot_limit)
709 clock.p2 = limit->p2.p2_slow;
710 else
711 clock.p2 = limit->p2.p2_fast;
712 }
713
0206e353 714 memset(best_clock, 0, sizeof(*best_clock));
79e53945 715
42158660
ZY
716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717 clock.m1++) {
718 for (clock.m2 = limit->m2.min;
719 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
720 /* m1 is always 0 in Pineview */
721 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
722 break;
723 for (clock.n = limit->n.min;
724 clock.n <= limit->n.max; clock.n++) {
725 for (clock.p1 = limit->p1.min;
726 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
727 int this_err;
728
2177832f 729 intel_clock(dev, refclk, &clock);
1b894b59
CW
730 if (!intel_PLL_is_valid(dev, limit,
731 &clock))
79e53945 732 continue;
cec2f356
SP
733 if (match_clock &&
734 clock.p != match_clock->p)
735 continue;
79e53945
JB
736
737 this_err = abs(clock.dot - target);
738 if (this_err < err) {
739 *best_clock = clock;
740 err = this_err;
741 }
742 }
743 }
744 }
745 }
746
747 return (err != target);
748}
749
d4906093
ML
750static bool
751intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
752 int target, int refclk, intel_clock_t *match_clock,
753 intel_clock_t *best_clock)
d4906093
ML
754{
755 struct drm_device *dev = crtc->dev;
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 intel_clock_t clock;
758 int max_n;
759 bool found;
6ba770dc
AJ
760 /* approximately equals target * 0.00585 */
761 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
762 found = false;
763
764 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
765 int lvds_reg;
766
c619eed4 767 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
768 lvds_reg = PCH_LVDS;
769 else
770 lvds_reg = LVDS;
771 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
772 LVDS_CLKB_POWER_UP)
773 clock.p2 = limit->p2.p2_fast;
774 else
775 clock.p2 = limit->p2.p2_slow;
776 } else {
777 if (target < limit->p2.dot_limit)
778 clock.p2 = limit->p2.p2_slow;
779 else
780 clock.p2 = limit->p2.p2_fast;
781 }
782
783 memset(best_clock, 0, sizeof(*best_clock));
784 max_n = limit->n.max;
f77f13e2 785 /* based on hardware requirement, prefer smaller n to precision */
d4906093 786 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 787 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
788 for (clock.m1 = limit->m1.max;
789 clock.m1 >= limit->m1.min; clock.m1--) {
790 for (clock.m2 = limit->m2.max;
791 clock.m2 >= limit->m2.min; clock.m2--) {
792 for (clock.p1 = limit->p1.max;
793 clock.p1 >= limit->p1.min; clock.p1--) {
794 int this_err;
795
2177832f 796 intel_clock(dev, refclk, &clock);
1b894b59
CW
797 if (!intel_PLL_is_valid(dev, limit,
798 &clock))
d4906093 799 continue;
cec2f356
SP
800 if (match_clock &&
801 clock.p != match_clock->p)
802 continue;
1b894b59
CW
803
804 this_err = abs(clock.dot - target);
d4906093
ML
805 if (this_err < err_most) {
806 *best_clock = clock;
807 err_most = this_err;
808 max_n = clock.n;
809 found = true;
810 }
811 }
812 }
813 }
814 }
2c07245f
ZW
815 return found;
816}
817
5eb08b69 818static bool
f2b115e6 819intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
820 int target, int refclk, intel_clock_t *match_clock,
821 intel_clock_t *best_clock)
5eb08b69
ZW
822{
823 struct drm_device *dev = crtc->dev;
824 intel_clock_t clock;
4547668a 825
5eb08b69
ZW
826 if (target < 200000) {
827 clock.n = 1;
828 clock.p1 = 2;
829 clock.p2 = 10;
830 clock.m1 = 12;
831 clock.m2 = 9;
832 } else {
833 clock.n = 2;
834 clock.p1 = 1;
835 clock.p2 = 10;
836 clock.m1 = 14;
837 clock.m2 = 8;
838 }
839 intel_clock(dev, refclk, &clock);
840 memcpy(best_clock, &clock, sizeof(intel_clock_t));
841 return true;
842}
843
a4fc5ed6
KP
844/* DisplayPort has only two frequencies, 162MHz and 270MHz */
845static bool
846intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
a4fc5ed6 849{
5eddb70b
CW
850 intel_clock_t clock;
851 if (target < 200000) {
852 clock.p1 = 2;
853 clock.p2 = 10;
854 clock.n = 2;
855 clock.m1 = 23;
856 clock.m2 = 8;
857 } else {
858 clock.p1 = 1;
859 clock.p2 = 10;
860 clock.n = 1;
861 clock.m1 = 14;
862 clock.m2 = 2;
863 }
864 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865 clock.p = (clock.p1 * clock.p2);
866 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867 clock.vco = 0;
868 memcpy(best_clock, &clock, sizeof(intel_clock_t));
869 return true;
a4fc5ed6 870}
a0c4da24
JB
871static bool
872intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
875{
876 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877 u32 m, n, fastclk;
878 u32 updrate, minupdate, fracbits, p;
879 unsigned long bestppm, ppm, absppm;
880 int dotclk, flag;
881
af447bd3 882 flag = 0;
a0c4da24
JB
883 dotclk = target * 1000;
884 bestppm = 1000000;
885 ppm = absppm = 0;
886 fastclk = dotclk / (2*100);
887 updrate = 0;
888 minupdate = 19200;
889 fracbits = 1;
890 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891 bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893 /* based on hardware requirement, prefer smaller n to precision */
894 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895 updrate = refclk / n;
896 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898 if (p2 > 10)
899 p2 = p2 - 1;
900 p = p1 * p2;
901 /* based on hardware requirement, prefer bigger m1,m2 values */
902 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903 m2 = (((2*(fastclk * p * n / m1 )) +
904 refclk) / (2*refclk));
905 m = m1 * m2;
906 vco = updrate * m;
907 if (vco >= limit->vco.min && vco < limit->vco.max) {
908 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909 absppm = (ppm > 0) ? ppm : (-ppm);
910 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911 bestppm = 0;
912 flag = 1;
913 }
914 if (absppm < bestppm - 10) {
915 bestppm = absppm;
916 flag = 1;
917 }
918 if (flag) {
919 bestn = n;
920 bestm1 = m1;
921 bestm2 = m2;
922 bestp1 = p1;
923 bestp2 = p2;
924 flag = 0;
925 }
926 }
927 }
928 }
929 }
930 }
931 best_clock->n = bestn;
932 best_clock->m1 = bestm1;
933 best_clock->m2 = bestm2;
934 best_clock->p1 = bestp1;
935 best_clock->p2 = bestp2;
936
937 return true;
938}
a4fc5ed6 939
a928d536
PZ
940static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
941{
942 struct drm_i915_private *dev_priv = dev->dev_private;
943 u32 frame, frame_reg = PIPEFRAME(pipe);
944
945 frame = I915_READ(frame_reg);
946
947 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
948 DRM_DEBUG_KMS("vblank wait timed out\n");
949}
950
9d0498a2
JB
951/**
952 * intel_wait_for_vblank - wait for vblank on a given pipe
953 * @dev: drm device
954 * @pipe: pipe to wait for
955 *
956 * Wait for vblank to occur on a given pipe. Needed for various bits of
957 * mode setting code.
958 */
959void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 960{
9d0498a2 961 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 962 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 963
a928d536
PZ
964 if (INTEL_INFO(dev)->gen >= 5) {
965 ironlake_wait_for_vblank(dev, pipe);
966 return;
967 }
968
300387c0
CW
969 /* Clear existing vblank status. Note this will clear any other
970 * sticky status fields as well.
971 *
972 * This races with i915_driver_irq_handler() with the result
973 * that either function could miss a vblank event. Here it is not
974 * fatal, as we will either wait upon the next vblank interrupt or
975 * timeout. Generally speaking intel_wait_for_vblank() is only
976 * called during modeset at which time the GPU should be idle and
977 * should *not* be performing page flips and thus not waiting on
978 * vblanks...
979 * Currently, the result of us stealing a vblank from the irq
980 * handler is that a single frame will be skipped during swapbuffers.
981 */
982 I915_WRITE(pipestat_reg,
983 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
984
9d0498a2 985 /* Wait for vblank interrupt bit to set */
481b6af3
CW
986 if (wait_for(I915_READ(pipestat_reg) &
987 PIPE_VBLANK_INTERRUPT_STATUS,
988 50))
9d0498a2
JB
989 DRM_DEBUG_KMS("vblank wait timed out\n");
990}
991
ab7ad7f6
KP
992/*
993 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
994 * @dev: drm device
995 * @pipe: pipe to wait for
996 *
997 * After disabling a pipe, we can't wait for vblank in the usual way,
998 * spinning on the vblank interrupt status bit, since we won't actually
999 * see an interrupt when the pipe is disabled.
1000 *
ab7ad7f6
KP
1001 * On Gen4 and above:
1002 * wait for the pipe register state bit to turn off
1003 *
1004 * Otherwise:
1005 * wait for the display line value to settle (it usually
1006 * ends up stopping at the start of the next frame).
58e10eb9 1007 *
9d0498a2 1008 */
58e10eb9 1009void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1010{
1011 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
1012
1013 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 1014 int reg = PIPECONF(pipe);
ab7ad7f6
KP
1015
1016 /* Wait for the Pipe State to go off */
58e10eb9
CW
1017 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1018 100))
284637d9 1019 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1020 } else {
837ba00f 1021 u32 last_line, line_mask;
58e10eb9 1022 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1023 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1024
837ba00f
PZ
1025 if (IS_GEN2(dev))
1026 line_mask = DSL_LINEMASK_GEN2;
1027 else
1028 line_mask = DSL_LINEMASK_GEN3;
1029
ab7ad7f6
KP
1030 /* Wait for the display line to settle */
1031 do {
837ba00f 1032 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1033 mdelay(5);
837ba00f 1034 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1035 time_after(timeout, jiffies));
1036 if (time_after(jiffies, timeout))
284637d9 1037 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1038 }
79e53945
JB
1039}
1040
b24e7179
JB
1041static const char *state_string(bool enabled)
1042{
1043 return enabled ? "on" : "off";
1044}
1045
1046/* Only for pre-ILK configs */
1047static void assert_pll(struct drm_i915_private *dev_priv,
1048 enum pipe pipe, bool state)
1049{
1050 int reg;
1051 u32 val;
1052 bool cur_state;
1053
1054 reg = DPLL(pipe);
1055 val = I915_READ(reg);
1056 cur_state = !!(val & DPLL_VCO_ENABLE);
1057 WARN(cur_state != state,
1058 "PLL state assertion failure (expected %s, current %s)\n",
1059 state_string(state), state_string(cur_state));
1060}
1061#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1062#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1063
040484af
JB
1064/* For ILK+ */
1065static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1066 struct intel_pch_pll *pll,
1067 struct intel_crtc *crtc,
1068 bool state)
040484af 1069{
040484af
JB
1070 u32 val;
1071 bool cur_state;
1072
9d82aa17
ED
1073 if (HAS_PCH_LPT(dev_priv->dev)) {
1074 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1075 return;
1076 }
1077
92b27b08
CW
1078 if (WARN (!pll,
1079 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1080 return;
ee7b9f93 1081
92b27b08
CW
1082 val = I915_READ(pll->pll_reg);
1083 cur_state = !!(val & DPLL_VCO_ENABLE);
1084 WARN(cur_state != state,
1085 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1086 pll->pll_reg, state_string(state), state_string(cur_state), val);
1087
1088 /* Make sure the selected PLL is correctly attached to the transcoder */
1089 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1090 u32 pch_dpll;
1091
1092 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1093 cur_state = pll->pll_reg == _PCH_DPLL_B;
1094 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1095 "PLL[%d] not attached to this transcoder %d: %08x\n",
1096 cur_state, crtc->pipe, pch_dpll)) {
1097 cur_state = !!(val >> (4*crtc->pipe + 3));
1098 WARN(cur_state != state,
1099 "PLL[%d] not %s on this transcoder %d: %08x\n",
1100 pll->pll_reg == _PCH_DPLL_B,
1101 state_string(state),
1102 crtc->pipe,
1103 val);
1104 }
d3ccbe86 1105 }
040484af 1106}
92b27b08
CW
1107#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1108#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1109
1110static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1111 enum pipe pipe, bool state)
1112{
1113 int reg;
1114 u32 val;
1115 bool cur_state;
1116
bf507ef7
ED
1117 if (IS_HASWELL(dev_priv->dev)) {
1118 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1119 reg = DDI_FUNC_CTL(pipe);
1120 val = I915_READ(reg);
1121 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1122 } else {
1123 reg = FDI_TX_CTL(pipe);
1124 val = I915_READ(reg);
1125 cur_state = !!(val & FDI_TX_ENABLE);
1126 }
040484af
JB
1127 WARN(cur_state != state,
1128 "FDI TX state assertion failure (expected %s, current %s)\n",
1129 state_string(state), state_string(cur_state));
1130}
1131#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1132#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1133
1134static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1135 enum pipe pipe, bool state)
1136{
1137 int reg;
1138 u32 val;
1139 bool cur_state;
1140
59c859d6
ED
1141 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1142 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1143 return;
1144 } else {
1145 reg = FDI_RX_CTL(pipe);
1146 val = I915_READ(reg);
1147 cur_state = !!(val & FDI_RX_ENABLE);
1148 }
040484af
JB
1149 WARN(cur_state != state,
1150 "FDI RX state assertion failure (expected %s, current %s)\n",
1151 state_string(state), state_string(cur_state));
1152}
1153#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1154#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1155
1156static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1157 enum pipe pipe)
1158{
1159 int reg;
1160 u32 val;
1161
1162 /* ILK FDI PLL is always enabled */
1163 if (dev_priv->info->gen == 5)
1164 return;
1165
bf507ef7
ED
1166 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1167 if (IS_HASWELL(dev_priv->dev))
1168 return;
1169
040484af
JB
1170 reg = FDI_TX_CTL(pipe);
1171 val = I915_READ(reg);
1172 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1173}
1174
1175static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1176 enum pipe pipe)
1177{
1178 int reg;
1179 u32 val;
1180
59c859d6
ED
1181 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1182 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1183 return;
1184 }
040484af
JB
1185 reg = FDI_RX_CTL(pipe);
1186 val = I915_READ(reg);
1187 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1188}
1189
ea0760cf
JB
1190static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1191 enum pipe pipe)
1192{
1193 int pp_reg, lvds_reg;
1194 u32 val;
1195 enum pipe panel_pipe = PIPE_A;
0de3b485 1196 bool locked = true;
ea0760cf
JB
1197
1198 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1199 pp_reg = PCH_PP_CONTROL;
1200 lvds_reg = PCH_LVDS;
1201 } else {
1202 pp_reg = PP_CONTROL;
1203 lvds_reg = LVDS;
1204 }
1205
1206 val = I915_READ(pp_reg);
1207 if (!(val & PANEL_POWER_ON) ||
1208 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1209 locked = false;
1210
1211 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1212 panel_pipe = PIPE_B;
1213
1214 WARN(panel_pipe == pipe && locked,
1215 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1216 pipe_name(pipe));
ea0760cf
JB
1217}
1218
b840d907
JB
1219void assert_pipe(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
b24e7179
JB
1221{
1222 int reg;
1223 u32 val;
63d7bbe9 1224 bool cur_state;
b24e7179 1225
8e636784
DV
1226 /* if we need the pipe A quirk it must be always on */
1227 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228 state = true;
1229
b24e7179
JB
1230 reg = PIPECONF(pipe);
1231 val = I915_READ(reg);
63d7bbe9
JB
1232 cur_state = !!(val & PIPECONF_ENABLE);
1233 WARN(cur_state != state,
1234 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1235 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1236}
1237
931872fc
CW
1238static void assert_plane(struct drm_i915_private *dev_priv,
1239 enum plane plane, bool state)
b24e7179
JB
1240{
1241 int reg;
1242 u32 val;
931872fc 1243 bool cur_state;
b24e7179
JB
1244
1245 reg = DSPCNTR(plane);
1246 val = I915_READ(reg);
931872fc
CW
1247 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1248 WARN(cur_state != state,
1249 "plane %c assertion failure (expected %s, current %s)\n",
1250 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1251}
1252
931872fc
CW
1253#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1254#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1255
b24e7179
JB
1256static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1257 enum pipe pipe)
1258{
1259 int reg, i;
1260 u32 val;
1261 int cur_pipe;
1262
19ec1358 1263 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1264 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1265 reg = DSPCNTR(pipe);
1266 val = I915_READ(reg);
1267 WARN((val & DISPLAY_PLANE_ENABLE),
1268 "plane %c assertion failure, should be disabled but not\n",
1269 plane_name(pipe));
19ec1358 1270 return;
28c05794 1271 }
19ec1358 1272
b24e7179
JB
1273 /* Need to check both planes against the pipe */
1274 for (i = 0; i < 2; i++) {
1275 reg = DSPCNTR(i);
1276 val = I915_READ(reg);
1277 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1278 DISPPLANE_SEL_PIPE_SHIFT;
1279 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1280 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1281 plane_name(i), pipe_name(pipe));
b24e7179
JB
1282 }
1283}
1284
92f2584a
JB
1285static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1286{
1287 u32 val;
1288 bool enabled;
1289
9d82aa17
ED
1290 if (HAS_PCH_LPT(dev_priv->dev)) {
1291 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1292 return;
1293 }
1294
92f2584a
JB
1295 val = I915_READ(PCH_DREF_CONTROL);
1296 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1297 DREF_SUPERSPREAD_SOURCE_MASK));
1298 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1299}
1300
1301static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe)
1303{
1304 int reg;
1305 u32 val;
1306 bool enabled;
1307
1308 reg = TRANSCONF(pipe);
1309 val = I915_READ(reg);
1310 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1311 WARN(enabled,
1312 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1313 pipe_name(pipe));
92f2584a
JB
1314}
1315
4e634389
KP
1316static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1318{
1319 if ((val & DP_PORT_EN) == 0)
1320 return false;
1321
1322 if (HAS_PCH_CPT(dev_priv->dev)) {
1323 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1324 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1325 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1326 return false;
1327 } else {
1328 if ((val & DP_PIPE_MASK) != (pipe << 30))
1329 return false;
1330 }
1331 return true;
1332}
1333
1519b995
KP
1334static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1335 enum pipe pipe, u32 val)
1336{
1337 if ((val & PORT_ENABLE) == 0)
1338 return false;
1339
1340 if (HAS_PCH_CPT(dev_priv->dev)) {
1341 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1342 return false;
1343 } else {
1344 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1345 return false;
1346 }
1347 return true;
1348}
1349
1350static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1351 enum pipe pipe, u32 val)
1352{
1353 if ((val & LVDS_PORT_EN) == 0)
1354 return false;
1355
1356 if (HAS_PCH_CPT(dev_priv->dev)) {
1357 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1358 return false;
1359 } else {
1360 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1361 return false;
1362 }
1363 return true;
1364}
1365
1366static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1367 enum pipe pipe, u32 val)
1368{
1369 if ((val & ADPA_DAC_ENABLE) == 0)
1370 return false;
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373 return false;
1374 } else {
1375 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1376 return false;
1377 }
1378 return true;
1379}
1380
291906f1 1381static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1382 enum pipe pipe, int reg, u32 port_sel)
291906f1 1383{
47a05eca 1384 u32 val = I915_READ(reg);
4e634389 1385 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1386 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1387 reg, pipe_name(pipe));
de9a35ab 1388
75c5da27
DV
1389 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1390 && (val & DP_PIPEB_SELECT),
de9a35ab 1391 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1392}
1393
1394static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1395 enum pipe pipe, int reg)
1396{
47a05eca 1397 u32 val = I915_READ(reg);
e9a851ed 1398 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1399 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1400 reg, pipe_name(pipe));
de9a35ab 1401
75c5da27
DV
1402 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1403 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1404 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1405}
1406
1407static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1408 enum pipe pipe)
1409{
1410 int reg;
1411 u32 val;
291906f1 1412
f0575e92
KP
1413 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1414 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1415 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1416
1417 reg = PCH_ADPA;
1418 val = I915_READ(reg);
e9a851ed 1419 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1420 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1421 pipe_name(pipe));
291906f1
JB
1422
1423 reg = PCH_LVDS;
1424 val = I915_READ(reg);
e9a851ed 1425 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1426 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1427 pipe_name(pipe));
291906f1
JB
1428
1429 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1430 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1431 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1432}
1433
63d7bbe9
JB
1434/**
1435 * intel_enable_pll - enable a PLL
1436 * @dev_priv: i915 private structure
1437 * @pipe: pipe PLL to enable
1438 *
1439 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1440 * make sure the PLL reg is writable first though, since the panel write
1441 * protect mechanism may be enabled.
1442 *
1443 * Note! This is for pre-ILK only.
7434a255
TR
1444 *
1445 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9 1446 */
a37b9b34 1447static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9
JB
1448{
1449 int reg;
1450 u32 val;
1451
1452 /* No really, not for ILK+ */
a0c4da24 1453 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1454
1455 /* PLL is protected by panel, make sure we can write it */
1456 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1457 assert_panel_unlocked(dev_priv, pipe);
1458
1459 reg = DPLL(pipe);
1460 val = I915_READ(reg);
1461 val |= DPLL_VCO_ENABLE;
1462
1463 /* We do this three times for luck */
1464 I915_WRITE(reg, val);
1465 POSTING_READ(reg);
1466 udelay(150); /* wait for warmup */
1467 I915_WRITE(reg, val);
1468 POSTING_READ(reg);
1469 udelay(150); /* wait for warmup */
1470 I915_WRITE(reg, val);
1471 POSTING_READ(reg);
1472 udelay(150); /* wait for warmup */
1473}
1474
1475/**
1476 * intel_disable_pll - disable a PLL
1477 * @dev_priv: i915 private structure
1478 * @pipe: pipe PLL to disable
1479 *
1480 * Disable the PLL for @pipe, making sure the pipe is off first.
1481 *
1482 * Note! This is for pre-ILK only.
1483 */
1484static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1485{
1486 int reg;
1487 u32 val;
1488
1489 /* Don't disable pipe A or pipe A PLLs if needed */
1490 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1491 return;
1492
1493 /* Make sure the pipe isn't still relying on us */
1494 assert_pipe_disabled(dev_priv, pipe);
1495
1496 reg = DPLL(pipe);
1497 val = I915_READ(reg);
1498 val &= ~DPLL_VCO_ENABLE;
1499 I915_WRITE(reg, val);
1500 POSTING_READ(reg);
1501}
1502
a416edef
ED
1503/* SBI access */
1504static void
1505intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1506{
1507 unsigned long flags;
1508
1509 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1510 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1511 100)) {
1512 DRM_ERROR("timeout waiting for SBI to become ready\n");
1513 goto out_unlock;
1514 }
1515
1516 I915_WRITE(SBI_ADDR,
1517 (reg << 16));
1518 I915_WRITE(SBI_DATA,
1519 value);
1520 I915_WRITE(SBI_CTL_STAT,
1521 SBI_BUSY |
1522 SBI_CTL_OP_CRWR);
1523
39fb50f6 1524 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1525 100)) {
1526 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1527 goto out_unlock;
1528 }
1529
1530out_unlock:
1531 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1532}
1533
1534static u32
1535intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1536{
1537 unsigned long flags;
39fb50f6 1538 u32 value = 0;
a416edef
ED
1539
1540 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1541 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1542 100)) {
1543 DRM_ERROR("timeout waiting for SBI to become ready\n");
1544 goto out_unlock;
1545 }
1546
1547 I915_WRITE(SBI_ADDR,
1548 (reg << 16));
1549 I915_WRITE(SBI_CTL_STAT,
1550 SBI_BUSY |
1551 SBI_CTL_OP_CRRD);
1552
39fb50f6 1553 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1554 100)) {
1555 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1556 goto out_unlock;
1557 }
1558
1559 value = I915_READ(SBI_DATA);
1560
1561out_unlock:
1562 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1563 return value;
1564}
1565
92f2584a
JB
1566/**
1567 * intel_enable_pch_pll - enable PCH PLL
1568 * @dev_priv: i915 private structure
1569 * @pipe: pipe PLL to enable
1570 *
1571 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1572 * drives the transcoder clock.
1573 */
ee7b9f93 1574static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1575{
ee7b9f93 1576 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1577 struct intel_pch_pll *pll;
92f2584a
JB
1578 int reg;
1579 u32 val;
1580
48da64a8 1581 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1582 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1583 pll = intel_crtc->pch_pll;
1584 if (pll == NULL)
1585 return;
1586
1587 if (WARN_ON(pll->refcount == 0))
1588 return;
ee7b9f93
JB
1589
1590 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1591 pll->pll_reg, pll->active, pll->on,
1592 intel_crtc->base.base.id);
92f2584a
JB
1593
1594 /* PCH refclock must be enabled first */
1595 assert_pch_refclk_enabled(dev_priv);
1596
ee7b9f93 1597 if (pll->active++ && pll->on) {
92b27b08 1598 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1599 return;
1600 }
1601
1602 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1603
1604 reg = pll->pll_reg;
92f2584a
JB
1605 val = I915_READ(reg);
1606 val |= DPLL_VCO_ENABLE;
1607 I915_WRITE(reg, val);
1608 POSTING_READ(reg);
1609 udelay(200);
ee7b9f93
JB
1610
1611 pll->on = true;
92f2584a
JB
1612}
1613
ee7b9f93 1614static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1615{
ee7b9f93
JB
1616 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1617 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1618 int reg;
ee7b9f93 1619 u32 val;
4c609cb8 1620
92f2584a
JB
1621 /* PCH only available on ILK+ */
1622 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1623 if (pll == NULL)
1624 return;
92f2584a 1625
48da64a8
CW
1626 if (WARN_ON(pll->refcount == 0))
1627 return;
7a419866 1628
ee7b9f93
JB
1629 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1630 pll->pll_reg, pll->active, pll->on,
1631 intel_crtc->base.base.id);
7a419866 1632
48da64a8 1633 if (WARN_ON(pll->active == 0)) {
92b27b08 1634 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1635 return;
1636 }
1637
ee7b9f93 1638 if (--pll->active) {
92b27b08 1639 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1640 return;
ee7b9f93
JB
1641 }
1642
1643 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1644
1645 /* Make sure transcoder isn't still depending on us */
1646 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1647
ee7b9f93 1648 reg = pll->pll_reg;
92f2584a
JB
1649 val = I915_READ(reg);
1650 val &= ~DPLL_VCO_ENABLE;
1651 I915_WRITE(reg, val);
1652 POSTING_READ(reg);
1653 udelay(200);
ee7b9f93
JB
1654
1655 pll->on = false;
92f2584a
JB
1656}
1657
040484af
JB
1658static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1659 enum pipe pipe)
1660{
1661 int reg;
5f7f726d 1662 u32 val, pipeconf_val;
7c26e5c6 1663 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
040484af
JB
1664
1665 /* PCH only available on ILK+ */
1666 BUG_ON(dev_priv->info->gen < 5);
1667
1668 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1669 assert_pch_pll_enabled(dev_priv,
1670 to_intel_crtc(crtc)->pch_pll,
1671 to_intel_crtc(crtc));
040484af
JB
1672
1673 /* FDI must be feeding us bits for PCH ports */
1674 assert_fdi_tx_enabled(dev_priv, pipe);
1675 assert_fdi_rx_enabled(dev_priv, pipe);
1676
59c859d6
ED
1677 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1678 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1679 return;
1680 }
040484af
JB
1681 reg = TRANSCONF(pipe);
1682 val = I915_READ(reg);
5f7f726d 1683 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1684
1685 if (HAS_PCH_IBX(dev_priv->dev)) {
1686 /*
1687 * make the BPC in transcoder be consistent with
1688 * that in pipeconf reg.
1689 */
1690 val &= ~PIPE_BPC_MASK;
5f7f726d 1691 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1692 }
5f7f726d
PZ
1693
1694 val &= ~TRANS_INTERLACE_MASK;
1695 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1696 if (HAS_PCH_IBX(dev_priv->dev) &&
1697 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1698 val |= TRANS_LEGACY_INTERLACED_ILK;
1699 else
1700 val |= TRANS_INTERLACED;
5f7f726d
PZ
1701 else
1702 val |= TRANS_PROGRESSIVE;
1703
040484af
JB
1704 I915_WRITE(reg, val | TRANS_ENABLE);
1705 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1706 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1707}
1708
1709static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1710 enum pipe pipe)
1711{
1712 int reg;
1713 u32 val;
1714
1715 /* FDI relies on the transcoder */
1716 assert_fdi_tx_disabled(dev_priv, pipe);
1717 assert_fdi_rx_disabled(dev_priv, pipe);
1718
291906f1
JB
1719 /* Ports must be off as well */
1720 assert_pch_ports_disabled(dev_priv, pipe);
1721
040484af
JB
1722 reg = TRANSCONF(pipe);
1723 val = I915_READ(reg);
1724 val &= ~TRANS_ENABLE;
1725 I915_WRITE(reg, val);
1726 /* wait for PCH transcoder off, transcoder state */
1727 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1728 DRM_ERROR("failed to disable transcoder %d\n", pipe);
040484af
JB
1729}
1730
b24e7179 1731/**
309cfea8 1732 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1733 * @dev_priv: i915 private structure
1734 * @pipe: pipe to enable
040484af 1735 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1736 *
1737 * Enable @pipe, making sure that various hardware specific requirements
1738 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1739 *
1740 * @pipe should be %PIPE_A or %PIPE_B.
1741 *
1742 * Will wait until the pipe is actually running (i.e. first vblank) before
1743 * returning.
1744 */
040484af
JB
1745static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1746 bool pch_port)
b24e7179
JB
1747{
1748 int reg;
1749 u32 val;
1750
1751 /*
1752 * A pipe without a PLL won't actually be able to drive bits from
1753 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1754 * need the check.
1755 */
1756 if (!HAS_PCH_SPLIT(dev_priv->dev))
1757 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1758 else {
1759 if (pch_port) {
1760 /* if driving the PCH, we need FDI enabled */
1761 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1762 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1763 }
1764 /* FIXME: assert CPU port conditions for SNB+ */
1765 }
b24e7179
JB
1766
1767 reg = PIPECONF(pipe);
1768 val = I915_READ(reg);
00d70b15
CW
1769 if (val & PIPECONF_ENABLE)
1770 return;
1771
1772 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1773 intel_wait_for_vblank(dev_priv->dev, pipe);
1774}
1775
1776/**
309cfea8 1777 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1778 * @dev_priv: i915 private structure
1779 * @pipe: pipe to disable
1780 *
1781 * Disable @pipe, making sure that various hardware specific requirements
1782 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1783 *
1784 * @pipe should be %PIPE_A or %PIPE_B.
1785 *
1786 * Will wait until the pipe has shut down before returning.
1787 */
1788static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1789 enum pipe pipe)
1790{
1791 int reg;
1792 u32 val;
1793
1794 /*
1795 * Make sure planes won't keep trying to pump pixels to us,
1796 * or we might hang the display.
1797 */
1798 assert_planes_disabled(dev_priv, pipe);
1799
1800 /* Don't disable pipe A or pipe A PLLs if needed */
1801 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1802 return;
1803
1804 reg = PIPECONF(pipe);
1805 val = I915_READ(reg);
00d70b15
CW
1806 if ((val & PIPECONF_ENABLE) == 0)
1807 return;
1808
1809 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1810 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1811}
1812
d74362c9
KP
1813/*
1814 * Plane regs are double buffered, going from enabled->disabled needs a
1815 * trigger in order to latch. The display address reg provides this.
1816 */
6f1d69b0 1817void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1818 enum plane plane)
1819{
1820 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1821 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1822}
1823
b24e7179
JB
1824/**
1825 * intel_enable_plane - enable a display plane on a given pipe
1826 * @dev_priv: i915 private structure
1827 * @plane: plane to enable
1828 * @pipe: pipe being fed
1829 *
1830 * Enable @plane on @pipe, making sure that @pipe is running first.
