drm/i915/skl: i915_swizzle_info gen9 fix
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
1ae0d137 103static void chv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415{
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
1b894b59
CW
426static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427 int refclk)
2c07245f 428{
b91ad0ec 429 struct drm_device *dev = crtc->dev;
2c07245f 430 const intel_limit_t *limit;
b91ad0ec
ZW
431
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 433 if (intel_is_dual_link_lvds(dev)) {
1b894b59 434 if (refclk == 100000)
b91ad0ec
ZW
435 limit = &intel_limits_ironlake_dual_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_dual_lvds;
438 } else {
1b894b59 439 if (refclk == 100000)
b91ad0ec
ZW
440 limit = &intel_limits_ironlake_single_lvds_100m;
441 else
442 limit = &intel_limits_ironlake_single_lvds;
443 }
c6bb3538 444 } else
b91ad0ec 445 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
446
447 return limit;
448}
449
044c7c41
ML
450static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451{
452 struct drm_device *dev = crtc->dev;
044c7c41
ML
453 const intel_limit_t *limit;
454
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 456 if (intel_is_dual_link_lvds(dev))
e4b36699 457 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 458 else
e4b36699 459 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 462 limit = &intel_limits_g4x_hdmi;
044c7c41 463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 464 limit = &intel_limits_g4x_sdvo;
044c7c41 465 } else /* The option is for other outputs */
e4b36699 466 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
467
468 return limit;
469}
470
1b894b59 471static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
472{
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
475
bad720ff 476 if (HAS_PCH_SPLIT(dev))
1b894b59 477 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 478 else if (IS_G4X(dev)) {
044c7c41 479 limit = intel_g4x_limit(crtc);
f2b115e6 480 } else if (IS_PINEVIEW(dev)) {
2177832f 481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 482 limit = &intel_limits_pineview_lvds;
2177832f 483 else
f2b115e6 484 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
a0c4da24 487 } else if (IS_VALLEYVIEW(dev)) {
dc730512 488 limit = &intel_limits_vlv;
a6c45cf0
CW
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
492 else
493 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
494 } else {
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 496 limit = &intel_limits_i8xx_lvds;
5d536e28 497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 498 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
499 else
500 limit = &intel_limits_i8xx_dac;
79e53945
JB
501 }
502 return limit;
503}
504
f2b115e6
AJ
505/* m1 is reserved as 0 in Pineview, n is a ring counter */
506static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 507{
2177832f
SL
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
511 return;
fb03ac01
VS
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
514}
515
7429e9d4
DV
516static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517{
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519}
520
ac58c3f0 521static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 522{
7429e9d4 523 clock->m = i9xx_dpll_compute_m(clock);
79e53945 524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
529}
530
ef9348c8
CML
531static void chv_clock(int refclk, intel_clock_t *clock)
532{
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return;
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538 clock->n << 22);
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540}
541
7c04d1d9 542#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
543/**
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
546 */
547
1b894b59
CW
548static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
79e53945 551{
f01b7962
VS
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
79e53945 554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 555 INTELPllInvalid("p1 out of range\n");
79e53945 556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 557 INTELPllInvalid("m2 out of range\n");
79e53945 558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 559 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
560
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
564
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
570 }
571
79e53945 572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 573 INTELPllInvalid("vco out of range\n");
79e53945
JB
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
576 */
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 578 INTELPllInvalid("dot out of range\n");
79e53945
JB
579
580 return true;
581}
582
d4906093 583static bool
ee9300bb 584i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
79e53945
JB
587{
588 struct drm_device *dev = crtc->dev;
79e53945 589 intel_clock_t clock;
79e53945
JB
590 int err = target;
591
a210b028 592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 593 /*
a210b028
DV
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
79e53945 597 */
1974cad0 598 if (intel_is_dual_link_lvds(dev))
79e53945
JB
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
0206e353 609 memset(best_clock, 0, sizeof(*best_clock));
79e53945 610
42158660
ZY
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612 clock.m1++) {
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 615 if (clock.m2 >= clock.m1)
42158660
ZY
616 break;
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
621 int this_err;
622
ac58c3f0
DV
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627 if (match_clock &&
628 clock.p != match_clock->p)
629 continue;
630
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
633 *best_clock = clock;
634 err = this_err;
635 }
636 }
637 }
638 }
639 }
640
641 return (err != target);
642}
643
644static bool
ee9300bb
DV
645pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
79e53945
JB
648{
649 struct drm_device *dev = crtc->dev;
79e53945 650 intel_clock_t clock;
79e53945
JB
651 int err = target;
652
a210b028 653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 654 /*
a210b028
DV
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
79e53945 658 */
1974cad0 659 if (intel_is_dual_link_lvds(dev))
79e53945
JB
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
0206e353 670 memset(best_clock, 0, sizeof(*best_clock));
79e53945 671
42158660
ZY
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
680 int this_err;
681
ac58c3f0 682 pineview_clock(refclk, &clock);
1b894b59
CW
683 if (!intel_PLL_is_valid(dev, limit,
684 &clock))
79e53945 685 continue;
cec2f356
SP
686 if (match_clock &&
687 clock.p != match_clock->p)
688 continue;
79e53945
JB
689
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
692 *best_clock = clock;
693 err = this_err;
694 }
695 }
696 }
697 }
698 }
699
700 return (err != target);
701}
702
d4906093 703static bool
