drm/i915: Print the pipe on which the vblank wait times out
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
1ae0d137 103static void chv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415{
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
1b894b59
CW
426static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427 int refclk)
2c07245f 428{
b91ad0ec 429 struct drm_device *dev = crtc->dev;
2c07245f 430 const intel_limit_t *limit;
b91ad0ec
ZW
431
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 433 if (intel_is_dual_link_lvds(dev)) {
1b894b59 434 if (refclk == 100000)
b91ad0ec
ZW
435 limit = &intel_limits_ironlake_dual_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_dual_lvds;
438 } else {
1b894b59 439 if (refclk == 100000)
b91ad0ec
ZW
440 limit = &intel_limits_ironlake_single_lvds_100m;
441 else
442 limit = &intel_limits_ironlake_single_lvds;
443 }
c6bb3538 444 } else
b91ad0ec 445 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
446
447 return limit;
448}
449
044c7c41
ML
450static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451{
452 struct drm_device *dev = crtc->dev;
044c7c41
ML
453 const intel_limit_t *limit;
454
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 456 if (intel_is_dual_link_lvds(dev))
e4b36699 457 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 458 else
e4b36699 459 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 462 limit = &intel_limits_g4x_hdmi;
044c7c41 463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 464 limit = &intel_limits_g4x_sdvo;
044c7c41 465 } else /* The option is for other outputs */
e4b36699 466 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
467
468 return limit;
469}
470
1b894b59 471static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
472{
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
475
bad720ff 476 if (HAS_PCH_SPLIT(dev))
1b894b59 477 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 478 else if (IS_G4X(dev)) {
044c7c41 479 limit = intel_g4x_limit(crtc);
f2b115e6 480 } else if (IS_PINEVIEW(dev)) {
2177832f 481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 482 limit = &intel_limits_pineview_lvds;
2177832f 483 else
f2b115e6 484 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
a0c4da24 487 } else if (IS_VALLEYVIEW(dev)) {
dc730512 488 limit = &intel_limits_vlv;
a6c45cf0
CW
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
492 else
493 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
494 } else {
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 496 limit = &intel_limits_i8xx_lvds;
5d536e28 497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 498 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
499 else
500 limit = &intel_limits_i8xx_dac;
79e53945
JB
501 }
502 return limit;
503}
504
f2b115e6
AJ
505/* m1 is reserved as 0 in Pineview, n is a ring counter */
506static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 507{
2177832f
SL
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
511 return;
fb03ac01
VS
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
514}
515
7429e9d4
DV
516static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517{
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519}
520
ac58c3f0 521static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 522{
7429e9d4 523 clock->m = i9xx_dpll_compute_m(clock);
79e53945 524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
529}
530
ef9348c8
CML
531static void chv_clock(int refclk, intel_clock_t *clock)
532{
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return;
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538 clock->n << 22);
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540}
541
7c04d1d9 542#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
543/**
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
546 */
547
1b894b59
CW
548static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
79e53945 551{
f01b7962
VS
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
79e53945 554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 555 INTELPllInvalid("p1 out of range\n");
79e53945 556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 557 INTELPllInvalid("m2 out of range\n");
79e53945 558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 559 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
560
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
564
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
570 }
571
79e53945 572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 573 INTELPllInvalid("vco out of range\n");
79e53945
JB
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
576 */
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 578 INTELPllInvalid("dot out of range\n");
79e53945
JB
579
580 return true;
581}
582
d4906093 583static bool
ee9300bb 584i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
79e53945
JB
587{
588 struct drm_device *dev = crtc->dev;
79e53945 589 intel_clock_t clock;
79e53945
JB
590 int err = target;
591
a210b028 592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 593 /*
a210b028
DV
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
79e53945 597 */
1974cad0 598 if (intel_is_dual_link_lvds(dev))
79e53945
JB
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
0206e353 609 memset(best_clock, 0, sizeof(*best_clock));
79e53945 610
42158660
ZY
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612 clock.m1++) {
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 615 if (clock.m2 >= clock.m1)
42158660
ZY
616 break;
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
621 int this_err;
622
ac58c3f0
DV
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627 if (match_clock &&
628 clock.p != match_clock->p)
629 continue;
630
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
633 *best_clock = clock;
634 err = this_err;
635 }
636 }
637 }
638 }
639 }
640
641 return (err != target);
642}
643
644static bool
ee9300bb
DV
645pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
79e53945
JB
648{
649 struct drm_device *dev = crtc->dev;
79e53945 650 intel_clock_t clock;
79e53945
JB
651 int err = target;
652
a210b028 653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 654 /*
a210b028
DV
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
79e53945 658 */
1974cad0 659 if (intel_is_dual_link_lvds(dev))
79e53945
JB
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
0206e353 670 memset(best_clock, 0, sizeof(*best_clock));
79e53945 671
42158660
ZY
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
680 int this_err;
681
ac58c3f0 682 pineview_clock(refclk, &clock);
1b894b59
CW
683 if (!intel_PLL_is_valid(dev, limit,
684 &clock))
79e53945 685 continue;
cec2f356
SP
686 if (match_clock &&
687 clock.p != match_clock->p)
688 continue;
79e53945
JB
689
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
692 *best_clock = clock;
693 err = this_err;
694 }
695 }
696 }
697 }
698 }
699
700 return (err != target);
701}
702
d4906093 703static bool
ee9300bb
DV
704g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
d4906093
ML
707{
708 struct drm_device *dev = crtc->dev;
d4906093
ML
709 intel_clock_t clock;
710 int max_n;
711 bool found;
6ba770dc
AJ
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
714 found = false;
715
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 717 if (intel_is_dual_link_lvds(dev))
d4906093
ML
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
f77f13e2 730 /* based on hardware requirement, prefer smaller n to precision */
d4906093 731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 732 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
ac58c3f0 741 i9xx_clock(refclk, &clock);
1b894b59
CW
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
d4906093 744 continue;
1b894b59
CW
745
746 this_err = abs(clock.dot - target);
d4906093
ML
747 if (this_err < err_most) {
748 *best_clock = clock;
749 err_most = this_err;
750 max_n = clock.n;
751 found = true;
752 }
753 }
754 }
755 }
756 }
2c07245f
ZW
757 return found;
758}
759
a0c4da24 760static bool
ee9300bb
DV
761vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
a0c4da24 764{
f01b7962 765 struct drm_device *dev = crtc->dev;
6b4bf1c4 766 intel_clock_t clock;
69e4f900 767 unsigned int bestppm = 1000000;
27e639bf
VS
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 770 bool found = false;
a0c4da24 771
6b4bf1c4
VS
772 target *= 5; /* fast clock */
773
774 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
775
776 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 781 clock.p = clock.p1 * clock.p2;
a0c4da24 782 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
784 unsigned int ppm, diff;
785
6b4bf1c4
VS
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787 refclk * clock.m1);
788
789 vlv_clock(refclk, &clock);
43b0ac53 790
f01b7962
VS
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
43b0ac53
VS
793 continue;
794
6b4bf1c4
VS
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
797
798 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 799 bestppm = 0;
6b4bf1c4 800 *best_clock = clock;
49e497ef 801 found = true;
43b0ac53 802 }
6b4bf1c4 803
c686122c 804 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 805 bestppm = ppm;
6b4bf1c4 806 *best_clock = clock;
49e497ef 807 found = true;
a0c4da24
JB
808 }
809 }
810 }
811 }
812 }
a0c4da24 813
49e497ef 814 return found;
a0c4da24 815}
a4fc5ed6 816
ef9348c8
CML
817static bool
818chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
821{
822 struct drm_device *dev = crtc->dev;
823 intel_clock_t clock;
824 uint64_t m2;
825 int found = false;
826
827 memset(best_clock, 0, sizeof(*best_clock));
828
829 /*
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
833 */
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
836
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842 clock.p = clock.p1 * clock.p2;
843
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
846
847 if (m2 > INT_MAX/clock.m1)
848 continue;
849
850 clock.m2 = m2;
851
852 chv_clock(refclk, &clock);
853
854 if (!intel_PLL_is_valid(dev, limit, &clock))
855 continue;
856
857 /* based on hardware requirement, prefer bigger p
858 */
859 if (clock.p > best_clock->p) {
860 *best_clock = clock;
861 found = true;
862 }
863 }
864 }
865
866 return found;
867}
868
20ddf665
VS
869bool intel_crtc_active(struct drm_crtc *crtc)
870{
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
875 *
241bfc38 876 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
877 * as Haswell has gained clock readout/fastboot support.
878 *
66e514c1 879 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
880 * properly reconstruct framebuffers.
881 */
f4510a27 882 return intel_crtc->active && crtc->primary->fb &&
241bfc38 883 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
884}
885
a5c961d1
PZ
886enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887 enum pipe pipe)
888{
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
3b117c8f 892 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
893}
894
57e22f4a 895static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
896{
897 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
899
900 frame = I915_READ(frame_reg);
901
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
31e4b89a
DL
903 WARN(1, "vblank wait on pipe %c timed out\n",
904 pipe_name(pipe));
a928d536
PZ
905}
906
9d0498a2
JB
907/**
908 * intel_wait_for_vblank - wait for vblank on a given pipe
909 * @dev: drm device
910 * @pipe: pipe to wait for
911 *
912 * Wait for vblank to occur on a given pipe. Needed for various bits of
913 * mode setting code.
914 */
915void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 916{
9d0498a2 917 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 918 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 919
57e22f4a
VS
920 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
922 return;
923 }
924
300387c0
CW
925 /* Clear existing vblank status. Note this will clear any other
926 * sticky status fields as well.
927 *
928 * This races with i915_driver_irq_handler() with the result
929 * that either function could miss a vblank event. Here it is not
930 * fatal, as we will either wait upon the next vblank interrupt or
931 * timeout. Generally speaking intel_wait_for_vblank() is only
932 * called during modeset at which time the GPU should be idle and
933 * should *not* be performing page flips and thus not waiting on
934 * vblanks...
935 * Currently, the result of us stealing a vblank from the irq
936 * handler is that a single frame will be skipped during swapbuffers.
937 */
938 I915_WRITE(pipestat_reg,
939 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
940
9d0498a2 941 /* Wait for vblank interrupt bit to set */
481b6af3
CW
942 if (wait_for(I915_READ(pipestat_reg) &
943 PIPE_VBLANK_INTERRUPT_STATUS,
944 50))
31e4b89a
DL
945 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
946 pipe_name(pipe));
9d0498a2
JB
947}
948
fbf49ea2
VS
949static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
950{
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 reg = PIPEDSL(pipe);
953 u32 line1, line2;
954 u32 line_mask;
955
956 if (IS_GEN2(dev))
957 line_mask = DSL_LINEMASK_GEN2;
958 else
959 line_mask = DSL_LINEMASK_GEN3;
960
961 line1 = I915_READ(reg) & line_mask;
962 mdelay(5);
963 line2 = I915_READ(reg) & line_mask;
964
965 return line1 == line2;
966}
967
ab7ad7f6
KP
968/*
969 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
970 * @dev: drm device
971 * @pipe: pipe to wait for
972 *
973 * After disabling a pipe, we can't wait for vblank in the usual way,
974 * spinning on the vblank interrupt status bit, since we won't actually
975 * see an interrupt when the pipe is disabled.
976 *
ab7ad7f6
KP
977 * On Gen4 and above:
978 * wait for the pipe register state bit to turn off
979 *
980 * Otherwise:
981 * wait for the display line value to settle (it usually
982 * ends up stopping at the start of the next frame).
58e10eb9 983 *
9d0498a2 984 */
58e10eb9 985void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
986{
987 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
988 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
989 pipe);
ab7ad7f6
KP
990
991 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 992 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
993
994 /* Wait for the Pipe State to go off */
58e10eb9
CW
995 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
996 100))
284637d9 997 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 998 } else {
ab7ad7f6 999 /* Wait for the display line to settle */
fbf49ea2 1000 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1001 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1002 }
79e53945
JB
1003}
1004
b0ea7d37
DL
1005/*
1006 * ibx_digital_port_connected - is the specified port connected?
1007 * @dev_priv: i915 private structure
1008 * @port: the port to test
1009 *
1010 * Returns true if @port is connected, false otherwise.
1011 */
1012bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013 struct intel_digital_port *port)
1014{
1015 u32 bit;
1016
c36346e3 1017 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1018 switch (port->port) {
c36346e3
DL
1019 case PORT_B:
1020 bit = SDE_PORTB_HOTPLUG;
1021 break;
1022 case PORT_C:
1023 bit = SDE_PORTC_HOTPLUG;
1024 break;
1025 case PORT_D:
1026 bit = SDE_PORTD_HOTPLUG;
1027 break;
1028 default:
1029 return true;
1030 }
1031 } else {
eba905b2 1032 switch (port->port) {
c36346e3
DL
1033 case PORT_B:
1034 bit = SDE_PORTB_HOTPLUG_CPT;
1035 break;
1036 case PORT_C:
1037 bit = SDE_PORTC_HOTPLUG_CPT;
1038 break;
1039 case PORT_D:
1040 bit = SDE_PORTD_HOTPLUG_CPT;
1041 break;
1042 default:
1043 return true;
1044 }
b0ea7d37
DL
1045 }
1046
1047 return I915_READ(SDEISR) & bit;
1048}
1049
b24e7179
JB
1050static const char *state_string(bool enabled)
1051{
1052 return enabled ? "on" : "off";
1053}
1054
1055/* Only for pre-ILK configs */
55607e8a
DV
1056void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
b24e7179
JB
1058{
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069}
b24e7179 1070
23538ef1
JN
1071/* XXX: the dsi pll is shared between MIPI DSI ports */
1072static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1073{
1074 u32 val;
1075 bool cur_state;
1076
1077 mutex_lock(&dev_priv->dpio_lock);
1078 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079 mutex_unlock(&dev_priv->dpio_lock);
1080
1081 cur_state = val & DSI_PLL_VCO_EN;
1082 WARN(cur_state != state,
1083 "DSI PLL state assertion failure (expected %s, current %s)\n",
1084 state_string(state), state_string(cur_state));
1085}
1086#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1088
55607e8a 1089struct intel_shared_dpll *
e2b78267
DV
1090intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1091{
1092 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1093
a43f6e0f 1094 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1095 return NULL;
1096
a43f6e0f 1097 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1098}
1099
040484af 1100/* For ILK+ */
55607e8a
DV
1101void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102 struct intel_shared_dpll *pll,
1103 bool state)
040484af 1104{
040484af 1105 bool cur_state;
5358901f 1106 struct intel_dpll_hw_state hw_state;
040484af 1107
92b27b08 1108 if (WARN (!pll,
46edb027 1109 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1110 return;
ee7b9f93 1111
5358901f 1112 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1113 WARN(cur_state != state,
5358901f
DV
1114 "%s assertion failure (expected %s, current %s)\n",
1115 pll->name, state_string(state), state_string(cur_state));
040484af 1116}
040484af
JB
1117
1118static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120{
1121 int reg;
1122 u32 val;
1123 bool cur_state;
ad80a810
PZ
1124 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1125 pipe);
040484af 1126
affa9354
PZ
1127 if (HAS_DDI(dev_priv->dev)) {
1128 /* DDI does not have a specific FDI_TX register */
ad80a810 1129 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1130 val = I915_READ(reg);
ad80a810 1131 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1132 } else {
1133 reg = FDI_TX_CTL(pipe);
1134 val = I915_READ(reg);
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
040484af
JB
1137 WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1140}
1141#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146{
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1150
d63fa0dc
PZ
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1154 WARN(cur_state != state,
1155 "FDI RX state assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1157}
1158#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160
1161static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1162 enum pipe pipe)
1163{
1164 int reg;
1165 u32 val;
1166
1167 /* ILK FDI PLL is always enabled */
3d13ef2e 1168 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1169 return;
1170
bf507ef7 1171 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1172 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1173 return;
1174
040484af
JB
1175 reg = FDI_TX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1178}
1179
55607e8a
DV
1180void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
040484af
JB
1182{
1183 int reg;
1184 u32 val;
55607e8a 1185 bool cur_state;
040484af
JB
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
55607e8a
DV
1189 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 WARN(cur_state != state,
1191 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 state_string(state), state_string(cur_state));
040484af
JB
1193}
1194
ea0760cf
JB
1195static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1196 enum pipe pipe)
1197{
1198 int pp_reg, lvds_reg;
1199 u32 val;
1200 enum pipe panel_pipe = PIPE_A;
0de3b485 1201 bool locked = true;
ea0760cf
JB
1202
1203 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1204 pp_reg = PCH_PP_CONTROL;
1205 lvds_reg = PCH_LVDS;
1206 } else {
1207 pp_reg = PP_CONTROL;
1208 lvds_reg = LVDS;
1209 }
1210
1211 val = I915_READ(pp_reg);
1212 if (!(val & PANEL_POWER_ON) ||
1213 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1214 locked = false;
1215
1216 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1217 panel_pipe = PIPE_B;
1218
1219 WARN(panel_pipe == pipe && locked,
1220 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1221 pipe_name(pipe));
ea0760cf
JB
1222}
1223
93ce0ba6
JN
1224static void assert_cursor(struct drm_i915_private *dev_priv,
1225 enum pipe pipe, bool state)
1226{
1227 struct drm_device *dev = dev_priv->dev;
1228 bool cur_state;
1229
d9d82081 1230 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1231 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1232 else
5efb3e28 1233 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1234
1235 WARN(cur_state != state,
1236 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1237 pipe_name(pipe), state_string(state), state_string(cur_state));
1238}
1239#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1240#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1241
b840d907
JB
1242void assert_pipe(struct drm_i915_private *dev_priv,
1243 enum pipe pipe, bool state)
b24e7179
JB
1244{
1245 int reg;
1246 u32 val;
63d7bbe9 1247 bool cur_state;
702e7a56
PZ
1248 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1249 pipe);
b24e7179 1250
8e636784
DV
1251 /* if we need the pipe A quirk it must be always on */
1252 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1253 state = true;
1254
da7e29bd 1255 if (!intel_display_power_enabled(dev_priv,
b97186f0 1256 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1257 cur_state = false;
1258 } else {
1259 reg = PIPECONF(cpu_transcoder);
1260 val = I915_READ(reg);
1261 cur_state = !!(val & PIPECONF_ENABLE);
1262 }
1263
63d7bbe9
JB
1264 WARN(cur_state != state,
1265 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1266 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1267}
1268
931872fc
CW
1269static void assert_plane(struct drm_i915_private *dev_priv,
1270 enum plane plane, bool state)
b24e7179
JB
1271{
1272 int reg;
1273 u32 val;
931872fc 1274 bool cur_state;
b24e7179
JB
1275
1276 reg = DSPCNTR(plane);
1277 val = I915_READ(reg);
931872fc
CW
1278 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1279 WARN(cur_state != state,
1280 "plane %c assertion failure (expected %s, current %s)\n",
1281 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1282}
1283
931872fc
CW
1284#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1285#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1286
b24e7179
JB
1287static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1288 enum pipe pipe)
1289{
653e1026 1290 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1291 int reg, i;
1292 u32 val;
1293 int cur_pipe;
1294
653e1026
VS
1295 /* Primary planes are fixed to pipes on gen4+ */
1296 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1297 reg = DSPCNTR(pipe);
1298 val = I915_READ(reg);
83f26f16 1299 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1300 "plane %c assertion failure, should be disabled but not\n",
1301 plane_name(pipe));
19ec1358 1302 return;
28c05794 1303 }
19ec1358 1304
b24e7179 1305 /* Need to check both planes against the pipe */
055e393f 1306 for_each_pipe(dev_priv, i) {
b24e7179
JB
1307 reg = DSPCNTR(i);
1308 val = I915_READ(reg);
1309 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1310 DISPPLANE_SEL_PIPE_SHIFT;
1311 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1312 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1313 plane_name(i), pipe_name(pipe));
b24e7179
JB
1314 }
1315}
1316
19332d7a
JB
1317static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1318 enum pipe pipe)
1319{
20674eef 1320 struct drm_device *dev = dev_priv->dev;
1fe47785 1321 int reg, sprite;
19332d7a
JB
1322 u32 val;
1323
20674eef 1324 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1325 for_each_sprite(pipe, sprite) {
1326 reg = SPCNTR(pipe, sprite);
20674eef 1327 val = I915_READ(reg);
83f26f16 1328 WARN(val & SP_ENABLE,
20674eef 1329 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1330 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1331 }
1332 } else if (INTEL_INFO(dev)->gen >= 7) {
1333 reg = SPRCTL(pipe);
19332d7a 1334 val = I915_READ(reg);
83f26f16 1335 WARN(val & SPRITE_ENABLE,
06da8da2 1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1337 plane_name(pipe), pipe_name(pipe));
1338 } else if (INTEL_INFO(dev)->gen >= 5) {
1339 reg = DVSCNTR(pipe);
19332d7a 1340 val = I915_READ(reg);
83f26f16 1341 WARN(val & DVS_ENABLE,
06da8da2 1342 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1343 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1344 }
1345}
1346
89eff4be 1347static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1348{
1349 u32 val;
1350 bool enabled;
1351
89eff4be 1352 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1353
92f2584a
JB
1354 val = I915_READ(PCH_DREF_CONTROL);
1355 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1356 DREF_SUPERSPREAD_SOURCE_MASK));
1357 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1358}
1359
ab9412ba
DV
1360static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1361 enum pipe pipe)
92f2584a
JB
1362{
1363 int reg;
1364 u32 val;
1365 bool enabled;
1366
ab9412ba 1367 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1368 val = I915_READ(reg);
1369 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1370 WARN(enabled,
1371 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1372 pipe_name(pipe));
92f2584a
JB
1373}
1374
4e634389
KP
1375static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1376 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1377{
1378 if ((val & DP_PORT_EN) == 0)
1379 return false;
1380
1381 if (HAS_PCH_CPT(dev_priv->dev)) {
1382 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1383 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1384 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1385 return false;
44f37d1f
CML
1386 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1387 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1388 return false;
f0575e92
KP
1389 } else {
1390 if ((val & DP_PIPE_MASK) != (pipe << 30))
1391 return false;
1392 }
1393 return true;
1394}
1395
1519b995
KP
1396static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1397 enum pipe pipe, u32 val)
1398{
dc0fa718 1399 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1400 return false;
1401
1402 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1403 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1404 return false;
44f37d1f
CML
1405 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1406 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1407 return false;
1519b995 1408 } else {
dc0fa718 1409 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1410 return false;
1411 }
1412 return true;
1413}
1414
1415static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1416 enum pipe pipe, u32 val)
1417{
1418 if ((val & LVDS_PORT_EN) == 0)
1419 return false;
1420
1421 if (HAS_PCH_CPT(dev_priv->dev)) {
1422 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1423 return false;
1424 } else {
1425 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1426 return false;
1427 }
1428 return true;
1429}
1430
1431static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1432 enum pipe pipe, u32 val)
1433{
1434 if ((val & ADPA_DAC_ENABLE) == 0)
1435 return false;
1436 if (HAS_PCH_CPT(dev_priv->dev)) {
1437 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1438 return false;
1439 } else {
1440 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1441 return false;
1442 }
1443 return true;
1444}
1445
291906f1 1446static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1447 enum pipe pipe, int reg, u32 port_sel)
291906f1 1448{
47a05eca 1449 u32 val = I915_READ(reg);
4e634389 1450 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1451 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1452 reg, pipe_name(pipe));
de9a35ab 1453
75c5da27
DV
1454 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1455 && (val & DP_PIPEB_SELECT),
de9a35ab 1456 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1457}
1458
1459static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1460 enum pipe pipe, int reg)
1461{
47a05eca 1462 u32 val = I915_READ(reg);
b70ad586 1463 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1464 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1465 reg, pipe_name(pipe));
de9a35ab 1466
dc0fa718 1467 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1468 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1469 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1470}
1471
1472static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1473 enum pipe pipe)
1474{
1475 int reg;
1476 u32 val;
291906f1 1477
f0575e92
KP
1478 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1479 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1480 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1481
1482 reg = PCH_ADPA;
1483 val = I915_READ(reg);
b70ad586 1484 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1485 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1486 pipe_name(pipe));
291906f1
JB
1487
1488 reg = PCH_LVDS;
1489 val = I915_READ(reg);
b70ad586 1490 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1491 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1492 pipe_name(pipe));
291906f1 1493
e2debe91
PZ
1494 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1495 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1496 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1497}
1498
40e9cf64
JB
1499static void intel_init_dpio(struct drm_device *dev)
1500{
1501 struct drm_i915_private *dev_priv = dev->dev_private;
1502
1503 if (!IS_VALLEYVIEW(dev))
1504 return;
1505
a09caddd
CML
1506 /*
1507 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1508 * CHV x1 PHY (DP/HDMI D)
1509 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1510 */
1511 if (IS_CHERRYVIEW(dev)) {
1512 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1513 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1514 } else {
1515 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1516 }
5382f5f3
JB
1517}
1518
426115cf 1519static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1520{
426115cf
DV
1521 struct drm_device *dev = crtc->base.dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 int reg = DPLL(crtc->pipe);
1524 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1525
426115cf 1526 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1527
1528 /* No really, not for ILK+ */
1529 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1530
1531 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1532 if (IS_MOBILE(dev_priv->dev))
426115cf 1533 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1534
426115cf
DV
1535 I915_WRITE(reg, dpll);
1536 POSTING_READ(reg);
1537 udelay(150);
1538
1539 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1540 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1541
1542 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1543 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1544
1545 /* We do this three times for luck */
426115cf 1546 I915_WRITE(reg, dpll);
87442f73
DV
1547 POSTING_READ(reg);
1548 udelay(150); /* wait for warmup */
426115cf 1549 I915_WRITE(reg, dpll);
87442f73
DV
1550 POSTING_READ(reg);
1551 udelay(150); /* wait for warmup */
426115cf 1552 I915_WRITE(reg, dpll);
87442f73
DV
1553 POSTING_READ(reg);
1554 udelay(150); /* wait for warmup */
1555}
1556
9d556c99
CML
1557static void chv_enable_pll(struct intel_crtc *crtc)
1558{
1559 struct drm_device *dev = crtc->base.dev;
1560 struct drm_i915_private *dev_priv = dev->dev_private;
1561 int pipe = crtc->pipe;
1562 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1563 u32 tmp;
1564
1565 assert_pipe_disabled(dev_priv, crtc->pipe);
1566
1567 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1568
1569 mutex_lock(&dev_priv->dpio_lock);
1570
1571 /* Enable back the 10bit clock to display controller */
1572 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1573 tmp |= DPIO_DCLKP_EN;
1574 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1575
1576 /*
1577 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1578 */
1579 udelay(1);
1580
1581 /* Enable PLL */
a11b0703 1582 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1583
1584 /* Check PLL is locked */
a11b0703 1585 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1586 DRM_ERROR("PLL %d failed to lock\n", pipe);
1587
a11b0703
VS
1588 /* not sure when this should be written */
1589 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1590 POSTING_READ(DPLL_MD(pipe));
1591
9d556c99
CML
1592 mutex_unlock(&dev_priv->dpio_lock);
1593}
1594
66e3d5c0 1595static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1596{
66e3d5c0
DV
1597 struct drm_device *dev = crtc->base.dev;
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599 int reg = DPLL(crtc->pipe);
1600 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1601
66e3d5c0 1602 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1603
63d7bbe9 1604 /* No really, not for ILK+ */
3d13ef2e 1605 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1606
1607 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1608 if (IS_MOBILE(dev) && !IS_I830(dev))
1609 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1610
66e3d5c0
DV
1611 I915_WRITE(reg, dpll);
1612
1613 /* Wait for the clocks to stabilize. */
1614 POSTING_READ(reg);
1615 udelay(150);
1616
1617 if (INTEL_INFO(dev)->gen >= 4) {
1618 I915_WRITE(DPLL_MD(crtc->pipe),
1619 crtc->config.dpll_hw_state.dpll_md);
1620 } else {
1621 /* The pixel multiplier can only be updated once the
1622 * DPLL is enabled and the clocks are stable.
1623 *
1624 * So write it again.
1625 */
1626 I915_WRITE(reg, dpll);
1627 }
63d7bbe9
JB
1628
1629 /* We do this three times for luck */
66e3d5c0 1630 I915_WRITE(reg, dpll);
63d7bbe9
JB
1631 POSTING_READ(reg);
1632 udelay(150); /* wait for warmup */
66e3d5c0 1633 I915_WRITE(reg, dpll);
63d7bbe9
JB
1634 POSTING_READ(reg);
1635 udelay(150); /* wait for warmup */
66e3d5c0 1636 I915_WRITE(reg, dpll);
63d7bbe9
JB
1637 POSTING_READ(reg);
1638 udelay(150); /* wait for warmup */
1639}
1640
1641/**
50b44a44 1642 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1643 * @dev_priv: i915 private structure
1644 * @pipe: pipe PLL to disable
1645 *
1646 * Disable the PLL for @pipe, making sure the pipe is off first.
1647 *
1648 * Note! This is for pre-ILK only.
1649 */
50b44a44 1650static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1651{
63d7bbe9
JB
1652 /* Don't disable pipe A or pipe A PLLs if needed */
1653 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1654 return;
1655
1656 /* Make sure the pipe isn't still relying on us */
1657 assert_pipe_disabled(dev_priv, pipe);
1658
50b44a44
DV
1659 I915_WRITE(DPLL(pipe), 0);
1660 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1661}
1662
f6071166
JB
1663static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1664{
1665 u32 val = 0;
1666
1667 /* Make sure the pipe isn't still relying on us */
1668 assert_pipe_disabled(dev_priv, pipe);
1669
e5cbfbfb
ID
1670 /*
1671 * Leave integrated clock source and reference clock enabled for pipe B.
1672 * The latter is needed for VGA hotplug / manual detection.
1673 */
f6071166 1674 if (pipe == PIPE_B)
e5cbfbfb 1675 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1676 I915_WRITE(DPLL(pipe), val);
1677 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1678
1679}
1680
1681static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1682{
d752048d 1683 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1684 u32 val;
1685
a11b0703
VS
1686 /* Make sure the pipe isn't still relying on us */
1687 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1688
a11b0703 1689 /* Set PLL en = 0 */
d17ec4ce 1690 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1691 if (pipe != PIPE_A)
1692 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1693 I915_WRITE(DPLL(pipe), val);
1694 POSTING_READ(DPLL(pipe));
d752048d
VS
1695
1696 mutex_lock(&dev_priv->dpio_lock);
1697
1698 /* Disable 10bit clock to display controller */
1699 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1700 val &= ~DPIO_DCLKP_EN;
1701 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1702
61407f6d
VS
1703 /* disable left/right clock distribution */
1704 if (pipe != PIPE_B) {
1705 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1706 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1707 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1708 } else {
1709 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1710 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1711 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1712 }
1713
d752048d 1714 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1715}
1716
e4607fcf
CML
1717void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1718 struct intel_digital_port *dport)
89b667f8
JB
1719{
1720 u32 port_mask;
00fc31b7 1721 int dpll_reg;
89b667f8 1722
e4607fcf
CML
1723 switch (dport->port) {
1724 case PORT_B:
89b667f8 1725 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1726 dpll_reg = DPLL(0);
e4607fcf
CML
1727 break;
1728 case PORT_C:
89b667f8 1729 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1730 dpll_reg = DPLL(0);
1731 break;
1732 case PORT_D:
1733 port_mask = DPLL_PORTD_READY_MASK;
1734 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1735 break;
1736 default:
1737 BUG();
1738 }
89b667f8 1739
00fc31b7 1740 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1741 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1742 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1743}
1744
b14b1055
DV
1745static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1746{
1747 struct drm_device *dev = crtc->base.dev;
1748 struct drm_i915_private *dev_priv = dev->dev_private;
1749 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1750
be19f0ff
CW
1751 if (WARN_ON(pll == NULL))
1752 return;
1753
b14b1055
DV
1754 WARN_ON(!pll->refcount);
1755 if (pll->active == 0) {
1756 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1757 WARN_ON(pll->on);
1758 assert_shared_dpll_disabled(dev_priv, pll);
1759
1760 pll->mode_set(dev_priv, pll);
1761 }
1762}
1763
92f2584a 1764/**
85b3894f 1765 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1766 * @dev_priv: i915 private structure
1767 * @pipe: pipe PLL to enable
1768 *
1769 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1770 * drives the transcoder clock.
1771 */
85b3894f 1772static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1773{
3d13ef2e
DL
1774 struct drm_device *dev = crtc->base.dev;
1775 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1776 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1777
87a875bb 1778 if (WARN_ON(pll == NULL))
48da64a8
CW
1779 return;
1780
1781 if (WARN_ON(pll->refcount == 0))
1782 return;
ee7b9f93 1783
74dd6928 1784 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1785 pll->name, pll->active, pll->on,
e2b78267 1786 crtc->base.base.id);
92f2584a 1787
cdbd2316
DV
1788 if (pll->active++) {
1789 WARN_ON(!pll->on);
e9d6944e 1790 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1791 return;
1792 }
f4a091c7 1793 WARN_ON(pll->on);
ee7b9f93 1794
bd2bb1b9
PZ
1795 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1796
46edb027 1797 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1798 pll->enable(dev_priv, pll);
ee7b9f93 1799 pll->on = true;
92f2584a
JB
1800}
1801
f6daaec2 1802static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1803{
3d13ef2e
DL
1804 struct drm_device *dev = crtc->base.dev;
1805 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1806 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1807
92f2584a 1808 /* PCH only available on ILK+ */
3d13ef2e 1809 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1810 if (WARN_ON(pll == NULL))
ee7b9f93 1811 return;
92f2584a 1812
48da64a8
CW
1813 if (WARN_ON(pll->refcount == 0))
1814 return;
7a419866 1815
46edb027
DV
1816 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1817 pll->name, pll->active, pll->on,
e2b78267 1818 crtc->base.base.id);
7a419866 1819
48da64a8 1820 if (WARN_ON(pll->active == 0)) {
e9d6944e 1821 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1822 return;
1823 }
1824
e9d6944e 1825 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1826 WARN_ON(!pll->on);
cdbd2316 1827 if (--pll->active)
7a419866 1828 return;
ee7b9f93 1829
46edb027 1830 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1831 pll->disable(dev_priv, pll);
ee7b9f93 1832 pll->on = false;
bd2bb1b9
PZ
1833
1834 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1835}
1836
b8a4f404
PZ
1837static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1838 enum pipe pipe)
040484af 1839{
23670b32 1840 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1841 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1843 uint32_t reg, val, pipeconf_val;
040484af
JB
1844
1845 /* PCH only available on ILK+ */
3d13ef2e 1846 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1847
1848 /* Make sure PCH DPLL is enabled */
e72f9fbf 1849 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1850 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1851
1852 /* FDI must be feeding us bits for PCH ports */
1853 assert_fdi_tx_enabled(dev_priv, pipe);
1854 assert_fdi_rx_enabled(dev_priv, pipe);
1855
23670b32
DV
1856 if (HAS_PCH_CPT(dev)) {
1857 /* Workaround: Set the timing override bit before enabling the
1858 * pch transcoder. */
1859 reg = TRANS_CHICKEN2(pipe);
1860 val = I915_READ(reg);
1861 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1862 I915_WRITE(reg, val);
59c859d6 1863 }
23670b32 1864
ab9412ba 1865 reg = PCH_TRANSCONF(pipe);
040484af 1866 val = I915_READ(reg);
5f7f726d 1867 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1868
1869 if (HAS_PCH_IBX(dev_priv->dev)) {
1870 /*
1871 * make the BPC in transcoder be consistent with
1872 * that in pipeconf reg.
1873 */
dfd07d72
DV
1874 val &= ~PIPECONF_BPC_MASK;
1875 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1876 }
5f7f726d
PZ
1877
1878 val &= ~TRANS_INTERLACE_MASK;
1879 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1880 if (HAS_PCH_IBX(dev_priv->dev) &&
1881 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1882 val |= TRANS_LEGACY_INTERLACED_ILK;
1883 else
1884 val |= TRANS_INTERLACED;
5f7f726d
PZ
1885 else
1886 val |= TRANS_PROGRESSIVE;
1887
040484af
JB
1888 I915_WRITE(reg, val | TRANS_ENABLE);
1889 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1890 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1891}
1892
8fb033d7 1893static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1894 enum transcoder cpu_transcoder)
040484af 1895{
8fb033d7 1896 u32 val, pipeconf_val;
8fb033d7
PZ
1897
1898 /* PCH only available on ILK+ */
3d13ef2e 1899 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1900
8fb033d7 1901 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1902 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1903 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1904
223a6fdf
PZ
1905 /* Workaround: set timing override bit. */
1906 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1907 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1908 I915_WRITE(_TRANSA_CHICKEN2, val);
1909
25f3ef11 1910 val = TRANS_ENABLE;
937bb610 1911 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1912
9a76b1c6
PZ
1913 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1914 PIPECONF_INTERLACED_ILK)
a35f2679 1915 val |= TRANS_INTERLACED;
8fb033d7
PZ
1916 else
1917 val |= TRANS_PROGRESSIVE;
1918
ab9412ba
DV
1919 I915_WRITE(LPT_TRANSCONF, val);
1920 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1921 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1922}
1923
b8a4f404
PZ
1924static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1925 enum pipe pipe)
040484af 1926{
23670b32
DV
1927 struct drm_device *dev = dev_priv->dev;
1928 uint32_t reg, val;
040484af
JB
1929
1930 /* FDI relies on the transcoder */
1931 assert_fdi_tx_disabled(dev_priv, pipe);
1932 assert_fdi_rx_disabled(dev_priv, pipe);
1933
291906f1
JB
1934 /* Ports must be off as well */
1935 assert_pch_ports_disabled(dev_priv, pipe);
1936
ab9412ba 1937 reg = PCH_TRANSCONF(pipe);
040484af
JB
1938 val = I915_READ(reg);
1939 val &= ~TRANS_ENABLE;
1940 I915_WRITE(reg, val);
1941 /* wait for PCH transcoder off, transcoder state */
1942 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1943 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1944
1945 if (!HAS_PCH_IBX(dev)) {
1946 /* Workaround: Clear the timing override chicken bit again. */
1947 reg = TRANS_CHICKEN2(pipe);
1948 val = I915_READ(reg);
1949 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1950 I915_WRITE(reg, val);
1951 }
040484af
JB
1952}
1953
ab4d966c 1954static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1955{
8fb033d7
PZ
1956 u32 val;
1957
ab9412ba 1958 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1959 val &= ~TRANS_ENABLE;
ab9412ba 1960 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1961 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1962 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1963 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1964
1965 /* Workaround: clear timing override bit. */
1966 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1967 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1968 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1969}
1970
b24e7179 1971/**
309cfea8 1972 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1973 * @crtc: crtc responsible for the pipe
b24e7179 1974 *
0372264a 1975 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1976 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1977 */
e1fdc473 1978static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1979{
0372264a
PZ
1980 struct drm_device *dev = crtc->base.dev;
1981 struct drm_i915_private *dev_priv = dev->dev_private;
1982 enum pipe pipe = crtc->pipe;
702e7a56
PZ
1983 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1984 pipe);
1a240d4d 1985 enum pipe pch_transcoder;
b24e7179
JB
1986 int reg;
1987 u32 val;
1988
58c6eaa2 1989 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1990 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1991 assert_sprites_disabled(dev_priv, pipe);
1992
681e5811 1993 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
1994 pch_transcoder = TRANSCODER_A;
1995 else
1996 pch_transcoder = pipe;
1997
b24e7179
JB
1998 /*
1999 * A pipe without a PLL won't actually be able to drive bits from
2000 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2001 * need the check.
2002 */
2003 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2004 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2005 assert_dsi_pll_enabled(dev_priv);
2006 else
2007 assert_pll_enabled(dev_priv, pipe);
040484af 2008 else {
30421c4f 2009 if (crtc->config.has_pch_encoder) {
040484af 2010 /* if driving the PCH, we need FDI enabled */
cc391bbb 2011 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2012 assert_fdi_tx_pll_enabled(dev_priv,
2013 (enum pipe) cpu_transcoder);
040484af
JB
2014 }
2015 /* FIXME: assert CPU port conditions for SNB+ */
2016 }
b24e7179 2017
702e7a56 2018 reg = PIPECONF(cpu_transcoder);
b24e7179 2019 val = I915_READ(reg);
7ad25d48
PZ
2020 if (val & PIPECONF_ENABLE) {
2021 WARN_ON(!(pipe == PIPE_A &&
2022 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2023 return;
7ad25d48 2024 }
00d70b15
CW
2025
2026 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2027 POSTING_READ(reg);
b24e7179
JB
2028}
2029
2030/**
309cfea8 2031 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2032 * @dev_priv: i915 private structure
2033 * @pipe: pipe to disable
2034 *
2035 * Disable @pipe, making sure that various hardware specific requirements
2036 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2037 *
2038 * @pipe should be %PIPE_A or %PIPE_B.
2039 *
2040 * Will wait until the pipe has shut down before returning.
2041 */
2042static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2043 enum pipe pipe)
2044{
702e7a56
PZ
2045 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2046 pipe);
b24e7179
JB
2047 int reg;
2048 u32 val;
2049
2050 /*
2051 * Make sure planes won't keep trying to pump pixels to us,
2052 * or we might hang the display.
2053 */
2054 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2055 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2056 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2057
2058 /* Don't disable pipe A or pipe A PLLs if needed */
2059 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2060 return;
2061
702e7a56 2062 reg = PIPECONF(cpu_transcoder);
b24e7179 2063 val = I915_READ(reg);
00d70b15
CW
2064 if ((val & PIPECONF_ENABLE) == 0)
2065 return;
2066
2067 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2068 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2069}
2070
d74362c9
KP
2071/*
2072 * Plane regs are double buffered, going from enabled->disabled needs a
2073 * trigger in order to latch. The display address reg provides this.
2074 */
1dba99f4
VS
2075void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2076 enum plane plane)
d74362c9 2077{
3d13ef2e
DL
2078 struct drm_device *dev = dev_priv->dev;
2079 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2080
2081 I915_WRITE(reg, I915_READ(reg));
2082 POSTING_READ(reg);
d74362c9
KP
2083}
2084
b24e7179 2085/**
262ca2b0 2086 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2087 * @plane: plane to be enabled
2088 * @crtc: crtc for the plane
b24e7179 2089 *
fdd508a6 2090 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2091 */
fdd508a6
VS
2092static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2093 struct drm_crtc *crtc)
b24e7179 2094{
fdd508a6
VS
2095 struct drm_device *dev = plane->dev;
2096 struct drm_i915_private *dev_priv = dev->dev_private;
2097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2098
2099 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2100 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2101
98ec7739
VS
2102 if (intel_crtc->primary_enabled)
2103 return;
0037f71c 2104
4c445e0e 2105 intel_crtc->primary_enabled = true;
939c2fe8 2106
fdd508a6
VS
2107 dev_priv->display.update_primary_plane(crtc, plane->fb,
2108 crtc->x, crtc->y);
33c3b0d1
VS
2109
2110 /*
2111 * BDW signals flip done immediately if the plane
2112 * is disabled, even if the plane enable is already
2113 * armed to occur at the next vblank :(
2114 */
2115 if (IS_BROADWELL(dev))
2116 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2117}
2118
b24e7179 2119/**
262ca2b0 2120 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2121 * @plane: plane to be disabled
2122 * @crtc: crtc for the plane
b24e7179 2123 *
fdd508a6 2124 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2125 */
fdd508a6
VS
2126static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2127 struct drm_crtc *crtc)
b24e7179 2128{
fdd508a6
VS
2129 struct drm_device *dev = plane->dev;
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2132
2133 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2134
98ec7739
VS
2135 if (!intel_crtc->primary_enabled)
2136 return;
0037f71c 2137
4c445e0e 2138 intel_crtc->primary_enabled = false;
939c2fe8 2139
fdd508a6
VS
2140 dev_priv->display.update_primary_plane(crtc, plane->fb,
2141 crtc->x, crtc->y);
b24e7179
JB
2142}
2143
693db184
CW
2144static bool need_vtd_wa(struct drm_device *dev)
2145{
2146#ifdef CONFIG_INTEL_IOMMU
2147 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2148 return true;
2149#endif
2150 return false;
2151}
2152
a57ce0b2
JB
2153static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2154{
2155 int tile_height;
2156
2157 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2158 return ALIGN(height, tile_height);
2159}
2160
127bd2ac 2161int
48b956c5 2162intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2163 struct drm_i915_gem_object *obj,
a4872ba6 2164 struct intel_engine_cs *pipelined)
6b95a207 2165{
ce453d81 2166 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2167 u32 alignment;
2168 int ret;
2169
ebcdd39e
MR
2170 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2171
05394f39 2172 switch (obj->tiling_mode) {
6b95a207 2173 case I915_TILING_NONE:
534843da
CW
2174 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2175 alignment = 128 * 1024;
a6c45cf0 2176 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2177 alignment = 4 * 1024;
2178 else
2179 alignment = 64 * 1024;
6b95a207
KH
2180 break;
2181 case I915_TILING_X:
2182 /* pin() will align the object as required by fence */
2183 alignment = 0;
2184 break;
2185 case I915_TILING_Y:
80075d49 2186 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2187 return -EINVAL;
2188 default:
2189 BUG();
2190 }
2191
693db184
CW
2192 /* Note that the w/a also requires 64 PTE of padding following the
2193 * bo. We currently fill all unused PTE with the shadow page and so
2194 * we should always have valid PTE following the scanout preventing
2195 * the VT-d warning.
2196 */
2197 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2198 alignment = 256 * 1024;
2199
ce453d81 2200 dev_priv->mm.interruptible = false;
2da3b9b9 2201 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2202 if (ret)
ce453d81 2203 goto err_interruptible;
6b95a207
KH
2204
2205 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2206 * fence, whereas 965+ only requires a fence if using
2207 * framebuffer compression. For simplicity, we always install
2208 * a fence as the cost is not that onerous.
2209 */
06d98131 2210 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2211 if (ret)
2212 goto err_unpin;
1690e1eb 2213
9a5a53b3 2214 i915_gem_object_pin_fence(obj);
6b95a207 2215
ce453d81 2216 dev_priv->mm.interruptible = true;
6b95a207 2217 return 0;
48b956c5
CW
2218
2219err_unpin:
cc98b413 2220 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2221err_interruptible:
2222 dev_priv->mm.interruptible = true;
48b956c5 2223 return ret;
6b95a207
KH
2224}
2225
1690e1eb
CW
2226void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2227{
ebcdd39e
MR
2228 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2229
1690e1eb 2230 i915_gem_object_unpin_fence(obj);
cc98b413 2231 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2232}
2233
c2c75131
DV
2234/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2235 * is assumed to be a power-of-two. */
bc752862
CW
2236unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2237 unsigned int tiling_mode,
2238 unsigned int cpp,
2239 unsigned int pitch)
c2c75131 2240{
bc752862
CW
2241 if (tiling_mode != I915_TILING_NONE) {
2242 unsigned int tile_rows, tiles;
c2c75131 2243
bc752862
CW
2244 tile_rows = *y / 8;
2245 *y %= 8;
c2c75131 2246
bc752862
CW
2247 tiles = *x / (512/cpp);
2248 *x %= 512/cpp;
2249
2250 return tile_rows * pitch * 8 + tiles * 4096;
2251 } else {
2252 unsigned int offset;
2253
2254 offset = *y * pitch + *x * cpp;
2255 *y = 0;
2256 *x = (offset & 4095) / cpp;
2257 return offset & -4096;
2258 }
c2c75131
DV
2259}
2260
46f297fb
JB
2261int intel_format_to_fourcc(int format)
2262{
2263 switch (format) {
2264 case DISPPLANE_8BPP:
2265 return DRM_FORMAT_C8;
2266 case DISPPLANE_BGRX555:
2267 return DRM_FORMAT_XRGB1555;
2268 case DISPPLANE_BGRX565:
2269 return DRM_FORMAT_RGB565;
2270 default:
2271 case DISPPLANE_BGRX888:
2272 return DRM_FORMAT_XRGB8888;
2273 case DISPPLANE_RGBX888:
2274 return DRM_FORMAT_XBGR8888;
2275 case DISPPLANE_BGRX101010:
2276 return DRM_FORMAT_XRGB2101010;
2277 case DISPPLANE_RGBX101010:
2278 return DRM_FORMAT_XBGR2101010;
2279 }
2280}
2281
484b41dd 2282static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2283 struct intel_plane_config *plane_config)
2284{
2285 struct drm_device *dev = crtc->base.dev;
2286 struct drm_i915_gem_object *obj = NULL;
2287 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2288 u32 base = plane_config->base;
2289
ff2652ea
CW
2290 if (plane_config->size == 0)
2291 return false;
2292
46f297fb
JB
2293 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2294 plane_config->size);
2295 if (!obj)
484b41dd 2296 return false;
46f297fb
JB
2297
2298 if (plane_config->tiled) {
2299 obj->tiling_mode = I915_TILING_X;
66e514c1 2300 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2301 }
2302
66e514c1
DA
2303 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2304 mode_cmd.width = crtc->base.primary->fb->width;
2305 mode_cmd.height = crtc->base.primary->fb->height;
2306 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2307
2308 mutex_lock(&dev->struct_mutex);
2309
66e514c1 2310 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2311 &mode_cmd, obj)) {
46f297fb
JB
2312 DRM_DEBUG_KMS("intel fb init failed\n");
2313 goto out_unref_obj;
2314 }
2315
a071fa00 2316 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2317 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2318
2319 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2320 return true;
46f297fb
JB
2321
2322out_unref_obj:
2323 drm_gem_object_unreference(&obj->base);
2324 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2325 return false;
2326}
2327
2328static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2329 struct intel_plane_config *plane_config)
2330{
2331 struct drm_device *dev = intel_crtc->base.dev;
2332 struct drm_crtc *c;
2333 struct intel_crtc *i;
2ff8fde1 2334 struct drm_i915_gem_object *obj;
484b41dd 2335
66e514c1 2336 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2337 return;
2338
2339 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2340 return;
2341
66e514c1
DA
2342 kfree(intel_crtc->base.primary->fb);
2343 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2344
2345 /*
2346 * Failed to alloc the obj, check to see if we should share
2347 * an fb with another CRTC instead
2348 */
70e1e0ec 2349 for_each_crtc(dev, c) {
484b41dd
JB
2350 i = to_intel_crtc(c);
2351
2352 if (c == &intel_crtc->base)
2353 continue;
2354
2ff8fde1
MR
2355 if (!i->active)
2356 continue;
2357
2358 obj = intel_fb_obj(c->primary->fb);
2359 if (obj == NULL)
484b41dd
JB
2360 continue;
2361
2ff8fde1 2362 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2363 drm_framebuffer_reference(c->primary->fb);
2364 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2365 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2366 break;
2367 }
2368 }
46f297fb
JB
2369}
2370
29b9bde6
DV
2371static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2372 struct drm_framebuffer *fb,
2373 int x, int y)
81255565
JB
2374{
2375 struct drm_device *dev = crtc->dev;
2376 struct drm_i915_private *dev_priv = dev->dev_private;
2377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2378 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2379 int plane = intel_crtc->plane;
e506a0c6 2380 unsigned long linear_offset;
81255565 2381 u32 dspcntr;
f45651ba 2382 u32 reg = DSPCNTR(plane);
48404c1e
SJ
2383 int pixel_size;
2384
2385 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
f45651ba 2386
fdd508a6
VS
2387 if (!intel_crtc->primary_enabled) {
2388 I915_WRITE(reg, 0);
2389 if (INTEL_INFO(dev)->gen >= 4)
2390 I915_WRITE(DSPSURF(plane), 0);
2391 else
2392 I915_WRITE(DSPADDR(plane), 0);
2393 POSTING_READ(reg);
2394 return;
2395 }
2396
f45651ba
VS
2397 dspcntr = DISPPLANE_GAMMA_ENABLE;
2398
fdd508a6 2399 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2400
2401 if (INTEL_INFO(dev)->gen < 4) {
2402 if (intel_crtc->pipe == PIPE_B)
2403 dspcntr |= DISPPLANE_SEL_PIPE_B;
2404
2405 /* pipesrc and dspsize control the size that is scaled from,
2406 * which should always be the user's requested size.