1831 */
1832static void intel_enable_plane(struct drm_i915_private *dev_priv,
1833 enum plane plane, enum pipe pipe)
1834{
1835 int reg;
1836 u32 val;
1837
1838 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1839 assert_pipe_enabled(dev_priv, pipe);
1840
1841 reg = DSPCNTR(plane);
1842 val = I915_READ(reg);
00d70b15
CW
1843 if (val & DISPLAY_PLANE_ENABLE)
1844 return;
1845
1846 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1847 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1848 intel_wait_for_vblank(dev_priv->dev, pipe);
1849}
1850
b24e7179
JB
1851/**
1852 * intel_disable_plane - disable a display plane
1853 * @dev_priv: i915 private structure
1854 * @plane: plane to disable
1855 * @pipe: pipe consuming the data
1856 *
1857 * Disable @plane; should be an independent operation.
1858 */
1859static void intel_disable_plane(struct drm_i915_private *dev_priv,
1860 enum plane plane, enum pipe pipe)
1861{
1862 int reg;
1863 u32 val;
1864
1865 reg = DSPCNTR(plane);
1866 val = I915_READ(reg);
00d70b15
CW
1867 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1868 return;
1869
1870 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1871 intel_flush_display_plane(dev_priv, plane);
1872 intel_wait_for_vblank(dev_priv->dev, pipe);
1873}
1874
127bd2ac 1875int
48b956c5 1876intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1877 struct drm_i915_gem_object *obj,
919926ae 1878 struct intel_ring_buffer *pipelined)
6b95a207 1879{
ce453d81 1880 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1881 u32 alignment;
1882 int ret;
1883
05394f39 1884 switch (obj->tiling_mode) {
6b95a207 1885 case I915_TILING_NONE:
534843da
CW
1886 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1887 alignment = 128 * 1024;
a6c45cf0 1888 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1889 alignment = 4 * 1024;
1890 else
1891 alignment = 64 * 1024;
6b95a207
KH
1892 break;
1893 case I915_TILING_X:
1894 /* pin() will align the object as required by fence */
1895 alignment = 0;
1896 break;
1897 case I915_TILING_Y:
1898 /* FIXME: Is this true? */
1899 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1900 return -EINVAL;
1901 default:
1902 BUG();
1903 }
1904
ce453d81 1905 dev_priv->mm.interruptible = false;
2da3b9b9 1906 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1907 if (ret)
ce453d81 1908 goto err_interruptible;
6b95a207
KH
1909
1910 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1911 * fence, whereas 965+ only requires a fence if using
1912 * framebuffer compression. For simplicity, we always install
1913 * a fence as the cost is not that onerous.
1914 */
06d98131 1915 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1916 if (ret)
1917 goto err_unpin;
1690e1eb 1918
9a5a53b3 1919 i915_gem_object_pin_fence(obj);
6b95a207 1920
ce453d81 1921 dev_priv->mm.interruptible = true;
6b95a207 1922 return 0;
48b956c5
CW
1923
1924err_unpin:
1925 i915_gem_object_unpin(obj);
ce453d81
CW
1926err_interruptible:
1927 dev_priv->mm.interruptible = true;
48b956c5 1928 return ret;
6b95a207
KH
1929}
1930
1690e1eb
CW
1931void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1932{
1933 i915_gem_object_unpin_fence(obj);
1934 i915_gem_object_unpin(obj);
1935}
1936
c2c75131
DV
1937/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1938 * is assumed to be a power-of-two. */
1939static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1940 unsigned int bpp,
1941 unsigned int pitch)
1942{
1943 int tile_rows, tiles;
1944
1945 tile_rows = *y / 8;
1946 *y %= 8;
1947 tiles = *x / (512/bpp);
1948 *x %= 512/bpp;
1949
1950 return tile_rows * pitch * 8 + tiles * 4096;
1951}
1952
17638cd6
JB
1953static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1954 int x, int y)
81255565
JB
1955{
1956 struct drm_device *dev = crtc->dev;
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1959 struct intel_framebuffer *intel_fb;
05394f39 1960 struct drm_i915_gem_object *obj;
81255565 1961 int plane = intel_crtc->plane;
e506a0c6 1962 unsigned long linear_offset;
81255565 1963 u32 dspcntr;
5eddb70b 1964 u32 reg;
81255565
JB
1965
1966 switch (plane) {
1967 case 0:
1968 case 1:
1969 break;
1970 default:
1971 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1972 return -EINVAL;
1973 }
1974
1975 intel_fb = to_intel_framebuffer(fb);
1976 obj = intel_fb->obj;
81255565 1977
5eddb70b
CW
1978 reg = DSPCNTR(plane);
1979 dspcntr = I915_READ(reg);
81255565
JB
1980 /* Mask out pixel format bits in case we change it */
1981 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1982 switch (fb->bits_per_pixel) {
1983 case 8:
1984 dspcntr |= DISPPLANE_8BPP;
1985 break;
1986 case 16:
1987 if (fb->depth == 15)
1988 dspcntr |= DISPPLANE_15_16BPP;
1989 else
1990 dspcntr |= DISPPLANE_16BPP;
1991 break;
1992 case 24:
1993 case 32:
1994 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1995 break;
1996 default:
17638cd6 1997 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
1998 return -EINVAL;
1999 }
a6c45cf0 2000 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2001 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2002 dspcntr |= DISPPLANE_TILED;
2003 else
2004 dspcntr &= ~DISPPLANE_TILED;
2005 }
2006
5eddb70b 2007 I915_WRITE(reg, dspcntr);
81255565 2008
e506a0c6 2009 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2010
c2c75131
DV
2011 if (INTEL_INFO(dev)->gen >= 4) {
2012 intel_crtc->dspaddr_offset =
2013 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2014 fb->bits_per_pixel / 8,
2015 fb->pitches[0]);
2016 linear_offset -= intel_crtc->dspaddr_offset;
2017 } else {
e506a0c6 2018 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2019 }
e506a0c6
DV
2020
2021 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2022 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2023 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2024 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2025 I915_MODIFY_DISPBASE(DSPSURF(plane),
2026 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2027 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2028 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2029 } else
e506a0c6 2030 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2031 POSTING_READ(reg);
81255565 2032
17638cd6
JB
2033 return 0;
2034}
2035
2036static int ironlake_update_plane(struct drm_crtc *crtc,
2037 struct drm_framebuffer *fb, int x, int y)
2038{
2039 struct drm_device *dev = crtc->dev;
2040 struct drm_i915_private *dev_priv = dev->dev_private;
2041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2042 struct intel_framebuffer *intel_fb;
2043 struct drm_i915_gem_object *obj;
2044 int plane = intel_crtc->plane;
e506a0c6 2045 unsigned long linear_offset;
17638cd6
JB
2046 u32 dspcntr;
2047 u32 reg;
2048
2049 switch (plane) {
2050 case 0:
2051 case 1:
27f8227b 2052 case 2:
17638cd6
JB
2053 break;
2054 default:
2055 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2056 return -EINVAL;
2057 }
2058
2059 intel_fb = to_intel_framebuffer(fb);
2060 obj = intel_fb->obj;
2061
2062 reg = DSPCNTR(plane);
2063 dspcntr = I915_READ(reg);
2064 /* Mask out pixel format bits in case we change it */
2065 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2066 switch (fb->bits_per_pixel) {
2067 case 8:
2068 dspcntr |= DISPPLANE_8BPP;
2069 break;
2070 case 16:
2071 if (fb->depth != 16)
2072 return -EINVAL;
2073
2074 dspcntr |= DISPPLANE_16BPP;
2075 break;
2076 case 24:
2077 case 32:
2078 if (fb->depth == 24)
2079 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2080 else if (fb->depth == 30)
2081 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2082 else
2083 return -EINVAL;
2084 break;
2085 default:
2086 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2087 return -EINVAL;
2088 }
2089
2090 if (obj->tiling_mode != I915_TILING_NONE)
2091 dspcntr |= DISPPLANE_TILED;
2092 else
2093 dspcntr &= ~DISPPLANE_TILED;
2094
2095 /* must disable */
2096 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2097
2098 I915_WRITE(reg, dspcntr);
2099
e506a0c6 2100 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131
DV
2101 intel_crtc->dspaddr_offset =
2102 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2103 fb->bits_per_pixel / 8,
2104 fb->pitches[0]);
2105 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2106
e506a0c6
DV
2107 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2108 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2109 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2110 I915_MODIFY_DISPBASE(DSPSURF(plane),
2111 obj->gtt_offset + intel_crtc->dspaddr_offset);
17638cd6 2112 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2113 I915_WRITE(DSPLINOFF(plane), linear_offset);
17638cd6
JB
2114 POSTING_READ(reg);
2115
2116 return 0;
2117}
2118
2119/* Assume fb object is pinned & idle & fenced and just update base pointers */
2120static int
2121intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2122 int x, int y, enum mode_set_atomic state)
2123{
2124 struct drm_device *dev = crtc->dev;
2125 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2126
6b8e6ed0
CW
2127 if (dev_priv->display.disable_fbc)
2128 dev_priv->display.disable_fbc(dev);
3dec0095 2129 intel_increase_pllclock(crtc);
81255565 2130
6b8e6ed0 2131 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2132}
2133
14667a4b
CW
2134static int
2135intel_finish_fb(struct drm_framebuffer *old_fb)
2136{
2137 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2138 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2139 bool was_interruptible = dev_priv->mm.interruptible;
2140 int ret;
2141
2142 wait_event(dev_priv->pending_flip_queue,
2143 atomic_read(&dev_priv->mm.wedged) ||
2144 atomic_read(&obj->pending_flip) == 0);
2145
2146 /* Big Hammer, we also need to ensure that any pending
2147 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2148 * current scanout is retired before unpinning the old
2149 * framebuffer.
2150 *
2151 * This should only fail upon a hung GPU, in which case we
2152 * can safely continue.
2153 */
2154 dev_priv->mm.interruptible = false;
2155 ret = i915_gem_object_finish_gpu(obj);
2156 dev_priv->mm.interruptible = was_interruptible;
2157
2158 return ret;
2159}
2160
5c3b82e2 2161static int
3c4fdcfb 2162intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2163 struct drm_framebuffer *fb)
79e53945
JB
2164{
2165 struct drm_device *dev = crtc->dev;
6b8e6ed0 2166 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
2167 struct drm_i915_master_private *master_priv;
2168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2169 struct drm_framebuffer *old_fb;
5c3b82e2 2170 int ret;
79e53945
JB
2171
2172 /* no fb bound */
94352cf9 2173 if (!fb) {
a5071c2f 2174 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2175 return 0;
2176 }
2177
5826eca5
ED
2178 if(intel_crtc->plane > dev_priv->num_pipe) {
2179 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2180 intel_crtc->plane,
2181 dev_priv->num_pipe);
5c3b82e2 2182 return -EINVAL;
79e53945
JB
2183 }
2184
5c3b82e2 2185 mutex_lock(&dev->struct_mutex);
265db958 2186 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2187 to_intel_framebuffer(fb)->obj,
919926ae 2188 NULL);
5c3b82e2
CW
2189 if (ret != 0) {
2190 mutex_unlock(&dev->struct_mutex);
a5071c2f 2191 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2192 return ret;
2193 }
79e53945 2194
94352cf9
DV
2195 if (crtc->fb)
2196 intel_finish_fb(crtc->fb);
265db958 2197
94352cf9 2198 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2199 if (ret) {
94352cf9 2200 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2201 mutex_unlock(&dev->struct_mutex);
a5071c2f 2202 DRM_ERROR("failed to update base address\n");
4e6cfefc 2203 return ret;
79e53945 2204 }
3c4fdcfb 2205
94352cf9
DV
2206 old_fb = crtc->fb;
2207 crtc->fb = fb;
6c4c86f5
DV
2208 crtc->x = x;
2209 crtc->y = y;
94352cf9 2210
b7f1de28
CW
2211 if (old_fb) {
2212 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2213 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2214 }
652c393a 2215
6b8e6ed0 2216 intel_update_fbc(dev);
5c3b82e2 2217 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2218
2219 if (!dev->primary->master)
5c3b82e2 2220 return 0;
79e53945
JB
2221
2222 master_priv = dev->primary->master->driver_priv;
2223 if (!master_priv->sarea_priv)
5c3b82e2 2224 return 0;
79e53945 2225
265db958 2226 if (intel_crtc->pipe) {
79e53945
JB
2227 master_priv->sarea_priv->pipeB_x = x;
2228 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2229 } else {
2230 master_priv->sarea_priv->pipeA_x = x;
2231 master_priv->sarea_priv->pipeA_y = y;
79e53945 2232 }
5c3b82e2
CW
2233
2234 return 0;
79e53945
JB
2235}
2236
5eddb70b 2237static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2238{
2239 struct drm_device *dev = crtc->dev;
2240 struct drm_i915_private *dev_priv = dev->dev_private;
2241 u32 dpa_ctl;
2242
28c97730 2243 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2244 dpa_ctl = I915_READ(DP_A);
2245 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2246
2247 if (clock < 200000) {
2248 u32 temp;
2249 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2250 /* workaround for 160Mhz:
2251 1) program 0x4600c bits 15:0 = 0x8124
2252 2) program 0x46010 bit 0 = 1
2253 3) program 0x46034 bit 24 = 1
2254 4) program 0x64000 bit 14 = 1
2255 */
2256 temp = I915_READ(0x4600c);
2257 temp &= 0xffff0000;
2258 I915_WRITE(0x4600c, temp | 0x8124);
2259
2260 temp = I915_READ(0x46010);
2261 I915_WRITE(0x46010, temp | 1);
2262
2263 temp = I915_READ(0x46034);
2264 I915_WRITE(0x46034, temp | (1 << 24));
2265 } else {
2266 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2267 }
2268 I915_WRITE(DP_A, dpa_ctl);
2269
5eddb70b 2270 POSTING_READ(DP_A);
32f9d658
ZW
2271 udelay(500);
2272}
2273
5e84e1a4
ZW
2274static void intel_fdi_normal_train(struct drm_crtc *crtc)
2275{
2276 struct drm_device *dev = crtc->dev;
2277 struct drm_i915_private *dev_priv = dev->dev_private;
2278 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2279 int pipe = intel_crtc->pipe;
2280 u32 reg, temp;
2281
2282 /* enable normal train */
2283 reg = FDI_TX_CTL(pipe);
2284 temp = I915_READ(reg);
61e499bf 2285 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2286 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2287 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2288 } else {
2289 temp &= ~FDI_LINK_TRAIN_NONE;
2290 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2291 }
5e84e1a4
ZW
2292 I915_WRITE(reg, temp);
2293
2294 reg = FDI_RX_CTL(pipe);
2295 temp = I915_READ(reg);
2296 if (HAS_PCH_CPT(dev)) {
2297 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2298 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2299 } else {
2300 temp &= ~FDI_LINK_TRAIN_NONE;
2301 temp |= FDI_LINK_TRAIN_NONE;
2302 }
2303 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2304
2305 /* wait one idle pattern time */
2306 POSTING_READ(reg);
2307 udelay(1000);
357555c0
JB
2308
2309 /* IVB wants error correction enabled */
2310 if (IS_IVYBRIDGE(dev))
2311 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2312 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2313}
2314
291427f5
JB
2315static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2316{
2317 struct drm_i915_private *dev_priv = dev->dev_private;
2318 u32 flags = I915_READ(SOUTH_CHICKEN1);
2319
2320 flags |= FDI_PHASE_SYNC_OVR(pipe);
2321 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2322 flags |= FDI_PHASE_SYNC_EN(pipe);
2323 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2324 POSTING_READ(SOUTH_CHICKEN1);
2325}
2326
8db9d77b
ZW
2327/* The FDI link training functions for ILK/Ibexpeak. */
2328static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2329{
2330 struct drm_device *dev = crtc->dev;
2331 struct drm_i915_private *dev_priv = dev->dev_private;
2332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2333 int pipe = intel_crtc->pipe;
0fc932b8 2334 int plane = intel_crtc->plane;
5eddb70b 2335 u32 reg, temp, tries;
8db9d77b 2336
0fc932b8
JB
2337 /* FDI needs bits from pipe & plane first */
2338 assert_pipe_enabled(dev_priv, pipe);
2339 assert_plane_enabled(dev_priv, plane);
2340
e1a44743
AJ
2341 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2342 for train result */
5eddb70b
CW
2343 reg = FDI_RX_IMR(pipe);
2344 temp = I915_READ(reg);
e1a44743
AJ
2345 temp &= ~FDI_RX_SYMBOL_LOCK;
2346 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2347 I915_WRITE(reg, temp);
2348 I915_READ(reg);
e1a44743
AJ
2349 udelay(150);
2350
8db9d77b 2351 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2352 reg = FDI_TX_CTL(pipe);
2353 temp = I915_READ(reg);
77ffb597
AJ
2354 temp &= ~(7 << 19);
2355 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2356 temp &= ~FDI_LINK_TRAIN_NONE;
2357 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2358 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2359
5eddb70b
CW
2360 reg = FDI_RX_CTL(pipe);
2361 temp = I915_READ(reg);
8db9d77b
ZW
2362 temp &= ~FDI_LINK_TRAIN_NONE;
2363 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2364 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2365
2366 POSTING_READ(reg);
8db9d77b
ZW
2367 udelay(150);
2368
5b2adf89 2369 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2370 if (HAS_PCH_IBX(dev)) {
2371 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2372 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2373 FDI_RX_PHASE_SYNC_POINTER_EN);
2374 }
5b2adf89 2375
5eddb70b 2376 reg = FDI_RX_IIR(pipe);
e1a44743 2377 for (tries = 0; tries < 5; tries++) {
5eddb70b 2378 temp = I915_READ(reg);
8db9d77b
ZW
2379 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2380
2381 if ((temp & FDI_RX_BIT_LOCK)) {
2382 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2383 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2384 break;
2385 }
8db9d77b 2386 }
e1a44743 2387 if (tries == 5)
5eddb70b 2388 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2389
2390 /* Train 2 */
5eddb70b
CW
2391 reg = FDI_TX_CTL(pipe);
2392 temp = I915_READ(reg);
8db9d77b
ZW
2393 temp &= ~FDI_LINK_TRAIN_NONE;
2394 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2395 I915_WRITE(reg, temp);
8db9d77b 2396
5eddb70b
CW
2397 reg = FDI_RX_CTL(pipe);
2398 temp = I915_READ(reg);
8db9d77b
ZW
2399 temp &= ~FDI_LINK_TRAIN_NONE;
2400 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2401 I915_WRITE(reg, temp);
8db9d77b 2402
5eddb70b
CW
2403 POSTING_READ(reg);
2404 udelay(150);
8db9d77b 2405
5eddb70b 2406 reg = FDI_RX_IIR(pipe);
e1a44743 2407 for (tries = 0; tries < 5; tries++) {
5eddb70b 2408 temp = I915_READ(reg);
8db9d77b
ZW
2409 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2410
2411 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2412 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2413 DRM_DEBUG_KMS("FDI train 2 done.\n");
2414 break;
2415 }
8db9d77b 2416 }
e1a44743 2417 if (tries == 5)
5eddb70b 2418 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2419
2420 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2421
8db9d77b
ZW
2422}
2423
0206e353 2424static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2425 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2426 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2427 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2428 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2429};
2430
2431/* The FDI link training functions for SNB/Cougarpoint. */
2432static void gen6_fdi_link_train(struct drm_crtc *crtc)
2433{
2434 struct drm_device *dev = crtc->dev;
2435 struct drm_i915_private *dev_priv = dev->dev_private;
2436 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2437 int pipe = intel_crtc->pipe;
fa37d39e 2438 u32 reg, temp, i, retry;
8db9d77b 2439
e1a44743
AJ
2440 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2441 for train result */
5eddb70b
CW
2442 reg = FDI_RX_IMR(pipe);
2443 temp = I915_READ(reg);
e1a44743
AJ
2444 temp &= ~FDI_RX_SYMBOL_LOCK;
2445 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2446 I915_WRITE(reg, temp);
2447
2448 POSTING_READ(reg);
e1a44743
AJ
2449 udelay(150);
2450
8db9d77b 2451 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2452 reg = FDI_TX_CTL(pipe);
2453 temp = I915_READ(reg);
77ffb597
AJ
2454 temp &= ~(7 << 19);
2455 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2456 temp &= ~FDI_LINK_TRAIN_NONE;
2457 temp |= FDI_LINK_TRAIN_PATTERN_1;
2458 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2459 /* SNB-B */
2460 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2461 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2462
5eddb70b
CW
2463 reg = FDI_RX_CTL(pipe);
2464 temp = I915_READ(reg);
8db9d77b
ZW
2465 if (HAS_PCH_CPT(dev)) {
2466 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2467 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2468 } else {
2469 temp &= ~FDI_LINK_TRAIN_NONE;
2470 temp |= FDI_LINK_TRAIN_PATTERN_1;
2471 }
5eddb70b
CW
2472 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2473
2474 POSTING_READ(reg);
8db9d77b
ZW
2475 udelay(150);
2476
291427f5
JB
2477 if (HAS_PCH_CPT(dev))
2478 cpt_phase_pointer_enable(dev, pipe);
2479
0206e353 2480 for (i = 0; i < 4; i++) {
5eddb70b
CW
2481 reg = FDI_TX_CTL(pipe);
2482 temp = I915_READ(reg);
8db9d77b
ZW
2483 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2484 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2485 I915_WRITE(reg, temp);
2486
2487 POSTING_READ(reg);
8db9d77b
ZW
2488 udelay(500);
2489
fa37d39e
SP
2490 for (retry = 0; retry < 5; retry++) {
2491 reg = FDI_RX_IIR(pipe);
2492 temp = I915_READ(reg);
2493 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2494 if (temp & FDI_RX_BIT_LOCK) {
2495 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2496 DRM_DEBUG_KMS("FDI train 1 done.\n");
2497 break;
2498 }
2499 udelay(50);
8db9d77b 2500 }
fa37d39e
SP
2501 if (retry < 5)
2502 break;
8db9d77b
ZW
2503 }
2504 if (i == 4)
5eddb70b 2505 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2506
2507 /* Train 2 */
5eddb70b
CW
2508 reg = FDI_TX_CTL(pipe);
2509 temp = I915_READ(reg);
8db9d77b
ZW
2510 temp &= ~FDI_LINK_TRAIN_NONE;
2511 temp |= FDI_LINK_TRAIN_PATTERN_2;
2512 if (IS_GEN6(dev)) {
2513 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2514 /* SNB-B */
2515 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2516 }
5eddb70b 2517 I915_WRITE(reg, temp);
8db9d77b 2518
5eddb70b
CW
2519 reg = FDI_RX_CTL(pipe);
2520 temp = I915_READ(reg);
8db9d77b
ZW
2521 if (HAS_PCH_CPT(dev)) {
2522 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2523 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2524 } else {
2525 temp &= ~FDI_LINK_TRAIN_NONE;
2526 temp |= FDI_LINK_TRAIN_PATTERN_2;
2527 }
5eddb70b
CW
2528 I915_WRITE(reg, temp);
2529
2530 POSTING_READ(reg);
8db9d77b
ZW
2531 udelay(150);
2532
0206e353 2533 for (i = 0; i < 4; i++) {
5eddb70b
CW
2534 reg = FDI_TX_CTL(pipe);
2535 temp = I915_READ(reg);
8db9d77b
ZW
2536 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2537 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2538 I915_WRITE(reg, temp);
2539
2540 POSTING_READ(reg);
8db9d77b
ZW
2541 udelay(500);
2542
fa37d39e
SP
2543 for (retry = 0; retry < 5; retry++) {
2544 reg = FDI_RX_IIR(pipe);
2545 temp = I915_READ(reg);
2546 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2547 if (temp & FDI_RX_SYMBOL_LOCK) {
2548 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2549 DRM_DEBUG_KMS("FDI train 2 done.\n");
2550 break;
2551 }
2552 udelay(50);
8db9d77b 2553 }
fa37d39e
SP
2554 if (retry < 5)
2555 break;
8db9d77b
ZW
2556 }
2557 if (i == 4)
5eddb70b 2558 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2559
2560 DRM_DEBUG_KMS("FDI train done.\n");
2561}
2562
357555c0
JB
2563/* Manual link training for Ivy Bridge A0 parts */
2564static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2565{
2566 struct drm_device *dev = crtc->dev;
2567 struct drm_i915_private *dev_priv = dev->dev_private;
2568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2569 int pipe = intel_crtc->pipe;
2570 u32 reg, temp, i;
2571
2572 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2573 for train result */
2574 reg = FDI_RX_IMR(pipe);
2575 temp = I915_READ(reg);
2576 temp &= ~FDI_RX_SYMBOL_LOCK;
2577 temp &= ~FDI_RX_BIT_LOCK;
2578 I915_WRITE(reg, temp);
2579
2580 POSTING_READ(reg);
2581 udelay(150);
2582
2583 /* enable CPU FDI TX and PCH FDI RX */
2584 reg = FDI_TX_CTL(pipe);
2585 temp = I915_READ(reg);
2586 temp &= ~(7 << 19);
2587 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2588 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2589 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2590 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2591 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2592 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2593 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2594
2595 reg = FDI_RX_CTL(pipe);
2596 temp = I915_READ(reg);
2597 temp &= ~FDI_LINK_TRAIN_AUTO;
2598 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2599 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2600 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2601 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2602
2603 POSTING_READ(reg);
2604 udelay(150);
2605
291427f5
JB
2606 if (HAS_PCH_CPT(dev))
2607 cpt_phase_pointer_enable(dev, pipe);
2608
0206e353 2609 for (i = 0; i < 4; i++) {
357555c0
JB
2610 reg = FDI_TX_CTL(pipe);
2611 temp = I915_READ(reg);
2612 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2613 temp |= snb_b_fdi_train_param[i];
2614 I915_WRITE(reg, temp);
2615
2616 POSTING_READ(reg);
2617 udelay(500);
2618
2619 reg = FDI_RX_IIR(pipe);
2620 temp = I915_READ(reg);
2621 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2622
2623 if (temp & FDI_RX_BIT_LOCK ||
2624 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2625 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2626 DRM_DEBUG_KMS("FDI train 1 done.\n");
2627 break;
2628 }
2629 }
2630 if (i == 4)
2631 DRM_ERROR("FDI train 1 fail!\n");
2632
2633 /* Train 2 */
2634 reg = FDI_TX_CTL(pipe);
2635 temp = I915_READ(reg);
2636 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2637 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2638 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2639 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2640 I915_WRITE(reg, temp);
2641
2642 reg = FDI_RX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2645 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2646 I915_WRITE(reg, temp);
2647
2648 POSTING_READ(reg);
2649 udelay(150);
2650
0206e353 2651 for (i = 0; i < 4; i++) {
357555c0
JB
2652 reg = FDI_TX_CTL(pipe);
2653 temp = I915_READ(reg);
2654 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2655 temp |= snb_b_fdi_train_param[i];
2656 I915_WRITE(reg, temp);
2657
2658 POSTING_READ(reg);
2659 udelay(500);
2660
2661 reg = FDI_RX_IIR(pipe);
2662 temp = I915_READ(reg);
2663 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2664
2665 if (temp & FDI_RX_SYMBOL_LOCK) {
2666 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2667 DRM_DEBUG_KMS("FDI train 2 done.\n");
2668 break;
2669 }
2670 }
2671 if (i == 4)
2672 DRM_ERROR("FDI train 2 fail!\n");
2673
2674 DRM_DEBUG_KMS("FDI train done.\n");
2675}
2676
88cefb6c 2677static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2678{
88cefb6c 2679 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2680 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2681 int pipe = intel_crtc->pipe;
5eddb70b 2682 u32 reg, temp;
79e53945 2683
c64e311e 2684 /* Write the TU size bits so error detection works */
5eddb70b
CW
2685 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2686 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2687
c98e9dcf 2688 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2689 reg = FDI_RX_CTL(pipe);
2690 temp = I915_READ(reg);
2691 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2692 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2693 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2694 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2695
2696 POSTING_READ(reg);
c98e9dcf
JB
2697 udelay(200);
2698
2699 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2700 temp = I915_READ(reg);
2701 I915_WRITE(reg, temp | FDI_PCDCLK);
2702
2703 POSTING_READ(reg);
c98e9dcf
JB
2704 udelay(200);
2705
bf507ef7
ED
2706 /* On Haswell, the PLL configuration for ports and pipes is handled
2707 * separately, as part of DDI setup */
2708 if (!IS_HASWELL(dev)) {
2709 /* Enable CPU FDI TX PLL, always on for Ironlake */
2710 reg = FDI_TX_CTL(pipe);
2711 temp = I915_READ(reg);
2712 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2713 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2714
bf507ef7
ED
2715 POSTING_READ(reg);
2716 udelay(100);
2717 }
6be4a607 2718 }
0e23b99d
JB
2719}
2720
88cefb6c
DV
2721static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2722{
2723 struct drm_device *dev = intel_crtc->base.dev;
2724 struct drm_i915_private *dev_priv = dev->dev_private;
2725 int pipe = intel_crtc->pipe;
2726 u32 reg, temp;
2727
2728 /* Switch from PCDclk to Rawclk */
2729 reg = FDI_RX_CTL(pipe);
2730 temp = I915_READ(reg);
2731 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2732
2733 /* Disable CPU FDI TX PLL */
2734 reg = FDI_TX_CTL(pipe);
2735 temp = I915_READ(reg);
2736 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2737
2738 POSTING_READ(reg);
2739 udelay(100);
2740
2741 reg = FDI_RX_CTL(pipe);
2742 temp = I915_READ(reg);
2743 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2744
2745 /* Wait for the clocks to turn off. */
2746 POSTING_READ(reg);
2747 udelay(100);
2748}
2749
291427f5
JB
2750static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2751{
2752 struct drm_i915_private *dev_priv = dev->dev_private;
2753 u32 flags = I915_READ(SOUTH_CHICKEN1);
2754
2755 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2756 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2757 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2758 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2759 POSTING_READ(SOUTH_CHICKEN1);
2760}
0fc932b8
JB
2761static void ironlake_fdi_disable(struct drm_crtc *crtc)
2762{
2763 struct drm_device *dev = crtc->dev;
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2766 int pipe = intel_crtc->pipe;
2767 u32 reg, temp;
2768
2769 /* disable CPU FDI tx and PCH FDI rx */
2770 reg = FDI_TX_CTL(pipe);
2771 temp = I915_READ(reg);
2772 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2773 POSTING_READ(reg);
2774
2775 reg = FDI_RX_CTL(pipe);
2776 temp = I915_READ(reg);
2777 temp &= ~(0x7 << 16);
2778 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2779 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2780
2781 POSTING_READ(reg);
2782 udelay(100);
2783
2784 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2785 if (HAS_PCH_IBX(dev)) {
2786 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2787 I915_WRITE(FDI_RX_CHICKEN(pipe),
2788 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2789 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2790 } else if (HAS_PCH_CPT(dev)) {
2791 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2792 }
0fc932b8
JB
2793
2794 /* still set train pattern 1 */
2795 reg = FDI_TX_CTL(pipe);
2796 temp = I915_READ(reg);
2797 temp &= ~FDI_LINK_TRAIN_NONE;
2798 temp |= FDI_LINK_TRAIN_PATTERN_1;
2799 I915_WRITE(reg, temp);
2800
2801 reg = FDI_RX_CTL(pipe);
2802 temp = I915_READ(reg);
2803 if (HAS_PCH_CPT(dev)) {
2804 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2805 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2806 } else {
2807 temp &= ~FDI_LINK_TRAIN_NONE;
2808 temp |= FDI_LINK_TRAIN_PATTERN_1;
2809 }
2810 /* BPC in FDI rx is consistent with that in PIPECONF */
2811 temp &= ~(0x07 << 16);
2812 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2813 I915_WRITE(reg, temp);
2814
2815 POSTING_READ(reg);
2816 udelay(100);
2817}
2818
5bb61643
CW
2819static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2820{
2821 struct drm_device *dev = crtc->dev;
2822 struct drm_i915_private *dev_priv = dev->dev_private;
2823 unsigned long flags;
2824 bool pending;
2825
2826 if (atomic_read(&dev_priv->mm.wedged))
2827 return false;
2828
2829 spin_lock_irqsave(&dev->event_lock, flags);
2830 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2831 spin_unlock_irqrestore(&dev->event_lock, flags);
2832
2833 return pending;
2834}
2835
e6c3a2a6
CW
2836static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2837{
0f91128d 2838 struct drm_device *dev = crtc->dev;
5bb61643 2839 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6
CW
2840
2841 if (crtc->fb == NULL)
2842 return;
2843
5bb61643
CW
2844 wait_event(dev_priv->pending_flip_queue,
2845 !intel_crtc_has_pending_flip(crtc));
2846
0f91128d
CW
2847 mutex_lock(&dev->struct_mutex);
2848 intel_finish_fb(crtc->fb);
2849 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2850}
2851
040484af
JB
2852static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2853{
2854 struct drm_device *dev = crtc->dev;
228d3e36 2855 struct intel_encoder *intel_encoder;
040484af
JB
2856
2857 /*
2858 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2859 * must be driven by its own crtc; no sharing is possible.