ee9300bb
DV
704g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
d4906093
ML
707{
708 struct drm_device *dev = crtc->dev;
d4906093
ML
709 intel_clock_t clock;
710 int max_n;
711 bool found;
6ba770dc
AJ
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
714 found = false;
715
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 717 if (intel_is_dual_link_lvds(dev))
d4906093
ML
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
f77f13e2 730 /* based on hardware requirement, prefer smaller n to precision */
d4906093 731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 732 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
ac58c3f0 741 i9xx_clock(refclk, &clock);
1b894b59
CW
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
d4906093 744 continue;
1b894b59
CW
745
746 this_err = abs(clock.dot - target);
d4906093
ML
747 if (this_err < err_most) {
748 *best_clock = clock;
749 err_most = this_err;
750 max_n = clock.n;
751 found = true;
752 }
753 }
754 }
755 }
756 }
2c07245f
ZW
757 return found;
758}
759
a0c4da24 760static bool
ee9300bb
DV
761vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
a0c4da24 764{
f01b7962 765 struct drm_device *dev = crtc->dev;
6b4bf1c4 766 intel_clock_t clock;
69e4f900 767 unsigned int bestppm = 1000000;
27e639bf
VS
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 770 bool found = false;
a0c4da24 771
6b4bf1c4
VS
772 target *= 5; /* fast clock */
773
774 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
775
776 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 781 clock.p = clock.p1 * clock.p2;
a0c4da24 782 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
784 unsigned int ppm, diff;
785
6b4bf1c4
VS
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787 refclk * clock.m1);
788
789 vlv_clock(refclk, &clock);
43b0ac53 790
f01b7962
VS
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
43b0ac53
VS
793 continue;
794
6b4bf1c4
VS
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
797
798 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 799 bestppm = 0;
6b4bf1c4 800 *best_clock = clock;
49e497ef 801 found = true;
43b0ac53 802 }
6b4bf1c4 803
c686122c 804 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 805 bestppm = ppm;
6b4bf1c4 806 *best_clock = clock;
49e497ef 807 found = true;
a0c4da24
JB
808 }
809 }
810 }
811 }
812 }
a0c4da24 813
49e497ef 814 return found;
a0c4da24 815}
a4fc5ed6 816
ef9348c8
CML
817static bool
818chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
821{
822 struct drm_device *dev = crtc->dev;
823 intel_clock_t clock;
824 uint64_t m2;
825 int found = false;
826
827 memset(best_clock, 0, sizeof(*best_clock));
828
829 /*
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
833 */
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
836
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842 clock.p = clock.p1 * clock.p2;
843
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
846
847 if (m2 > INT_MAX/clock.m1)
848 continue;
849
850 clock.m2 = m2;
851
852 chv_clock(refclk, &clock);
853
854 if (!intel_PLL_is_valid(dev, limit, &clock))
855 continue;
856
857 /* based on hardware requirement, prefer bigger p
858 */
859 if (clock.p > best_clock->p) {
860 *best_clock = clock;
861 found = true;
862 }
863 }
864 }
865
866 return found;
867}
868
20ddf665
VS
869bool intel_crtc_active(struct drm_crtc *crtc)
870{
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
875 *
241bfc38 876 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
877 * as Haswell has gained clock readout/fastboot support.
878 *
66e514c1 879 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
880 * properly reconstruct framebuffers.
881 */
f4510a27 882 return intel_crtc->active && crtc->primary->fb &&
241bfc38 883 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
884}
885
a5c961d1
PZ
886enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887 enum pipe pipe)
888{
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
3b117c8f 892 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
893}
894
57e22f4a 895static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
896{
897 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
899
900 frame = I915_READ(frame_reg);
901
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
31e4b89a
DL
903 WARN(1, "vblank wait on pipe %c timed out\n",
904 pipe_name(pipe));
a928d536
PZ
905}
906
9d0498a2
JB
907/**
908 * intel_wait_for_vblank - wait for vblank on a given pipe
909 * @dev: drm device
910 * @pipe: pipe to wait for
911 *
912 * Wait for vblank to occur on a given pipe. Needed for various bits of
913 * mode setting code.
914 */
915void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 916{
9d0498a2 917 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 918 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 919
57e22f4a
VS
920 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
922 return;
923 }
924
300387c0
CW
925 /* Clear existing vblank status. Note this will clear any other
926 * sticky status fields as well.
927 *
928 * This races with i915_driver_irq_handler() with the result
929 * that either function could miss a vblank event. Here it is not
930 * fatal, as we will either wait upon the next vblank interrupt or
931 * timeout. Generally speaking intel_wait_for_vblank() is only
932 * called during modeset at which time the GPU should be idle and
933 * should *not* be performing page flips and thus not waiting on
934 * vblanks...
935 * Currently, the result of us stealing a vblank from the irq
936 * handler is that a single frame will be skipped during swapbuffers.
937 */
938 I915_WRITE(pipestat_reg,
939 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
940
9d0498a2 941 /* Wait for vblank interrupt bit to set */
481b6af3
CW
942 if (wait_for(I915_READ(pipestat_reg) &
943 PIPE_VBLANK_INTERRUPT_STATUS,
944 50))
31e4b89a
DL
945 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
946 pipe_name(pipe));
9d0498a2
JB
947}
948
fbf49ea2
VS
949static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
950{
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 reg = PIPEDSL(pipe);
953 u32 line1, line2;
954 u32 line_mask;
955
956 if (IS_GEN2(dev))
957 line_mask = DSL_LINEMASK_GEN2;
958 else
959 line_mask = DSL_LINEMASK_GEN3;
960
961 line1 = I915_READ(reg) & line_mask;
962 mdelay(5);
963 line2 = I915_READ(reg) & line_mask;
964
965 return line1 == line2;
966}
967
ab7ad7f6
KP
968/*
969 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 970 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
971 *
972 * After disabling a pipe, we can't wait for vblank in the usual way,
973 * spinning on the vblank interrupt status bit, since we won't actually
974 * see an interrupt when the pipe is disabled.
975 *
ab7ad7f6
KP
976 * On Gen4 and above:
977 * wait for the pipe register state bit to turn off
978 *
979 * Otherwise:
980 * wait for the display line value to settle (it usually
981 * ends up stopping at the start of the next frame).