2407 */
2408 I915_WRITE(DSPSIZE(plane),
2409 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2410 (intel_crtc->config.pipe_src_w - 1));
2411 I915_WRITE(DSPPOS(plane), 0);
2412 }
81255565 2413
57779d06
VS
2414 switch (fb->pixel_format) {
2415 case DRM_FORMAT_C8:
81255565
JB
2416 dspcntr |= DISPPLANE_8BPP;
2417 break;
57779d06
VS
2418 case DRM_FORMAT_XRGB1555:
2419 case DRM_FORMAT_ARGB1555:
2420 dspcntr |= DISPPLANE_BGRX555;
81255565 2421 break;
57779d06
VS
2422 case DRM_FORMAT_RGB565:
2423 dspcntr |= DISPPLANE_BGRX565;
2424 break;
2425 case DRM_FORMAT_XRGB8888:
2426 case DRM_FORMAT_ARGB8888:
2427 dspcntr |= DISPPLANE_BGRX888;
2428 break;
2429 case DRM_FORMAT_XBGR8888:
2430 case DRM_FORMAT_ABGR8888:
2431 dspcntr |= DISPPLANE_RGBX888;
2432 break;
2433 case DRM_FORMAT_XRGB2101010:
2434 case DRM_FORMAT_ARGB2101010:
2435 dspcntr |= DISPPLANE_BGRX101010;
2436 break;
2437 case DRM_FORMAT_XBGR2101010:
2438 case DRM_FORMAT_ABGR2101010:
2439 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2440 break;
2441 default:
baba133a 2442 BUG();
81255565 2443 }
57779d06 2444
f45651ba
VS
2445 if (INTEL_INFO(dev)->gen >= 4 &&
2446 obj->tiling_mode != I915_TILING_NONE)
2447 dspcntr |= DISPPLANE_TILED;
81255565 2448
de1aa629
VS
2449 if (IS_G4X(dev))
2450 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2451
e506a0c6 2452 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2453
c2c75131
DV
2454 if (INTEL_INFO(dev)->gen >= 4) {
2455 intel_crtc->dspaddr_offset =
bc752862
CW
2456 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2457 fb->bits_per_pixel / 8,
2458 fb->pitches[0]);
c2c75131
DV
2459 linear_offset -= intel_crtc->dspaddr_offset;
2460 } else {
e506a0c6 2461 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2462 }
e506a0c6 2463
48404c1e
SJ
2464 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2465 dspcntr |= DISPPLANE_ROTATE_180;
2466
2467 x += (intel_crtc->config.pipe_src_w - 1);
2468 y += (intel_crtc->config.pipe_src_h - 1);
2469
2470 /* Finding the last pixel of the last line of the display
2471 data and adding to linear_offset*/
2472 linear_offset +=
2473 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2474 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2475 }
2476
2477 I915_WRITE(reg, dspcntr);
2478
f343c5f6
BW
2479 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2480 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2481 fb->pitches[0]);
01f2c773 2482 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2483 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2484 I915_WRITE(DSPSURF(plane),
2485 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2486 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2487 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2488 } else
f343c5f6 2489 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2490 POSTING_READ(reg);
17638cd6
JB
2491}
2492
29b9bde6
DV
2493static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2494 struct drm_framebuffer *fb,
2495 int x, int y)
17638cd6
JB
2496{
2497 struct drm_device *dev = crtc->dev;
2498 struct drm_i915_private *dev_priv = dev->dev_private;
2499 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2500 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2501 int plane = intel_crtc->plane;
e506a0c6 2502 unsigned long linear_offset;
17638cd6 2503 u32 dspcntr;
f45651ba 2504 u32 reg = DSPCNTR(plane);
48404c1e
SJ
2505 int pixel_size;
2506
2507 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
f45651ba 2508
fdd508a6
VS
2509 if (!intel_crtc->primary_enabled) {
2510 I915_WRITE(reg, 0);
2511 I915_WRITE(DSPSURF(plane), 0);
2512 POSTING_READ(reg);
2513 return;
2514 }
2515
f45651ba
VS
2516 dspcntr = DISPPLANE_GAMMA_ENABLE;
2517
fdd508a6 2518 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2519
2520 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2521 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2522
57779d06
VS
2523 switch (fb->pixel_format) {
2524 case DRM_FORMAT_C8:
17638cd6
JB
2525 dspcntr |= DISPPLANE_8BPP;
2526 break;
57779d06
VS
2527 case DRM_FORMAT_RGB565:
2528 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2529 break;
57779d06
VS
2530 case DRM_FORMAT_XRGB8888:
2531 case DRM_FORMAT_ARGB8888:
2532 dspcntr |= DISPPLANE_BGRX888;
2533 break;
2534 case DRM_FORMAT_XBGR8888:
2535 case DRM_FORMAT_ABGR8888:
2536 dspcntr |= DISPPLANE_RGBX888;
2537 break;
2538 case DRM_FORMAT_XRGB2101010:
2539 case DRM_FORMAT_ARGB2101010:
2540 dspcntr |= DISPPLANE_BGRX101010;
2541 break;
2542 case DRM_FORMAT_XBGR2101010:
2543 case DRM_FORMAT_ABGR2101010:
2544 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2545 break;
2546 default:
baba133a 2547 BUG();
17638cd6
JB
2548 }
2549
2550 if (obj->tiling_mode != I915_TILING_NONE)
2551 dspcntr |= DISPPLANE_TILED;
17638cd6 2552
f45651ba 2553 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2554 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2555
e506a0c6 2556 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2557 intel_crtc->dspaddr_offset =
bc752862
CW
2558 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2559 fb->bits_per_pixel / 8,
2560 fb->pitches[0]);
c2c75131 2561 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2562 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2563 dspcntr |= DISPPLANE_ROTATE_180;
2564
2565 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2566 x += (intel_crtc->config.pipe_src_w - 1);
2567 y += (intel_crtc->config.pipe_src_h - 1);
2568
2569 /* Finding the last pixel of the last line of the display
2570 data and adding to linear_offset*/
2571 linear_offset +=
2572 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2573 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2574 }
2575 }
2576
2577 I915_WRITE(reg, dspcntr);
17638cd6 2578
f343c5f6
BW
2579 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2580 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2581 fb->pitches[0]);
01f2c773 2582 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2583 I915_WRITE(DSPSURF(plane),
2584 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2585 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2586 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2587 } else {
2588 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2589 I915_WRITE(DSPLINOFF(plane), linear_offset);
2590 }
17638cd6 2591 POSTING_READ(reg);
17638cd6
JB
2592}
2593
2594/* Assume fb object is pinned & idle & fenced and just update base pointers */
2595static int
2596intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2597 int x, int y, enum mode_set_atomic state)
2598{
2599 struct drm_device *dev = crtc->dev;
2600 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2601
6b8e6ed0
CW
2602 if (dev_priv->display.disable_fbc)
2603 dev_priv->display.disable_fbc(dev);
cc36513c 2604 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2605
29b9bde6
DV
2606 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2607
2608 return 0;
81255565
JB
2609}
2610
96a02917
VS
2611void intel_display_handle_reset(struct drm_device *dev)
2612{
2613 struct drm_i915_private *dev_priv = dev->dev_private;
2614 struct drm_crtc *crtc;
2615
2616 /*
2617 * Flips in the rings have been nuked by the reset,
2618 * so complete all pending flips so that user space
2619 * will get its events and not get stuck.
2620 *
2621 * Also update the base address of all primary
2622 * planes to the the last fb to make sure we're
2623 * showing the correct fb after a reset.
2624 *
2625 * Need to make two loops over the crtcs so that we
2626 * don't try to grab a crtc mutex before the
2627 * pending_flip_queue really got woken up.
2628 */
2629
70e1e0ec 2630 for_each_crtc(dev, crtc) {
96a02917
VS
2631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2632 enum plane plane = intel_crtc->plane;
2633
2634 intel_prepare_page_flip(dev, plane);
2635 intel_finish_page_flip_plane(dev, plane);
2636 }
2637
70e1e0ec 2638 for_each_crtc(dev, crtc) {
96a02917
VS
2639 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2640
51fd371b 2641 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2642 /*
2643 * FIXME: Once we have proper support for primary planes (and
2644 * disabling them without disabling the entire crtc) allow again
66e514c1 2645 * a NULL crtc->primary->fb.
947fdaad 2646 */
f4510a27 2647 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2648 dev_priv->display.update_primary_plane(crtc,
66e514c1 2649 crtc->primary->fb,
262ca2b0
MR
2650 crtc->x,
2651 crtc->y);
51fd371b 2652 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2653 }
2654}
2655
14667a4b
CW
2656static int
2657intel_finish_fb(struct drm_framebuffer *old_fb)
2658{
2ff8fde1 2659 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2660 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2661 bool was_interruptible = dev_priv->mm.interruptible;
2662 int ret;
2663
14667a4b
CW
2664 /* Big Hammer, we also need to ensure that any pending
2665 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2666 * current scanout is retired before unpinning the old
2667 * framebuffer.
2668 *
2669 * This should only fail upon a hung GPU, in which case we
2670 * can safely continue.
2671 */
2672 dev_priv->mm.interruptible = false;
2673 ret = i915_gem_object_finish_gpu(obj);
2674 dev_priv->mm.interruptible = was_interruptible;
2675
2676 return ret;
2677}
2678
7d5e3799
CW
2679static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2680{
2681 struct drm_device *dev = crtc->dev;
2682 struct drm_i915_private *dev_priv = dev->dev_private;
2683 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2684 unsigned long flags;
2685 bool pending;
2686
2687 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2688 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2689 return false;
2690
2691 spin_lock_irqsave(&dev->event_lock, flags);
2692 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2693 spin_unlock_irqrestore(&dev->event_lock, flags);
2694
2695 return pending;
2696}
2697
5c3b82e2 2698static int
3c4fdcfb 2699intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2700 struct drm_framebuffer *fb)
79e53945
JB
2701{
2702 struct drm_device *dev = crtc->dev;
6b8e6ed0 2703 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2705 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2706 struct drm_framebuffer *old_fb = crtc->primary->fb;
2707 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2708 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2709 int ret;
79e53945 2710
7d5e3799
CW
2711 if (intel_crtc_has_pending_flip(crtc)) {
2712 DRM_ERROR("pipe is still busy with an old pageflip\n");
2713 return -EBUSY;
2714 }
2715
79e53945 2716 /* no fb bound */
94352cf9 2717 if (!fb) {
a5071c2f 2718 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2719 return 0;
2720 }
2721
7eb552ae 2722 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2723 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2724 plane_name(intel_crtc->plane),
2725 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2726 return -EINVAL;
79e53945
JB
2727 }
2728
5c3b82e2 2729 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2730 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2731 if (ret == 0)
91565c85 2732 i915_gem_track_fb(old_obj, obj,
a071fa00 2733 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2734 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2735 if (ret != 0) {
a5071c2f 2736 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2737 return ret;
2738 }
79e53945 2739
bb2043de
DL
2740 /*
2741 * Update pipe size and adjust fitter if needed: the reason for this is
2742 * that in compute_mode_changes we check the native mode (not the pfit
2743 * mode) to see if we can flip rather than do a full mode set. In the
2744 * fastboot case, we'll flip, but if we don't update the pipesrc and
2745 * pfit state, we'll end up with a big fb scanned out into the wrong
2746 * sized surface.
2747 *
2748 * To fix this properly, we need to hoist the checks up into
2749 * compute_mode_changes (or above), check the actual pfit state and
2750 * whether the platform allows pfit disable with pipe active, and only
2751 * then update the pipesrc and pfit state, even on the flip path.
2752 */
d330a953 2753 if (i915.fastboot) {
d7bf63f2
DL
2754 const struct drm_display_mode *adjusted_mode =
2755 &intel_crtc->config.adjusted_mode;
2756
4d6a3e63 2757 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2758 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2759 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2760 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2761 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2762 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2763 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2764 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2765 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2766 }
0637d60d
JB
2767 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2768 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2769 }
2770
29b9bde6 2771 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2772
f99d7069
DV
2773 if (intel_crtc->active)
2774 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2775
f4510a27 2776 crtc->primary->fb = fb;
6c4c86f5
DV
2777 crtc->x = x;
2778 crtc->y = y;
94352cf9 2779
b7f1de28 2780 if (old_fb) {
d7697eea
DV
2781 if (intel_crtc->active && old_fb != fb)
2782 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2783 mutex_lock(&dev->struct_mutex);
2ff8fde1 2784 intel_unpin_fb_obj(old_obj);
8ac36ec1 2785 mutex_unlock(&dev->struct_mutex);
b7f1de28 2786 }
652c393a 2787
8ac36ec1 2788 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2789 intel_update_fbc(dev);
5c3b82e2 2790 mutex_unlock(&dev->struct_mutex);
79e53945 2791
5c3b82e2 2792 return 0;
79e53945
JB
2793}
2794
5e84e1a4
ZW
2795static void intel_fdi_normal_train(struct drm_crtc *crtc)
2796{
2797 struct drm_device *dev = crtc->dev;
2798 struct drm_i915_private *dev_priv = dev->dev_private;
2799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2800 int pipe = intel_crtc->pipe;
2801 u32 reg, temp;
2802
2803 /* enable normal train */
2804 reg = FDI_TX_CTL(pipe);
2805 temp = I915_READ(reg);
61e499bf 2806 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2807 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2808 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2809 } else {
2810 temp &= ~FDI_LINK_TRAIN_NONE;
2811 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2812 }
5e84e1a4
ZW
2813 I915_WRITE(reg, temp);
2814
2815 reg = FDI_RX_CTL(pipe);
2816 temp = I915_READ(reg);
2817 if (HAS_PCH_CPT(dev)) {
2818 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2819 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2820 } else {
2821 temp &= ~FDI_LINK_TRAIN_NONE;
2822 temp |= FDI_LINK_TRAIN_NONE;
2823 }
2824 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2825
2826 /* wait one idle pattern time */
2827 POSTING_READ(reg);
2828 udelay(1000);
357555c0
JB
2829
2830 /* IVB wants error correction enabled */
2831 if (IS_IVYBRIDGE(dev))
2832 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2833 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2834}
2835
1fbc0d78 2836static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2837{
1fbc0d78
DV
2838 return crtc->base.enabled && crtc->active &&
2839 crtc->config.has_pch_encoder;
1e833f40
DV
2840}
2841
01a415fd
DV
2842static void ivb_modeset_global_resources(struct drm_device *dev)
2843{
2844 struct drm_i915_private *dev_priv = dev->dev_private;
2845 struct intel_crtc *pipe_B_crtc =
2846 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2847 struct intel_crtc *pipe_C_crtc =
2848 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2849 uint32_t temp;
2850
1e833f40
DV
2851 /*
2852 * When everything is off disable fdi C so that we could enable fdi B
2853 * with all lanes. Note that we don't care about enabled pipes without
2854 * an enabled pch encoder.
2855 */
2856 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2857 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2858 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2859 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2860
2861 temp = I915_READ(SOUTH_CHICKEN1);
2862 temp &= ~FDI_BC_BIFURCATION_SELECT;
2863 DRM_DEBUG_KMS("disabling fdi C rx\n");
2864 I915_WRITE(SOUTH_CHICKEN1, temp);
2865 }
2866}
2867
8db9d77b
ZW
2868/* The FDI link training functions for ILK/Ibexpeak. */
2869static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2870{
2871 struct drm_device *dev = crtc->dev;
2872 struct drm_i915_private *dev_priv = dev->dev_private;
2873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2874 int pipe = intel_crtc->pipe;
5eddb70b 2875 u32 reg, temp, tries;
8db9d77b 2876
1c8562f6 2877 /* FDI needs bits from pipe first */
0fc932b8 2878 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2879
e1a44743
AJ
2880 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2881 for train result */
5eddb70b
CW
2882 reg = FDI_RX_IMR(pipe);
2883 temp = I915_READ(reg);
e1a44743
AJ
2884 temp &= ~FDI_RX_SYMBOL_LOCK;
2885 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2886 I915_WRITE(reg, temp);
2887 I915_READ(reg);
e1a44743
AJ
2888 udelay(150);
2889
8db9d77b 2890 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2891 reg = FDI_TX_CTL(pipe);
2892 temp = I915_READ(reg);
627eb5a3
DV
2893 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2894 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2895 temp &= ~FDI_LINK_TRAIN_NONE;
2896 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2897 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2898
5eddb70b
CW
2899 reg = FDI_RX_CTL(pipe);
2900 temp = I915_READ(reg);
8db9d77b
ZW
2901 temp &= ~FDI_LINK_TRAIN_NONE;
2902 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2903 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2904
2905 POSTING_READ(reg);
8db9d77b
ZW
2906 udelay(150);
2907
5b2adf89 2908 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2909 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2910 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2911 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2912
5eddb70b 2913 reg = FDI_RX_IIR(pipe);
e1a44743 2914 for (tries = 0; tries < 5; tries++) {
5eddb70b 2915 temp = I915_READ(reg);
8db9d77b
ZW
2916 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2917
2918 if ((temp & FDI_RX_BIT_LOCK)) {
2919 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2920 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2921 break;
2922 }
8db9d77b 2923 }
e1a44743 2924 if (tries == 5)
5eddb70b 2925 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2926
2927 /* Train 2 */
5eddb70b
CW
2928 reg = FDI_TX_CTL(pipe);
2929 temp = I915_READ(reg);
8db9d77b
ZW
2930 temp &= ~FDI_LINK_TRAIN_NONE;
2931 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2932 I915_WRITE(reg, temp);
8db9d77b 2933
5eddb70b
CW
2934 reg = FDI_RX_CTL(pipe);
2935 temp = I915_READ(reg);
8db9d77b
ZW
2936 temp &= ~FDI_LINK_TRAIN_NONE;
2937 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2938 I915_WRITE(reg, temp);
8db9d77b 2939
5eddb70b
CW
2940 POSTING_READ(reg);
2941 udelay(150);
8db9d77b 2942
5eddb70b 2943 reg = FDI_RX_IIR(pipe);
e1a44743 2944 for (tries = 0; tries < 5; tries++) {
5eddb70b 2945 temp = I915_READ(reg);
8db9d77b
ZW
2946 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2947
2948 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2949 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2950 DRM_DEBUG_KMS("FDI train 2 done.\n");
2951 break;
2952 }
8db9d77b 2953 }
e1a44743 2954 if (tries == 5)
5eddb70b 2955 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2956
2957 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2958
8db9d77b
ZW
2959}
2960
0206e353 2961static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2962 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2963 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2964 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2965 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2966};
2967
2968/* The FDI link training functions for SNB/Cougarpoint. */
2969static void gen6_fdi_link_train(struct drm_crtc *crtc)
2970{
2971 struct drm_device *dev = crtc->dev;
2972 struct drm_i915_private *dev_priv = dev->dev_private;
2973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2974 int pipe = intel_crtc->pipe;
fa37d39e 2975 u32 reg, temp, i, retry;
8db9d77b 2976
e1a44743
AJ
2977 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2978 for train result */
5eddb70b
CW
2979 reg = FDI_RX_IMR(pipe);
2980 temp = I915_READ(reg);
e1a44743
AJ
2981 temp &= ~FDI_RX_SYMBOL_LOCK;
2982 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2983 I915_WRITE(reg, temp);
2984
2985 POSTING_READ(reg);
e1a44743
AJ
2986 udelay(150);
2987
8db9d77b 2988 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2989 reg = FDI_TX_CTL(pipe);
2990 temp = I915_READ(reg);
627eb5a3
DV
2991 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2992 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2993 temp &= ~FDI_LINK_TRAIN_NONE;
2994 temp |= FDI_LINK_TRAIN_PATTERN_1;
2995 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2996 /* SNB-B */
2997 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2998 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2999
d74cf324
DV
3000 I915_WRITE(FDI_RX_MISC(pipe),
3001 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3002
5eddb70b
CW
3003 reg = FDI_RX_CTL(pipe);
3004 temp = I915_READ(reg);
8db9d77b
ZW
3005 if (HAS_PCH_CPT(dev)) {
3006 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3007 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3008 } else {
3009 temp &= ~FDI_LINK_TRAIN_NONE;
3010 temp |= FDI_LINK_TRAIN_PATTERN_1;
3011 }
5eddb70b
CW
3012 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3013
3014 POSTING_READ(reg);
8db9d77b
ZW
3015 udelay(150);
3016
0206e353 3017 for (i = 0; i < 4; i++) {
5eddb70b
CW
3018 reg = FDI_TX_CTL(pipe);
3019 temp = I915_READ(reg);
8db9d77b
ZW
3020 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3021 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3022 I915_WRITE(reg, temp);
3023
3024 POSTING_READ(reg);
8db9d77b
ZW
3025 udelay(500);
3026
fa37d39e
SP
3027 for (retry = 0; retry < 5; retry++) {
3028 reg = FDI_RX_IIR(pipe);
3029 temp = I915_READ(reg);
3030 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3031 if (temp & FDI_RX_BIT_LOCK) {
3032 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3033 DRM_DEBUG_KMS("FDI train 1 done.\n");
3034 break;
3035 }
3036 udelay(50);
8db9d77b 3037 }
fa37d39e
SP
3038 if (retry < 5)
3039 break;
8db9d77b
ZW
3040 }
3041 if (i == 4)
5eddb70b 3042 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3043
3044 /* Train 2 */
5eddb70b
CW
3045 reg = FDI_TX_CTL(pipe);
3046 temp = I915_READ(reg);
8db9d77b
ZW
3047 temp &= ~FDI_LINK_TRAIN_NONE;
3048 temp |= FDI_LINK_TRAIN_PATTERN_2;
3049 if (IS_GEN6(dev)) {
3050 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3051 /* SNB-B */
3052 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3053 }
5eddb70b 3054 I915_WRITE(reg, temp);
8db9d77b 3055
5eddb70b
CW
3056 reg = FDI_RX_CTL(pipe);
3057 temp = I915_READ(reg);
8db9d77b
ZW
3058 if (HAS_PCH_CPT(dev)) {
3059 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3060 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3061 } else {
3062 temp &= ~FDI_LINK_TRAIN_NONE;
3063 temp |= FDI_LINK_TRAIN_PATTERN_2;
3064 }
5eddb70b
CW
3065 I915_WRITE(reg, temp);
3066
3067 POSTING_READ(reg);
8db9d77b
ZW
3068 udelay(150);
3069
0206e353 3070 for (i = 0; i < 4; i++) {
5eddb70b
CW
3071 reg = FDI_TX_CTL(pipe);
3072 temp = I915_READ(reg);
8db9d77b
ZW
3073 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3074 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3075 I915_WRITE(reg, temp);
3076
3077 POSTING_READ(reg);
8db9d77b
ZW
3078 udelay(500);
3079
fa37d39e
SP
3080 for (retry = 0; retry < 5; retry++) {
3081 reg = FDI_RX_IIR(pipe);
3082 temp = I915_READ(reg);
3083 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3084 if (temp & FDI_RX_SYMBOL_LOCK) {
3085 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3086 DRM_DEBUG_KMS("FDI train 2 done.\n");
3087 break;
3088 }
3089 udelay(50);
8db9d77b 3090 }
fa37d39e
SP
3091 if (retry < 5)
3092 break;
8db9d77b
ZW
3093 }
3094 if (i == 4)
5eddb70b 3095 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3096
3097 DRM_DEBUG_KMS("FDI train done.\n");
3098}
3099
357555c0
JB
3100/* Manual link training for Ivy Bridge A0 parts */
3101static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3102{
3103 struct drm_device *dev = crtc->dev;
3104 struct drm_i915_private *dev_priv = dev->dev_private;
3105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3106 int pipe = intel_crtc->pipe;
139ccd3f 3107 u32 reg, temp, i, j;
357555c0
JB
3108
3109 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3110 for train result */
3111 reg = FDI_RX_IMR(pipe);
3112 temp = I915_READ(reg);
3113 temp &= ~FDI_RX_SYMBOL_LOCK;
3114 temp &= ~FDI_RX_BIT_LOCK;
3115 I915_WRITE(reg, temp);
3116
3117 POSTING_READ(reg);
3118 udelay(150);
3119
01a415fd
DV
3120 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3121 I915_READ(FDI_RX_IIR(pipe)));
3122
139ccd3f
JB
3123 /* Try each vswing and preemphasis setting twice before moving on */
3124 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3125 /* disable first in case we need to retry */
3126 reg = FDI_TX_CTL(pipe);
3127 temp = I915_READ(reg);
3128 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3129 temp &= ~FDI_TX_ENABLE;
3130 I915_WRITE(reg, temp);
357555c0 3131
139ccd3f
JB
3132 reg = FDI_RX_CTL(pipe);
3133 temp = I915_READ(reg);
3134 temp &= ~FDI_LINK_TRAIN_AUTO;
3135 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3136 temp &= ~FDI_RX_ENABLE;
3137 I915_WRITE(reg, temp);
357555c0 3138
139ccd3f 3139 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3140 reg = FDI_TX_CTL(pipe);
3141 temp = I915_READ(reg);
139ccd3f
JB
3142 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3143 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3144 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3145 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3146 temp |= snb_b_fdi_train_param[j/2];
3147 temp |= FDI_COMPOSITE_SYNC;
3148 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3149
139ccd3f
JB
3150 I915_WRITE(FDI_RX_MISC(pipe),
3151 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3152
139ccd3f 3153 reg = FDI_RX_CTL(pipe);
357555c0 3154 temp = I915_READ(reg);
139ccd3f
JB
3155 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3156 temp |= FDI_COMPOSITE_SYNC;
3157 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3158
139ccd3f
JB
3159 POSTING_READ(reg);
3160 udelay(1); /* should be 0.5us */
357555c0 3161
139ccd3f
JB
3162 for (i = 0; i < 4; i++) {
3163 reg = FDI_RX_IIR(pipe);
3164 temp = I915_READ(reg);
3165 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3166
139ccd3f
JB
3167 if (temp & FDI_RX_BIT_LOCK ||
3168 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3169 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3170 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3171 i);
3172 break;
3173 }
3174 udelay(1); /* should be 0.5us */
3175 }
3176 if (i == 4) {
3177 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3178 continue;
3179 }
357555c0 3180
139ccd3f 3181 /* Train 2 */
357555c0
JB
3182 reg = FDI_TX_CTL(pipe);
3183 temp = I915_READ(reg);
139ccd3f
JB
3184 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3185 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3186 I915_WRITE(reg, temp);
3187
3188 reg = FDI_RX_CTL(pipe);
3189 temp = I915_READ(reg);
3190 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3191 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3192 I915_WRITE(reg, temp);
3193
3194 POSTING_READ(reg);
139ccd3f 3195 udelay(2); /* should be 1.5us */
357555c0 3196
139ccd3f
JB
3197 for (i = 0; i < 4; i++) {
3198 reg = FDI_RX_IIR(pipe);
3199 temp = I915_READ(reg);
3200 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3201
139ccd3f
JB
3202 if (temp & FDI_RX_SYMBOL_LOCK ||
3203 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3204 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3205 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3206 i);
3207 goto train_done;
3208 }
3209 udelay(2); /* should be 1.5us */
357555c0 3210 }
139ccd3f
JB
3211 if (i == 4)
3212 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3213 }
357555c0 3214
139ccd3f 3215train_done:
357555c0
JB
3216 DRM_DEBUG_KMS("FDI train done.\n");
3217}
3218
88cefb6c 3219static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3220{
88cefb6c 3221 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3222 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3223 int pipe = intel_crtc->pipe;
5eddb70b 3224 u32 reg, temp;
79e53945 3225
c64e311e 3226
c98e9dcf 3227 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3228 reg = FDI_RX_CTL(pipe);
3229 temp = I915_READ(reg);
627eb5a3
DV
3230 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3231 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3232 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3233 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3234
3235 POSTING_READ(reg);
c98e9dcf
JB
3236 udelay(200);
3237
3238 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3239 temp = I915_READ(reg);
3240 I915_WRITE(reg, temp | FDI_PCDCLK);
3241
3242 POSTING_READ(reg);
c98e9dcf
JB
3243 udelay(200);
3244
20749730
PZ
3245 /* Enable CPU FDI TX PLL, always on for Ironlake */
3246 reg = FDI_TX_CTL(pipe);
3247 temp = I915_READ(reg);
3248 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3249 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3250
20749730
PZ
3251 POSTING_READ(reg);
3252 udelay(100);
6be4a607 3253 }
0e23b99d
JB
3254}
3255
88cefb6c
DV
3256static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3257{
3258 struct drm_device *dev = intel_crtc->base.dev;
3259 struct drm_i915_private *dev_priv = dev->dev_private;
3260 int pipe = intel_crtc->pipe;
3261 u32 reg, temp;
3262
3263 /* Switch from PCDclk to Rawclk */
3264 reg = FDI_RX_CTL(pipe);
3265 temp = I915_READ(reg);
3266 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3267
3268 /* Disable CPU FDI TX PLL */
3269 reg = FDI_TX_CTL(pipe);
3270 temp = I915_READ(reg);
3271 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3272
3273 POSTING_READ(reg);
3274 udelay(100);
3275
3276 reg = FDI_RX_CTL(pipe);
3277 temp = I915_READ(reg);
3278 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3279
3280 /* Wait for the clocks to turn off. */
3281 POSTING_READ(reg);
3282 udelay(100);
3283}
3284
0fc932b8
JB
3285static void ironlake_fdi_disable(struct drm_crtc *crtc)
3286{
3287 struct drm_device *dev = crtc->dev;
3288 struct drm_i915_private *dev_priv = dev->dev_private;
3289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290 int pipe = intel_crtc->pipe;
3291 u32 reg, temp;
3292
3293 /* disable CPU FDI tx and PCH FDI rx */
3294 reg = FDI_TX_CTL(pipe);
3295 temp = I915_READ(reg);
3296 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3297 POSTING_READ(reg);
3298
3299 reg = FDI_RX_CTL(pipe);
3300 temp = I915_READ(reg);
3301 temp &= ~(0x7 << 16);
dfd07d72 3302 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3303 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3304
3305 POSTING_READ(reg);
3306 udelay(100);
3307
3308 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3309 if (HAS_PCH_IBX(dev))
6f06ce18 3310 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3311
3312 /* still set train pattern 1 */
3313 reg = FDI_TX_CTL(pipe);
3314 temp = I915_READ(reg);
3315 temp &= ~FDI_LINK_TRAIN_NONE;
3316 temp |= FDI_LINK_TRAIN_PATTERN_1;
3317 I915_WRITE(reg, temp);
3318
3319 reg = FDI_RX_CTL(pipe);
3320 temp = I915_READ(reg);
3321 if (HAS_PCH_CPT(dev)) {
3322 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3323 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3324 } else {
3325 temp &= ~FDI_LINK_TRAIN_NONE;
3326 temp |= FDI_LINK_TRAIN_PATTERN_1;
3327 }
3328 /* BPC in FDI rx is consistent with that in PIPECONF */
3329 temp &= ~(0x07 << 16);
dfd07d72 3330 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3331 I915_WRITE(reg, temp);
3332
3333 POSTING_READ(reg);
3334 udelay(100);
3335}
3336
5dce5b93
CW
3337bool intel_has_pending_fb_unpin(struct drm_device *dev)
3338{
3339 struct intel_crtc *crtc;
3340
3341 /* Note that we don't need to be called with mode_config.lock here
3342 * as our list of CRTC objects is static for the lifetime of the
3343 * device and so cannot disappear as we iterate. Similarly, we can
3344 * happily treat the predicates as racy, atomic checks as userspace
3345 * cannot claim and pin a new fb without at least acquring the
3346 * struct_mutex and so serialising with us.
3347 */
d3fcc808 3348 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3349 if (atomic_read(&crtc->unpin_work_count) == 0)
3350 continue;
3351
3352 if (crtc->unpin_work)
3353 intel_wait_for_vblank(dev, crtc->pipe);
3354
3355 return true;
3356 }
3357
3358 return false;
3359}
3360
46a55d30 3361void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3362{
0f91128d 3363 struct drm_device *dev = crtc->dev;
5bb61643 3364 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3365
f4510a27 3366 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3367 return;
3368
2c10d571
DV
3369 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3370
eed6d67d
DV
3371 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3372 !intel_crtc_has_pending_flip(crtc),
3373 60*HZ) == 0);
5bb61643 3374
0f91128d 3375 mutex_lock(&dev->struct_mutex);
f4510a27 3376 intel_finish_fb(crtc->primary->fb);
0f91128d 3377 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3378}
3379
e615efe4
ED
3380/* Program iCLKIP clock to the desired frequency */
3381static void lpt_program_iclkip(struct drm_crtc *crtc)
3382{
3383 struct drm_device *dev = crtc->dev;
3384 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3385 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3386 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3387 u32 temp;
3388
09153000
DV
3389 mutex_lock(&dev_priv->dpio_lock);
3390
e615efe4
ED
3391 /* It is necessary to ungate the pixclk gate prior to programming
3392 * the divisors, and gate it back when it is done.
3393 */
3394 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3395
3396 /* Disable SSCCTL */
3397 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3398 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3399 SBI_SSCCTL_DISABLE,
3400 SBI_ICLK);
e615efe4
ED
3401
3402 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3403 if (clock == 20000) {
e615efe4
ED
3404 auxdiv = 1;
3405 divsel = 0x41;
3406 phaseinc = 0x20;
3407 } else {
3408 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3409 * but the adjusted_mode->crtc_clock in in KHz. To get the
3410 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3411 * convert the virtual clock precision to KHz here for higher
3412 * precision.
3413 */
3414 u32 iclk_virtual_root_freq = 172800 * 1000;
3415 u32 iclk_pi_range = 64;
3416 u32 desired_divisor, msb_divisor_value, pi_value;
3417
12d7ceed 3418 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3419 msb_divisor_value = desired_divisor / iclk_pi_range;
3420 pi_value = desired_divisor % iclk_pi_range;
3421
3422 auxdiv = 0;
3423 divsel = msb_divisor_value - 2;
3424 phaseinc = pi_value;
3425 }
3426
3427 /* This should not happen with any sane values */
3428 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3429 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3430 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3431 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3432
3433 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3434 clock,
e615efe4
ED
3435 auxdiv,
3436 divsel,
3437 phasedir,
3438 phaseinc);
3439
3440 /* Program SSCDIVINTPHASE6 */
988d6ee8 3441 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3442 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3443 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3444 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3445 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3446 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3447 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3448 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3449
3450 /* Program SSCAUXDIV */
988d6ee8 3451 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3452 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3453 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3454 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3455
3456 /* Enable modulator and associated divider */
988d6ee8 3457 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3458 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3459 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3460
3461 /* Wait for initialization time */
3462 udelay(24);
3463
3464 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3465
3466 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3467}
3468
275f01b2
DV
3469static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3470 enum pipe pch_transcoder)
3471{
3472 struct drm_device *dev = crtc->base.dev;
3473 struct drm_i915_private *dev_priv = dev->dev_private;
3474 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3475
3476 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3477 I915_READ(HTOTAL(cpu_transcoder)));
3478 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3479 I915_READ(HBLANK(cpu_transcoder)));
3480 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3481 I915_READ(HSYNC(cpu_transcoder)));
3482
3483 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3484 I915_READ(VTOTAL(cpu_transcoder)));
3485 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3486 I915_READ(VBLANK(cpu_transcoder)));
3487 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3488 I915_READ(VSYNC(cpu_transcoder)));
3489 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3490 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3491}
3492
1fbc0d78
DV
3493static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3494{
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 uint32_t temp;
3497
3498 temp = I915_READ(SOUTH_CHICKEN1);
3499 if (temp & FDI_BC_BIFURCATION_SELECT)
3500 return;
3501
3502 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3503 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3504
3505 temp |= FDI_BC_BIFURCATION_SELECT;
3506 DRM_DEBUG_KMS("enabling fdi C rx\n");
3507 I915_WRITE(SOUTH_CHICKEN1, temp);
3508 POSTING_READ(SOUTH_CHICKEN1);
3509}
3510
3511static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3512{
3513 struct drm_device *dev = intel_crtc->base.dev;
3514 struct drm_i915_private *dev_priv = dev->dev_private;
3515
3516 switch (intel_crtc->pipe) {
3517 case PIPE_A:
3518 break;
3519 case PIPE_B:
3520 if (intel_crtc->config.fdi_lanes > 2)
3521 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3522 else
3523 cpt_enable_fdi_bc_bifurcation(dev);
3524
3525 break;
3526 case PIPE_C:
3527 cpt_enable_fdi_bc_bifurcation(dev);
3528
3529 break;
3530 default:
3531 BUG();
3532 }
3533}
3534
f67a559d
JB
3535/*
3536 * Enable PCH resources required for PCH ports:
3537 * - PCH PLLs
3538 * - FDI training & RX/TX
3539 * - update transcoder timings
3540 * - DP transcoding bits
3541 * - transcoder
3542 */
3543static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3544{
3545 struct drm_device *dev = crtc->dev;
3546 struct drm_i915_private *dev_priv = dev->dev_private;
3547 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3548 int pipe = intel_crtc->pipe;
ee7b9f93 3549 u32 reg, temp;
2c07245f 3550
ab9412ba 3551 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3552
1fbc0d78
DV
3553 if (IS_IVYBRIDGE(dev))
3554 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3555
cd986abb
DV
3556 /* Write the TU size bits before fdi link training, so that error
3557 * detection works. */
3558 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3559 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3560
c98e9dcf 3561 /* For PCH output, training FDI link */
674cf967 3562 dev_priv->display.fdi_link_train(crtc);
2c07245f 3563
3ad8a208
DV
3564 /* We need to program the right clock selection before writing the pixel
3565 * mutliplier into the DPLL. */
303b81e0 3566 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3567 u32 sel;
4b645f14 3568
c98e9dcf 3569 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3570 temp |= TRANS_DPLL_ENABLE(pipe);
3571 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3572 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3573 temp |= sel;
3574 else
3575 temp &= ~sel;
c98e9dcf 3576 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3577 }
5eddb70b 3578
3ad8a208
DV
3579 /* XXX: pch pll's can be enabled any time before we enable the PCH
3580 * transcoder, and we actually should do this to not upset any PCH
3581 * transcoder that already use the clock when we share it.
3582 *
3583 * Note that enable_shared_dpll tries to do the right thing, but
3584 * get_shared_dpll unconditionally resets the pll - we need that to have
3585 * the right LVDS enable sequence. */
85b3894f 3586 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3587
d9b6cb56
JB
3588 /* set transcoder timing, panel must allow it */
3589 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3590 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3591
303b81e0 3592 intel_fdi_normal_train(crtc);
5e84e1a4 3593
c98e9dcf
JB
3594 /* For PCH DP, enable TRANS_DP_CTL */
3595 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3596 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3597 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3598 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3599 reg = TRANS_DP_CTL(pipe);
3600 temp = I915_READ(reg);
3601 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3602 TRANS_DP_SYNC_MASK |
3603 TRANS_DP_BPC_MASK);
5eddb70b
CW
3604 temp |= (TRANS_DP_OUTPUT_ENABLE |
3605 TRANS_DP_ENH_FRAMING);
9325c9f0 3606 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3607
3608 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3609 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3610 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3611 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3612
3613 switch (intel_trans_dp_port_sel(crtc)) {
3614 case PCH_DP_B:
5eddb70b 3615 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3616 break;
3617 case PCH_DP_C:
5eddb70b 3618 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3619 break;
3620 case PCH_DP_D:
5eddb70b 3621 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3622 break;
3623 default:
e95d41e1 3624 BUG();
32f9d658 3625 }
2c07245f 3626
5eddb70b 3627 I915_WRITE(reg, temp);
6be4a607 3628 }
b52eb4dc 3629
b8a4f404 3630 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3631}
3632
1507e5bd
PZ
3633static void lpt_pch_enable(struct drm_crtc *crtc)
3634{
3635 struct drm_device *dev = crtc->dev;
3636 struct drm_i915_private *dev_priv = dev->dev_private;
3637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3638 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3639
ab9412ba 3640 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3641
8c52b5e8 3642 lpt_program_iclkip(crtc);
1507e5bd 3643
0540e488 3644 /* Set transcoder timing. */
275f01b2 3645 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3646
937bb610 3647 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3648}
3649
716c2e55 3650void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3651{
e2b78267 3652 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3653
3654 if (pll == NULL)
3655 return;
3656
3657 if (pll->refcount == 0) {
46edb027 3658 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3659 return;
3660 }
3661
f4a091c7
DV
3662 if (--pll->refcount == 0) {
3663 WARN_ON(pll->on);
3664 WARN_ON(pll->active);
3665 }
3666
a43f6e0f 3667 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3668}
3669
716c2e55 3670struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3671{
e2b78267
DV
3672 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3673 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3674 enum intel_dpll_id i;
ee7b9f93 3675
ee7b9f93 3676 if (pll) {
46edb027
DV
3677 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3678 crtc->base.base.id, pll->name);
e2b78267 3679 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3680 }
3681
98b6bd99
DV
3682 if (HAS_PCH_IBX(dev_priv->dev)) {
3683 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3684 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3685 pll = &dev_priv->shared_dplls[i];
98b6bd99 3686
46edb027
DV
3687 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3688 crtc->base.base.id, pll->name);
98b6bd99 3689
f2a69f44
DV
3690 WARN_ON(pll->refcount);
3691
98b6bd99
DV
3692 goto found;
3693 }
3694
e72f9fbf
DV
3695 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3696 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3697
3698 /* Only want to check enabled timings first */
3699 if (pll->refcount == 0)
3700 continue;
3701
b89a1d39
DV
3702 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3703 sizeof(pll->hw_state)) == 0) {
46edb027 3704 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3705 crtc->base.base.id,
46edb027 3706 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3707
3708 goto found;
3709 }
3710 }
3711
3712 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3713 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3714 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3715 if (pll->refcount == 0) {
46edb027
DV
3716 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3717 crtc->base.base.id, pll->name);
ee7b9f93
JB
3718 goto found;
3719 }
3720 }
3721
3722 return NULL;
3723
3724found:
f2a69f44
DV
3725 if (pll->refcount == 0)
3726 pll->hw_state = crtc->config.dpll_hw_state;
3727
a43f6e0f 3728 crtc->config.shared_dpll = i;
46edb027
DV
3729 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3730 pipe_name(crtc->pipe));
ee7b9f93 3731
cdbd2316 3732 pll->refcount++;
e04c7350 3733
ee7b9f93
JB
3734 return pll;
3735}
3736
a1520318 3737static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3738{
3739 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3740 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3741 u32 temp;
3742
3743 temp = I915_READ(dslreg);
3744 udelay(500);
3745 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3746 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3747 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3748 }
3749}
3750
b074cec8
JB
3751static void ironlake_pfit_enable(struct intel_crtc *crtc)
3752{
3753 struct drm_device *dev = crtc->base.dev;
3754 struct drm_i915_private *dev_priv = dev->dev_private;
3755 int pipe = crtc->pipe;
3756
fd4daa9c 3757 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3758 /* Force use of hard-coded filter coefficients
3759 * as some pre-programmed values are broken,
3760 * e.g. x201.
3761 */
3762 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3763 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3764 PF_PIPE_SEL_IVB(pipe));
3765 else
3766 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3767 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3768 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3769 }
3770}
3771
bb53d4ae
VS
3772static void intel_enable_planes(struct drm_crtc *crtc)
3773{
3774 struct drm_device *dev = crtc->dev;
3775 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3776 struct drm_plane *plane;
bb53d4ae
VS
3777 struct intel_plane *intel_plane;
3778
af2b653b
MR
3779 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3780 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3781 if (intel_plane->pipe == pipe)
3782 intel_plane_restore(&intel_plane->base);
af2b653b 3783 }
bb53d4ae
VS
3784}
3785
3786static void intel_disable_planes(struct drm_crtc *crtc)
3787{
3788 struct drm_device *dev = crtc->dev;
3789 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3790 struct drm_plane *plane;
bb53d4ae
VS
3791 struct intel_plane *intel_plane;
3792
af2b653b
MR
3793 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3794 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3795 if (intel_plane->pipe == pipe)
3796 intel_plane_disable(&intel_plane->base);
af2b653b 3797 }
bb53d4ae
VS
3798}
3799
20bc8673 3800void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3801{
cea165c3
VS
3802 struct drm_device *dev = crtc->base.dev;
3803 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3804
3805 if (!crtc->config.ips_enabled)
3806 return;
3807
cea165c3
VS
3808 /* We can only enable IPS after we enable a plane and wait for a vblank */
3809 intel_wait_for_vblank(dev, crtc->pipe);
3810
d77e4531 3811 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3812 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3813 mutex_lock(&dev_priv->rps.hw_lock);
3814 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3815 mutex_unlock(&dev_priv->rps.hw_lock);
3816 /* Quoting Art Runyan: "its not safe to expect any particular
3817 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3818 * mailbox." Moreover, the mailbox may return a bogus state,
3819 * so we need to just enable it and continue on.
2a114cc1
BW
3820 */
3821 } else {
3822 I915_WRITE(IPS_CTL, IPS_ENABLE);
3823 /* The bit only becomes 1 in the next vblank, so this wait here
3824 * is essentially intel_wait_for_vblank. If we don't have this
3825 * and don't wait for vblanks until the end of crtc_enable, then
3826 * the HW state readout code will complain that the expected
3827 * IPS_CTL value is not the one we read. */
3828 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3829 DRM_ERROR("Timed out waiting for IPS enable\n");
3830 }
d77e4531
PZ
3831}
3832
20bc8673 3833void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3834{
3835 struct drm_device *dev = crtc->base.dev;
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837
3838 if (!crtc->config.ips_enabled)
3839 return;
3840
3841 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3842 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3843 mutex_lock(&dev_priv->rps.hw_lock);
3844 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3845 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3846 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3847 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3848 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3849 } else {
2a114cc1 3850 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3851 POSTING_READ(IPS_CTL);
3852 }
d77e4531
PZ
3853
3854 /* We need to wait for a vblank before we can disable the plane. */
3855 intel_wait_for_vblank(dev, crtc->pipe);
3856}
3857
3858/** Loads the palette/gamma unit for the CRTC with the prepared values */
3859static void intel_crtc_load_lut(struct drm_crtc *crtc)
3860{
3861 struct drm_device *dev = crtc->dev;
3862 struct drm_i915_private *dev_priv = dev->dev_private;
3863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3864 enum pipe pipe = intel_crtc->pipe;
3865 int palreg = PALETTE(pipe);
3866 int i;
3867 bool reenable_ips = false;
3868
3869 /* The clocks have to be on to load the palette. */
3870 if (!crtc->enabled || !intel_crtc->active)
3871 return;
3872
3873 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3874 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3875 assert_dsi_pll_enabled(dev_priv);
3876 else
3877 assert_pll_enabled(dev_priv, pipe);
3878 }
3879
3880 /* use legacy palette for Ironlake */
7a1db49a 3881 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
3882 palreg = LGC_PALETTE(pipe);
3883
3884 /* Workaround : Do not read or write the pipe palette/gamma data while
3885 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3886 */
41e6fc4c 3887 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3888 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3889 GAMMA_MODE_MODE_SPLIT)) {
3890 hsw_disable_ips(intel_crtc);
3891 reenable_ips = true;
3892 }
3893
3894 for (i = 0; i < 256; i++) {
3895 I915_WRITE(palreg + 4 * i,
3896 (intel_crtc->lut_r[i] << 16) |
3897 (intel_crtc->lut_g[i] << 8) |
3898 intel_crtc->lut_b[i]);
3899 }
3900
3901 if (reenable_ips)
3902 hsw_enable_ips(intel_crtc);
3903}
3904
d3eedb1a
VS
3905static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3906{
3907 if (!enable && intel_crtc->overlay) {
3908 struct drm_device *dev = intel_crtc->base.dev;
3909 struct drm_i915_private *dev_priv = dev->dev_private;
3910
3911 mutex_lock(&dev->struct_mutex);
3912 dev_priv->mm.interruptible = false;
3913 (void) intel_overlay_switch_off(intel_crtc->overlay);
3914 dev_priv->mm.interruptible = true;
3915 mutex_unlock(&dev->struct_mutex);
3916 }
3917
3918 /* Let userspace switch the overlay on again. In most cases userspace
3919 * has to recompute where to put it anyway.