2860 */
228d3e36 2861 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
040484af 2862
6ee8bab0
ED
2863 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2864 * CPU handles all others */
2865 if (IS_HASWELL(dev)) {
2866 /* It is still unclear how this will work on PPT, so throw up a warning */
2867 WARN_ON(!HAS_PCH_LPT(dev));
2868
228d3e36 2869 if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
6ee8bab0
ED
2870 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2871 return true;
2872 } else {
2873 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
228d3e36 2874 intel_encoder->type);
6ee8bab0
ED
2875 return false;
2876 }
2877 }
2878
228d3e36 2879 switch (intel_encoder->type) {
040484af 2880 case INTEL_OUTPUT_EDP:
228d3e36 2881 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2882 return false;
2883 continue;
2884 }
2885 }
2886
2887 return true;
2888}
2889
e615efe4
ED
2890/* Program iCLKIP clock to the desired frequency */
2891static void lpt_program_iclkip(struct drm_crtc *crtc)
2892{
2893 struct drm_device *dev = crtc->dev;
2894 struct drm_i915_private *dev_priv = dev->dev_private;
2895 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2896 u32 temp;
2897
2898 /* It is necessary to ungate the pixclk gate prior to programming
2899 * the divisors, and gate it back when it is done.
2900 */
2901 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2902
2903 /* Disable SSCCTL */
2904 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2905 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2906 SBI_SSCCTL_DISABLE);
2907
2908 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2909 if (crtc->mode.clock == 20000) {
2910 auxdiv = 1;
2911 divsel = 0x41;
2912 phaseinc = 0x20;
2913 } else {
2914 /* The iCLK virtual clock root frequency is in MHz,
2915 * but the crtc->mode.clock in in KHz. To get the divisors,
2916 * it is necessary to divide one by another, so we
2917 * convert the virtual clock precision to KHz here for higher
2918 * precision.
2919 */
2920 u32 iclk_virtual_root_freq = 172800 * 1000;
2921 u32 iclk_pi_range = 64;
2922 u32 desired_divisor, msb_divisor_value, pi_value;
2923
2924 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2925 msb_divisor_value = desired_divisor / iclk_pi_range;
2926 pi_value = desired_divisor % iclk_pi_range;
2927
2928 auxdiv = 0;
2929 divsel = msb_divisor_value - 2;
2930 phaseinc = pi_value;
2931 }
2932
2933 /* This should not happen with any sane values */
2934 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2935 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2936 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2937 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2938
2939 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2940 crtc->mode.clock,
2941 auxdiv,
2942 divsel,
2943 phasedir,
2944 phaseinc);
2945
2946 /* Program SSCDIVINTPHASE6 */
2947 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2948 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2949 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2950 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2951 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2952 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2953 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2954
2955 intel_sbi_write(dev_priv,
2956 SBI_SSCDIVINTPHASE6,
2957 temp);
2958
2959 /* Program SSCAUXDIV */
2960 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2961 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2962 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2963 intel_sbi_write(dev_priv,
2964 SBI_SSCAUXDIV6,
2965 temp);
2966
2967
2968 /* Enable modulator and associated divider */
2969 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2970 temp &= ~SBI_SSCCTL_DISABLE;
2971 intel_sbi_write(dev_priv,
2972 SBI_SSCCTL6,
2973 temp);
2974
2975 /* Wait for initialization time */
2976 udelay(24);
2977
2978 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2979}
2980
f67a559d
JB
2981/*
2982 * Enable PCH resources required for PCH ports:
2983 * - PCH PLLs
2984 * - FDI training & RX/TX
2985 * - update transcoder timings
2986 * - DP transcoding bits
2987 * - transcoder
2988 */
2989static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2990{
2991 struct drm_device *dev = crtc->dev;
2992 struct drm_i915_private *dev_priv = dev->dev_private;
2993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2994 int pipe = intel_crtc->pipe;
ee7b9f93 2995 u32 reg, temp;
2c07245f 2996
e7e164db
CW
2997 assert_transcoder_disabled(dev_priv, pipe);
2998
c98e9dcf 2999 /* For PCH output, training FDI link */
674cf967 3000 dev_priv->display.fdi_link_train(crtc);
2c07245f 3001
6f13b7b5
CW
3002 intel_enable_pch_pll(intel_crtc);
3003
e615efe4
ED
3004 if (HAS_PCH_LPT(dev)) {
3005 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3006 lpt_program_iclkip(crtc);
3007 } else if (HAS_PCH_CPT(dev)) {
ee7b9f93 3008 u32 sel;
4b645f14 3009
c98e9dcf 3010 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
3011 switch (pipe) {
3012 default:
3013 case 0:
3014 temp |= TRANSA_DPLL_ENABLE;
3015 sel = TRANSA_DPLLB_SEL;
3016 break;
3017 case 1:
3018 temp |= TRANSB_DPLL_ENABLE;
3019 sel = TRANSB_DPLLB_SEL;
3020 break;
3021 case 2:
3022 temp |= TRANSC_DPLL_ENABLE;
3023 sel = TRANSC_DPLLB_SEL;
3024 break;
d64311ab 3025 }
ee7b9f93
JB
3026 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3027 temp |= sel;
3028 else
3029 temp &= ~sel;
c98e9dcf 3030 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3031 }
5eddb70b 3032
d9b6cb56
JB
3033 /* set transcoder timing, panel must allow it */
3034 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3035 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3036 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3037 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3038
5eddb70b
CW
3039 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3040 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3041 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3042 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3043
f57e1e3a
ED
3044 if (!IS_HASWELL(dev))
3045 intel_fdi_normal_train(crtc);
5e84e1a4 3046
c98e9dcf
JB
3047 /* For PCH DP, enable TRANS_DP_CTL */
3048 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3049 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3050 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3051 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3052 reg = TRANS_DP_CTL(pipe);
3053 temp = I915_READ(reg);
3054 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3055 TRANS_DP_SYNC_MASK |
3056 TRANS_DP_BPC_MASK);
5eddb70b
CW
3057 temp |= (TRANS_DP_OUTPUT_ENABLE |
3058 TRANS_DP_ENH_FRAMING);
9325c9f0 3059 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3060
3061 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3062 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3063 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3064 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3065
3066 switch (intel_trans_dp_port_sel(crtc)) {
3067 case PCH_DP_B:
5eddb70b 3068 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3069 break;
3070 case PCH_DP_C:
5eddb70b 3071 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3072 break;
3073 case PCH_DP_D:
5eddb70b 3074 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3075 break;
3076 default:
3077 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 3078 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 3079 break;
32f9d658 3080 }
2c07245f 3081
5eddb70b 3082 I915_WRITE(reg, temp);
6be4a607 3083 }
b52eb4dc 3084
040484af 3085 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
3086}
3087
ee7b9f93
JB
3088static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3089{
3090 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3091
3092 if (pll == NULL)
3093 return;
3094
3095 if (pll->refcount == 0) {
3096 WARN(1, "bad PCH PLL refcount\n");
3097 return;
3098 }
3099
3100 --pll->refcount;
3101 intel_crtc->pch_pll = NULL;
3102}
3103
3104static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3105{
3106 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3107 struct intel_pch_pll *pll;
3108 int i;
3109
3110 pll = intel_crtc->pch_pll;
3111 if (pll) {
3112 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3113 intel_crtc->base.base.id, pll->pll_reg);
3114 goto prepare;
3115 }
3116
98b6bd99
DV
3117 if (HAS_PCH_IBX(dev_priv->dev)) {
3118 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3119 i = intel_crtc->pipe;
3120 pll = &dev_priv->pch_plls[i];
3121
3122 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3123 intel_crtc->base.base.id, pll->pll_reg);
3124
3125 goto found;
3126 }
3127
ee7b9f93
JB
3128 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3129 pll = &dev_priv->pch_plls[i];
3130
3131 /* Only want to check enabled timings first */
3132 if (pll->refcount == 0)
3133 continue;
3134
3135 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3136 fp == I915_READ(pll->fp0_reg)) {
3137 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3138 intel_crtc->base.base.id,
3139 pll->pll_reg, pll->refcount, pll->active);
3140
3141 goto found;
3142 }
3143 }
3144
3145 /* Ok no matching timings, maybe there's a free one? */
3146 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3147 pll = &dev_priv->pch_plls[i];
3148 if (pll->refcount == 0) {
3149 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3150 intel_crtc->base.base.id, pll->pll_reg);
3151 goto found;
3152 }
3153 }
3154
3155 return NULL;
3156
3157found:
3158 intel_crtc->pch_pll = pll;
3159 pll->refcount++;
3160 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3161prepare: /* separate function? */
3162 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3163
e04c7350
CW
3164 /* Wait for the clocks to stabilize before rewriting the regs */
3165 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3166 POSTING_READ(pll->pll_reg);
3167 udelay(150);
e04c7350
CW
3168
3169 I915_WRITE(pll->fp0_reg, fp);
3170 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3171 pll->on = false;
3172 return pll;
3173}
3174
d4270e57
JB
3175void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3176{
3177 struct drm_i915_private *dev_priv = dev->dev_private;
3178 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3179 u32 temp;
3180
3181 temp = I915_READ(dslreg);
3182 udelay(500);
3183 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3184 /* Without this, mode sets may fail silently on FDI */
3185 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3186 udelay(250);
3187 I915_WRITE(tc2reg, 0);
3188 if (wait_for(I915_READ(dslreg) != temp, 5))
3189 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3190 }
3191}
3192
f67a559d
JB
3193static void ironlake_crtc_enable(struct drm_crtc *crtc)
3194{
3195 struct drm_device *dev = crtc->dev;
3196 struct drm_i915_private *dev_priv = dev->dev_private;
3197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3198 struct intel_encoder *encoder;
f67a559d
JB
3199 int pipe = intel_crtc->pipe;
3200 int plane = intel_crtc->plane;
3201 u32 temp;
3202 bool is_pch_port;
3203
08a48469
DV
3204 WARN_ON(!crtc->enabled);
3205
f67a559d
JB
3206 if (intel_crtc->active)
3207 return;
3208
3209 intel_crtc->active = true;
3210 intel_update_watermarks(dev);
3211
3212 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3213 temp = I915_READ(PCH_LVDS);
3214 if ((temp & LVDS_PORT_EN) == 0)
3215 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3216 }
3217
3218 is_pch_port = intel_crtc_driving_pch(crtc);
3219
46b6f814 3220 if (is_pch_port) {
88cefb6c 3221 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3222 } else {
3223 assert_fdi_tx_disabled(dev_priv, pipe);
3224 assert_fdi_rx_disabled(dev_priv, pipe);
3225 }
f67a559d 3226
bf49ec8c
DV
3227 for_each_encoder_on_crtc(dev, crtc, encoder)
3228 if (encoder->pre_enable)
3229 encoder->pre_enable(encoder);
3230
f67a559d
JB
3231 /* Enable panel fitting for LVDS */
3232 if (dev_priv->pch_pf_size &&
3233 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3234 /* Force use of hard-coded filter coefficients
3235 * as some pre-programmed values are broken,
3236 * e.g. x201.
3237 */
9db4a9c7
JB
3238 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3239 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3240 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3241 }
3242
9c54c0dd
JB
3243 /*
3244 * On ILK+ LUT must be loaded before the pipe is running but with
3245 * clocks enabled
3246 */
3247 intel_crtc_load_lut(crtc);
3248
f67a559d
JB
3249 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3250 intel_enable_plane(dev_priv, plane, pipe);
3251
3252 if (is_pch_port)
3253 ironlake_pch_enable(crtc);
c98e9dcf 3254
d1ebd816 3255 mutex_lock(&dev->struct_mutex);
bed4a673 3256 intel_update_fbc(dev);
d1ebd816
BW
3257 mutex_unlock(&dev->struct_mutex);
3258
6b383a7f 3259 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3260
fa5c73b1
DV
3261 for_each_encoder_on_crtc(dev, crtc, encoder)
3262 encoder->enable(encoder);
61b77ddd
DV
3263
3264 if (HAS_PCH_CPT(dev))
3265 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100
DV
3266
3267 /*
3268 * There seems to be a race in PCH platform hw (at least on some
3269 * outputs) where an enabled pipe still completes any pageflip right
3270 * away (as if the pipe is off) instead of waiting for vblank. As soon
3271 * as the first vblank happend, everything works as expected. Hence just
3272 * wait for one vblank before returning to avoid strange things
3273 * happening.
3274 */
3275 intel_wait_for_vblank(dev, intel_crtc->pipe);
6be4a607
JB
3276}
3277
4f771f10
PZ
3278static void haswell_crtc_enable(struct drm_crtc *crtc)
3279{
3280 struct drm_device *dev = crtc->dev;
3281 struct drm_i915_private *dev_priv = dev->dev_private;
3282 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3283 struct intel_encoder *encoder;
3284 int pipe = intel_crtc->pipe;
3285 int plane = intel_crtc->plane;
4f771f10
PZ
3286 bool is_pch_port;
3287
3288 WARN_ON(!crtc->enabled);
3289
3290 if (intel_crtc->active)
3291 return;
3292
3293 intel_crtc->active = true;
3294 intel_update_watermarks(dev);
3295
4f771f10
PZ
3296 is_pch_port = intel_crtc_driving_pch(crtc);
3297
3298 if (is_pch_port) {
3299 ironlake_fdi_pll_enable(intel_crtc);
3300 } else {
3301 assert_fdi_tx_disabled(dev_priv, pipe);
3302 assert_fdi_rx_disabled(dev_priv, pipe);
3303 }
3304
3305 for_each_encoder_on_crtc(dev, crtc, encoder)
3306 if (encoder->pre_enable)
3307 encoder->pre_enable(encoder);
3308
1f544388 3309 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 3310
1f544388
PZ
3311 /* Enable panel fitting for eDP */
3312 if (dev_priv->pch_pf_size && HAS_eDP) {
4f771f10
PZ
3313 /* Force use of hard-coded filter coefficients
3314 * as some pre-programmed values are broken,
3315 * e.g. x201.
3316 */
3317 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3318 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3319 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3320 }
3321
3322 /*
3323 * On ILK+ LUT must be loaded before the pipe is running but with
3324 * clocks enabled
3325 */
3326 intel_crtc_load_lut(crtc);
3327
1f544388
PZ
3328 intel_ddi_set_pipe_settings(crtc);
3329 intel_ddi_enable_pipe_func(crtc);
4f771f10
PZ
3330
3331 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3332 intel_enable_plane(dev_priv, plane, pipe);
3333
3334 if (is_pch_port)
3335 ironlake_pch_enable(crtc);
3336
3337 mutex_lock(&dev->struct_mutex);
3338 intel_update_fbc(dev);
3339 mutex_unlock(&dev->struct_mutex);
3340
3341 intel_crtc_update_cursor(crtc, true);
3342
3343 for_each_encoder_on_crtc(dev, crtc, encoder)
3344 encoder->enable(encoder);
3345
4f771f10
PZ
3346 /*
3347 * There seems to be a race in PCH platform hw (at least on some
3348 * outputs) where an enabled pipe still completes any pageflip right
3349 * away (as if the pipe is off) instead of waiting for vblank. As soon
3350 * as the first vblank happend, everything works as expected. Hence just
3351 * wait for one vblank before returning to avoid strange things
3352 * happening.
3353 */
3354 intel_wait_for_vblank(dev, intel_crtc->pipe);
3355}
3356
6be4a607
JB
3357static void ironlake_crtc_disable(struct drm_crtc *crtc)
3358{
3359 struct drm_device *dev = crtc->dev;
3360 struct drm_i915_private *dev_priv = dev->dev_private;
3361 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3362 struct intel_encoder *encoder;
6be4a607
JB
3363 int pipe = intel_crtc->pipe;
3364 int plane = intel_crtc->plane;
5eddb70b 3365 u32 reg, temp;
b52eb4dc 3366
ef9c3aee 3367
f7abfe8b
CW
3368 if (!intel_crtc->active)
3369 return;
3370
ea9d758d
DV
3371 for_each_encoder_on_crtc(dev, crtc, encoder)
3372 encoder->disable(encoder);
3373
e6c3a2a6 3374 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3375 drm_vblank_off(dev, pipe);
6b383a7f 3376 intel_crtc_update_cursor(crtc, false);
5eddb70b 3377
b24e7179 3378 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3379
973d04f9
CW
3380 if (dev_priv->cfb_plane == plane)
3381 intel_disable_fbc(dev);
2c07245f 3382
b24e7179 3383 intel_disable_pipe(dev_priv, pipe);
32f9d658 3384
6be4a607 3385 /* Disable PF */
9db4a9c7
JB
3386 I915_WRITE(PF_CTL(pipe), 0);
3387 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3388
bf49ec8c
DV
3389 for_each_encoder_on_crtc(dev, crtc, encoder)
3390 if (encoder->post_disable)
3391 encoder->post_disable(encoder);
3392
0fc932b8 3393 ironlake_fdi_disable(crtc);
2c07245f 3394
040484af 3395 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3396
6be4a607
JB
3397 if (HAS_PCH_CPT(dev)) {
3398 /* disable TRANS_DP_CTL */
5eddb70b
CW
3399 reg = TRANS_DP_CTL(pipe);
3400 temp = I915_READ(reg);
3401 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3402 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3403 I915_WRITE(reg, temp);
6be4a607
JB
3404
3405 /* disable DPLL_SEL */
3406 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3407 switch (pipe) {
3408 case 0:
d64311ab 3409 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3410 break;
3411 case 1:
6be4a607 3412 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3413 break;
3414 case 2:
4b645f14 3415 /* C shares PLL A or B */
d64311ab 3416 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3417 break;
3418 default:
3419 BUG(); /* wtf */
3420 }
6be4a607 3421 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3422 }
e3421a18 3423
6be4a607 3424 /* disable PCH DPLL */
ee7b9f93 3425 intel_disable_pch_pll(intel_crtc);
8db9d77b 3426
88cefb6c 3427 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3428
f7abfe8b 3429 intel_crtc->active = false;
6b383a7f 3430 intel_update_watermarks(dev);
d1ebd816
BW
3431
3432 mutex_lock(&dev->struct_mutex);
6b383a7f 3433 intel_update_fbc(dev);
d1ebd816 3434 mutex_unlock(&dev->struct_mutex);
6be4a607 3435}
1b3c7a47 3436
4f771f10
PZ
3437static void haswell_crtc_disable(struct drm_crtc *crtc)
3438{
3439 struct drm_device *dev = crtc->dev;
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3442 struct intel_encoder *encoder;
3443 int pipe = intel_crtc->pipe;
3444 int plane = intel_crtc->plane;
4f771f10
PZ
3445
3446 if (!intel_crtc->active)
3447 return;
3448
3449 for_each_encoder_on_crtc(dev, crtc, encoder)
3450 encoder->disable(encoder);
3451
3452 intel_crtc_wait_for_pending_flips(crtc);
3453 drm_vblank_off(dev, pipe);
3454 intel_crtc_update_cursor(crtc, false);
3455
3456 intel_disable_plane(dev_priv, plane, pipe);
3457
3458 if (dev_priv->cfb_plane == plane)
3459 intel_disable_fbc(dev);
3460
3461 intel_disable_pipe(dev_priv, pipe);
3462
1f544388 3463 intel_ddi_disable_pipe_func(dev_priv, pipe);
4f771f10
PZ
3464
3465 /* Disable PF */
3466 I915_WRITE(PF_CTL(pipe), 0);
3467 I915_WRITE(PF_WIN_SZ(pipe), 0);
3468
1f544388 3469 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
3470
3471 for_each_encoder_on_crtc(dev, crtc, encoder)
3472 if (encoder->post_disable)
3473 encoder->post_disable(encoder);
3474
3475 ironlake_fdi_disable(crtc);
3476
3477 intel_disable_transcoder(dev_priv, pipe);
3478
4f771f10
PZ
3479 /* disable PCH DPLL */
3480 intel_disable_pch_pll(intel_crtc);
3481
3482 ironlake_fdi_pll_disable(intel_crtc);
3483
3484 intel_crtc->active = false;
3485 intel_update_watermarks(dev);
3486
3487 mutex_lock(&dev->struct_mutex);
3488 intel_update_fbc(dev);
3489 mutex_unlock(&dev->struct_mutex);
3490}
3491
ee7b9f93
JB
3492static void ironlake_crtc_off(struct drm_crtc *crtc)
3493{
3494 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3495 intel_put_pch_pll(intel_crtc);
3496}
3497
6441ab5f
PZ
3498static void haswell_crtc_off(struct drm_crtc *crtc)
3499{
3500 intel_ddi_put_crtc_pll(crtc);
3501}
3502
02e792fb
DV
3503static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3504{
02e792fb 3505 if (!enable && intel_crtc->overlay) {
23f09ce3 3506 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3507 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3508
23f09ce3 3509 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3510 dev_priv->mm.interruptible = false;
3511 (void) intel_overlay_switch_off(intel_crtc->overlay);
3512 dev_priv->mm.interruptible = true;
23f09ce3 3513 mutex_unlock(&dev->struct_mutex);
02e792fb 3514 }
02e792fb 3515
5dcdbcb0
CW
3516 /* Let userspace switch the overlay on again. In most cases userspace
3517 * has to recompute where to put it anyway.
3518 */
02e792fb
DV
3519}
3520
0b8765c6 3521static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3522{
3523 struct drm_device *dev = crtc->dev;
79e53945
JB
3524 struct drm_i915_private *dev_priv = dev->dev_private;
3525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3526 struct intel_encoder *encoder;
79e53945 3527 int pipe = intel_crtc->pipe;
80824003 3528 int plane = intel_crtc->plane;
79e53945 3529
08a48469
DV
3530 WARN_ON(!crtc->enabled);
3531
f7abfe8b
CW
3532 if (intel_crtc->active)
3533 return;
3534
3535 intel_crtc->active = true;
6b383a7f
CW
3536 intel_update_watermarks(dev);
3537
63d7bbe9 3538 intel_enable_pll(dev_priv, pipe);
040484af 3539 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3540 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3541
0b8765c6 3542 intel_crtc_load_lut(crtc);
bed4a673 3543 intel_update_fbc(dev);
79e53945 3544
0b8765c6
JB
3545 /* Give the overlay scaler a chance to enable if it's on this pipe */
3546 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3547 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3548
fa5c73b1
DV
3549 for_each_encoder_on_crtc(dev, crtc, encoder)
3550 encoder->enable(encoder);
0b8765c6 3551}
79e53945 3552
0b8765c6
JB
3553static void i9xx_crtc_disable(struct drm_crtc *crtc)
3554{
3555 struct drm_device *dev = crtc->dev;
3556 struct drm_i915_private *dev_priv = dev->dev_private;
3557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3558 struct intel_encoder *encoder;
0b8765c6
JB
3559 int pipe = intel_crtc->pipe;
3560 int plane = intel_crtc->plane;
b690e96c 3561
ef9c3aee 3562
f7abfe8b
CW
3563 if (!intel_crtc->active)
3564 return;
3565
ea9d758d
DV
3566 for_each_encoder_on_crtc(dev, crtc, encoder)
3567 encoder->disable(encoder);
3568
0b8765c6 3569 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3570 intel_crtc_wait_for_pending_flips(crtc);
3571 drm_vblank_off(dev, pipe);
0b8765c6 3572 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3573 intel_crtc_update_cursor(crtc, false);
0b8765c6 3574
973d04f9
CW
3575 if (dev_priv->cfb_plane == plane)
3576 intel_disable_fbc(dev);
79e53945 3577
b24e7179 3578 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3579 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3580 intel_disable_pll(dev_priv, pipe);
0b8765c6 3581
f7abfe8b 3582 intel_crtc->active = false;
6b383a7f
CW
3583 intel_update_fbc(dev);
3584 intel_update_watermarks(dev);
0b8765c6
JB
3585}
3586
ee7b9f93
JB
3587static void i9xx_crtc_off(struct drm_crtc *crtc)
3588{
3589}
3590
976f8a20
DV
3591static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3592 bool enabled)
2c07245f
ZW
3593{
3594 struct drm_device *dev = crtc->dev;
3595 struct drm_i915_master_private *master_priv;
3596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3597 int pipe = intel_crtc->pipe;
79e53945
JB
3598
3599 if (!dev->primary->master)
3600 return;
3601
3602 master_priv = dev->primary->master->driver_priv;
3603 if (!master_priv->sarea_priv)
3604 return;
3605
79e53945
JB
3606 switch (pipe) {
3607 case 0:
3608 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3609 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3610 break;
3611 case 1:
3612 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3613 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3614 break;
3615 default:
9db4a9c7 3616 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3617 break;
3618 }
79e53945
JB
3619}
3620
976f8a20
DV
3621/**
3622 * Sets the power management mode of the pipe and plane.
3623 */
3624void intel_crtc_update_dpms(struct drm_crtc *crtc)
3625{
3626 struct drm_device *dev = crtc->dev;
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 struct intel_encoder *intel_encoder;
3629 bool enable = false;
3630
3631 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3632 enable |= intel_encoder->connectors_active;
3633
3634 if (enable)
3635 dev_priv->display.crtc_enable(crtc);
3636 else
3637 dev_priv->display.crtc_disable(crtc);
3638
3639 intel_crtc_update_sarea(crtc, enable);
3640}
3641
3642static void intel_crtc_noop(struct drm_crtc *crtc)
3643{
3644}
3645
cdd59983
CW
3646static void intel_crtc_disable(struct drm_crtc *crtc)
3647{
cdd59983 3648 struct drm_device *dev = crtc->dev;
976f8a20 3649 struct drm_connector *connector;
ee7b9f93 3650 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3651
976f8a20
DV
3652 /* crtc should still be enabled when we disable it. */
3653 WARN_ON(!crtc->enabled);
3654
3655 dev_priv->display.crtc_disable(crtc);
3656 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3657 dev_priv->display.off(crtc);
3658
931872fc
CW
3659 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3660 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3661
3662 if (crtc->fb) {
3663 mutex_lock(&dev->struct_mutex);
1690e1eb 3664 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3665 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3666 crtc->fb = NULL;
3667 }
3668
3669 /* Update computed state. */
3670 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3671 if (!connector->encoder || !connector->encoder->crtc)
3672 continue;
3673
3674 if (connector->encoder->crtc != crtc)
3675 continue;
3676
3677 connector->dpms = DRM_MODE_DPMS_OFF;
3678 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3679 }
3680}
3681
a261b246 3682void intel_modeset_disable(struct drm_device *dev)
79e53945 3683{
a261b246
DV
3684 struct drm_crtc *crtc;
3685
3686 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3687 if (crtc->enabled)
3688 intel_crtc_disable(crtc);
3689 }
79e53945
JB
3690}
3691
1f703855 3692void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3693{
7e7d76c3
JB
3694}
3695
ea5b213a 3696void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3697{
4ef69c7a 3698 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3699
ea5b213a
CW
3700 drm_encoder_cleanup(encoder);
3701 kfree(intel_encoder);
7e7d76c3
JB
3702}
3703
5ab432ef
DV
3704/* Simple dpms helper for encodres with just one connector, no cloning and only
3705 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3706 * state of the entire output pipe. */
3707void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3708{
5ab432ef
DV
3709 if (mode == DRM_MODE_DPMS_ON) {
3710 encoder->connectors_active = true;
3711
b2cabb0e 3712 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3713 } else {
3714 encoder->connectors_active = false;
3715
b2cabb0e 3716 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3717 }
79e53945
JB
3718}
3719
0a91ca29
DV
3720/* Cross check the actual hw state with our own modeset state tracking (and it's
3721 * internal consistency). */
b980514c 3722static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3723{
0a91ca29
DV
3724 if (connector->get_hw_state(connector)) {
3725 struct intel_encoder *encoder = connector->encoder;
3726 struct drm_crtc *crtc;
3727 bool encoder_enabled;
3728 enum pipe pipe;
3729
3730 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3731 connector->base.base.id,
3732 drm_get_connector_name(&connector->base));
3733
3734 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3735 "wrong connector dpms state\n");
3736 WARN(connector->base.encoder != &encoder->base,
3737 "active connector not linked to encoder\n");
3738 WARN(!encoder->connectors_active,
3739 "encoder->connectors_active not set\n");
3740
3741 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3742 WARN(!encoder_enabled, "encoder not enabled\n");
3743 if (WARN_ON(!encoder->base.crtc))
3744 return;
3745
3746 crtc = encoder->base.crtc;
3747
3748 WARN(!crtc->enabled, "crtc not enabled\n");
3749 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3750 WARN(pipe != to_intel_crtc(crtc)->pipe,
3751 "encoder active on the wrong pipe\n");
3752 }
79e53945
JB
3753}
3754
5ab432ef
DV
3755/* Even simpler default implementation, if there's really no special case to
3756 * consider. */
3757void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3758{
5ab432ef 3759 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3760
5ab432ef
DV
3761 /* All the simple cases only support two dpms states. */
3762 if (mode != DRM_MODE_DPMS_ON)
3763 mode = DRM_MODE_DPMS_OFF;
d4270e57 3764
5ab432ef
DV
3765 if (mode == connector->dpms)
3766 return;
3767
3768 connector->dpms = mode;
3769
3770 /* Only need to change hw state when actually enabled */
3771 if (encoder->base.crtc)
3772 intel_encoder_dpms(encoder, mode);
3773 else
8af6cf88 3774 WARN_ON(encoder->connectors_active != false);
0a91ca29 3775
b980514c 3776 intel_modeset_check_state(connector->dev);
79e53945
JB
3777}
3778
f0947c37
DV
3779/* Simple connector->get_hw_state implementation for encoders that support only
3780 * one connector and no cloning and hence the encoder state determines the state
3781 * of the connector. */
3782bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3783{
24929352 3784 enum pipe pipe = 0;
f0947c37 3785 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3786
f0947c37 3787 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3788}
3789
79e53945 3790static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3791 const struct drm_display_mode *mode,
79e53945
JB
3792 struct drm_display_mode *adjusted_mode)
3793{
2c07245f 3794 struct drm_device *dev = crtc->dev;
89749350 3795
bad720ff 3796 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3797 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3798 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3799 return false;
2c07245f 3800 }
89749350 3801
f9bef081
DV
3802 /* All interlaced capable intel hw wants timings in frames. Note though
3803 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3804 * timings, so we need to be careful not to clobber these.*/
3805 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3806 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3807
44f46b42
CW
3808 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3809 * with a hsync front porch of 0.
3810 */
3811 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3812 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3813 return false;
3814
79e53945
JB
3815 return true;
3816}
3817
25eb05fc
JB
3818static int valleyview_get_display_clock_speed(struct drm_device *dev)
3819{
3820 return 400000; /* FIXME */
3821}
3822
e70236a8
JB
3823static int i945_get_display_clock_speed(struct drm_device *dev)
3824{
3825 return 400000;
3826}
79e53945 3827
e70236a8 3828static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3829{
e70236a8
JB
3830 return 333000;
3831}
79e53945 3832
e70236a8
JB
3833static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3834{
3835 return 200000;
3836}
79e53945 3837
e70236a8
JB
3838static int i915gm_get_display_clock_speed(struct drm_device *dev)
3839{
3840 u16 gcfgc = 0;
79e53945 3841
e70236a8
JB
3842 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3843
3844 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3845 return 133000;
3846 else {
3847 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3848 case GC_DISPLAY_CLOCK_333_MHZ:
3849 return 333000;
3850 default:
3851 case GC_DISPLAY_CLOCK_190_200_MHZ:
3852 return 190000;
79e53945 3853 }
e70236a8
JB
3854 }
3855}
3856
3857static int i865_get_display_clock_speed(struct drm_device *dev)
3858{
3859 return 266000;
3860}
3861
3862static int i855_get_display_clock_speed(struct drm_device *dev)
3863{
3864 u16 hpllcc = 0;
3865 /* Assume that the hardware is in the high speed state. This
3866 * should be the default.