58e10eb9 982 *
9d0498a2 983 */
575f7ab7 984static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 985{
575f7ab7 986 struct drm_device *dev = crtc->base.dev;
9d0498a2 987 struct drm_i915_private *dev_priv = dev->dev_private;
575f7ab7
VS
988 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
989 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
990
991 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 992 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
993
994 /* Wait for the Pipe State to go off */
58e10eb9
CW
995 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
996 100))
284637d9 997 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 998 } else {
ab7ad7f6 999 /* Wait for the display line to settle */
fbf49ea2 1000 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1001 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1002 }
79e53945
JB
1003}
1004
b0ea7d37
DL
1005/*
1006 * ibx_digital_port_connected - is the specified port connected?
1007 * @dev_priv: i915 private structure
1008 * @port: the port to test
1009 *
1010 * Returns true if @port is connected, false otherwise.
1011 */
1012bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013 struct intel_digital_port *port)
1014{
1015 u32 bit;
1016
c36346e3 1017 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1018 switch (port->port) {
c36346e3
DL
1019 case PORT_B:
1020 bit = SDE_PORTB_HOTPLUG;
1021 break;
1022 case PORT_C:
1023 bit = SDE_PORTC_HOTPLUG;
1024 break;
1025 case PORT_D:
1026 bit = SDE_PORTD_HOTPLUG;
1027 break;
1028 default:
1029 return true;
1030 }
1031 } else {
eba905b2 1032 switch (port->port) {
c36346e3
DL
1033 case PORT_B:
1034 bit = SDE_PORTB_HOTPLUG_CPT;
1035 break;
1036 case PORT_C:
1037 bit = SDE_PORTC_HOTPLUG_CPT;
1038 break;
1039 case PORT_D:
1040 bit = SDE_PORTD_HOTPLUG_CPT;
1041 break;
1042 default:
1043 return true;
1044 }
b0ea7d37
DL
1045 }
1046
1047 return I915_READ(SDEISR) & bit;
1048}
1049
b24e7179
JB
1050static const char *state_string(bool enabled)
1051{
1052 return enabled ? "on" : "off";
1053}
1054
1055/* Only for pre-ILK configs */
55607e8a
DV
1056void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
b24e7179
JB
1058{
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069}
b24e7179 1070
23538ef1
JN
1071/* XXX: the dsi pll is shared between MIPI DSI ports */
1072static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1073{
1074 u32 val;
1075 bool cur_state;
1076
1077 mutex_lock(&dev_priv->dpio_lock);
1078 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079 mutex_unlock(&dev_priv->dpio_lock);
1080
1081 cur_state = val & DSI_PLL_VCO_EN;
1082 WARN(cur_state != state,
1083 "DSI PLL state assertion failure (expected %s, current %s)\n",
1084 state_string(state), state_string(cur_state));
1085}
1086#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1088
55607e8a 1089struct intel_shared_dpll *
e2b78267
DV
1090intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1091{
1092 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1093
a43f6e0f 1094 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1095 return NULL;
1096
a43f6e0f 1097 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1098}
1099
040484af 1100/* For ILK+ */
55607e8a
DV
1101void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102 struct intel_shared_dpll *pll,
1103 bool state)
040484af 1104{
040484af 1105 bool cur_state;
5358901f 1106 struct intel_dpll_hw_state hw_state;
040484af 1107
92b27b08 1108 if (WARN (!pll,
46edb027 1109 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1110 return;
ee7b9f93 1111
5358901f 1112 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1113 WARN(cur_state != state,
5358901f
DV
1114 "%s assertion failure (expected %s, current %s)\n",
1115 pll->name, state_string(state), state_string(cur_state));
040484af 1116}
040484af
JB
1117
1118static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120{
1121 int reg;
1122 u32 val;
1123 bool cur_state;
ad80a810
PZ
1124 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1125 pipe);
040484af 1126
affa9354
PZ
1127 if (HAS_DDI(dev_priv->dev)) {
1128 /* DDI does not have a specific FDI_TX register */
ad80a810 1129 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1130 val = I915_READ(reg);
ad80a810 1131 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1132 } else {
1133 reg = FDI_TX_CTL(pipe);
1134 val = I915_READ(reg);
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
040484af
JB
1137 WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1140}
1141#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146{
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1150
d63fa0dc
PZ
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1154 WARN(cur_state != state,
1155 "FDI RX state assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1157}
1158#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160
1161static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1162 enum pipe pipe)
1163{
1164 int reg;
1165 u32 val;
1166
1167 /* ILK FDI PLL is always enabled */
3d13ef2e 1168 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1169 return;
1170
bf507ef7 1171 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1172 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1173 return;
1174
040484af
JB
1175 reg = FDI_TX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1178}
1179
55607e8a
DV
1180void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
040484af
JB
1182{
1183 int reg;
1184 u32 val;
55607e8a 1185 bool cur_state;
040484af
JB
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
55607e8a
DV
1189 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 WARN(cur_state != state,
1191 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 state_string(state), state_string(cur_state));
040484af
JB
1193}
1194
ea0760cf
JB
1195static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1196 enum pipe pipe)
1197{
bedd4dba
JN
1198 struct drm_device *dev = dev_priv->dev;
1199 int pp_reg;
ea0760cf
JB
1200 u32 val;
1201 enum pipe panel_pipe = PIPE_A;
0de3b485 1202 bool locked = true;
ea0760cf 1203
bedd4dba
JN
1204 if (WARN_ON(HAS_DDI(dev)))
1205 return;
1206
1207 if (HAS_PCH_SPLIT(dev)) {
1208 u32 port_sel;
1209
ea0760cf 1210 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1211 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1212
1213 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1214 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1215 panel_pipe = PIPE_B;
1216 /* XXX: else fix for eDP */
1217 } else if (IS_VALLEYVIEW(dev)) {
1218 /* presumably write lock depends on pipe, not port select */
1219 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1220 panel_pipe = pipe;
ea0760cf
JB
1221 } else {
1222 pp_reg = PP_CONTROL;
bedd4dba
JN
1223 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
ea0760cf
JB
1225 }
1226
1227 val = I915_READ(pp_reg);