3920 */
3921}
3922
d3eedb1a 3923static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3924{
3925 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
3926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3927 int pipe = intel_crtc->pipe;
a5c4d7bc 3928
f98551ae
VS
3929 drm_vblank_on(dev, pipe);
3930
fdd508a6 3931 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
3932 intel_enable_planes(crtc);
3933 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3934 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3935
3936 hsw_enable_ips(intel_crtc);
3937
3938 mutex_lock(&dev->struct_mutex);
3939 intel_update_fbc(dev);
3940 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3941
3942 /*
3943 * FIXME: Once we grow proper nuclear flip support out of this we need
3944 * to compute the mask of flip planes precisely. For the time being
3945 * consider this a flip from a NULL plane.
3946 */
3947 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3948}
3949
d3eedb1a 3950static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3951{
3952 struct drm_device *dev = crtc->dev;
3953 struct drm_i915_private *dev_priv = dev->dev_private;
3954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3955 int pipe = intel_crtc->pipe;
3956 int plane = intel_crtc->plane;
3957
3958 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3959
3960 if (dev_priv->fbc.plane == plane)
3961 intel_disable_fbc(dev);
3962
3963 hsw_disable_ips(intel_crtc);
3964
d3eedb1a 3965 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3966 intel_crtc_update_cursor(crtc, false);
3967 intel_disable_planes(crtc);
fdd508a6 3968 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 3969
f99d7069
DV
3970 /*
3971 * FIXME: Once we grow proper nuclear flip support out of this we need
3972 * to compute the mask of flip planes precisely. For the time being
3973 * consider this a flip to a NULL plane.
3974 */
3975 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3976
f98551ae 3977 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3978}
3979
f67a559d
JB
3980static void ironlake_crtc_enable(struct drm_crtc *crtc)
3981{
3982 struct drm_device *dev = crtc->dev;
3983 struct drm_i915_private *dev_priv = dev->dev_private;
3984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3985 struct intel_encoder *encoder;
f67a559d 3986 int pipe = intel_crtc->pipe;
f67a559d 3987
08a48469
DV
3988 WARN_ON(!crtc->enabled);
3989
f67a559d
JB
3990 if (intel_crtc->active)
3991 return;
3992
b14b1055
DV
3993 if (intel_crtc->config.has_pch_encoder)
3994 intel_prepare_shared_dpll(intel_crtc);
3995
29407aab
DV
3996 if (intel_crtc->config.has_dp_encoder)
3997 intel_dp_set_m_n(intel_crtc);
3998
3999 intel_set_pipe_timings(intel_crtc);
4000
4001 if (intel_crtc->config.has_pch_encoder) {
4002 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4003 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4004 }
4005
4006 ironlake_set_pipeconf(crtc);
4007
f67a559d 4008 intel_crtc->active = true;
8664281b
PZ
4009
4010 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4011 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4012
f6736a1a 4013 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4014 if (encoder->pre_enable)
4015 encoder->pre_enable(encoder);
f67a559d 4016
5bfe2ac0 4017 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4018 /* Note: FDI PLL enabling _must_ be done before we enable the
4019 * cpu pipes, hence this is separate from all the other fdi/pch
4020 * enabling. */
88cefb6c 4021 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4022 } else {
4023 assert_fdi_tx_disabled(dev_priv, pipe);
4024 assert_fdi_rx_disabled(dev_priv, pipe);
4025 }
f67a559d 4026
b074cec8 4027 ironlake_pfit_enable(intel_crtc);
f67a559d 4028
9c54c0dd
JB
4029 /*
4030 * On ILK+ LUT must be loaded before the pipe is running but with
4031 * clocks enabled
4032 */
4033 intel_crtc_load_lut(crtc);
4034
f37fcc2a 4035 intel_update_watermarks(crtc);
e1fdc473 4036 intel_enable_pipe(intel_crtc);
f67a559d 4037
5bfe2ac0 4038 if (intel_crtc->config.has_pch_encoder)
f67a559d 4039 ironlake_pch_enable(crtc);
c98e9dcf 4040
fa5c73b1
DV
4041 for_each_encoder_on_crtc(dev, crtc, encoder)
4042 encoder->enable(encoder);
61b77ddd
DV
4043
4044 if (HAS_PCH_CPT(dev))
a1520318 4045 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4046
d3eedb1a 4047 intel_crtc_enable_planes(crtc);
6be4a607
JB
4048}
4049
42db64ef
PZ
4050/* IPS only exists on ULT machines and is tied to pipe A. */
4051static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4052{
f5adf94e 4053 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4054}
4055
e4916946
PZ
4056/*
4057 * This implements the workaround described in the "notes" section of the mode
4058 * set sequence documentation. When going from no pipes or single pipe to
4059 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4060 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4061 */
4062static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4063{
4064 struct drm_device *dev = crtc->base.dev;
4065 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4066
4067 /* We want to get the other_active_crtc only if there's only 1 other
4068 * active crtc. */
d3fcc808 4069 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4070 if (!crtc_it->active || crtc_it == crtc)
4071 continue;
4072
4073 if (other_active_crtc)
4074 return;
4075
4076 other_active_crtc = crtc_it;
4077 }
4078 if (!other_active_crtc)
4079 return;
4080
4081 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4082 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4083}
4084
4f771f10
PZ
4085static void haswell_crtc_enable(struct drm_crtc *crtc)
4086{
4087 struct drm_device *dev = crtc->dev;
4088 struct drm_i915_private *dev_priv = dev->dev_private;
4089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4090 struct intel_encoder *encoder;
4091 int pipe = intel_crtc->pipe;
4f771f10
PZ
4092
4093 WARN_ON(!crtc->enabled);
4094
4095 if (intel_crtc->active)
4096 return;
4097
df8ad70c
DV
4098 if (intel_crtc_to_shared_dpll(intel_crtc))
4099 intel_enable_shared_dpll(intel_crtc);
4100
229fca97
DV
4101 if (intel_crtc->config.has_dp_encoder)
4102 intel_dp_set_m_n(intel_crtc);
4103
4104 intel_set_pipe_timings(intel_crtc);
4105
4106 if (intel_crtc->config.has_pch_encoder) {
4107 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4108 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4109 }
4110
4111 haswell_set_pipeconf(crtc);
4112
4113 intel_set_pipe_csc(crtc);
4114
4f771f10 4115 intel_crtc->active = true;
8664281b
PZ
4116
4117 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4118 for_each_encoder_on_crtc(dev, crtc, encoder)
4119 if (encoder->pre_enable)
4120 encoder->pre_enable(encoder);
4121
4fe9467d
ID
4122 if (intel_crtc->config.has_pch_encoder) {
4123 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4124 dev_priv->display.fdi_link_train(crtc);
4125 }
4126
1f544388 4127 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4128
b074cec8 4129 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4130
4131 /*
4132 * On ILK+ LUT must be loaded before the pipe is running but with
4133 * clocks enabled
4134 */
4135 intel_crtc_load_lut(crtc);
4136
1f544388 4137 intel_ddi_set_pipe_settings(crtc);
8228c251 4138 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4139
f37fcc2a 4140 intel_update_watermarks(crtc);
e1fdc473 4141 intel_enable_pipe(intel_crtc);
42db64ef 4142
5bfe2ac0 4143 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4144 lpt_pch_enable(crtc);
4f771f10 4145
0e32b39c
DA
4146 if (intel_crtc->config.dp_encoder_is_mst)
4147 intel_ddi_set_vc_payload_alloc(crtc, true);
4148
8807e55b 4149 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4150 encoder->enable(encoder);
8807e55b
JN
4151 intel_opregion_notify_encoder(encoder, true);
4152 }
4f771f10 4153
e4916946
PZ
4154 /* If we change the relative order between pipe/planes enabling, we need
4155 * to change the workaround. */
4156 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4157 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4158}
4159
3f8dce3a
DV
4160static void ironlake_pfit_disable(struct intel_crtc *crtc)
4161{
4162 struct drm_device *dev = crtc->base.dev;
4163 struct drm_i915_private *dev_priv = dev->dev_private;
4164 int pipe = crtc->pipe;
4165
4166 /* To avoid upsetting the power well on haswell only disable the pfit if
4167 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4168 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4169 I915_WRITE(PF_CTL(pipe), 0);
4170 I915_WRITE(PF_WIN_POS(pipe), 0);
4171 I915_WRITE(PF_WIN_SZ(pipe), 0);
4172 }
4173}
4174
6be4a607
JB
4175static void ironlake_crtc_disable(struct drm_crtc *crtc)
4176{
4177 struct drm_device *dev = crtc->dev;
4178 struct drm_i915_private *dev_priv = dev->dev_private;
4179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4180 struct intel_encoder *encoder;
6be4a607 4181 int pipe = intel_crtc->pipe;
5eddb70b 4182 u32 reg, temp;
b52eb4dc 4183
f7abfe8b
CW
4184 if (!intel_crtc->active)
4185 return;
4186
d3eedb1a 4187 intel_crtc_disable_planes(crtc);
a5c4d7bc 4188
ea9d758d
DV
4189 for_each_encoder_on_crtc(dev, crtc, encoder)
4190 encoder->disable(encoder);
4191
d925c59a
DV
4192 if (intel_crtc->config.has_pch_encoder)
4193 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4194
b24e7179 4195 intel_disable_pipe(dev_priv, pipe);
32f9d658 4196
0e32b39c
DA
4197 if (intel_crtc->config.dp_encoder_is_mst)
4198 intel_ddi_set_vc_payload_alloc(crtc, false);
4199
3f8dce3a 4200 ironlake_pfit_disable(intel_crtc);
2c07245f 4201
bf49ec8c
DV
4202 for_each_encoder_on_crtc(dev, crtc, encoder)
4203 if (encoder->post_disable)
4204 encoder->post_disable(encoder);
2c07245f 4205
d925c59a
DV
4206 if (intel_crtc->config.has_pch_encoder) {
4207 ironlake_fdi_disable(crtc);
913d8d11 4208
d925c59a
DV
4209 ironlake_disable_pch_transcoder(dev_priv, pipe);
4210 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4211
d925c59a
DV
4212 if (HAS_PCH_CPT(dev)) {
4213 /* disable TRANS_DP_CTL */
4214 reg = TRANS_DP_CTL(pipe);
4215 temp = I915_READ(reg);
4216 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4217 TRANS_DP_PORT_SEL_MASK);
4218 temp |= TRANS_DP_PORT_SEL_NONE;
4219 I915_WRITE(reg, temp);
4220
4221 /* disable DPLL_SEL */
4222 temp = I915_READ(PCH_DPLL_SEL);
11887397 4223 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4224 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4225 }
e3421a18 4226
d925c59a 4227 /* disable PCH DPLL */
e72f9fbf 4228 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4229
d925c59a
DV
4230 ironlake_fdi_pll_disable(intel_crtc);
4231 }
6b383a7f 4232
f7abfe8b 4233 intel_crtc->active = false;
46ba614c 4234 intel_update_watermarks(crtc);
d1ebd816
BW
4235
4236 mutex_lock(&dev->struct_mutex);
6b383a7f 4237 intel_update_fbc(dev);
d1ebd816 4238 mutex_unlock(&dev->struct_mutex);
6be4a607 4239}
1b3c7a47 4240
4f771f10 4241static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4242{
4f771f10
PZ
4243 struct drm_device *dev = crtc->dev;
4244 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4245 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4246 struct intel_encoder *encoder;
4247 int pipe = intel_crtc->pipe;
3b117c8f 4248 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4249
4f771f10
PZ
4250 if (!intel_crtc->active)
4251 return;
4252
d3eedb1a 4253 intel_crtc_disable_planes(crtc);
dda9a66a 4254
8807e55b
JN
4255 for_each_encoder_on_crtc(dev, crtc, encoder) {
4256 intel_opregion_notify_encoder(encoder, false);
4f771f10 4257 encoder->disable(encoder);
8807e55b 4258 }
4f771f10 4259
8664281b
PZ
4260 if (intel_crtc->config.has_pch_encoder)
4261 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4262 intel_disable_pipe(dev_priv, pipe);
4263
ad80a810 4264 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4265
3f8dce3a 4266 ironlake_pfit_disable(intel_crtc);
4f771f10 4267
1f544388 4268 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4269
88adfff1 4270 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4271 lpt_disable_pch_transcoder(dev_priv);
8664281b 4272 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4273 intel_ddi_fdi_disable(crtc);
83616634 4274 }
4f771f10 4275
97b040aa
ID
4276 for_each_encoder_on_crtc(dev, crtc, encoder)
4277 if (encoder->post_disable)
4278 encoder->post_disable(encoder);
4279
4f771f10 4280 intel_crtc->active = false;
46ba614c 4281 intel_update_watermarks(crtc);
4f771f10
PZ
4282
4283 mutex_lock(&dev->struct_mutex);
4284 intel_update_fbc(dev);
4285 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4286
4287 if (intel_crtc_to_shared_dpll(intel_crtc))
4288 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4289}
4290
ee7b9f93
JB
4291static void ironlake_crtc_off(struct drm_crtc *crtc)
4292{
4293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4294 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4295}
4296
6441ab5f 4297
2dd24552
JB
4298static void i9xx_pfit_enable(struct intel_crtc *crtc)
4299{
4300 struct drm_device *dev = crtc->base.dev;
4301 struct drm_i915_private *dev_priv = dev->dev_private;
4302 struct intel_crtc_config *pipe_config = &crtc->config;
4303
328d8e82 4304 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4305 return;
4306
2dd24552 4307 /*
c0b03411
DV
4308 * The panel fitter should only be adjusted whilst the pipe is disabled,
4309 * according to register description and PRM.
2dd24552 4310 */
c0b03411
DV
4311 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4312 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4313
b074cec8
JB
4314 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4315 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4316
4317 /* Border color in case we don't scale up to the full screen. Black by
4318 * default, change to something else for debugging. */
4319 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4320}
4321
d05410f9
DA
4322static enum intel_display_power_domain port_to_power_domain(enum port port)
4323{
4324 switch (port) {
4325 case PORT_A:
4326 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4327 case PORT_B:
4328 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4329 case PORT_C:
4330 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4331 case PORT_D:
4332 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4333 default:
4334 WARN_ON_ONCE(1);
4335 return POWER_DOMAIN_PORT_OTHER;
4336 }
4337}
4338
77d22dca
ID
4339#define for_each_power_domain(domain, mask) \
4340 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4341 if ((1 << (domain)) & (mask))
4342
319be8ae
ID
4343enum intel_display_power_domain
4344intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4345{
4346 struct drm_device *dev = intel_encoder->base.dev;
4347 struct intel_digital_port *intel_dig_port;
4348
4349 switch (intel_encoder->type) {
4350 case INTEL_OUTPUT_UNKNOWN:
4351 /* Only DDI platforms should ever use this output type */
4352 WARN_ON_ONCE(!HAS_DDI(dev));
4353 case INTEL_OUTPUT_DISPLAYPORT:
4354 case INTEL_OUTPUT_HDMI:
4355 case INTEL_OUTPUT_EDP:
4356 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4357 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4358 case INTEL_OUTPUT_DP_MST:
4359 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4360 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4361 case INTEL_OUTPUT_ANALOG:
4362 return POWER_DOMAIN_PORT_CRT;
4363 case INTEL_OUTPUT_DSI:
4364 return POWER_DOMAIN_PORT_DSI;
4365 default:
4366 return POWER_DOMAIN_PORT_OTHER;
4367 }
4368}
4369
4370static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4371{
319be8ae
ID
4372 struct drm_device *dev = crtc->dev;
4373 struct intel_encoder *intel_encoder;
4374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4375 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4376 unsigned long mask;
4377 enum transcoder transcoder;
4378
4379 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4380
4381 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4382 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4383 if (intel_crtc->config.pch_pfit.enabled ||
4384 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4385 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4386
319be8ae
ID
4387 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4388 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4389
77d22dca
ID
4390 return mask;
4391}
4392
4393void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4394 bool enable)
4395{
4396 if (dev_priv->power_domains.init_power_on == enable)
4397 return;
4398
4399 if (enable)
4400 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4401 else
4402 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4403
4404 dev_priv->power_domains.init_power_on = enable;
4405}
4406
4407static void modeset_update_crtc_power_domains(struct drm_device *dev)
4408{
4409 struct drm_i915_private *dev_priv = dev->dev_private;
4410 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4411 struct intel_crtc *crtc;
4412
4413 /*
4414 * First get all needed power domains, then put all unneeded, to avoid
4415 * any unnecessary toggling of the power wells.
4416 */
d3fcc808 4417 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4418 enum intel_display_power_domain domain;
4419
4420 if (!crtc->base.enabled)
4421 continue;
4422
319be8ae 4423 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4424
4425 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4426 intel_display_power_get(dev_priv, domain);
4427 }
4428
d3fcc808 4429 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4430 enum intel_display_power_domain domain;
4431
4432 for_each_power_domain(domain, crtc->enabled_power_domains)
4433 intel_display_power_put(dev_priv, domain);
4434
4435 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4436 }
4437
4438 intel_display_set_init_power(dev_priv, false);
4439}
4440
dfcab17e 4441/* returns HPLL frequency in kHz */
f8bf63fd 4442static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4443{
586f49dc 4444 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4445
586f49dc
JB
4446 /* Obtain SKU information */
4447 mutex_lock(&dev_priv->dpio_lock);
4448 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4449 CCK_FUSE_HPLL_FREQ_MASK;
4450 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4451
dfcab17e 4452 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4453}
4454
f8bf63fd
VS
4455static void vlv_update_cdclk(struct drm_device *dev)
4456{
4457 struct drm_i915_private *dev_priv = dev->dev_private;
4458
4459 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4460 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4461 dev_priv->vlv_cdclk_freq);
4462
4463 /*
4464 * Program the gmbus_freq based on the cdclk frequency.
4465 * BSpec erroneously claims we should aim for 4MHz, but
4466 * in fact 1MHz is the correct frequency.
4467 */
4468 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4469}
4470
30a970c6
JB
4471/* Adjust CDclk dividers to allow high res or save power if possible */
4472static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4473{
4474 struct drm_i915_private *dev_priv = dev->dev_private;
4475 u32 val, cmd;
4476
d197b7d3 4477 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4478
dfcab17e 4479 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4480 cmd = 2;
dfcab17e 4481 else if (cdclk == 266667)
30a970c6
JB
4482 cmd = 1;
4483 else
4484 cmd = 0;
4485
4486 mutex_lock(&dev_priv->rps.hw_lock);
4487 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4488 val &= ~DSPFREQGUAR_MASK;
4489 val |= (cmd << DSPFREQGUAR_SHIFT);
4490 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4491 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4492 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4493 50)) {
4494 DRM_ERROR("timed out waiting for CDclk change\n");
4495 }
4496 mutex_unlock(&dev_priv->rps.hw_lock);
4497
dfcab17e 4498 if (cdclk == 400000) {
30a970c6
JB
4499 u32 divider, vco;
4500
4501 vco = valleyview_get_vco(dev_priv);
dfcab17e 4502 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4503
4504 mutex_lock(&dev_priv->dpio_lock);
4505 /* adjust cdclk divider */
4506 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4507 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4508 val |= divider;
4509 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4510
4511 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4512 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4513 50))
4514 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4515 mutex_unlock(&dev_priv->dpio_lock);
4516 }
4517
4518 mutex_lock(&dev_priv->dpio_lock);
4519 /* adjust self-refresh exit latency value */
4520 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4521 val &= ~0x7f;
4522
4523 /*
4524 * For high bandwidth configs, we set a higher latency in the bunit
4525 * so that the core display fetch happens in time to avoid underruns.
4526 */
dfcab17e 4527 if (cdclk == 400000)
30a970c6
JB
4528 val |= 4500 / 250; /* 4.5 usec */
4529 else
4530 val |= 3000 / 250; /* 3.0 usec */
4531 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4532 mutex_unlock(&dev_priv->dpio_lock);
4533
f8bf63fd 4534 vlv_update_cdclk(dev);
30a970c6
JB
4535}
4536
383c5a6a
VS
4537static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4538{
4539 struct drm_i915_private *dev_priv = dev->dev_private;
4540 u32 val, cmd;
4541
4542 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4543
4544 switch (cdclk) {
4545 case 400000:
4546 cmd = 3;
4547 break;
4548 case 333333:
4549 case 320000:
4550 cmd = 2;
4551 break;
4552 case 266667:
4553 cmd = 1;
4554 break;
4555 case 200000:
4556 cmd = 0;
4557 break;
4558 default:
4559 WARN_ON(1);
4560 return;
4561 }
4562
4563 mutex_lock(&dev_priv->rps.hw_lock);
4564 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4565 val &= ~DSPFREQGUAR_MASK_CHV;
4566 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4567 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4568 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4569 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4570 50)) {
4571 DRM_ERROR("timed out waiting for CDclk change\n");
4572 }
4573 mutex_unlock(&dev_priv->rps.hw_lock);
4574
4575 vlv_update_cdclk(dev);
4576}
4577
30a970c6
JB
4578static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4579 int max_pixclk)
4580{
29dc7ef3
VS
4581 int vco = valleyview_get_vco(dev_priv);
4582 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4583
d49a340d
VS
4584 /* FIXME: Punit isn't quite ready yet */
4585 if (IS_CHERRYVIEW(dev_priv->dev))
4586 return 400000;
4587
30a970c6
JB
4588 /*
4589 * Really only a few cases to deal with, as only 4 CDclks are supported:
4590 * 200MHz
4591 * 267MHz
29dc7ef3 4592 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4593 * 400MHz
4594 * So we check to see whether we're above 90% of the lower bin and
4595 * adjust if needed.
e37c67a1
VS
4596 *
4597 * We seem to get an unstable or solid color picture at 200MHz.
4598 * Not sure what's wrong. For now use 200MHz only when all pipes
4599 * are off.
30a970c6 4600 */
29dc7ef3 4601 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4602 return 400000;
4603 else if (max_pixclk > 266667*9/10)
29dc7ef3 4604 return freq_320;
e37c67a1 4605 else if (max_pixclk > 0)
dfcab17e 4606 return 266667;
e37c67a1
VS
4607 else
4608 return 200000;
30a970c6
JB
4609}
4610
2f2d7aa1
VS
4611/* compute the max pixel clock for new configuration */
4612static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4613{
4614 struct drm_device *dev = dev_priv->dev;
4615 struct intel_crtc *intel_crtc;
4616 int max_pixclk = 0;
4617
d3fcc808 4618 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4619 if (intel_crtc->new_enabled)
30a970c6 4620 max_pixclk = max(max_pixclk,
2f2d7aa1 4621 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4622 }
4623
4624 return max_pixclk;
4625}
4626
4627static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4628 unsigned *prepare_pipes)
30a970c6
JB
4629{
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631 struct intel_crtc *intel_crtc;
2f2d7aa1 4632 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4633
d60c4473
ID
4634 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4635 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4636 return;
4637
2f2d7aa1 4638 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4639 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4640 if (intel_crtc->base.enabled)
4641 *prepare_pipes |= (1 << intel_crtc->pipe);
4642}
4643
4644static void valleyview_modeset_global_resources(struct drm_device *dev)
4645{
4646 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4647 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4648 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4649
383c5a6a
VS
4650 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4651 if (IS_CHERRYVIEW(dev))
4652 cherryview_set_cdclk(dev, req_cdclk);
4653 else
4654 valleyview_set_cdclk(dev, req_cdclk);
4655 }
4656
77961eb9 4657 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4658}
4659
89b667f8
JB
4660static void valleyview_crtc_enable(struct drm_crtc *crtc)
4661{
4662 struct drm_device *dev = crtc->dev;
89b667f8
JB
4663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4664 struct intel_encoder *encoder;
4665 int pipe = intel_crtc->pipe;
23538ef1 4666 bool is_dsi;
89b667f8
JB
4667
4668 WARN_ON(!crtc->enabled);
4669
4670 if (intel_crtc->active)
4671 return;
4672
8525a235
SK
4673 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4674
1ae0d137
VS
4675 if (!is_dsi) {
4676 if (IS_CHERRYVIEW(dev))
4677 chv_prepare_pll(intel_crtc);
4678 else
4679 vlv_prepare_pll(intel_crtc);
4680 }
bdd4b6a6 4681
5b18e57c
DV
4682 if (intel_crtc->config.has_dp_encoder)
4683 intel_dp_set_m_n(intel_crtc);
4684
4685 intel_set_pipe_timings(intel_crtc);
4686
5b18e57c
DV
4687 i9xx_set_pipeconf(intel_crtc);
4688
89b667f8 4689 intel_crtc->active = true;
89b667f8 4690
4a3436e8
VS
4691 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4692
89b667f8
JB
4693 for_each_encoder_on_crtc(dev, crtc, encoder)
4694 if (encoder->pre_pll_enable)
4695 encoder->pre_pll_enable(encoder);
4696
9d556c99
CML
4697 if (!is_dsi) {
4698 if (IS_CHERRYVIEW(dev))
4699 chv_enable_pll(intel_crtc);
4700 else
4701 vlv_enable_pll(intel_crtc);
4702 }
89b667f8
JB
4703
4704 for_each_encoder_on_crtc(dev, crtc, encoder)
4705 if (encoder->pre_enable)
4706 encoder->pre_enable(encoder);
4707
2dd24552
JB
4708 i9xx_pfit_enable(intel_crtc);
4709
63cbb074
VS
4710 intel_crtc_load_lut(crtc);
4711
f37fcc2a 4712 intel_update_watermarks(crtc);
e1fdc473 4713 intel_enable_pipe(intel_crtc);
be6a6f8e 4714
5004945f
JN
4715 for_each_encoder_on_crtc(dev, crtc, encoder)
4716 encoder->enable(encoder);
9ab0460b
VS
4717
4718 intel_crtc_enable_planes(crtc);
d40d9187 4719
56b80e1f
VS
4720 /* Underruns don't raise interrupts, so check manually. */
4721 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4722}
4723
f13c2ef3
DV
4724static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4725{
4726 struct drm_device *dev = crtc->base.dev;
4727 struct drm_i915_private *dev_priv = dev->dev_private;
4728
4729 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4730 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4731}
4732
0b8765c6 4733static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4734{
4735 struct drm_device *dev = crtc->dev;
79e53945 4736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4737 struct intel_encoder *encoder;
79e53945 4738 int pipe = intel_crtc->pipe;
79e53945 4739
08a48469
DV
4740 WARN_ON(!crtc->enabled);
4741
f7abfe8b
CW
4742 if (intel_crtc->active)
4743 return;
4744
f13c2ef3
DV
4745 i9xx_set_pll_dividers(intel_crtc);
4746
5b18e57c
DV
4747 if (intel_crtc->config.has_dp_encoder)
4748 intel_dp_set_m_n(intel_crtc);
4749
4750 intel_set_pipe_timings(intel_crtc);
4751
5b18e57c
DV
4752 i9xx_set_pipeconf(intel_crtc);
4753
f7abfe8b 4754 intel_crtc->active = true;
6b383a7f 4755
4a3436e8
VS
4756 if (!IS_GEN2(dev))
4757 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4758
9d6d9f19
MK
4759 for_each_encoder_on_crtc(dev, crtc, encoder)
4760 if (encoder->pre_enable)
4761 encoder->pre_enable(encoder);
4762
f6736a1a
DV
4763 i9xx_enable_pll(intel_crtc);
4764
2dd24552
JB
4765 i9xx_pfit_enable(intel_crtc);
4766
63cbb074
VS
4767 intel_crtc_load_lut(crtc);
4768
f37fcc2a 4769 intel_update_watermarks(crtc);
e1fdc473 4770 intel_enable_pipe(intel_crtc);
be6a6f8e 4771
fa5c73b1
DV
4772 for_each_encoder_on_crtc(dev, crtc, encoder)
4773 encoder->enable(encoder);
9ab0460b
VS
4774
4775 intel_crtc_enable_planes(crtc);
d40d9187 4776
4a3436e8
VS
4777 /*
4778 * Gen2 reports pipe underruns whenever all planes are disabled.
4779 * So don't enable underrun reporting before at least some planes
4780 * are enabled.
4781 * FIXME: Need to fix the logic to work when we turn off all planes
4782 * but leave the pipe running.
4783 */
4784 if (IS_GEN2(dev))
4785 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4786
56b80e1f
VS
4787 /* Underruns don't raise interrupts, so check manually. */
4788 i9xx_check_fifo_underruns(dev);
0b8765c6 4789}
79e53945 4790
87476d63
DV
4791static void i9xx_pfit_disable(struct intel_crtc *crtc)
4792{
4793 struct drm_device *dev = crtc->base.dev;
4794 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4795
328d8e82
DV
4796 if (!crtc->config.gmch_pfit.control)
4797 return;
87476d63 4798
328d8e82 4799 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4800
328d8e82
DV
4801 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4802 I915_READ(PFIT_CONTROL));
4803 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4804}
4805
0b8765c6
JB
4806static void i9xx_crtc_disable(struct drm_crtc *crtc)
4807{
4808 struct drm_device *dev = crtc->dev;
4809 struct drm_i915_private *dev_priv = dev->dev_private;
4810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4811 struct intel_encoder *encoder;
0b8765c6 4812 int pipe = intel_crtc->pipe;
ef9c3aee 4813
f7abfe8b
CW
4814 if (!intel_crtc->active)
4815 return;
4816
4a3436e8
VS
4817 /*
4818 * Gen2 reports pipe underruns whenever all planes are disabled.
4819 * So diasble underrun reporting before all the planes get disabled.
4820 * FIXME: Need to fix the logic to work when we turn off all planes
4821 * but leave the pipe running.
4822 */
4823 if (IS_GEN2(dev))
4824 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4825
564ed191
ID
4826 /*
4827 * Vblank time updates from the shadow to live plane control register
4828 * are blocked if the memory self-refresh mode is active at that
4829 * moment. So to make sure the plane gets truly disabled, disable
4830 * first the self-refresh mode. The self-refresh enable bit in turn
4831 * will be checked/applied by the HW only at the next frame start
4832 * event which is after the vblank start event, so we need to have a
4833 * wait-for-vblank between disabling the plane and the pipe.
4834 */
4835 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4836 intel_crtc_disable_planes(crtc);
4837
ea9d758d
DV
4838 for_each_encoder_on_crtc(dev, crtc, encoder)
4839 encoder->disable(encoder);
4840
6304cd91
VS
4841 /*
4842 * On gen2 planes are double buffered but the pipe isn't, so we must
4843 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4844 * We also need to wait on all gmch platforms because of the
4845 * self-refresh mode constraint explained above.
6304cd91 4846 */
564ed191 4847 intel_wait_for_vblank(dev, pipe);
6304cd91 4848
b24e7179 4849 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4850
87476d63 4851 i9xx_pfit_disable(intel_crtc);
24a1f16d 4852
89b667f8
JB
4853 for_each_encoder_on_crtc(dev, crtc, encoder)
4854 if (encoder->post_disable)
4855 encoder->post_disable(encoder);
4856
076ed3b2
CML
4857 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4858 if (IS_CHERRYVIEW(dev))
4859 chv_disable_pll(dev_priv, pipe);
4860 else if (IS_VALLEYVIEW(dev))
4861 vlv_disable_pll(dev_priv, pipe);
4862 else
4863 i9xx_disable_pll(dev_priv, pipe);
4864 }
0b8765c6 4865
4a3436e8
VS
4866 if (!IS_GEN2(dev))
4867 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4868
f7abfe8b 4869 intel_crtc->active = false;
46ba614c 4870 intel_update_watermarks(crtc);
f37fcc2a 4871
efa9624e 4872 mutex_lock(&dev->struct_mutex);
6b383a7f 4873 intel_update_fbc(dev);
efa9624e 4874 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4875}
4876
ee7b9f93
JB
4877static void i9xx_crtc_off(struct drm_crtc *crtc)
4878{
4879}
4880
976f8a20
DV
4881static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4882 bool enabled)
2c07245f
ZW
4883{
4884 struct drm_device *dev = crtc->dev;
4885 struct drm_i915_master_private *master_priv;
4886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4887 int pipe = intel_crtc->pipe;
79e53945
JB
4888
4889 if (!dev->primary->master)
4890 return;
4891
4892 master_priv = dev->primary->master->driver_priv;
4893 if (!master_priv->sarea_priv)
4894 return;
4895
79e53945
JB
4896 switch (pipe) {
4897 case 0:
4898 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4899 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4900 break;
4901 case 1:
4902 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4903 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4904 break;
4905 default:
9db4a9c7 4906 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4907 break;
4908 }
79e53945
JB
4909}
4910
b04c5bd6
BF
4911/* Master function to enable/disable CRTC and corresponding power wells */
4912void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
4913{
4914 struct drm_device *dev = crtc->dev;
4915 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
4917 enum intel_display_power_domain domain;
4918 unsigned long domains;
976f8a20 4919
0e572fe7
DV
4920 if (enable) {
4921 if (!intel_crtc->active) {
e1e9fb84
DV
4922 domains = get_crtc_power_domains(crtc);
4923 for_each_power_domain(domain, domains)
4924 intel_display_power_get(dev_priv, domain);
4925 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
4926
4927 dev_priv->display.crtc_enable(crtc);
4928 }
4929 } else {
4930 if (intel_crtc->active) {
4931 dev_priv->display.crtc_disable(crtc);
4932
e1e9fb84
DV
4933 domains = intel_crtc->enabled_power_domains;
4934 for_each_power_domain(domain, domains)
4935 intel_display_power_put(dev_priv, domain);
4936 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
4937 }
4938 }
b04c5bd6
BF
4939}
4940
4941/**
4942 * Sets the power management mode of the pipe and plane.
4943 */
4944void intel_crtc_update_dpms(struct drm_crtc *crtc)
4945{
4946 struct drm_device *dev = crtc->dev;
4947 struct intel_encoder *intel_encoder;
4948 bool enable = false;
4949
4950 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4951 enable |= intel_encoder->connectors_active;
4952
4953 intel_crtc_control(crtc, enable);
976f8a20
DV
4954
4955 intel_crtc_update_sarea(crtc, enable);
4956}
4957
cdd59983
CW
4958static void intel_crtc_disable(struct drm_crtc *crtc)
4959{
cdd59983 4960 struct drm_device *dev = crtc->dev;
976f8a20 4961 struct drm_connector *connector;
ee7b9f93 4962 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4963 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4964 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4965
976f8a20
DV
4966 /* crtc should still be enabled when we disable it. */
4967 WARN_ON(!crtc->enabled);
4968
4969 dev_priv->display.crtc_disable(crtc);
4970 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4971 dev_priv->display.off(crtc);
4972
f4510a27 4973 if (crtc->primary->fb) {
cdd59983 4974 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4975 intel_unpin_fb_obj(old_obj);
4976 i915_gem_track_fb(old_obj, NULL,
4977 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4978 mutex_unlock(&dev->struct_mutex);
f4510a27 4979 crtc->primary->fb = NULL;
976f8a20
DV
4980 }
4981
4982 /* Update computed state. */
4983 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4984 if (!connector->encoder || !connector->encoder->crtc)
4985 continue;
4986
4987 if (connector->encoder->crtc != crtc)
4988 continue;
4989
4990 connector->dpms = DRM_MODE_DPMS_OFF;
4991 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4992 }
4993}
4994
ea5b213a 4995void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4996{
4ef69c7a 4997 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4998
ea5b213a
CW
4999 drm_encoder_cleanup(encoder);
5000 kfree(intel_encoder);
7e7d76c3
JB
5001}
5002
9237329d 5003/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5004 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5005 * state of the entire output pipe. */
9237329d 5006static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5007{
5ab432ef
DV
5008 if (mode == DRM_MODE_DPMS_ON) {
5009 encoder->connectors_active = true;
5010
b2cabb0e 5011 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5012 } else {
5013 encoder->connectors_active = false;
5014
b2cabb0e 5015 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5016 }
79e53945
JB
5017}
5018
0a91ca29
DV
5019/* Cross check the actual hw state with our own modeset state tracking (and it's
5020 * internal consistency). */
b980514c 5021static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5022{
0a91ca29
DV
5023 if (connector->get_hw_state(connector)) {
5024 struct intel_encoder *encoder = connector->encoder;
5025 struct drm_crtc *crtc;
5026 bool encoder_enabled;
5027 enum pipe pipe;
5028
5029 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5030 connector->base.base.id,
c23cc417 5031 connector->base.name);
0a91ca29 5032
0e32b39c
DA
5033 /* there is no real hw state for MST connectors */
5034 if (connector->mst_port)
5035 return;
5036
0a91ca29
DV
5037 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5038 "wrong connector dpms state\n");
5039 WARN(connector->base.encoder != &encoder->base,
5040 "active connector not linked to encoder\n");
0a91ca29 5041
36cd7444
DA
5042 if (encoder) {
5043 WARN(!encoder->connectors_active,
5044 "encoder->connectors_active not set\n");
5045
5046 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5047 WARN(!encoder_enabled, "encoder not enabled\n");
5048 if (WARN_ON(!encoder->base.crtc))
5049 return;
0a91ca29 5050
36cd7444 5051 crtc = encoder->base.crtc;
0a91ca29 5052
36cd7444
DA
5053 WARN(!crtc->enabled, "crtc not enabled\n");
5054 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5055 WARN(pipe != to_intel_crtc(crtc)->pipe,
5056 "encoder active on the wrong pipe\n");
5057 }
0a91ca29 5058 }
79e53945
JB
5059}
5060
5ab432ef
DV
5061/* Even simpler default implementation, if there's really no special case to
5062 * consider. */
5063void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5064{
5ab432ef
DV
5065 /* All the simple cases only support two dpms states. */
5066 if (mode != DRM_MODE_DPMS_ON)
5067 mode = DRM_MODE_DPMS_OFF;
d4270e57 5068
5ab432ef
DV
5069 if (mode == connector->dpms)
5070 return;
5071
5072 connector->dpms = mode;
5073
5074 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5075 if (connector->encoder)
5076 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5077
b980514c 5078 intel_modeset_check_state(connector->dev);
79e53945
JB
5079}
5080
f0947c37
DV
5081/* Simple connector->get_hw_state implementation for encoders that support only
5082 * one connector and no cloning and hence the encoder state determines the state
5083 * of the connector. */
5084bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5085{
24929352 5086 enum pipe pipe = 0;
f0947c37 5087 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5088
f0947c37 5089 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5090}
5091
1857e1da
DV
5092static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5093 struct intel_crtc_config *pipe_config)
5094{
5095 struct drm_i915_private *dev_priv = dev->dev_private;
5096 struct intel_crtc *pipe_B_crtc =
5097 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5098
5099 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5100 pipe_name(pipe), pipe_config->fdi_lanes);
5101 if (pipe_config->fdi_lanes > 4) {
5102 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5103 pipe_name(pipe), pipe_config->fdi_lanes);
5104 return false;
5105 }
5106
bafb6553 5107 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5108 if (pipe_config->fdi_lanes > 2) {
5109 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5110 pipe_config->fdi_lanes);
5111 return false;
5112 } else {
5113 return true;
5114 }
5115 }
5116
5117 if (INTEL_INFO(dev)->num_pipes == 2)
5118 return true;
5119
5120 /* Ivybridge 3 pipe is really complicated */
5121 switch (pipe) {
5122 case PIPE_A:
5123 return true;
5124 case PIPE_B:
5125 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5126 pipe_config->fdi_lanes > 2) {
5127 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5128 pipe_name(pipe), pipe_config->fdi_lanes);
5129 return false;
5130 }
5131 return true;
5132 case PIPE_C:
1e833f40 5133 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5134 pipe_B_crtc->config.fdi_lanes <= 2) {
5135 if (pipe_config->fdi_lanes > 2) {
5136 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5137 pipe_name(pipe), pipe_config->fdi_lanes);
5138 return false;
5139 }
5140 } else {
5141 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5142 return false;
5143 }
5144 return true;
5145 default:
5146 BUG();
5147 }
5148}
5149
e29c22c0
DV
5150#define RETRY 1
5151static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5152 struct intel_crtc_config *pipe_config)
877d48d5 5153{
1857e1da 5154 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5155 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5156 int lane, link_bw, fdi_dotclock;
e29c22c0 5157 bool setup_ok, needs_recompute = false;
877d48d5 5158
e29c22c0 5159retry:
877d48d5
DV
5160 /* FDI is a binary signal running at ~2.7GHz, encoding
5161 * each output octet as 10 bits. The actual frequency
5162 * is stored as a divider into a 100MHz clock, and the
5163 * mode pixel clock is stored in units of 1KHz.
5164 * Hence the bw of each lane in terms of the mode signal
5165 * is:
5166 */
5167 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5168
241bfc38 5169 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5170
2bd89a07 5171 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5172 pipe_config->pipe_bpp);
5173
5174 pipe_config->fdi_lanes = lane;
5175
2bd89a07 5176 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5177 link_bw, &pipe_config->fdi_m_n);
1857e1da 5178
e29c22c0
DV
5179 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5180 intel_crtc->pipe, pipe_config);
5181 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5182 pipe_config->pipe_bpp -= 2*3;
5183 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5184 pipe_config->pipe_bpp);
5185 needs_recompute = true;
5186 pipe_config->bw_constrained = true;
5187
5188 goto retry;
5189 }
5190
5191 if (needs_recompute)
5192 return RETRY;
5193
5194 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5195}
5196
42db64ef
PZ
5197static void hsw_compute_ips_config(struct intel_crtc *crtc,
5198 struct intel_crtc_config *pipe_config)
5199{
d330a953 5200 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5201 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5202 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5203}
5204
a43f6e0f 5205static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5206 struct intel_crtc_config *pipe_config)
79e53945 5207{
a43f6e0f 5208 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5209 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5210
ad3a4479 5211 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5212 if (INTEL_INFO(dev)->gen < 4) {
5213 struct drm_i915_private *dev_priv = dev->dev_private;
5214 int clock_limit =
5215 dev_priv->display.get_display_clock_speed(dev);
5216
5217 /*
5218 * Enable pixel doubling when the dot clock
5219 * is > 90% of the (display) core speed.
5220 *
b397c96b
VS
5221 * GDG double wide on either pipe,
5222 * otherwise pipe A only.
cf532bb2 5223 */
b397c96b 5224 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5225 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5226 clock_limit *= 2;
cf532bb2 5227 pipe_config->double_wide = true;
ad3a4479
VS
5228 }
5229
241bfc38 5230 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5231 return -EINVAL;
2c07245f 5232 }
89749350 5233
1d1d0e27
VS
5234 /*
5235 * Pipe horizontal size must be even in:
5236 * - DVO ganged mode
5237 * - LVDS dual channel mode
5238 * - Double wide pipe
5239 */
5240 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5241 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5242 pipe_config->pipe_src_w &= ~1;
5243
8693a824
DL
5244 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5245 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5246 */
5247 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5248 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5249 return -EINVAL;
44f46b42 5250
bd080ee5 5251 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5252 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5253 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5254 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5255 * for lvds. */
5256 pipe_config->pipe_bpp = 8*3;
5257 }
5258
f5adf94e 5259 if (HAS_IPS(dev))
a43f6e0f
DV
5260 hsw_compute_ips_config(crtc, pipe_config);
5261
12030431
DV
5262 /*
5263 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5264 * old clock survives for now.
5265 */
5266 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5267 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5268
877d48d5 5269 if (pipe_config->has_pch_encoder)
a43f6e0f 5270 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5271
e29c22c0 5272 return 0;
79e53945
JB
5273}
5274
25eb05fc
JB
5275static int valleyview_get_display_clock_speed(struct drm_device *dev)
5276{
d197b7d3
VS
5277 struct drm_i915_private *dev_priv = dev->dev_private;
5278 int vco = valleyview_get_vco(dev_priv);
5279 u32 val;
5280 int divider;
5281
d49a340d
VS
5282 /* FIXME: Punit isn't quite ready yet */
5283 if (IS_CHERRYVIEW(dev))
5284 return 400000;
5285
d197b7d3
VS
5286 mutex_lock(&dev_priv->dpio_lock);
5287 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5288 mutex_unlock(&dev_priv->dpio_lock);
5289
5290 divider = val & DISPLAY_FREQUENCY_VALUES;
5291
7d007f40
VS
5292 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5293 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5294 "cdclk change in progress\n");
5295
d197b7d3 5296 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5297}
5298
e70236a8
JB
5299static int i945_get_display_clock_speed(struct drm_device *dev)
5300{
5301 return 400000;
5302}
79e53945 5303
e70236a8 5304static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5305{
e70236a8
JB
5306 return 333000;
5307}
79e53945 5308
e70236a8
JB
5309static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5310{
5311 return 200000;
5312}
79e53945 5313
257a7ffc
DV
5314static int pnv_get_display_clock_speed(struct drm_device *dev)
5315{
5316 u16 gcfgc = 0;
5317
5318 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5319
5320 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5321 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5322 return 267000;
5323 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5324 return 333000;
5325 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5326 return 444000;
5327 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5328 return 200000;
5329 default:
5330 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5331 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5332 return 133000;
5333 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5334 return 167000;
5335 }
5336}
5337
e70236a8
JB
5338static int i915gm_get_display_clock_speed(struct drm_device *dev)
5339{
5340 u16 gcfgc = 0;
79e53945 5341
e70236a8
JB
5342 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5343
5344 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5345 return 133000;
5346 else {
5347 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5348 case GC_DISPLAY_CLOCK_333_MHZ:
5349 return 333000;
5350 default:
5351 case GC_DISPLAY_CLOCK_190_200_MHZ:
5352 return 190000;
79e53945 5353 }
e70236a8
JB
5354 }
5355}
5356
5357static int i865_get_display_clock_speed(struct drm_device *dev)
5358{
5359 return 266000;
5360}
5361
5362static int i855_get_display_clock_speed(struct drm_device *dev)
5363{
5364 u16 hpllcc = 0;
5365 /* Assume that the hardware is in the high speed state. This
5366 * should be the default.
5367 */
5368 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5369 case GC_CLOCK_133_200:
5370 case GC_CLOCK_100_200:
5371 return 200000;
5372 case GC_CLOCK_166_250:
5373 return 250000;
5374 case GC_CLOCK_100_133:
79e53945 5375 return 133000;
e70236a8 5376 }
79e53945 5377
e70236a8
JB
5378 /* Shouldn't happen */
5379 return 0;
5380}
79e53945 5381
e70236a8
JB
5382static int i830_get_display_clock_speed(struct drm_device *dev)
5383{
5384 return 133000;
79e53945
JB
5385}
5386
2c07245f 5387static void
a65851af 5388intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5389{
a65851af
VS
5390 while (*num > DATA_LINK_M_N_MASK ||
5391 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5392 *num >>= 1;
5393 *den >>= 1;
5394 }
5395}
5396
a65851af
VS
5397static void compute_m_n(unsigned int m, unsigned int n,
5398 uint32_t *ret_m, uint32_t *ret_n)
5399{
5400 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5401 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5402 intel_reduce_m_n_ratio(ret_m, ret_n);
5403}
5404
e69d0bc1
DV
5405void
5406intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5407 int pixel_clock, int link_clock,
5408 struct intel_link_m_n *m_n)
2c07245f 5409{
e69d0bc1 5410 m_n->tu = 64;
a65851af
VS
5411
5412 compute_m_n(bits_per_pixel * pixel_clock,
5413 link_clock * nlanes * 8,
5414 &m_n->gmch_m, &m_n->gmch_n);
5415
5416 compute_m_n(pixel_clock, link_clock,
5417 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5418}
5419
a7615030
CW
5420static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5421{
d330a953
JN
5422 if (i915.panel_use_ssc >= 0)
5423 return i915.panel_use_ssc != 0;
41aa3448 5424 return dev_priv->vbt.lvds_use_ssc
435793df 5425 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5426}
5427
c65d77d8
JB
5428static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5429{
5430 struct drm_device *dev = crtc->dev;
5431 struct drm_i915_private *dev_priv = dev->dev_private;
5432 int refclk;
5433
a0c4da24 5434 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5435 refclk = 100000;
a0c4da24 5436 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5437 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5438 refclk = dev_priv->vbt.lvds_ssc_freq;
5439 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5440 } else if (!IS_GEN2(dev)) {
5441 refclk = 96000;
5442 } else {
5443 refclk = 48000;
5444 }
5445
5446 return refclk;
5447}
5448
7429e9d4 5449static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5450{
7df00d7a 5451 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5452}
f47709a9 5453
7429e9d4
DV
5454static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5455{
5456 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5457}
5458
f47709a9 5459static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5460 intel_clock_t *reduced_clock)
5461{
f47709a9 5462 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5463 u32 fp, fp2 = 0;
5464
5465 if (IS_PINEVIEW(dev)) {
7429e9d4 5466 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5467 if (reduced_clock)
7429e9d4 5468 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5469 } else {
7429e9d4 5470 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5471 if (reduced_clock)
7429e9d4 5472 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5473 }
5474
8bcc2795 5475 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5476
f47709a9
DV
5477 crtc->lowfreq_avail = false;
5478 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5479 reduced_clock && i915.powersave) {
8bcc2795 5480 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5481 crtc->lowfreq_avail = true;
a7516a05 5482 } else {
8bcc2795 5483 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5484 }
5485}
5486
5e69f97f
CML
5487static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5488 pipe)
89b667f8
JB
5489{
5490 u32 reg_val;
5491
5492 /*
5493 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5494 * and set it to a reasonable value instead.