3867 */
3868 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3869 case GC_CLOCK_133_200:
3870 case GC_CLOCK_100_200:
3871 return 200000;
3872 case GC_CLOCK_166_250:
3873 return 250000;
3874 case GC_CLOCK_100_133:
79e53945 3875 return 133000;
e70236a8 3876 }
79e53945 3877
e70236a8
JB
3878 /* Shouldn't happen */
3879 return 0;
3880}
79e53945 3881
e70236a8
JB
3882static int i830_get_display_clock_speed(struct drm_device *dev)
3883{
3884 return 133000;
79e53945
JB
3885}
3886
2c07245f
ZW
3887struct fdi_m_n {
3888 u32 tu;
3889 u32 gmch_m;
3890 u32 gmch_n;
3891 u32 link_m;
3892 u32 link_n;
3893};
3894
3895static void
3896fdi_reduce_ratio(u32 *num, u32 *den)
3897{
3898 while (*num > 0xffffff || *den > 0xffffff) {
3899 *num >>= 1;
3900 *den >>= 1;
3901 }
3902}
3903
2c07245f 3904static void
f2b115e6
AJ
3905ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3906 int link_clock, struct fdi_m_n *m_n)
2c07245f 3907{
2c07245f
ZW
3908 m_n->tu = 64; /* default size */
3909
22ed1113
CW
3910 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3911 m_n->gmch_m = bits_per_pixel * pixel_clock;
3912 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3913 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3914
22ed1113
CW
3915 m_n->link_m = pixel_clock;
3916 m_n->link_n = link_clock;
2c07245f
ZW
3917 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3918}
3919
a7615030
CW
3920static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3921{
72bbe58c
KP
3922 if (i915_panel_use_ssc >= 0)
3923 return i915_panel_use_ssc != 0;
3924 return dev_priv->lvds_use_ssc
435793df 3925 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
3926}
3927
5a354204
JB
3928/**
3929 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3930 * @crtc: CRTC structure
3b5c78a3 3931 * @mode: requested mode
5a354204
JB
3932 *
3933 * A pipe may be connected to one or more outputs. Based on the depth of the
3934 * attached framebuffer, choose a good color depth to use on the pipe.
3935 *
3936 * If possible, match the pipe depth to the fb depth. In some cases, this
3937 * isn't ideal, because the connected output supports a lesser or restricted
3938 * set of depths. Resolve that here:
3939 * LVDS typically supports only 6bpc, so clamp down in that case
3940 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3941 * Displays may support a restricted set as well, check EDID and clamp as
3942 * appropriate.
3b5c78a3 3943 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
3944 *
3945 * RETURNS:
3946 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3947 * true if they don't match).
3948 */
3949static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 3950 struct drm_framebuffer *fb,
3b5c78a3
AJ
3951 unsigned int *pipe_bpp,
3952 struct drm_display_mode *mode)
5a354204
JB
3953{
3954 struct drm_device *dev = crtc->dev;
3955 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 3956 struct drm_connector *connector;
6c2b7c12 3957 struct intel_encoder *intel_encoder;
5a354204
JB
3958 unsigned int display_bpc = UINT_MAX, bpc;
3959
3960 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 3961 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
3962
3963 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3964 unsigned int lvds_bpc;
3965
3966 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3967 LVDS_A3_POWER_UP)
3968 lvds_bpc = 8;
3969 else
3970 lvds_bpc = 6;
3971
3972 if (lvds_bpc < display_bpc) {
82820490 3973 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
3974 display_bpc = lvds_bpc;
3975 }
3976 continue;
3977 }
3978
5a354204
JB
3979 /* Not one of the known troublemakers, check the EDID */
3980 list_for_each_entry(connector, &dev->mode_config.connector_list,
3981 head) {
6c2b7c12 3982 if (connector->encoder != &intel_encoder->base)
5a354204
JB
3983 continue;
3984
62ac41a6
JB
3985 /* Don't use an invalid EDID bpc value */
3986 if (connector->display_info.bpc &&
3987 connector->display_info.bpc < display_bpc) {
82820490 3988 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
3989 display_bpc = connector->display_info.bpc;
3990 }
3991 }
3992
3993 /*
3994 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3995 * through, clamp it down. (Note: >12bpc will be caught below.)
3996 */
3997 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3998 if (display_bpc > 8 && display_bpc < 12) {
82820490 3999 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
4000 display_bpc = 12;
4001 } else {
82820490 4002 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
4003 display_bpc = 8;
4004 }
4005 }
4006 }
4007
3b5c78a3
AJ
4008 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4009 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4010 display_bpc = 6;
4011 }
4012
5a354204
JB
4013 /*
4014 * We could just drive the pipe at the highest bpc all the time and
4015 * enable dithering as needed, but that costs bandwidth. So choose
4016 * the minimum value that expresses the full color range of the fb but
4017 * also stays within the max display bpc discovered above.
4018 */
4019
94352cf9 4020 switch (fb->depth) {
5a354204
JB
4021 case 8:
4022 bpc = 8; /* since we go through a colormap */
4023 break;
4024 case 15:
4025 case 16:
4026 bpc = 6; /* min is 18bpp */
4027 break;
4028 case 24:
578393cd 4029 bpc = 8;
5a354204
JB
4030 break;
4031 case 30:
578393cd 4032 bpc = 10;
5a354204
JB
4033 break;
4034 case 48:
578393cd 4035 bpc = 12;
5a354204
JB
4036 break;
4037 default:
4038 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4039 bpc = min((unsigned int)8, display_bpc);
4040 break;
4041 }
4042
578393cd
KP
4043 display_bpc = min(display_bpc, bpc);
4044
82820490
AJ
4045 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4046 bpc, display_bpc);
5a354204 4047
578393cd 4048 *pipe_bpp = display_bpc * 3;
5a354204
JB
4049
4050 return display_bpc != bpc;
4051}
4052
a0c4da24
JB
4053static int vlv_get_refclk(struct drm_crtc *crtc)
4054{
4055 struct drm_device *dev = crtc->dev;
4056 struct drm_i915_private *dev_priv = dev->dev_private;
4057 int refclk = 27000; /* for DP & HDMI */
4058
4059 return 100000; /* only one validated so far */
4060
4061 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4062 refclk = 96000;
4063 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4064 if (intel_panel_use_ssc(dev_priv))
4065 refclk = 100000;
4066 else
4067 refclk = 96000;
4068 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4069 refclk = 100000;
4070 }
4071
4072 return refclk;
4073}
4074
c65d77d8
JB
4075static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4076{
4077 struct drm_device *dev = crtc->dev;
4078 struct drm_i915_private *dev_priv = dev->dev_private;
4079 int refclk;
4080
a0c4da24
JB
4081 if (IS_VALLEYVIEW(dev)) {
4082 refclk = vlv_get_refclk(crtc);
4083 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
4084 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4085 refclk = dev_priv->lvds_ssc_freq * 1000;
4086 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4087 refclk / 1000);
4088 } else if (!IS_GEN2(dev)) {
4089 refclk = 96000;
4090 } else {
4091 refclk = 48000;
4092 }
4093
4094 return refclk;
4095}
4096
4097static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4098 intel_clock_t *clock)
4099{
4100 /* SDVO TV has fixed PLL values depend on its clock range,
4101 this mirrors vbios setting. */
4102 if (adjusted_mode->clock >= 100000
4103 && adjusted_mode->clock < 140500) {
4104 clock->p1 = 2;
4105 clock->p2 = 10;
4106 clock->n = 3;
4107 clock->m1 = 16;
4108 clock->m2 = 8;
4109 } else if (adjusted_mode->clock >= 140500
4110 && adjusted_mode->clock <= 200000) {
4111 clock->p1 = 1;
4112 clock->p2 = 10;
4113 clock->n = 6;
4114 clock->m1 = 12;
4115 clock->m2 = 8;
4116 }
4117}
4118
a7516a05
JB
4119static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4120 intel_clock_t *clock,
4121 intel_clock_t *reduced_clock)
4122{
4123 struct drm_device *dev = crtc->dev;
4124 struct drm_i915_private *dev_priv = dev->dev_private;
4125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4126 int pipe = intel_crtc->pipe;
4127 u32 fp, fp2 = 0;
4128
4129 if (IS_PINEVIEW(dev)) {
4130 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4131 if (reduced_clock)
4132 fp2 = (1 << reduced_clock->n) << 16 |
4133 reduced_clock->m1 << 8 | reduced_clock->m2;
4134 } else {
4135 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4136 if (reduced_clock)
4137 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4138 reduced_clock->m2;
4139 }
4140
4141 I915_WRITE(FP0(pipe), fp);
4142
4143 intel_crtc->lowfreq_avail = false;
4144 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4145 reduced_clock && i915_powersave) {
4146 I915_WRITE(FP1(pipe), fp2);
4147 intel_crtc->lowfreq_avail = true;
4148 } else {
4149 I915_WRITE(FP1(pipe), fp);
4150 }
4151}
4152
93e537a1
DV
4153static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4154 struct drm_display_mode *adjusted_mode)
4155{
4156 struct drm_device *dev = crtc->dev;
4157 struct drm_i915_private *dev_priv = dev->dev_private;
4158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4159 int pipe = intel_crtc->pipe;
284d5df5 4160 u32 temp;
93e537a1
DV
4161
4162 temp = I915_READ(LVDS);
4163 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4164 if (pipe == 1) {
4165 temp |= LVDS_PIPEB_SELECT;
4166 } else {
4167 temp &= ~LVDS_PIPEB_SELECT;
4168 }
4169 /* set the corresponsding LVDS_BORDER bit */
4170 temp |= dev_priv->lvds_border_bits;
4171 /* Set the B0-B3 data pairs corresponding to whether we're going to
4172 * set the DPLLs for dual-channel mode or not.
4173 */
4174 if (clock->p2 == 7)
4175 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4176 else
4177 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4178
4179 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4180 * appropriately here, but we need to look more thoroughly into how
4181 * panels behave in the two modes.
4182 */
4183 /* set the dithering flag on LVDS as needed */
4184 if (INTEL_INFO(dev)->gen >= 4) {
4185 if (dev_priv->lvds_dither)
4186 temp |= LVDS_ENABLE_DITHER;
4187 else
4188 temp &= ~LVDS_ENABLE_DITHER;
4189 }
284d5df5 4190 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4191 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4192 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4193 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4194 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4195 I915_WRITE(LVDS, temp);
4196}
4197
a0c4da24
JB
4198static void vlv_update_pll(struct drm_crtc *crtc,
4199 struct drm_display_mode *mode,
4200 struct drm_display_mode *adjusted_mode,
4201 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4202 int num_connectors)
a0c4da24
JB
4203{
4204 struct drm_device *dev = crtc->dev;
4205 struct drm_i915_private *dev_priv = dev->dev_private;
4206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4207 int pipe = intel_crtc->pipe;
4208 u32 dpll, mdiv, pdiv;
4209 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4210 bool is_sdvo;
4211 u32 temp;
4212
4213 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4214 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4215
2a8f64ca
VP
4216 dpll = DPLL_VGA_MODE_DIS;
4217 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4218 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4219 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4220
4221 I915_WRITE(DPLL(pipe), dpll);
4222 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4223
4224 bestn = clock->n;
4225 bestm1 = clock->m1;
4226 bestm2 = clock->m2;
4227 bestp1 = clock->p1;
4228 bestp2 = clock->p2;
4229
2a8f64ca
VP
4230 /*
4231 * In Valleyview PLL and program lane counter registers are exposed
4232 * through DPIO interface
4233 */
a0c4da24
JB
4234 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4235 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4236 mdiv |= ((bestn << DPIO_N_SHIFT));
4237 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4238 mdiv |= (1 << DPIO_K_SHIFT);
4239 mdiv |= DPIO_ENABLE_CALIBRATION;
4240 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4241
4242 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4243
2a8f64ca 4244 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4245 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4246 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4247 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4248 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4249
2a8f64ca 4250 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4251
4252 dpll |= DPLL_VCO_ENABLE;
4253 I915_WRITE(DPLL(pipe), dpll);
4254 POSTING_READ(DPLL(pipe));
4255 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4256 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4257
2a8f64ca
VP
4258 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4259
4260 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4261 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4262
4263 I915_WRITE(DPLL(pipe), dpll);
4264
4265 /* Wait for the clocks to stabilize. */
4266 POSTING_READ(DPLL(pipe));
4267 udelay(150);
a0c4da24 4268
2a8f64ca
VP
4269 temp = 0;
4270 if (is_sdvo) {
4271 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4272 if (temp > 1)
4273 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4274 else
4275 temp = 0;
a0c4da24 4276 }
2a8f64ca
VP
4277 I915_WRITE(DPLL_MD(pipe), temp);
4278 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4279
2a8f64ca
VP
4280 /* Now program lane control registers */
4281 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4282 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4283 {
4284 temp = 0x1000C4;
4285 if(pipe == 1)
4286 temp |= (1 << 21);
4287 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4288 }
4289 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4290 {
4291 temp = 0x1000C4;
4292 if(pipe == 1)
4293 temp |= (1 << 21);
4294 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4295 }
a0c4da24
JB
4296}
4297
eb1cbe48
DV
4298static void i9xx_update_pll(struct drm_crtc *crtc,
4299 struct drm_display_mode *mode,
4300 struct drm_display_mode *adjusted_mode,
4301 intel_clock_t *clock, intel_clock_t *reduced_clock,
4302 int num_connectors)
4303{
4304 struct drm_device *dev = crtc->dev;
4305 struct drm_i915_private *dev_priv = dev->dev_private;
4306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4307 int pipe = intel_crtc->pipe;
4308 u32 dpll;
4309 bool is_sdvo;
4310
2a8f64ca
VP
4311 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4312
eb1cbe48
DV
4313 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4314 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4315
4316 dpll = DPLL_VGA_MODE_DIS;
4317
4318 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4319 dpll |= DPLLB_MODE_LVDS;
4320 else
4321 dpll |= DPLLB_MODE_DAC_SERIAL;
4322 if (is_sdvo) {
4323 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4324 if (pixel_multiplier > 1) {
4325 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4326 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4327 }
4328 dpll |= DPLL_DVO_HIGH_SPEED;
4329 }
4330 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4331 dpll |= DPLL_DVO_HIGH_SPEED;
4332
4333 /* compute bitmask from p1 value */
4334 if (IS_PINEVIEW(dev))
4335 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4336 else {
4337 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4338 if (IS_G4X(dev) && reduced_clock)
4339 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4340 }
4341 switch (clock->p2) {
4342 case 5:
4343 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4344 break;
4345 case 7:
4346 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4347 break;
4348 case 10:
4349 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4350 break;
4351 case 14:
4352 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4353 break;
4354 }
4355 if (INTEL_INFO(dev)->gen >= 4)
4356 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4357
4358 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4359 dpll |= PLL_REF_INPUT_TVCLKINBC;
4360 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4361 /* XXX: just matching BIOS for now */
4362 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4363 dpll |= 3;
4364 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4365 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4366 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4367 else
4368 dpll |= PLL_REF_INPUT_DREFCLK;
4369
4370 dpll |= DPLL_VCO_ENABLE;
4371 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4372 POSTING_READ(DPLL(pipe));
4373 udelay(150);
4374
4375 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4376 * This is an exception to the general rule that mode_set doesn't turn
4377 * things on.
4378 */
4379 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4380 intel_update_lvds(crtc, clock, adjusted_mode);
4381
4382 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4383 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4384
4385 I915_WRITE(DPLL(pipe), dpll);
4386
4387 /* Wait for the clocks to stabilize. */
4388 POSTING_READ(DPLL(pipe));
4389 udelay(150);
4390
4391 if (INTEL_INFO(dev)->gen >= 4) {
4392 u32 temp = 0;
4393 if (is_sdvo) {
4394 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4395 if (temp > 1)
4396 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4397 else
4398 temp = 0;
4399 }
4400 I915_WRITE(DPLL_MD(pipe), temp);
4401 } else {
4402 /* The pixel multiplier can only be updated once the
4403 * DPLL is enabled and the clocks are stable.
4404 *
4405 * So write it again.
4406 */
4407 I915_WRITE(DPLL(pipe), dpll);
4408 }
4409}
4410
4411static void i8xx_update_pll(struct drm_crtc *crtc,
4412 struct drm_display_mode *adjusted_mode,
2a8f64ca 4413 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4414 int num_connectors)
4415{
4416 struct drm_device *dev = crtc->dev;
4417 struct drm_i915_private *dev_priv = dev->dev_private;
4418 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4419 int pipe = intel_crtc->pipe;
4420 u32 dpll;
4421
2a8f64ca
VP
4422 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4423
eb1cbe48
DV
4424 dpll = DPLL_VGA_MODE_DIS;
4425
4426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4427 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4428 } else {
4429 if (clock->p1 == 2)
4430 dpll |= PLL_P1_DIVIDE_BY_TWO;
4431 else
4432 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4433 if (clock->p2 == 4)
4434 dpll |= PLL_P2_DIVIDE_BY_4;
4435 }
4436
4437 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4438 /* XXX: just matching BIOS for now */
4439 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4440 dpll |= 3;
4441 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4442 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4443 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4444 else
4445 dpll |= PLL_REF_INPUT_DREFCLK;
4446
4447 dpll |= DPLL_VCO_ENABLE;
4448 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4449 POSTING_READ(DPLL(pipe));
4450 udelay(150);
4451
eb1cbe48
DV
4452 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4453 * This is an exception to the general rule that mode_set doesn't turn
4454 * things on.
4455 */
4456 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4457 intel_update_lvds(crtc, clock, adjusted_mode);
4458
5b5896e4
DV
4459 I915_WRITE(DPLL(pipe), dpll);
4460
4461 /* Wait for the clocks to stabilize. */
4462 POSTING_READ(DPLL(pipe));
4463 udelay(150);
4464
eb1cbe48
DV
4465 /* The pixel multiplier can only be updated once the
4466 * DPLL is enabled and the clocks are stable.
4467 *
4468 * So write it again.
4469 */
4470 I915_WRITE(DPLL(pipe), dpll);
4471}
4472
b0e77b9c
PZ
4473static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4474 struct drm_display_mode *mode,
4475 struct drm_display_mode *adjusted_mode)
4476{
4477 struct drm_device *dev = intel_crtc->base.dev;
4478 struct drm_i915_private *dev_priv = dev->dev_private;
4479 enum pipe pipe = intel_crtc->pipe;
4480 uint32_t vsyncshift;
4481
4482 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4483 /* the chip adds 2 halflines automatically */
4484 adjusted_mode->crtc_vtotal -= 1;
4485 adjusted_mode->crtc_vblank_end -= 1;
4486 vsyncshift = adjusted_mode->crtc_hsync_start
4487 - adjusted_mode->crtc_htotal / 2;
4488 } else {
4489 vsyncshift = 0;
4490 }
4491
4492 if (INTEL_INFO(dev)->gen > 3)
4493 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4494
4495 I915_WRITE(HTOTAL(pipe),
4496 (adjusted_mode->crtc_hdisplay - 1) |
4497 ((adjusted_mode->crtc_htotal - 1) << 16));
4498 I915_WRITE(HBLANK(pipe),
4499 (adjusted_mode->crtc_hblank_start - 1) |
4500 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4501 I915_WRITE(HSYNC(pipe),
4502 (adjusted_mode->crtc_hsync_start - 1) |
4503 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4504
4505 I915_WRITE(VTOTAL(pipe),
4506 (adjusted_mode->crtc_vdisplay - 1) |
4507 ((adjusted_mode->crtc_vtotal - 1) << 16));
4508 I915_WRITE(VBLANK(pipe),
4509 (adjusted_mode->crtc_vblank_start - 1) |
4510 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4511 I915_WRITE(VSYNC(pipe),
4512 (adjusted_mode->crtc_vsync_start - 1) |
4513 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4514
4515 /* pipesrc controls the size that is scaled from, which should
4516 * always be the user's requested size.
4517 */
4518 I915_WRITE(PIPESRC(pipe),
4519 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4520}
4521
f564048e
EA
4522static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4523 struct drm_display_mode *mode,
4524 struct drm_display_mode *adjusted_mode,
4525 int x, int y,
94352cf9 4526 struct drm_framebuffer *fb)
79e53945
JB
4527{
4528 struct drm_device *dev = crtc->dev;
4529 struct drm_i915_private *dev_priv = dev->dev_private;
4530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4531 int pipe = intel_crtc->pipe;
80824003 4532 int plane = intel_crtc->plane;
c751ce4f 4533 int refclk, num_connectors = 0;
652c393a 4534 intel_clock_t clock, reduced_clock;
b0e77b9c 4535 u32 dspcntr, pipeconf;
eb1cbe48
DV
4536 bool ok, has_reduced_clock = false, is_sdvo = false;
4537 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4538 struct intel_encoder *encoder;
d4906093 4539 const intel_limit_t *limit;
5c3b82e2 4540 int ret;
79e53945 4541
6c2b7c12 4542 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4543 switch (encoder->type) {
79e53945
JB
4544 case INTEL_OUTPUT_LVDS:
4545 is_lvds = true;
4546 break;
4547 case INTEL_OUTPUT_SDVO:
7d57382e 4548 case INTEL_OUTPUT_HDMI:
79e53945 4549 is_sdvo = true;
5eddb70b 4550 if (encoder->needs_tv_clock)
e2f0ba97 4551 is_tv = true;
79e53945 4552 break;
79e53945
JB
4553 case INTEL_OUTPUT_TVOUT:
4554 is_tv = true;
4555 break;
a4fc5ed6
KP
4556 case INTEL_OUTPUT_DISPLAYPORT:
4557 is_dp = true;
4558 break;
79e53945 4559 }
43565a06 4560
c751ce4f 4561 num_connectors++;
79e53945
JB
4562 }
4563
c65d77d8 4564 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4565
d4906093
ML
4566 /*
4567 * Returns a set of divisors for the desired target clock with the given
4568 * refclk, or FALSE. The returned values represent the clock equation:
4569 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4570 */
1b894b59 4571 limit = intel_limit(crtc, refclk);
cec2f356
SP
4572 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4573 &clock);
79e53945
JB
4574 if (!ok) {
4575 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4576 return -EINVAL;
79e53945
JB
4577 }
4578
cda4b7d3 4579 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4580 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4581
ddc9003c 4582 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4583 /*
4584 * Ensure we match the reduced clock's P to the target clock.
4585 * If the clocks don't match, we can't switch the display clock
4586 * by using the FP0/FP1. In such case we will disable the LVDS
4587 * downclock feature.
4588 */
ddc9003c 4589 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4590 dev_priv->lvds_downclock,
4591 refclk,
cec2f356 4592 &clock,
5eddb70b 4593 &reduced_clock);
7026d4ac
ZW
4594 }
4595
c65d77d8
JB
4596 if (is_sdvo && is_tv)
4597 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4598
eb1cbe48 4599 if (IS_GEN2(dev))
2a8f64ca
VP
4600 i8xx_update_pll(crtc, adjusted_mode, &clock,
4601 has_reduced_clock ? &reduced_clock : NULL,
4602 num_connectors);
a0c4da24 4603 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4604 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4605 has_reduced_clock ? &reduced_clock : NULL,
4606 num_connectors);
79e53945 4607 else
eb1cbe48
DV
4608 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4609 has_reduced_clock ? &reduced_clock : NULL,
4610 num_connectors);
79e53945
JB
4611
4612 /* setup pipeconf */
5eddb70b 4613 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4614
4615 /* Set up the display plane register */
4616 dspcntr = DISPPLANE_GAMMA_ENABLE;
4617
929c77fb
EA
4618 if (pipe == 0)
4619 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4620 else
4621 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4622
a6c45cf0 4623 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4624 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4625 * core speed.
4626 *
4627 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4628 * pipe == 0 check?
4629 */
e70236a8
JB
4630 if (mode->clock >
4631 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4632 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4633 else
5eddb70b 4634 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4635 }
4636
3b5c78a3
AJ
4637 /* default to 8bpc */
4638 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4639 if (is_dp) {
0c96c65b 4640 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3b5c78a3
AJ
4641 pipeconf |= PIPECONF_BPP_6 |
4642 PIPECONF_DITHER_EN |
4643 PIPECONF_DITHER_TYPE_SP;
4644 }
4645 }
4646
19c03924
GB
4647 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4648 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4649 pipeconf |= PIPECONF_BPP_6 |
4650 PIPECONF_ENABLE |
4651 I965_PIPECONF_ACTIVE;
4652 }
4653 }
4654
28c97730 4655 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4656 drm_mode_debug_printmodeline(mode);
4657
a7516a05
JB
4658 if (HAS_PIPE_CXSR(dev)) {
4659 if (intel_crtc->lowfreq_avail) {
28c97730 4660 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4661 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4662 } else {
28c97730 4663 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4664 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4665 }
4666 }
4667
617cf884 4668 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575 4669 if (!IS_GEN2(dev) &&
b0e77b9c 4670 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
734b4157 4671 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
b0e77b9c 4672 else
617cf884 4673 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 4674
b0e77b9c 4675 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b
CW
4676
4677 /* pipesrc and dspsize control the size that is scaled from,
4678 * which should always be the user's requested size.
79e53945 4679 */
929c77fb
EA
4680 I915_WRITE(DSPSIZE(plane),
4681 ((mode->vdisplay - 1) << 16) |
4682 (mode->hdisplay - 1));
4683 I915_WRITE(DSPPOS(plane), 0);
2c07245f 4684
f564048e
EA
4685 I915_WRITE(PIPECONF(pipe), pipeconf);
4686 POSTING_READ(PIPECONF(pipe));
929c77fb 4687 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4688
4689 intel_wait_for_vblank(dev, pipe);
4690
f564048e
EA
4691 I915_WRITE(DSPCNTR(plane), dspcntr);
4692 POSTING_READ(DSPCNTR(plane));
4693
94352cf9 4694 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4695
4696 intel_update_watermarks(dev);
4697
f564048e
EA
4698 return ret;
4699}
4700
9fb526db
KP
4701/*
4702 * Initialize reference clocks when the driver loads
4703 */
4704void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4705{
4706 struct drm_i915_private *dev_priv = dev->dev_private;
4707 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4708 struct intel_encoder *encoder;
13d83a67
JB
4709 u32 temp;
4710 bool has_lvds = false;
199e5d79
KP
4711 bool has_cpu_edp = false;
4712 bool has_pch_edp = false;
4713 bool has_panel = false;
99eb6a01
KP
4714 bool has_ck505 = false;
4715 bool can_ssc = false;
13d83a67
JB
4716
4717 /* We need to take the global config into account */
199e5d79
KP
4718 list_for_each_entry(encoder, &mode_config->encoder_list,
4719 base.head) {
4720 switch (encoder->type) {
4721 case INTEL_OUTPUT_LVDS:
4722 has_panel = true;
4723 has_lvds = true;
4724 break;
4725 case INTEL_OUTPUT_EDP:
4726 has_panel = true;
4727 if (intel_encoder_is_pch_edp(&encoder->base))
4728 has_pch_edp = true;
4729 else
4730 has_cpu_edp = true;
4731 break;
13d83a67
JB
4732 }
4733 }
4734
99eb6a01
KP
4735 if (HAS_PCH_IBX(dev)) {
4736 has_ck505 = dev_priv->display_clock_mode;
4737 can_ssc = has_ck505;
4738 } else {
4739 has_ck505 = false;
4740 can_ssc = true;
4741 }
4742
4743 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4744 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4745 has_ck505);
13d83a67
JB
4746
4747 /* Ironlake: try to setup display ref clock before DPLL
4748 * enabling. This is only under driver's control after
4749 * PCH B stepping, previous chipset stepping should be
4750 * ignoring this setting.
4751 */
4752 temp = I915_READ(PCH_DREF_CONTROL);
4753 /* Always enable nonspread source */
4754 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4755
99eb6a01
KP
4756 if (has_ck505)
4757 temp |= DREF_NONSPREAD_CK505_ENABLE;
4758 else
4759 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4760
199e5d79
KP
4761 if (has_panel) {
4762 temp &= ~DREF_SSC_SOURCE_MASK;
4763 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4764
199e5d79 4765 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4766 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4767 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4768 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4769 } else
4770 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4771
4772 /* Get SSC going before enabling the outputs */
4773 I915_WRITE(PCH_DREF_CONTROL, temp);
4774 POSTING_READ(PCH_DREF_CONTROL);
4775 udelay(200);
4776
13d83a67
JB
4777 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4778
4779 /* Enable CPU source on CPU attached eDP */
199e5d79 4780 if (has_cpu_edp) {
99eb6a01 4781 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4782 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4783 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4784 }
13d83a67
JB
4785 else
4786 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4787 } else
4788 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4789
4790 I915_WRITE(PCH_DREF_CONTROL, temp);
4791 POSTING_READ(PCH_DREF_CONTROL);
4792 udelay(200);
4793 } else {
4794 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4795
4796 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4797
4798 /* Turn off CPU output */
4799 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4800
4801 I915_WRITE(PCH_DREF_CONTROL, temp);
4802 POSTING_READ(PCH_DREF_CONTROL);
4803 udelay(200);
4804
4805 /* Turn off the SSC source */
4806 temp &= ~DREF_SSC_SOURCE_MASK;
4807 temp |= DREF_SSC_SOURCE_DISABLE;
4808
4809 /* Turn off SSC1 */
4810 temp &= ~ DREF_SSC1_ENABLE;
4811
13d83a67
JB
4812 I915_WRITE(PCH_DREF_CONTROL, temp);
4813 POSTING_READ(PCH_DREF_CONTROL);
4814 udelay(200);
4815 }
4816}
4817
d9d444cb
JB
4818static int ironlake_get_refclk(struct drm_crtc *crtc)
4819{
4820 struct drm_device *dev = crtc->dev;
4821 struct drm_i915_private *dev_priv = dev->dev_private;
4822 struct intel_encoder *encoder;
d9d444cb
JB
4823 struct intel_encoder *edp_encoder = NULL;
4824 int num_connectors = 0;
4825 bool is_lvds = false;
4826
6c2b7c12 4827 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
4828 switch (encoder->type) {
4829 case INTEL_OUTPUT_LVDS:
4830 is_lvds = true;
4831 break;
4832 case INTEL_OUTPUT_EDP:
4833 edp_encoder = encoder;
4834 break;
4835 }
4836 num_connectors++;
4837 }
4838
4839 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4840 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4841 dev_priv->lvds_ssc_freq);
4842 return dev_priv->lvds_ssc_freq * 1000;
4843 }
4844
4845 return 120000;
4846}
4847
c8203565
PZ
4848static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4849 struct drm_display_mode *adjusted_mode,
4850 bool dither)
4851{
4852 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854 int pipe = intel_crtc->pipe;
4855 uint32_t val;
4856
4857 val = I915_READ(PIPECONF(pipe));
4858
4859 val &= ~PIPE_BPC_MASK;
4860 switch (intel_crtc->bpp) {
4861 case 18:
4862 val |= PIPE_6BPC;
4863 break;
4864 case 24:
4865 val |= PIPE_8BPC;
4866 break;
4867 case 30:
4868 val |= PIPE_10BPC;
4869 break;
4870 case 36:
4871 val |= PIPE_12BPC;
4872 break;
4873 default:
cc769b62
PZ
4874 /* Case prevented by intel_choose_pipe_bpp_dither. */
4875 BUG();
c8203565
PZ
4876 }
4877
4878 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4879 if (dither)
4880 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4881
4882 val &= ~PIPECONF_INTERLACE_MASK;
4883 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4884 val |= PIPECONF_INTERLACED_ILK;
4885 else
4886 val |= PIPECONF_PROGRESSIVE;
4887
4888 I915_WRITE(PIPECONF(pipe), val);
4889 POSTING_READ(PIPECONF(pipe));
4890}
4891
ee2b0b38
PZ
4892static void haswell_set_pipeconf(struct drm_crtc *crtc,
4893 struct drm_display_mode *adjusted_mode,
4894 bool dither)
4895{
4896 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4898 int pipe = intel_crtc->pipe;
4899 uint32_t val;
4900
4901 val = I915_READ(PIPECONF(pipe));
4902
4903 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4904 if (dither)
4905 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4906
4907 val &= ~PIPECONF_INTERLACE_MASK_HSW;
4908 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4909 val |= PIPECONF_INTERLACED_ILK;
4910 else
4911 val |= PIPECONF_PROGRESSIVE;
4912
4913 I915_WRITE(PIPECONF(pipe), val);
4914 POSTING_READ(PIPECONF(pipe));
4915}
4916
6591c6e4
PZ
4917static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4918 struct drm_display_mode *adjusted_mode,
4919 intel_clock_t *clock,
4920 bool *has_reduced_clock,
4921 intel_clock_t *reduced_clock)
4922{
4923 struct drm_device *dev = crtc->dev;
4924 struct drm_i915_private *dev_priv = dev->dev_private;
4925 struct intel_encoder *intel_encoder;
4926 int refclk;
4927 const intel_limit_t *limit;
4928 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4929
4930 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4931 switch (intel_encoder->type) {
4932 case INTEL_OUTPUT_LVDS:
4933 is_lvds = true;
4934 break;
4935 case INTEL_OUTPUT_SDVO:
4936 case INTEL_OUTPUT_HDMI:
4937 is_sdvo = true;
4938 if (intel_encoder->needs_tv_clock)
4939 is_tv = true;
4940 break;
4941 case INTEL_OUTPUT_TVOUT:
4942 is_tv = true;
4943 break;
4944 }
4945 }
4946
4947 refclk = ironlake_get_refclk(crtc);
4948
4949 /*
4950 * Returns a set of divisors for the desired target clock with the given
4951 * refclk, or FALSE. The returned values represent the clock equation:
4952 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4953 */
4954 limit = intel_limit(crtc, refclk);
4955 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4956 clock);
4957 if (!ret)
4958 return false;
4959
4960 if (is_lvds && dev_priv->lvds_downclock_avail) {
4961 /*
4962 * Ensure we match the reduced clock's P to the target clock.