1228 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1229 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1230 locked = false;
1231
ea0760cf
JB
1232 WARN(panel_pipe == pipe && locked,
1233 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1234 pipe_name(pipe));
ea0760cf
JB
1235}
1236
93ce0ba6
JN
1237static void assert_cursor(struct drm_i915_private *dev_priv,
1238 enum pipe pipe, bool state)
1239{
1240 struct drm_device *dev = dev_priv->dev;
1241 bool cur_state;
1242
d9d82081 1243 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1244 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1245 else
5efb3e28 1246 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1247
1248 WARN(cur_state != state,
1249 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1251}
1252#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1253#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1254
b840d907
JB
1255void assert_pipe(struct drm_i915_private *dev_priv,
1256 enum pipe pipe, bool state)
b24e7179
JB
1257{
1258 int reg;
1259 u32 val;
63d7bbe9 1260 bool cur_state;
702e7a56
PZ
1261 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1262 pipe);
b24e7179 1263
b6b5d049
VS
1264 /* if we need the pipe quirk it must be always on */
1265 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1266 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1267 state = true;
1268
da7e29bd 1269 if (!intel_display_power_enabled(dev_priv,
b97186f0 1270 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1271 cur_state = false;
1272 } else {
1273 reg = PIPECONF(cpu_transcoder);
1274 val = I915_READ(reg);
1275 cur_state = !!(val & PIPECONF_ENABLE);
1276 }
1277
63d7bbe9
JB
1278 WARN(cur_state != state,
1279 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1280 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1281}
1282
931872fc
CW
1283static void assert_plane(struct drm_i915_private *dev_priv,
1284 enum plane plane, bool state)
b24e7179
JB
1285{
1286 int reg;
1287 u32 val;
931872fc 1288 bool cur_state;
b24e7179
JB
1289
1290 reg = DSPCNTR(plane);
1291 val = I915_READ(reg);
931872fc
CW
1292 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1293 WARN(cur_state != state,
1294 "plane %c assertion failure (expected %s, current %s)\n",
1295 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1296}
1297
931872fc
CW
1298#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1299#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1300
b24e7179
JB
1301static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe)
1303{
653e1026 1304 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1305 int reg, i;
1306 u32 val;
1307 int cur_pipe;
1308
653e1026
VS
1309 /* Primary planes are fixed to pipes on gen4+ */
1310 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1311 reg = DSPCNTR(pipe);
1312 val = I915_READ(reg);
83f26f16 1313 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1314 "plane %c assertion failure, should be disabled but not\n",
1315 plane_name(pipe));
19ec1358 1316 return;
28c05794 1317 }
19ec1358 1318
b24e7179 1319 /* Need to check both planes against the pipe */
055e393f 1320 for_each_pipe(dev_priv, i) {
b24e7179
JB
1321 reg = DSPCNTR(i);
1322 val = I915_READ(reg);
1323 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1324 DISPPLANE_SEL_PIPE_SHIFT;
1325 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1326 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1327 plane_name(i), pipe_name(pipe));
b24e7179
JB
1328 }
1329}
1330
19332d7a
JB
1331static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe)
1333{
20674eef 1334 struct drm_device *dev = dev_priv->dev;
1fe47785 1335 int reg, sprite;
19332d7a
JB
1336 u32 val;
1337
20674eef 1338 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1339 for_each_sprite(pipe, sprite) {
1340 reg = SPCNTR(pipe, sprite);
20674eef 1341 val = I915_READ(reg);
83f26f16 1342 WARN(val & SP_ENABLE,
20674eef 1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1344 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1345 }
1346 } else if (INTEL_INFO(dev)->gen >= 7) {
1347 reg = SPRCTL(pipe);
19332d7a 1348 val = I915_READ(reg);
83f26f16 1349 WARN(val & SPRITE_ENABLE,
06da8da2 1350 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1351 plane_name(pipe), pipe_name(pipe));
1352 } else if (INTEL_INFO(dev)->gen >= 5) {
1353 reg = DVSCNTR(pipe);
19332d7a 1354 val = I915_READ(reg);
83f26f16 1355 WARN(val & DVS_ENABLE,
06da8da2 1356 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1357 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1358 }
1359}
1360
08c71e5e
VS
1361static void assert_vblank_disabled(struct drm_crtc *crtc)
1362{
1363 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1364 drm_crtc_vblank_put(crtc);
1365}
1366
89eff4be 1367static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1368{
1369 u32 val;
1370 bool enabled;
1371
89eff4be 1372 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1373
92f2584a
JB
1374 val = I915_READ(PCH_DREF_CONTROL);
1375 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1376 DREF_SUPERSPREAD_SOURCE_MASK));
1377 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1378}
1379
ab9412ba
DV
1380static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1381 enum pipe pipe)
92f2584a
JB
1382{
1383 int reg;
1384 u32 val;
1385 bool enabled;
1386
ab9412ba 1387 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1388 val = I915_READ(reg);
1389 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1390 WARN(enabled,
1391 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1392 pipe_name(pipe));
92f2584a
JB
1393}
1394
4e634389
KP
1395static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1397{
1398 if ((val & DP_PORT_EN) == 0)
1399 return false;
1400
1401 if (HAS_PCH_CPT(dev_priv->dev)) {
1402 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1403 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1404 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1405 return false;
44f37d1f
CML
1406 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1407 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1408 return false;
f0575e92
KP
1409 } else {
1410 if ((val & DP_PIPE_MASK) != (pipe << 30))
1411 return false;
1412 }
1413 return true;
1414}
1415
1519b995
KP
1416static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1417 enum pipe pipe, u32 val)
1418{
dc0fa718 1419 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1420 return false;
1421
1422 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1423 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1424 return false;
44f37d1f
CML
1425 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1426 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1427 return false;
1519b995 1428 } else {
dc0fa718 1429 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1430 return false;
1431 }
1432 return true;
1433}
1434