5495 */
ab3c759a 5496 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5497 reg_val &= 0xffffff00;
5498 reg_val |= 0x00000030;
ab3c759a 5499 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5500
ab3c759a 5501 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5502 reg_val &= 0x8cffffff;
5503 reg_val = 0x8c000000;
ab3c759a 5504 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5505
ab3c759a 5506 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5507 reg_val &= 0xffffff00;
ab3c759a 5508 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5509
ab3c759a 5510 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5511 reg_val &= 0x00ffffff;
5512 reg_val |= 0xb0000000;
ab3c759a 5513 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5514}
5515
b551842d
DV
5516static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5517 struct intel_link_m_n *m_n)
5518{
5519 struct drm_device *dev = crtc->base.dev;
5520 struct drm_i915_private *dev_priv = dev->dev_private;
5521 int pipe = crtc->pipe;
5522
e3b95f1e
DV
5523 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5524 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5525 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5526 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5527}
5528
5529static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5530 struct intel_link_m_n *m_n,
5531 struct intel_link_m_n *m2_n2)
b551842d
DV
5532{
5533 struct drm_device *dev = crtc->base.dev;
5534 struct drm_i915_private *dev_priv = dev->dev_private;
5535 int pipe = crtc->pipe;
5536 enum transcoder transcoder = crtc->config.cpu_transcoder;
5537
5538 if (INTEL_INFO(dev)->gen >= 5) {
5539 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5540 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5541 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5542 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5543 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5544 * for gen < 8) and if DRRS is supported (to make sure the
5545 * registers are not unnecessarily accessed).
5546 */
5547 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5548 crtc->config.has_drrs) {
5549 I915_WRITE(PIPE_DATA_M2(transcoder),
5550 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5551 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5552 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5553 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5554 }
b551842d 5555 } else {
e3b95f1e
DV
5556 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5557 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5558 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5559 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5560 }
5561}
5562
f769cd24 5563void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5564{
5565 if (crtc->config.has_pch_encoder)
5566 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5567 else
f769cd24
VK
5568 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5569 &crtc->config.dp_m2_n2);
03afc4a2
DV
5570}
5571
f47709a9 5572static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5573{
5574 u32 dpll, dpll_md;
5575
5576 /*
5577 * Enable DPIO clock input. We should never disable the reference
5578 * clock for pipe B, since VGA hotplug / manual detection depends
5579 * on it.
5580 */
5581 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5582 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5583 /* We should never disable this, set it here for state tracking */
5584 if (crtc->pipe == PIPE_B)
5585 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5586 dpll |= DPLL_VCO_ENABLE;
5587 crtc->config.dpll_hw_state.dpll = dpll;
5588
5589 dpll_md = (crtc->config.pixel_multiplier - 1)
5590 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5591 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5592}
5593
5594static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5595{
f47709a9 5596 struct drm_device *dev = crtc->base.dev;
a0c4da24 5597 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5598 int pipe = crtc->pipe;
bdd4b6a6 5599 u32 mdiv;
a0c4da24 5600 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5601 u32 coreclk, reg_val;
a0c4da24 5602
09153000
DV
5603 mutex_lock(&dev_priv->dpio_lock);
5604
f47709a9
DV
5605 bestn = crtc->config.dpll.n;
5606 bestm1 = crtc->config.dpll.m1;
5607 bestm2 = crtc->config.dpll.m2;
5608 bestp1 = crtc->config.dpll.p1;
5609 bestp2 = crtc->config.dpll.p2;
a0c4da24 5610
89b667f8
JB
5611 /* See eDP HDMI DPIO driver vbios notes doc */
5612
5613 /* PLL B needs special handling */
bdd4b6a6 5614 if (pipe == PIPE_B)
5e69f97f 5615 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5616
5617 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5618 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5619
5620 /* Disable target IRef on PLL */
ab3c759a 5621 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5622 reg_val &= 0x00ffffff;
ab3c759a 5623 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5624
5625 /* Disable fast lock */
ab3c759a 5626 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5627
5628 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5629 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5630 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5631 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5632 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5633
5634 /*
5635 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5636 * but we don't support that).
5637 * Note: don't use the DAC post divider as it seems unstable.
5638 */
5639 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5640 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5641
a0c4da24 5642 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5643 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5644
89b667f8 5645 /* Set HBR and RBR LPF coefficients */
ff9a6750 5646 if (crtc->config.port_clock == 162000 ||
99750bd4 5647 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5648 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5649 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5650 0x009f0003);
89b667f8 5651 else
ab3c759a 5652 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5653 0x00d0000f);
5654
5655 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5656 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5657 /* Use SSC source */
bdd4b6a6 5658 if (pipe == PIPE_A)
ab3c759a 5659 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5660 0x0df40000);
5661 else
ab3c759a 5662 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5663 0x0df70000);
5664 } else { /* HDMI or VGA */
5665 /* Use bend source */
bdd4b6a6 5666 if (pipe == PIPE_A)
ab3c759a 5667 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5668 0x0df70000);
5669 else
ab3c759a 5670 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5671 0x0df40000);
5672 }
a0c4da24 5673
ab3c759a 5674 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5675 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5676 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5677 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5678 coreclk |= 0x01000000;
ab3c759a 5679 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5680
ab3c759a 5681 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5682 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5683}
5684
9d556c99 5685static void chv_update_pll(struct intel_crtc *crtc)
1ae0d137
VS
5686{
5687 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5688 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5689 DPLL_VCO_ENABLE;
5690 if (crtc->pipe != PIPE_A)
5691 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5692
5693 crtc->config.dpll_hw_state.dpll_md =
5694 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5695}
5696
5697static void chv_prepare_pll(struct intel_crtc *crtc)
9d556c99
CML
5698{
5699 struct drm_device *dev = crtc->base.dev;
5700 struct drm_i915_private *dev_priv = dev->dev_private;
5701 int pipe = crtc->pipe;
5702 int dpll_reg = DPLL(crtc->pipe);
5703 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5704 u32 loopfilter, intcoeff;
9d556c99
CML
5705 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5706 int refclk;
5707
9d556c99
CML
5708 bestn = crtc->config.dpll.n;
5709 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5710 bestm1 = crtc->config.dpll.m1;
5711 bestm2 = crtc->config.dpll.m2 >> 22;
5712 bestp1 = crtc->config.dpll.p1;
5713 bestp2 = crtc->config.dpll.p2;
5714
5715 /*
5716 * Enable Refclk and SSC
5717 */
a11b0703
VS
5718 I915_WRITE(dpll_reg,
5719 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5720
5721 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5722
9d556c99
CML
5723 /* p1 and p2 divider */
5724 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5725 5 << DPIO_CHV_S1_DIV_SHIFT |
5726 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5727 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5728 1 << DPIO_CHV_K_DIV_SHIFT);
5729
5730 /* Feedback post-divider - m2 */
5731 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5732
5733 /* Feedback refclk divider - n and m1 */
5734 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5735 DPIO_CHV_M1_DIV_BY_2 |
5736 1 << DPIO_CHV_N_DIV_SHIFT);
5737
5738 /* M2 fraction division */
5739 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5740
5741 /* M2 fraction division enable */
5742 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5743 DPIO_CHV_FRAC_DIV_EN |
5744 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5745
5746 /* Loop filter */
5747 refclk = i9xx_get_refclk(&crtc->base, 0);
5748 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5749 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5750 if (refclk == 100000)
5751 intcoeff = 11;
5752 else if (refclk == 38400)
5753 intcoeff = 10;
5754 else
5755 intcoeff = 9;
5756 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5757 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5758
5759 /* AFC Recal */
5760 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5761 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5762 DPIO_AFC_RECAL);
5763
5764 mutex_unlock(&dev_priv->dpio_lock);
5765}
5766
f47709a9
DV
5767static void i9xx_update_pll(struct intel_crtc *crtc,
5768 intel_clock_t *reduced_clock,
eb1cbe48
DV
5769 int num_connectors)
5770{
f47709a9 5771 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5772 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5773 u32 dpll;
5774 bool is_sdvo;
f47709a9 5775 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5776
f47709a9 5777 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5778
f47709a9
DV
5779 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5780 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5781
5782 dpll = DPLL_VGA_MODE_DIS;
5783
f47709a9 5784 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5785 dpll |= DPLLB_MODE_LVDS;
5786 else
5787 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5788
ef1b460d 5789 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5790 dpll |= (crtc->config.pixel_multiplier - 1)
5791 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5792 }
198a037f
DV
5793
5794 if (is_sdvo)
4a33e48d 5795 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5796
f47709a9 5797 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5798 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5799
5800 /* compute bitmask from p1 value */
5801 if (IS_PINEVIEW(dev))
5802 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5803 else {
5804 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5805 if (IS_G4X(dev) && reduced_clock)
5806 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5807 }
5808 switch (clock->p2) {
5809 case 5:
5810 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5811 break;
5812 case 7:
5813 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5814 break;
5815 case 10:
5816 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5817 break;
5818 case 14:
5819 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5820 break;
5821 }
5822 if (INTEL_INFO(dev)->gen >= 4)
5823 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5824
09ede541 5825 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5826 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5827 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5828 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5829 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5830 else
5831 dpll |= PLL_REF_INPUT_DREFCLK;
5832
5833 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5834 crtc->config.dpll_hw_state.dpll = dpll;
5835
eb1cbe48 5836 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5837 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5838 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5839 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5840 }
5841}
5842
f47709a9 5843static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5844 intel_clock_t *reduced_clock,
eb1cbe48
DV
5845 int num_connectors)
5846{
f47709a9 5847 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5848 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5849 u32 dpll;
f47709a9 5850 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5851
f47709a9 5852 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5853
eb1cbe48
DV
5854 dpll = DPLL_VGA_MODE_DIS;
5855
f47709a9 5856 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5857 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5858 } else {
5859 if (clock->p1 == 2)
5860 dpll |= PLL_P1_DIVIDE_BY_TWO;
5861 else
5862 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5863 if (clock->p2 == 4)
5864 dpll |= PLL_P2_DIVIDE_BY_4;
5865 }
5866
4a33e48d
DV
5867 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5868 dpll |= DPLL_DVO_2X_MODE;
5869
f47709a9 5870 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5871 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5872 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5873 else
5874 dpll |= PLL_REF_INPUT_DREFCLK;
5875
5876 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5877 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5878}
5879
8a654f3b 5880static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5881{
5882 struct drm_device *dev = intel_crtc->base.dev;
5883 struct drm_i915_private *dev_priv = dev->dev_private;
5884 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5885 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5886 struct drm_display_mode *adjusted_mode =
5887 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5888 uint32_t crtc_vtotal, crtc_vblank_end;
5889 int vsyncshift = 0;
4d8a62ea
DV
5890
5891 /* We need to be careful not to changed the adjusted mode, for otherwise
5892 * the hw state checker will get angry at the mismatch. */
5893 crtc_vtotal = adjusted_mode->crtc_vtotal;
5894 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5895
609aeaca 5896 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5897 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5898 crtc_vtotal -= 1;
5899 crtc_vblank_end -= 1;
609aeaca
VS
5900
5901 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5902 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5903 else
5904 vsyncshift = adjusted_mode->crtc_hsync_start -
5905 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5906 if (vsyncshift < 0)
5907 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5908 }
5909
5910 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5911 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5912
fe2b8f9d 5913 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5914 (adjusted_mode->crtc_hdisplay - 1) |
5915 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5916 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5917 (adjusted_mode->crtc_hblank_start - 1) |
5918 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5919 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5920 (adjusted_mode->crtc_hsync_start - 1) |
5921 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5922
fe2b8f9d 5923 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5924 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5925 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5926 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5927 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5928 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5929 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5930 (adjusted_mode->crtc_vsync_start - 1) |
5931 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5932
b5e508d4
PZ
5933 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5934 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5935 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5936 * bits. */
5937 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5938 (pipe == PIPE_B || pipe == PIPE_C))
5939 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5940
b0e77b9c
PZ
5941 /* pipesrc controls the size that is scaled from, which should
5942 * always be the user's requested size.
5943 */
5944 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5945 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5946 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5947}
5948
1bd1bd80
DV
5949static void intel_get_pipe_timings(struct intel_crtc *crtc,
5950 struct intel_crtc_config *pipe_config)
5951{
5952 struct drm_device *dev = crtc->base.dev;
5953 struct drm_i915_private *dev_priv = dev->dev_private;
5954 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5955 uint32_t tmp;
5956
5957 tmp = I915_READ(HTOTAL(cpu_transcoder));
5958 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5959 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5960 tmp = I915_READ(HBLANK(cpu_transcoder));
5961 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5962 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5963 tmp = I915_READ(HSYNC(cpu_transcoder));
5964 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5965 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5966
5967 tmp = I915_READ(VTOTAL(cpu_transcoder));
5968 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5969 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5970 tmp = I915_READ(VBLANK(cpu_transcoder));
5971 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5972 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5973 tmp = I915_READ(VSYNC(cpu_transcoder));
5974 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5975 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5976
5977 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5978 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5979 pipe_config->adjusted_mode.crtc_vtotal += 1;
5980 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5981 }
5982
5983 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5984 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5985 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5986
5987 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5988 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5989}
5990
f6a83288
DV
5991void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5992 struct intel_crtc_config *pipe_config)
babea61d 5993{
f6a83288
DV
5994 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5995 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5996 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5997 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5998
f6a83288
DV
5999 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6000 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6001 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6002 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6003
f6a83288 6004 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6005
f6a83288
DV
6006 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6007 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6008}
6009
84b046f3
DV
6010static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6011{
6012 struct drm_device *dev = intel_crtc->base.dev;
6013 struct drm_i915_private *dev_priv = dev->dev_private;
6014 uint32_t pipeconf;
6015
9f11a9e4 6016 pipeconf = 0;
84b046f3 6017
67c72a12
DV
6018 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
6019 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
6020 pipeconf |= PIPECONF_ENABLE;
6021
cf532bb2
VS
6022 if (intel_crtc->config.double_wide)
6023 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6024
ff9ce46e
DV
6025 /* only g4x and later have fancy bpc/dither controls */
6026 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6027 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6028 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6029 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6030 PIPECONF_DITHER_TYPE_SP;
84b046f3 6031
ff9ce46e
DV
6032 switch (intel_crtc->config.pipe_bpp) {
6033 case 18:
6034 pipeconf |= PIPECONF_6BPC;
6035 break;
6036 case 24:
6037 pipeconf |= PIPECONF_8BPC;
6038 break;
6039 case 30:
6040 pipeconf |= PIPECONF_10BPC;
6041 break;
6042 default:
6043 /* Case prevented by intel_choose_pipe_bpp_dither. */
6044 BUG();
84b046f3
DV
6045 }
6046 }
6047
6048 if (HAS_PIPE_CXSR(dev)) {
6049 if (intel_crtc->lowfreq_avail) {
6050 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6051 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6052 } else {
6053 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6054 }
6055 }
6056
efc2cfff
VS
6057 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6058 if (INTEL_INFO(dev)->gen < 4 ||
6059 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6060 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6061 else
6062 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6063 } else
84b046f3
DV
6064 pipeconf |= PIPECONF_PROGRESSIVE;
6065
9f11a9e4
DV
6066 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6067 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6068
84b046f3
DV
6069 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6070 POSTING_READ(PIPECONF(intel_crtc->pipe));
6071}
6072
f564048e 6073static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6074 int x, int y,
94352cf9 6075 struct drm_framebuffer *fb)
79e53945
JB
6076{
6077 struct drm_device *dev = crtc->dev;
6078 struct drm_i915_private *dev_priv = dev->dev_private;
6079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6080 int refclk, num_connectors = 0;
652c393a 6081 intel_clock_t clock, reduced_clock;
a16af721 6082 bool ok, has_reduced_clock = false;
e9fd1c02 6083 bool is_lvds = false, is_dsi = false;
5eddb70b 6084 struct intel_encoder *encoder;
d4906093 6085 const intel_limit_t *limit;
79e53945 6086
6c2b7c12 6087 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6088 switch (encoder->type) {
79e53945
JB
6089 case INTEL_OUTPUT_LVDS:
6090 is_lvds = true;
6091 break;
e9fd1c02
JN
6092 case INTEL_OUTPUT_DSI:
6093 is_dsi = true;
6094 break;
79e53945 6095 }
43565a06 6096
c751ce4f 6097 num_connectors++;
79e53945
JB
6098 }
6099
f2335330 6100 if (is_dsi)
5b18e57c 6101 return 0;
f2335330
JN
6102
6103 if (!intel_crtc->config.clock_set) {
6104 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6105
e9fd1c02
JN
6106 /*
6107 * Returns a set of divisors for the desired target clock with
6108 * the given refclk, or FALSE. The returned values represent
6109 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6110 * 2) / p1 / p2.
6111 */
6112 limit = intel_limit(crtc, refclk);
6113 ok = dev_priv->display.find_dpll(limit, crtc,
6114 intel_crtc->config.port_clock,
6115 refclk, NULL, &clock);
f2335330 6116 if (!ok) {
e9fd1c02
JN
6117 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6118 return -EINVAL;
6119 }
79e53945 6120
f2335330
JN
6121 if (is_lvds && dev_priv->lvds_downclock_avail) {
6122 /*
6123 * Ensure we match the reduced clock's P to the target
6124 * clock. If the clocks don't match, we can't switch
6125 * the display clock by using the FP0/FP1. In such case
6126 * we will disable the LVDS downclock feature.
6127 */
6128 has_reduced_clock =
6129 dev_priv->display.find_dpll(limit, crtc,
6130 dev_priv->lvds_downclock,
6131 refclk, &clock,
6132 &reduced_clock);
6133 }
6134 /* Compat-code for transition, will disappear. */
f47709a9
DV
6135 intel_crtc->config.dpll.n = clock.n;
6136 intel_crtc->config.dpll.m1 = clock.m1;
6137 intel_crtc->config.dpll.m2 = clock.m2;
6138 intel_crtc->config.dpll.p1 = clock.p1;
6139 intel_crtc->config.dpll.p2 = clock.p2;
6140 }
7026d4ac 6141
e9fd1c02 6142 if (IS_GEN2(dev)) {
8a654f3b 6143 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6144 has_reduced_clock ? &reduced_clock : NULL,
6145 num_connectors);
9d556c99
CML
6146 } else if (IS_CHERRYVIEW(dev)) {
6147 chv_update_pll(intel_crtc);
e9fd1c02 6148 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6149 vlv_update_pll(intel_crtc);
e9fd1c02 6150 } else {
f47709a9 6151 i9xx_update_pll(intel_crtc,
eb1cbe48 6152 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6153 num_connectors);
e9fd1c02 6154 }
79e53945 6155
c8f7a0db 6156 return 0;
f564048e
EA
6157}
6158
2fa2fe9a
DV
6159static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6160 struct intel_crtc_config *pipe_config)
6161{
6162 struct drm_device *dev = crtc->base.dev;
6163 struct drm_i915_private *dev_priv = dev->dev_private;
6164 uint32_t tmp;
6165
dc9e7dec
VS
6166 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6167 return;
6168
2fa2fe9a 6169 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6170 if (!(tmp & PFIT_ENABLE))
6171 return;
2fa2fe9a 6172
06922821 6173 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6174 if (INTEL_INFO(dev)->gen < 4) {
6175 if (crtc->pipe != PIPE_B)
6176 return;
2fa2fe9a
DV
6177 } else {
6178 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6179 return;
6180 }
6181
06922821 6182 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6183 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6184 if (INTEL_INFO(dev)->gen < 5)
6185 pipe_config->gmch_pfit.lvds_border_bits =
6186 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6187}
6188
acbec814
JB
6189static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6190 struct intel_crtc_config *pipe_config)
6191{
6192 struct drm_device *dev = crtc->base.dev;
6193 struct drm_i915_private *dev_priv = dev->dev_private;
6194 int pipe = pipe_config->cpu_transcoder;
6195 intel_clock_t clock;
6196 u32 mdiv;
662c6ecb 6197 int refclk = 100000;
acbec814 6198
f573de5a
SK
6199 /* In case of MIPI DPLL will not even be used */
6200 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6201 return;
6202
acbec814 6203 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6204 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6205 mutex_unlock(&dev_priv->dpio_lock);
6206
6207 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6208 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6209 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6210 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6211 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6212
f646628b 6213 vlv_clock(refclk, &clock);
acbec814 6214
f646628b
VS
6215 /* clock.dot is the fast clock */
6216 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6217}
6218
1ad292b5
JB
6219static void i9xx_get_plane_config(struct intel_crtc *crtc,
6220 struct intel_plane_config *plane_config)
6221{
6222 struct drm_device *dev = crtc->base.dev;
6223 struct drm_i915_private *dev_priv = dev->dev_private;
6224 u32 val, base, offset;
6225 int pipe = crtc->pipe, plane = crtc->plane;
6226 int fourcc, pixel_format;
6227 int aligned_height;
6228
66e514c1
DA
6229 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6230 if (!crtc->base.primary->fb) {
1ad292b5
JB
6231 DRM_DEBUG_KMS("failed to alloc fb\n");
6232 return;
6233 }
6234
6235 val = I915_READ(DSPCNTR(plane));
6236
6237 if (INTEL_INFO(dev)->gen >= 4)
6238 if (val & DISPPLANE_TILED)
6239 plane_config->tiled = true;
6240
6241 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6242 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6243 crtc->base.primary->fb->pixel_format = fourcc;
6244 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6245 drm_format_plane_cpp(fourcc, 0) * 8;
6246
6247 if (INTEL_INFO(dev)->gen >= 4) {
6248 if (plane_config->tiled)
6249 offset = I915_READ(DSPTILEOFF(plane));
6250 else
6251 offset = I915_READ(DSPLINOFF(plane));
6252 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6253 } else {
6254 base = I915_READ(DSPADDR(plane));
6255 }
6256 plane_config->base = base;
6257
6258 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6259 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6260 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6261
6262 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6263 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6264
66e514c1 6265 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6266 plane_config->tiled);
6267
1267a26b
FF
6268 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6269 aligned_height);
1ad292b5
JB
6270
6271 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6272 pipe, plane, crtc->base.primary->fb->width,
6273 crtc->base.primary->fb->height,
6274 crtc->base.primary->fb->bits_per_pixel, base,
6275 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6276 plane_config->size);
6277
6278}
6279
70b23a98
VS
6280static void chv_crtc_clock_get(struct intel_crtc *crtc,
6281 struct intel_crtc_config *pipe_config)
6282{
6283 struct drm_device *dev = crtc->base.dev;
6284 struct drm_i915_private *dev_priv = dev->dev_private;
6285 int pipe = pipe_config->cpu_transcoder;
6286 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6287 intel_clock_t clock;
6288 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6289 int refclk = 100000;
6290
6291 mutex_lock(&dev_priv->dpio_lock);
6292 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6293 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6294 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6295 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6296 mutex_unlock(&dev_priv->dpio_lock);
6297
6298 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6299 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6300 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6301 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6302 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6303
6304 chv_clock(refclk, &clock);
6305
6306 /* clock.dot is the fast clock */
6307 pipe_config->port_clock = clock.dot / 5;
6308}
6309
0e8ffe1b
DV
6310static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6311 struct intel_crtc_config *pipe_config)
6312{
6313 struct drm_device *dev = crtc->base.dev;
6314 struct drm_i915_private *dev_priv = dev->dev_private;
6315 uint32_t tmp;
6316
b5482bd0
ID
6317 if (!intel_display_power_enabled(dev_priv,
6318 POWER_DOMAIN_PIPE(crtc->pipe)))
6319 return false;
6320
e143a21c 6321 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6322 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6323
0e8ffe1b
DV
6324 tmp = I915_READ(PIPECONF(crtc->pipe));
6325 if (!(tmp & PIPECONF_ENABLE))
6326 return false;
6327
42571aef
VS
6328 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6329 switch (tmp & PIPECONF_BPC_MASK) {
6330 case PIPECONF_6BPC:
6331 pipe_config->pipe_bpp = 18;
6332 break;
6333 case PIPECONF_8BPC:
6334 pipe_config->pipe_bpp = 24;
6335 break;
6336 case PIPECONF_10BPC:
6337 pipe_config->pipe_bpp = 30;
6338 break;
6339 default:
6340 break;
6341 }
6342 }
6343
b5a9fa09
DV
6344 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6345 pipe_config->limited_color_range = true;
6346
282740f7
VS
6347 if (INTEL_INFO(dev)->gen < 4)
6348 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6349
1bd1bd80
DV
6350 intel_get_pipe_timings(crtc, pipe_config);
6351
2fa2fe9a
DV
6352 i9xx_get_pfit_config(crtc, pipe_config);
6353
6c49f241
DV
6354 if (INTEL_INFO(dev)->gen >= 4) {
6355 tmp = I915_READ(DPLL_MD(crtc->pipe));
6356 pipe_config->pixel_multiplier =
6357 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6358 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6359 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6360 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6361 tmp = I915_READ(DPLL(crtc->pipe));
6362 pipe_config->pixel_multiplier =
6363 ((tmp & SDVO_MULTIPLIER_MASK)
6364 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6365 } else {
6366 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6367 * port and will be fixed up in the encoder->get_config
6368 * function. */
6369 pipe_config->pixel_multiplier = 1;
6370 }
8bcc2795
DV
6371 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6372 if (!IS_VALLEYVIEW(dev)) {
6373 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6374 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6375 } else {
6376 /* Mask out read-only status bits. */
6377 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6378 DPLL_PORTC_READY_MASK |
6379 DPLL_PORTB_READY_MASK);
8bcc2795 6380 }
6c49f241 6381
70b23a98
VS
6382 if (IS_CHERRYVIEW(dev))
6383 chv_crtc_clock_get(crtc, pipe_config);
6384 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6385 vlv_crtc_clock_get(crtc, pipe_config);
6386 else
6387 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6388
0e8ffe1b
DV
6389 return true;
6390}
6391
dde86e2d 6392static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6393{
6394 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6395 struct intel_encoder *encoder;
74cfd7ac 6396 u32 val, final;
13d83a67 6397 bool has_lvds = false;
199e5d79 6398 bool has_cpu_edp = false;
199e5d79 6399 bool has_panel = false;
99eb6a01
KP
6400 bool has_ck505 = false;
6401 bool can_ssc = false;
13d83a67
JB
6402
6403 /* We need to take the global config into account */
b2784e15 6404 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6405 switch (encoder->type) {
6406 case INTEL_OUTPUT_LVDS:
6407 has_panel = true;
6408 has_lvds = true;
6409 break;
6410 case INTEL_OUTPUT_EDP:
6411 has_panel = true;
2de6905f 6412 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6413 has_cpu_edp = true;
6414 break;
13d83a67
JB
6415 }
6416 }
6417
99eb6a01 6418 if (HAS_PCH_IBX(dev)) {
41aa3448 6419 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6420 can_ssc = has_ck505;
6421 } else {
6422 has_ck505 = false;
6423 can_ssc = true;
6424 }
6425
2de6905f
ID
6426 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6427 has_panel, has_lvds, has_ck505);
13d83a67
JB
6428
6429 /* Ironlake: try to setup display ref clock before DPLL
6430 * enabling. This is only under driver's control after
6431 * PCH B stepping, previous chipset stepping should be
6432 * ignoring this setting.
6433 */
74cfd7ac
CW
6434 val = I915_READ(PCH_DREF_CONTROL);
6435
6436 /* As we must carefully and slowly disable/enable each source in turn,
6437 * compute the final state we want first and check if we need to
6438 * make any changes at all.
6439 */
6440 final = val;
6441 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6442 if (has_ck505)
6443 final |= DREF_NONSPREAD_CK505_ENABLE;
6444 else
6445 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6446
6447 final &= ~DREF_SSC_SOURCE_MASK;
6448 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6449 final &= ~DREF_SSC1_ENABLE;
6450
6451 if (has_panel) {
6452 final |= DREF_SSC_SOURCE_ENABLE;
6453
6454 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6455 final |= DREF_SSC1_ENABLE;
6456
6457 if (has_cpu_edp) {
6458 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6459 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6460 else
6461 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6462 } else
6463 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6464 } else {
6465 final |= DREF_SSC_SOURCE_DISABLE;
6466 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6467 }
6468
6469 if (final == val)
6470 return;
6471
13d83a67 6472 /* Always enable nonspread source */
74cfd7ac 6473 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6474
99eb6a01 6475 if (has_ck505)
74cfd7ac 6476 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6477 else
74cfd7ac 6478 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6479
199e5d79 6480 if (has_panel) {
74cfd7ac
CW
6481 val &= ~DREF_SSC_SOURCE_MASK;
6482 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6483
199e5d79 6484 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6485 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6486 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6487 val |= DREF_SSC1_ENABLE;
e77166b5 6488 } else
74cfd7ac 6489 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6490
6491 /* Get SSC going before enabling the outputs */
74cfd7ac 6492 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6493 POSTING_READ(PCH_DREF_CONTROL);
6494 udelay(200);
6495
74cfd7ac 6496 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6497
6498 /* Enable CPU source on CPU attached eDP */
199e5d79 6499 if (has_cpu_edp) {
99eb6a01 6500 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6501 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6502 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6503 } else
74cfd7ac 6504 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6505 } else
74cfd7ac 6506 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6507
74cfd7ac 6508 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6509 POSTING_READ(PCH_DREF_CONTROL);
6510 udelay(200);
6511 } else {
6512 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6513
74cfd7ac 6514 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6515
6516 /* Turn off CPU output */
74cfd7ac 6517 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6518
74cfd7ac 6519 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6520 POSTING_READ(PCH_DREF_CONTROL);
6521 udelay(200);
6522
6523 /* Turn off the SSC source */
74cfd7ac
CW
6524 val &= ~DREF_SSC_SOURCE_MASK;
6525 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6526
6527 /* Turn off SSC1 */
74cfd7ac 6528 val &= ~DREF_SSC1_ENABLE;
199e5d79 6529
74cfd7ac 6530 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6531 POSTING_READ(PCH_DREF_CONTROL);
6532 udelay(200);
6533 }
74cfd7ac
CW
6534
6535 BUG_ON(val != final);
13d83a67
JB
6536}
6537
f31f2d55 6538static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6539{
f31f2d55 6540 uint32_t tmp;
dde86e2d 6541
0ff066a9
PZ
6542 tmp = I915_READ(SOUTH_CHICKEN2);
6543 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6544 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6545
0ff066a9
PZ
6546 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6547 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6548 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6549
0ff066a9
PZ
6550 tmp = I915_READ(SOUTH_CHICKEN2);
6551 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6552 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6553
0ff066a9
PZ
6554 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6555 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6556 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6557}
6558
6559/* WaMPhyProgramming:hsw */
6560static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6561{
6562 uint32_t tmp;
dde86e2d
PZ
6563
6564 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6565 tmp &= ~(0xFF << 24);
6566 tmp |= (0x12 << 24);
6567 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6568
dde86e2d
PZ
6569 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6570 tmp |= (1 << 11);
6571 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6572
6573 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6574 tmp |= (1 << 11);
6575 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6576
dde86e2d
PZ
6577 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6578 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6579 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6580
6581 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6582 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6583 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6584
0ff066a9
PZ
6585 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6586 tmp &= ~(7 << 13);
6587 tmp |= (5 << 13);
6588 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6589
0ff066a9
PZ
6590 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6591 tmp &= ~(7 << 13);
6592 tmp |= (5 << 13);
6593 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6594
6595 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6596 tmp &= ~0xFF;
6597 tmp |= 0x1C;
6598 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6599
6600 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6601 tmp &= ~0xFF;
6602 tmp |= 0x1C;
6603 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6604
6605 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6606 tmp &= ~(0xFF << 16);
6607 tmp |= (0x1C << 16);
6608 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6609
6610 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6611 tmp &= ~(0xFF << 16);
6612 tmp |= (0x1C << 16);
6613 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6614
0ff066a9
PZ
6615 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6616 tmp |= (1 << 27);
6617 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6618
0ff066a9
PZ
6619 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6620 tmp |= (1 << 27);
6621 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6622
0ff066a9
PZ
6623 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6624 tmp &= ~(0xF << 28);
6625 tmp |= (4 << 28);
6626 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6627
0ff066a9
PZ
6628 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6629 tmp &= ~(0xF << 28);
6630 tmp |= (4 << 28);
6631 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6632}
6633
2fa86a1f
PZ
6634/* Implements 3 different sequences from BSpec chapter "Display iCLK
6635 * Programming" based on the parameters passed:
6636 * - Sequence to enable CLKOUT_DP
6637 * - Sequence to enable CLKOUT_DP without spread
6638 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6639 */
6640static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6641 bool with_fdi)
f31f2d55
PZ
6642{
6643 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6644 uint32_t reg, tmp;
6645
6646 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6647 with_spread = true;
6648 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6649 with_fdi, "LP PCH doesn't have FDI\n"))
6650 with_fdi = false;
f31f2d55
PZ
6651
6652 mutex_lock(&dev_priv->dpio_lock);
6653
6654 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6655 tmp &= ~SBI_SSCCTL_DISABLE;
6656 tmp |= SBI_SSCCTL_PATHALT;
6657 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6658
6659 udelay(24);
6660
2fa86a1f
PZ
6661 if (with_spread) {
6662 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6663 tmp &= ~SBI_SSCCTL_PATHALT;
6664 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6665
2fa86a1f
PZ
6666 if (with_fdi) {
6667 lpt_reset_fdi_mphy(dev_priv);
6668 lpt_program_fdi_mphy(dev_priv);
6669 }
6670 }
dde86e2d 6671
2fa86a1f
PZ
6672 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6673 SBI_GEN0 : SBI_DBUFF0;
6674 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6675 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6676 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6677
6678 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6679}
6680
47701c3b
PZ
6681/* Sequence to disable CLKOUT_DP */
6682static void lpt_disable_clkout_dp(struct drm_device *dev)
6683{
6684 struct drm_i915_private *dev_priv = dev->dev_private;
6685 uint32_t reg, tmp;
6686
6687 mutex_lock(&dev_priv->dpio_lock);
6688
6689 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6690 SBI_GEN0 : SBI_DBUFF0;
6691 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6692 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6693 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6694
6695 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6696 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6697 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6698 tmp |= SBI_SSCCTL_PATHALT;
6699 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6700 udelay(32);
6701 }
6702 tmp |= SBI_SSCCTL_DISABLE;
6703 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6704 }
6705
6706 mutex_unlock(&dev_priv->dpio_lock);
6707}
6708
bf8fa3d3
PZ
6709static void lpt_init_pch_refclk(struct drm_device *dev)
6710{
bf8fa3d3
PZ
6711 struct intel_encoder *encoder;
6712 bool has_vga = false;
6713
b2784e15 6714 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6715 switch (encoder->type) {
6716 case INTEL_OUTPUT_ANALOG:
6717 has_vga = true;
6718 break;
6719 }
6720 }
6721
47701c3b
PZ
6722 if (has_vga)
6723 lpt_enable_clkout_dp(dev, true, true);
6724 else
6725 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6726}
6727
dde86e2d
PZ
6728/*
6729 * Initialize reference clocks when the driver loads
6730 */
6731void intel_init_pch_refclk(struct drm_device *dev)
6732{
6733 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6734 ironlake_init_pch_refclk(dev);
6735 else if (HAS_PCH_LPT(dev))
6736 lpt_init_pch_refclk(dev);
6737}
6738
d9d444cb
JB
6739static int ironlake_get_refclk(struct drm_crtc *crtc)
6740{
6741 struct drm_device *dev = crtc->dev;
6742 struct drm_i915_private *dev_priv = dev->dev_private;
6743 struct intel_encoder *encoder;
d9d444cb
JB
6744 int num_connectors = 0;
6745 bool is_lvds = false;
6746
6c2b7c12 6747 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6748 switch (encoder->type) {
6749 case INTEL_OUTPUT_LVDS:
6750 is_lvds = true;
6751 break;
d9d444cb
JB
6752 }
6753 num_connectors++;
6754 }
6755
6756 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6757 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6758 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6759 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6760 }
6761
6762 return 120000;
6763}
6764
6ff93609 6765static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6766{
c8203565 6767 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6769 int pipe = intel_crtc->pipe;
c8203565
PZ
6770 uint32_t val;
6771
78114071 6772 val = 0;
c8203565 6773
965e0c48 6774 switch (intel_crtc->config.pipe_bpp) {
c8203565 6775 case 18:
dfd07d72 6776 val |= PIPECONF_6BPC;
c8203565
PZ
6777 break;
6778 case 24:
dfd07d72 6779 val |= PIPECONF_8BPC;
c8203565
PZ
6780 break;
6781 case 30:
dfd07d72 6782 val |= PIPECONF_10BPC;
c8203565
PZ
6783 break;
6784 case 36:
dfd07d72 6785 val |= PIPECONF_12BPC;
c8203565
PZ
6786 break;
6787 default:
cc769b62
PZ
6788 /* Case prevented by intel_choose_pipe_bpp_dither. */
6789 BUG();
c8203565
PZ
6790 }
6791
d8b32247 6792 if (intel_crtc->config.dither)
c8203565
PZ
6793 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6794
6ff93609 6795 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6796 val |= PIPECONF_INTERLACED_ILK;
6797 else
6798 val |= PIPECONF_PROGRESSIVE;
6799
50f3b016 6800 if (intel_crtc->config.limited_color_range)
3685a8f3 6801 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6802
c8203565
PZ
6803 I915_WRITE(PIPECONF(pipe), val);
6804 POSTING_READ(PIPECONF(pipe));
6805}
6806
86d3efce
VS
6807/*
6808 * Set up the pipe CSC unit.
6809 *
6810 * Currently only full range RGB to limited range RGB conversion
6811 * is supported, but eventually this should handle various
6812 * RGB<->YCbCr scenarios as well.
6813 */
50f3b016 6814static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6815{
6816 struct drm_device *dev = crtc->dev;
6817 struct drm_i915_private *dev_priv = dev->dev_private;
6818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6819 int pipe = intel_crtc->pipe;
6820 uint16_t coeff = 0x7800; /* 1.0 */
6821
6822 /*
6823 * TODO: Check what kind of values actually come out of the pipe
6824 * with these coeff/postoff values and adjust to get the best
6825 * accuracy. Perhaps we even need to take the bpc value into
6826 * consideration.
6827 */
6828
50f3b016 6829 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6830 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6831
6832 /*
6833 * GY/GU and RY/RU should be the other way around according
6834 * to BSpec, but reality doesn't agree. Just set them up in
6835 * a way that results in the correct picture.
6836 */
6837 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6838 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6839
6840 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6841 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6842
6843 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6844 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6845
6846 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6847 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6848 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6849
6850 if (INTEL_INFO(dev)->gen > 6) {
6851 uint16_t postoff = 0;
6852
50f3b016 6853 if (intel_crtc->config.limited_color_range)
32cf0cb0 6854 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6855
6856 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6857 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6858 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6859
6860 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6861 } else {
6862 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6863
50f3b016 6864 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6865 mode |= CSC_BLACK_SCREEN_OFFSET;
6866
6867 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6868 }
6869}
6870
6ff93609 6871static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6872{
756f85cf
PZ
6873 struct drm_device *dev = crtc->dev;
6874 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6876 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6877 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6878 uint32_t val;
6879
3eff4faa 6880 val = 0;
ee2b0b38 6881
756f85cf 6882 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6883 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6884
6ff93609 6885 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6886 val |= PIPECONF_INTERLACED_ILK;
6887 else
6888 val |= PIPECONF_PROGRESSIVE;
6889
702e7a56
PZ
6890 I915_WRITE(PIPECONF(cpu_transcoder), val);
6891 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6892
6893 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6894 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6895
6896 if (IS_BROADWELL(dev)) {
6897 val = 0;
6898
6899 switch (intel_crtc->config.pipe_bpp) {
6900 case 18:
6901 val |= PIPEMISC_DITHER_6_BPC;
6902 break;
6903 case 24:
6904 val |= PIPEMISC_DITHER_8_BPC;
6905 break;
6906 case 30:
6907 val |= PIPEMISC_DITHER_10_BPC;
6908 break;
6909 case 36:
6910 val |= PIPEMISC_DITHER_12_BPC;
6911 break;
6912 default:
6913 /* Case prevented by pipe_config_set_bpp. */
6914 BUG();
6915 }
6916
6917 if (intel_crtc->config.dither)
6918 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6919
6920 I915_WRITE(PIPEMISC(pipe), val);
6921 }
ee2b0b38
PZ
6922}
6923
6591c6e4 6924static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6925 intel_clock_t *clock,
6926 bool *has_reduced_clock,
6927 intel_clock_t *reduced_clock)
6928{
6929 struct drm_device *dev = crtc->dev;
6930 struct drm_i915_private *dev_priv = dev->dev_private;
6931 struct intel_encoder *intel_encoder;
6932 int refclk;
d4906093 6933 const intel_limit_t *limit;
a16af721 6934 bool ret, is_lvds = false;
79e53945 6935
6591c6e4
PZ
6936 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6937 switch (intel_encoder->type) {
79e53945
JB
6938 case INTEL_OUTPUT_LVDS:
6939 is_lvds = true;
6940 break;
79e53945
JB
6941 }
6942 }
6943
d9d444cb 6944 refclk = ironlake_get_refclk(crtc);
79e53945 6945
d4906093
ML
6946 /*
6947 * Returns a set of divisors for the desired target clock with the given
6948 * refclk, or FALSE. The returned values represent the clock equation:
6949 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6950 */
1b894b59 6951 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6952 ret = dev_priv->display.find_dpll(limit, crtc,
6953 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6954 refclk, NULL, clock);
6591c6e4
PZ
6955 if (!ret)
6956 return false;
cda4b7d3 6957
ddc9003c 6958 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6959 /*
6960 * Ensure we match the reduced clock's P to the target clock.
6961 * If the clocks don't match, we can't switch the display clock
6962 * by using the FP0/FP1. In such case we will disable the LVDS
6963 * downclock feature.
6964 */
ee9300bb
DV
6965 *has_reduced_clock =
6966 dev_priv->display.find_dpll(limit, crtc,
6967 dev_priv->lvds_downclock,
6968 refclk, clock,
6969 reduced_clock);
652c393a 6970 }
61e9653f 6971
6591c6e4
PZ
6972 return true;
6973}
6974
d4b1931c
PZ
6975int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6976{
6977 /*
6978 * Account for spread spectrum to avoid
6979 * oversubscribing the link. Max center spread
6980 * is 2.5%; use 5% for safety's sake.
6981 */
6982 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6983 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6984}
6985
7429e9d4 6986static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6987{
7429e9d4 6988 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6989}
6990
de13a2e3 6991static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6992 u32 *fp,
9a7c7890 6993 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6994{
de13a2e3 6995 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6996 struct drm_device *dev = crtc->dev;
6997 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6998 struct intel_encoder *intel_encoder;
6999 uint32_t dpll;
6cc5f341 7000 int factor, num_connectors = 0;
09ede541 7001 bool is_lvds = false, is_sdvo = false;
79e53945 7002
de13a2e3
PZ
7003 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7004 switch (intel_encoder->type) {
79e53945
JB
7005 case INTEL_OUTPUT_LVDS:
7006 is_lvds = true;
7007 break;
7008 case INTEL_OUTPUT_SDVO:
7d57382e 7009 case INTEL_OUTPUT_HDMI:
79e53945 7010 is_sdvo = true;
79e53945 7011 break;
79e53945 7012 }
43565a06 7013
c751ce4f 7014 num_connectors++;
79e53945 7015 }
79e53945 7016
c1858123 7017 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7018 factor = 21;
7019 if (is_lvds) {
7020 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7021 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7022 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7023 factor = 25;
09ede541 7024 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7025 factor = 20;
c1858123 7026
7429e9d4 7027 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7028 *fp |= FP_CB_TUNE;
2c07245f 7029
9a7c7890
DV
7030 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7031 *fp2 |= FP_CB_TUNE;
7032
5eddb70b 7033 dpll = 0;
2c07245f 7034
a07d6787
EA
7035 if (is_lvds)
7036 dpll |= DPLLB_MODE_LVDS;
7037 else
7038 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7039
ef1b460d
DV
7040 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7041 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7042
7043 if (is_sdvo)
4a33e48d 7044 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7045 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7046 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7047
a07d6787 7048 /* compute bitmask from p1 value */
7429e9d4 7049 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7050 /* also FPA1 */
7429e9d4 7051 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7052
7429e9d4 7053 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7054 case 5:
7055 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7056 break;
7057 case 7:
7058 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7059 break;
7060 case 10:
7061 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7062 break;
7063 case 14:
7064 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7065 break;
79e53945
JB
7066 }
7067
b4c09f3b 7068 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7069 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7070 else
7071 dpll |= PLL_REF_INPUT_DREFCLK;
7072
959e16d6 7073 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7074}
7075
7076static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7077 int x, int y,
7078 struct drm_framebuffer *fb)
7079{
7080 struct drm_device *dev = crtc->dev;
de13a2e3 7081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7082 int num_connectors = 0;
7083 intel_clock_t clock, reduced_clock;
cbbab5bd 7084 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7085 bool ok, has_reduced_clock = false;
8b47047b 7086 bool is_lvds = false;
de13a2e3 7087 struct intel_encoder *encoder;
e2b78267 7088 struct intel_shared_dpll *pll;
de13a2e3
PZ
7089
7090 for_each_encoder_on_crtc(dev, crtc, encoder) {
7091 switch (encoder->type) {
7092 case INTEL_OUTPUT_LVDS:
7093 is_lvds = true;
7094 break;
de13a2e3
PZ
7095 }
7096
7097 num_connectors++;
a07d6787 7098 }
79e53945 7099
5dc5298b
PZ
7100 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7101 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7102
ff9a6750 7103 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7104 &has_reduced_clock, &reduced_clock);
ee9300bb 7105 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7106 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7107 return -EINVAL;
79e53945 7108 }
f47709a9
DV
7109 /* Compat-code for transition, will disappear. */
7110 if (!intel_crtc->config.clock_set) {
7111 intel_crtc->config.dpll.n = clock.n;
7112 intel_crtc->config.dpll.m1 = clock.m1;
7113 intel_crtc->config.dpll.m2 = clock.m2;
7114 intel_crtc->config.dpll.p1 = clock.p1;
7115 intel_crtc->config.dpll.p2 = clock.p2;
7116 }
79e53945 7117
5dc5298b 7118 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7119 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7120 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7121 if (has_reduced_clock)
7429e9d4 7122 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7123
7429e9d4 7124 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7125 &fp, &reduced_clock,
7126 has_reduced_clock ? &fp2 : NULL);
7127
959e16d6 7128 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7129 intel_crtc->config.dpll_hw_state.fp0 = fp;
7130 if (has_reduced_clock)
7131 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7132 else
7133 intel_crtc->config.dpll_hw_state.fp1 = fp;
7134
b89a1d39 7135 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7136 if (pll == NULL) {
84f44ce7 7137 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7138 pipe_name(intel_crtc->pipe));
4b645f14
JB
7139 return -EINVAL;
7140 }
ee7b9f93 7141 } else
e72f9fbf 7142 intel_put_shared_dpll(intel_crtc);
79e53945 7143
d330a953 7144 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7145 intel_crtc->lowfreq_avail = true;
7146 else
7147 intel_crtc->lowfreq_avail = false;
e2b78267 7148
c8f7a0db 7149 return 0;
79e53945
JB
7150}
7151
eb14cb74
VS
7152static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7153 struct intel_link_m_n *m_n)
7154{
7155 struct drm_device *dev = crtc->base.dev;
7156 struct drm_i915_private *dev_priv = dev->dev_private;
7157 enum pipe pipe = crtc->pipe;
7158
7159 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7160 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7161 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7162 & ~TU_SIZE_MASK;
7163 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7164 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7165 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7166}
7167
7168static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7169 enum transcoder transcoder,
b95af8be
VK
7170 struct intel_link_m_n *m_n,
7171 struct intel_link_m_n *m2_n2)
72419203
DV
7172{
7173 struct drm_device *dev = crtc->base.dev;
7174 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7175 enum pipe pipe = crtc->pipe;
72419203 7176
eb14cb74
VS
7177 if (INTEL_INFO(dev)->gen >= 5) {
7178 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7179 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7180 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7181 & ~TU_SIZE_MASK;
7182 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7183 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7184 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7185 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7186 * gen < 8) and if DRRS is supported (to make sure the
7187 * registers are not unnecessarily read).