4963 * If the clocks don't match, we can't switch the display clock
4964 * by using the FP0/FP1. In such case we will disable the LVDS
4965 * downclock feature.
4966 */
4967 *has_reduced_clock = limit->find_pll(limit, crtc,
4968 dev_priv->lvds_downclock,
4969 refclk,
4970 clock,
4971 reduced_clock);
4972 }
4973
4974 if (is_sdvo && is_tv)
4975 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4976
4977 return true;
4978}
4979
f48d8f23
PZ
4980static void ironlake_set_m_n(struct drm_crtc *crtc,
4981 struct drm_display_mode *mode,
4982 struct drm_display_mode *adjusted_mode)
4983{
4984 struct drm_device *dev = crtc->dev;
4985 struct drm_i915_private *dev_priv = dev->dev_private;
4986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4987 enum pipe pipe = intel_crtc->pipe;
4988 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
4989 struct fdi_m_n m_n = {0};
4990 int target_clock, pixel_multiplier, lane, link_bw;
4991 bool is_dp = false, is_cpu_edp = false;
4992
4993 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4994 switch (intel_encoder->type) {
4995 case INTEL_OUTPUT_DISPLAYPORT:
4996 is_dp = true;
4997 break;
4998 case INTEL_OUTPUT_EDP:
4999 is_dp = true;
5000 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5001 is_cpu_edp = true;
5002 edp_encoder = intel_encoder;
5003 break;
5004 }
5005 }
5006
5007 /* FDI link */
5008 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5009 lane = 0;
5010 /* CPU eDP doesn't require FDI link, so just set DP M/N
5011 according to current link config */
5012 if (is_cpu_edp) {
5013 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5014 } else {
5015 /* FDI is a binary signal running at ~2.7GHz, encoding
5016 * each output octet as 10 bits. The actual frequency
5017 * is stored as a divider into a 100MHz clock, and the
5018 * mode pixel clock is stored in units of 1KHz.
5019 * Hence the bw of each lane in terms of the mode signal
5020 * is:
5021 */
5022 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5023 }
5024
5025 /* [e]DP over FDI requires target mode clock instead of link clock. */
5026 if (edp_encoder)
5027 target_clock = intel_edp_target_clock(edp_encoder, mode);
5028 else if (is_dp)
5029 target_clock = mode->clock;
5030 else
5031 target_clock = adjusted_mode->clock;
5032
5033 if (!lane) {
5034 /*
5035 * Account for spread spectrum to avoid
5036 * oversubscribing the link. Max center spread
5037 * is 2.5%; use 5% for safety's sake.
5038 */
5039 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5040 lane = bps / (link_bw * 8) + 1;
5041 }
5042
5043 intel_crtc->fdi_lanes = lane;
5044
5045 if (pixel_multiplier > 1)
5046 link_bw *= pixel_multiplier;
5047 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5048 &m_n);
5049
5050 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5051 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5052 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5053 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5054}
5055
de13a2e3
PZ
5056static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5057 struct drm_display_mode *adjusted_mode,
5058 intel_clock_t *clock, u32 fp)
79e53945 5059{
de13a2e3 5060 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
5061 struct drm_device *dev = crtc->dev;
5062 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
5063 struct intel_encoder *intel_encoder;
5064 uint32_t dpll;
5065 int factor, pixel_multiplier, num_connectors = 0;
5066 bool is_lvds = false, is_sdvo = false, is_tv = false;
5067 bool is_dp = false, is_cpu_edp = false;
79e53945 5068
de13a2e3
PZ
5069 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5070 switch (intel_encoder->type) {
79e53945
JB
5071 case INTEL_OUTPUT_LVDS:
5072 is_lvds = true;
5073 break;
5074 case INTEL_OUTPUT_SDVO:
7d57382e 5075 case INTEL_OUTPUT_HDMI:
79e53945 5076 is_sdvo = true;
de13a2e3 5077 if (intel_encoder->needs_tv_clock)
e2f0ba97 5078 is_tv = true;
79e53945 5079 break;
79e53945
JB
5080 case INTEL_OUTPUT_TVOUT:
5081 is_tv = true;
5082 break;
a4fc5ed6
KP
5083 case INTEL_OUTPUT_DISPLAYPORT:
5084 is_dp = true;
5085 break;
32f9d658 5086 case INTEL_OUTPUT_EDP:
e3aef172 5087 is_dp = true;
de13a2e3 5088 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5089 is_cpu_edp = true;
32f9d658 5090 break;
79e53945 5091 }
43565a06 5092
c751ce4f 5093 num_connectors++;
79e53945
JB
5094 }
5095
c1858123 5096 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5097 factor = 21;
5098 if (is_lvds) {
5099 if ((intel_panel_use_ssc(dev_priv) &&
5100 dev_priv->lvds_ssc_freq == 100) ||
5101 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5102 factor = 25;
5103 } else if (is_sdvo && is_tv)
5104 factor = 20;
c1858123 5105
de13a2e3 5106 if (clock->m < factor * clock->n)
8febb297 5107 fp |= FP_CB_TUNE;
2c07245f 5108
5eddb70b 5109 dpll = 0;
2c07245f 5110
a07d6787
EA
5111 if (is_lvds)
5112 dpll |= DPLLB_MODE_LVDS;
5113 else
5114 dpll |= DPLLB_MODE_DAC_SERIAL;
5115 if (is_sdvo) {
de13a2e3 5116 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
5117 if (pixel_multiplier > 1) {
5118 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5119 }
a07d6787
EA
5120 dpll |= DPLL_DVO_HIGH_SPEED;
5121 }
e3aef172 5122 if (is_dp && !is_cpu_edp)
a07d6787 5123 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5124
a07d6787 5125 /* compute bitmask from p1 value */
de13a2e3 5126 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 5127 /* also FPA1 */
de13a2e3 5128 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 5129
de13a2e3 5130 switch (clock->p2) {
a07d6787
EA
5131 case 5:
5132 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5133 break;
5134 case 7:
5135 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5136 break;
5137 case 10:
5138 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5139 break;
5140 case 14:
5141 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5142 break;
79e53945
JB
5143 }
5144
43565a06
KH
5145 if (is_sdvo && is_tv)
5146 dpll |= PLL_REF_INPUT_TVCLKINBC;
5147 else if (is_tv)
79e53945 5148 /* XXX: just matching BIOS for now */
43565a06 5149 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5150 dpll |= 3;
a7615030 5151 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5152 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5153 else
5154 dpll |= PLL_REF_INPUT_DREFCLK;
5155
de13a2e3
PZ
5156 return dpll;
5157}
5158
5159static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5160 struct drm_display_mode *mode,
5161 struct drm_display_mode *adjusted_mode,
5162 int x, int y,
5163 struct drm_framebuffer *fb)
5164{
5165 struct drm_device *dev = crtc->dev;
5166 struct drm_i915_private *dev_priv = dev->dev_private;
5167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5168 int pipe = intel_crtc->pipe;
5169 int plane = intel_crtc->plane;
5170 int num_connectors = 0;
5171 intel_clock_t clock, reduced_clock;
5172 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
5173 bool ok, has_reduced_clock = false;
5174 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
5175 struct intel_encoder *encoder;
5176 u32 temp;
5177 int ret;
5178 bool dither;
de13a2e3
PZ
5179
5180 for_each_encoder_on_crtc(dev, crtc, encoder) {
5181 switch (encoder->type) {
5182 case INTEL_OUTPUT_LVDS:
5183 is_lvds = true;
5184 break;
de13a2e3
PZ
5185 case INTEL_OUTPUT_DISPLAYPORT:
5186 is_dp = true;
5187 break;
5188 case INTEL_OUTPUT_EDP:
5189 is_dp = true;
e2f12b07 5190 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
5191 is_cpu_edp = true;
5192 break;
5193 }
5194
5195 num_connectors++;
5196 }
5197
5dc5298b
PZ
5198 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5199 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5200
de13a2e3
PZ
5201 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5202 &has_reduced_clock, &reduced_clock);
5203 if (!ok) {
5204 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5205 return -EINVAL;
5206 }
5207
5208 /* Ensure that the cursor is valid for the new mode before changing... */
5209 intel_crtc_update_cursor(crtc, true);
5210
5211 /* determine panel color depth */
5212 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5213 if (is_lvds && dev_priv->lvds_dither)
5214 dither = true;
5215
5216 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5217 if (has_reduced_clock)
5218 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5219 reduced_clock.m2;
5220
5221 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5222
f7cb34d4 5223 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5224 drm_mode_debug_printmodeline(mode);
5225
5dc5298b
PZ
5226 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5227 if (!is_cpu_edp) {
ee7b9f93 5228 struct intel_pch_pll *pll;
4b645f14 5229
ee7b9f93
JB
5230 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5231 if (pll == NULL) {
5232 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5233 pipe);
4b645f14
JB
5234 return -EINVAL;
5235 }
ee7b9f93
JB
5236 } else
5237 intel_put_pch_pll(intel_crtc);
79e53945
JB
5238
5239 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5240 * This is an exception to the general rule that mode_set doesn't turn
5241 * things on.
5242 */
5243 if (is_lvds) {
fae14981 5244 temp = I915_READ(PCH_LVDS);
5eddb70b 5245 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5246 if (HAS_PCH_CPT(dev)) {
5247 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5248 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5249 } else {
5250 if (pipe == 1)
5251 temp |= LVDS_PIPEB_SELECT;
5252 else
5253 temp &= ~LVDS_PIPEB_SELECT;
5254 }
4b645f14 5255
a3e17eb8 5256 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5257 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5258 /* Set the B0-B3 data pairs corresponding to whether we're going to
5259 * set the DPLLs for dual-channel mode or not.
5260 */
5261 if (clock.p2 == 7)
5eddb70b 5262 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5263 else
5eddb70b 5264 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5265
5266 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5267 * appropriately here, but we need to look more thoroughly into how
5268 * panels behave in the two modes.
5269 */
284d5df5 5270 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5271 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5272 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5273 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5274 temp |= LVDS_VSYNC_POLARITY;
fae14981 5275 I915_WRITE(PCH_LVDS, temp);
79e53945 5276 }
434ed097 5277
e3aef172 5278 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5279 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5280 } else {
8db9d77b 5281 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5282 I915_WRITE(TRANSDATA_M1(pipe), 0);
5283 I915_WRITE(TRANSDATA_N1(pipe), 0);
5284 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5285 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5286 }
79e53945 5287
ee7b9f93
JB
5288 if (intel_crtc->pch_pll) {
5289 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5290
32f9d658 5291 /* Wait for the clocks to stabilize. */
ee7b9f93 5292 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5293 udelay(150);
5294
8febb297
EA
5295 /* The pixel multiplier can only be updated once the
5296 * DPLL is enabled and the clocks are stable.
5297 *
5298 * So write it again.
5299 */
ee7b9f93 5300 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5301 }
79e53945 5302
5eddb70b 5303 intel_crtc->lowfreq_avail = false;
ee7b9f93 5304 if (intel_crtc->pch_pll) {
4b645f14 5305 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5306 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5307 intel_crtc->lowfreq_avail = true;
4b645f14 5308 } else {
ee7b9f93 5309 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5310 }
5311 }
5312
b0e77b9c 5313 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
2c07245f 5314
f48d8f23 5315 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5316
e3aef172 5317 if (is_cpu_edp)
8febb297 5318 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5319
c8203565 5320 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5321
9d0498a2 5322 intel_wait_for_vblank(dev, pipe);
79e53945 5323
a1f9e77e
PZ
5324 /* Set up the display plane register */
5325 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5326 POSTING_READ(DSPCNTR(plane));
79e53945 5327
94352cf9 5328 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5329
5330 intel_update_watermarks(dev);
5331
1f8eeabf
ED
5332 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5333
1f803ee5 5334 return ret;
79e53945
JB
5335}
5336
09b4ddf9
PZ
5337static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5338 struct drm_display_mode *mode,
5339 struct drm_display_mode *adjusted_mode,
5340 int x, int y,
5341 struct drm_framebuffer *fb)
5342{
5343 struct drm_device *dev = crtc->dev;
5344 struct drm_i915_private *dev_priv = dev->dev_private;
5345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5346 int pipe = intel_crtc->pipe;
5347 int plane = intel_crtc->plane;
5348 int num_connectors = 0;
5349 intel_clock_t clock, reduced_clock;
5dc5298b 5350 u32 dpll = 0, fp = 0, fp2 = 0;
09b4ddf9
PZ
5351 bool ok, has_reduced_clock = false;
5352 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5353 struct intel_encoder *encoder;
5354 u32 temp;
5355 int ret;
5356 bool dither;
5357
5358 for_each_encoder_on_crtc(dev, crtc, encoder) {
5359 switch (encoder->type) {
5360 case INTEL_OUTPUT_LVDS:
5361 is_lvds = true;
5362 break;
5363 case INTEL_OUTPUT_DISPLAYPORT:
5364 is_dp = true;
5365 break;
5366 case INTEL_OUTPUT_EDP:
5367 is_dp = true;
5368 if (!intel_encoder_is_pch_edp(&encoder->base))
5369 is_cpu_edp = true;
5370 break;
5371 }
5372
5373 num_connectors++;
5374 }
5375
5dc5298b
PZ
5376 /* We are not sure yet this won't happen. */
5377 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5378 INTEL_PCH_TYPE(dev));
5379
5380 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5381 num_connectors, pipe_name(pipe));
5382
1ce42920
PZ
5383 WARN_ON(I915_READ(PIPECONF(pipe)) &
5384 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5385
5386 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5387
6441ab5f
PZ
5388 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5389 return -EINVAL;
5390
5dc5298b
PZ
5391 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5392 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5393 &has_reduced_clock,
5394 &reduced_clock);
5395 if (!ok) {
5396 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5397 return -EINVAL;
5398 }
09b4ddf9
PZ
5399 }
5400
5401 /* Ensure that the cursor is valid for the new mode before changing... */
5402 intel_crtc_update_cursor(crtc, true);
5403
5404 /* determine panel color depth */
5405 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5406 if (is_lvds && dev_priv->lvds_dither)
5407 dither = true;
5408
09b4ddf9
PZ
5409 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5410 drm_mode_debug_printmodeline(mode);
5411
5dc5298b
PZ
5412 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5413 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5414 if (has_reduced_clock)
5415 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5416 reduced_clock.m2;
5417
5418 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5419 fp);
5420
5421 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5422 * own on pre-Haswell/LPT generation */
5423 if (!is_cpu_edp) {
5424 struct intel_pch_pll *pll;
5425
5426 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5427 if (pll == NULL) {
5428 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5429 pipe);
5430 return -EINVAL;
5431 }
5432 } else
5433 intel_put_pch_pll(intel_crtc);
09b4ddf9 5434
5dc5298b
PZ
5435 /* The LVDS pin pair needs to be on before the DPLLs are
5436 * enabled. This is an exception to the general rule that
5437 * mode_set doesn't turn things on.
5438 */
5439 if (is_lvds) {
5440 temp = I915_READ(PCH_LVDS);
5441 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5442 if (HAS_PCH_CPT(dev)) {
5443 temp &= ~PORT_TRANS_SEL_MASK;
5444 temp |= PORT_TRANS_SEL_CPT(pipe);
5445 } else {
5446 if (pipe == 1)
5447 temp |= LVDS_PIPEB_SELECT;
5448 else
5449 temp &= ~LVDS_PIPEB_SELECT;
5450 }
09b4ddf9 5451
5dc5298b
PZ
5452 /* set the corresponsding LVDS_BORDER bit */
5453 temp |= dev_priv->lvds_border_bits;
5454 /* Set the B0-B3 data pairs corresponding to whether
5455 * we're going to set the DPLLs for dual-channel mode or
5456 * not.
5457 */
5458 if (clock.p2 == 7)
5459 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
09b4ddf9 5460 else
5dc5298b
PZ
5461 temp &= ~(LVDS_B0B3_POWER_UP |
5462 LVDS_CLKB_POWER_UP);
5463
5464 /* It would be nice to set 24 vs 18-bit mode
5465 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5466 * look more thoroughly into how panels behave in the
5467 * two modes.
5468 */
5469 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5470 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5471 temp |= LVDS_HSYNC_POLARITY;
5472 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5473 temp |= LVDS_VSYNC_POLARITY;
5474 I915_WRITE(PCH_LVDS, temp);
09b4ddf9 5475 }
09b4ddf9
PZ
5476 }
5477
5478 if (is_dp && !is_cpu_edp) {
5479 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5480 } else {
5dc5298b
PZ
5481 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5482 /* For non-DP output, clear any trans DP clock recovery
5483 * setting.*/
5484 I915_WRITE(TRANSDATA_M1(pipe), 0);
5485 I915_WRITE(TRANSDATA_N1(pipe), 0);
5486 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5487 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5488 }
09b4ddf9
PZ
5489 }
5490
5491 intel_crtc->lowfreq_avail = false;
5dc5298b
PZ
5492 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5493 if (intel_crtc->pch_pll) {
5494 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5495
5496 /* Wait for the clocks to stabilize. */
5497 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5498 udelay(150);
5499
5500 /* The pixel multiplier can only be updated once the
5501 * DPLL is enabled and the clocks are stable.
5502 *
5503 * So write it again.
5504 */
5505 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5506 }
5507
5508 if (intel_crtc->pch_pll) {
5509 if (is_lvds && has_reduced_clock && i915_powersave) {
5510 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5511 intel_crtc->lowfreq_avail = true;
5512 } else {
5513 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5514 }
09b4ddf9
PZ
5515 }
5516 }
5517
5518 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5519
1eb8dfec
PZ
5520 if (!is_dp || is_cpu_edp)
5521 ironlake_set_m_n(crtc, mode, adjusted_mode);
09b4ddf9 5522
5dc5298b
PZ
5523 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5524 if (is_cpu_edp)
5525 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
09b4ddf9 5526
ee2b0b38 5527 haswell_set_pipeconf(crtc, adjusted_mode, dither);
09b4ddf9 5528
09b4ddf9
PZ
5529 /* Set up the display plane register */
5530 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5531 POSTING_READ(DSPCNTR(plane));
5532
5533 ret = intel_pipe_set_base(crtc, x, y, fb);
5534
5535 intel_update_watermarks(dev);
5536
5537 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5538
5539 return ret;
5540}
5541
f564048e
EA
5542static int intel_crtc_mode_set(struct drm_crtc *crtc,
5543 struct drm_display_mode *mode,
5544 struct drm_display_mode *adjusted_mode,
5545 int x, int y,
94352cf9 5546 struct drm_framebuffer *fb)
f564048e
EA
5547{
5548 struct drm_device *dev = crtc->dev;
5549 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5550 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5551 int pipe = intel_crtc->pipe;
f564048e
EA
5552 int ret;
5553
0b701d27 5554 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5555
f564048e 5556 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5557 x, y, fb);
79e53945 5558 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5559
1f803ee5 5560 return ret;
79e53945
JB
5561}
5562
3a9627f4
WF
5563static bool intel_eld_uptodate(struct drm_connector *connector,
5564 int reg_eldv, uint32_t bits_eldv,
5565 int reg_elda, uint32_t bits_elda,
5566 int reg_edid)
5567{
5568 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5569 uint8_t *eld = connector->eld;
5570 uint32_t i;
5571
5572 i = I915_READ(reg_eldv);
5573 i &= bits_eldv;
5574
5575 if (!eld[0])
5576 return !i;
5577
5578 if (!i)
5579 return false;
5580
5581 i = I915_READ(reg_elda);
5582 i &= ~bits_elda;
5583 I915_WRITE(reg_elda, i);
5584
5585 for (i = 0; i < eld[2]; i++)
5586 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5587 return false;
5588
5589 return true;
5590}
5591
e0dac65e
WF
5592static void g4x_write_eld(struct drm_connector *connector,
5593 struct drm_crtc *crtc)
5594{
5595 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5596 uint8_t *eld = connector->eld;
5597 uint32_t eldv;
5598 uint32_t len;
5599 uint32_t i;
5600
5601 i = I915_READ(G4X_AUD_VID_DID);
5602
5603 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5604 eldv = G4X_ELDV_DEVCL_DEVBLC;
5605 else
5606 eldv = G4X_ELDV_DEVCTG;
5607
3a9627f4
WF
5608 if (intel_eld_uptodate(connector,
5609 G4X_AUD_CNTL_ST, eldv,
5610 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5611 G4X_HDMIW_HDMIEDID))
5612 return;
5613
e0dac65e
WF
5614 i = I915_READ(G4X_AUD_CNTL_ST);
5615 i &= ~(eldv | G4X_ELD_ADDR);
5616 len = (i >> 9) & 0x1f; /* ELD buffer size */
5617 I915_WRITE(G4X_AUD_CNTL_ST, i);
5618
5619 if (!eld[0])
5620 return;
5621
5622 len = min_t(uint8_t, eld[2], len);
5623 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5624 for (i = 0; i < len; i++)
5625 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5626
5627 i = I915_READ(G4X_AUD_CNTL_ST);
5628 i |= eldv;
5629 I915_WRITE(G4X_AUD_CNTL_ST, i);
5630}
5631
83358c85
WX
5632static void haswell_write_eld(struct drm_connector *connector,
5633 struct drm_crtc *crtc)
5634{
5635 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5636 uint8_t *eld = connector->eld;
5637 struct drm_device *dev = crtc->dev;
5638 uint32_t eldv;
5639 uint32_t i;
5640 int len;
5641 int pipe = to_intel_crtc(crtc)->pipe;
5642 int tmp;
5643
5644 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5645 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5646 int aud_config = HSW_AUD_CFG(pipe);
5647 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5648
5649
5650 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5651
5652 /* Audio output enable */
5653 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5654 tmp = I915_READ(aud_cntrl_st2);
5655 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5656 I915_WRITE(aud_cntrl_st2, tmp);
5657
5658 /* Wait for 1 vertical blank */
5659 intel_wait_for_vblank(dev, pipe);
5660
5661 /* Set ELD valid state */
5662 tmp = I915_READ(aud_cntrl_st2);
5663 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5664 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5665 I915_WRITE(aud_cntrl_st2, tmp);
5666 tmp = I915_READ(aud_cntrl_st2);
5667 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5668
5669 /* Enable HDMI mode */
5670 tmp = I915_READ(aud_config);
5671 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5672 /* clear N_programing_enable and N_value_index */
5673 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5674 I915_WRITE(aud_config, tmp);
5675
5676 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5677
5678 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5679
5680 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5681 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5682 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5683 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5684 } else
5685 I915_WRITE(aud_config, 0);
5686
5687 if (intel_eld_uptodate(connector,
5688 aud_cntrl_st2, eldv,
5689 aud_cntl_st, IBX_ELD_ADDRESS,
5690 hdmiw_hdmiedid))
5691 return;
5692
5693 i = I915_READ(aud_cntrl_st2);
5694 i &= ~eldv;
5695 I915_WRITE(aud_cntrl_st2, i);
5696
5697 if (!eld[0])
5698 return;
5699
5700 i = I915_READ(aud_cntl_st);
5701 i &= ~IBX_ELD_ADDRESS;
5702 I915_WRITE(aud_cntl_st, i);
5703 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5704 DRM_DEBUG_DRIVER("port num:%d\n", i);
5705
5706 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5707 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5708 for (i = 0; i < len; i++)
5709 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5710
5711 i = I915_READ(aud_cntrl_st2);
5712 i |= eldv;
5713 I915_WRITE(aud_cntrl_st2, i);
5714
5715}
5716
e0dac65e
WF
5717static void ironlake_write_eld(struct drm_connector *connector,
5718 struct drm_crtc *crtc)
5719{
5720 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5721 uint8_t *eld = connector->eld;
5722 uint32_t eldv;
5723 uint32_t i;
5724 int len;
5725 int hdmiw_hdmiedid;
b6daa025 5726 int aud_config;
e0dac65e
WF
5727 int aud_cntl_st;
5728 int aud_cntrl_st2;
9b138a83 5729 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 5730
b3f33cbf 5731 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
5732 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5733 aud_config = IBX_AUD_CFG(pipe);
5734 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 5735 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 5736 } else {
9b138a83
WX
5737 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5738 aud_config = CPT_AUD_CFG(pipe);
5739 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 5740 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
5741 }
5742
9b138a83 5743 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
5744
5745 i = I915_READ(aud_cntl_st);
9b138a83 5746 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
5747 if (!i) {
5748 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5749 /* operate blindly on all ports */
1202b4c6
WF
5750 eldv = IBX_ELD_VALIDB;
5751 eldv |= IBX_ELD_VALIDB << 4;
5752 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
5753 } else {
5754 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 5755 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
5756 }
5757
3a9627f4
WF
5758 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5759 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5760 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
5761 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5762 } else
5763 I915_WRITE(aud_config, 0);
e0dac65e 5764
3a9627f4
WF
5765 if (intel_eld_uptodate(connector,
5766 aud_cntrl_st2, eldv,
5767 aud_cntl_st, IBX_ELD_ADDRESS,
5768 hdmiw_hdmiedid))
5769 return;
5770
e0dac65e
WF
5771 i = I915_READ(aud_cntrl_st2);
5772 i &= ~eldv;
5773 I915_WRITE(aud_cntrl_st2, i);
5774
5775 if (!eld[0])
5776 return;
5777
e0dac65e 5778 i = I915_READ(aud_cntl_st);
1202b4c6 5779 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
5780 I915_WRITE(aud_cntl_st, i);
5781
5782 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5783 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5784 for (i = 0; i < len; i++)
5785 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5786
5787 i = I915_READ(aud_cntrl_st2);
5788 i |= eldv;
5789 I915_WRITE(aud_cntrl_st2, i);
5790}
5791
5792void intel_write_eld(struct drm_encoder *encoder,
5793 struct drm_display_mode *mode)
5794{
5795 struct drm_crtc *crtc = encoder->crtc;
5796 struct drm_connector *connector;
5797 struct drm_device *dev = encoder->dev;
5798 struct drm_i915_private *dev_priv = dev->dev_private;
5799
5800 connector = drm_select_eld(encoder, mode);
5801 if (!connector)
5802 return;
5803
5804 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5805 connector->base.id,
5806 drm_get_connector_name(connector),
5807 connector->encoder->base.id,
5808 drm_get_encoder_name(connector->encoder));
5809
5810 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5811
5812 if (dev_priv->display.write_eld)
5813 dev_priv->display.write_eld(connector, crtc);
5814}
5815
79e53945
JB
5816/** Loads the palette/gamma unit for the CRTC with the prepared values */
5817void intel_crtc_load_lut(struct drm_crtc *crtc)
5818{
5819 struct drm_device *dev = crtc->dev;
5820 struct drm_i915_private *dev_priv = dev->dev_private;
5821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 5822 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
5823 int i;
5824
5825 /* The clocks have to be on to load the palette. */
aed3f09d 5826 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
5827 return;
5828
f2b115e6 5829 /* use legacy palette for Ironlake */
bad720ff 5830 if (HAS_PCH_SPLIT(dev))
9db4a9c7 5831 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 5832
79e53945
JB
5833 for (i = 0; i < 256; i++) {
5834 I915_WRITE(palreg + 4 * i,
5835 (intel_crtc->lut_r[i] << 16) |
5836 (intel_crtc->lut_g[i] << 8) |
5837 intel_crtc->lut_b[i]);
5838 }
5839}
5840
560b85bb
CW
5841static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5842{
5843 struct drm_device *dev = crtc->dev;
5844 struct drm_i915_private *dev_priv = dev->dev_private;
5845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5846 bool visible = base != 0;
5847 u32 cntl;
5848
5849 if (intel_crtc->cursor_visible == visible)
5850 return;
5851
9db4a9c7 5852 cntl = I915_READ(_CURACNTR);
560b85bb
CW
5853 if (visible) {
5854 /* On these chipsets we can only modify the base whilst
5855 * the cursor is disabled.