1435static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1436 enum pipe pipe, u32 val)
1437{
1438 if ((val & LVDS_PORT_EN) == 0)
1439 return false;
1440
1441 if (HAS_PCH_CPT(dev_priv->dev)) {
1442 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1443 return false;
1444 } else {
1445 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1446 return false;
1447 }
1448 return true;
1449}
1450
1451static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, u32 val)
1453{
1454 if ((val & ADPA_DAC_ENABLE) == 0)
1455 return false;
1456 if (HAS_PCH_CPT(dev_priv->dev)) {
1457 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1458 return false;
1459 } else {
1460 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1461 return false;
1462 }
1463 return true;
1464}
1465
291906f1 1466static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1467 enum pipe pipe, int reg, u32 port_sel)
291906f1 1468{
47a05eca 1469 u32 val = I915_READ(reg);
4e634389 1470 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1471 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1472 reg, pipe_name(pipe));
de9a35ab 1473
75c5da27
DV
1474 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1475 && (val & DP_PIPEB_SELECT),
de9a35ab 1476 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1477}
1478
1479static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1480 enum pipe pipe, int reg)
1481{
47a05eca 1482 u32 val = I915_READ(reg);
b70ad586 1483 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1484 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1485 reg, pipe_name(pipe));
de9a35ab 1486
dc0fa718 1487 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1488 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1489 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1490}
1491
1492static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1493 enum pipe pipe)
1494{
1495 int reg;
1496 u32 val;
291906f1 1497
f0575e92
KP
1498 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1499 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1500 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1501
1502 reg = PCH_ADPA;
1503 val = I915_READ(reg);
b70ad586 1504 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1505 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1506 pipe_name(pipe));
291906f1
JB
1507
1508 reg = PCH_LVDS;
1509 val = I915_READ(reg);
b70ad586 1510 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1511 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1512 pipe_name(pipe));
291906f1 1513
e2debe91
PZ
1514 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1515 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1516 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1517}
1518
40e9cf64
JB
1519static void intel_init_dpio(struct drm_device *dev)
1520{
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522
1523 if (!IS_VALLEYVIEW(dev))
1524 return;
1525
a09caddd
CML
1526 /*
1527 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1528 * CHV x1 PHY (DP/HDMI D)
1529 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1530 */
1531 if (IS_CHERRYVIEW(dev)) {
1532 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1533 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1534 } else {
1535 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1536 }
5382f5f3
JB
1537}
1538
426115cf 1539static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1540{
426115cf
DV
1541 struct drm_device *dev = crtc->base.dev;
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 int reg = DPLL(crtc->pipe);
1544 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1545
426115cf 1546 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1547
1548 /* No really, not for ILK+ */
1549 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1550
1551 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1552 if (IS_MOBILE(dev_priv->dev))
426115cf 1553 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1554
426115cf
DV
1555 I915_WRITE(reg, dpll);
1556 POSTING_READ(reg);
1557 udelay(150);
1558
1559 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1560 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1561
1562 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1563 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1564
1565 /* We do this three times for luck */
426115cf 1566 I915_WRITE(reg, dpll);
87442f73
DV
1567 POSTING_READ(reg);
1568 udelay(150); /* wait for warmup */
426115cf 1569 I915_WRITE(reg, dpll);
87442f73
DV
1570 POSTING_READ(reg);
1571 udelay(150); /* wait for warmup */
426115cf 1572 I915_WRITE(reg, dpll);
87442f73
DV
1573 POSTING_READ(reg);
1574 udelay(150); /* wait for warmup */
1575}
1576
9d556c99
CML
1577static void chv_enable_pll(struct intel_crtc *crtc)
1578{
1579 struct drm_device *dev = crtc->base.dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 int pipe = crtc->pipe;
1582 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1583 u32 tmp;
1584
1585 assert_pipe_disabled(dev_priv, crtc->pipe);
1586
1587 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1588
1589 mutex_lock(&dev_priv->dpio_lock);
1590
1591 /* Enable back the 10bit clock to display controller */
1592 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1593 tmp |= DPIO_DCLKP_EN;
1594 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1595
1596 /*
1597 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1598 */
1599 udelay(1);
1600
1601 /* Enable PLL */
a11b0703 1602 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1603
1604 /* Check PLL is locked */
a11b0703 1605 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1606 DRM_ERROR("PLL %d failed to lock\n", pipe);
1607
a11b0703
VS
1608 /* not sure when this should be written */
1609 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1610 POSTING_READ(DPLL_MD(pipe));
1611
9d556c99
CML
1612 mutex_unlock(&dev_priv->dpio_lock);
1613}
1614
66e3d5c0 1615static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1616{
66e3d5c0
DV
1617 struct drm_device *dev = crtc->base.dev;
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 int reg = DPLL(crtc->pipe);
1620 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1621
66e3d5c0 1622 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1623
63d7bbe9 1624 /* No really, not for ILK+ */
3d13ef2e 1625 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1626
1627 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1628 if (IS_MOBILE(dev) && !IS_I830(dev))
1629 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1630
66e3d5c0
DV
1631 I915_WRITE(reg, dpll);
1632
1633 /* Wait for the clocks to stabilize. */
1634 POSTING_READ(reg);
1635 udelay(150);
1636
1637 if (INTEL_INFO(dev)->gen >= 4) {
1638 I915_WRITE(DPLL_MD(crtc->pipe),
1639 crtc->config.dpll_hw_state.dpll_md);
1640 } else {
1641 /* The pixel multiplier can only be updated once the
1642 * DPLL is enabled and the clocks are stable.
1643 *
1644 * So write it again.