7188 */
7189 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7190 crtc->config.has_drrs) {
7191 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7192 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7193 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7194 & ~TU_SIZE_MASK;
7195 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7196 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7197 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7198 }
eb14cb74
VS
7199 } else {
7200 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7201 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7202 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7203 & ~TU_SIZE_MASK;
7204 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7205 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7206 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7207 }
7208}
7209
7210void intel_dp_get_m_n(struct intel_crtc *crtc,
7211 struct intel_crtc_config *pipe_config)
7212{
7213 if (crtc->config.has_pch_encoder)
7214 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7215 else
7216 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7217 &pipe_config->dp_m_n,
7218 &pipe_config->dp_m2_n2);
eb14cb74 7219}
72419203 7220
eb14cb74
VS
7221static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7222 struct intel_crtc_config *pipe_config)
7223{
7224 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7225 &pipe_config->fdi_m_n, NULL);
72419203
DV
7226}
7227
2fa2fe9a
DV
7228static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7229 struct intel_crtc_config *pipe_config)
7230{
7231 struct drm_device *dev = crtc->base.dev;
7232 struct drm_i915_private *dev_priv = dev->dev_private;
7233 uint32_t tmp;
7234
7235 tmp = I915_READ(PF_CTL(crtc->pipe));
7236
7237 if (tmp & PF_ENABLE) {
fd4daa9c 7238 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7239 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7240 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7241
7242 /* We currently do not free assignements of panel fitters on
7243 * ivb/hsw (since we don't use the higher upscaling modes which
7244 * differentiates them) so just WARN about this case for now. */
7245 if (IS_GEN7(dev)) {
7246 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7247 PF_PIPE_SEL_IVB(crtc->pipe));
7248 }
2fa2fe9a 7249 }
79e53945
JB
7250}
7251
4c6baa59
JB
7252static void ironlake_get_plane_config(struct intel_crtc *crtc,
7253 struct intel_plane_config *plane_config)
7254{
7255 struct drm_device *dev = crtc->base.dev;
7256 struct drm_i915_private *dev_priv = dev->dev_private;
7257 u32 val, base, offset;
7258 int pipe = crtc->pipe, plane = crtc->plane;
7259 int fourcc, pixel_format;
7260 int aligned_height;
7261
66e514c1
DA
7262 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7263 if (!crtc->base.primary->fb) {
4c6baa59
JB
7264 DRM_DEBUG_KMS("failed to alloc fb\n");
7265 return;
7266 }
7267
7268 val = I915_READ(DSPCNTR(plane));
7269
7270 if (INTEL_INFO(dev)->gen >= 4)
7271 if (val & DISPPLANE_TILED)
7272 plane_config->tiled = true;
7273
7274 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7275 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7276 crtc->base.primary->fb->pixel_format = fourcc;
7277 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7278 drm_format_plane_cpp(fourcc, 0) * 8;
7279
7280 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7281 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7282 offset = I915_READ(DSPOFFSET(plane));
7283 } else {
7284 if (plane_config->tiled)
7285 offset = I915_READ(DSPTILEOFF(plane));
7286 else
7287 offset = I915_READ(DSPLINOFF(plane));
7288 }
7289 plane_config->base = base;
7290
7291 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7292 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7293 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7294
7295 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7296 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7297
66e514c1 7298 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7299 plane_config->tiled);
7300
1267a26b
FF
7301 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7302 aligned_height);
4c6baa59
JB
7303
7304 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7305 pipe, plane, crtc->base.primary->fb->width,
7306 crtc->base.primary->fb->height,
7307 crtc->base.primary->fb->bits_per_pixel, base,
7308 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7309 plane_config->size);
7310}
7311
0e8ffe1b
DV
7312static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7313 struct intel_crtc_config *pipe_config)
7314{
7315 struct drm_device *dev = crtc->base.dev;
7316 struct drm_i915_private *dev_priv = dev->dev_private;
7317 uint32_t tmp;
7318
930e8c9e
PZ
7319 if (!intel_display_power_enabled(dev_priv,
7320 POWER_DOMAIN_PIPE(crtc->pipe)))
7321 return false;
7322
e143a21c 7323 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7324 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7325
0e8ffe1b
DV
7326 tmp = I915_READ(PIPECONF(crtc->pipe));
7327 if (!(tmp & PIPECONF_ENABLE))
7328 return false;
7329
42571aef
VS
7330 switch (tmp & PIPECONF_BPC_MASK) {
7331 case PIPECONF_6BPC:
7332 pipe_config->pipe_bpp = 18;
7333 break;
7334 case PIPECONF_8BPC:
7335 pipe_config->pipe_bpp = 24;
7336 break;
7337 case PIPECONF_10BPC:
7338 pipe_config->pipe_bpp = 30;
7339 break;
7340 case PIPECONF_12BPC:
7341 pipe_config->pipe_bpp = 36;
7342 break;
7343 default:
7344 break;
7345 }
7346
b5a9fa09
DV
7347 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7348 pipe_config->limited_color_range = true;
7349
ab9412ba 7350 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7351 struct intel_shared_dpll *pll;
7352
88adfff1
DV
7353 pipe_config->has_pch_encoder = true;
7354
627eb5a3
DV
7355 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7356 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7357 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7358
7359 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7360
c0d43d62 7361 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7362 pipe_config->shared_dpll =
7363 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7364 } else {
7365 tmp = I915_READ(PCH_DPLL_SEL);
7366 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7367 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7368 else
7369 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7370 }
66e985c0
DV
7371
7372 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7373
7374 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7375 &pipe_config->dpll_hw_state));
c93f54cf
DV
7376
7377 tmp = pipe_config->dpll_hw_state.dpll;
7378 pipe_config->pixel_multiplier =
7379 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7380 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7381
7382 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7383 } else {
7384 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7385 }
7386
1bd1bd80
DV
7387 intel_get_pipe_timings(crtc, pipe_config);
7388
2fa2fe9a
DV
7389 ironlake_get_pfit_config(crtc, pipe_config);
7390
0e8ffe1b
DV
7391 return true;
7392}
7393
be256dc7
PZ
7394static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7395{
7396 struct drm_device *dev = dev_priv->dev;
be256dc7 7397 struct intel_crtc *crtc;
be256dc7 7398
d3fcc808 7399 for_each_intel_crtc(dev, crtc)
798183c5 7400 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7401 pipe_name(crtc->pipe));
7402
7403 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7404 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7405 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7406 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7407 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7408 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7409 "CPU PWM1 enabled\n");
c5107b87
PZ
7410 if (IS_HASWELL(dev))
7411 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7412 "CPU PWM2 enabled\n");
be256dc7
PZ
7413 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7414 "PCH PWM1 enabled\n");
7415 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7416 "Utility pin enabled\n");
7417 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7418
9926ada1
PZ
7419 /*
7420 * In theory we can still leave IRQs enabled, as long as only the HPD
7421 * interrupts remain enabled. We used to check for that, but since it's
7422 * gen-specific and since we only disable LCPLL after we fully disable
7423 * the interrupts, the check below should be enough.
7424 */
9df7575f 7425 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7426}
7427
9ccd5aeb
PZ
7428static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7429{
7430 struct drm_device *dev = dev_priv->dev;
7431
7432 if (IS_HASWELL(dev))
7433 return I915_READ(D_COMP_HSW);
7434 else
7435 return I915_READ(D_COMP_BDW);
7436}
7437
3c4c9b81
PZ
7438static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7439{
7440 struct drm_device *dev = dev_priv->dev;
7441
7442 if (IS_HASWELL(dev)) {
7443 mutex_lock(&dev_priv->rps.hw_lock);
7444 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7445 val))
f475dadf 7446 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7447 mutex_unlock(&dev_priv->rps.hw_lock);
7448 } else {
9ccd5aeb
PZ
7449 I915_WRITE(D_COMP_BDW, val);
7450 POSTING_READ(D_COMP_BDW);
3c4c9b81 7451 }
be256dc7
PZ
7452}
7453
7454/*
7455 * This function implements pieces of two sequences from BSpec:
7456 * - Sequence for display software to disable LCPLL
7457 * - Sequence for display software to allow package C8+
7458 * The steps implemented here are just the steps that actually touch the LCPLL
7459 * register. Callers should take care of disabling all the display engine
7460 * functions, doing the mode unset, fixing interrupts, etc.
7461 */
6ff58d53
PZ
7462static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7463 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7464{
7465 uint32_t val;
7466
7467 assert_can_disable_lcpll(dev_priv);
7468
7469 val = I915_READ(LCPLL_CTL);
7470
7471 if (switch_to_fclk) {
7472 val |= LCPLL_CD_SOURCE_FCLK;
7473 I915_WRITE(LCPLL_CTL, val);
7474
7475 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7476 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7477 DRM_ERROR("Switching to FCLK failed\n");
7478
7479 val = I915_READ(LCPLL_CTL);
7480 }
7481
7482 val |= LCPLL_PLL_DISABLE;
7483 I915_WRITE(LCPLL_CTL, val);
7484 POSTING_READ(LCPLL_CTL);
7485
7486 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7487 DRM_ERROR("LCPLL still locked\n");
7488
9ccd5aeb 7489 val = hsw_read_dcomp(dev_priv);
be256dc7 7490 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7491 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7492 ndelay(100);
7493
9ccd5aeb
PZ
7494 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7495 1))
be256dc7
PZ
7496 DRM_ERROR("D_COMP RCOMP still in progress\n");
7497
7498 if (allow_power_down) {
7499 val = I915_READ(LCPLL_CTL);
7500 val |= LCPLL_POWER_DOWN_ALLOW;
7501 I915_WRITE(LCPLL_CTL, val);
7502 POSTING_READ(LCPLL_CTL);
7503 }
7504}
7505
7506/*
7507 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7508 * source.
7509 */
6ff58d53 7510static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7511{
7512 uint32_t val;
a8a8bd54 7513 unsigned long irqflags;
be256dc7
PZ
7514
7515 val = I915_READ(LCPLL_CTL);
7516
7517 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7518 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7519 return;
7520
a8a8bd54
PZ
7521 /*
7522 * Make sure we're not on PC8 state before disabling PC8, otherwise
7523 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7524 *
7525 * The other problem is that hsw_restore_lcpll() is called as part of
7526 * the runtime PM resume sequence, so we can't just call
7527 * gen6_gt_force_wake_get() because that function calls
7528 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7529 * while we are on the resume sequence. So to solve this problem we have
7530 * to call special forcewake code that doesn't touch runtime PM and
7531 * doesn't enable the forcewake delayed work.
7532 */
7533 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7534 if (dev_priv->uncore.forcewake_count++ == 0)
7535 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7536 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7537
be256dc7
PZ
7538 if (val & LCPLL_POWER_DOWN_ALLOW) {
7539 val &= ~LCPLL_POWER_DOWN_ALLOW;
7540 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7541 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7542 }
7543
9ccd5aeb 7544 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7545 val |= D_COMP_COMP_FORCE;
7546 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7547 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7548
7549 val = I915_READ(LCPLL_CTL);
7550 val &= ~LCPLL_PLL_DISABLE;
7551 I915_WRITE(LCPLL_CTL, val);
7552
7553 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7554 DRM_ERROR("LCPLL not locked yet\n");
7555
7556 if (val & LCPLL_CD_SOURCE_FCLK) {
7557 val = I915_READ(LCPLL_CTL);
7558 val &= ~LCPLL_CD_SOURCE_FCLK;
7559 I915_WRITE(LCPLL_CTL, val);
7560
7561 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7562 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7563 DRM_ERROR("Switching back to LCPLL failed\n");
7564 }
215733fa 7565
a8a8bd54
PZ
7566 /* See the big comment above. */
7567 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7568 if (--dev_priv->uncore.forcewake_count == 0)
7569 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7570 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7571}
7572
765dab67
PZ
7573/*
7574 * Package states C8 and deeper are really deep PC states that can only be
7575 * reached when all the devices on the system allow it, so even if the graphics
7576 * device allows PC8+, it doesn't mean the system will actually get to these
7577 * states. Our driver only allows PC8+ when going into runtime PM.
7578 *
7579 * The requirements for PC8+ are that all the outputs are disabled, the power
7580 * well is disabled and most interrupts are disabled, and these are also
7581 * requirements for runtime PM. When these conditions are met, we manually do
7582 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7583 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7584 * hang the machine.
7585 *
7586 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7587 * the state of some registers, so when we come back from PC8+ we need to
7588 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7589 * need to take care of the registers kept by RC6. Notice that this happens even
7590 * if we don't put the device in PCI D3 state (which is what currently happens
7591 * because of the runtime PM support).
7592 *
7593 * For more, read "Display Sequences for Package C8" on the hardware
7594 * documentation.
7595 */
a14cb6fc 7596void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7597{
c67a470b
PZ
7598 struct drm_device *dev = dev_priv->dev;
7599 uint32_t val;
7600
c67a470b
PZ
7601 DRM_DEBUG_KMS("Enabling package C8+\n");
7602
c67a470b
PZ
7603 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7604 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7605 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7606 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7607 }
7608
7609 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7610 hsw_disable_lcpll(dev_priv, true, true);
7611}
7612
a14cb6fc 7613void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7614{
7615 struct drm_device *dev = dev_priv->dev;
7616 uint32_t val;
7617
c67a470b
PZ
7618 DRM_DEBUG_KMS("Disabling package C8+\n");
7619
7620 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7621 lpt_init_pch_refclk(dev);
7622
7623 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7624 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7625 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7626 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7627 }
7628
7629 intel_prepare_ddi(dev);
c67a470b
PZ
7630}
7631
9a952a0d
PZ
7632static void snb_modeset_global_resources(struct drm_device *dev)
7633{
7634 modeset_update_crtc_power_domains(dev);
7635}
7636
4f074129
ID
7637static void haswell_modeset_global_resources(struct drm_device *dev)
7638{
da723569 7639 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7640}
7641
09b4ddf9 7642static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7643 int x, int y,
7644 struct drm_framebuffer *fb)
7645{
09b4ddf9 7646 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7647
566b734a 7648 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7649 return -EINVAL;
716c2e55 7650
644cef34
DV
7651 intel_crtc->lowfreq_avail = false;
7652
c8f7a0db 7653 return 0;
79e53945
JB
7654}
7655
7d2c8175
DL
7656static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7657 enum port port,
7658 struct intel_crtc_config *pipe_config)
7659{
7660 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7661
7662 switch (pipe_config->ddi_pll_sel) {
7663 case PORT_CLK_SEL_WRPLL1:
7664 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7665 break;
7666 case PORT_CLK_SEL_WRPLL2:
7667 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7668 break;
7669 }
7670}
7671
26804afd
DV
7672static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7673 struct intel_crtc_config *pipe_config)
7674{
7675 struct drm_device *dev = crtc->base.dev;
7676 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7677 struct intel_shared_dpll *pll;
26804afd
DV
7678 enum port port;
7679 uint32_t tmp;
7680
7681 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7682
7683 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7684
7d2c8175 7685 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7686
d452c5b6
DV
7687 if (pipe_config->shared_dpll >= 0) {
7688 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7689
7690 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7691 &pipe_config->dpll_hw_state));
7692 }
7693
26804afd
DV
7694 /*
7695 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7696 * DDI E. So just check whether this pipe is wired to DDI E and whether
7697 * the PCH transcoder is on.
7698 */
7699 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7700 pipe_config->has_pch_encoder = true;
7701
7702 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7703 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7704 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7705
7706 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7707 }
7708}
7709
0e8ffe1b
DV
7710static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7711 struct intel_crtc_config *pipe_config)
7712{
7713 struct drm_device *dev = crtc->base.dev;
7714 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7715 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7716 uint32_t tmp;
7717
b5482bd0
ID
7718 if (!intel_display_power_enabled(dev_priv,
7719 POWER_DOMAIN_PIPE(crtc->pipe)))
7720 return false;
7721
e143a21c 7722 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7723 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7724
eccb140b
DV
7725 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7726 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7727 enum pipe trans_edp_pipe;
7728 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7729 default:
7730 WARN(1, "unknown pipe linked to edp transcoder\n");
7731 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7732 case TRANS_DDI_EDP_INPUT_A_ON:
7733 trans_edp_pipe = PIPE_A;
7734 break;
7735 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7736 trans_edp_pipe = PIPE_B;
7737 break;
7738 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7739 trans_edp_pipe = PIPE_C;
7740 break;
7741 }
7742
7743 if (trans_edp_pipe == crtc->pipe)
7744 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7745 }
7746
da7e29bd 7747 if (!intel_display_power_enabled(dev_priv,
eccb140b 7748 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7749 return false;
7750
eccb140b 7751 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7752 if (!(tmp & PIPECONF_ENABLE))
7753 return false;
7754
26804afd 7755 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7756
1bd1bd80
DV
7757 intel_get_pipe_timings(crtc, pipe_config);
7758
2fa2fe9a 7759 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7760 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7761 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7762
e59150dc
JB
7763 if (IS_HASWELL(dev))
7764 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7765 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7766
6c49f241
DV
7767 pipe_config->pixel_multiplier = 1;
7768
0e8ffe1b
DV
7769 return true;
7770}
7771
1a91510d
JN
7772static struct {
7773 int clock;
7774 u32 config;
7775} hdmi_audio_clock[] = {
7776 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7777 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7778 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7779 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7780 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7781 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7782 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7783 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7784 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7785 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7786};
7787
7788/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7789static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7790{
7791 int i;
7792
7793 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7794 if (mode->clock == hdmi_audio_clock[i].clock)
7795 break;
7796 }
7797
7798 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7799 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7800 i = 1;
7801 }
7802
7803 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7804 hdmi_audio_clock[i].clock,
7805 hdmi_audio_clock[i].config);
7806
7807 return hdmi_audio_clock[i].config;
7808}
7809
3a9627f4
WF
7810static bool intel_eld_uptodate(struct drm_connector *connector,
7811 int reg_eldv, uint32_t bits_eldv,
7812 int reg_elda, uint32_t bits_elda,
7813 int reg_edid)
7814{
7815 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7816 uint8_t *eld = connector->eld;
7817 uint32_t i;
7818
7819 i = I915_READ(reg_eldv);
7820 i &= bits_eldv;
7821
7822 if (!eld[0])
7823 return !i;
7824
7825 if (!i)
7826 return false;
7827
7828 i = I915_READ(reg_elda);
7829 i &= ~bits_elda;
7830 I915_WRITE(reg_elda, i);
7831
7832 for (i = 0; i < eld[2]; i++)
7833 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7834 return false;
7835
7836 return true;
7837}
7838
e0dac65e 7839static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7840 struct drm_crtc *crtc,
7841 struct drm_display_mode *mode)
e0dac65e
WF
7842{
7843 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7844 uint8_t *eld = connector->eld;
7845 uint32_t eldv;
7846 uint32_t len;
7847 uint32_t i;
7848
7849 i = I915_READ(G4X_AUD_VID_DID);
7850
7851 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7852 eldv = G4X_ELDV_DEVCL_DEVBLC;
7853 else
7854 eldv = G4X_ELDV_DEVCTG;
7855
3a9627f4
WF
7856 if (intel_eld_uptodate(connector,
7857 G4X_AUD_CNTL_ST, eldv,
7858 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7859 G4X_HDMIW_HDMIEDID))
7860 return;
7861
e0dac65e
WF
7862 i = I915_READ(G4X_AUD_CNTL_ST);
7863 i &= ~(eldv | G4X_ELD_ADDR);
7864 len = (i >> 9) & 0x1f; /* ELD buffer size */
7865 I915_WRITE(G4X_AUD_CNTL_ST, i);
7866
7867 if (!eld[0])
7868 return;
7869
7870 len = min_t(uint8_t, eld[2], len);
7871 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7872 for (i = 0; i < len; i++)
7873 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7874
7875 i = I915_READ(G4X_AUD_CNTL_ST);
7876 i |= eldv;
7877 I915_WRITE(G4X_AUD_CNTL_ST, i);
7878}
7879
83358c85 7880static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7881 struct drm_crtc *crtc,
7882 struct drm_display_mode *mode)
83358c85
WX
7883{
7884 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7885 uint8_t *eld = connector->eld;
83358c85
WX
7886 uint32_t eldv;
7887 uint32_t i;
7888 int len;
7889 int pipe = to_intel_crtc(crtc)->pipe;
7890 int tmp;
7891
7892 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7893 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7894 int aud_config = HSW_AUD_CFG(pipe);
7895 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7896
83358c85
WX
7897 /* Audio output enable */
7898 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7899 tmp = I915_READ(aud_cntrl_st2);
7900 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7901 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7902 POSTING_READ(aud_cntrl_st2);
83358c85 7903
c7905792 7904 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7905
7906 /* Set ELD valid state */
7907 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7908 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7909 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7910 I915_WRITE(aud_cntrl_st2, tmp);
7911 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7912 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7913
7914 /* Enable HDMI mode */
7915 tmp = I915_READ(aud_config);
7e7cb34f 7916 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7917 /* clear N_programing_enable and N_value_index */
7918 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7919 I915_WRITE(aud_config, tmp);
7920
7921 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7922
7923 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7924
7925 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7926 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7927 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7928 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7929 } else {
7930 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7931 }
83358c85
WX
7932
7933 if (intel_eld_uptodate(connector,
7934 aud_cntrl_st2, eldv,
7935 aud_cntl_st, IBX_ELD_ADDRESS,
7936 hdmiw_hdmiedid))
7937 return;
7938
7939 i = I915_READ(aud_cntrl_st2);
7940 i &= ~eldv;
7941 I915_WRITE(aud_cntrl_st2, i);
7942
7943 if (!eld[0])
7944 return;
7945
7946 i = I915_READ(aud_cntl_st);
7947 i &= ~IBX_ELD_ADDRESS;
7948 I915_WRITE(aud_cntl_st, i);
7949 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7950 DRM_DEBUG_DRIVER("port num:%d\n", i);
7951
7952 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7953 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7954 for (i = 0; i < len; i++)
7955 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7956
7957 i = I915_READ(aud_cntrl_st2);
7958 i |= eldv;
7959 I915_WRITE(aud_cntrl_st2, i);
7960
7961}
7962
e0dac65e 7963static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7964 struct drm_crtc *crtc,
7965 struct drm_display_mode *mode)
e0dac65e
WF
7966{
7967 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7968 uint8_t *eld = connector->eld;
7969 uint32_t eldv;
7970 uint32_t i;
7971 int len;
7972 int hdmiw_hdmiedid;
b6daa025 7973 int aud_config;
e0dac65e
WF
7974 int aud_cntl_st;
7975 int aud_cntrl_st2;
9b138a83 7976 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7977
b3f33cbf 7978 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7979 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7980 aud_config = IBX_AUD_CFG(pipe);
7981 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7982 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7983 } else if (IS_VALLEYVIEW(connector->dev)) {
7984 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7985 aud_config = VLV_AUD_CFG(pipe);
7986 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7987 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7988 } else {
9b138a83
WX
7989 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7990 aud_config = CPT_AUD_CFG(pipe);
7991 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7992 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7993 }
7994
9b138a83 7995 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7996
9ca2fe73
ML
7997 if (IS_VALLEYVIEW(connector->dev)) {
7998 struct intel_encoder *intel_encoder;
7999 struct intel_digital_port *intel_dig_port;
8000
8001 intel_encoder = intel_attached_encoder(connector);
8002 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8003 i = intel_dig_port->port;
8004 } else {
8005 i = I915_READ(aud_cntl_st);
8006 i = (i >> 29) & DIP_PORT_SEL_MASK;
8007 /* DIP_Port_Select, 0x1 = PortB */
8008 }
8009
e0dac65e
WF
8010 if (!i) {
8011 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8012 /* operate blindly on all ports */
1202b4c6
WF
8013 eldv = IBX_ELD_VALIDB;
8014 eldv |= IBX_ELD_VALIDB << 4;
8015 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8016 } else {
2582a850 8017 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8018 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8019 }
8020
3a9627f4
WF
8021 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8022 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8023 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8024 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8025 } else {
8026 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8027 }
e0dac65e 8028
3a9627f4
WF
8029 if (intel_eld_uptodate(connector,
8030 aud_cntrl_st2, eldv,
8031 aud_cntl_st, IBX_ELD_ADDRESS,
8032 hdmiw_hdmiedid))
8033 return;
8034
e0dac65e
WF
8035 i = I915_READ(aud_cntrl_st2);
8036 i &= ~eldv;
8037 I915_WRITE(aud_cntrl_st2, i);
8038
8039 if (!eld[0])
8040 return;
8041
e0dac65e 8042 i = I915_READ(aud_cntl_st);
1202b4c6 8043 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8044 I915_WRITE(aud_cntl_st, i);
8045
8046 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8047 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8048 for (i = 0; i < len; i++)
8049 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8050
8051 i = I915_READ(aud_cntrl_st2);
8052 i |= eldv;
8053 I915_WRITE(aud_cntrl_st2, i);
8054}
8055
8056void intel_write_eld(struct drm_encoder *encoder,
8057 struct drm_display_mode *mode)
8058{
8059 struct drm_crtc *crtc = encoder->crtc;
8060 struct drm_connector *connector;
8061 struct drm_device *dev = encoder->dev;
8062 struct drm_i915_private *dev_priv = dev->dev_private;
8063
8064 connector = drm_select_eld(encoder, mode);
8065 if (!connector)
8066 return;
8067
8068 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8069 connector->base.id,
c23cc417 8070 connector->name,
e0dac65e 8071 connector->encoder->base.id,
8e329a03 8072 connector->encoder->name);
e0dac65e
WF
8073
8074 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8075
8076 if (dev_priv->display.write_eld)
34427052 8077 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8078}
8079
560b85bb
CW
8080static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8081{
8082 struct drm_device *dev = crtc->dev;
8083 struct drm_i915_private *dev_priv = dev->dev_private;
8084 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8085 uint32_t cntl = 0, size = 0;
560b85bb 8086
dc41c154
VS
8087 if (base) {
8088 unsigned int width = intel_crtc->cursor_width;
8089 unsigned int height = intel_crtc->cursor_height;
8090 unsigned int stride = roundup_pow_of_two(width) * 4;
8091
8092 switch (stride) {
8093 default:
8094 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8095 width, stride);
8096 stride = 256;
8097 /* fallthrough */
8098 case 256:
8099 case 512:
8100 case 1024:
8101 case 2048:
8102 break;
4b0e333e
CW
8103 }
8104
dc41c154
VS
8105 cntl |= CURSOR_ENABLE |
8106 CURSOR_GAMMA_ENABLE |
8107 CURSOR_FORMAT_ARGB |
8108 CURSOR_STRIDE(stride);
8109
8110 size = (height << 12) | width;
4b0e333e 8111 }
560b85bb 8112
dc41c154
VS
8113 if (intel_crtc->cursor_cntl != 0 &&
8114 (intel_crtc->cursor_base != base ||
8115 intel_crtc->cursor_size != size ||
8116 intel_crtc->cursor_cntl != cntl)) {
8117 /* On these chipsets we can only modify the base/size/stride
8118 * whilst the cursor is disabled.
8119 */
8120 I915_WRITE(_CURACNTR, 0);
4b0e333e 8121 POSTING_READ(_CURACNTR);
dc41c154 8122 intel_crtc->cursor_cntl = 0;
4b0e333e 8123 }
560b85bb 8124
dc41c154 8125 if (intel_crtc->cursor_base != base)
9db4a9c7 8126 I915_WRITE(_CURABASE, base);
4726e0b0 8127
dc41c154
VS
8128 if (intel_crtc->cursor_size != size) {
8129 I915_WRITE(CURSIZE, size);
8130 intel_crtc->cursor_size = size;
4b0e333e 8131 }
560b85bb 8132
4b0e333e 8133 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8134 I915_WRITE(_CURACNTR, cntl);
8135 POSTING_READ(_CURACNTR);
4b0e333e 8136 intel_crtc->cursor_cntl = cntl;
560b85bb 8137 }
560b85bb
CW
8138}
8139
560b85bb 8140static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8141{
8142 struct drm_device *dev = crtc->dev;
8143 struct drm_i915_private *dev_priv = dev->dev_private;
8144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8145 int pipe = intel_crtc->pipe;
4b0e333e
CW
8146 uint32_t cntl;
8147
8148 cntl = 0;
8149 if (base) {
8150 cntl = MCURSOR_GAMMA_ENABLE;
8151 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8152 case 64:
8153 cntl |= CURSOR_MODE_64_ARGB_AX;
8154 break;
8155 case 128:
8156 cntl |= CURSOR_MODE_128_ARGB_AX;
8157 break;
8158 case 256:
8159 cntl |= CURSOR_MODE_256_ARGB_AX;
8160 break;
8161 default:
8162 WARN_ON(1);
8163 return;
65a21cd6 8164 }
4b0e333e 8165 cntl |= pipe << 28; /* Connect to correct pipe */
4b0e333e
CW
8166 }
8167 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8168 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8169
4b0e333e
CW
8170 if (intel_crtc->cursor_cntl != cntl) {
8171 I915_WRITE(CURCNTR(pipe), cntl);
8172 POSTING_READ(CURCNTR(pipe));
8173 intel_crtc->cursor_cntl = cntl;
65a21cd6 8174 }
4b0e333e 8175
65a21cd6 8176 /* and commit changes on next vblank */
5efb3e28
VS
8177 I915_WRITE(CURBASE(pipe), base);
8178 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8179}
8180
cda4b7d3 8181/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8182static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8183 bool on)
cda4b7d3
CW
8184{
8185 struct drm_device *dev = crtc->dev;
8186 struct drm_i915_private *dev_priv = dev->dev_private;
8187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8188 int pipe = intel_crtc->pipe;
3d7d6510
MR
8189 int x = crtc->cursor_x;
8190 int y = crtc->cursor_y;
d6e4db15 8191 u32 base = 0, pos = 0;
cda4b7d3 8192
d6e4db15 8193 if (on)
cda4b7d3 8194 base = intel_crtc->cursor_addr;
cda4b7d3 8195
d6e4db15
VS
8196 if (x >= intel_crtc->config.pipe_src_w)
8197 base = 0;
8198
8199 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8200 base = 0;
8201
8202 if (x < 0) {
efc9064e 8203 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8204 base = 0;
8205
8206 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8207 x = -x;
8208 }
8209 pos |= x << CURSOR_X_SHIFT;
8210
8211 if (y < 0) {
efc9064e 8212 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8213 base = 0;
8214
8215 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8216 y = -y;
8217 }
8218 pos |= y << CURSOR_Y_SHIFT;
8219
4b0e333e 8220 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8221 return;
8222
5efb3e28
VS
8223 I915_WRITE(CURPOS(pipe), pos);
8224
8ac54669 8225 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8226 i845_update_cursor(crtc, base);
8227 else
8228 i9xx_update_cursor(crtc, base);
4b0e333e 8229 intel_crtc->cursor_base = base;
cda4b7d3
CW
8230}
8231
dc41c154
VS
8232static bool cursor_size_ok(struct drm_device *dev,
8233 uint32_t width, uint32_t height)
8234{
8235 if (width == 0 || height == 0)
8236 return false;
8237
8238 /*
8239 * 845g/865g are special in that they are only limited by
8240 * the width of their cursors, the height is arbitrary up to
8241 * the precision of the register. Everything else requires
8242 * square cursors, limited to a few power-of-two sizes.
8243 */
8244 if (IS_845G(dev) || IS_I865G(dev)) {
8245 if ((width & 63) != 0)
8246 return false;
8247
8248 if (width > (IS_845G(dev) ? 64 : 512))
8249 return false;
8250
8251 if (height > 1023)
8252 return false;
8253 } else {
8254 switch (width | height) {
8255 case 256:
8256 case 128:
8257 if (IS_GEN2(dev))
8258 return false;
8259 case 64:
8260 break;
8261 default:
8262 return false;
8263 }
8264 }
8265
8266 return true;
8267}
8268
e3287951
MR
8269/*
8270 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8271 *
8272 * Note that the object's reference will be consumed if the update fails. If
8273 * the update succeeds, the reference of the old object (if any) will be
8274 * consumed.
8275 */
8276static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8277 struct drm_i915_gem_object *obj,
8278 uint32_t width, uint32_t height)
79e53945
JB
8279{
8280 struct drm_device *dev = crtc->dev;
79e53945 8281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8282 enum pipe pipe = intel_crtc->pipe;
dc41c154 8283 unsigned old_width, stride;
cda4b7d3 8284 uint32_t addr;
3f8bc370 8285 int ret;
79e53945 8286
79e53945 8287 /* if we want to turn off the cursor ignore width and height */
e3287951 8288 if (!obj) {
28c97730 8289 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8290 addr = 0;
05394f39 8291 obj = NULL;
5004417d 8292 mutex_lock(&dev->struct_mutex);
3f8bc370 8293 goto finish;
79e53945
JB
8294 }
8295
4726e0b0 8296 /* Check for which cursor types we support */
dc41c154 8297 if (!cursor_size_ok(dev, width, height)) {
4726e0b0 8298 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8299 return -EINVAL;
8300 }
8301
dc41c154
VS
8302 stride = roundup_pow_of_two(width) * 4;
8303 if (obj->base.size < stride * height) {
e3287951 8304 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8305 ret = -ENOMEM;
8306 goto fail;
79e53945
JB
8307 }
8308
71acb5eb 8309 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8310 mutex_lock(&dev->struct_mutex);
3d13ef2e 8311 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8312 unsigned alignment;
8313
d9e86c0e 8314 if (obj->tiling_mode) {
3b25b31f 8315 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8316 ret = -EINVAL;
8317 goto fail_locked;
8318 }
8319
693db184
CW
8320 /* Note that the w/a also requires 2 PTE of padding following
8321 * the bo. We currently fill all unused PTE with the shadow
8322 * page and so we should always have valid PTE following the
8323 * cursor preventing the VT-d warning.
8324 */
8325 alignment = 0;
8326 if (need_vtd_wa(dev))
8327 alignment = 64*1024;
8328
8329 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8330 if (ret) {
3b25b31f 8331 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8332 goto fail_locked;
e7b526bb
CW
8333 }
8334
d9e86c0e
CW
8335 ret = i915_gem_object_put_fence(obj);
8336 if (ret) {
3b25b31f 8337 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8338 goto fail_unpin;
8339 }
8340
f343c5f6 8341 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8342 } else {
6eeefaf3 8343 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8344 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8345 if (ret) {
3b25b31f 8346 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8347 goto fail_locked;
71acb5eb 8348 }
00731155 8349 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8350 }
8351
3f8bc370 8352 finish:
3f8bc370 8353 if (intel_crtc->cursor_bo) {
00731155 8354 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8355 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8356 }
80824003 8357
a071fa00
DV
8358 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8359 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8360 mutex_unlock(&dev->struct_mutex);
3f8bc370 8361
64f962e3
CW
8362 old_width = intel_crtc->cursor_width;
8363
3f8bc370 8364 intel_crtc->cursor_addr = addr;
05394f39 8365 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8366 intel_crtc->cursor_width = width;
8367 intel_crtc->cursor_height = height;
8368
64f962e3
CW
8369 if (intel_crtc->active) {
8370 if (old_width != width)
8371 intel_update_watermarks(crtc);
f2f5f771 8372 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8373 }
3f8bc370 8374
f99d7069
DV
8375 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8376
79e53945 8377 return 0;
e7b526bb 8378fail_unpin:
cc98b413 8379 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8380fail_locked:
34b8686e 8381 mutex_unlock(&dev->struct_mutex);
bc9025bd 8382fail:
05394f39 8383 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8384 return ret;
79e53945
JB
8385}
8386
79e53945 8387static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8388 u16 *blue, uint32_t start, uint32_t size)
79e53945 8389{
7203425a 8390 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8391 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8392
7203425a 8393 for (i = start; i < end; i++) {
79e53945
JB
8394 intel_crtc->lut_r[i] = red[i] >> 8;
8395 intel_crtc->lut_g[i] = green[i] >> 8;
8396 intel_crtc->lut_b[i] = blue[i] >> 8;
8397 }
8398
8399 intel_crtc_load_lut(crtc);
8400}
8401
79e53945
JB
8402/* VESA 640x480x72Hz mode to set on the pipe */
8403static struct drm_display_mode load_detect_mode = {
8404 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8405 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8406};
8407
a8bb6818
DV
8408struct drm_framebuffer *
8409__intel_framebuffer_create(struct drm_device *dev,
8410 struct drm_mode_fb_cmd2 *mode_cmd,
8411 struct drm_i915_gem_object *obj)
d2dff872
CW
8412{
8413 struct intel_framebuffer *intel_fb;
8414 int ret;
8415
8416 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8417 if (!intel_fb) {
8418 drm_gem_object_unreference_unlocked(&obj->base);
8419 return ERR_PTR(-ENOMEM);
8420 }
8421
8422 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8423 if (ret)
8424 goto err;
d2dff872
CW
8425
8426 return &intel_fb->base;
dd4916c5
DV
8427err:
8428 drm_gem_object_unreference_unlocked(&obj->base);
8429 kfree(intel_fb);
8430
8431 return ERR_PTR(ret);
d2dff872
CW
8432}
8433
b5ea642a 8434static struct drm_framebuffer *
a8bb6818
DV
8435intel_framebuffer_create(struct drm_device *dev,
8436 struct drm_mode_fb_cmd2 *mode_cmd,
8437 struct drm_i915_gem_object *obj)
8438{
8439 struct drm_framebuffer *fb;
8440 int ret;
8441
8442 ret = i915_mutex_lock_interruptible(dev);
8443 if (ret)
8444 return ERR_PTR(ret);
8445 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8446 mutex_unlock(&dev->struct_mutex);
8447
8448 return fb;
8449}
8450
d2dff872
CW
8451static u32
8452intel_framebuffer_pitch_for_width(int width, int bpp)
8453{
8454 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8455 return ALIGN(pitch, 64);
8456}
8457
8458static u32
8459intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8460{
8461 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8462 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8463}
8464
8465static struct drm_framebuffer *
8466intel_framebuffer_create_for_mode(struct drm_device *dev,
8467 struct drm_display_mode *mode,
8468 int depth, int bpp)
8469{
8470 struct drm_i915_gem_object *obj;
0fed39bd 8471 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8472
8473 obj = i915_gem_alloc_object(dev,
8474 intel_framebuffer_size_for_mode(mode, bpp));
8475 if (obj == NULL)
8476 return ERR_PTR(-ENOMEM);
8477
8478 mode_cmd.width = mode->hdisplay;
8479 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8480 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8481 bpp);
5ca0c34a 8482 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8483
8484 return intel_framebuffer_create(dev, &mode_cmd, obj);
8485}
8486
8487static struct drm_framebuffer *
8488mode_fits_in_fbdev(struct drm_device *dev,
8489 struct drm_display_mode *mode)
8490{
4520f53a 8491#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8492 struct drm_i915_private *dev_priv = dev->dev_private;
8493 struct drm_i915_gem_object *obj;
8494 struct drm_framebuffer *fb;
8495
4c0e5528 8496 if (!dev_priv->fbdev)
d2dff872
CW
8497 return NULL;
8498
4c0e5528 8499 if (!dev_priv->fbdev->fb)
d2dff872
CW
8500 return NULL;
8501
4c0e5528
DV
8502 obj = dev_priv->fbdev->fb->obj;
8503 BUG_ON(!obj);
8504
8bcd4553 8505 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8506 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8507 fb->bits_per_pixel))
d2dff872
CW
8508 return NULL;
8509
01f2c773 8510 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8511 return NULL;
8512
8513 return fb;
4520f53a
DV
8514#else
8515 return NULL;
8516#endif
d2dff872
CW
8517}
8518
d2434ab7 8519bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8520 struct drm_display_mode *mode,
51fd371b
RC
8521 struct intel_load_detect_pipe *old,
8522 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8523{
8524 struct intel_crtc *intel_crtc;
d2434ab7
DV
8525 struct intel_encoder *intel_encoder =
8526 intel_attached_encoder(connector);
79e53945 8527 struct drm_crtc *possible_crtc;
4ef69c7a 8528 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8529 struct drm_crtc *crtc = NULL;
8530 struct drm_device *dev = encoder->dev;
94352cf9 8531 struct drm_framebuffer *fb;
51fd371b
RC
8532 struct drm_mode_config *config = &dev->mode_config;
8533 int ret, i = -1;
79e53945 8534
d2dff872 8535 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8536 connector->base.id, connector->name,
8e329a03 8537 encoder->base.id, encoder->name);
d2dff872 8538
51fd371b
RC
8539retry:
8540 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8541 if (ret)
8542 goto fail_unlock;
6e9f798d 8543
79e53945
JB
8544 /*
8545 * Algorithm gets a little messy:
7a5e4805 8546 *
79e53945
JB
8547 * - if the connector already has an assigned crtc, use it (but make
8548 * sure it's on first)
7a5e4805 8549 *
79e53945
JB
8550 * - try to find the first unused crtc that can drive this connector,
8551 * and use that if we find one
79e53945
JB
8552 */
8553
8554 /* See if we already have a CRTC for this connector */
8555 if (encoder->crtc) {
8556 crtc = encoder->crtc;
8261b191 8557
51fd371b
RC
8558 ret = drm_modeset_lock(&crtc->mutex, ctx);
8559 if (ret)
8560 goto fail_unlock;
7b24056b 8561
24218aac 8562 old->dpms_mode = connector->dpms;
8261b191
CW
8563 old->load_detect_temp = false;
8564
8565 /* Make sure the crtc and connector are running */
24218aac
DV
8566 if (connector->dpms != DRM_MODE_DPMS_ON)
8567 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8568
7173188d 8569 return true;
79e53945
JB
8570 }
8571
8572 /* Find an unused one (if possible) */
70e1e0ec 8573 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8574 i++;
8575 if (!(encoder->possible_crtcs & (1 << i)))
8576 continue;
a459249c
VS
8577 if (possible_crtc->enabled)
8578 continue;
8579 /* This can occur when applying the pipe A quirk on resume. */
8580 if (to_intel_crtc(possible_crtc)->new_enabled)
8581 continue;
8582
8583 crtc = possible_crtc;
8584 break;
79e53945
JB
8585 }
8586
8587 /*
8588 * If we didn't find an unused CRTC, don't use any.
8589 */
8590 if (!crtc) {
7173188d 8591 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8592 goto fail_unlock;
79e53945
JB
8593 }
8594
51fd371b
RC
8595 ret = drm_modeset_lock(&crtc->mutex, ctx);
8596 if (ret)
8597 goto fail_unlock;
fc303101
DV
8598 intel_encoder->new_crtc = to_intel_crtc(crtc);
8599 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8600
8601 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8602 intel_crtc->new_enabled = true;
8603 intel_crtc->new_config = &intel_crtc->config;
24218aac 8604 old->dpms_mode = connector->dpms;
8261b191 8605 old->load_detect_temp = true;
d2dff872 8606 old->release_fb = NULL;
79e53945 8607
6492711d
CW
8608 if (!mode)
8609 mode = &load_detect_mode;
79e53945 8610
d2dff872
CW
8611 /* We need a framebuffer large enough to accommodate all accesses
8612 * that the plane may generate whilst we perform load detection.
8613 * We can not rely on the fbcon either being present (we get called
8614 * during its initialisation to detect all boot displays, or it may
8615 * not even exist) or that it is large enough to satisfy the
8616 * requested mode.
8617 */
94352cf9
DV
8618 fb = mode_fits_in_fbdev(dev, mode);
8619 if (fb == NULL) {
d2dff872 8620 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8621 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8622 old->release_fb = fb;
d2dff872
CW
8623 } else
8624 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8625 if (IS_ERR(fb)) {
d2dff872 8626 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8627 goto fail;
79e53945 8628 }
79e53945 8629
c0c36b94 8630 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8631 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8632 if (old->release_fb)
8633 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8634 goto fail;
79e53945 8635 }
7173188d 8636
79e53945 8637 /* let the connector get through one full cycle before testing */
9d0498a2 8638 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8639 return true;
412b61d8
VS
8640
8641 fail:
8642 intel_crtc->new_enabled = crtc->enabled;
8643 if (intel_crtc->new_enabled)
8644 intel_crtc->new_config = &intel_crtc->config;
8645 else
8646 intel_crtc->new_config = NULL;
51fd371b
RC
8647fail_unlock:
8648 if (ret == -EDEADLK) {
8649 drm_modeset_backoff(ctx);
8650 goto retry;
8651 }
8652
412b61d8 8653 return false;
79e53945
JB
8654}
8655
d2434ab7 8656void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8657 struct intel_load_detect_pipe *old)
79e53945 8658{
d2434ab7
DV
8659 struct intel_encoder *intel_encoder =
8660 intel_attached_encoder(connector);
4ef69c7a 8661 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8662 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8664
d2dff872 8665 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8666 connector->base.id, connector->name,
8e329a03 8667 encoder->base.id, encoder->name);
d2dff872 8668
8261b191 8669 if (old->load_detect_temp) {
fc303101
DV
8670 to_intel_connector(connector)->new_encoder = NULL;
8671 intel_encoder->new_crtc = NULL;
412b61d8
VS
8672 intel_crtc->new_enabled = false;
8673 intel_crtc->new_config = NULL;
fc303101 8674 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8675
36206361
DV
8676 if (old->release_fb) {
8677 drm_framebuffer_unregister_private(old->release_fb);
8678 drm_framebuffer_unreference(old->release_fb);
8679 }
d2dff872 8680
0622a53c 8681 return;
79e53945
JB
8682 }
8683
c751ce4f 8684 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8685 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8686 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8687}
8688
da4a1efa
VS
8689static int i9xx_pll_refclk(struct drm_device *dev,
8690 const struct intel_crtc_config *pipe_config)
8691{
8692 struct drm_i915_private *dev_priv = dev->dev_private;
8693 u32 dpll = pipe_config->dpll_hw_state.dpll;
8694
8695 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8696 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8697 else if (HAS_PCH_SPLIT(dev))
8698 return 120000;
8699 else if (!IS_GEN2(dev))
8700 return 96000;
8701 else
8702 return 48000;
8703}
8704
79e53945 8705/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8706static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8707 struct intel_crtc_config *pipe_config)
79e53945 8708{
f1f644dc 8709 struct drm_device *dev = crtc->base.dev;
79e53945 8710 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8711 int pipe = pipe_config->cpu_transcoder;
293623f7 8712 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8713 u32 fp;
8714 intel_clock_t clock;
da4a1efa 8715 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8716
8717 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8718 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8719 else
293623f7 8720 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8721
8722 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8723 if (IS_PINEVIEW(dev)) {
8724 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8725 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8726 } else {
8727 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8728 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8729 }
8730
a6c45cf0 8731 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8732 if (IS_PINEVIEW(dev))
8733 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8734 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8735 else
8736 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8737 DPLL_FPA01_P1_POST_DIV_SHIFT);
8738
8739 switch (dpll & DPLL_MODE_MASK) {
8740 case DPLLB_MODE_DAC_SERIAL:
8741 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8742 5 : 10;
8743 break;
8744 case DPLLB_MODE_LVDS:
8745 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8746 7 : 14;
8747 break;
8748 default:
28c97730 8749 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8750 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8751 return;
79e53945
JB
8752 }
8753
ac58c3f0 8754 if (IS_PINEVIEW(dev))
da4a1efa 8755 pineview_clock(refclk, &clock);
ac58c3f0 8756 else
da4a1efa 8757 i9xx_clock(refclk, &clock);
79e53945 8758 } else {
0fb58223 8759 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8760 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8761
8762 if (is_lvds) {
8763 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8764 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8765
8766 if (lvds & LVDS_CLKB_POWER_UP)
8767 clock.p2 = 7;
8768 else
8769 clock.p2 = 14;
79e53945
JB
8770 } else {
8771 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8772 clock.p1 = 2;
8773 else {
8774 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8775 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8776 }
8777 if (dpll & PLL_P2_DIVIDE_BY_4)
8778 clock.p2 = 4;
8779 else
8780 clock.p2 = 2;
79e53945 8781 }
da4a1efa
VS
8782
8783 i9xx_clock(refclk, &clock);
79e53945
JB
8784 }
8785
18442d08
VS
8786 /*
8787 * This value includes pixel_multiplier. We will use
241bfc38 8788 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8789 * encoder's get_config() function.
8790 */
8791 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8792}
8793
6878da05
VS
8794int intel_dotclock_calculate(int link_freq,
8795 const struct intel_link_m_n *m_n)
f1f644dc 8796{
f1f644dc
JB
8797 /*
8798 * The calculation for the data clock is:
1041a02f 8799 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8800 * But we want to avoid losing precison if possible, so:
1041a02f 8801 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8802 *
8803 * and the link clock is simpler:
1041a02f 8804 * link_clock = (m * link_clock) / n
f1f644dc
JB
8805 */
8806
6878da05
VS
8807 if (!m_n->link_n)
8808 return 0;
f1f644dc 8809
6878da05
VS
8810 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8811}
f1f644dc 8812
18442d08
VS
8813static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8814 struct intel_crtc_config *pipe_config)
6878da05
VS
8815{
8816 struct drm_device *dev = crtc->base.dev;
79e53945 8817
18442d08
VS
8818 /* read out port_clock from the DPLL */
8819 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8820
f1f644dc 8821 /*
18442d08 8822 * This value does not include pixel_multiplier.
241bfc38 8823 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8824 * agree once we know their relationship in the encoder's
8825 * get_config() function.