5856 */
9db4a9c7 5857 I915_WRITE(_CURABASE, base);
560b85bb
CW
5858
5859 cntl &= ~(CURSOR_FORMAT_MASK);
5860 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5861 cntl |= CURSOR_ENABLE |
5862 CURSOR_GAMMA_ENABLE |
5863 CURSOR_FORMAT_ARGB;
5864 } else
5865 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 5866 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
5867
5868 intel_crtc->cursor_visible = visible;
5869}
5870
5871static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5872{
5873 struct drm_device *dev = crtc->dev;
5874 struct drm_i915_private *dev_priv = dev->dev_private;
5875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5876 int pipe = intel_crtc->pipe;
5877 bool visible = base != 0;
5878
5879 if (intel_crtc->cursor_visible != visible) {
548f245b 5880 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
5881 if (base) {
5882 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5883 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5884 cntl |= pipe << 28; /* Connect to correct pipe */
5885 } else {
5886 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5887 cntl |= CURSOR_MODE_DISABLE;
5888 }
9db4a9c7 5889 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
5890
5891 intel_crtc->cursor_visible = visible;
5892 }
5893 /* and commit changes on next vblank */
9db4a9c7 5894 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
5895}
5896
65a21cd6
JB
5897static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5898{
5899 struct drm_device *dev = crtc->dev;
5900 struct drm_i915_private *dev_priv = dev->dev_private;
5901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5902 int pipe = intel_crtc->pipe;
5903 bool visible = base != 0;
5904
5905 if (intel_crtc->cursor_visible != visible) {
5906 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5907 if (base) {
5908 cntl &= ~CURSOR_MODE;
5909 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5910 } else {
5911 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5912 cntl |= CURSOR_MODE_DISABLE;
5913 }
5914 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5915
5916 intel_crtc->cursor_visible = visible;
5917 }
5918 /* and commit changes on next vblank */
5919 I915_WRITE(CURBASE_IVB(pipe), base);
5920}
5921
cda4b7d3 5922/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
5923static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5924 bool on)
cda4b7d3
CW
5925{
5926 struct drm_device *dev = crtc->dev;
5927 struct drm_i915_private *dev_priv = dev->dev_private;
5928 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5929 int pipe = intel_crtc->pipe;
5930 int x = intel_crtc->cursor_x;
5931 int y = intel_crtc->cursor_y;
560b85bb 5932 u32 base, pos;
cda4b7d3
CW
5933 bool visible;
5934
5935 pos = 0;
5936
6b383a7f 5937 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
5938 base = intel_crtc->cursor_addr;
5939 if (x > (int) crtc->fb->width)
5940 base = 0;
5941
5942 if (y > (int) crtc->fb->height)
5943 base = 0;
5944 } else
5945 base = 0;
5946
5947 if (x < 0) {
5948 if (x + intel_crtc->cursor_width < 0)
5949 base = 0;
5950
5951 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5952 x = -x;
5953 }
5954 pos |= x << CURSOR_X_SHIFT;
5955
5956 if (y < 0) {
5957 if (y + intel_crtc->cursor_height < 0)
5958 base = 0;
5959
5960 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5961 y = -y;
5962 }
5963 pos |= y << CURSOR_Y_SHIFT;
5964
5965 visible = base != 0;
560b85bb 5966 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
5967 return;
5968
0cd83aa9 5969 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
5970 I915_WRITE(CURPOS_IVB(pipe), pos);
5971 ivb_update_cursor(crtc, base);
5972 } else {
5973 I915_WRITE(CURPOS(pipe), pos);
5974 if (IS_845G(dev) || IS_I865G(dev))
5975 i845_update_cursor(crtc, base);
5976 else
5977 i9xx_update_cursor(crtc, base);
5978 }
cda4b7d3
CW
5979}
5980
79e53945 5981static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 5982 struct drm_file *file,
79e53945
JB
5983 uint32_t handle,
5984 uint32_t width, uint32_t height)
5985{
5986 struct drm_device *dev = crtc->dev;
5987 struct drm_i915_private *dev_priv = dev->dev_private;
5988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 5989 struct drm_i915_gem_object *obj;
cda4b7d3 5990 uint32_t addr;
3f8bc370 5991 int ret;
79e53945 5992
79e53945
JB
5993 /* if we want to turn off the cursor ignore width and height */
5994 if (!handle) {
28c97730 5995 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 5996 addr = 0;
05394f39 5997 obj = NULL;
5004417d 5998 mutex_lock(&dev->struct_mutex);
3f8bc370 5999 goto finish;
79e53945
JB
6000 }
6001
6002 /* Currently we only support 64x64 cursors */
6003 if (width != 64 || height != 64) {
6004 DRM_ERROR("we currently only support 64x64 cursors\n");
6005 return -EINVAL;
6006 }
6007
05394f39 6008 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6009 if (&obj->base == NULL)
79e53945
JB
6010 return -ENOENT;
6011
05394f39 6012 if (obj->base.size < width * height * 4) {
79e53945 6013 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6014 ret = -ENOMEM;
6015 goto fail;
79e53945
JB
6016 }
6017
71acb5eb 6018 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6019 mutex_lock(&dev->struct_mutex);
b295d1b6 6020 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6021 if (obj->tiling_mode) {
6022 DRM_ERROR("cursor cannot be tiled\n");
6023 ret = -EINVAL;
6024 goto fail_locked;
6025 }
6026
2da3b9b9 6027 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6028 if (ret) {
6029 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6030 goto fail_locked;
e7b526bb
CW
6031 }
6032
d9e86c0e
CW
6033 ret = i915_gem_object_put_fence(obj);
6034 if (ret) {
2da3b9b9 6035 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6036 goto fail_unpin;
6037 }
6038
05394f39 6039 addr = obj->gtt_offset;
71acb5eb 6040 } else {
6eeefaf3 6041 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6042 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6043 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6044 align);
71acb5eb
DA
6045 if (ret) {
6046 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6047 goto fail_locked;
71acb5eb 6048 }
05394f39 6049 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6050 }
6051
a6c45cf0 6052 if (IS_GEN2(dev))
14b60391
JB
6053 I915_WRITE(CURSIZE, (height << 12) | width);
6054
3f8bc370 6055 finish:
3f8bc370 6056 if (intel_crtc->cursor_bo) {
b295d1b6 6057 if (dev_priv->info->cursor_needs_physical) {
05394f39 6058 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6059 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6060 } else
6061 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6062 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6063 }
80824003 6064
7f9872e0 6065 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6066
6067 intel_crtc->cursor_addr = addr;
05394f39 6068 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6069 intel_crtc->cursor_width = width;
6070 intel_crtc->cursor_height = height;
6071
6b383a7f 6072 intel_crtc_update_cursor(crtc, true);
3f8bc370 6073
79e53945 6074 return 0;
e7b526bb 6075fail_unpin:
05394f39 6076 i915_gem_object_unpin(obj);
7f9872e0 6077fail_locked:
34b8686e 6078 mutex_unlock(&dev->struct_mutex);
bc9025bd 6079fail:
05394f39 6080 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6081 return ret;
79e53945
JB
6082}
6083
6084static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6085{
79e53945 6086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6087
cda4b7d3
CW
6088 intel_crtc->cursor_x = x;
6089 intel_crtc->cursor_y = y;
652c393a 6090
6b383a7f 6091 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6092
6093 return 0;
6094}
6095
6096/** Sets the color ramps on behalf of RandR */
6097void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6098 u16 blue, int regno)
6099{
6100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6101
6102 intel_crtc->lut_r[regno] = red >> 8;
6103 intel_crtc->lut_g[regno] = green >> 8;
6104 intel_crtc->lut_b[regno] = blue >> 8;
6105}
6106
b8c00ac5
DA
6107void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6108 u16 *blue, int regno)
6109{
6110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6111
6112 *red = intel_crtc->lut_r[regno] << 8;
6113 *green = intel_crtc->lut_g[regno] << 8;
6114 *blue = intel_crtc->lut_b[regno] << 8;
6115}
6116
79e53945 6117static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6118 u16 *blue, uint32_t start, uint32_t size)
79e53945 6119{
7203425a 6120 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6121 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6122
7203425a 6123 for (i = start; i < end; i++) {
79e53945
JB
6124 intel_crtc->lut_r[i] = red[i] >> 8;
6125 intel_crtc->lut_g[i] = green[i] >> 8;
6126 intel_crtc->lut_b[i] = blue[i] >> 8;
6127 }
6128
6129 intel_crtc_load_lut(crtc);
6130}
6131
6132/**
6133 * Get a pipe with a simple mode set on it for doing load-based monitor
6134 * detection.
6135 *
6136 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6137 * its requirements. The pipe will be connected to no other encoders.
79e53945 6138 *
c751ce4f 6139 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6140 * configured for it. In the future, it could choose to temporarily disable
6141 * some outputs to free up a pipe for its use.
6142 *
6143 * \return crtc, or NULL if no pipes are available.
6144 */
6145
6146/* VESA 640x480x72Hz mode to set on the pipe */
6147static struct drm_display_mode load_detect_mode = {
6148 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6149 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6150};
6151
d2dff872
CW
6152static struct drm_framebuffer *
6153intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6154 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6155 struct drm_i915_gem_object *obj)
6156{
6157 struct intel_framebuffer *intel_fb;
6158 int ret;
6159
6160 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6161 if (!intel_fb) {
6162 drm_gem_object_unreference_unlocked(&obj->base);
6163 return ERR_PTR(-ENOMEM);
6164 }
6165
6166 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6167 if (ret) {
6168 drm_gem_object_unreference_unlocked(&obj->base);
6169 kfree(intel_fb);
6170 return ERR_PTR(ret);
6171 }
6172
6173 return &intel_fb->base;
6174}
6175
6176static u32
6177intel_framebuffer_pitch_for_width(int width, int bpp)
6178{
6179 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6180 return ALIGN(pitch, 64);
6181}
6182
6183static u32
6184intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6185{
6186 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6187 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6188}
6189
6190static struct drm_framebuffer *
6191intel_framebuffer_create_for_mode(struct drm_device *dev,
6192 struct drm_display_mode *mode,
6193 int depth, int bpp)
6194{
6195 struct drm_i915_gem_object *obj;
308e5bcb 6196 struct drm_mode_fb_cmd2 mode_cmd;
d2dff872
CW
6197
6198 obj = i915_gem_alloc_object(dev,
6199 intel_framebuffer_size_for_mode(mode, bpp));
6200 if (obj == NULL)
6201 return ERR_PTR(-ENOMEM);
6202
6203 mode_cmd.width = mode->hdisplay;
6204 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6205 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6206 bpp);
5ca0c34a 6207 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
6208
6209 return intel_framebuffer_create(dev, &mode_cmd, obj);
6210}
6211
6212static struct drm_framebuffer *
6213mode_fits_in_fbdev(struct drm_device *dev,
6214 struct drm_display_mode *mode)
6215{
6216 struct drm_i915_private *dev_priv = dev->dev_private;
6217 struct drm_i915_gem_object *obj;
6218 struct drm_framebuffer *fb;
6219
6220 if (dev_priv->fbdev == NULL)
6221 return NULL;
6222
6223 obj = dev_priv->fbdev->ifb.obj;
6224 if (obj == NULL)
6225 return NULL;
6226
6227 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6228 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6229 fb->bits_per_pixel))
d2dff872
CW
6230 return NULL;
6231
01f2c773 6232 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6233 return NULL;
6234
6235 return fb;
6236}
6237
d2434ab7 6238bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 6239 struct drm_display_mode *mode,
8261b191 6240 struct intel_load_detect_pipe *old)
79e53945
JB
6241{
6242 struct intel_crtc *intel_crtc;
d2434ab7
DV
6243 struct intel_encoder *intel_encoder =
6244 intel_attached_encoder(connector);
79e53945 6245 struct drm_crtc *possible_crtc;
4ef69c7a 6246 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6247 struct drm_crtc *crtc = NULL;
6248 struct drm_device *dev = encoder->dev;
94352cf9 6249 struct drm_framebuffer *fb;
79e53945
JB
6250 int i = -1;
6251
d2dff872
CW
6252 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6253 connector->base.id, drm_get_connector_name(connector),
6254 encoder->base.id, drm_get_encoder_name(encoder));
6255
79e53945
JB
6256 /*
6257 * Algorithm gets a little messy:
7a5e4805 6258 *
79e53945
JB
6259 * - if the connector already has an assigned crtc, use it (but make
6260 * sure it's on first)
7a5e4805 6261 *
79e53945
JB
6262 * - try to find the first unused crtc that can drive this connector,
6263 * and use that if we find one
79e53945
JB
6264 */
6265
6266 /* See if we already have a CRTC for this connector */
6267 if (encoder->crtc) {
6268 crtc = encoder->crtc;
8261b191 6269
24218aac 6270 old->dpms_mode = connector->dpms;
8261b191
CW
6271 old->load_detect_temp = false;
6272
6273 /* Make sure the crtc and connector are running */
24218aac
DV
6274 if (connector->dpms != DRM_MODE_DPMS_ON)
6275 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 6276
7173188d 6277 return true;
79e53945
JB
6278 }
6279
6280 /* Find an unused one (if possible) */
6281 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6282 i++;
6283 if (!(encoder->possible_crtcs & (1 << i)))
6284 continue;
6285 if (!possible_crtc->enabled) {
6286 crtc = possible_crtc;
6287 break;
6288 }
79e53945
JB
6289 }
6290
6291 /*
6292 * If we didn't find an unused CRTC, don't use any.
6293 */
6294 if (!crtc) {
7173188d
CW
6295 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6296 return false;
79e53945
JB
6297 }
6298
fc303101
DV
6299 intel_encoder->new_crtc = to_intel_crtc(crtc);
6300 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
6301
6302 intel_crtc = to_intel_crtc(crtc);
24218aac 6303 old->dpms_mode = connector->dpms;
8261b191 6304 old->load_detect_temp = true;
d2dff872 6305 old->release_fb = NULL;
79e53945 6306
6492711d
CW
6307 if (!mode)
6308 mode = &load_detect_mode;
79e53945 6309
d2dff872
CW
6310 /* We need a framebuffer large enough to accommodate all accesses
6311 * that the plane may generate whilst we perform load detection.
6312 * We can not rely on the fbcon either being present (we get called
6313 * during its initialisation to detect all boot displays, or it may
6314 * not even exist) or that it is large enough to satisfy the
6315 * requested mode.
6316 */
94352cf9
DV
6317 fb = mode_fits_in_fbdev(dev, mode);
6318 if (fb == NULL) {
d2dff872 6319 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
6320 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6321 old->release_fb = fb;
d2dff872
CW
6322 } else
6323 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 6324 if (IS_ERR(fb)) {
d2dff872 6325 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
24218aac 6326 goto fail;
79e53945 6327 }
79e53945 6328
94352cf9 6329 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 6330 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6331 if (old->release_fb)
6332 old->release_fb->funcs->destroy(old->release_fb);
24218aac 6333 goto fail;
79e53945 6334 }
7173188d 6335
79e53945 6336 /* let the connector get through one full cycle before testing */
9d0498a2 6337 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6338
7173188d 6339 return true;
24218aac
DV
6340fail:
6341 connector->encoder = NULL;
6342 encoder->crtc = NULL;
24218aac 6343 return false;
79e53945
JB
6344}
6345
d2434ab7 6346void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 6347 struct intel_load_detect_pipe *old)
79e53945 6348{
d2434ab7
DV
6349 struct intel_encoder *intel_encoder =
6350 intel_attached_encoder(connector);
4ef69c7a 6351 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 6352
d2dff872
CW
6353 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6354 connector->base.id, drm_get_connector_name(connector),
6355 encoder->base.id, drm_get_encoder_name(encoder));
6356
8261b191 6357 if (old->load_detect_temp) {
fc303101
DV
6358 struct drm_crtc *crtc = encoder->crtc;
6359
6360 to_intel_connector(connector)->new_encoder = NULL;
6361 intel_encoder->new_crtc = NULL;
6362 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
6363
6364 if (old->release_fb)
6365 old->release_fb->funcs->destroy(old->release_fb);
6366
0622a53c 6367 return;
79e53945
JB
6368 }
6369
c751ce4f 6370 /* Switch crtc and encoder back off if necessary */
24218aac
DV
6371 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6372 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
6373}
6374
6375/* Returns the clock of the currently programmed mode of the given pipe. */
6376static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6377{
6378 struct drm_i915_private *dev_priv = dev->dev_private;
6379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6380 int pipe = intel_crtc->pipe;
548f245b 6381 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6382 u32 fp;
6383 intel_clock_t clock;
6384
6385 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6386 fp = I915_READ(FP0(pipe));
79e53945 6387 else
39adb7a5 6388 fp = I915_READ(FP1(pipe));
79e53945
JB
6389
6390 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6391 if (IS_PINEVIEW(dev)) {
6392 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6393 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6394 } else {
6395 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6396 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6397 }
6398
a6c45cf0 6399 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6400 if (IS_PINEVIEW(dev))
6401 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6402 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6403 else
6404 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6405 DPLL_FPA01_P1_POST_DIV_SHIFT);
6406
6407 switch (dpll & DPLL_MODE_MASK) {
6408 case DPLLB_MODE_DAC_SERIAL:
6409 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6410 5 : 10;
6411 break;
6412 case DPLLB_MODE_LVDS:
6413 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6414 7 : 14;
6415 break;
6416 default:
28c97730 6417 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6418 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6419 return 0;
6420 }
6421
6422 /* XXX: Handle the 100Mhz refclk */
2177832f 6423 intel_clock(dev, 96000, &clock);
79e53945
JB
6424 } else {
6425 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6426
6427 if (is_lvds) {
6428 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6429 DPLL_FPA01_P1_POST_DIV_SHIFT);
6430 clock.p2 = 14;
6431
6432 if ((dpll & PLL_REF_INPUT_MASK) ==
6433 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6434 /* XXX: might not be 66MHz */
2177832f 6435 intel_clock(dev, 66000, &clock);
79e53945 6436 } else
2177832f 6437 intel_clock(dev, 48000, &clock);
79e53945
JB
6438 } else {
6439 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6440 clock.p1 = 2;
6441 else {
6442 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6443 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6444 }
6445 if (dpll & PLL_P2_DIVIDE_BY_4)
6446 clock.p2 = 4;
6447 else
6448 clock.p2 = 2;
6449
2177832f 6450 intel_clock(dev, 48000, &clock);
79e53945
JB
6451 }
6452 }
6453
6454 /* XXX: It would be nice to validate the clocks, but we can't reuse
6455 * i830PllIsValid() because it relies on the xf86_config connector
6456 * configuration being accurate, which it isn't necessarily.
6457 */
6458
6459 return clock.dot;
6460}
6461
6462/** Returns the currently programmed mode of the given pipe. */
6463struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6464 struct drm_crtc *crtc)
6465{
548f245b 6466 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
6467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6468 int pipe = intel_crtc->pipe;
6469 struct drm_display_mode *mode;
548f245b
JB
6470 int htot = I915_READ(HTOTAL(pipe));
6471 int hsync = I915_READ(HSYNC(pipe));
6472 int vtot = I915_READ(VTOTAL(pipe));
6473 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
6474
6475 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6476 if (!mode)
6477 return NULL;
6478
6479 mode->clock = intel_crtc_clock_get(dev, crtc);
6480 mode->hdisplay = (htot & 0xffff) + 1;
6481 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6482 mode->hsync_start = (hsync & 0xffff) + 1;
6483 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6484 mode->vdisplay = (vtot & 0xffff) + 1;
6485 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6486 mode->vsync_start = (vsync & 0xffff) + 1;
6487 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6488
6489 drm_mode_set_name(mode);
79e53945
JB
6490
6491 return mode;
6492}
6493
3dec0095 6494static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6495{
6496 struct drm_device *dev = crtc->dev;
6497 drm_i915_private_t *dev_priv = dev->dev_private;
6498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6499 int pipe = intel_crtc->pipe;
dbdc6479
JB
6500 int dpll_reg = DPLL(pipe);
6501 int dpll;
652c393a 6502
bad720ff 6503 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6504 return;
6505
6506 if (!dev_priv->lvds_downclock_avail)
6507 return;
6508
dbdc6479 6509 dpll = I915_READ(dpll_reg);
652c393a 6510 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6511 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6512
8ac5a6d5 6513 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6514
6515 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6516 I915_WRITE(dpll_reg, dpll);
9d0498a2 6517 intel_wait_for_vblank(dev, pipe);
dbdc6479 6518
652c393a
JB
6519 dpll = I915_READ(dpll_reg);
6520 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6521 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6522 }
652c393a
JB
6523}
6524
6525static void intel_decrease_pllclock(struct drm_crtc *crtc)
6526{
6527 struct drm_device *dev = crtc->dev;
6528 drm_i915_private_t *dev_priv = dev->dev_private;
6529 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6530
bad720ff 6531 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6532 return;
6533
6534 if (!dev_priv->lvds_downclock_avail)
6535 return;
6536
6537 /*
6538 * Since this is called by a timer, we should never get here in
6539 * the manual case.
6540 */
6541 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6542 int pipe = intel_crtc->pipe;
6543 int dpll_reg = DPLL(pipe);
6544 int dpll;
f6e5b160 6545
44d98a61 6546 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6547
8ac5a6d5 6548 assert_panel_unlocked(dev_priv, pipe);
652c393a 6549
dc257cf1 6550 dpll = I915_READ(dpll_reg);
652c393a
JB
6551 dpll |= DISPLAY_RATE_SELECT_FPA1;
6552 I915_WRITE(dpll_reg, dpll);
9d0498a2 6553 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6554 dpll = I915_READ(dpll_reg);
6555 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6556 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6557 }
6558
6559}
6560
f047e395
CW
6561void intel_mark_busy(struct drm_device *dev)
6562{
f047e395
CW
6563 i915_update_gfx_val(dev->dev_private);
6564}
6565
6566void intel_mark_idle(struct drm_device *dev)
652c393a 6567{
f047e395
CW
6568}
6569
6570void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6571{
6572 struct drm_device *dev = obj->base.dev;
652c393a 6573 struct drm_crtc *crtc;
652c393a
JB
6574
6575 if (!i915_powersave)
6576 return;
6577
652c393a 6578 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6579 if (!crtc->fb)
6580 continue;
6581
f047e395
CW
6582 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6583 intel_increase_pllclock(crtc);
652c393a 6584 }
652c393a
JB
6585}
6586
f047e395 6587void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6588{
f047e395
CW
6589 struct drm_device *dev = obj->base.dev;
6590 struct drm_crtc *crtc;
652c393a 6591
f047e395 6592 if (!i915_powersave)
acb87dfb
CW
6593 return;
6594
652c393a
JB
6595 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6596 if (!crtc->fb)
6597 continue;
6598
f047e395
CW
6599 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6600 intel_decrease_pllclock(crtc);
652c393a
JB
6601 }
6602}
6603
79e53945
JB
6604static void intel_crtc_destroy(struct drm_crtc *crtc)
6605{
6606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6607 struct drm_device *dev = crtc->dev;
6608 struct intel_unpin_work *work;
6609 unsigned long flags;
6610
6611 spin_lock_irqsave(&dev->event_lock, flags);
6612 work = intel_crtc->unpin_work;
6613 intel_crtc->unpin_work = NULL;
6614 spin_unlock_irqrestore(&dev->event_lock, flags);
6615
6616 if (work) {
6617 cancel_work_sync(&work->work);
6618 kfree(work);
6619 }
79e53945
JB
6620
6621 drm_crtc_cleanup(crtc);
67e77c5a 6622
79e53945
JB
6623 kfree(intel_crtc);
6624}
6625
6b95a207
KH
6626static void intel_unpin_work_fn(struct work_struct *__work)
6627{
6628 struct intel_unpin_work *work =
6629 container_of(__work, struct intel_unpin_work, work);
6630
6631 mutex_lock(&work->dev->struct_mutex);
1690e1eb 6632 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6633 drm_gem_object_unreference(&work->pending_flip_obj->base);
6634 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6635
7782de3b 6636 intel_update_fbc(work->dev);
6b95a207
KH
6637 mutex_unlock(&work->dev->struct_mutex);
6638 kfree(work);
6639}
6640
1afe3e9d 6641static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6642 struct drm_crtc *crtc)
6b95a207
KH
6643{
6644 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6646 struct intel_unpin_work *work;
05394f39 6647 struct drm_i915_gem_object *obj;
6b95a207 6648 struct drm_pending_vblank_event *e;
95cb1b02 6649 struct timeval tvbl;
6b95a207
KH
6650 unsigned long flags;
6651
6652 /* Ignore early vblank irqs */
6653 if (intel_crtc == NULL)
6654 return;
6655
6656 spin_lock_irqsave(&dev->event_lock, flags);
6657 work = intel_crtc->unpin_work;
6658 if (work == NULL || !work->pending) {
6659 spin_unlock_irqrestore(&dev->event_lock, flags);
6660 return;
6661 }
6662
6663 intel_crtc->unpin_work = NULL;
6b95a207
KH
6664
6665 if (work->event) {
6666 e = work->event;
49b14a5c 6667 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df 6668
49b14a5c
MK
6669 e->event.tv_sec = tvbl.tv_sec;
6670 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6671
6b95a207
KH
6672 list_add_tail(&e->base.link,
6673 &e->base.file_priv->event_list);
6674 wake_up_interruptible(&e->base.file_priv->event_wait);
6675 }
6676
0af7e4df
MK
6677 drm_vblank_put(dev, intel_crtc->pipe);
6678
6b95a207
KH
6679 spin_unlock_irqrestore(&dev->event_lock, flags);
6680
05394f39 6681 obj = work->old_fb_obj;
d9e86c0e 6682
e59f2bac 6683 atomic_clear_mask(1 << intel_crtc->plane,
05394f39 6684 &obj->pending_flip.counter);
d9e86c0e 6685
5bb61643 6686 wake_up(&dev_priv->pending_flip_queue);
6b95a207 6687 schedule_work(&work->work);
e5510fac
JB
6688
6689 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6690}
6691
1afe3e9d
JB
6692void intel_finish_page_flip(struct drm_device *dev, int pipe)
6693{
6694 drm_i915_private_t *dev_priv = dev->dev_private;
6695 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6696
49b14a5c 6697 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6698}
6699
6700void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6701{
6702 drm_i915_private_t *dev_priv = dev->dev_private;
6703 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6704
49b14a5c 6705 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6706}
6707
6b95a207
KH
6708void intel_prepare_page_flip(struct drm_device *dev, int plane)
6709{
6710 drm_i915_private_t *dev_priv = dev->dev_private;
6711 struct intel_crtc *intel_crtc =
6712 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6713 unsigned long flags;
6714
6715 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6716 if (intel_crtc->unpin_work) {
4e5359cd
SF
6717 if ((++intel_crtc->unpin_work->pending) > 1)
6718 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6719 } else {
6720 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6721 }
6b95a207
KH
6722 spin_unlock_irqrestore(&dev->event_lock, flags);
6723}
6724
8c9f3aaf
JB
6725static int intel_gen2_queue_flip(struct drm_device *dev,
6726 struct drm_crtc *crtc,
6727 struct drm_framebuffer *fb,
6728 struct drm_i915_gem_object *obj)
6729{
6730 struct drm_i915_private *dev_priv = dev->dev_private;
6731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6732 u32 flip_mask;
6d90c952 6733 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6734 int ret;
6735
6d90c952 6736 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6737 if (ret)
83d4092b 6738 goto err;
8c9f3aaf 6739
6d90c952 6740 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6741 if (ret)
83d4092b 6742 goto err_unpin;
8c9f3aaf
JB
6743
6744 /* Can't queue multiple flips, so wait for the previous
6745 * one to finish before executing the next.
6746 */
6747 if (intel_crtc->plane)
6748 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6749 else
6750 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6751 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6752 intel_ring_emit(ring, MI_NOOP);
6753 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6754 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6755 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6756 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6757 intel_ring_emit(ring, 0); /* aux display base address, unused */
6758 intel_ring_advance(ring);
83d4092b
CW
6759 return 0;
6760
6761err_unpin:
6762 intel_unpin_fb_obj(obj);
6763err:
8c9f3aaf
JB
6764 return ret;
6765}
6766
6767static int intel_gen3_queue_flip(struct drm_device *dev,
6768 struct drm_crtc *crtc,
6769 struct drm_framebuffer *fb,
6770 struct drm_i915_gem_object *obj)
6771{
6772 struct drm_i915_private *dev_priv = dev->dev_private;
6773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6774 u32 flip_mask;
6d90c952 6775 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6776 int ret;
6777
6d90c952 6778 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6779 if (ret)
83d4092b 6780 goto err;
8c9f3aaf 6781
6d90c952 6782 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6783 if (ret)
83d4092b 6784 goto err_unpin;
8c9f3aaf
JB
6785
6786 if (intel_crtc->plane)
6787 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6788 else
6789 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6790 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6791 intel_ring_emit(ring, MI_NOOP);
6792 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6793 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6794 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6795 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6796 intel_ring_emit(ring, MI_NOOP);
6797
6798 intel_ring_advance(ring);
83d4092b
CW
6799 return 0;
6800
6801err_unpin:
6802 intel_unpin_fb_obj(obj);
6803err:
8c9f3aaf
JB
6804 return ret;
6805}
6806
6807static int intel_gen4_queue_flip(struct drm_device *dev,
6808 struct drm_crtc *crtc,
6809 struct drm_framebuffer *fb,
6810 struct drm_i915_gem_object *obj)
6811{
6812 struct drm_i915_private *dev_priv = dev->dev_private;
6813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6814 uint32_t pf, pipesrc;
6d90c952 6815 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6816 int ret;
6817
6d90c952 6818 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6819 if (ret)
83d4092b 6820 goto err;
8c9f3aaf 6821
6d90c952 6822 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6823 if (ret)
83d4092b 6824 goto err_unpin;
8c9f3aaf
JB
6825
6826 /* i965+ uses the linear or tiled offsets from the
6827 * Display Registers (which do not change across a page-flip)
6828 * so we need only reprogram the base address.
6829 */
6d90c952
DV
6830 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6831 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6832 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
6833 intel_ring_emit(ring,
6834 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6835 obj->tiling_mode);
8c9f3aaf
JB
6836
6837 /* XXX Enabling the panel-fitter across page-flip is so far
6838 * untested on non-native modes, so ignore it for now.
6839 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6840 */
6841 pf = 0;
6842 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6843 intel_ring_emit(ring, pf | pipesrc);
6844 intel_ring_advance(ring);
83d4092b
CW
6845 return 0;
6846
6847err_unpin:
6848 intel_unpin_fb_obj(obj);
6849err:
8c9f3aaf
JB
6850 return ret;
6851}
6852
6853static int intel_gen6_queue_flip(struct drm_device *dev,
6854 struct drm_crtc *crtc,
6855 struct drm_framebuffer *fb,
6856 struct drm_i915_gem_object *obj)
6857{
6858 struct drm_i915_private *dev_priv = dev->dev_private;
6859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 6860 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6861 uint32_t pf, pipesrc;
6862 int ret;
6863
6d90c952 6864 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6865 if (ret)
83d4092b 6866 goto err;
8c9f3aaf 6867
6d90c952 6868 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6869 if (ret)
83d4092b 6870 goto err_unpin;
8c9f3aaf 6871
6d90c952
DV
6872 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6873 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6874 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 6875 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 6876
dc257cf1
DV
6877 /* Contrary to the suggestions in the documentation,
6878 * "Enable Panel Fitter" does not seem to be required when page
6879 * flipping with a non-native mode, and worse causes a normal
6880 * modeset to fail.
6881 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6882 */
6883 pf = 0;
8c9f3aaf 6884 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6885 intel_ring_emit(ring, pf | pipesrc);
6886 intel_ring_advance(ring);
83d4092b
CW
6887 return 0;
6888
6889err_unpin:
6890 intel_unpin_fb_obj(obj);
6891err:
8c9f3aaf
JB
6892 return ret;
6893}
6894
7c9017e5
JB
6895/*
6896 * On gen7 we currently use the blit ring because (in early silicon at least)
6897 * the render ring doesn't give us interrpts for page flip completion, which
6898 * means clients will hang after the first flip is queued. Fortunately the
6899 * blit ring generates interrupts properly, so use it instead.
6900 */
6901static int intel_gen7_queue_flip(struct drm_device *dev,
6902 struct drm_crtc *crtc,
6903 struct drm_framebuffer *fb,
6904 struct drm_i915_gem_object *obj)
6905{
6906 struct drm_i915_private *dev_priv = dev->dev_private;
6907 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6908 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 6909 uint32_t plane_bit = 0;
7c9017e5
JB
6910 int ret;
6911
6912 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6913 if (ret)
83d4092b 6914 goto err;
7c9017e5 6915
cb05d8de
DV
6916 switch(intel_crtc->plane) {
6917 case PLANE_A:
6918 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6919 break;
6920 case PLANE_B:
6921 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6922 break;
6923 case PLANE_C:
6924 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6925 break;
6926 default:
6927 WARN_ONCE(1, "unknown plane in flip command\n");
6928 ret = -ENODEV;
ab3951eb 6929 goto err_unpin;
cb05d8de
DV
6930 }
6931
7c9017e5
JB
6932 ret = intel_ring_begin(ring, 4);
6933 if (ret)
83d4092b 6934 goto err_unpin;
7c9017e5 6935
cb05d8de 6936 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 6937 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 6938 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5
JB
6939 intel_ring_emit(ring, (MI_NOOP));
6940 intel_ring_advance(ring);
83d4092b
CW
6941 return 0;
6942
6943err_unpin:
6944 intel_unpin_fb_obj(obj);
6945err:
7c9017e5
JB
6946 return ret;
6947}
6948
8c9f3aaf
JB
6949static int intel_default_queue_flip(struct drm_device *dev,
6950 struct drm_crtc *crtc,
6951 struct drm_framebuffer *fb,
6952 struct drm_i915_gem_object *obj)
6953{
6954 return -ENODEV;
6955}
6956
6b95a207
KH
6957static int intel_crtc_page_flip(struct drm_crtc *crtc,
6958 struct drm_framebuffer *fb,
6959 struct drm_pending_vblank_event *event)
6960{
6961 struct drm_device *dev = crtc->dev;
6962 struct drm_i915_private *dev_priv = dev->dev_private;
6963 struct intel_framebuffer *intel_fb;
05394f39 6964 struct drm_i915_gem_object *obj;
6b95a207
KH
6965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6966 struct intel_unpin_work *work;
8c9f3aaf 6967 unsigned long flags;
52e68630 6968 int ret;
6b95a207 6969
e6a595d2
VS
6970 /* Can't change pixel format via MI display flips. */
6971 if (fb->pixel_format != crtc->fb->pixel_format)
6972 return -EINVAL;
6973
6974 /*
6975 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6976 * Note that pitch changes could also affect these register.