1645 */
1646 I915_WRITE(reg, dpll);
1647 }
63d7bbe9
JB
1648
1649 /* We do this three times for luck */
66e3d5c0 1650 I915_WRITE(reg, dpll);
63d7bbe9
JB
1651 POSTING_READ(reg);
1652 udelay(150); /* wait for warmup */
66e3d5c0 1653 I915_WRITE(reg, dpll);
63d7bbe9
JB
1654 POSTING_READ(reg);
1655 udelay(150); /* wait for warmup */
66e3d5c0 1656 I915_WRITE(reg, dpll);
63d7bbe9
JB
1657 POSTING_READ(reg);
1658 udelay(150); /* wait for warmup */
1659}
1660
1661/**
50b44a44 1662 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1663 * @dev_priv: i915 private structure
1664 * @pipe: pipe PLL to disable
1665 *
1666 * Disable the PLL for @pipe, making sure the pipe is off first.
1667 *
1668 * Note! This is for pre-ILK only.
1669 */
50b44a44 1670static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1671{
b6b5d049
VS
1672 /* Don't disable pipe or pipe PLLs if needed */
1673 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1674 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1675 return;
1676
1677 /* Make sure the pipe isn't still relying on us */
1678 assert_pipe_disabled(dev_priv, pipe);
1679
50b44a44
DV
1680 I915_WRITE(DPLL(pipe), 0);
1681 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1682}
1683
f6071166
JB
1684static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1685{
1686 u32 val = 0;
1687
1688 /* Make sure the pipe isn't still relying on us */
1689 assert_pipe_disabled(dev_priv, pipe);
1690
e5cbfbfb
ID
1691 /*
1692 * Leave integrated clock source and reference clock enabled for pipe B.
1693 * The latter is needed for VGA hotplug / manual detection.
1694 */
f6071166 1695 if (pipe == PIPE_B)
e5cbfbfb 1696 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1697 I915_WRITE(DPLL(pipe), val);
1698 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1699
1700}
1701
1702static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1703{
d752048d 1704 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1705 u32 val;
1706
a11b0703
VS
1707 /* Make sure the pipe isn't still relying on us */
1708 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1709
a11b0703 1710 /* Set PLL en = 0 */
d17ec4ce 1711 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1712 if (pipe != PIPE_A)
1713 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1714 I915_WRITE(DPLL(pipe), val);
1715 POSTING_READ(DPLL(pipe));
d752048d
VS
1716
1717 mutex_lock(&dev_priv->dpio_lock);
1718
1719 /* Disable 10bit clock to display controller */
1720 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1721 val &= ~DPIO_DCLKP_EN;
1722 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1723
61407f6d
VS
1724 /* disable left/right clock distribution */
1725 if (pipe != PIPE_B) {
1726 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1727 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1728 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1729 } else {
1730 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1731 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1732 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1733 }
1734
d752048d 1735 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1736}
1737
e4607fcf
CML
1738void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1739 struct intel_digital_port *dport)
89b667f8
JB
1740{
1741 u32 port_mask;
00fc31b7 1742 int dpll_reg;
89b667f8 1743
e4607fcf
CML
1744 switch (dport->port) {
1745 case PORT_B:
89b667f8 1746 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1747 dpll_reg = DPLL(0);
e4607fcf
CML
1748 break;
1749 case PORT_C:
89b667f8 1750 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1751 dpll_reg = DPLL(0);
1752 break;
1753 case PORT_D:
1754 port_mask = DPLL_PORTD_READY_MASK;
1755 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1756 break;
1757 default:
1758 BUG();
1759 }
89b667f8 1760
00fc31b7 1761 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1762 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1763 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1764}
1765
b14b1055
DV
1766static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1767{
1768 struct drm_device *dev = crtc->base.dev;
1769 struct drm_i915_private *dev_priv = dev->dev_private;
1770 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1771
be19f0ff
CW
1772 if (WARN_ON(pll == NULL))
1773 return;
1774
b14b1055
DV
1775 WARN_ON(!pll->refcount);
1776 if (pll->active == 0) {
1777 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1778 WARN_ON(pll->on);
1779 assert_shared_dpll_disabled(dev_priv, pll);
1780
1781 pll->mode_set(dev_priv, pll);
1782 }
1783}
1784
92f2584a 1785/**
85b3894f 1786 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1787 * @dev_priv: i915 private structure
1788 * @pipe: pipe PLL to enable
1789 *
1790 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1791 * drives the transcoder clock.