79e53945 8826 */
241bfc38 8827 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8828 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8829 &pipe_config->fdi_m_n);
79e53945
JB
8830}
8831
8832/** Returns the currently programmed mode of the given pipe. */
8833struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8834 struct drm_crtc *crtc)
8835{
548f245b 8836 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8838 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8839 struct drm_display_mode *mode;
f1f644dc 8840 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8841 int htot = I915_READ(HTOTAL(cpu_transcoder));
8842 int hsync = I915_READ(HSYNC(cpu_transcoder));
8843 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8844 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8845 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8846
8847 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8848 if (!mode)
8849 return NULL;
8850
f1f644dc
JB
8851 /*
8852 * Construct a pipe_config sufficient for getting the clock info
8853 * back out of crtc_clock_get.
8854 *
8855 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8856 * to use a real value here instead.
8857 */
293623f7 8858 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8859 pipe_config.pixel_multiplier = 1;
293623f7
VS
8860 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8861 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8862 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8863 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8864
773ae034 8865 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8866 mode->hdisplay = (htot & 0xffff) + 1;
8867 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8868 mode->hsync_start = (hsync & 0xffff) + 1;
8869 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8870 mode->vdisplay = (vtot & 0xffff) + 1;
8871 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8872 mode->vsync_start = (vsync & 0xffff) + 1;
8873 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8874
8875 drm_mode_set_name(mode);
79e53945
JB
8876
8877 return mode;
8878}
8879
cc36513c
DV
8880static void intel_increase_pllclock(struct drm_device *dev,
8881 enum pipe pipe)
652c393a 8882{
fbee40df 8883 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8884 int dpll_reg = DPLL(pipe);
8885 int dpll;
652c393a 8886
baff296c 8887 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8888 return;
8889
8890 if (!dev_priv->lvds_downclock_avail)
8891 return;
8892
dbdc6479 8893 dpll = I915_READ(dpll_reg);
652c393a 8894 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8895 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8896
8ac5a6d5 8897 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8898
8899 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8900 I915_WRITE(dpll_reg, dpll);
9d0498a2 8901 intel_wait_for_vblank(dev, pipe);
dbdc6479 8902
652c393a
JB
8903 dpll = I915_READ(dpll_reg);
8904 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8905 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8906 }
652c393a
JB
8907}
8908
8909static void intel_decrease_pllclock(struct drm_crtc *crtc)
8910{
8911 struct drm_device *dev = crtc->dev;
fbee40df 8912 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8913 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8914
baff296c 8915 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8916 return;
8917
8918 if (!dev_priv->lvds_downclock_avail)
8919 return;
8920
8921 /*
8922 * Since this is called by a timer, we should never get here in
8923 * the manual case.
8924 */
8925 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8926 int pipe = intel_crtc->pipe;
8927 int dpll_reg = DPLL(pipe);
8928 int dpll;
f6e5b160 8929
44d98a61 8930 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8931
8ac5a6d5 8932 assert_panel_unlocked(dev_priv, pipe);
652c393a 8933
dc257cf1 8934 dpll = I915_READ(dpll_reg);
652c393a
JB
8935 dpll |= DISPLAY_RATE_SELECT_FPA1;
8936 I915_WRITE(dpll_reg, dpll);
9d0498a2 8937 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8938 dpll = I915_READ(dpll_reg);
8939 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8940 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8941 }
8942
8943}
8944
f047e395
CW
8945void intel_mark_busy(struct drm_device *dev)
8946{
c67a470b
PZ
8947 struct drm_i915_private *dev_priv = dev->dev_private;
8948
f62a0076
CW
8949 if (dev_priv->mm.busy)
8950 return;
8951
43694d69 8952 intel_runtime_pm_get(dev_priv);
c67a470b 8953 i915_update_gfx_val(dev_priv);
f62a0076 8954 dev_priv->mm.busy = true;
f047e395
CW
8955}
8956
8957void intel_mark_idle(struct drm_device *dev)
652c393a 8958{
c67a470b 8959 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8960 struct drm_crtc *crtc;
652c393a 8961
f62a0076
CW
8962 if (!dev_priv->mm.busy)
8963 return;
8964
8965 dev_priv->mm.busy = false;
8966
d330a953 8967 if (!i915.powersave)
bb4cdd53 8968 goto out;
652c393a 8969
70e1e0ec 8970 for_each_crtc(dev, crtc) {
f4510a27 8971 if (!crtc->primary->fb)
652c393a
JB
8972 continue;
8973
725a5b54 8974 intel_decrease_pllclock(crtc);
652c393a 8975 }
b29c19b6 8976
3d13ef2e 8977 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8978 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8979
8980out:
43694d69 8981 intel_runtime_pm_put(dev_priv);
652c393a
JB
8982}
8983
7c8f8a70 8984
f99d7069
DV
8985/**
8986 * intel_mark_fb_busy - mark given planes as busy
8987 * @dev: DRM device
8988 * @frontbuffer_bits: bits for the affected planes
8989 * @ring: optional ring for asynchronous commands
8990 *
8991 * This function gets called every time the screen contents change. It can be
8992 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8993 */
8994static void intel_mark_fb_busy(struct drm_device *dev,
8995 unsigned frontbuffer_bits,
8996 struct intel_engine_cs *ring)
652c393a 8997{
055e393f 8998 struct drm_i915_private *dev_priv = dev->dev_private;
cc36513c 8999 enum pipe pipe;
652c393a 9000
d330a953 9001 if (!i915.powersave)
acb87dfb
CW
9002 return;
9003
055e393f 9004 for_each_pipe(dev_priv, pipe) {
f99d7069 9005 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
9006 continue;
9007
cc36513c 9008 intel_increase_pllclock(dev, pipe);
c65355bb
CW
9009 if (ring && intel_fbc_enabled(dev))
9010 ring->fbc_dirty = true;
652c393a
JB
9011 }
9012}
9013
f99d7069
DV
9014/**
9015 * intel_fb_obj_invalidate - invalidate frontbuffer object
9016 * @obj: GEM object to invalidate
9017 * @ring: set for asynchronous rendering
9018 *
9019 * This function gets called every time rendering on the given object starts and
9020 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9021 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9022 * until the rendering completes or a flip on this frontbuffer plane is
9023 * scheduled.
9024 */
9025void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9026 struct intel_engine_cs *ring)
9027{
9028 struct drm_device *dev = obj->base.dev;
9029 struct drm_i915_private *dev_priv = dev->dev_private;
9030
9031 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9032
9033 if (!obj->frontbuffer_bits)
9034 return;
9035
9036 if (ring) {
9037 mutex_lock(&dev_priv->fb_tracking.lock);
9038 dev_priv->fb_tracking.busy_bits
9039 |= obj->frontbuffer_bits;
9040 dev_priv->fb_tracking.flip_bits
9041 &= ~obj->frontbuffer_bits;
9042 mutex_unlock(&dev_priv->fb_tracking.lock);
9043 }
9044
9045 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9046
9ca15301 9047 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
9048}
9049
9050/**
9051 * intel_frontbuffer_flush - flush frontbuffer
9052 * @dev: DRM device
9053 * @frontbuffer_bits: frontbuffer plane tracking bits
9054 *
9055 * This function gets called every time rendering on the given planes has
9056 * completed and frontbuffer caching can be started again. Flushes will get
9057 * delayed if they're blocked by some oustanding asynchronous rendering.
9058 *
9059 * Can be called without any locks held.
9060 */
9061void intel_frontbuffer_flush(struct drm_device *dev,
9062 unsigned frontbuffer_bits)
9063{
9064 struct drm_i915_private *dev_priv = dev->dev_private;
9065
9066 /* Delay flushing when rings are still busy.*/
9067 mutex_lock(&dev_priv->fb_tracking.lock);
9068 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9069 mutex_unlock(&dev_priv->fb_tracking.lock);
9070
9071 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9072
9ca15301 9073 intel_edp_psr_flush(dev, frontbuffer_bits);
f99d7069
DV
9074}
9075
9076/**
9077 * intel_fb_obj_flush - flush frontbuffer object
9078 * @obj: GEM object to flush
9079 * @retire: set when retiring asynchronous rendering
9080 *
9081 * This function gets called every time rendering on the given object has
9082 * completed and frontbuffer caching can be started again. If @retire is true
9083 * then any delayed flushes will be unblocked.
9084 */
9085void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9086 bool retire)
9087{
9088 struct drm_device *dev = obj->base.dev;
9089 struct drm_i915_private *dev_priv = dev->dev_private;
9090 unsigned frontbuffer_bits;
9091
9092 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9093
9094 if (!obj->frontbuffer_bits)
9095 return;
9096
9097 frontbuffer_bits = obj->frontbuffer_bits;
9098
9099 if (retire) {
9100 mutex_lock(&dev_priv->fb_tracking.lock);
9101 /* Filter out new bits since rendering started. */
9102 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9103
9104 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9105 mutex_unlock(&dev_priv->fb_tracking.lock);
9106 }
9107
9108 intel_frontbuffer_flush(dev, frontbuffer_bits);
9109}
9110
9111/**
9112 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9113 * @dev: DRM device
9114 * @frontbuffer_bits: frontbuffer plane tracking bits
9115 *
9116 * This function gets called after scheduling a flip on @obj. The actual
9117 * frontbuffer flushing will be delayed until completion is signalled with
9118 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9119 * flush will be cancelled.
9120 *
9121 * Can be called without any locks held.
9122 */
9123void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9124 unsigned frontbuffer_bits)
9125{
9126 struct drm_i915_private *dev_priv = dev->dev_private;
9127
9128 mutex_lock(&dev_priv->fb_tracking.lock);
9129 dev_priv->fb_tracking.flip_bits
9130 |= frontbuffer_bits;
9131 mutex_unlock(&dev_priv->fb_tracking.lock);
9132}
9133
9134/**
9135 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9136 * @dev: DRM device
9137 * @frontbuffer_bits: frontbuffer plane tracking bits
9138 *
9139 * This function gets called after the flip has been latched and will complete
9140 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9141 *
9142 * Can be called without any locks held.
9143 */
9144void intel_frontbuffer_flip_complete(struct drm_device *dev,
9145 unsigned frontbuffer_bits)
9146{
9147 struct drm_i915_private *dev_priv = dev->dev_private;
9148
9149 mutex_lock(&dev_priv->fb_tracking.lock);
9150 /* Mask any cancelled flips. */
9151 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9152 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9153 mutex_unlock(&dev_priv->fb_tracking.lock);
9154
9155 intel_frontbuffer_flush(dev, frontbuffer_bits);
9156}
9157
79e53945
JB
9158static void intel_crtc_destroy(struct drm_crtc *crtc)
9159{
9160 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9161 struct drm_device *dev = crtc->dev;
9162 struct intel_unpin_work *work;
9163 unsigned long flags;
9164
9165 spin_lock_irqsave(&dev->event_lock, flags);
9166 work = intel_crtc->unpin_work;
9167 intel_crtc->unpin_work = NULL;
9168 spin_unlock_irqrestore(&dev->event_lock, flags);
9169
9170 if (work) {
9171 cancel_work_sync(&work->work);
9172 kfree(work);
9173 }
79e53945
JB
9174
9175 drm_crtc_cleanup(crtc);
67e77c5a 9176
79e53945
JB
9177 kfree(intel_crtc);
9178}
9179
6b95a207
KH
9180static void intel_unpin_work_fn(struct work_struct *__work)
9181{
9182 struct intel_unpin_work *work =
9183 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9184 struct drm_device *dev = work->crtc->dev;
f99d7069 9185 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9186
b4a98e57 9187 mutex_lock(&dev->struct_mutex);
1690e1eb 9188 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9189 drm_gem_object_unreference(&work->pending_flip_obj->base);
9190 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9191
b4a98e57
CW
9192 intel_update_fbc(dev);
9193 mutex_unlock(&dev->struct_mutex);
9194
f99d7069
DV
9195 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9196
b4a98e57
CW
9197 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9198 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9199
6b95a207
KH
9200 kfree(work);
9201}
9202
1afe3e9d 9203static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9204 struct drm_crtc *crtc)
6b95a207 9205{
fbee40df 9206 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9208 struct intel_unpin_work *work;
6b95a207
KH
9209 unsigned long flags;
9210
9211 /* Ignore early vblank irqs */
9212 if (intel_crtc == NULL)
9213 return;
9214
9215 spin_lock_irqsave(&dev->event_lock, flags);
9216 work = intel_crtc->unpin_work;
e7d841ca
CW
9217
9218 /* Ensure we don't miss a work->pending update ... */
9219 smp_rmb();
9220
9221 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9222 spin_unlock_irqrestore(&dev->event_lock, flags);
9223 return;
9224 }
9225
e7d841ca
CW
9226 /* and that the unpin work is consistent wrt ->pending. */
9227 smp_rmb();
9228
6b95a207 9229 intel_crtc->unpin_work = NULL;
6b95a207 9230
45a066eb
RC
9231 if (work->event)
9232 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9233
87b6b101 9234 drm_crtc_vblank_put(crtc);
0af7e4df 9235
6b95a207
KH
9236 spin_unlock_irqrestore(&dev->event_lock, flags);
9237
2c10d571 9238 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9239
9240 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9241
9242 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9243}
9244
1afe3e9d
JB
9245void intel_finish_page_flip(struct drm_device *dev, int pipe)
9246{
fbee40df 9247 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9248 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9249
49b14a5c 9250 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9251}
9252
9253void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9254{
fbee40df 9255 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9256 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9257
49b14a5c 9258 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9259}
9260
75f7f3ec
VS
9261/* Is 'a' after or equal to 'b'? */
9262static bool g4x_flip_count_after_eq(u32 a, u32 b)
9263{
9264 return !((a - b) & 0x80000000);
9265}
9266
9267static bool page_flip_finished(struct intel_crtc *crtc)
9268{
9269 struct drm_device *dev = crtc->base.dev;
9270 struct drm_i915_private *dev_priv = dev->dev_private;
9271
9272 /*
9273 * The relevant registers doen't exist on pre-ctg.
9274 * As the flip done interrupt doesn't trigger for mmio
9275 * flips on gmch platforms, a flip count check isn't
9276 * really needed there. But since ctg has the registers,
9277 * include it in the check anyway.
9278 */
9279 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9280 return true;
9281
9282 /*
9283 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9284 * used the same base address. In that case the mmio flip might
9285 * have completed, but the CS hasn't even executed the flip yet.
9286 *
9287 * A flip count check isn't enough as the CS might have updated
9288 * the base address just after start of vblank, but before we
9289 * managed to process the interrupt. This means we'd complete the
9290 * CS flip too soon.
9291 *
9292 * Combining both checks should get us a good enough result. It may
9293 * still happen that the CS flip has been executed, but has not
9294 * yet actually completed. But in case the base address is the same
9295 * anyway, we don't really care.
9296 */
9297 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9298 crtc->unpin_work->gtt_offset &&
9299 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9300 crtc->unpin_work->flip_count);
9301}
9302
6b95a207
KH
9303void intel_prepare_page_flip(struct drm_device *dev, int plane)
9304{
fbee40df 9305 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9306 struct intel_crtc *intel_crtc =
9307 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9308 unsigned long flags;
9309
e7d841ca
CW
9310 /* NB: An MMIO update of the plane base pointer will also
9311 * generate a page-flip completion irq, i.e. every modeset
9312 * is also accompanied by a spurious intel_prepare_page_flip().
9313 */
6b95a207 9314 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9315 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9316 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9317 spin_unlock_irqrestore(&dev->event_lock, flags);
9318}
9319
eba905b2 9320static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9321{
9322 /* Ensure that the work item is consistent when activating it ... */
9323 smp_wmb();
9324 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9325 /* and that it is marked active as soon as the irq could fire. */
9326 smp_wmb();
9327}
9328
8c9f3aaf
JB
9329static int intel_gen2_queue_flip(struct drm_device *dev,
9330 struct drm_crtc *crtc,
9331 struct drm_framebuffer *fb,
ed8d1975 9332 struct drm_i915_gem_object *obj,
a4872ba6 9333 struct intel_engine_cs *ring,
ed8d1975 9334 uint32_t flags)
8c9f3aaf 9335{
8c9f3aaf 9336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9337 u32 flip_mask;
9338 int ret;
9339
6d90c952 9340 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9341 if (ret)
4fa62c89 9342 return ret;
8c9f3aaf
JB
9343
9344 /* Can't queue multiple flips, so wait for the previous
9345 * one to finish before executing the next.
9346 */
9347 if (intel_crtc->plane)
9348 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9349 else
9350 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9351 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9352 intel_ring_emit(ring, MI_NOOP);
9353 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9354 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9355 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9356 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9357 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9358
9359 intel_mark_page_flip_active(intel_crtc);
09246732 9360 __intel_ring_advance(ring);
83d4092b 9361 return 0;
8c9f3aaf
JB
9362}
9363
9364static int intel_gen3_queue_flip(struct drm_device *dev,
9365 struct drm_crtc *crtc,
9366 struct drm_framebuffer *fb,
ed8d1975 9367 struct drm_i915_gem_object *obj,
a4872ba6 9368 struct intel_engine_cs *ring,
ed8d1975 9369 uint32_t flags)
8c9f3aaf 9370{
8c9f3aaf 9371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9372 u32 flip_mask;
9373 int ret;
9374
6d90c952 9375 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9376 if (ret)
4fa62c89 9377 return ret;
8c9f3aaf
JB
9378
9379 if (intel_crtc->plane)
9380 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9381 else
9382 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9383 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9384 intel_ring_emit(ring, MI_NOOP);
9385 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9386 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9387 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9388 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9389 intel_ring_emit(ring, MI_NOOP);
9390
e7d841ca 9391 intel_mark_page_flip_active(intel_crtc);
09246732 9392 __intel_ring_advance(ring);
83d4092b 9393 return 0;
8c9f3aaf
JB
9394}
9395
9396static int intel_gen4_queue_flip(struct drm_device *dev,
9397 struct drm_crtc *crtc,
9398 struct drm_framebuffer *fb,
ed8d1975 9399 struct drm_i915_gem_object *obj,
a4872ba6 9400 struct intel_engine_cs *ring,
ed8d1975 9401 uint32_t flags)
8c9f3aaf
JB
9402{
9403 struct drm_i915_private *dev_priv = dev->dev_private;
9404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9405 uint32_t pf, pipesrc;
9406 int ret;
9407
6d90c952 9408 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9409 if (ret)
4fa62c89 9410 return ret;
8c9f3aaf
JB
9411
9412 /* i965+ uses the linear or tiled offsets from the
9413 * Display Registers (which do not change across a page-flip)
9414 * so we need only reprogram the base address.
9415 */
6d90c952
DV
9416 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9417 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9418 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9419 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9420 obj->tiling_mode);
8c9f3aaf
JB
9421
9422 /* XXX Enabling the panel-fitter across page-flip is so far
9423 * untested on non-native modes, so ignore it for now.
9424 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9425 */
9426 pf = 0;
9427 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9428 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9429
9430 intel_mark_page_flip_active(intel_crtc);
09246732 9431 __intel_ring_advance(ring);
83d4092b 9432 return 0;
8c9f3aaf
JB
9433}
9434
9435static int intel_gen6_queue_flip(struct drm_device *dev,
9436 struct drm_crtc *crtc,
9437 struct drm_framebuffer *fb,
ed8d1975 9438 struct drm_i915_gem_object *obj,
a4872ba6 9439 struct intel_engine_cs *ring,
ed8d1975 9440 uint32_t flags)
8c9f3aaf
JB
9441{
9442 struct drm_i915_private *dev_priv = dev->dev_private;
9443 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9444 uint32_t pf, pipesrc;
9445 int ret;
9446
6d90c952 9447 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9448 if (ret)
4fa62c89 9449 return ret;
8c9f3aaf 9450
6d90c952
DV
9451 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9452 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9453 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9454 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9455
dc257cf1
DV
9456 /* Contrary to the suggestions in the documentation,
9457 * "Enable Panel Fitter" does not seem to be required when page
9458 * flipping with a non-native mode, and worse causes a normal
9459 * modeset to fail.
9460 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9461 */
9462 pf = 0;
8c9f3aaf 9463 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9464 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9465
9466 intel_mark_page_flip_active(intel_crtc);
09246732 9467 __intel_ring_advance(ring);
83d4092b 9468 return 0;
8c9f3aaf
JB
9469}
9470
7c9017e5
JB
9471static int intel_gen7_queue_flip(struct drm_device *dev,
9472 struct drm_crtc *crtc,
9473 struct drm_framebuffer *fb,
ed8d1975 9474 struct drm_i915_gem_object *obj,
a4872ba6 9475 struct intel_engine_cs *ring,
ed8d1975 9476 uint32_t flags)
7c9017e5 9477{
7c9017e5 9478 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9479 uint32_t plane_bit = 0;
ffe74d75
CW
9480 int len, ret;
9481
eba905b2 9482 switch (intel_crtc->plane) {
cb05d8de
DV
9483 case PLANE_A:
9484 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9485 break;
9486 case PLANE_B:
9487 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9488 break;
9489 case PLANE_C:
9490 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9491 break;
9492 default:
9493 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9494 return -ENODEV;
cb05d8de
DV
9495 }
9496
ffe74d75 9497 len = 4;
f476828a 9498 if (ring->id == RCS) {
ffe74d75 9499 len += 6;
f476828a
DL
9500 /*
9501 * On Gen 8, SRM is now taking an extra dword to accommodate
9502 * 48bits addresses, and we need a NOOP for the batch size to
9503 * stay even.
9504 */
9505 if (IS_GEN8(dev))
9506 len += 2;
9507 }
ffe74d75 9508
f66fab8e
VS
9509 /*
9510 * BSpec MI_DISPLAY_FLIP for IVB:
9511 * "The full packet must be contained within the same cache line."
9512 *
9513 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9514 * cacheline, if we ever start emitting more commands before
9515 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9516 * then do the cacheline alignment, and finally emit the
9517 * MI_DISPLAY_FLIP.
9518 */
9519 ret = intel_ring_cacheline_align(ring);
9520 if (ret)
4fa62c89 9521 return ret;
f66fab8e 9522
ffe74d75 9523 ret = intel_ring_begin(ring, len);
7c9017e5 9524 if (ret)
4fa62c89 9525 return ret;
7c9017e5 9526
ffe74d75
CW
9527 /* Unmask the flip-done completion message. Note that the bspec says that
9528 * we should do this for both the BCS and RCS, and that we must not unmask
9529 * more than one flip event at any time (or ensure that one flip message
9530 * can be sent by waiting for flip-done prior to queueing new flips).
9531 * Experimentation says that BCS works despite DERRMR masking all
9532 * flip-done completion events and that unmasking all planes at once
9533 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9534 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9535 */
9536 if (ring->id == RCS) {
9537 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9538 intel_ring_emit(ring, DERRMR);
9539 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9540 DERRMR_PIPEB_PRI_FLIP_DONE |
9541 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9542 if (IS_GEN8(dev))
9543 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9544 MI_SRM_LRM_GLOBAL_GTT);
9545 else
9546 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9547 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9548 intel_ring_emit(ring, DERRMR);
9549 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9550 if (IS_GEN8(dev)) {
9551 intel_ring_emit(ring, 0);
9552 intel_ring_emit(ring, MI_NOOP);
9553 }
ffe74d75
CW
9554 }
9555
cb05d8de 9556 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9557 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9558 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9559 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9560
9561 intel_mark_page_flip_active(intel_crtc);
09246732 9562 __intel_ring_advance(ring);
83d4092b 9563 return 0;
7c9017e5
JB
9564}
9565
84c33a64
SG
9566static bool use_mmio_flip(struct intel_engine_cs *ring,
9567 struct drm_i915_gem_object *obj)
9568{
9569 /*
9570 * This is not being used for older platforms, because
9571 * non-availability of flip done interrupt forces us to use
9572 * CS flips. Older platforms derive flip done using some clever
9573 * tricks involving the flip_pending status bits and vblank irqs.
9574 * So using MMIO flips there would disrupt this mechanism.
9575 */
9576
8e09bf83
CW
9577 if (ring == NULL)
9578 return true;
9579
84c33a64
SG
9580 if (INTEL_INFO(ring->dev)->gen < 5)
9581 return false;
9582
9583 if (i915.use_mmio_flip < 0)
9584 return false;
9585 else if (i915.use_mmio_flip > 0)
9586 return true;
14bf993e
OM
9587 else if (i915.enable_execlists)
9588 return true;
84c33a64
SG
9589 else
9590 return ring != obj->ring;
9591}
9592
9593static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9594{
9595 struct drm_device *dev = intel_crtc->base.dev;
9596 struct drm_i915_private *dev_priv = dev->dev_private;
9597 struct intel_framebuffer *intel_fb =
9598 to_intel_framebuffer(intel_crtc->base.primary->fb);
9599 struct drm_i915_gem_object *obj = intel_fb->obj;
9600 u32 dspcntr;
9601 u32 reg;
9602
9603 intel_mark_page_flip_active(intel_crtc);
9604
9605 reg = DSPCNTR(intel_crtc->plane);
9606 dspcntr = I915_READ(reg);
9607
9608 if (INTEL_INFO(dev)->gen >= 4) {
9609 if (obj->tiling_mode != I915_TILING_NONE)
9610 dspcntr |= DISPPLANE_TILED;
9611 else
9612 dspcntr &= ~DISPPLANE_TILED;
9613 }
9614 I915_WRITE(reg, dspcntr);
9615
9616 I915_WRITE(DSPSURF(intel_crtc->plane),
9617 intel_crtc->unpin_work->gtt_offset);
9618 POSTING_READ(DSPSURF(intel_crtc->plane));
9619}
9620
9621static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9622{
9623 struct intel_engine_cs *ring;
9624 int ret;
9625
9626 lockdep_assert_held(&obj->base.dev->struct_mutex);
9627
9628 if (!obj->last_write_seqno)
9629 return 0;
9630
9631 ring = obj->ring;
9632
9633 if (i915_seqno_passed(ring->get_seqno(ring, true),
9634 obj->last_write_seqno))
9635 return 0;
9636
9637 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9638 if (ret)
9639 return ret;
9640
9641 if (WARN_ON(!ring->irq_get(ring)))
9642 return 0;
9643
9644 return 1;
9645}
9646
9647void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9648{
9649 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9650 struct intel_crtc *intel_crtc;
9651 unsigned long irq_flags;
9652 u32 seqno;
9653
9654 seqno = ring->get_seqno(ring, false);
9655
9656 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9657 for_each_intel_crtc(ring->dev, intel_crtc) {
9658 struct intel_mmio_flip *mmio_flip;
9659
9660 mmio_flip = &intel_crtc->mmio_flip;
9661 if (mmio_flip->seqno == 0)
9662 continue;
9663
9664 if (ring->id != mmio_flip->ring_id)
9665 continue;
9666
9667 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9668 intel_do_mmio_flip(intel_crtc);
9669 mmio_flip->seqno = 0;
9670 ring->irq_put(ring);
9671 }
9672 }
9673 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9674}
9675
9676static int intel_queue_mmio_flip(struct drm_device *dev,
9677 struct drm_crtc *crtc,
9678 struct drm_framebuffer *fb,
9679 struct drm_i915_gem_object *obj,
9680 struct intel_engine_cs *ring,
9681 uint32_t flags)
9682{
9683 struct drm_i915_private *dev_priv = dev->dev_private;
9684 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9685 unsigned long irq_flags;
9686 int ret;
9687
9688 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9689 return -EBUSY;
9690
9691 ret = intel_postpone_flip(obj);
9692 if (ret < 0)
9693 return ret;
9694 if (ret == 0) {
9695 intel_do_mmio_flip(intel_crtc);
9696 return 0;
9697 }
9698
9699 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9700 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9701 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9702 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9703
9704 /*
9705 * Double check to catch cases where irq fired before
9706 * mmio flip data was ready
9707 */
9708 intel_notify_mmio_flip(obj->ring);
9709 return 0;
9710}
9711
8c9f3aaf
JB
9712static int intel_default_queue_flip(struct drm_device *dev,
9713 struct drm_crtc *crtc,
9714 struct drm_framebuffer *fb,
ed8d1975 9715 struct drm_i915_gem_object *obj,
a4872ba6 9716 struct intel_engine_cs *ring,
ed8d1975 9717 uint32_t flags)
8c9f3aaf
JB
9718{
9719 return -ENODEV;
9720}
9721
6b95a207
KH
9722static int intel_crtc_page_flip(struct drm_crtc *crtc,
9723 struct drm_framebuffer *fb,
ed8d1975
KP
9724 struct drm_pending_vblank_event *event,
9725 uint32_t page_flip_flags)
6b95a207
KH
9726{
9727 struct drm_device *dev = crtc->dev;
9728 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9729 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9730 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9732 enum pipe pipe = intel_crtc->pipe;
6b95a207 9733 struct intel_unpin_work *work;
a4872ba6 9734 struct intel_engine_cs *ring;
8c9f3aaf 9735 unsigned long flags;
52e68630 9736 int ret;
6b95a207 9737
2ff8fde1
MR
9738 /*
9739 * drm_mode_page_flip_ioctl() should already catch this, but double
9740 * check to be safe. In the future we may enable pageflipping from
9741 * a disabled primary plane.
9742 */
9743 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9744 return -EBUSY;
9745
e6a595d2 9746 /* Can't change pixel format via MI display flips. */
f4510a27 9747 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9748 return -EINVAL;
9749
9750 /*
9751 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9752 * Note that pitch changes could also affect these register.
9753 */
9754 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9755 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9756 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9757 return -EINVAL;
9758
f900db47
CW
9759 if (i915_terminally_wedged(&dev_priv->gpu_error))
9760 goto out_hang;
9761
b14c5679 9762 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9763 if (work == NULL)
9764 return -ENOMEM;
9765
6b95a207 9766 work->event = event;
b4a98e57 9767 work->crtc = crtc;
2ff8fde1 9768 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9769 INIT_WORK(&work->work, intel_unpin_work_fn);
9770
87b6b101 9771 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9772 if (ret)
9773 goto free_work;
9774
6b95a207
KH
9775 /* We borrow the event spin lock for protecting unpin_work */
9776 spin_lock_irqsave(&dev->event_lock, flags);
9777 if (intel_crtc->unpin_work) {
9778 spin_unlock_irqrestore(&dev->event_lock, flags);
9779 kfree(work);
87b6b101 9780 drm_crtc_vblank_put(crtc);
468f0b44
CW
9781
9782 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9783 return -EBUSY;
9784 }
9785 intel_crtc->unpin_work = work;
9786 spin_unlock_irqrestore(&dev->event_lock, flags);
9787
b4a98e57
CW
9788 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9789 flush_workqueue(dev_priv->wq);
9790
79158103
CW
9791 ret = i915_mutex_lock_interruptible(dev);
9792 if (ret)
9793 goto cleanup;
6b95a207 9794
75dfca80 9795 /* Reference the objects for the scheduled work. */
05394f39
CW
9796 drm_gem_object_reference(&work->old_fb_obj->base);
9797 drm_gem_object_reference(&obj->base);
6b95a207 9798
f4510a27 9799 crtc->primary->fb = fb;
96b099fd 9800
e1f99ce6 9801 work->pending_flip_obj = obj;
e1f99ce6 9802
4e5359cd
SF
9803 work->enable_stall_check = true;
9804
b4a98e57 9805 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9806 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9807
75f7f3ec 9808 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9809 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9810
4fa62c89
VS
9811 if (IS_VALLEYVIEW(dev)) {
9812 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9813 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9814 /* vlv: DISPLAY_FLIP fails to change tiling */
9815 ring = NULL;
2a92d5bc
CW
9816 } else if (IS_IVYBRIDGE(dev)) {
9817 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9818 } else if (INTEL_INFO(dev)->gen >= 7) {
9819 ring = obj->ring;
9820 if (ring == NULL || ring->id != RCS)
9821 ring = &dev_priv->ring[BCS];
9822 } else {
9823 ring = &dev_priv->ring[RCS];
9824 }
9825
9826 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9827 if (ret)
9828 goto cleanup_pending;
6b95a207 9829
4fa62c89
VS
9830 work->gtt_offset =
9831 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9832
84c33a64
SG
9833 if (use_mmio_flip(ring, obj))
9834 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9835 page_flip_flags);
9836 else
9837 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9838 page_flip_flags);
4fa62c89
VS
9839 if (ret)
9840 goto cleanup_unpin;
9841
a071fa00
DV
9842 i915_gem_track_fb(work->old_fb_obj, obj,
9843 INTEL_FRONTBUFFER_PRIMARY(pipe));
9844
7782de3b 9845 intel_disable_fbc(dev);
f99d7069 9846 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9847 mutex_unlock(&dev->struct_mutex);
9848
e5510fac
JB
9849 trace_i915_flip_request(intel_crtc->plane, obj);
9850
6b95a207 9851 return 0;
96b099fd 9852
4fa62c89
VS
9853cleanup_unpin:
9854 intel_unpin_fb_obj(obj);
8c9f3aaf 9855cleanup_pending:
b4a98e57 9856 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9857 crtc->primary->fb = old_fb;
05394f39
CW
9858 drm_gem_object_unreference(&work->old_fb_obj->base);
9859 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9860 mutex_unlock(&dev->struct_mutex);
9861
79158103 9862cleanup:
96b099fd
CW
9863 spin_lock_irqsave(&dev->event_lock, flags);
9864 intel_crtc->unpin_work = NULL;
9865 spin_unlock_irqrestore(&dev->event_lock, flags);
9866
87b6b101 9867 drm_crtc_vblank_put(crtc);
7317c75e 9868free_work:
96b099fd
CW
9869 kfree(work);
9870
f900db47
CW
9871 if (ret == -EIO) {
9872out_hang:
9873 intel_crtc_wait_for_pending_flips(crtc);
9874 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9875 if (ret == 0 && event)
a071fa00 9876 drm_send_vblank_event(dev, pipe, event);
f900db47 9877 }
96b099fd 9878 return ret;
6b95a207
KH
9879}
9880
f6e5b160 9881static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9882 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9883 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9884};
9885
9a935856
DV
9886/**
9887 * intel_modeset_update_staged_output_state
9888 *
9889 * Updates the staged output configuration state, e.g. after we've read out the
9890 * current hw state.
9891 */
9892static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9893{
7668851f 9894 struct intel_crtc *crtc;
9a935856
DV
9895 struct intel_encoder *encoder;
9896 struct intel_connector *connector;
f6e5b160 9897
9a935856
DV
9898 list_for_each_entry(connector, &dev->mode_config.connector_list,
9899 base.head) {
9900 connector->new_encoder =
9901 to_intel_encoder(connector->base.encoder);
9902 }
f6e5b160 9903
b2784e15 9904 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9905 encoder->new_crtc =
9906 to_intel_crtc(encoder->base.crtc);
9907 }
7668851f 9908
d3fcc808 9909 for_each_intel_crtc(dev, crtc) {
7668851f 9910 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9911
9912 if (crtc->new_enabled)
9913 crtc->new_config = &crtc->config;
9914 else
9915 crtc->new_config = NULL;
7668851f 9916 }
f6e5b160
CW
9917}
9918
9a935856
DV
9919/**
9920 * intel_modeset_commit_output_state
9921 *
9922 * This function copies the stage display pipe configuration to the real one.
9923 */
9924static void intel_modeset_commit_output_state(struct drm_device *dev)
9925{
7668851f 9926 struct intel_crtc *crtc;
9a935856
DV
9927 struct intel_encoder *encoder;
9928 struct intel_connector *connector;
f6e5b160 9929
9a935856
DV
9930 list_for_each_entry(connector, &dev->mode_config.connector_list,
9931 base.head) {
9932 connector->base.encoder = &connector->new_encoder->base;
9933 }
f6e5b160 9934
b2784e15 9935 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9936 encoder->base.crtc = &encoder->new_crtc->base;
9937 }
7668851f 9938
d3fcc808 9939 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9940 crtc->base.enabled = crtc->new_enabled;
9941 }
9a935856
DV
9942}
9943
050f7aeb 9944static void
eba905b2 9945connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9946 struct intel_crtc_config *pipe_config)
9947{
9948 int bpp = pipe_config->pipe_bpp;
9949
9950 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9951 connector->base.base.id,
c23cc417 9952 connector->base.name);
050f7aeb
DV
9953
9954 /* Don't use an invalid EDID bpc value */
9955 if (connector->base.display_info.bpc &&
9956 connector->base.display_info.bpc * 3 < bpp) {
9957 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9958 bpp, connector->base.display_info.bpc*3);
9959 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9960 }
9961
9962 /* Clamp bpp to 8 on screens without EDID 1.4 */
9963 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9964 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9965 bpp);
9966 pipe_config->pipe_bpp = 24;
9967 }
9968}
9969
4e53c2e0 9970static int
050f7aeb
DV
9971compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9972 struct drm_framebuffer *fb,
9973 struct intel_crtc_config *pipe_config)
4e53c2e0 9974{
050f7aeb
DV
9975 struct drm_device *dev = crtc->base.dev;
9976 struct intel_connector *connector;
4e53c2e0
DV
9977 int bpp;
9978
d42264b1
DV
9979 switch (fb->pixel_format) {
9980 case DRM_FORMAT_C8:
4e53c2e0
DV
9981 bpp = 8*3; /* since we go through a colormap */
9982 break;
d42264b1
DV
9983 case DRM_FORMAT_XRGB1555:
9984 case DRM_FORMAT_ARGB1555:
9985 /* checked in intel_framebuffer_init already */
9986 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9987 return -EINVAL;
9988 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9989 bpp = 6*3; /* min is 18bpp */
9990 break;
d42264b1
DV
9991 case DRM_FORMAT_XBGR8888:
9992 case DRM_FORMAT_ABGR8888:
9993 /* checked in intel_framebuffer_init already */
9994 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9995 return -EINVAL;
9996 case DRM_FORMAT_XRGB8888:
9997 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9998 bpp = 8*3;
9999 break;
d42264b1
DV
10000 case DRM_FORMAT_XRGB2101010:
10001 case DRM_FORMAT_ARGB2101010:
10002 case DRM_FORMAT_XBGR2101010:
10003 case DRM_FORMAT_ABGR2101010:
10004 /* checked in intel_framebuffer_init already */
10005 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10006 return -EINVAL;
4e53c2e0
DV
10007 bpp = 10*3;
10008 break;
baba133a 10009 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10010 default:
10011 DRM_DEBUG_KMS("unsupported depth\n");
10012 return -EINVAL;
10013 }
10014
4e53c2e0
DV
10015 pipe_config->pipe_bpp = bpp;
10016
10017 /* Clamp display bpp to EDID value */
10018 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10019 base.head) {
1b829e05
DV
10020 if (!connector->new_encoder ||
10021 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10022 continue;
10023
050f7aeb 10024 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10025 }
10026
10027 return bpp;
10028}
10029
644db711
DV
10030static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10031{
10032 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10033 "type: 0x%x flags: 0x%x\n",
1342830c 10034 mode->crtc_clock,
644db711
DV
10035 mode->crtc_hdisplay, mode->crtc_hsync_start,
10036 mode->crtc_hsync_end, mode->crtc_htotal,
10037 mode->crtc_vdisplay, mode->crtc_vsync_start,
10038 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10039}
10040
c0b03411
DV
10041static void intel_dump_pipe_config(struct intel_crtc *crtc,
10042 struct intel_crtc_config *pipe_config,
10043 const char *context)
10044{
10045 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10046 context, pipe_name(crtc->pipe));
10047
10048 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10049 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10050 pipe_config->pipe_bpp, pipe_config->dither);
10051 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10052 pipe_config->has_pch_encoder,
10053 pipe_config->fdi_lanes,
10054 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10055 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10056 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10057 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10058 pipe_config->has_dp_encoder,
10059 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10060 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10061 pipe_config->dp_m_n.tu);
b95af8be
VK
10062
10063 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10064 pipe_config->has_dp_encoder,
10065 pipe_config->dp_m2_n2.gmch_m,
10066 pipe_config->dp_m2_n2.gmch_n,
10067 pipe_config->dp_m2_n2.link_m,
10068 pipe_config->dp_m2_n2.link_n,
10069 pipe_config->dp_m2_n2.tu);
10070
c0b03411
DV
10071 DRM_DEBUG_KMS("requested mode:\n");
10072 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10073 DRM_DEBUG_KMS("adjusted mode:\n");
10074 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10075 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10076 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10077 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10078 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10079 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10080 pipe_config->gmch_pfit.control,
10081 pipe_config->gmch_pfit.pgm_ratios,
10082 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10083 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10084 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10085 pipe_config->pch_pfit.size,
10086 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10087 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10088 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10089}
10090
bc079e8b
VS
10091static bool encoders_cloneable(const struct intel_encoder *a,
10092 const struct intel_encoder *b)
accfc0c5 10093{
bc079e8b
VS
10094 /* masks could be asymmetric, so check both ways */
10095 return a == b || (a->cloneable & (1 << b->type) &&
10096 b->cloneable & (1 << a->type));
10097}
10098
10099static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10100 struct intel_encoder *encoder)
10101{
10102 struct drm_device *dev = crtc->base.dev;
10103 struct intel_encoder *source_encoder;
10104
b2784e15 10105 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10106 if (source_encoder->new_crtc != crtc)
10107 continue;
10108
10109 if (!encoders_cloneable(encoder, source_encoder))
10110 return false;
10111 }
10112
10113 return true;
10114}
10115
10116static bool check_encoder_cloning(struct intel_crtc *crtc)
10117{
10118 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10119 struct intel_encoder *encoder;
10120
b2784e15 10121 for_each_intel_encoder(dev, encoder) {
bc079e8b 10122 if (encoder->new_crtc != crtc)
accfc0c5
DV
10123 continue;
10124
bc079e8b
VS
10125 if (!check_single_encoder_cloning(crtc, encoder))
10126 return false;
accfc0c5
DV
10127 }
10128
bc079e8b 10129 return true;
accfc0c5
DV
10130}
10131
b8cecdf5
DV
10132static struct intel_crtc_config *
10133intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10134 struct drm_framebuffer *fb,
b8cecdf5 10135 struct drm_display_mode *mode)
ee7b9f93 10136{
7758a113 10137 struct drm_device *dev = crtc->dev;
7758a113 10138 struct intel_encoder *encoder;
b8cecdf5 10139 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10140 int plane_bpp, ret = -EINVAL;
10141 bool retry = true;
ee7b9f93 10142
bc079e8b 10143 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10144 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10145 return ERR_PTR(-EINVAL);
10146 }
10147
b8cecdf5
DV
10148 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10149 if (!pipe_config)
7758a113
DV
10150 return ERR_PTR(-ENOMEM);
10151
b8cecdf5
DV
10152 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10153 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10154
e143a21c
DV
10155 pipe_config->cpu_transcoder =
10156 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10157 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10158
2960bc9c
ID
10159 /*
10160 * Sanitize sync polarity flags based on requested ones. If neither
10161 * positive or negative polarity is requested, treat this as meaning
10162 * negative polarity.
10163 */
10164 if (!(pipe_config->adjusted_mode.flags &
10165 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10166 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10167
10168 if (!(pipe_config->adjusted_mode.flags &
10169 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10170 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10171
050f7aeb
DV
10172 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10173 * plane pixel format and any sink constraints into account. Returns the
10174 * source plane bpp so that dithering can be selected on mismatches
10175 * after encoders and crtc also have had their say. */
10176 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10177 fb, pipe_config);
4e53c2e0
DV
10178 if (plane_bpp < 0)
10179 goto fail;
10180
e41a56be
VS
10181 /*
10182 * Determine the real pipe dimensions. Note that stereo modes can
10183 * increase the actual pipe size due to the frame doubling and
10184 * insertion of additional space for blanks between the frame. This
10185 * is stored in the crtc timings. We use the requested mode to do this
10186 * computation to clearly distinguish it from the adjusted mode, which
10187 * can be changed by the connectors in the below retry loop.
10188 */
10189 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10190 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10191 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10192
e29c22c0 10193encoder_retry:
ef1b460d 10194 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10195 pipe_config->port_clock = 0;
ef1b460d 10196 pipe_config->pixel_multiplier = 1;
ff9a6750 10197
135c81b8 10198 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10199 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10200
7758a113
DV
10201 /* Pass our mode to the connectors and the CRTC to give them a chance to
10202 * adjust it according to limitations or connector properties, and also
10203 * a chance to reject the mode entirely.
47f1c6c9 10204 */
b2784e15 10205 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10206
7758a113
DV
10207 if (&encoder->new_crtc->base != crtc)
10208 continue;
7ae89233 10209
efea6e8e
DV
10210 if (!(encoder->compute_config(encoder, pipe_config))) {
10211 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10212 goto fail;
10213 }
ee7b9f93 10214 }
47f1c6c9 10215
ff9a6750
DV
10216 /* Set default port clock if not overwritten by the encoder. Needs to be
10217 * done afterwards in case the encoder adjusts the mode. */
10218 if (!pipe_config->port_clock)
241bfc38
DL
10219 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10220 * pipe_config->pixel_multiplier;
ff9a6750 10221
a43f6e0f 10222 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10223 if (ret < 0) {
7758a113
DV
10224 DRM_DEBUG_KMS("CRTC fixup failed\n");
10225 goto fail;
ee7b9f93 10226 }
e29c22c0
DV
10227
10228 if (ret == RETRY) {
10229 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10230 ret = -EINVAL;
10231 goto fail;
10232 }
10233
10234 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10235 retry = false;
10236 goto encoder_retry;
10237 }
10238
4e53c2e0
DV
10239 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10240 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10241 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10242
b8cecdf5 10243 return pipe_config;
7758a113 10244fail:
b8cecdf5 10245 kfree(pipe_config);
e29c22c0 10246 return ERR_PTR(ret);
ee7b9f93 10247}
47f1c6c9 10248
e2e1ed41
DV
10249/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10250 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10251static void
10252intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10253 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10254{
10255 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10256 struct drm_device *dev = crtc->dev;
10257 struct intel_encoder *encoder;
10258 struct intel_connector *connector;
10259 struct drm_crtc *tmp_crtc;
79e53945 10260
e2e1ed41 10261 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10262
e2e1ed41
DV
10263 /* Check which crtcs have changed outputs connected to them, these need
10264 * to be part of the prepare_pipes mask. We don't (yet) support global
10265 * modeset across multiple crtcs, so modeset_pipes will only have one
10266 * bit set at most. */
10267 list_for_each_entry(connector, &dev->mode_config.connector_list,
10268 base.head) {
10269 if (connector->base.encoder == &connector->new_encoder->base)
10270 continue;
79e53945 10271
e2e1ed41
DV
10272 if (connector->base.encoder) {
10273 tmp_crtc = connector->base.encoder->crtc;
10274
10275 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10276 }
10277
10278 if (connector->new_encoder)
10279 *prepare_pipes |=
10280 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10281 }
10282
b2784e15 10283 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10284 if (encoder->base.crtc == &encoder->new_crtc->base)
10285 continue;
10286
10287 if (encoder->base.crtc) {
10288 tmp_crtc = encoder->base.crtc;
10289
10290 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10291 }
10292
10293 if (encoder->new_crtc)
10294 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10295 }
10296
7668851f 10297 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10298 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10299 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10300 continue;
7e7d76c3 10301
7668851f 10302 if (!intel_crtc->new_enabled)
e2e1ed41 10303 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10304 else
10305 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10306 }
10307
e2e1ed41
DV
10308
10309 /* set_mode is also used to update properties on life display pipes. */
10310 intel_crtc = to_intel_crtc(crtc);
7668851f 10311 if (intel_crtc->new_enabled)
e2e1ed41
DV
10312 *prepare_pipes |= 1 << intel_crtc->pipe;
10313
b6c5164d
DV
10314 /*
10315 * For simplicity do a full modeset on any pipe where the output routing
10316 * changed. We could be more clever, but that would require us to be
10317 * more careful with calling the relevant encoder->mode_set functions.
10318 */
e2e1ed41
DV
10319 if (*prepare_pipes)
10320 *modeset_pipes = *prepare_pipes;
10321
10322 /* ... and mask these out. */
10323 *modeset_pipes &= ~(*disable_pipes);
10324 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10325
10326 /*
10327 * HACK: We don't (yet) fully support global modesets. intel_set_config
10328 * obies this rule, but the modeset restore mode of
10329 * intel_modeset_setup_hw_state does not.