6977 */
6978 if (INTEL_INFO(dev)->gen > 3 &&
6979 (fb->offsets[0] != crtc->fb->offsets[0] ||
6980 fb->pitches[0] != crtc->fb->pitches[0]))
6981 return -EINVAL;
6982
6b95a207
KH
6983 work = kzalloc(sizeof *work, GFP_KERNEL);
6984 if (work == NULL)
6985 return -ENOMEM;
6986
6b95a207
KH
6987 work->event = event;
6988 work->dev = crtc->dev;
6989 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 6990 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
6991 INIT_WORK(&work->work, intel_unpin_work_fn);
6992
7317c75e
JB
6993 ret = drm_vblank_get(dev, intel_crtc->pipe);
6994 if (ret)
6995 goto free_work;
6996
6b95a207
KH
6997 /* We borrow the event spin lock for protecting unpin_work */
6998 spin_lock_irqsave(&dev->event_lock, flags);
6999 if (intel_crtc->unpin_work) {
7000 spin_unlock_irqrestore(&dev->event_lock, flags);
7001 kfree(work);
7317c75e 7002 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
7003
7004 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7005 return -EBUSY;
7006 }
7007 intel_crtc->unpin_work = work;
7008 spin_unlock_irqrestore(&dev->event_lock, flags);
7009
7010 intel_fb = to_intel_framebuffer(fb);
7011 obj = intel_fb->obj;
7012
79158103
CW
7013 ret = i915_mutex_lock_interruptible(dev);
7014 if (ret)
7015 goto cleanup;
6b95a207 7016
75dfca80 7017 /* Reference the objects for the scheduled work. */
05394f39
CW
7018 drm_gem_object_reference(&work->old_fb_obj->base);
7019 drm_gem_object_reference(&obj->base);
6b95a207
KH
7020
7021 crtc->fb = fb;
96b099fd 7022
e1f99ce6 7023 work->pending_flip_obj = obj;
e1f99ce6 7024
4e5359cd
SF
7025 work->enable_stall_check = true;
7026
e1f99ce6
CW
7027 /* Block clients from rendering to the new back buffer until
7028 * the flip occurs and the object is no longer visible.
7029 */
05394f39 7030 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 7031
8c9f3aaf
JB
7032 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7033 if (ret)
7034 goto cleanup_pending;
6b95a207 7035
7782de3b 7036 intel_disable_fbc(dev);
f047e395 7037 intel_mark_fb_busy(obj);
6b95a207
KH
7038 mutex_unlock(&dev->struct_mutex);
7039
e5510fac
JB
7040 trace_i915_flip_request(intel_crtc->plane, obj);
7041
6b95a207 7042 return 0;
96b099fd 7043
8c9f3aaf
JB
7044cleanup_pending:
7045 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
7046 drm_gem_object_unreference(&work->old_fb_obj->base);
7047 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7048 mutex_unlock(&dev->struct_mutex);
7049
79158103 7050cleanup:
96b099fd
CW
7051 spin_lock_irqsave(&dev->event_lock, flags);
7052 intel_crtc->unpin_work = NULL;
7053 spin_unlock_irqrestore(&dev->event_lock, flags);
7054
7317c75e
JB
7055 drm_vblank_put(dev, intel_crtc->pipe);
7056free_work:
96b099fd
CW
7057 kfree(work);
7058
7059 return ret;
6b95a207
KH
7060}
7061
f6e5b160 7062static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
7063 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7064 .load_lut = intel_crtc_load_lut,
976f8a20 7065 .disable = intel_crtc_noop,
f6e5b160
CW
7066};
7067
6ed0f796 7068bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 7069{
6ed0f796
DV
7070 struct intel_encoder *other_encoder;
7071 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 7072
6ed0f796
DV
7073 if (WARN_ON(!crtc))
7074 return false;
7075
7076 list_for_each_entry(other_encoder,
7077 &crtc->dev->mode_config.encoder_list,
7078 base.head) {
7079
7080 if (&other_encoder->new_crtc->base != crtc ||
7081 encoder == other_encoder)
7082 continue;
7083 else
7084 return true;
f47166d2
CW
7085 }
7086
6ed0f796
DV
7087 return false;
7088}
47f1c6c9 7089
50f56119
DV
7090static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7091 struct drm_crtc *crtc)
7092{
7093 struct drm_device *dev;
7094 struct drm_crtc *tmp;
7095 int crtc_mask = 1;
47f1c6c9 7096
50f56119 7097 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 7098
50f56119 7099 dev = crtc->dev;
47f1c6c9 7100
50f56119
DV
7101 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7102 if (tmp == crtc)
7103 break;
7104 crtc_mask <<= 1;
7105 }
47f1c6c9 7106
50f56119
DV
7107 if (encoder->possible_crtcs & crtc_mask)
7108 return true;
7109 return false;
47f1c6c9 7110}
79e53945 7111
9a935856
DV
7112/**
7113 * intel_modeset_update_staged_output_state
7114 *
7115 * Updates the staged output configuration state, e.g. after we've read out the
7116 * current hw state.
7117 */
7118static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 7119{
9a935856
DV
7120 struct intel_encoder *encoder;
7121 struct intel_connector *connector;
f6e5b160 7122
9a935856
DV
7123 list_for_each_entry(connector, &dev->mode_config.connector_list,
7124 base.head) {
7125 connector->new_encoder =
7126 to_intel_encoder(connector->base.encoder);
7127 }
f6e5b160 7128
9a935856
DV
7129 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7130 base.head) {
7131 encoder->new_crtc =
7132 to_intel_crtc(encoder->base.crtc);
7133 }
f6e5b160
CW
7134}
7135
9a935856
DV
7136/**
7137 * intel_modeset_commit_output_state
7138 *
7139 * This function copies the stage display pipe configuration to the real one.
7140 */
7141static void intel_modeset_commit_output_state(struct drm_device *dev)
7142{
7143 struct intel_encoder *encoder;
7144 struct intel_connector *connector;
f6e5b160 7145
9a935856
DV
7146 list_for_each_entry(connector, &dev->mode_config.connector_list,
7147 base.head) {
7148 connector->base.encoder = &connector->new_encoder->base;
7149 }
f6e5b160 7150
9a935856
DV
7151 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7152 base.head) {
7153 encoder->base.crtc = &encoder->new_crtc->base;
7154 }
7155}
7156
7758a113
DV
7157static struct drm_display_mode *
7158intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7159 struct drm_display_mode *mode)
ee7b9f93 7160{
7758a113
DV
7161 struct drm_device *dev = crtc->dev;
7162 struct drm_display_mode *adjusted_mode;
7163 struct drm_encoder_helper_funcs *encoder_funcs;
7164 struct intel_encoder *encoder;
ee7b9f93 7165
7758a113
DV
7166 adjusted_mode = drm_mode_duplicate(dev, mode);
7167 if (!adjusted_mode)
7168 return ERR_PTR(-ENOMEM);
7169
7170 /* Pass our mode to the connectors and the CRTC to give them a chance to
7171 * adjust it according to limitations or connector properties, and also
7172 * a chance to reject the mode entirely.
7173 */
7174 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7175 base.head) {
7176
7177 if (&encoder->new_crtc->base != crtc)
7178 continue;
7179 encoder_funcs = encoder->base.helper_private;
7180 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7181 adjusted_mode))) {
7182 DRM_DEBUG_KMS("Encoder fixup failed\n");
7183 goto fail;
7184 }
ee7b9f93
JB
7185 }
7186
7758a113
DV
7187 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7188 DRM_DEBUG_KMS("CRTC fixup failed\n");
7189 goto fail;
ee7b9f93 7190 }
7758a113
DV
7191 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7192
7193 return adjusted_mode;
7194fail:
7195 drm_mode_destroy(dev, adjusted_mode);
7196 return ERR_PTR(-EINVAL);
ee7b9f93
JB
7197}
7198
e2e1ed41
DV
7199/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7200 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7201static void
7202intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7203 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
7204{
7205 struct intel_crtc *intel_crtc;
e2e1ed41
DV
7206 struct drm_device *dev = crtc->dev;
7207 struct intel_encoder *encoder;
7208 struct intel_connector *connector;
7209 struct drm_crtc *tmp_crtc;
79e53945 7210
e2e1ed41 7211 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 7212
e2e1ed41
DV
7213 /* Check which crtcs have changed outputs connected to them, these need
7214 * to be part of the prepare_pipes mask. We don't (yet) support global
7215 * modeset across multiple crtcs, so modeset_pipes will only have one
7216 * bit set at most. */
7217 list_for_each_entry(connector, &dev->mode_config.connector_list,
7218 base.head) {
7219 if (connector->base.encoder == &connector->new_encoder->base)
7220 continue;
79e53945 7221
e2e1ed41
DV
7222 if (connector->base.encoder) {
7223 tmp_crtc = connector->base.encoder->crtc;
7224
7225 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7226 }
7227
7228 if (connector->new_encoder)
7229 *prepare_pipes |=
7230 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
7231 }
7232
e2e1ed41
DV
7233 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7234 base.head) {
7235 if (encoder->base.crtc == &encoder->new_crtc->base)
7236 continue;
7237
7238 if (encoder->base.crtc) {
7239 tmp_crtc = encoder->base.crtc;
7240
7241 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7242 }
7243
7244 if (encoder->new_crtc)
7245 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
7246 }
7247
e2e1ed41
DV
7248 /* Check for any pipes that will be fully disabled ... */
7249 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7250 base.head) {
7251 bool used = false;
22fd0fab 7252
e2e1ed41
DV
7253 /* Don't try to disable disabled crtcs. */
7254 if (!intel_crtc->base.enabled)
7255 continue;
7e7d76c3 7256
e2e1ed41
DV
7257 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7258 base.head) {
7259 if (encoder->new_crtc == intel_crtc)
7260 used = true;
7261 }
7262
7263 if (!used)
7264 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
7265 }
7266
e2e1ed41
DV
7267
7268 /* set_mode is also used to update properties on life display pipes. */
7269 intel_crtc = to_intel_crtc(crtc);
7270 if (crtc->enabled)
7271 *prepare_pipes |= 1 << intel_crtc->pipe;
7272
7273 /* We only support modeset on one single crtc, hence we need to do that
7274 * only for the passed in crtc iff we change anything else than just
7275 * disable crtcs.
7276 *
7277 * This is actually not true, to be fully compatible with the old crtc
7278 * helper we automatically disable _any_ output (i.e. doesn't need to be
7279 * connected to the crtc we're modesetting on) if it's disconnected.
7280 * Which is a rather nutty api (since changed the output configuration
7281 * without userspace's explicit request can lead to confusion), but
7282 * alas. Hence we currently need to modeset on all pipes we prepare. */
7283 if (*prepare_pipes)
7284 *modeset_pipes = *prepare_pipes;
7285
7286 /* ... and mask these out. */
7287 *modeset_pipes &= ~(*disable_pipes);
7288 *prepare_pipes &= ~(*disable_pipes);
7289}
7290
ea9d758d
DV
7291static bool intel_crtc_in_use(struct drm_crtc *crtc)
7292{
7293 struct drm_encoder *encoder;
7294 struct drm_device *dev = crtc->dev;
7295
7296 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7297 if (encoder->crtc == crtc)
7298 return true;
7299
7300 return false;
7301}
7302
7303static void
7304intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7305{
7306 struct intel_encoder *intel_encoder;
7307 struct intel_crtc *intel_crtc;
7308 struct drm_connector *connector;
7309
7310 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7311 base.head) {
7312 if (!intel_encoder->base.crtc)
7313 continue;
7314
7315 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7316
7317 if (prepare_pipes & (1 << intel_crtc->pipe))
7318 intel_encoder->connectors_active = false;
7319 }
7320
7321 intel_modeset_commit_output_state(dev);
7322
7323 /* Update computed state. */
7324 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7325 base.head) {
7326 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7327 }
7328
7329 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7330 if (!connector->encoder || !connector->encoder->crtc)
7331 continue;
7332
7333 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7334
7335 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
7336 struct drm_property *dpms_property =
7337 dev->mode_config.dpms_property;
7338
ea9d758d 7339 connector->dpms = DRM_MODE_DPMS_ON;
68d34720
DV
7340 drm_connector_property_set_value(connector,
7341 dpms_property,
7342 DRM_MODE_DPMS_ON);
ea9d758d
DV
7343
7344 intel_encoder = to_intel_encoder(connector->encoder);
7345 intel_encoder->connectors_active = true;
7346 }
7347 }
7348
7349}
7350
25c5b266
DV
7351#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7352 list_for_each_entry((intel_crtc), \
7353 &(dev)->mode_config.crtc_list, \
7354 base.head) \
7355 if (mask & (1 <<(intel_crtc)->pipe)) \
7356
b980514c 7357void
8af6cf88
DV
7358intel_modeset_check_state(struct drm_device *dev)
7359{
7360 struct intel_crtc *crtc;
7361 struct intel_encoder *encoder;
7362 struct intel_connector *connector;
7363
7364 list_for_each_entry(connector, &dev->mode_config.connector_list,
7365 base.head) {
7366 /* This also checks the encoder/connector hw state with the
7367 * ->get_hw_state callbacks. */
7368 intel_connector_check_state(connector);
7369
7370 WARN(&connector->new_encoder->base != connector->base.encoder,
7371 "connector's staged encoder doesn't match current encoder\n");
7372 }
7373
7374 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7375 base.head) {
7376 bool enabled = false;
7377 bool active = false;
7378 enum pipe pipe, tracked_pipe;
7379
7380 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7381 encoder->base.base.id,
7382 drm_get_encoder_name(&encoder->base));
7383
7384 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7385 "encoder's stage crtc doesn't match current crtc\n");
7386 WARN(encoder->connectors_active && !encoder->base.crtc,
7387 "encoder's active_connectors set, but no crtc\n");
7388
7389 list_for_each_entry(connector, &dev->mode_config.connector_list,
7390 base.head) {
7391 if (connector->base.encoder != &encoder->base)
7392 continue;
7393 enabled = true;
7394 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7395 active = true;
7396 }
7397 WARN(!!encoder->base.crtc != enabled,
7398 "encoder's enabled state mismatch "
7399 "(expected %i, found %i)\n",
7400 !!encoder->base.crtc, enabled);
7401 WARN(active && !encoder->base.crtc,
7402 "active encoder with no crtc\n");
7403
7404 WARN(encoder->connectors_active != active,
7405 "encoder's computed active state doesn't match tracked active state "
7406 "(expected %i, found %i)\n", active, encoder->connectors_active);
7407
7408 active = encoder->get_hw_state(encoder, &pipe);
7409 WARN(active != encoder->connectors_active,
7410 "encoder's hw state doesn't match sw tracking "
7411 "(expected %i, found %i)\n",
7412 encoder->connectors_active, active);
7413
7414 if (!encoder->base.crtc)
7415 continue;
7416
7417 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7418 WARN(active && pipe != tracked_pipe,
7419 "active encoder's pipe doesn't match"
7420 "(expected %i, found %i)\n",
7421 tracked_pipe, pipe);
7422
7423 }
7424
7425 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7426 base.head) {
7427 bool enabled = false;
7428 bool active = false;
7429
7430 DRM_DEBUG_KMS("[CRTC:%d]\n",
7431 crtc->base.base.id);
7432
7433 WARN(crtc->active && !crtc->base.enabled,
7434 "active crtc, but not enabled in sw tracking\n");
7435
7436 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7437 base.head) {
7438 if (encoder->base.crtc != &crtc->base)
7439 continue;
7440 enabled = true;
7441 if (encoder->connectors_active)
7442 active = true;
7443 }
7444 WARN(active != crtc->active,
7445 "crtc's computed active state doesn't match tracked active state "
7446 "(expected %i, found %i)\n", active, crtc->active);
7447 WARN(enabled != crtc->base.enabled,
7448 "crtc's computed enabled state doesn't match tracked enabled state "
7449 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7450
7451 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7452 }
7453}
7454
a6778b3c
DV
7455bool intel_set_mode(struct drm_crtc *crtc,
7456 struct drm_display_mode *mode,
94352cf9 7457 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7458{
7459 struct drm_device *dev = crtc->dev;
dbf2b54e 7460 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7461 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
a6778b3c 7462 struct drm_encoder_helper_funcs *encoder_funcs;
a6778b3c 7463 struct drm_encoder *encoder;
25c5b266
DV
7464 struct intel_crtc *intel_crtc;
7465 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7466 bool ret = true;
7467
e2e1ed41 7468 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7469 &prepare_pipes, &disable_pipes);
7470
7471 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7472 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7473
976f8a20
DV
7474 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7475 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7476
a6778b3c
DV
7477 saved_hwmode = crtc->hwmode;
7478 saved_mode = crtc->mode;
a6778b3c 7479
25c5b266
DV
7480 /* Hack: Because we don't (yet) support global modeset on multiple
7481 * crtcs, we don't keep track of the new mode for more than one crtc.
7482 * Hence simply check whether any bit is set in modeset_pipes in all the
7483 * pieces of code that are not yet converted to deal with mutliple crtcs
7484 * changing their mode at the same time. */
7485 adjusted_mode = NULL;
7486 if (modeset_pipes) {
7487 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7488 if (IS_ERR(adjusted_mode)) {
7489 return false;
7490 }
25c5b266 7491 }
a6778b3c 7492
ea9d758d
DV
7493 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7494 if (intel_crtc->base.enabled)
7495 dev_priv->display.crtc_disable(&intel_crtc->base);
7496 }
a6778b3c 7497
6c4c86f5
DV
7498 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7499 * to set it here already despite that we pass it down the callchain.
7500 */
7501 if (modeset_pipes)
25c5b266 7502 crtc->mode = *mode;
7758a113 7503
ea9d758d
DV
7504 /* Only after disabling all output pipelines that will be changed can we
7505 * update the the output configuration. */
7506 intel_modeset_update_state(dev, prepare_pipes);
7507
a6778b3c
DV
7508 /* Set up the DPLL and any encoders state that needs to adjust or depend
7509 * on the DPLL.
7510 */
25c5b266
DV
7511 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7512 ret = !intel_crtc_mode_set(&intel_crtc->base,
7513 mode, adjusted_mode,
7514 x, y, fb);
7515 if (!ret)
7516 goto done;
a6778b3c 7517
25c5b266 7518 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
a6778b3c 7519
25c5b266
DV
7520 if (encoder->crtc != &intel_crtc->base)
7521 continue;
a6778b3c 7522
25c5b266
DV
7523 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7524 encoder->base.id, drm_get_encoder_name(encoder),
7525 mode->base.id, mode->name);
7526 encoder_funcs = encoder->helper_private;
7527 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7528 }
a6778b3c
DV
7529 }
7530
7531 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7532 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7533 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7534
25c5b266
DV
7535 if (modeset_pipes) {
7536 /* Store real post-adjustment hardware mode. */
7537 crtc->hwmode = *adjusted_mode;
a6778b3c 7538
25c5b266
DV
7539 /* Calculate and store various constants which
7540 * are later needed by vblank and swap-completion
7541 * timestamping. They are derived from true hwmode.
7542 */
7543 drm_calc_timestamping_constants(crtc);
7544 }
a6778b3c
DV
7545
7546 /* FIXME: add subpixel order */
7547done:
7548 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7549 if (!ret && crtc->enabled) {
a6778b3c
DV
7550 crtc->hwmode = saved_hwmode;
7551 crtc->mode = saved_mode;
8af6cf88
DV
7552 } else {
7553 intel_modeset_check_state(dev);
a6778b3c
DV
7554 }
7555
7556 return ret;
7557}
7558
25c5b266
DV
7559#undef for_each_intel_crtc_masked
7560
d9e55608
DV
7561static void intel_set_config_free(struct intel_set_config *config)
7562{
7563 if (!config)
7564 return;
7565
1aa4b628
DV
7566 kfree(config->save_connector_encoders);
7567 kfree(config->save_encoder_crtcs);
d9e55608
DV
7568 kfree(config);
7569}
7570
85f9eb71
DV
7571static int intel_set_config_save_state(struct drm_device *dev,
7572 struct intel_set_config *config)
7573{
85f9eb71
DV
7574 struct drm_encoder *encoder;
7575 struct drm_connector *connector;
7576 int count;
7577
1aa4b628
DV
7578 config->save_encoder_crtcs =
7579 kcalloc(dev->mode_config.num_encoder,
7580 sizeof(struct drm_crtc *), GFP_KERNEL);
7581 if (!config->save_encoder_crtcs)
85f9eb71
DV
7582 return -ENOMEM;
7583
1aa4b628
DV
7584 config->save_connector_encoders =
7585 kcalloc(dev->mode_config.num_connector,
7586 sizeof(struct drm_encoder *), GFP_KERNEL);
7587 if (!config->save_connector_encoders)
85f9eb71
DV
7588 return -ENOMEM;
7589
7590 /* Copy data. Note that driver private data is not affected.
7591 * Should anything bad happen only the expected state is
7592 * restored, not the drivers personal bookkeeping.
7593 */
85f9eb71
DV
7594 count = 0;
7595 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7596 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7597 }
7598
7599 count = 0;
7600 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7601 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7602 }
7603
7604 return 0;
7605}
7606
7607static void intel_set_config_restore_state(struct drm_device *dev,
7608 struct intel_set_config *config)
7609{
9a935856
DV
7610 struct intel_encoder *encoder;
7611 struct intel_connector *connector;
85f9eb71
DV
7612 int count;
7613
85f9eb71 7614 count = 0;
9a935856
DV
7615 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7616 encoder->new_crtc =
7617 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7618 }
7619
7620 count = 0;
9a935856
DV
7621 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7622 connector->new_encoder =
7623 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7624 }
7625}
7626
5e2b584e
DV
7627static void
7628intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7629 struct intel_set_config *config)
7630{
7631
7632 /* We should be able to check here if the fb has the same properties
7633 * and then just flip_or_move it */
7634 if (set->crtc->fb != set->fb) {
7635 /* If we have no fb then treat it as a full mode set */
7636 if (set->crtc->fb == NULL) {
7637 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7638 config->mode_changed = true;
7639 } else if (set->fb == NULL) {
7640 config->mode_changed = true;
7641 } else if (set->fb->depth != set->crtc->fb->depth) {
7642 config->mode_changed = true;
7643 } else if (set->fb->bits_per_pixel !=
7644 set->crtc->fb->bits_per_pixel) {
7645 config->mode_changed = true;
7646 } else
7647 config->fb_changed = true;
7648 }
7649
835c5873 7650 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7651 config->fb_changed = true;
7652
7653 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7654 DRM_DEBUG_KMS("modes are different, full mode set\n");
7655 drm_mode_debug_printmodeline(&set->crtc->mode);
7656 drm_mode_debug_printmodeline(set->mode);
7657 config->mode_changed = true;
7658 }
7659}
7660
2e431051 7661static int
9a935856
DV
7662intel_modeset_stage_output_state(struct drm_device *dev,
7663 struct drm_mode_set *set,
7664 struct intel_set_config *config)
50f56119 7665{
85f9eb71 7666 struct drm_crtc *new_crtc;
9a935856
DV
7667 struct intel_connector *connector;
7668 struct intel_encoder *encoder;
2e431051 7669 int count, ro;
50f56119 7670
9a935856
DV
7671 /* The upper layers ensure that we either disabl a crtc or have a list
7672 * of connectors. For paranoia, double-check this. */
7673 WARN_ON(!set->fb && (set->num_connectors != 0));
7674 WARN_ON(set->fb && (set->num_connectors == 0));
7675
50f56119 7676 count = 0;
9a935856
DV
7677 list_for_each_entry(connector, &dev->mode_config.connector_list,
7678 base.head) {
7679 /* Otherwise traverse passed in connector list and get encoders
7680 * for them. */
50f56119 7681 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7682 if (set->connectors[ro] == &connector->base) {
7683 connector->new_encoder = connector->encoder;
50f56119
DV
7684 break;
7685 }
7686 }
7687
9a935856
DV
7688 /* If we disable the crtc, disable all its connectors. Also, if
7689 * the connector is on the changing crtc but not on the new
7690 * connector list, disable it. */
7691 if ((!set->fb || ro == set->num_connectors) &&
7692 connector->base.encoder &&
7693 connector->base.encoder->crtc == set->crtc) {
7694 connector->new_encoder = NULL;
7695
7696 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7697 connector->base.base.id,
7698 drm_get_connector_name(&connector->base));
7699 }
7700
7701
7702 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 7703 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 7704 config->mode_changed = true;
50f56119 7705 }
9a935856
DV
7706
7707 /* Disable all disconnected encoders. */
7708 if (connector->base.status == connector_status_disconnected)
7709 connector->new_encoder = NULL;
50f56119 7710 }
9a935856 7711 /* connector->new_encoder is now updated for all connectors. */
50f56119 7712
9a935856 7713 /* Update crtc of enabled connectors. */
50f56119 7714 count = 0;
9a935856
DV
7715 list_for_each_entry(connector, &dev->mode_config.connector_list,
7716 base.head) {
7717 if (!connector->new_encoder)
50f56119
DV
7718 continue;
7719
9a935856 7720 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
7721
7722 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 7723 if (set->connectors[ro] == &connector->base)
50f56119
DV
7724 new_crtc = set->crtc;
7725 }
7726
7727 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
7728 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7729 new_crtc)) {
5e2b584e 7730 return -EINVAL;
50f56119 7731 }
9a935856
DV
7732 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7733
7734 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7735 connector->base.base.id,
7736 drm_get_connector_name(&connector->base),
7737 new_crtc->base.id);
7738 }
7739
7740 /* Check for any encoders that needs to be disabled. */
7741 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7742 base.head) {
7743 list_for_each_entry(connector,
7744 &dev->mode_config.connector_list,
7745 base.head) {
7746 if (connector->new_encoder == encoder) {
7747 WARN_ON(!connector->new_encoder->new_crtc);
7748
7749 goto next_encoder;
7750 }
7751 }
7752 encoder->new_crtc = NULL;
7753next_encoder:
7754 /* Only now check for crtc changes so we don't miss encoders
7755 * that will be disabled. */
7756 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 7757 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 7758 config->mode_changed = true;
50f56119
DV
7759 }
7760 }
9a935856 7761 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 7762
2e431051
DV
7763 return 0;
7764}
7765
7766static int intel_crtc_set_config(struct drm_mode_set *set)
7767{
7768 struct drm_device *dev;
2e431051
DV
7769 struct drm_mode_set save_set;
7770 struct intel_set_config *config;
7771 int ret;
2e431051 7772
8d3e375e
DV
7773 BUG_ON(!set);
7774 BUG_ON(!set->crtc);
7775 BUG_ON(!set->crtc->helper_private);
2e431051
DV
7776
7777 if (!set->mode)
7778 set->fb = NULL;
7779
431e50f7
DV
7780 /* The fb helper likes to play gross jokes with ->mode_set_config.