1792 */
85b3894f 1793static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1794{
3d13ef2e
DL
1795 struct drm_device *dev = crtc->base.dev;
1796 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1797 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1798
87a875bb 1799 if (WARN_ON(pll == NULL))
48da64a8
CW
1800 return;
1801
1802 if (WARN_ON(pll->refcount == 0))
1803 return;
ee7b9f93 1804
74dd6928 1805 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1806 pll->name, pll->active, pll->on,
e2b78267 1807 crtc->base.base.id);
92f2584a 1808
cdbd2316
DV
1809 if (pll->active++) {
1810 WARN_ON(!pll->on);
e9d6944e 1811 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1812 return;
1813 }
f4a091c7 1814 WARN_ON(pll->on);
ee7b9f93 1815
bd2bb1b9
PZ
1816 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1817
46edb027 1818 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1819 pll->enable(dev_priv, pll);
ee7b9f93 1820 pll->on = true;
92f2584a
JB
1821}
1822
f6daaec2 1823static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1824{
3d13ef2e
DL
1825 struct drm_device *dev = crtc->base.dev;
1826 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1827 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1828
92f2584a 1829 /* PCH only available on ILK+ */
3d13ef2e 1830 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1831 if (WARN_ON(pll == NULL))
ee7b9f93 1832 return;
92f2584a 1833
48da64a8
CW
1834 if (WARN_ON(pll->refcount == 0))
1835 return;
7a419866 1836
46edb027
DV
1837 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1838 pll->name, pll->active, pll->on,
e2b78267 1839 crtc->base.base.id);
7a419866 1840
48da64a8 1841 if (WARN_ON(pll->active == 0)) {
e9d6944e 1842 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1843 return;
1844 }
1845
e9d6944e 1846 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1847 WARN_ON(!pll->on);
cdbd2316 1848 if (--pll->active)
7a419866 1849 return;
ee7b9f93 1850
46edb027 1851 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1852 pll->disable(dev_priv, pll);
ee7b9f93 1853 pll->on = false;
bd2bb1b9
PZ
1854
1855 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1856}
1857
b8a4f404
PZ
1858static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1859 enum pipe pipe)
040484af 1860{
23670b32 1861 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1862 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1864 uint32_t reg, val, pipeconf_val;
040484af
JB
1865
1866 /* PCH only available on ILK+ */
55522f37 1867 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1868
1869 /* Make sure PCH DPLL is enabled */
e72f9fbf 1870 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1871 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1872
1873 /* FDI must be feeding us bits for PCH ports */
1874 assert_fdi_tx_enabled(dev_priv, pipe);
1875 assert_fdi_rx_enabled(dev_priv, pipe);
1876
23670b32
DV
1877 if (HAS_PCH_CPT(dev)) {
1878 /* Workaround: Set the timing override bit before enabling the
1879 * pch transcoder. */
1880 reg = TRANS_CHICKEN2(pipe);
1881 val = I915_READ(reg);
1882 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1883 I915_WRITE(reg, val);
59c859d6 1884 }
23670b32 1885
ab9412ba 1886 reg = PCH_TRANSCONF(pipe);
040484af 1887 val = I915_READ(reg);
5f7f726d 1888 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1889
1890 if (HAS_PCH_IBX(dev_priv->dev)) {
1891 /*
1892 * make the BPC in transcoder be consistent with
1893 * that in pipeconf reg.
1894 */
dfd07d72
DV
1895 val &= ~PIPECONF_BPC_MASK;
1896 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1897 }
5f7f726d
PZ
1898
1899 val &= ~TRANS_INTERLACE_MASK;
1900 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1901 if (HAS_PCH_IBX(dev_priv->dev) &&
1902 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1903 val |= TRANS_LEGACY_INTERLACED_ILK;
1904 else
1905 val |= TRANS_INTERLACED;
5f7f726d
PZ
1906 else
1907 val |= TRANS_PROGRESSIVE;
1908
040484af
JB
1909 I915_WRITE(reg, val | TRANS_ENABLE);
1910 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1911 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1912}
1913
8fb033d7 1914static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1915 enum transcoder cpu_transcoder)
040484af 1916{
8fb033d7 1917 u32 val, pipeconf_val;
8fb033d7
PZ
1918
1919 /* PCH only available on ILK+ */
55522f37 1920 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1921
8fb033d7 1922 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1923 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1924 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1925
223a6fdf
PZ
1926 /* Workaround: set timing override bit. */
1927 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1928 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1929 I915_WRITE(_TRANSA_CHICKEN2, val);
1930
25f3ef11 1931 val = TRANS_ENABLE;
937bb610 1932 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1933
9a76b1c6
PZ
1934 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1935 PIPECONF_INTERLACED_ILK)
a35f2679 1936 val |= TRANS_INTERLACED;
8fb033d7
PZ
1937 else
1938 val |= TRANS_PROGRESSIVE;
1939
ab9412ba
DV
1940 I915_WRITE(LPT_TRANSCONF, val);
1941 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1942 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1943}
1944
b8a4f404
PZ
1945static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1946 enum pipe pipe)
040484af 1947{
23670b32
DV
1948 struct drm_device *dev = dev_priv->dev;
1949 uint32_t reg, val;
040484af
JB
1950
1951 /* FDI relies on the transcoder */
1952 assert_fdi_tx_disabled(dev_priv, pipe);
1953 assert_fdi_rx_disabled(dev_priv, pipe);
1954
291906f1
JB
1955 /* Ports must be off as well */
1956 assert_pch_ports_disabled(dev_priv, pipe);
1957
ab9412ba 1958 reg = PCH_TRANSCONF(pipe);
040484af
JB
1959 val = I915_READ(reg);
1960 val &= ~TRANS_ENABLE;
1961 I915_WRITE(reg, val);
1962 /* wait for PCH transcoder off, transcoder state */
1963 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1964 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1965
1966 if (!HAS_PCH_IBX(dev)) {
1967 /* Workaround: Clear the timing override chicken bit again. */
1968 reg = TRANS_CHICKEN2(pipe);
1969 val = I915_READ(reg);
1970 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1971 I915_WRITE(reg, val);
1972 }
040484af
JB
1973}
1974
ab4d966c 1975static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1976{
8fb033d7
PZ
1977 u32 val;
1978
ab9412ba 1979 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1980 val &= ~TRANS_ENABLE;
ab9412ba 1981 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1982 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1983 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1984 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1985
1986 /* Workaround: clear timing override bit. */
1987 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1988 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1989 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1990}
1991
b24e7179 1992/**
309cfea8 1993 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1994 * @crtc: crtc responsible for the pipe
b24e7179 1995 *
0372264a 1996 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1997 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1998 */
e1fdc473 1999static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2000{
0372264a
PZ
2001 struct drm_device *dev = crtc->base.dev;
2002 struct drm_i915_private *dev_priv = dev->dev_private;
2003 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2004 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2005 pipe);
1a240d4d 2006 enum pipe pch_transcoder;
b24e7179
JB
2007 int reg;
2008 u32 val;
2009
58c6eaa2 2010 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2011 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2012 assert_sprites_disabled(dev_priv, pipe);
2013
681e5811 2014 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2015 pch_transcoder = TRANSCODER_A;
2016 else
2017 pch_transcoder = pipe;
2018
b24e7179
JB
2019 /*
2020 * A pipe without a PLL won't actually be able to drive bits from
2021 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2022 * need the check.