10330 */
10331 *modeset_pipes &= 1 << intel_crtc->pipe;
10332 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10333
10334 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10335 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10336}
79e53945 10337
ea9d758d 10338static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10339{
ea9d758d 10340 struct drm_encoder *encoder;
f6e5b160 10341 struct drm_device *dev = crtc->dev;
f6e5b160 10342
ea9d758d
DV
10343 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10344 if (encoder->crtc == crtc)
10345 return true;
10346
10347 return false;
10348}
10349
10350static void
10351intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10352{
10353 struct intel_encoder *intel_encoder;
10354 struct intel_crtc *intel_crtc;
10355 struct drm_connector *connector;
10356
b2784e15 10357 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10358 if (!intel_encoder->base.crtc)
10359 continue;
10360
10361 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10362
10363 if (prepare_pipes & (1 << intel_crtc->pipe))
10364 intel_encoder->connectors_active = false;
10365 }
10366
10367 intel_modeset_commit_output_state(dev);
10368
7668851f 10369 /* Double check state. */
d3fcc808 10370 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10371 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10372 WARN_ON(intel_crtc->new_config &&
10373 intel_crtc->new_config != &intel_crtc->config);
10374 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10375 }
10376
10377 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10378 if (!connector->encoder || !connector->encoder->crtc)
10379 continue;
10380
10381 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10382
10383 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10384 struct drm_property *dpms_property =
10385 dev->mode_config.dpms_property;
10386
ea9d758d 10387 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10388 drm_object_property_set_value(&connector->base,
68d34720
DV
10389 dpms_property,
10390 DRM_MODE_DPMS_ON);
ea9d758d
DV
10391
10392 intel_encoder = to_intel_encoder(connector->encoder);
10393 intel_encoder->connectors_active = true;
10394 }
10395 }
10396
10397}
10398
3bd26263 10399static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10400{
3bd26263 10401 int diff;
f1f644dc
JB
10402
10403 if (clock1 == clock2)
10404 return true;
10405
10406 if (!clock1 || !clock2)
10407 return false;
10408
10409 diff = abs(clock1 - clock2);
10410
10411 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10412 return true;
10413
10414 return false;
10415}
10416
25c5b266
DV
10417#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10418 list_for_each_entry((intel_crtc), \
10419 &(dev)->mode_config.crtc_list, \
10420 base.head) \
0973f18f 10421 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10422
0e8ffe1b 10423static bool
2fa2fe9a
DV
10424intel_pipe_config_compare(struct drm_device *dev,
10425 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10426 struct intel_crtc_config *pipe_config)
10427{
66e985c0
DV
10428#define PIPE_CONF_CHECK_X(name) \
10429 if (current_config->name != pipe_config->name) { \
10430 DRM_ERROR("mismatch in " #name " " \
10431 "(expected 0x%08x, found 0x%08x)\n", \
10432 current_config->name, \
10433 pipe_config->name); \
10434 return false; \
10435 }
10436
08a24034
DV
10437#define PIPE_CONF_CHECK_I(name) \
10438 if (current_config->name != pipe_config->name) { \
10439 DRM_ERROR("mismatch in " #name " " \
10440 "(expected %i, found %i)\n", \
10441 current_config->name, \
10442 pipe_config->name); \
10443 return false; \
88adfff1
DV
10444 }
10445
b95af8be
VK
10446/* This is required for BDW+ where there is only one set of registers for
10447 * switching between high and low RR.
10448 * This macro can be used whenever a comparison has to be made between one
10449 * hw state and multiple sw state variables.
10450 */
10451#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10452 if ((current_config->name != pipe_config->name) && \
10453 (current_config->alt_name != pipe_config->name)) { \
10454 DRM_ERROR("mismatch in " #name " " \
10455 "(expected %i or %i, found %i)\n", \
10456 current_config->name, \
10457 current_config->alt_name, \
10458 pipe_config->name); \
10459 return false; \
10460 }
10461
1bd1bd80
DV
10462#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10463 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10464 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10465 "(expected %i, found %i)\n", \
10466 current_config->name & (mask), \
10467 pipe_config->name & (mask)); \
10468 return false; \
10469 }
10470
5e550656
VS
10471#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10472 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10473 DRM_ERROR("mismatch in " #name " " \
10474 "(expected %i, found %i)\n", \
10475 current_config->name, \
10476 pipe_config->name); \
10477 return false; \
10478 }
10479
bb760063
DV
10480#define PIPE_CONF_QUIRK(quirk) \
10481 ((current_config->quirks | pipe_config->quirks) & (quirk))
10482
eccb140b
DV
10483 PIPE_CONF_CHECK_I(cpu_transcoder);
10484
08a24034
DV
10485 PIPE_CONF_CHECK_I(has_pch_encoder);
10486 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10487 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10488 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10489 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10490 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10491 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10492
eb14cb74 10493 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10494
10495 if (INTEL_INFO(dev)->gen < 8) {
10496 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10497 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10498 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10499 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10500 PIPE_CONF_CHECK_I(dp_m_n.tu);
10501
10502 if (current_config->has_drrs) {
10503 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10504 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10505 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10506 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10507 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10508 }
10509 } else {
10510 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10511 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10512 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10513 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10514 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10515 }
eb14cb74 10516
1bd1bd80
DV
10517 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10518 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10519 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10520 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10521 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10522 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10523
10524 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10525 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10526 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10527 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10528 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10529 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10530
c93f54cf 10531 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10532 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10533 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10534 IS_VALLEYVIEW(dev))
10535 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10536
9ed109a7
DV
10537 PIPE_CONF_CHECK_I(has_audio);
10538
1bd1bd80
DV
10539 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10540 DRM_MODE_FLAG_INTERLACE);
10541
bb760063
DV
10542 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10543 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10544 DRM_MODE_FLAG_PHSYNC);
10545 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10546 DRM_MODE_FLAG_NHSYNC);
10547 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10548 DRM_MODE_FLAG_PVSYNC);
10549 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10550 DRM_MODE_FLAG_NVSYNC);
10551 }
045ac3b5 10552
37327abd
VS
10553 PIPE_CONF_CHECK_I(pipe_src_w);
10554 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10555
9953599b
DV
10556 /*
10557 * FIXME: BIOS likes to set up a cloned config with lvds+external
10558 * screen. Since we don't yet re-compute the pipe config when moving
10559 * just the lvds port away to another pipe the sw tracking won't match.
10560 *
10561 * Proper atomic modesets with recomputed global state will fix this.
10562 * Until then just don't check gmch state for inherited modes.
10563 */
10564 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10565 PIPE_CONF_CHECK_I(gmch_pfit.control);
10566 /* pfit ratios are autocomputed by the hw on gen4+ */
10567 if (INTEL_INFO(dev)->gen < 4)
10568 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10569 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10570 }
10571
fd4daa9c
CW
10572 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10573 if (current_config->pch_pfit.enabled) {
10574 PIPE_CONF_CHECK_I(pch_pfit.pos);
10575 PIPE_CONF_CHECK_I(pch_pfit.size);
10576 }
2fa2fe9a 10577
e59150dc
JB
10578 /* BDW+ don't expose a synchronous way to read the state */
10579 if (IS_HASWELL(dev))
10580 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10581
282740f7
VS
10582 PIPE_CONF_CHECK_I(double_wide);
10583
26804afd
DV
10584 PIPE_CONF_CHECK_X(ddi_pll_sel);
10585
c0d43d62 10586 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10587 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10588 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10589 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10590 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10591 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10592
42571aef
VS
10593 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10594 PIPE_CONF_CHECK_I(pipe_bpp);
10595
a9a7e98a
JB
10596 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10597 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10598
66e985c0 10599#undef PIPE_CONF_CHECK_X
08a24034 10600#undef PIPE_CONF_CHECK_I
b95af8be 10601#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10602#undef PIPE_CONF_CHECK_FLAGS
5e550656 10603#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10604#undef PIPE_CONF_QUIRK
88adfff1 10605
0e8ffe1b
DV
10606 return true;
10607}
10608
91d1b4bd
DV
10609static void
10610check_connector_state(struct drm_device *dev)
8af6cf88 10611{
8af6cf88
DV
10612 struct intel_connector *connector;
10613
10614 list_for_each_entry(connector, &dev->mode_config.connector_list,
10615 base.head) {
10616 /* This also checks the encoder/connector hw state with the
10617 * ->get_hw_state callbacks. */
10618 intel_connector_check_state(connector);
10619
10620 WARN(&connector->new_encoder->base != connector->base.encoder,
10621 "connector's staged encoder doesn't match current encoder\n");
10622 }
91d1b4bd
DV
10623}
10624
10625static void
10626check_encoder_state(struct drm_device *dev)
10627{
10628 struct intel_encoder *encoder;
10629 struct intel_connector *connector;
8af6cf88 10630
b2784e15 10631 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10632 bool enabled = false;
10633 bool active = false;
10634 enum pipe pipe, tracked_pipe;
10635
10636 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10637 encoder->base.base.id,
8e329a03 10638 encoder->base.name);
8af6cf88
DV
10639
10640 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10641 "encoder's stage crtc doesn't match current crtc\n");
10642 WARN(encoder->connectors_active && !encoder->base.crtc,
10643 "encoder's active_connectors set, but no crtc\n");
10644
10645 list_for_each_entry(connector, &dev->mode_config.connector_list,
10646 base.head) {
10647 if (connector->base.encoder != &encoder->base)
10648 continue;
10649 enabled = true;
10650 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10651 active = true;
10652 }
0e32b39c
DA
10653 /*
10654 * for MST connectors if we unplug the connector is gone
10655 * away but the encoder is still connected to a crtc
10656 * until a modeset happens in response to the hotplug.
10657 */
10658 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10659 continue;
10660
8af6cf88
DV
10661 WARN(!!encoder->base.crtc != enabled,
10662 "encoder's enabled state mismatch "
10663 "(expected %i, found %i)\n",
10664 !!encoder->base.crtc, enabled);
10665 WARN(active && !encoder->base.crtc,
10666 "active encoder with no crtc\n");
10667
10668 WARN(encoder->connectors_active != active,
10669 "encoder's computed active state doesn't match tracked active state "
10670 "(expected %i, found %i)\n", active, encoder->connectors_active);
10671
10672 active = encoder->get_hw_state(encoder, &pipe);
10673 WARN(active != encoder->connectors_active,
10674 "encoder's hw state doesn't match sw tracking "
10675 "(expected %i, found %i)\n",
10676 encoder->connectors_active, active);
10677
10678 if (!encoder->base.crtc)
10679 continue;
10680
10681 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10682 WARN(active && pipe != tracked_pipe,
10683 "active encoder's pipe doesn't match"
10684 "(expected %i, found %i)\n",
10685 tracked_pipe, pipe);
10686
10687 }
91d1b4bd
DV
10688}
10689
10690static void
10691check_crtc_state(struct drm_device *dev)
10692{
fbee40df 10693 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10694 struct intel_crtc *crtc;
10695 struct intel_encoder *encoder;
10696 struct intel_crtc_config pipe_config;
8af6cf88 10697
d3fcc808 10698 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10699 bool enabled = false;
10700 bool active = false;
10701
045ac3b5
JB
10702 memset(&pipe_config, 0, sizeof(pipe_config));
10703
8af6cf88
DV
10704 DRM_DEBUG_KMS("[CRTC:%d]\n",
10705 crtc->base.base.id);
10706
10707 WARN(crtc->active && !crtc->base.enabled,
10708 "active crtc, but not enabled in sw tracking\n");
10709
b2784e15 10710 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10711 if (encoder->base.crtc != &crtc->base)
10712 continue;
10713 enabled = true;
10714 if (encoder->connectors_active)
10715 active = true;
10716 }
6c49f241 10717
8af6cf88
DV
10718 WARN(active != crtc->active,
10719 "crtc's computed active state doesn't match tracked active state "
10720 "(expected %i, found %i)\n", active, crtc->active);
10721 WARN(enabled != crtc->base.enabled,
10722 "crtc's computed enabled state doesn't match tracked enabled state "
10723 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10724
0e8ffe1b
DV
10725 active = dev_priv->display.get_pipe_config(crtc,
10726 &pipe_config);
d62cf62a
DV
10727
10728 /* hw state is inconsistent with the pipe A quirk */
10729 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10730 active = crtc->active;
10731
b2784e15 10732 for_each_intel_encoder(dev, encoder) {
3eaba51c 10733 enum pipe pipe;
6c49f241
DV
10734 if (encoder->base.crtc != &crtc->base)
10735 continue;
1d37b689 10736 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10737 encoder->get_config(encoder, &pipe_config);
10738 }
10739
0e8ffe1b
DV
10740 WARN(crtc->active != active,
10741 "crtc active state doesn't match with hw state "
10742 "(expected %i, found %i)\n", crtc->active, active);
10743
c0b03411
DV
10744 if (active &&
10745 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10746 WARN(1, "pipe state doesn't match!\n");
10747 intel_dump_pipe_config(crtc, &pipe_config,
10748 "[hw state]");
10749 intel_dump_pipe_config(crtc, &crtc->config,
10750 "[sw state]");
10751 }
8af6cf88
DV
10752 }
10753}
10754
91d1b4bd
DV
10755static void
10756check_shared_dpll_state(struct drm_device *dev)
10757{
fbee40df 10758 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10759 struct intel_crtc *crtc;
10760 struct intel_dpll_hw_state dpll_hw_state;
10761 int i;
5358901f
DV
10762
10763 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10764 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10765 int enabled_crtcs = 0, active_crtcs = 0;
10766 bool active;
10767
10768 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10769
10770 DRM_DEBUG_KMS("%s\n", pll->name);
10771
10772 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10773
10774 WARN(pll->active > pll->refcount,
10775 "more active pll users than references: %i vs %i\n",
10776 pll->active, pll->refcount);
10777 WARN(pll->active && !pll->on,
10778 "pll in active use but not on in sw tracking\n");
35c95375
DV
10779 WARN(pll->on && !pll->active,
10780 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10781 WARN(pll->on != active,
10782 "pll on state mismatch (expected %i, found %i)\n",
10783 pll->on, active);
10784
d3fcc808 10785 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10786 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10787 enabled_crtcs++;
10788 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10789 active_crtcs++;
10790 }
10791 WARN(pll->active != active_crtcs,
10792 "pll active crtcs mismatch (expected %i, found %i)\n",
10793 pll->active, active_crtcs);
10794 WARN(pll->refcount != enabled_crtcs,
10795 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10796 pll->refcount, enabled_crtcs);
66e985c0
DV
10797
10798 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10799 sizeof(dpll_hw_state)),
10800 "pll hw state mismatch\n");
5358901f 10801 }
8af6cf88
DV
10802}
10803
91d1b4bd
DV
10804void
10805intel_modeset_check_state(struct drm_device *dev)
10806{
10807 check_connector_state(dev);
10808 check_encoder_state(dev);
10809 check_crtc_state(dev);
10810 check_shared_dpll_state(dev);
10811}
10812
18442d08
VS
10813void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10814 int dotclock)
10815{
10816 /*
10817 * FDI already provided one idea for the dotclock.
10818 * Yell if the encoder disagrees.
10819 */
241bfc38 10820 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10821 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10822 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10823}
10824
80715b2f
VS
10825static void update_scanline_offset(struct intel_crtc *crtc)
10826{
10827 struct drm_device *dev = crtc->base.dev;
10828
10829 /*
10830 * The scanline counter increments at the leading edge of hsync.
10831 *
10832 * On most platforms it starts counting from vtotal-1 on the
10833 * first active line. That means the scanline counter value is
10834 * always one less than what we would expect. Ie. just after
10835 * start of vblank, which also occurs at start of hsync (on the
10836 * last active line), the scanline counter will read vblank_start-1.
10837 *
10838 * On gen2 the scanline counter starts counting from 1 instead
10839 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10840 * to keep the value positive), instead of adding one.
10841 *
10842 * On HSW+ the behaviour of the scanline counter depends on the output
10843 * type. For DP ports it behaves like most other platforms, but on HDMI
10844 * there's an extra 1 line difference. So we need to add two instead of
10845 * one to the value.
10846 */
10847 if (IS_GEN2(dev)) {
10848 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10849 int vtotal;
10850
10851 vtotal = mode->crtc_vtotal;
10852 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10853 vtotal /= 2;
10854
10855 crtc->scanline_offset = vtotal - 1;
10856 } else if (HAS_DDI(dev) &&
10857 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10858 crtc->scanline_offset = 2;
10859 } else
10860 crtc->scanline_offset = 1;
10861}
10862
f30da187
DV
10863static int __intel_set_mode(struct drm_crtc *crtc,
10864 struct drm_display_mode *mode,
10865 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10866{
10867 struct drm_device *dev = crtc->dev;
fbee40df 10868 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10869 struct drm_display_mode *saved_mode;
b8cecdf5 10870 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10871 struct intel_crtc *intel_crtc;
10872 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10873 int ret = 0;
a6778b3c 10874
4b4b9238 10875 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10876 if (!saved_mode)
10877 return -ENOMEM;
a6778b3c 10878
e2e1ed41 10879 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10880 &prepare_pipes, &disable_pipes);
10881
3ac18232 10882 *saved_mode = crtc->mode;
a6778b3c 10883
25c5b266
DV
10884 /* Hack: Because we don't (yet) support global modeset on multiple
10885 * crtcs, we don't keep track of the new mode for more than one crtc.
10886 * Hence simply check whether any bit is set in modeset_pipes in all the
10887 * pieces of code that are not yet converted to deal with mutliple crtcs
10888 * changing their mode at the same time. */
25c5b266 10889 if (modeset_pipes) {
4e53c2e0 10890 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10891 if (IS_ERR(pipe_config)) {
10892 ret = PTR_ERR(pipe_config);
10893 pipe_config = NULL;
10894
3ac18232 10895 goto out;
25c5b266 10896 }
c0b03411
DV
10897 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10898 "[modeset]");
50741abc 10899 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10900 }
a6778b3c 10901
30a970c6
JB
10902 /*
10903 * See if the config requires any additional preparation, e.g.
10904 * to adjust global state with pipes off. We need to do this
10905 * here so we can get the modeset_pipe updated config for the new
10906 * mode set on this crtc. For other crtcs we need to use the
10907 * adjusted_mode bits in the crtc directly.
10908 */
c164f833 10909 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10910 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10911
c164f833
VS
10912 /* may have added more to prepare_pipes than we should */
10913 prepare_pipes &= ~disable_pipes;
10914 }
10915
460da916
DV
10916 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10917 intel_crtc_disable(&intel_crtc->base);
10918
ea9d758d
DV
10919 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10920 if (intel_crtc->base.enabled)
10921 dev_priv->display.crtc_disable(&intel_crtc->base);
10922 }
a6778b3c 10923
6c4c86f5
DV
10924 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10925 * to set it here already despite that we pass it down the callchain.
f6e5b160 10926 */
b8cecdf5 10927 if (modeset_pipes) {
25c5b266 10928 crtc->mode = *mode;
b8cecdf5
DV
10929 /* mode_set/enable/disable functions rely on a correct pipe
10930 * config. */
10931 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10932 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10933
10934 /*
10935 * Calculate and store various constants which
10936 * are later needed by vblank and swap-completion
10937 * timestamping. They are derived from true hwmode.
10938 */
10939 drm_calc_timestamping_constants(crtc,
10940 &pipe_config->adjusted_mode);
b8cecdf5 10941 }
7758a113 10942
ea9d758d
DV
10943 /* Only after disabling all output pipelines that will be changed can we
10944 * update the the output configuration. */
10945 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10946
47fab737
DV
10947 if (dev_priv->display.modeset_global_resources)
10948 dev_priv->display.modeset_global_resources(dev);
10949
a6778b3c
DV
10950 /* Set up the DPLL and any encoders state that needs to adjust or depend
10951 * on the DPLL.
f6e5b160 10952 */
25c5b266 10953 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10954 struct drm_framebuffer *old_fb = crtc->primary->fb;
10955 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10956 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10957
10958 mutex_lock(&dev->struct_mutex);
10959 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10960 obj,
4c10794f
DV
10961 NULL);
10962 if (ret != 0) {
10963 DRM_ERROR("pin & fence failed\n");
10964 mutex_unlock(&dev->struct_mutex);
10965 goto done;
10966 }
2ff8fde1 10967 if (old_fb)
a071fa00 10968 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10969 i915_gem_track_fb(old_obj, obj,
10970 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10971 mutex_unlock(&dev->struct_mutex);
10972
10973 crtc->primary->fb = fb;
10974 crtc->x = x;
10975 crtc->y = y;
10976
4271b753
DV
10977 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10978 x, y, fb);
c0c36b94
CW
10979 if (ret)
10980 goto done;
a6778b3c
DV
10981 }
10982
10983 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10984 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10985 update_scanline_offset(intel_crtc);
10986
25c5b266 10987 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10988 }
a6778b3c 10989
a6778b3c
DV
10990 /* FIXME: add subpixel order */
10991done:
4b4b9238 10992 if (ret && crtc->enabled)
3ac18232 10993 crtc->mode = *saved_mode;
a6778b3c 10994
3ac18232 10995out:
b8cecdf5 10996 kfree(pipe_config);
3ac18232 10997 kfree(saved_mode);
a6778b3c 10998 return ret;
f6e5b160
CW
10999}
11000
e7457a9a
DL
11001static int intel_set_mode(struct drm_crtc *crtc,
11002 struct drm_display_mode *mode,
11003 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11004{
11005 int ret;
11006
11007 ret = __intel_set_mode(crtc, mode, x, y, fb);
11008
11009 if (ret == 0)
11010 intel_modeset_check_state(crtc->dev);
11011
11012 return ret;
11013}
11014
c0c36b94
CW
11015void intel_crtc_restore_mode(struct drm_crtc *crtc)
11016{
f4510a27 11017 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11018}
11019
25c5b266
DV
11020#undef for_each_intel_crtc_masked
11021
d9e55608
DV
11022static void intel_set_config_free(struct intel_set_config *config)
11023{
11024 if (!config)
11025 return;
11026
1aa4b628
DV
11027 kfree(config->save_connector_encoders);
11028 kfree(config->save_encoder_crtcs);
7668851f 11029 kfree(config->save_crtc_enabled);
d9e55608
DV
11030 kfree(config);
11031}
11032
85f9eb71
DV
11033static int intel_set_config_save_state(struct drm_device *dev,
11034 struct intel_set_config *config)
11035{
7668851f 11036 struct drm_crtc *crtc;
85f9eb71
DV
11037 struct drm_encoder *encoder;
11038 struct drm_connector *connector;
11039 int count;
11040
7668851f
VS
11041 config->save_crtc_enabled =
11042 kcalloc(dev->mode_config.num_crtc,
11043 sizeof(bool), GFP_KERNEL);
11044 if (!config->save_crtc_enabled)
11045 return -ENOMEM;
11046
1aa4b628
DV
11047 config->save_encoder_crtcs =
11048 kcalloc(dev->mode_config.num_encoder,
11049 sizeof(struct drm_crtc *), GFP_KERNEL);
11050 if (!config->save_encoder_crtcs)
85f9eb71
DV
11051 return -ENOMEM;
11052
1aa4b628
DV
11053 config->save_connector_encoders =
11054 kcalloc(dev->mode_config.num_connector,
11055 sizeof(struct drm_encoder *), GFP_KERNEL);
11056 if (!config->save_connector_encoders)
85f9eb71
DV
11057 return -ENOMEM;
11058
11059 /* Copy data. Note that driver private data is not affected.
11060 * Should anything bad happen only the expected state is
11061 * restored, not the drivers personal bookkeeping.
11062 */
7668851f 11063 count = 0;
70e1e0ec 11064 for_each_crtc(dev, crtc) {
7668851f
VS
11065 config->save_crtc_enabled[count++] = crtc->enabled;
11066 }
11067
85f9eb71
DV
11068 count = 0;
11069 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11070 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11071 }
11072
11073 count = 0;
11074 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11075 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11076 }
11077
11078 return 0;
11079}
11080
11081static void intel_set_config_restore_state(struct drm_device *dev,
11082 struct intel_set_config *config)
11083{
7668851f 11084 struct intel_crtc *crtc;
9a935856
DV
11085 struct intel_encoder *encoder;
11086 struct intel_connector *connector;
85f9eb71
DV
11087 int count;
11088
7668851f 11089 count = 0;
d3fcc808 11090 for_each_intel_crtc(dev, crtc) {
7668851f 11091 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11092
11093 if (crtc->new_enabled)
11094 crtc->new_config = &crtc->config;
11095 else
11096 crtc->new_config = NULL;
7668851f
VS
11097 }
11098
85f9eb71 11099 count = 0;
b2784e15 11100 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11101 encoder->new_crtc =
11102 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11103 }
11104
11105 count = 0;
9a935856
DV
11106 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11107 connector->new_encoder =
11108 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11109 }
11110}
11111
e3de42b6 11112static bool
2e57f47d 11113is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11114{
11115 int i;
11116
2e57f47d
CW
11117 if (set->num_connectors == 0)
11118 return false;
11119
11120 if (WARN_ON(set->connectors == NULL))
11121 return false;
11122
11123 for (i = 0; i < set->num_connectors; i++)
11124 if (set->connectors[i]->encoder &&
11125 set->connectors[i]->encoder->crtc == set->crtc &&
11126 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11127 return true;
11128
11129 return false;
11130}
11131
5e2b584e
DV
11132static void
11133intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11134 struct intel_set_config *config)
11135{
11136
11137 /* We should be able to check here if the fb has the same properties
11138 * and then just flip_or_move it */
2e57f47d
CW
11139 if (is_crtc_connector_off(set)) {
11140 config->mode_changed = true;
f4510a27 11141 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11142 /*
11143 * If we have no fb, we can only flip as long as the crtc is
11144 * active, otherwise we need a full mode set. The crtc may
11145 * be active if we've only disabled the primary plane, or
11146 * in fastboot situations.
11147 */
f4510a27 11148 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11149 struct intel_crtc *intel_crtc =
11150 to_intel_crtc(set->crtc);
11151
3b150f08 11152 if (intel_crtc->active) {
319d9827
JB
11153 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11154 config->fb_changed = true;
11155 } else {
11156 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11157 config->mode_changed = true;
11158 }
5e2b584e
DV
11159 } else if (set->fb == NULL) {
11160 config->mode_changed = true;
72f4901e 11161 } else if (set->fb->pixel_format !=
f4510a27 11162 set->crtc->primary->fb->pixel_format) {
5e2b584e 11163 config->mode_changed = true;
e3de42b6 11164 } else {
5e2b584e 11165 config->fb_changed = true;
e3de42b6 11166 }
5e2b584e
DV
11167 }
11168
835c5873 11169 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11170 config->fb_changed = true;
11171
11172 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11173 DRM_DEBUG_KMS("modes are different, full mode set\n");
11174 drm_mode_debug_printmodeline(&set->crtc->mode);
11175 drm_mode_debug_printmodeline(set->mode);
11176 config->mode_changed = true;
11177 }
a1d95703
CW
11178
11179 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11180 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11181}
11182
2e431051 11183static int
9a935856
DV
11184intel_modeset_stage_output_state(struct drm_device *dev,
11185 struct drm_mode_set *set,
11186 struct intel_set_config *config)
50f56119 11187{
9a935856
DV
11188 struct intel_connector *connector;
11189 struct intel_encoder *encoder;
7668851f 11190 struct intel_crtc *crtc;
f3f08572 11191 int ro;
50f56119 11192
9abdda74 11193 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11194 * of connectors. For paranoia, double-check this. */
11195 WARN_ON(!set->fb && (set->num_connectors != 0));
11196 WARN_ON(set->fb && (set->num_connectors == 0));
11197
9a935856
DV
11198 list_for_each_entry(connector, &dev->mode_config.connector_list,
11199 base.head) {
11200 /* Otherwise traverse passed in connector list and get encoders
11201 * for them. */
50f56119 11202 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11203 if (set->connectors[ro] == &connector->base) {
0e32b39c 11204 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11205 break;
11206 }
11207 }
11208
9a935856
DV
11209 /* If we disable the crtc, disable all its connectors. Also, if
11210 * the connector is on the changing crtc but not on the new
11211 * connector list, disable it. */
11212 if ((!set->fb || ro == set->num_connectors) &&
11213 connector->base.encoder &&
11214 connector->base.encoder->crtc == set->crtc) {
11215 connector->new_encoder = NULL;
11216
11217 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11218 connector->base.base.id,
c23cc417 11219 connector->base.name);
9a935856
DV
11220 }
11221
11222
11223 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11224 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11225 config->mode_changed = true;
50f56119
DV
11226 }
11227 }
9a935856 11228 /* connector->new_encoder is now updated for all connectors. */
50f56119 11229
9a935856 11230 /* Update crtc of enabled connectors. */
9a935856
DV
11231 list_for_each_entry(connector, &dev->mode_config.connector_list,
11232 base.head) {
7668851f
VS
11233 struct drm_crtc *new_crtc;
11234
9a935856 11235 if (!connector->new_encoder)
50f56119
DV
11236 continue;
11237
9a935856 11238 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11239
11240 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11241 if (set->connectors[ro] == &connector->base)
50f56119
DV
11242 new_crtc = set->crtc;
11243 }
11244
11245 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11246 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11247 new_crtc)) {
5e2b584e 11248 return -EINVAL;
50f56119 11249 }
0e32b39c 11250 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11251
11252 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11253 connector->base.base.id,
c23cc417 11254 connector->base.name,
9a935856
DV
11255 new_crtc->base.id);
11256 }
11257
11258 /* Check for any encoders that needs to be disabled. */
b2784e15 11259 for_each_intel_encoder(dev, encoder) {
5a65f358 11260 int num_connectors = 0;
9a935856
DV
11261 list_for_each_entry(connector,
11262 &dev->mode_config.connector_list,
11263 base.head) {
11264 if (connector->new_encoder == encoder) {
11265 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11266 num_connectors++;
9a935856
DV
11267 }
11268 }
5a65f358
PZ
11269
11270 if (num_connectors == 0)
11271 encoder->new_crtc = NULL;
11272 else if (num_connectors > 1)
11273 return -EINVAL;
11274
9a935856
DV
11275 /* Only now check for crtc changes so we don't miss encoders
11276 * that will be disabled. */
11277 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11278 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11279 config->mode_changed = true;
50f56119
DV
11280 }
11281 }
9a935856 11282 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11283 list_for_each_entry(connector, &dev->mode_config.connector_list,
11284 base.head) {
11285 if (connector->new_encoder)
11286 if (connector->new_encoder != connector->encoder)
11287 connector->encoder = connector->new_encoder;
11288 }
d3fcc808 11289 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11290 crtc->new_enabled = false;
11291
b2784e15 11292 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11293 if (encoder->new_crtc == crtc) {
11294 crtc->new_enabled = true;
11295 break;
11296 }
11297 }
11298
11299 if (crtc->new_enabled != crtc->base.enabled) {
11300 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11301 crtc->new_enabled ? "en" : "dis");
11302 config->mode_changed = true;
11303 }
7bd0a8e7
VS
11304
11305 if (crtc->new_enabled)
11306 crtc->new_config = &crtc->config;
11307 else
11308 crtc->new_config = NULL;
7668851f
VS
11309 }
11310
2e431051
DV
11311 return 0;
11312}
11313
7d00a1f5
VS
11314static void disable_crtc_nofb(struct intel_crtc *crtc)
11315{
11316 struct drm_device *dev = crtc->base.dev;
11317 struct intel_encoder *encoder;
11318 struct intel_connector *connector;
11319
11320 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11321 pipe_name(crtc->pipe));
11322
11323 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11324 if (connector->new_encoder &&
11325 connector->new_encoder->new_crtc == crtc)
11326 connector->new_encoder = NULL;
11327 }
11328
b2784e15 11329 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11330 if (encoder->new_crtc == crtc)
11331 encoder->new_crtc = NULL;
11332 }
11333
11334 crtc->new_enabled = false;
7bd0a8e7 11335 crtc->new_config = NULL;
7d00a1f5
VS
11336}
11337
2e431051
DV
11338static int intel_crtc_set_config(struct drm_mode_set *set)
11339{
11340 struct drm_device *dev;
2e431051
DV
11341 struct drm_mode_set save_set;
11342 struct intel_set_config *config;
11343 int ret;
2e431051 11344
8d3e375e
DV
11345 BUG_ON(!set);
11346 BUG_ON(!set->crtc);
11347 BUG_ON(!set->crtc->helper_private);
2e431051 11348
7e53f3a4
DV
11349 /* Enforce sane interface api - has been abused by the fb helper. */
11350 BUG_ON(!set->mode && set->fb);
11351 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11352
2e431051
DV
11353 if (set->fb) {
11354 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11355 set->crtc->base.id, set->fb->base.id,
11356 (int)set->num_connectors, set->x, set->y);
11357 } else {
11358 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11359 }
11360
11361 dev = set->crtc->dev;
11362
11363 ret = -ENOMEM;
11364 config = kzalloc(sizeof(*config), GFP_KERNEL);
11365 if (!config)
11366 goto out_config;
11367
11368 ret = intel_set_config_save_state(dev, config);
11369 if (ret)
11370 goto out_config;
11371
11372 save_set.crtc = set->crtc;
11373 save_set.mode = &set->crtc->mode;
11374 save_set.x = set->crtc->x;
11375 save_set.y = set->crtc->y;
f4510a27 11376 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11377
11378 /* Compute whether we need a full modeset, only an fb base update or no
11379 * change at all. In the future we might also check whether only the
11380 * mode changed, e.g. for LVDS where we only change the panel fitter in
11381 * such cases. */
11382 intel_set_config_compute_mode_changes(set, config);
11383
9a935856 11384 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11385 if (ret)
11386 goto fail;
11387
5e2b584e 11388 if (config->mode_changed) {
c0c36b94
CW
11389 ret = intel_set_mode(set->crtc, set->mode,
11390 set->x, set->y, set->fb);
5e2b584e 11391 } else if (config->fb_changed) {
3b150f08
MR
11392 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11393
4878cae2
VS
11394 intel_crtc_wait_for_pending_flips(set->crtc);
11395
4f660f49 11396 ret = intel_pipe_set_base(set->crtc,
94352cf9 11397 set->x, set->y, set->fb);
3b150f08
MR
11398
11399 /*
11400 * We need to make sure the primary plane is re-enabled if it
11401 * has previously been turned off.
11402 */
11403 if (!intel_crtc->primary_enabled && ret == 0) {
11404 WARN_ON(!intel_crtc->active);
fdd508a6 11405 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11406 }
11407
7ca51a3a
JB
11408 /*
11409 * In the fastboot case this may be our only check of the
11410 * state after boot. It would be better to only do it on
11411 * the first update, but we don't have a nice way of doing that
11412 * (and really, set_config isn't used much for high freq page
11413 * flipping, so increasing its cost here shouldn't be a big
11414 * deal).
11415 */
d330a953 11416 if (i915.fastboot && ret == 0)
7ca51a3a 11417 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11418 }
11419
2d05eae1 11420 if (ret) {
bf67dfeb
DV
11421 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11422 set->crtc->base.id, ret);
50f56119 11423fail:
2d05eae1 11424 intel_set_config_restore_state(dev, config);
50f56119 11425
7d00a1f5
VS
11426 /*
11427 * HACK: if the pipe was on, but we didn't have a framebuffer,
11428 * force the pipe off to avoid oopsing in the modeset code
11429 * due to fb==NULL. This should only happen during boot since
11430 * we don't yet reconstruct the FB from the hardware state.
11431 */
11432 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11433 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11434
2d05eae1
CW
11435 /* Try to restore the config */
11436 if (config->mode_changed &&
11437 intel_set_mode(save_set.crtc, save_set.mode,
11438 save_set.x, save_set.y, save_set.fb))
11439 DRM_ERROR("failed to restore config after modeset failure\n");
11440 }
50f56119 11441
d9e55608
DV
11442out_config:
11443 intel_set_config_free(config);
50f56119
DV
11444 return ret;
11445}
f6e5b160
CW
11446
11447static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11448 .gamma_set = intel_crtc_gamma_set,
50f56119 11449 .set_config = intel_crtc_set_config,
f6e5b160
CW
11450 .destroy = intel_crtc_destroy,
11451 .page_flip = intel_crtc_page_flip,
11452};
11453
5358901f
DV
11454static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11455 struct intel_shared_dpll *pll,
11456 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11457{
5358901f 11458 uint32_t val;
ee7b9f93 11459
bd2bb1b9
PZ
11460 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11461 return false;
11462
5358901f 11463 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11464 hw_state->dpll = val;
11465 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11466 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11467
11468 return val & DPLL_VCO_ENABLE;
11469}
11470
15bdd4cf
DV
11471static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11472 struct intel_shared_dpll *pll)
11473{
11474 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11475 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11476}
11477
e7b903d2
DV
11478static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11479 struct intel_shared_dpll *pll)
11480{
e7b903d2 11481 /* PCH refclock must be enabled first */
89eff4be 11482 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11483
15bdd4cf
DV
11484 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11485
11486 /* Wait for the clocks to stabilize. */
11487 POSTING_READ(PCH_DPLL(pll->id));
11488 udelay(150);
11489
11490 /* The pixel multiplier can only be updated once the
11491 * DPLL is enabled and the clocks are stable.
11492 *
11493 * So write it again.
11494 */
11495 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11496 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11497 udelay(200);
11498}
11499
11500static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11501 struct intel_shared_dpll *pll)
11502{
11503 struct drm_device *dev = dev_priv->dev;
11504 struct intel_crtc *crtc;
e7b903d2
DV
11505
11506 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11507 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11508 if (intel_crtc_to_shared_dpll(crtc) == pll)
11509 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11510 }
11511
15bdd4cf
DV
11512 I915_WRITE(PCH_DPLL(pll->id), 0);
11513 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11514 udelay(200);
11515}
11516
46edb027
DV
11517static char *ibx_pch_dpll_names[] = {
11518 "PCH DPLL A",
11519 "PCH DPLL B",
11520};
11521
7c74ade1 11522static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11523{
e7b903d2 11524 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11525 int i;
11526
7c74ade1 11527 dev_priv->num_shared_dpll = 2;
ee7b9f93 11528
e72f9fbf 11529 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11530 dev_priv->shared_dplls[i].id = i;
11531 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11532 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11533 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11534 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11535 dev_priv->shared_dplls[i].get_hw_state =
11536 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11537 }
11538}
11539
7c74ade1
DV
11540static void intel_shared_dpll_init(struct drm_device *dev)
11541{
e7b903d2 11542 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11543
9cd86933
DV
11544 if (HAS_DDI(dev))
11545 intel_ddi_pll_init(dev);
11546 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11547 ibx_pch_dpll_init(dev);
11548 else
11549 dev_priv->num_shared_dpll = 0;
11550
11551 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11552}
11553
465c120c
MR
11554static int
11555intel_primary_plane_disable(struct drm_plane *plane)
11556{
11557 struct drm_device *dev = plane->dev;
465c120c
MR
11558 struct intel_crtc *intel_crtc;
11559
11560 if (!plane->fb)
11561 return 0;
11562
11563 BUG_ON(!plane->crtc);
11564
11565 intel_crtc = to_intel_crtc(plane->crtc);
11566
11567 /*
11568 * Even though we checked plane->fb above, it's still possible that
11569 * the primary plane has been implicitly disabled because the crtc
11570 * coordinates given weren't visible, or because we detected
11571 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11572 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11573 * In either case, we need to unpin the FB and let the fb pointer get
11574 * updated, but otherwise we don't need to touch the hardware.
11575 */
11576 if (!intel_crtc->primary_enabled)
11577 goto disable_unpin;
11578
11579 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11580 intel_disable_primary_hw_plane(plane, plane->crtc);
11581
465c120c 11582disable_unpin:
4c34574f 11583 mutex_lock(&dev->struct_mutex);
2ff8fde1 11584 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11585 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11586 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11587 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11588 plane->fb = NULL;
11589
11590 return 0;
11591}
11592
11593static int
11594intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11595 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11596 unsigned int crtc_w, unsigned int crtc_h,
11597 uint32_t src_x, uint32_t src_y,
11598 uint32_t src_w, uint32_t src_h)
11599{
11600 struct drm_device *dev = crtc->dev;
48404c1e 11601 struct drm_i915_private *dev_priv = dev->dev_private;
465c120c 11602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1
MR
11603 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11604 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11605 struct drm_rect dest = {
11606 /* integer pixels */
11607 .x1 = crtc_x,
11608 .y1 = crtc_y,
11609 .x2 = crtc_x + crtc_w,
11610 .y2 = crtc_y + crtc_h,
11611 };
11612 struct drm_rect src = {
11613 /* 16.16 fixed point */
11614 .x1 = src_x,
11615 .y1 = src_y,
11616 .x2 = src_x + src_w,
11617 .y2 = src_y + src_h,
11618 };
11619 const struct drm_rect clip = {
11620 /* integer pixels */
11621 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11622 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11623 };
ce54d85a
SJ
11624 const struct {
11625 int crtc_x, crtc_y;
11626 unsigned int crtc_w, crtc_h;
11627 uint32_t src_x, src_y, src_w, src_h;
11628 } orig = {
11629 .crtc_x = crtc_x,
11630 .crtc_y = crtc_y,
11631 .crtc_w = crtc_w,
11632 .crtc_h = crtc_h,
11633 .src_x = src_x,
11634 .src_y = src_y,
11635 .src_w = src_w,
11636 .src_h = src_h,
11637 };
11638 struct intel_plane *intel_plane = to_intel_plane(plane);
465c120c
MR
11639 bool visible;
11640 int ret;
11641
11642 ret = drm_plane_helper_check_update(plane, crtc, fb,
11643 &src, &dest, &clip,
11644 DRM_PLANE_HELPER_NO_SCALING,
11645 DRM_PLANE_HELPER_NO_SCALING,
11646 false, true, &visible);
11647
11648 if (ret)
11649 return ret;
11650
11651 /*
11652 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11653 * updating the fb pointer, and returning without touching the
11654 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11655 * turn on the display with all planes setup as desired.
11656 */
11657 if (!crtc->enabled) {
4c34574f
MR
11658 mutex_lock(&dev->struct_mutex);
11659
465c120c
MR
11660 /*
11661 * If we already called setplane while the crtc was disabled,
11662 * we may have an fb pinned; unpin it.
11663 */
11664 if (plane->fb)
a071fa00
DV
11665 intel_unpin_fb_obj(old_obj);
11666
11667 i915_gem_track_fb(old_obj, obj,
11668 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11669
11670 /* Pin and return without programming hardware */
4c34574f
MR
11671 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11672 mutex_unlock(&dev->struct_mutex);
11673
11674 return ret;
465c120c
MR
11675 }
11676
11677 intel_crtc_wait_for_pending_flips(crtc);
11678
11679 /*
11680 * If clipping results in a non-visible primary plane, we'll disable
11681 * the primary plane. Note that this is a bit different than what
11682 * happens if userspace explicitly disables the plane by passing fb=0
11683 * because plane->fb still gets set and pinned.
11684 */
11685 if (!visible) {
4c34574f
MR
11686 mutex_lock(&dev->struct_mutex);
11687
465c120c
MR
11688 /*
11689 * Try to pin the new fb first so that we can bail out if we
11690 * fail.
11691 */
11692 if (plane->fb != fb) {
a071fa00 11693 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11694 if (ret) {
11695 mutex_unlock(&dev->struct_mutex);
465c120c 11696 return ret;
4c34574f 11697 }
465c120c
MR
11698 }
11699
a071fa00
DV
11700 i915_gem_track_fb(old_obj, obj,
11701 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11702
465c120c 11703 if (intel_crtc->primary_enabled)
fdd508a6 11704 intel_disable_primary_hw_plane(plane, crtc);
465c120c
MR
11705
11706
11707 if (plane->fb != fb)
11708 if (plane->fb)
a071fa00 11709 intel_unpin_fb_obj(old_obj);
465c120c 11710
4c34574f
MR
11711 mutex_unlock(&dev->struct_mutex);
11712
ce54d85a 11713 } else {
48404c1e
SJ
11714 if (intel_crtc && intel_crtc->active &&
11715 intel_crtc->primary_enabled) {
11716 /*
11717 * FBC does not work on some platforms for rotated
11718 * planes, so disable it when rotation is not 0 and
11719 * update it when rotation is set back to 0.
11720 *
11721 * FIXME: This is redundant with the fbc update done in
11722 * the primary plane enable function except that that
11723 * one is done too late. We eventually need to unify
11724 * this.