7781 * Unfortunately the crtc helper doesn't do much at all for this case,
7782 * so we have to cope with this madness until the fb helper is fixed up. */
7783 if (set->fb && set->num_connectors == 0)
7784 return 0;
7785
2e431051
DV
7786 if (set->fb) {
7787 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7788 set->crtc->base.id, set->fb->base.id,
7789 (int)set->num_connectors, set->x, set->y);
7790 } else {
7791 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
7792 }
7793
7794 dev = set->crtc->dev;
7795
7796 ret = -ENOMEM;
7797 config = kzalloc(sizeof(*config), GFP_KERNEL);
7798 if (!config)
7799 goto out_config;
7800
7801 ret = intel_set_config_save_state(dev, config);
7802 if (ret)
7803 goto out_config;
7804
7805 save_set.crtc = set->crtc;
7806 save_set.mode = &set->crtc->mode;
7807 save_set.x = set->crtc->x;
7808 save_set.y = set->crtc->y;
7809 save_set.fb = set->crtc->fb;
7810
7811 /* Compute whether we need a full modeset, only an fb base update or no
7812 * change at all. In the future we might also check whether only the
7813 * mode changed, e.g. for LVDS where we only change the panel fitter in
7814 * such cases. */
7815 intel_set_config_compute_mode_changes(set, config);
7816
9a935856 7817 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
7818 if (ret)
7819 goto fail;
7820
5e2b584e 7821 if (config->mode_changed) {
87f1faa6 7822 if (set->mode) {
50f56119
DV
7823 DRM_DEBUG_KMS("attempting to set mode from"
7824 " userspace\n");
7825 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
7826 }
7827
7828 if (!intel_set_mode(set->crtc, set->mode,
7829 set->x, set->y, set->fb)) {
7830 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7831 set->crtc->base.id);
7832 ret = -EINVAL;
7833 goto fail;
7834 }
5e2b584e 7835 } else if (config->fb_changed) {
4f660f49 7836 ret = intel_pipe_set_base(set->crtc,
94352cf9 7837 set->x, set->y, set->fb);
50f56119
DV
7838 }
7839
d9e55608
DV
7840 intel_set_config_free(config);
7841
50f56119
DV
7842 return 0;
7843
7844fail:
85f9eb71 7845 intel_set_config_restore_state(dev, config);
50f56119
DV
7846
7847 /* Try to restore the config */
5e2b584e 7848 if (config->mode_changed &&
a6778b3c
DV
7849 !intel_set_mode(save_set.crtc, save_set.mode,
7850 save_set.x, save_set.y, save_set.fb))
50f56119
DV
7851 DRM_ERROR("failed to restore config after modeset failure\n");
7852
d9e55608
DV
7853out_config:
7854 intel_set_config_free(config);
50f56119
DV
7855 return ret;
7856}
7857
f6e5b160 7858static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
7859 .cursor_set = intel_crtc_cursor_set,
7860 .cursor_move = intel_crtc_cursor_move,
7861 .gamma_set = intel_crtc_gamma_set,
50f56119 7862 .set_config = intel_crtc_set_config,
f6e5b160
CW
7863 .destroy = intel_crtc_destroy,
7864 .page_flip = intel_crtc_page_flip,
7865};
7866
79f689aa
PZ
7867static void intel_cpu_pll_init(struct drm_device *dev)
7868{
7869 if (IS_HASWELL(dev))
7870 intel_ddi_pll_init(dev);
7871}
7872
ee7b9f93
JB
7873static void intel_pch_pll_init(struct drm_device *dev)
7874{
7875 drm_i915_private_t *dev_priv = dev->dev_private;
7876 int i;
7877
7878 if (dev_priv->num_pch_pll == 0) {
7879 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7880 return;
7881 }
7882
7883 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7884 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7885 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7886 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7887 }
7888}
7889
b358d0a6 7890static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 7891{
22fd0fab 7892 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
7893 struct intel_crtc *intel_crtc;
7894 int i;
7895
7896 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7897 if (intel_crtc == NULL)
7898 return;
7899
7900 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7901
7902 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
7903 for (i = 0; i < 256; i++) {
7904 intel_crtc->lut_r[i] = i;
7905 intel_crtc->lut_g[i] = i;
7906 intel_crtc->lut_b[i] = i;
7907 }
7908
80824003
JB
7909 /* Swap pipes & planes for FBC on pre-965 */
7910 intel_crtc->pipe = pipe;
7911 intel_crtc->plane = pipe;
e2e767ab 7912 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 7913 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 7914 intel_crtc->plane = !pipe;
80824003
JB
7915 }
7916
22fd0fab
JB
7917 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7918 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7919 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7920 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7921
5a354204 7922 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 7923
79e53945 7924 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
7925}
7926
08d7b3d1 7927int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 7928 struct drm_file *file)
08d7b3d1 7929{
08d7b3d1 7930 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7931 struct drm_mode_object *drmmode_obj;
7932 struct intel_crtc *crtc;
08d7b3d1 7933
1cff8f6b
DV
7934 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7935 return -ENODEV;
08d7b3d1 7936
c05422d5
DV
7937 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7938 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7939
c05422d5 7940 if (!drmmode_obj) {
08d7b3d1
CW
7941 DRM_ERROR("no such CRTC id\n");
7942 return -EINVAL;
7943 }
7944
c05422d5
DV
7945 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7946 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7947
c05422d5 7948 return 0;
08d7b3d1
CW
7949}
7950
66a9278e 7951static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 7952{
66a9278e
DV
7953 struct drm_device *dev = encoder->base.dev;
7954 struct intel_encoder *source_encoder;
79e53945 7955 int index_mask = 0;
79e53945
JB
7956 int entry = 0;
7957
66a9278e
DV
7958 list_for_each_entry(source_encoder,
7959 &dev->mode_config.encoder_list, base.head) {
7960
7961 if (encoder == source_encoder)
79e53945 7962 index_mask |= (1 << entry);
66a9278e
DV
7963
7964 /* Intel hw has only one MUX where enocoders could be cloned. */
7965 if (encoder->cloneable && source_encoder->cloneable)
7966 index_mask |= (1 << entry);
7967
79e53945
JB
7968 entry++;
7969 }
4ef69c7a 7970
79e53945
JB
7971 return index_mask;
7972}
7973
4d302442
CW
7974static bool has_edp_a(struct drm_device *dev)
7975{
7976 struct drm_i915_private *dev_priv = dev->dev_private;
7977
7978 if (!IS_MOBILE(dev))
7979 return false;
7980
7981 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7982 return false;
7983
7984 if (IS_GEN5(dev) &&
7985 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7986 return false;
7987
7988 return true;
7989}
7990
79e53945
JB
7991static void intel_setup_outputs(struct drm_device *dev)
7992{
725e30ad 7993 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7994 struct intel_encoder *encoder;
cb0953d7 7995 bool dpd_is_edp = false;
f3cfcba6 7996 bool has_lvds;
79e53945 7997
f3cfcba6 7998 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
7999 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8000 /* disable the panel fitter on everything but LVDS */
8001 I915_WRITE(PFIT_CONTROL, 0);
8002 }
79e53945 8003
bad720ff 8004 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 8005 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 8006
4d302442 8007 if (has_edp_a(dev))
ab9d7c30 8008 intel_dp_init(dev, DP_A, PORT_A);
32f9d658 8009
cb0953d7 8010 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 8011 intel_dp_init(dev, PCH_DP_D, PORT_D);
cb0953d7
AJ
8012 }
8013
8014 intel_crt_init(dev);
8015
0e72a5b5
ED
8016 if (IS_HASWELL(dev)) {
8017 int found;
8018
8019 /* Haswell uses DDI functions to detect digital outputs */
8020 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8021 /* DDI A only supports eDP */
8022 if (found)
8023 intel_ddi_init(dev, PORT_A);
8024
8025 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8026 * register */
8027 found = I915_READ(SFUSE_STRAP);
8028
8029 if (found & SFUSE_STRAP_DDIB_DETECTED)
8030 intel_ddi_init(dev, PORT_B);
8031 if (found & SFUSE_STRAP_DDIC_DETECTED)
8032 intel_ddi_init(dev, PORT_C);
8033 if (found & SFUSE_STRAP_DDID_DETECTED)
8034 intel_ddi_init(dev, PORT_D);
8035 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7
AJ
8036 int found;
8037
30ad48b7 8038 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 8039 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 8040 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 8041 if (!found)
08d644ad 8042 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 8043 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 8044 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
8045 }
8046
8047 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 8048 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 8049
b708a1d5 8050 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 8051 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 8052
5eb08b69 8053 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 8054 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 8055
cb0953d7 8056 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 8057 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
8058 } else if (IS_VALLEYVIEW(dev)) {
8059 int found;
8060
19c03924
GB
8061 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8062 if (I915_READ(DP_C) & DP_DETECTED)
8063 intel_dp_init(dev, DP_C, PORT_C);
8064
4a87d65d
JB
8065 if (I915_READ(SDVOB) & PORT_DETECTED) {
8066 /* SDVOB multiplex with HDMIB */
8067 found = intel_sdvo_init(dev, SDVOB, true);
8068 if (!found)
08d644ad 8069 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 8070 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 8071 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
8072 }
8073
8074 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 8075 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 8076
103a196f 8077 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 8078 bool found = false;
7d57382e 8079
725e30ad 8080 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 8081 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 8082 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
8083 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8084 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 8085 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 8086 }
27185ae1 8087
b01f2c3a
JB
8088 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8089 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 8090 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 8091 }
725e30ad 8092 }
13520b05
KH
8093
8094 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 8095
b01f2c3a
JB
8096 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8097 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 8098 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 8099 }
27185ae1
ML
8100
8101 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8102
b01f2c3a
JB
8103 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8104 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 8105 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
8106 }
8107 if (SUPPORTS_INTEGRATED_DP(dev)) {
8108 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 8109 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 8110 }
725e30ad 8111 }
27185ae1 8112
b01f2c3a
JB
8113 if (SUPPORTS_INTEGRATED_DP(dev) &&
8114 (I915_READ(DP_D) & DP_DETECTED)) {
8115 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 8116 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 8117 }
bad720ff 8118 } else if (IS_GEN2(dev))
79e53945
JB
8119 intel_dvo_init(dev);
8120
103a196f 8121 if (SUPPORTS_TV(dev))
79e53945
JB
8122 intel_tv_init(dev);
8123
4ef69c7a
CW
8124 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8125 encoder->base.possible_crtcs = encoder->crtc_mask;
8126 encoder->base.possible_clones =
66a9278e 8127 intel_encoder_clones(encoder);
79e53945 8128 }
47356eb6 8129
40579abe 8130 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 8131 ironlake_init_pch_refclk(dev);
79e53945
JB
8132}
8133
8134static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8135{
8136 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
8137
8138 drm_framebuffer_cleanup(fb);
05394f39 8139 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
8140
8141 kfree(intel_fb);
8142}
8143
8144static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 8145 struct drm_file *file,
79e53945
JB
8146 unsigned int *handle)
8147{
8148 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 8149 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 8150
05394f39 8151 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
8152}
8153
8154static const struct drm_framebuffer_funcs intel_fb_funcs = {
8155 .destroy = intel_user_framebuffer_destroy,
8156 .create_handle = intel_user_framebuffer_create_handle,
8157};
8158
38651674
DA
8159int intel_framebuffer_init(struct drm_device *dev,
8160 struct intel_framebuffer *intel_fb,
308e5bcb 8161 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 8162 struct drm_i915_gem_object *obj)
79e53945 8163{
79e53945
JB
8164 int ret;
8165
05394f39 8166 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
8167 return -EINVAL;
8168
308e5bcb 8169 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
8170 return -EINVAL;
8171
308e5bcb 8172 switch (mode_cmd->pixel_format) {
04b3924d
VS
8173 case DRM_FORMAT_RGB332:
8174 case DRM_FORMAT_RGB565:
8175 case DRM_FORMAT_XRGB8888:
b250da79 8176 case DRM_FORMAT_XBGR8888:
04b3924d
VS
8177 case DRM_FORMAT_ARGB8888:
8178 case DRM_FORMAT_XRGB2101010:
8179 case DRM_FORMAT_ARGB2101010:
308e5bcb 8180 /* RGB formats are common across chipsets */
b5626747 8181 break;
04b3924d
VS
8182 case DRM_FORMAT_YUYV:
8183 case DRM_FORMAT_UYVY:
8184 case DRM_FORMAT_YVYU:
8185 case DRM_FORMAT_VYUY:
57cd6508
CW
8186 break;
8187 default:
aca25848
ED
8188 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8189 mode_cmd->pixel_format);
57cd6508
CW
8190 return -EINVAL;
8191 }
8192
79e53945
JB
8193 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8194 if (ret) {
8195 DRM_ERROR("framebuffer init failed %d\n", ret);
8196 return ret;
8197 }
8198
8199 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 8200 intel_fb->obj = obj;
79e53945
JB
8201 return 0;
8202}
8203
79e53945
JB
8204static struct drm_framebuffer *
8205intel_user_framebuffer_create(struct drm_device *dev,
8206 struct drm_file *filp,
308e5bcb 8207 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 8208{
05394f39 8209 struct drm_i915_gem_object *obj;
79e53945 8210
308e5bcb
JB
8211 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8212 mode_cmd->handles[0]));
c8725226 8213 if (&obj->base == NULL)
cce13ff7 8214 return ERR_PTR(-ENOENT);
79e53945 8215
d2dff872 8216 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
8217}
8218
79e53945 8219static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 8220 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 8221 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
8222};
8223
e70236a8
JB
8224/* Set up chip specific display functions */
8225static void intel_init_display(struct drm_device *dev)
8226{
8227 struct drm_i915_private *dev_priv = dev->dev_private;
8228
8229 /* We always want a DPMS function */
09b4ddf9
PZ
8230 if (IS_HASWELL(dev)) {
8231 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
8232 dev_priv->display.crtc_enable = haswell_crtc_enable;
8233 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 8234 dev_priv->display.off = haswell_crtc_off;
09b4ddf9
PZ
8235 dev_priv->display.update_plane = ironlake_update_plane;
8236 } else if (HAS_PCH_SPLIT(dev)) {
f564048e 8237 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
8238 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8239 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 8240 dev_priv->display.off = ironlake_crtc_off;
17638cd6 8241 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8242 } else {
f564048e 8243 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
8244 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8245 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 8246 dev_priv->display.off = i9xx_crtc_off;
17638cd6 8247 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8248 }
e70236a8 8249
e70236a8 8250 /* Returns the core display clock speed */
25eb05fc
JB
8251 if (IS_VALLEYVIEW(dev))
8252 dev_priv->display.get_display_clock_speed =
8253 valleyview_get_display_clock_speed;
8254 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8255 dev_priv->display.get_display_clock_speed =
8256 i945_get_display_clock_speed;
8257 else if (IS_I915G(dev))
8258 dev_priv->display.get_display_clock_speed =
8259 i915_get_display_clock_speed;
f2b115e6 8260 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8261 dev_priv->display.get_display_clock_speed =
8262 i9xx_misc_get_display_clock_speed;
8263 else if (IS_I915GM(dev))
8264 dev_priv->display.get_display_clock_speed =
8265 i915gm_get_display_clock_speed;
8266 else if (IS_I865G(dev))
8267 dev_priv->display.get_display_clock_speed =
8268 i865_get_display_clock_speed;
f0f8a9ce 8269 else if (IS_I85X(dev))
e70236a8
JB
8270 dev_priv->display.get_display_clock_speed =
8271 i855_get_display_clock_speed;
8272 else /* 852, 830 */
8273 dev_priv->display.get_display_clock_speed =
8274 i830_get_display_clock_speed;
8275
7f8a8569 8276 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 8277 if (IS_GEN5(dev)) {
674cf967 8278 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 8279 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 8280 } else if (IS_GEN6(dev)) {
674cf967 8281 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 8282 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8283 } else if (IS_IVYBRIDGE(dev)) {
8284 /* FIXME: detect B0+ stepping and use auto training */
8285 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 8286 dev_priv->display.write_eld = ironlake_write_eld;
c82e4d26
ED
8287 } else if (IS_HASWELL(dev)) {
8288 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 8289 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
8290 } else
8291 dev_priv->display.update_wm = NULL;
6067aaea 8292 } else if (IS_G4X(dev)) {
e0dac65e 8293 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8294 }
8c9f3aaf
JB
8295
8296 /* Default just returns -ENODEV to indicate unsupported */
8297 dev_priv->display.queue_flip = intel_default_queue_flip;
8298
8299 switch (INTEL_INFO(dev)->gen) {
8300 case 2:
8301 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8302 break;
8303
8304 case 3:
8305 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8306 break;
8307
8308 case 4:
8309 case 5:
8310 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8311 break;
8312
8313 case 6:
8314 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8315 break;
7c9017e5
JB
8316 case 7:
8317 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8318 break;
8c9f3aaf 8319 }
e70236a8
JB
8320}
8321
b690e96c
JB
8322/*
8323 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8324 * resume, or other times. This quirk makes sure that's the case for
8325 * affected systems.
8326 */
0206e353 8327static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8328{
8329 struct drm_i915_private *dev_priv = dev->dev_private;
8330
8331 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 8332 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
8333}
8334
435793df
KP
8335/*
8336 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8337 */
8338static void quirk_ssc_force_disable(struct drm_device *dev)
8339{
8340 struct drm_i915_private *dev_priv = dev->dev_private;
8341 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 8342 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
8343}
8344
4dca20ef 8345/*
5a15ab5b
CE
8346 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8347 * brightness value
4dca20ef
CE
8348 */
8349static void quirk_invert_brightness(struct drm_device *dev)
8350{
8351 struct drm_i915_private *dev_priv = dev->dev_private;
8352 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 8353 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
8354}
8355
b690e96c
JB
8356struct intel_quirk {
8357 int device;
8358 int subsystem_vendor;
8359 int subsystem_device;
8360 void (*hook)(struct drm_device *dev);
8361};
8362
c43b5634 8363static struct intel_quirk intel_quirks[] = {
b690e96c 8364 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8365 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 8366
b690e96c
JB
8367 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8368 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8369
b690e96c
JB
8370 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8371 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8372
ccd0d36e 8373 /* 830/845 need to leave pipe A & dpll A up */
b690e96c 8374 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 8375 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8376
8377 /* Lenovo U160 cannot use SSC on LVDS */
8378 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8379
8380 /* Sony Vaio Y cannot use SSC on LVDS */
8381 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
8382
8383 /* Acer Aspire 5734Z must invert backlight brightness */
8384 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
8385};
8386
8387static void intel_init_quirks(struct drm_device *dev)
8388{
8389 struct pci_dev *d = dev->pdev;
8390 int i;
8391
8392 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8393 struct intel_quirk *q = &intel_quirks[i];
8394
8395 if (d->device == q->device &&
8396 (d->subsystem_vendor == q->subsystem_vendor ||
8397 q->subsystem_vendor == PCI_ANY_ID) &&
8398 (d->subsystem_device == q->subsystem_device ||
8399 q->subsystem_device == PCI_ANY_ID))
8400 q->hook(dev);
8401 }
8402}
8403
9cce37f4
JB
8404/* Disable the VGA plane that we never use */
8405static void i915_disable_vga(struct drm_device *dev)
8406{
8407 struct drm_i915_private *dev_priv = dev->dev_private;
8408 u8 sr1;
8409 u32 vga_reg;
8410
8411 if (HAS_PCH_SPLIT(dev))
8412 vga_reg = CPU_VGACNTRL;
8413 else
8414 vga_reg = VGACNTRL;
8415
8416 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8417 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8418 sr1 = inb(VGA_SR_DATA);
8419 outb(sr1 | 1<<5, VGA_SR_DATA);
8420 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8421 udelay(300);
8422
8423 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8424 POSTING_READ(vga_reg);
8425}
8426
f817586c
DV
8427void intel_modeset_init_hw(struct drm_device *dev)
8428{
0232e927
ED
8429 /* We attempt to init the necessary power wells early in the initialization
8430 * time, so the subsystems that expect power to be enabled can work.
8431 */
8432 intel_init_power_wells(dev);
8433
a8f78b58
ED
8434 intel_prepare_ddi(dev);
8435
f817586c
DV
8436 intel_init_clock_gating(dev);
8437
79f5b2c7 8438 mutex_lock(&dev->struct_mutex);
8090c6b9 8439 intel_enable_gt_powersave(dev);
79f5b2c7 8440 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8441}
8442
79e53945
JB
8443void intel_modeset_init(struct drm_device *dev)
8444{
652c393a 8445 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8446 int i, ret;
79e53945
JB
8447
8448 drm_mode_config_init(dev);
8449
8450 dev->mode_config.min_width = 0;
8451 dev->mode_config.min_height = 0;
8452
019d96cb
DA
8453 dev->mode_config.preferred_depth = 24;
8454 dev->mode_config.prefer_shadow = 1;
8455
e6ecefaa 8456 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8457
b690e96c
JB
8458 intel_init_quirks(dev);
8459
1fa61106
ED
8460 intel_init_pm(dev);
8461
e70236a8
JB
8462 intel_init_display(dev);
8463
a6c45cf0
CW
8464 if (IS_GEN2(dev)) {
8465 dev->mode_config.max_width = 2048;
8466 dev->mode_config.max_height = 2048;
8467 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8468 dev->mode_config.max_width = 4096;
8469 dev->mode_config.max_height = 4096;
79e53945 8470 } else {
a6c45cf0
CW
8471 dev->mode_config.max_width = 8192;
8472 dev->mode_config.max_height = 8192;
79e53945 8473 }
dd2757f8 8474 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8475
28c97730 8476 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8477 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8478
a3524f1b 8479 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8480 intel_crtc_init(dev, i);
00c2064b
JB
8481 ret = intel_plane_init(dev, i);
8482 if (ret)
8483 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8484 }
8485
79f689aa 8486 intel_cpu_pll_init(dev);
ee7b9f93
JB
8487 intel_pch_pll_init(dev);
8488
9cce37f4
JB
8489 /* Just disable it once at startup */
8490 i915_disable_vga(dev);
79e53945 8491 intel_setup_outputs(dev);
2c7111db
CW
8492}
8493
24929352
DV
8494static void
8495intel_connector_break_all_links(struct intel_connector *connector)
8496{
8497 connector->base.dpms = DRM_MODE_DPMS_OFF;
8498 connector->base.encoder = NULL;
8499 connector->encoder->connectors_active = false;
8500 connector->encoder->base.crtc = NULL;
8501}
8502
7fad798e
DV
8503static void intel_enable_pipe_a(struct drm_device *dev)
8504{
8505 struct intel_connector *connector;
8506 struct drm_connector *crt = NULL;
8507 struct intel_load_detect_pipe load_detect_temp;
8508
8509 /* We can't just switch on the pipe A, we need to set things up with a
8510 * proper mode and output configuration. As a gross hack, enable pipe A
8511 * by enabling the load detect pipe once. */
8512 list_for_each_entry(connector,
8513 &dev->mode_config.connector_list,
8514 base.head) {
8515 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8516 crt = &connector->base;
8517 break;
8518 }
8519 }
8520
8521 if (!crt)
8522 return;
8523
8524 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8525 intel_release_load_detect_pipe(crt, &load_detect_temp);
8526
8527
8528}
8529
fa555837
DV
8530static bool
8531intel_check_plane_mapping(struct intel_crtc *crtc)
8532{
8533 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8534 u32 reg, val;
8535
8536 if (dev_priv->num_pipe == 1)
8537 return true;
8538
8539 reg = DSPCNTR(!crtc->plane);
8540 val = I915_READ(reg);
8541
8542 if ((val & DISPLAY_PLANE_ENABLE) &&
8543 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8544 return false;
8545
8546 return true;
8547}
8548
24929352
DV
8549static void intel_sanitize_crtc(struct intel_crtc *crtc)
8550{
8551 struct drm_device *dev = crtc->base.dev;
8552 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 8553 u32 reg;
24929352 8554
24929352
DV
8555 /* Clear any frame start delays used for debugging left by the BIOS */
8556 reg = PIPECONF(crtc->pipe);
8557 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8558
8559 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
8560 * disable the crtc (and hence change the state) if it is wrong. Note
8561 * that gen4+ has a fixed plane -> pipe mapping. */
8562 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
8563 struct intel_connector *connector;
8564 bool plane;
8565
24929352
DV
8566 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8567 crtc->base.base.id);
8568
8569 /* Pipe has the wrong plane attached and the plane is active.
8570 * Temporarily change the plane mapping and disable everything
8571 * ... */
8572 plane = crtc->plane;
8573 crtc->plane = !plane;
8574 dev_priv->display.crtc_disable(&crtc->base);
8575 crtc->plane = plane;
8576
8577 /* ... and break all links. */
8578 list_for_each_entry(connector, &dev->mode_config.connector_list,
8579 base.head) {
8580 if (connector->encoder->base.crtc != &crtc->base)
8581 continue;
8582
8583 intel_connector_break_all_links(connector);
8584 }
8585
8586 WARN_ON(crtc->active);
8587 crtc->base.enabled = false;
8588 }
24929352 8589
7fad798e
DV
8590 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8591 crtc->pipe == PIPE_A && !crtc->active) {
8592 /* BIOS forgot to enable pipe A, this mostly happens after
8593 * resume. Force-enable the pipe to fix this, the update_dpms
8594 * call below we restore the pipe to the right state, but leave
8595 * the required bits on. */
8596 intel_enable_pipe_a(dev);
8597 }
8598
24929352
DV
8599 /* Adjust the state of the output pipe according to whether we
8600 * have active connectors/encoders. */
8601 intel_crtc_update_dpms(&crtc->base);
8602
8603 if (crtc->active != crtc->base.enabled) {
8604 struct intel_encoder *encoder;
8605
8606 /* This can happen either due to bugs in the get_hw_state
8607 * functions or because the pipe is force-enabled due to the
8608 * pipe A quirk. */
8609 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8610 crtc->base.base.id,
8611 crtc->base.enabled ? "enabled" : "disabled",
8612 crtc->active ? "enabled" : "disabled");
8613
8614 crtc->base.enabled = crtc->active;
8615
8616 /* Because we only establish the connector -> encoder ->
8617 * crtc links if something is active, this means the
8618 * crtc is now deactivated. Break the links. connector
8619 * -> encoder links are only establish when things are
8620 * actually up, hence no need to break them. */
8621 WARN_ON(crtc->active);
8622
8623 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8624 WARN_ON(encoder->connectors_active);
8625 encoder->base.crtc = NULL;
8626 }
8627 }
8628}
8629
8630static void intel_sanitize_encoder(struct intel_encoder *encoder)
8631{
8632 struct intel_connector *connector;
8633 struct drm_device *dev = encoder->base.dev;
8634
8635 /* We need to check both for a crtc link (meaning that the
8636 * encoder is active and trying to read from a pipe) and the
8637 * pipe itself being active. */
8638 bool has_active_crtc = encoder->base.crtc &&
8639 to_intel_crtc(encoder->base.crtc)->active;
8640
8641 if (encoder->connectors_active && !has_active_crtc) {
8642 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8643 encoder->base.base.id,
8644 drm_get_encoder_name(&encoder->base));
8645
8646 /* Connector is active, but has no active pipe. This is
8647 * fallout from our resume register restoring. Disable
8648 * the encoder manually again. */
8649 if (encoder->base.crtc) {
8650 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8651 encoder->base.base.id,
8652 drm_get_encoder_name(&encoder->base));
8653 encoder->disable(encoder);
8654 }
8655
8656 /* Inconsistent output/port/pipe state happens presumably due to
8657 * a bug in one of the get_hw_state functions. Or someplace else
8658 * in our code, like the register restore mess on resume. Clamp
8659 * things to off as a safer default. */
8660 list_for_each_entry(connector,
8661 &dev->mode_config.connector_list,
8662 base.head) {
8663 if (connector->encoder != encoder)
8664 continue;
8665
8666 intel_connector_break_all_links(connector);
8667 }
8668 }
8669 /* Enabled encoders without active connectors will be fixed in
8670 * the crtc fixup. */
8671}
8672
8673/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8674 * and i915 state tracking structures. */
8675void intel_modeset_setup_hw_state(struct drm_device *dev)
8676{
8677 struct drm_i915_private *dev_priv = dev->dev_private;
8678 enum pipe pipe;
8679 u32 tmp;
8680 struct intel_crtc *crtc;
8681 struct intel_encoder *encoder;
8682 struct intel_connector *connector;
8683
8684 for_each_pipe(pipe) {
8685 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8686
8687 tmp = I915_READ(PIPECONF(pipe));
8688 if (tmp & PIPECONF_ENABLE)
8689 crtc->active = true;
8690 else
8691 crtc->active = false;
8692
8693 crtc->base.enabled = crtc->active;
8694
8695 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8696 crtc->base.base.id,
8697 crtc->active ? "enabled" : "disabled");
8698 }
8699
6441ab5f
PZ
8700 if (IS_HASWELL(dev))
8701 intel_ddi_setup_hw_pll_state(dev);
8702
24929352
DV
8703 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8704 base.head) {
8705 pipe = 0;
8706
8707 if (encoder->get_hw_state(encoder, &pipe)) {
8708 encoder->base.crtc =
8709 dev_priv->pipe_to_crtc_mapping[pipe];
8710 } else {
8711 encoder->base.crtc = NULL;
8712 }
8713
8714 encoder->connectors_active = false;
8715 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8716 encoder->base.base.id,
8717 drm_get_encoder_name(&encoder->base),
8718 encoder->base.crtc ? "enabled" : "disabled",
8719 pipe);
8720 }
8721
8722 list_for_each_entry(connector, &dev->mode_config.connector_list,
8723 base.head) {
8724 if (connector->get_hw_state(connector)) {
8725 connector->base.dpms = DRM_MODE_DPMS_ON;
8726 connector->encoder->connectors_active = true;
8727 connector->base.encoder = &connector->encoder->base;
8728 } else {
8729 connector->base.dpms = DRM_MODE_DPMS_OFF;
8730 connector->base.encoder = NULL;
8731 }
8732 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8733 connector->base.base.id,
8734 drm_get_connector_name(&connector->base),
8735 connector->base.encoder ? "enabled" : "disabled");
8736 }
8737
8738 /* HW state is read out, now we need to sanitize this mess. */
8739 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8740 base.head) {
8741 intel_sanitize_encoder(encoder);
8742 }
8743
8744 for_each_pipe(pipe) {
8745 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8746 intel_sanitize_crtc(crtc);
8747 }
9a935856
DV
8748
8749 intel_modeset_update_staged_output_state(dev);
8af6cf88
DV
8750
8751 intel_modeset_check_state(dev);
2e938892
DV
8752
8753 drm_mode_config_reset(dev);
24929352
DV
8754}
8755
2c7111db
CW
8756void intel_modeset_gem_init(struct drm_device *dev)
8757{
1833b134 8758 intel_modeset_init_hw(dev);
02e792fb
DV
8759
8760 intel_setup_overlay(dev);
24929352
DV
8761
8762 intel_modeset_setup_hw_state(dev);
79e53945
JB
8763}
8764
8765void intel_modeset_cleanup(struct drm_device *dev)
8766{
652c393a
JB
8767 struct drm_i915_private *dev_priv = dev->dev_private;
8768 struct drm_crtc *crtc;
8769 struct intel_crtc *intel_crtc;
8770
f87ea761 8771 drm_kms_helper_poll_fini(dev);
652c393a
JB
8772 mutex_lock(&dev->struct_mutex);
8773
723bfd70
JB
8774 intel_unregister_dsm_handler();
8775
8776
652c393a
JB
8777 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8778 /* Skip inactive CRTCs */
8779 if (!crtc->fb)
8780 continue;
8781
8782 intel_crtc = to_intel_crtc(crtc);
3dec0095 8783 intel_increase_pllclock(crtc);
652c393a
JB
8784 }
8785
973d04f9 8786 intel_disable_fbc(dev);
e70236a8 8787
8090c6b9 8788 intel_disable_gt_powersave(dev);
0cdab21f 8789
930ebb46
DV
8790 ironlake_teardown_rc6(dev);
8791
57f350b6
JB
8792 if (IS_VALLEYVIEW(dev))
8793 vlv_init_dpio(dev);
8794
69341a5e
KH
8795 mutex_unlock(&dev->struct_mutex);
8796
6c0d9350
DV
8797 /* Disable the irq before mode object teardown, for the irq might
8798 * enqueue unpin/hotplug work. */
8799 drm_irq_uninstall(dev);
8800 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 8801 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 8802
1630fe75
CW
8803 /* flush any delayed tasks or pending work */
8804 flush_scheduled_work();
8805
79e53945
JB
8806 drm_mode_config_cleanup(dev);
8807}
8808
f1c79df3
ZW
8809/*
8810 * Return which encoder is currently attached for connector.
8811 */
df0e9248 8812struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 8813{
df0e9248
CW
8814 return &intel_attached_encoder(connector)->base;
8815}
f1c79df3 8816
df0e9248
CW
8817void intel_connector_attach_encoder(struct intel_connector *connector,
8818 struct intel_encoder *encoder)
8819{
8820 connector->encoder = encoder;
8821 drm_mode_connector_attach_encoder(&connector->base,
8822 &encoder->base);
79e53945 8823}
28d52043
DA
8824
8825/*
8826 * set vga decode state - true == enable VGA decode
8827 */
8828int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8829{
8830 struct drm_i915_private *dev_priv = dev->dev_private;
8831 u16 gmch_ctrl;
8832
8833 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8834 if (state)
8835 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8836 else
8837 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8838 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8839 return 0;
8840}
c4a1d9e4
CW
8841
8842#ifdef CONFIG_DEBUG_FS
8843#include <linux/seq_file.h>
8844
8845struct intel_display_error_state {
8846 struct intel_cursor_error_state {
8847 u32 control;
8848 u32 position;
8849 u32 base;
8850 u32 size;
52331309 8851 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
8852
8853 struct intel_pipe_error_state {
8854 u32 conf;
8855 u32 source;
8856
8857 u32 htotal;
8858 u32 hblank;
8859 u32 hsync;
8860 u32 vtotal;
8861 u32 vblank;
8862 u32 vsync;
52331309 8863 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
8864
8865 struct intel_plane_error_state {
8866 u32 control;
8867 u32 stride;
8868 u32 size;
8869 u32 pos;
8870 u32 addr;
8871 u32 surface;
8872 u32 tile_offset;
52331309 8873 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
8874};
8875
8876struct intel_display_error_state *
8877intel_display_capture_error_state(struct drm_device *dev)
8878{
0206e353 8879 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8880 struct intel_display_error_state *error;
8881 int i;
8882
8883 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8884 if (error == NULL)
8885 return NULL;
8886
52331309 8887 for_each_pipe(i) {
c4a1d9e4
CW
8888 error->cursor[i].control = I915_READ(CURCNTR(i));
8889 error->cursor[i].position = I915_READ(CURPOS(i));
8890 error->cursor[i].base = I915_READ(CURBASE(i));
8891
8892 error->plane[i].control = I915_READ(DSPCNTR(i));
8893 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8894 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 8895 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
8896 error->plane[i].addr = I915_READ(DSPADDR(i));
8897 if (INTEL_INFO(dev)->gen >= 4) {
8898 error->plane[i].surface = I915_READ(DSPSURF(i));
8899 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8900 }
8901
8902 error->pipe[i].conf = I915_READ(PIPECONF(i));
8903 error->pipe[i].source = I915_READ(PIPESRC(i));
8904 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8905 error->pipe[i].hblank = I915_READ(HBLANK(i));
8906 error->pipe[i].hsync = I915_READ(HSYNC(i));
8907 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8908 error->pipe[i].vblank = I915_READ(VBLANK(i));
8909 error->pipe[i].vsync = I915_READ(VSYNC(i));
8910 }
8911
8912 return error;
8913}
8914
8915void
8916intel_display_print_error_state(struct seq_file *m,
8917 struct drm_device *dev,
8918 struct intel_display_error_state *error)
8919{
52331309 8920 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8921 int i;
8922
52331309
DL
8923 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8924 for_each_pipe(i) {
c4a1d9e4
CW
8925 seq_printf(m, "Pipe [%d]:\n", i);
8926 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8927 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8928 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8929 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8930 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8931 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8932 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8933 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8934
8935 seq_printf(m, "Plane [%d]:\n", i);
8936 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8937 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8938 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8939 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8940 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8941 if (INTEL_INFO(dev)->gen >= 4) {
8942 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8943 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8944 }
8945
8946 seq_printf(m, "Cursor [%d]:\n", i);
8947 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8948 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8949 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8950 }
8951}
8952#endif
This page took 1.573335 seconds and 5 git commands to generate.