11725 */
11726 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11727 dev_priv->fbc.plane == intel_crtc->plane &&
11728 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11729 intel_disable_fbc(dev);
11730 }
11731 }
ce54d85a
SJ
11732 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11733 if (ret)
11734 return ret;
465c120c 11735
ce54d85a
SJ
11736 if (!intel_crtc->primary_enabled)
11737 intel_enable_primary_hw_plane(plane, crtc);
11738 }
465c120c 11739
ce54d85a
SJ
11740 intel_plane->crtc_x = orig.crtc_x;
11741 intel_plane->crtc_y = orig.crtc_y;
11742 intel_plane->crtc_w = orig.crtc_w;
11743 intel_plane->crtc_h = orig.crtc_h;
11744 intel_plane->src_x = orig.src_x;
11745 intel_plane->src_y = orig.src_y;
11746 intel_plane->src_w = orig.src_w;
11747 intel_plane->src_h = orig.src_h;
11748 intel_plane->obj = obj;
465c120c
MR
11749
11750 return 0;
11751}
11752
3d7d6510
MR
11753/* Common destruction function for both primary and cursor planes */
11754static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11755{
11756 struct intel_plane *intel_plane = to_intel_plane(plane);
11757 drm_plane_cleanup(plane);
11758 kfree(intel_plane);
11759}
11760
11761static const struct drm_plane_funcs intel_primary_plane_funcs = {
11762 .update_plane = intel_primary_plane_setplane,
11763 .disable_plane = intel_primary_plane_disable,
3d7d6510 11764 .destroy = intel_plane_destroy,
48404c1e 11765 .set_property = intel_plane_set_property
465c120c
MR
11766};
11767
11768static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11769 int pipe)
11770{
11771 struct intel_plane *primary;
11772 const uint32_t *intel_primary_formats;
11773 int num_formats;
11774
11775 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11776 if (primary == NULL)
11777 return NULL;
11778
11779 primary->can_scale = false;
11780 primary->max_downscale = 1;
11781 primary->pipe = pipe;
11782 primary->plane = pipe;
48404c1e 11783 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
11784 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11785 primary->plane = !pipe;
11786
11787 if (INTEL_INFO(dev)->gen <= 3) {
11788 intel_primary_formats = intel_primary_formats_gen2;
11789 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11790 } else {
11791 intel_primary_formats = intel_primary_formats_gen4;
11792 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11793 }
11794
11795 drm_universal_plane_init(dev, &primary->base, 0,
11796 &intel_primary_plane_funcs,
11797 intel_primary_formats, num_formats,
11798 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
11799
11800 if (INTEL_INFO(dev)->gen >= 4) {
11801 if (!dev->mode_config.rotation_property)
11802 dev->mode_config.rotation_property =
11803 drm_mode_create_rotation_property(dev,
11804 BIT(DRM_ROTATE_0) |
11805 BIT(DRM_ROTATE_180));
11806 if (dev->mode_config.rotation_property)
11807 drm_object_attach_property(&primary->base.base,
11808 dev->mode_config.rotation_property,
11809 primary->rotation);
11810 }
11811
465c120c
MR
11812 return &primary->base;
11813}
11814
3d7d6510
MR
11815static int
11816intel_cursor_plane_disable(struct drm_plane *plane)
11817{
11818 if (!plane->fb)
11819 return 0;
11820
11821 BUG_ON(!plane->crtc);
11822
11823 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11824}
11825
11826static int
11827intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11828 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11829 unsigned int crtc_w, unsigned int crtc_h,
11830 uint32_t src_x, uint32_t src_y,
11831 uint32_t src_w, uint32_t src_h)
11832{
11833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11834 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11835 struct drm_i915_gem_object *obj = intel_fb->obj;
11836 struct drm_rect dest = {
11837 /* integer pixels */
11838 .x1 = crtc_x,
11839 .y1 = crtc_y,
11840 .x2 = crtc_x + crtc_w,
11841 .y2 = crtc_y + crtc_h,
11842 };
11843 struct drm_rect src = {
11844 /* 16.16 fixed point */
11845 .x1 = src_x,
11846 .y1 = src_y,
11847 .x2 = src_x + src_w,
11848 .y2 = src_y + src_h,
11849 };
11850 const struct drm_rect clip = {
11851 /* integer pixels */
1add143c
VS
11852 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11853 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
3d7d6510
MR
11854 };
11855 bool visible;
11856 int ret;
11857
11858 ret = drm_plane_helper_check_update(plane, crtc, fb,
11859 &src, &dest, &clip,
11860 DRM_PLANE_HELPER_NO_SCALING,
11861 DRM_PLANE_HELPER_NO_SCALING,
11862 true, true, &visible);
11863 if (ret)
11864 return ret;
11865
11866 crtc->cursor_x = crtc_x;
11867 crtc->cursor_y = crtc_y;
11868 if (fb != crtc->cursor->fb) {
11869 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11870 } else {
11871 intel_crtc_update_cursor(crtc, visible);
4ed91096
DV
11872
11873 intel_frontbuffer_flip(crtc->dev,
11874 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11875
3d7d6510
MR
11876 return 0;
11877 }
11878}
11879static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11880 .update_plane = intel_cursor_plane_update,
11881 .disable_plane = intel_cursor_plane_disable,
11882 .destroy = intel_plane_destroy,
11883};
11884
11885static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11886 int pipe)
11887{
11888 struct intel_plane *cursor;
11889
11890 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11891 if (cursor == NULL)
11892 return NULL;
11893
11894 cursor->can_scale = false;
11895 cursor->max_downscale = 1;
11896 cursor->pipe = pipe;
11897 cursor->plane = pipe;
11898
11899 drm_universal_plane_init(dev, &cursor->base, 0,
11900 &intel_cursor_plane_funcs,
11901 intel_cursor_formats,
11902 ARRAY_SIZE(intel_cursor_formats),
11903 DRM_PLANE_TYPE_CURSOR);
11904 return &cursor->base;
11905}
11906
b358d0a6 11907static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11908{
fbee40df 11909 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11910 struct intel_crtc *intel_crtc;
3d7d6510
MR
11911 struct drm_plane *primary = NULL;
11912 struct drm_plane *cursor = NULL;
465c120c 11913 int i, ret;
79e53945 11914
955382f3 11915 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11916 if (intel_crtc == NULL)
11917 return;
11918
465c120c 11919 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11920 if (!primary)
11921 goto fail;
11922
11923 cursor = intel_cursor_plane_create(dev, pipe);
11924 if (!cursor)
11925 goto fail;
11926
465c120c 11927 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11928 cursor, &intel_crtc_funcs);
11929 if (ret)
11930 goto fail;
79e53945
JB
11931
11932 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11933 for (i = 0; i < 256; i++) {
11934 intel_crtc->lut_r[i] = i;
11935 intel_crtc->lut_g[i] = i;
11936 intel_crtc->lut_b[i] = i;
11937 }
11938
1f1c2e24
VS
11939 /*
11940 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11941 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11942 */
80824003
JB
11943 intel_crtc->pipe = pipe;
11944 intel_crtc->plane = pipe;
3a77c4c4 11945 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11946 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11947 intel_crtc->plane = !pipe;
80824003
JB
11948 }
11949
4b0e333e
CW
11950 intel_crtc->cursor_base = ~0;
11951 intel_crtc->cursor_cntl = ~0;
dc41c154 11952 intel_crtc->cursor_size = ~0;
4b0e333e 11953
22fd0fab
JB
11954 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11955 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11956 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11957 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11958
79e53945 11959 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11960
11961 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11962 return;
11963
11964fail:
11965 if (primary)
11966 drm_plane_cleanup(primary);
11967 if (cursor)
11968 drm_plane_cleanup(cursor);
11969 kfree(intel_crtc);
79e53945
JB
11970}
11971
752aa88a
JB
11972enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11973{
11974 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11975 struct drm_device *dev = connector->base.dev;
752aa88a 11976
51fd371b 11977 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11978
11979 if (!encoder)
11980 return INVALID_PIPE;
11981
11982 return to_intel_crtc(encoder->crtc)->pipe;
11983}
11984
08d7b3d1 11985int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11986 struct drm_file *file)
08d7b3d1 11987{
08d7b3d1 11988 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 11989 struct drm_crtc *drmmode_crtc;
c05422d5 11990 struct intel_crtc *crtc;
08d7b3d1 11991
1cff8f6b
DV
11992 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11993 return -ENODEV;
08d7b3d1 11994
7707e653 11995 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 11996
7707e653 11997 if (!drmmode_crtc) {
08d7b3d1 11998 DRM_ERROR("no such CRTC id\n");
3f2c2057 11999 return -ENOENT;
08d7b3d1
CW
12000 }
12001
7707e653 12002 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12003 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12004
c05422d5 12005 return 0;
08d7b3d1
CW
12006}
12007
66a9278e 12008static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12009{
66a9278e
DV
12010 struct drm_device *dev = encoder->base.dev;
12011 struct intel_encoder *source_encoder;
79e53945 12012 int index_mask = 0;
79e53945
JB
12013 int entry = 0;
12014
b2784e15 12015 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12016 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12017 index_mask |= (1 << entry);
12018
79e53945
JB
12019 entry++;
12020 }
4ef69c7a 12021
79e53945
JB
12022 return index_mask;
12023}
12024
4d302442
CW
12025static bool has_edp_a(struct drm_device *dev)
12026{
12027 struct drm_i915_private *dev_priv = dev->dev_private;
12028
12029 if (!IS_MOBILE(dev))
12030 return false;
12031
12032 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12033 return false;
12034
e3589908 12035 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12036 return false;
12037
12038 return true;
12039}
12040
ba0fbca4
DL
12041const char *intel_output_name(int output)
12042{
12043 static const char *names[] = {
12044 [INTEL_OUTPUT_UNUSED] = "Unused",
12045 [INTEL_OUTPUT_ANALOG] = "Analog",
12046 [INTEL_OUTPUT_DVO] = "DVO",
12047 [INTEL_OUTPUT_SDVO] = "SDVO",
12048 [INTEL_OUTPUT_LVDS] = "LVDS",
12049 [INTEL_OUTPUT_TVOUT] = "TV",
12050 [INTEL_OUTPUT_HDMI] = "HDMI",
12051 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12052 [INTEL_OUTPUT_EDP] = "eDP",
12053 [INTEL_OUTPUT_DSI] = "DSI",
12054 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12055 };
12056
12057 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12058 return "Invalid";
12059
12060 return names[output];
12061}
12062
84b4e042
JB
12063static bool intel_crt_present(struct drm_device *dev)
12064{
12065 struct drm_i915_private *dev_priv = dev->dev_private;
12066
12067 if (IS_ULT(dev))
12068 return false;
12069
12070 if (IS_CHERRYVIEW(dev))
12071 return false;
12072
12073 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12074 return false;
12075
12076 return true;
12077}
12078
79e53945
JB
12079static void intel_setup_outputs(struct drm_device *dev)
12080{
725e30ad 12081 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12082 struct intel_encoder *encoder;
cb0953d7 12083 bool dpd_is_edp = false;
79e53945 12084
c9093354 12085 intel_lvds_init(dev);
79e53945 12086
84b4e042 12087 if (intel_crt_present(dev))
79935fca 12088 intel_crt_init(dev);
cb0953d7 12089
affa9354 12090 if (HAS_DDI(dev)) {
0e72a5b5
ED
12091 int found;
12092
12093 /* Haswell uses DDI functions to detect digital outputs */
12094 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12095 /* DDI A only supports eDP */
12096 if (found)
12097 intel_ddi_init(dev, PORT_A);
12098
12099 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12100 * register */
12101 found = I915_READ(SFUSE_STRAP);
12102
12103 if (found & SFUSE_STRAP_DDIB_DETECTED)
12104 intel_ddi_init(dev, PORT_B);
12105 if (found & SFUSE_STRAP_DDIC_DETECTED)
12106 intel_ddi_init(dev, PORT_C);
12107 if (found & SFUSE_STRAP_DDID_DETECTED)
12108 intel_ddi_init(dev, PORT_D);
12109 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12110 int found;
5d8a7752 12111 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12112
12113 if (has_edp_a(dev))
12114 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12115
dc0fa718 12116 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12117 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12118 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12119 if (!found)
e2debe91 12120 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12121 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12122 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12123 }
12124
dc0fa718 12125 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12126 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12127
dc0fa718 12128 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12129 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12130
5eb08b69 12131 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12132 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12133
270b3042 12134 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12135 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12136 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12137 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12138 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12139 PORT_B);
12140 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12141 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12142 }
12143
6f6005a5
JB
12144 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12145 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12146 PORT_C);
12147 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12148 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12149 }
19c03924 12150
9418c1f1
VS
12151 if (IS_CHERRYVIEW(dev)) {
12152 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12153 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12154 PORT_D);
12155 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12156 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12157 }
12158 }
12159
3cfca973 12160 intel_dsi_init(dev);
103a196f 12161 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12162 bool found = false;
7d57382e 12163
e2debe91 12164 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12165 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12166 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12167 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12168 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12169 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12170 }
27185ae1 12171
e7281eab 12172 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12173 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12174 }
13520b05
KH
12175
12176 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12177
e2debe91 12178 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12179 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12180 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12181 }
27185ae1 12182
e2debe91 12183 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12184
b01f2c3a
JB
12185 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12186 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12187 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12188 }
e7281eab 12189 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12190 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12191 }
27185ae1 12192
b01f2c3a 12193 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12194 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12195 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12196 } else if (IS_GEN2(dev))
79e53945
JB
12197 intel_dvo_init(dev);
12198
103a196f 12199 if (SUPPORTS_TV(dev))
79e53945
JB
12200 intel_tv_init(dev);
12201
7c8f8a70
RV
12202 intel_edp_psr_init(dev);
12203
b2784e15 12204 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12205 encoder->base.possible_crtcs = encoder->crtc_mask;
12206 encoder->base.possible_clones =
66a9278e 12207 intel_encoder_clones(encoder);
79e53945 12208 }
47356eb6 12209
dde86e2d 12210 intel_init_pch_refclk(dev);
270b3042
DV
12211
12212 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12213}
12214
12215static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12216{
60a5ca01 12217 struct drm_device *dev = fb->dev;
79e53945 12218 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12219
ef2d633e 12220 drm_framebuffer_cleanup(fb);
60a5ca01 12221 mutex_lock(&dev->struct_mutex);
ef2d633e 12222 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12223 drm_gem_object_unreference(&intel_fb->obj->base);
12224 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12225 kfree(intel_fb);
12226}
12227
12228static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12229 struct drm_file *file,
79e53945
JB
12230 unsigned int *handle)
12231{
12232 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12233 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12234
05394f39 12235 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12236}
12237
12238static const struct drm_framebuffer_funcs intel_fb_funcs = {
12239 .destroy = intel_user_framebuffer_destroy,
12240 .create_handle = intel_user_framebuffer_create_handle,
12241};
12242
b5ea642a
DV
12243static int intel_framebuffer_init(struct drm_device *dev,
12244 struct intel_framebuffer *intel_fb,
12245 struct drm_mode_fb_cmd2 *mode_cmd,
12246 struct drm_i915_gem_object *obj)
79e53945 12247{
a57ce0b2 12248 int aligned_height;
a35cdaa0 12249 int pitch_limit;
79e53945
JB
12250 int ret;
12251
dd4916c5
DV
12252 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12253
c16ed4be
CW
12254 if (obj->tiling_mode == I915_TILING_Y) {
12255 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12256 return -EINVAL;
c16ed4be 12257 }
57cd6508 12258
c16ed4be
CW
12259 if (mode_cmd->pitches[0] & 63) {
12260 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12261 mode_cmd->pitches[0]);
57cd6508 12262 return -EINVAL;
c16ed4be 12263 }
57cd6508 12264
a35cdaa0
CW
12265 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12266 pitch_limit = 32*1024;
12267 } else if (INTEL_INFO(dev)->gen >= 4) {
12268 if (obj->tiling_mode)
12269 pitch_limit = 16*1024;
12270 else
12271 pitch_limit = 32*1024;
12272 } else if (INTEL_INFO(dev)->gen >= 3) {
12273 if (obj->tiling_mode)
12274 pitch_limit = 8*1024;
12275 else
12276 pitch_limit = 16*1024;
12277 } else
12278 /* XXX DSPC is limited to 4k tiled */
12279 pitch_limit = 8*1024;
12280
12281 if (mode_cmd->pitches[0] > pitch_limit) {
12282 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12283 obj->tiling_mode ? "tiled" : "linear",
12284 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12285 return -EINVAL;
c16ed4be 12286 }
5d7bd705
VS
12287
12288 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12289 mode_cmd->pitches[0] != obj->stride) {
12290 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12291 mode_cmd->pitches[0], obj->stride);
5d7bd705 12292 return -EINVAL;
c16ed4be 12293 }
5d7bd705 12294
57779d06 12295 /* Reject formats not supported by any plane early. */
308e5bcb 12296 switch (mode_cmd->pixel_format) {
57779d06 12297 case DRM_FORMAT_C8:
04b3924d
VS
12298 case DRM_FORMAT_RGB565:
12299 case DRM_FORMAT_XRGB8888:
12300 case DRM_FORMAT_ARGB8888:
57779d06
VS
12301 break;
12302 case DRM_FORMAT_XRGB1555:
12303 case DRM_FORMAT_ARGB1555:
c16ed4be 12304 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12305 DRM_DEBUG("unsupported pixel format: %s\n",
12306 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12307 return -EINVAL;
c16ed4be 12308 }
57779d06
VS
12309 break;
12310 case DRM_FORMAT_XBGR8888:
12311 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12312 case DRM_FORMAT_XRGB2101010:
12313 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12314 case DRM_FORMAT_XBGR2101010:
12315 case DRM_FORMAT_ABGR2101010:
c16ed4be 12316 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12317 DRM_DEBUG("unsupported pixel format: %s\n",
12318 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12319 return -EINVAL;
c16ed4be 12320 }
b5626747 12321 break;
04b3924d
VS
12322 case DRM_FORMAT_YUYV:
12323 case DRM_FORMAT_UYVY:
12324 case DRM_FORMAT_YVYU:
12325 case DRM_FORMAT_VYUY:
c16ed4be 12326 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12327 DRM_DEBUG("unsupported pixel format: %s\n",
12328 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12329 return -EINVAL;
c16ed4be 12330 }
57cd6508
CW
12331 break;
12332 default:
4ee62c76
VS
12333 DRM_DEBUG("unsupported pixel format: %s\n",
12334 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12335 return -EINVAL;
12336 }
12337
90f9a336
VS
12338 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12339 if (mode_cmd->offsets[0] != 0)
12340 return -EINVAL;
12341
a57ce0b2
JB
12342 aligned_height = intel_align_height(dev, mode_cmd->height,
12343 obj->tiling_mode);
53155c0a
DV
12344 /* FIXME drm helper for size checks (especially planar formats)? */
12345 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12346 return -EINVAL;
12347
c7d73f6a
DV
12348 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12349 intel_fb->obj = obj;
80075d49 12350 intel_fb->obj->framebuffer_references++;
c7d73f6a 12351
79e53945
JB
12352 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12353 if (ret) {
12354 DRM_ERROR("framebuffer init failed %d\n", ret);
12355 return ret;
12356 }
12357
79e53945
JB
12358 return 0;
12359}
12360
79e53945
JB
12361static struct drm_framebuffer *
12362intel_user_framebuffer_create(struct drm_device *dev,
12363 struct drm_file *filp,
308e5bcb 12364 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12365{
05394f39 12366 struct drm_i915_gem_object *obj;
79e53945 12367
308e5bcb
JB
12368 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12369 mode_cmd->handles[0]));
c8725226 12370 if (&obj->base == NULL)
cce13ff7 12371 return ERR_PTR(-ENOENT);
79e53945 12372
d2dff872 12373 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12374}
12375
4520f53a 12376#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12377static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12378{
12379}
12380#endif
12381
79e53945 12382static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12383 .fb_create = intel_user_framebuffer_create,
0632fef6 12384 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12385};
12386
e70236a8
JB
12387/* Set up chip specific display functions */
12388static void intel_init_display(struct drm_device *dev)
12389{
12390 struct drm_i915_private *dev_priv = dev->dev_private;
12391
ee9300bb
DV
12392 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12393 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12394 else if (IS_CHERRYVIEW(dev))
12395 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12396 else if (IS_VALLEYVIEW(dev))
12397 dev_priv->display.find_dpll = vlv_find_best_dpll;
12398 else if (IS_PINEVIEW(dev))
12399 dev_priv->display.find_dpll = pnv_find_best_dpll;
12400 else
12401 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12402
affa9354 12403 if (HAS_DDI(dev)) {
0e8ffe1b 12404 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12405 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12406 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12407 dev_priv->display.crtc_enable = haswell_crtc_enable;
12408 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12409 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12410 dev_priv->display.update_primary_plane =
12411 ironlake_update_primary_plane;
09b4ddf9 12412 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12413 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12414 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12415 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12416 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12417 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12418 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12419 dev_priv->display.update_primary_plane =
12420 ironlake_update_primary_plane;
89b667f8
JB
12421 } else if (IS_VALLEYVIEW(dev)) {
12422 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12423 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12424 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12425 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12426 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12427 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12428 dev_priv->display.update_primary_plane =
12429 i9xx_update_primary_plane;
f564048e 12430 } else {
0e8ffe1b 12431 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12432 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12433 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12434 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12435 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12436 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12437 dev_priv->display.update_primary_plane =
12438 i9xx_update_primary_plane;
f564048e 12439 }
e70236a8 12440
e70236a8 12441 /* Returns the core display clock speed */
25eb05fc
JB
12442 if (IS_VALLEYVIEW(dev))
12443 dev_priv->display.get_display_clock_speed =
12444 valleyview_get_display_clock_speed;
12445 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12446 dev_priv->display.get_display_clock_speed =
12447 i945_get_display_clock_speed;
12448 else if (IS_I915G(dev))
12449 dev_priv->display.get_display_clock_speed =
12450 i915_get_display_clock_speed;
257a7ffc 12451 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12452 dev_priv->display.get_display_clock_speed =
12453 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12454 else if (IS_PINEVIEW(dev))
12455 dev_priv->display.get_display_clock_speed =
12456 pnv_get_display_clock_speed;
e70236a8
JB
12457 else if (IS_I915GM(dev))
12458 dev_priv->display.get_display_clock_speed =
12459 i915gm_get_display_clock_speed;
12460 else if (IS_I865G(dev))
12461 dev_priv->display.get_display_clock_speed =
12462 i865_get_display_clock_speed;
f0f8a9ce 12463 else if (IS_I85X(dev))
e70236a8
JB
12464 dev_priv->display.get_display_clock_speed =
12465 i855_get_display_clock_speed;
12466 else /* 852, 830 */
12467 dev_priv->display.get_display_clock_speed =
12468 i830_get_display_clock_speed;
12469
3bb11b53 12470 if (IS_G4X(dev)) {
e0dac65e 12471 dev_priv->display.write_eld = g4x_write_eld;
3bb11b53
SJ
12472 } else if (IS_GEN5(dev)) {
12473 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12474 dev_priv->display.write_eld = ironlake_write_eld;
12475 } else if (IS_GEN6(dev)) {
12476 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12477 dev_priv->display.write_eld = ironlake_write_eld;
12478 dev_priv->display.modeset_global_resources =
12479 snb_modeset_global_resources;
12480 } else if (IS_IVYBRIDGE(dev)) {
12481 /* FIXME: detect B0+ stepping and use auto training */
12482 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12483 dev_priv->display.write_eld = ironlake_write_eld;
12484 dev_priv->display.modeset_global_resources =
12485 ivb_modeset_global_resources;
12486 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12487 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12488 dev_priv->display.write_eld = haswell_write_eld;
12489 dev_priv->display.modeset_global_resources =
12490 haswell_modeset_global_resources;
30a970c6
JB
12491 } else if (IS_VALLEYVIEW(dev)) {
12492 dev_priv->display.modeset_global_resources =
12493 valleyview_modeset_global_resources;
9ca2fe73 12494 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12495 }
8c9f3aaf
JB
12496
12497 /* Default just returns -ENODEV to indicate unsupported */
12498 dev_priv->display.queue_flip = intel_default_queue_flip;
12499
12500 switch (INTEL_INFO(dev)->gen) {
12501 case 2:
12502 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12503 break;
12504
12505 case 3:
12506 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12507 break;
12508
12509 case 4:
12510 case 5:
12511 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12512 break;
12513
12514 case 6:
12515 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12516 break;
7c9017e5 12517 case 7:
4e0bbc31 12518 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12519 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12520 break;
8c9f3aaf 12521 }
7bd688cd
JN
12522
12523 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12524}
12525
b690e96c
JB
12526/*
12527 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12528 * resume, or other times. This quirk makes sure that's the case for
12529 * affected systems.
12530 */
0206e353 12531static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12532{
12533 struct drm_i915_private *dev_priv = dev->dev_private;
12534
12535 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12536 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12537}
12538
435793df
KP
12539/*
12540 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12541 */
12542static void quirk_ssc_force_disable(struct drm_device *dev)
12543{
12544 struct drm_i915_private *dev_priv = dev->dev_private;
12545 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12546 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12547}
12548
4dca20ef 12549/*
5a15ab5b
CE
12550 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12551 * brightness value
4dca20ef
CE
12552 */
12553static void quirk_invert_brightness(struct drm_device *dev)
12554{
12555 struct drm_i915_private *dev_priv = dev->dev_private;
12556 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12557 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12558}
12559
9c72cc6f
SD
12560/* Some VBT's incorrectly indicate no backlight is present */
12561static void quirk_backlight_present(struct drm_device *dev)
12562{
12563 struct drm_i915_private *dev_priv = dev->dev_private;
12564 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12565 DRM_INFO("applying backlight present quirk\n");
12566}
12567
b690e96c
JB
12568struct intel_quirk {
12569 int device;
12570 int subsystem_vendor;
12571 int subsystem_device;
12572 void (*hook)(struct drm_device *dev);
12573};
12574
5f85f176
EE
12575/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12576struct intel_dmi_quirk {
12577 void (*hook)(struct drm_device *dev);
12578 const struct dmi_system_id (*dmi_id_list)[];
12579};
12580
12581static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12582{
12583 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12584 return 1;
12585}
12586
12587static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12588 {
12589 .dmi_id_list = &(const struct dmi_system_id[]) {
12590 {
12591 .callback = intel_dmi_reverse_brightness,
12592 .ident = "NCR Corporation",
12593 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12594 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12595 },
12596 },
12597 { } /* terminating entry */
12598 },
12599 .hook = quirk_invert_brightness,
12600 },
12601};
12602
c43b5634 12603static struct intel_quirk intel_quirks[] = {
b690e96c 12604 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12605 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12606
b690e96c
JB
12607 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12608 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12609
b690e96c
JB
12610 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12611 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12612
435793df
KP
12613 /* Lenovo U160 cannot use SSC on LVDS */
12614 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12615
12616 /* Sony Vaio Y cannot use SSC on LVDS */
12617 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12618
be505f64
AH
12619 /* Acer Aspire 5734Z must invert backlight brightness */
12620 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12621
12622 /* Acer/eMachines G725 */
12623 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12624
12625 /* Acer/eMachines e725 */
12626 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12627
12628 /* Acer/Packard Bell NCL20 */
12629 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12630
12631 /* Acer Aspire 4736Z */
12632 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12633
12634 /* Acer Aspire 5336 */
12635 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12636
12637 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12638 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c
SD
12639
12640 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12641 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12642
12643 /* HP Chromebook 14 (Celeron 2955U) */
12644 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12645};
12646
12647static void intel_init_quirks(struct drm_device *dev)
12648{
12649 struct pci_dev *d = dev->pdev;
12650 int i;
12651
12652 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12653 struct intel_quirk *q = &intel_quirks[i];
12654
12655 if (d->device == q->device &&
12656 (d->subsystem_vendor == q->subsystem_vendor ||
12657 q->subsystem_vendor == PCI_ANY_ID) &&
12658 (d->subsystem_device == q->subsystem_device ||
12659 q->subsystem_device == PCI_ANY_ID))
12660 q->hook(dev);
12661 }
5f85f176
EE
12662 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12663 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12664 intel_dmi_quirks[i].hook(dev);
12665 }
b690e96c
JB
12666}
12667
9cce37f4
JB
12668/* Disable the VGA plane that we never use */
12669static void i915_disable_vga(struct drm_device *dev)
12670{
12671 struct drm_i915_private *dev_priv = dev->dev_private;
12672 u8 sr1;
766aa1c4 12673 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12674
2b37c616 12675 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12676 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12677 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12678 sr1 = inb(VGA_SR_DATA);
12679 outb(sr1 | 1<<5, VGA_SR_DATA);
12680 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12681 udelay(300);
12682
12683 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12684 POSTING_READ(vga_reg);
12685}
12686
f817586c
DV
12687void intel_modeset_init_hw(struct drm_device *dev)
12688{
a8f78b58
ED
12689 intel_prepare_ddi(dev);
12690
f8bf63fd
VS
12691 if (IS_VALLEYVIEW(dev))
12692 vlv_update_cdclk(dev);
12693
f817586c
DV
12694 intel_init_clock_gating(dev);
12695
8090c6b9 12696 intel_enable_gt_powersave(dev);
f817586c
DV
12697}
12698
7d708ee4
ID
12699void intel_modeset_suspend_hw(struct drm_device *dev)
12700{
12701 intel_suspend_hw(dev);
12702}
12703
79e53945
JB
12704void intel_modeset_init(struct drm_device *dev)
12705{
652c393a 12706 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12707 int sprite, ret;
8cc87b75 12708 enum pipe pipe;
46f297fb 12709 struct intel_crtc *crtc;
79e53945
JB
12710
12711 drm_mode_config_init(dev);
12712
12713 dev->mode_config.min_width = 0;
12714 dev->mode_config.min_height = 0;
12715
019d96cb
DA
12716 dev->mode_config.preferred_depth = 24;
12717 dev->mode_config.prefer_shadow = 1;
12718
e6ecefaa 12719 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12720
b690e96c
JB
12721 intel_init_quirks(dev);
12722
1fa61106
ED
12723 intel_init_pm(dev);
12724
e3c74757
BW
12725 if (INTEL_INFO(dev)->num_pipes == 0)
12726 return;
12727
e70236a8
JB
12728 intel_init_display(dev);
12729
a6c45cf0
CW
12730 if (IS_GEN2(dev)) {
12731 dev->mode_config.max_width = 2048;
12732 dev->mode_config.max_height = 2048;
12733 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12734 dev->mode_config.max_width = 4096;
12735 dev->mode_config.max_height = 4096;
79e53945 12736 } else {
a6c45cf0
CW
12737 dev->mode_config.max_width = 8192;
12738 dev->mode_config.max_height = 8192;
79e53945 12739 }
068be561 12740
dc41c154
VS
12741 if (IS_845G(dev) || IS_I865G(dev)) {
12742 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12743 dev->mode_config.cursor_height = 1023;
12744 } else if (IS_GEN2(dev)) {
068be561
DL
12745 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12746 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12747 } else {
12748 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12749 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12750 }
12751
5d4545ae 12752 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12753
28c97730 12754 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12755 INTEL_INFO(dev)->num_pipes,
12756 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12757
055e393f 12758 for_each_pipe(dev_priv, pipe) {
8cc87b75 12759 intel_crtc_init(dev, pipe);
1fe47785
DL
12760 for_each_sprite(pipe, sprite) {
12761 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12762 if (ret)
06da8da2 12763 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12764 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12765 }
79e53945
JB
12766 }
12767
f42bb70d
JB
12768 intel_init_dpio(dev);
12769
e72f9fbf 12770 intel_shared_dpll_init(dev);
ee7b9f93 12771
9cce37f4
JB
12772 /* Just disable it once at startup */
12773 i915_disable_vga(dev);
79e53945 12774 intel_setup_outputs(dev);
11be49eb
CW
12775
12776 /* Just in case the BIOS is doing something questionable. */
12777 intel_disable_fbc(dev);
fa9fa083 12778
6e9f798d 12779 drm_modeset_lock_all(dev);
fa9fa083 12780 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12781 drm_modeset_unlock_all(dev);
46f297fb 12782
d3fcc808 12783 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12784 if (!crtc->active)
12785 continue;
12786
46f297fb 12787 /*
46f297fb
JB
12788 * Note that reserving the BIOS fb up front prevents us
12789 * from stuffing other stolen allocations like the ring
12790 * on top. This prevents some ugliness at boot time, and
12791 * can even allow for smooth boot transitions if the BIOS
12792 * fb is large enough for the active pipe configuration.
12793 */
12794 if (dev_priv->display.get_plane_config) {
12795 dev_priv->display.get_plane_config(crtc,
12796 &crtc->plane_config);
12797 /*
12798 * If the fb is shared between multiple heads, we'll
12799 * just get the first one.
12800 */
484b41dd 12801 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12802 }
46f297fb 12803 }
2c7111db
CW
12804}
12805
7fad798e
DV
12806static void intel_enable_pipe_a(struct drm_device *dev)
12807{
12808 struct intel_connector *connector;
12809 struct drm_connector *crt = NULL;
12810 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 12811 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
12812
12813 /* We can't just switch on the pipe A, we need to set things up with a
12814 * proper mode and output configuration. As a gross hack, enable pipe A
12815 * by enabling the load detect pipe once. */
12816 list_for_each_entry(connector,
12817 &dev->mode_config.connector_list,
12818 base.head) {
12819 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12820 crt = &connector->base;
12821 break;
12822 }
12823 }
12824
12825 if (!crt)
12826 return;
12827
208bf9fd
VS
12828 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12829 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
12830}
12831
fa555837
DV
12832static bool
12833intel_check_plane_mapping(struct intel_crtc *crtc)
12834{
7eb552ae
BW
12835 struct drm_device *dev = crtc->base.dev;
12836 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12837 u32 reg, val;
12838
7eb552ae 12839 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12840 return true;
12841
12842 reg = DSPCNTR(!crtc->plane);
12843 val = I915_READ(reg);
12844
12845 if ((val & DISPLAY_PLANE_ENABLE) &&
12846 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12847 return false;
12848
12849 return true;
12850}
12851
24929352
DV
12852static void intel_sanitize_crtc(struct intel_crtc *crtc)
12853{
12854 struct drm_device *dev = crtc->base.dev;
12855 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12856 u32 reg;
24929352 12857
24929352 12858 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12859 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12860 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12861
d3eaf884
VS
12862 /* restore vblank interrupts to correct state */
12863 if (crtc->active)
12864 drm_vblank_on(dev, crtc->pipe);
12865 else
12866 drm_vblank_off(dev, crtc->pipe);
12867
24929352 12868 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12869 * disable the crtc (and hence change the state) if it is wrong. Note
12870 * that gen4+ has a fixed plane -> pipe mapping. */
12871 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12872 struct intel_connector *connector;
12873 bool plane;
12874
24929352
DV
12875 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12876 crtc->base.base.id);
12877
12878 /* Pipe has the wrong plane attached and the plane is active.
12879 * Temporarily change the plane mapping and disable everything
12880 * ... */
12881 plane = crtc->plane;
12882 crtc->plane = !plane;
9c8958bc 12883 crtc->primary_enabled = true;
24929352
DV
12884 dev_priv->display.crtc_disable(&crtc->base);
12885 crtc->plane = plane;
12886
12887 /* ... and break all links. */
12888 list_for_each_entry(connector, &dev->mode_config.connector_list,
12889 base.head) {
12890 if (connector->encoder->base.crtc != &crtc->base)
12891 continue;
12892
7f1950fb
EE
12893 connector->base.dpms = DRM_MODE_DPMS_OFF;
12894 connector->base.encoder = NULL;
24929352 12895 }
7f1950fb
EE
12896 /* multiple connectors may have the same encoder:
12897 * handle them and break crtc link separately */
12898 list_for_each_entry(connector, &dev->mode_config.connector_list,
12899 base.head)
12900 if (connector->encoder->base.crtc == &crtc->base) {
12901 connector->encoder->base.crtc = NULL;
12902 connector->encoder->connectors_active = false;
12903 }
24929352
DV
12904
12905 WARN_ON(crtc->active);
12906 crtc->base.enabled = false;
12907 }
24929352 12908
7fad798e
DV
12909 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12910 crtc->pipe == PIPE_A && !crtc->active) {
12911 /* BIOS forgot to enable pipe A, this mostly happens after
12912 * resume. Force-enable the pipe to fix this, the update_dpms
12913 * call below we restore the pipe to the right state, but leave
12914 * the required bits on. */
12915 intel_enable_pipe_a(dev);
12916 }
12917
24929352
DV
12918 /* Adjust the state of the output pipe according to whether we
12919 * have active connectors/encoders. */
12920 intel_crtc_update_dpms(&crtc->base);
12921
12922 if (crtc->active != crtc->base.enabled) {
12923 struct intel_encoder *encoder;
12924
12925 /* This can happen either due to bugs in the get_hw_state
12926 * functions or because the pipe is force-enabled due to the
12927 * pipe A quirk. */
12928 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12929 crtc->base.base.id,
12930 crtc->base.enabled ? "enabled" : "disabled",
12931 crtc->active ? "enabled" : "disabled");
12932
12933 crtc->base.enabled = crtc->active;
12934
12935 /* Because we only establish the connector -> encoder ->
12936 * crtc links if something is active, this means the
12937 * crtc is now deactivated. Break the links. connector
12938 * -> encoder links are only establish when things are
12939 * actually up, hence no need to break them. */
12940 WARN_ON(crtc->active);
12941
12942 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12943 WARN_ON(encoder->connectors_active);
12944 encoder->base.crtc = NULL;
12945 }
12946 }
c5ab3bc0
DV
12947
12948 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12949 /*
12950 * We start out with underrun reporting disabled to avoid races.
12951 * For correct bookkeeping mark this on active crtcs.
12952 *
c5ab3bc0
DV
12953 * Also on gmch platforms we dont have any hardware bits to
12954 * disable the underrun reporting. Which means we need to start
12955 * out with underrun reporting disabled also on inactive pipes,
12956 * since otherwise we'll complain about the garbage we read when
12957 * e.g. coming up after runtime pm.
12958 *
4cc31489
DV
12959 * No protection against concurrent access is required - at
12960 * worst a fifo underrun happens which also sets this to false.
12961 */
12962 crtc->cpu_fifo_underrun_disabled = true;
12963 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12964
12965 update_scanline_offset(crtc);
4cc31489 12966 }
24929352
DV
12967}
12968
12969static void intel_sanitize_encoder(struct intel_encoder *encoder)
12970{
12971 struct intel_connector *connector;
12972 struct drm_device *dev = encoder->base.dev;
12973
12974 /* We need to check both for a crtc link (meaning that the
12975 * encoder is active and trying to read from a pipe) and the
12976 * pipe itself being active. */
12977 bool has_active_crtc = encoder->base.crtc &&
12978 to_intel_crtc(encoder->base.crtc)->active;
12979
12980 if (encoder->connectors_active && !has_active_crtc) {
12981 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12982 encoder->base.base.id,
8e329a03 12983 encoder->base.name);
24929352
DV
12984
12985 /* Connector is active, but has no active pipe. This is
12986 * fallout from our resume register restoring. Disable
12987 * the encoder manually again. */
12988 if (encoder->base.crtc) {
12989 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12990 encoder->base.base.id,
8e329a03 12991 encoder->base.name);
24929352 12992 encoder->disable(encoder);
a62d1497
VS
12993 if (encoder->post_disable)
12994 encoder->post_disable(encoder);
24929352 12995 }
7f1950fb
EE
12996 encoder->base.crtc = NULL;
12997 encoder->connectors_active = false;
24929352
DV
12998
12999 /* Inconsistent output/port/pipe state happens presumably due to
13000 * a bug in one of the get_hw_state functions. Or someplace else
13001 * in our code, like the register restore mess on resume. Clamp
13002 * things to off as a safer default. */
13003 list_for_each_entry(connector,
13004 &dev->mode_config.connector_list,
13005 base.head) {
13006 if (connector->encoder != encoder)
13007 continue;
7f1950fb
EE
13008 connector->base.dpms = DRM_MODE_DPMS_OFF;
13009 connector->base.encoder = NULL;
24929352
DV
13010 }
13011 }
13012 /* Enabled encoders without active connectors will be fixed in
13013 * the crtc fixup. */
13014}
13015
04098753 13016void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13017{
13018 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13019 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13020
04098753
ID
13021 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13022 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13023 i915_disable_vga(dev);
13024 }
13025}
13026
13027void i915_redisable_vga(struct drm_device *dev)
13028{
13029 struct drm_i915_private *dev_priv = dev->dev_private;
13030
8dc8a27c
PZ
13031 /* This function can be called both from intel_modeset_setup_hw_state or
13032 * at a very early point in our resume sequence, where the power well
13033 * structures are not yet restored. Since this function is at a very
13034 * paranoid "someone might have enabled VGA while we were not looking"
13035 * level, just check if the power well is enabled instead of trying to
13036 * follow the "don't touch the power well if we don't need it" policy
13037 * the rest of the driver uses. */
04098753 13038 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13039 return;
13040
04098753 13041 i915_redisable_vga_power_on(dev);
0fde901f
KM
13042}
13043
98ec7739
VS
13044static bool primary_get_hw_state(struct intel_crtc *crtc)
13045{
13046 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13047
13048 if (!crtc->active)
13049 return false;
13050
13051 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13052}
13053
30e984df 13054static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13055{
13056 struct drm_i915_private *dev_priv = dev->dev_private;
13057 enum pipe pipe;
24929352
DV
13058 struct intel_crtc *crtc;
13059 struct intel_encoder *encoder;
13060 struct intel_connector *connector;
5358901f 13061 int i;
24929352 13062
d3fcc808 13063 for_each_intel_crtc(dev, crtc) {
88adfff1 13064 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13065
9953599b
DV
13066 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13067
0e8ffe1b
DV
13068 crtc->active = dev_priv->display.get_pipe_config(crtc,
13069 &crtc->config);
24929352
DV
13070
13071 crtc->base.enabled = crtc->active;
98ec7739 13072 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13073
13074 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13075 crtc->base.base.id,
13076 crtc->active ? "enabled" : "disabled");
13077 }
13078
5358901f
DV
13079 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13080 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13081
13082 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13083 pll->active = 0;
d3fcc808 13084 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13085 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13086 pll->active++;
13087 }
13088 pll->refcount = pll->active;
13089
35c95375
DV
13090 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13091 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13092
13093 if (pll->refcount)
13094 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13095 }
13096
b2784e15 13097 for_each_intel_encoder(dev, encoder) {
24929352
DV
13098 pipe = 0;
13099
13100 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13101 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13102 encoder->base.crtc = &crtc->base;
1d37b689 13103 encoder->get_config(encoder, &crtc->config);
24929352
DV
13104 } else {
13105 encoder->base.crtc = NULL;
13106 }
13107
13108 encoder->connectors_active = false;
6f2bcceb 13109 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13110 encoder->base.base.id,
8e329a03 13111 encoder->base.name,
24929352 13112 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13113 pipe_name(pipe));
24929352
DV
13114 }
13115
13116 list_for_each_entry(connector, &dev->mode_config.connector_list,
13117 base.head) {
13118 if (connector->get_hw_state(connector)) {
13119 connector->base.dpms = DRM_MODE_DPMS_ON;
13120 connector->encoder->connectors_active = true;
13121 connector->base.encoder = &connector->encoder->base;
13122 } else {
13123 connector->base.dpms = DRM_MODE_DPMS_OFF;
13124 connector->base.encoder = NULL;
13125 }
13126 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13127 connector->base.base.id,
c23cc417 13128 connector->base.name,
24929352
DV
13129 connector->base.encoder ? "enabled" : "disabled");
13130 }
30e984df
DV
13131}
13132
13133/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13134 * and i915 state tracking structures. */
13135void intel_modeset_setup_hw_state(struct drm_device *dev,
13136 bool force_restore)
13137{
13138 struct drm_i915_private *dev_priv = dev->dev_private;
13139 enum pipe pipe;
30e984df
DV
13140 struct intel_crtc *crtc;
13141 struct intel_encoder *encoder;
35c95375 13142 int i;
30e984df
DV
13143
13144 intel_modeset_readout_hw_state(dev);
24929352 13145
babea61d
JB
13146 /*
13147 * Now that we have the config, copy it to each CRTC struct
13148 * Note that this could go away if we move to using crtc_config
13149 * checking everywhere.
13150 */
d3fcc808 13151 for_each_intel_crtc(dev, crtc) {
d330a953 13152 if (crtc->active && i915.fastboot) {
f6a83288 13153 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13154 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13155 crtc->base.base.id);
13156 drm_mode_debug_printmodeline(&crtc->base.mode);
13157 }
13158 }
13159
24929352 13160 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13161 for_each_intel_encoder(dev, encoder) {
24929352
DV
13162 intel_sanitize_encoder(encoder);
13163 }
13164
055e393f 13165 for_each_pipe(dev_priv, pipe) {
24929352
DV
13166 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13167 intel_sanitize_crtc(crtc);
c0b03411 13168 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13169 }
9a935856 13170
35c95375
DV
13171 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13172 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13173
13174 if (!pll->on || pll->active)
13175 continue;
13176
13177 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13178
13179 pll->disable(dev_priv, pll);
13180 pll->on = false;
13181 }
13182
96f90c54 13183 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13184 ilk_wm_get_hw_state(dev);
13185
45e2b5f6 13186 if (force_restore) {
7d0bc1ea
VS
13187 i915_redisable_vga(dev);
13188
f30da187
DV
13189 /*
13190 * We need to use raw interfaces for restoring state to avoid
13191 * checking (bogus) intermediate states.
13192 */
055e393f 13193 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13194 struct drm_crtc *crtc =
13195 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13196
13197 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13198 crtc->primary->fb);
45e2b5f6
DV
13199 }
13200 } else {
13201 intel_modeset_update_staged_output_state(dev);
13202 }
8af6cf88
DV
13203
13204 intel_modeset_check_state(dev);
2c7111db
CW
13205}
13206
13207void intel_modeset_gem_init(struct drm_device *dev)
13208{
484b41dd 13209 struct drm_crtc *c;
2ff8fde1 13210 struct drm_i915_gem_object *obj;
484b41dd 13211
ae48434c
ID
13212 mutex_lock(&dev->struct_mutex);
13213 intel_init_gt_powersave(dev);
13214 mutex_unlock(&dev->struct_mutex);
13215
1833b134 13216 intel_modeset_init_hw(dev);
02e792fb
DV
13217
13218 intel_setup_overlay(dev);
484b41dd
JB
13219
13220 /*
13221 * Make sure any fbs we allocated at startup are properly
13222 * pinned & fenced. When we do the allocation it's too early
13223 * for this.
13224 */
13225 mutex_lock(&dev->struct_mutex);
70e1e0ec 13226 for_each_crtc(dev, c) {
2ff8fde1
MR
13227 obj = intel_fb_obj(c->primary->fb);
13228 if (obj == NULL)
484b41dd
JB
13229 continue;
13230
2ff8fde1 13231 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13232 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13233 to_intel_crtc(c)->pipe);
66e514c1
DA
13234 drm_framebuffer_unreference(c->primary->fb);
13235 c->primary->fb = NULL;
484b41dd
JB
13236 }
13237 }
13238 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13239}
13240
4932e2c3
ID
13241void intel_connector_unregister(struct intel_connector *intel_connector)
13242{
13243 struct drm_connector *connector = &intel_connector->base;
13244
13245 intel_panel_destroy_backlight(connector);
34ea3d38 13246 drm_connector_unregister(connector);
4932e2c3
ID
13247}
13248
79e53945
JB
13249void intel_modeset_cleanup(struct drm_device *dev)
13250{
652c393a 13251 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13252 struct drm_connector *connector;
652c393a 13253
fd0c0642
DV
13254 /*
13255 * Interrupts and polling as the first thing to avoid creating havoc.
13256 * Too much stuff here (turning of rps, connectors, ...) would
13257 * experience fancy races otherwise.
13258 */
13259 drm_irq_uninstall(dev);
1d0d343a 13260 intel_hpd_cancel_work(dev_priv);
eb21b92b
JB
13261 dev_priv->pm._irqs_disabled = true;
13262
fd0c0642
DV
13263 /*
13264 * Due to the hpd irq storm handling the hotplug work can re-arm the
13265 * poll handlers. Hence disable polling after hpd handling is shut down.
13266 */
f87ea761 13267 drm_kms_helper_poll_fini(dev);
fd0c0642 13268
652c393a
JB
13269 mutex_lock(&dev->struct_mutex);
13270
723bfd70
JB
13271 intel_unregister_dsm_handler();
13272
973d04f9 13273 intel_disable_fbc(dev);
e70236a8 13274
8090c6b9 13275 intel_disable_gt_powersave(dev);
0cdab21f 13276
930ebb46
DV
13277 ironlake_teardown_rc6(dev);
13278
69341a5e
KH
13279 mutex_unlock(&dev->struct_mutex);
13280
1630fe75
CW
13281 /* flush any delayed tasks or pending work */
13282 flush_scheduled_work();
13283
db31af1d
JN
13284 /* destroy the backlight and sysfs files before encoders/connectors */
13285 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13286 struct intel_connector *intel_connector;
13287
13288 intel_connector = to_intel_connector(connector);
13289 intel_connector->unregister(intel_connector);
db31af1d 13290 }
d9255d57 13291
79e53945 13292 drm_mode_config_cleanup(dev);
4d7bb011
DV
13293
13294 intel_cleanup_overlay(dev);
ae48434c
ID
13295
13296 mutex_lock(&dev->struct_mutex);
13297 intel_cleanup_gt_powersave(dev);
13298 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13299}
13300
f1c79df3
ZW
13301/*
13302 * Return which encoder is currently attached for connector.
13303 */
df0e9248 13304struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13305{
df0e9248
CW
13306 return &intel_attached_encoder(connector)->base;
13307}
f1c79df3 13308
df0e9248
CW
13309void intel_connector_attach_encoder(struct intel_connector *connector,
13310 struct intel_encoder *encoder)
13311{
13312 connector->encoder = encoder;
13313 drm_mode_connector_attach_encoder(&connector->base,
13314 &encoder->base);
79e53945 13315}
28d52043
DA
13316
13317/*
13318 * set vga decode state - true == enable VGA decode
13319 */
13320int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13321{
13322 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13323 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13324 u16 gmch_ctrl;
13325
75fa041d
CW
13326 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13327 DRM_ERROR("failed to read control word\n");
13328 return -EIO;
13329 }
13330
c0cc8a55
CW
13331 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13332 return 0;
13333
28d52043
DA
13334 if (state)
13335 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13336 else
13337 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13338
13339 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13340 DRM_ERROR("failed to write control word\n");
13341 return -EIO;
13342 }
13343
28d52043
DA
13344 return 0;
13345}
c4a1d9e4 13346
c4a1d9e4 13347struct intel_display_error_state {
ff57f1b0
PZ
13348
13349 u32 power_well_driver;
13350
63b66e5b
CW
13351 int num_transcoders;
13352
c4a1d9e4
CW
13353 struct intel_cursor_error_state {
13354 u32 control;
13355 u32 position;
13356 u32 base;
13357 u32 size;
52331309 13358 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13359
13360 struct intel_pipe_error_state {
ddf9c536 13361 bool power_domain_on;
c4a1d9e4 13362 u32 source;
f301b1e1 13363 u32 stat;
52331309 13364 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13365
13366 struct intel_plane_error_state {
13367 u32 control;
13368 u32 stride;
13369 u32 size;
13370 u32 pos;
13371 u32 addr;
13372 u32 surface;
13373 u32 tile_offset;
52331309 13374 } plane[I915_MAX_PIPES];
63b66e5b
CW
13375
13376 struct intel_transcoder_error_state {
ddf9c536 13377 bool power_domain_on;
63b66e5b
CW
13378 enum transcoder cpu_transcoder;
13379
13380 u32 conf;
13381
13382 u32 htotal;
13383 u32 hblank;
13384 u32 hsync;
13385 u32 vtotal;
13386 u32 vblank;
13387 u32 vsync;
13388 } transcoder[4];
c4a1d9e4
CW
13389};
13390
13391struct intel_display_error_state *
13392intel_display_capture_error_state(struct drm_device *dev)
13393{
fbee40df 13394 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13395 struct intel_display_error_state *error;
63b66e5b
CW
13396 int transcoders[] = {
13397 TRANSCODER_A,
13398 TRANSCODER_B,
13399 TRANSCODER_C,
13400 TRANSCODER_EDP,
13401 };
c4a1d9e4
CW
13402 int i;
13403
63b66e5b
CW
13404 if (INTEL_INFO(dev)->num_pipes == 0)
13405 return NULL;
13406
9d1cb914 13407 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13408 if (error == NULL)
13409 return NULL;
13410
190be112 13411 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13412 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13413
055e393f 13414 for_each_pipe(dev_priv, i) {
ddf9c536 13415 error->pipe[i].power_domain_on =
bfafe93a
ID
13416 intel_display_power_enabled_unlocked(dev_priv,
13417 POWER_DOMAIN_PIPE(i));
ddf9c536 13418 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13419 continue;
13420
5efb3e28
VS
13421 error->cursor[i].control = I915_READ(CURCNTR(i));
13422 error->cursor[i].position = I915_READ(CURPOS(i));
13423 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13424
13425 error->plane[i].control = I915_READ(DSPCNTR(i));
13426 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13427 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13428 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13429 error->plane[i].pos = I915_READ(DSPPOS(i));
13430 }
ca291363
PZ
13431 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13432 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13433 if (INTEL_INFO(dev)->gen >= 4) {
13434 error->plane[i].surface = I915_READ(DSPSURF(i));
13435 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13436 }
13437
c4a1d9e4 13438 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13439
3abfce77 13440 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13441 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13442 }
13443
13444 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13445 if (HAS_DDI(dev_priv->dev))
13446 error->num_transcoders++; /* Account for eDP. */
13447
13448 for (i = 0; i < error->num_transcoders; i++) {
13449 enum transcoder cpu_transcoder = transcoders[i];
13450
ddf9c536 13451 error->transcoder[i].power_domain_on =
bfafe93a 13452 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13453 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13454 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13455 continue;
13456
63b66e5b
CW
13457 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13458
13459 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13460 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13461 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13462 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13463 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13464 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13465 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13466 }
13467
13468 return error;
13469}
13470
edc3d884
MK
13471#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13472
c4a1d9e4 13473void
edc3d884 13474intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13475 struct drm_device *dev,
13476 struct intel_display_error_state *error)
13477{
055e393f 13478 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13479 int i;
13480
63b66e5b
CW
13481 if (!error)
13482 return;
13483
edc3d884 13484 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13485 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13486 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13487 error->power_well_driver);
055e393f 13488 for_each_pipe(dev_priv, i) {
edc3d884 13489 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13490 err_printf(m, " Power: %s\n",
13491 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13492 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13493 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13494
13495 err_printf(m, "Plane [%d]:\n", i);
13496 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13497 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13498 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13499 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13500 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13501 }
4b71a570 13502 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13503 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13504 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13505 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13506 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13507 }
13508
edc3d884
MK
13509 err_printf(m, "Cursor [%d]:\n", i);
13510 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13511 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13512 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13513 }
63b66e5b
CW
13514
13515 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13516 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13517 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13518 err_printf(m, " Power: %s\n",
13519 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13520 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13521 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13522 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13523 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13524 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13525 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13526 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13527 }
c4a1d9e4 13528}
e2fcdaa9
VS
13529
13530void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13531{
13532 struct intel_crtc *crtc;
13533
13534 for_each_intel_crtc(dev, crtc) {
13535 struct intel_unpin_work *work;
13536 unsigned long irqflags;
13537
13538 spin_lock_irqsave(&dev->event_lock, irqflags);
13539
13540 work = crtc->unpin_work;
13541
13542 if (work && work->event &&
13543 work->event->base.file_priv == file) {
13544 kfree(work->event);
13545 work->event = NULL;
13546 }
13547
13548 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13549 }
13550}
This page took 2.792588 seconds and 5 git commands to generate.