2023 */
2024 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2025 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2026 assert_dsi_pll_enabled(dev_priv);
2027 else
2028 assert_pll_enabled(dev_priv, pipe);
040484af 2029 else {
30421c4f 2030 if (crtc->config.has_pch_encoder) {
040484af 2031 /* if driving the PCH, we need FDI enabled */
cc391bbb 2032 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2033 assert_fdi_tx_pll_enabled(dev_priv,
2034 (enum pipe) cpu_transcoder);
040484af
JB
2035 }
2036 /* FIXME: assert CPU port conditions for SNB+ */
2037 }
b24e7179 2038
702e7a56 2039 reg = PIPECONF(cpu_transcoder);
b24e7179 2040 val = I915_READ(reg);
7ad25d48 2041 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2042 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2043 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2044 return;
7ad25d48 2045 }
00d70b15
CW
2046
2047 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2048 POSTING_READ(reg);
b24e7179
JB
2049}
2050
2051/**
309cfea8 2052 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2053 * @crtc: crtc whose pipes is to be disabled
b24e7179 2054 *
575f7ab7
VS
2055 * Disable the pipe of @crtc, making sure that various hardware
2056 * specific requirements are met, if applicable, e.g. plane
2057 * disabled, panel fitter off, etc.
b24e7179
JB
2058 *
2059 * Will wait until the pipe has shut down before returning.
2060 */
575f7ab7 2061static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2062{
575f7ab7
VS
2063 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2064 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2065 enum pipe pipe = crtc->pipe;
b24e7179
JB
2066 int reg;
2067 u32 val;
2068
2069 /*
2070 * Make sure planes won't keep trying to pump pixels to us,
2071 * or we might hang the display.
2072 */
2073 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2074 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2075 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2076
702e7a56 2077 reg = PIPECONF(cpu_transcoder);
b24e7179 2078 val = I915_READ(reg);
00d70b15
CW
2079 if ((val & PIPECONF_ENABLE) == 0)
2080 return;
2081
67adc644
VS
2082 /*
2083 * Double wide has implications for planes
2084 * so best keep it disabled when not needed.
2085 */
2086 if (crtc->config.double_wide)
2087 val &= ~PIPECONF_DOUBLE_WIDE;
2088
2089 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2090 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2091 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2092 val &= ~PIPECONF_ENABLE;
2093
2094 I915_WRITE(reg, val);
2095 if ((val & PIPECONF_ENABLE) == 0)
2096 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2097}
2098
d74362c9
KP
2099/*
2100 * Plane regs are double buffered, going from enabled->disabled needs a
2101 * trigger in order to latch. The display address reg provides this.
2102 */
1dba99f4
VS
2103void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2104 enum plane plane)
d74362c9 2105{
3d13ef2e
DL
2106 struct drm_device *dev = dev_priv->dev;
2107 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2108
2109 I915_WRITE(reg, I915_READ(reg));
2110 POSTING_READ(reg);
d74362c9
KP
2111}
2112
b24e7179 2113/**
262ca2b0 2114 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2115 * @plane: plane to be enabled
2116 * @crtc: crtc for the plane
b24e7179 2117 *
fdd508a6 2118 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2119 */
fdd508a6
VS
2120static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2121 struct drm_crtc *crtc)
b24e7179 2122{
fdd508a6
VS
2123 struct drm_device *dev = plane->dev;
2124 struct drm_i915_private *dev_priv = dev->dev_private;
2125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2126
2127 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2128 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2129
98ec7739
VS
2130 if (intel_crtc->primary_enabled)
2131 return;
0037f71c 2132
4c445e0e 2133 intel_crtc->primary_enabled = true;
939c2fe8 2134
fdd508a6
VS
2135 dev_priv->display.update_primary_plane(crtc, plane->fb,
2136 crtc->x, crtc->y);
33c3b0d1
VS
2137
2138 /*
2139 * BDW signals flip done immediately if the plane
2140 * is disabled, even if the plane enable is already
2141 * armed to occur at the next vblank :(
2142 */
2143 if (IS_BROADWELL(dev))
2144 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2145}
2146
b24e7179 2147/**
262ca2b0 2148 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2149 * @plane: plane to be disabled
2150 * @crtc: crtc for the plane
b24e7179 2151 *
fdd508a6 2152 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2153 */
fdd508a6
VS
2154static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2155 struct drm_crtc *crtc)
b24e7179 2156{
fdd508a6
VS
2157 struct drm_device *dev = plane->dev;
2158 struct drm_i915_private *dev_priv = dev->dev_private;
2159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2160
2161 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2162
98ec7739
VS
2163 if (!intel_crtc->primary_enabled)
2164 return;
0037f71c 2165
4c445e0e 2166 intel_crtc->primary_enabled = false;
939c2fe8 2167
fdd508a6
VS
2168 dev_priv->display.update_primary_plane(crtc, plane->fb,
2169 crtc->x, crtc->y);
b24e7179
JB
2170}
2171
693db184
CW
2172static bool need_vtd_wa(struct drm_device *dev)
2173{
2174#ifdef CONFIG_INTEL_IOMMU
2175 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2176 return true;
2177#endif
2178 return false;
2179}
2180
a57ce0b2
JB
2181static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2182{
2183 int tile_height;
2184
2185 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2186 return ALIGN(height, tile_height);
2187}
2188
127bd2ac 2189int
48b956c5 2190intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2191 struct drm_i915_gem_object *obj,
a4872ba6 2192 struct intel_engine_cs *pipelined)
6b95a207 2193{
ce453d81 2194 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2195 u32 alignment;
2196 int ret;
2197
ebcdd39e
MR
2198 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2199
05394f39 2200 switch (obj->tiling_mode) {
6b95a207 2201 case I915_TILING_NONE:
1fada4cc
DL
2202 if (INTEL_INFO(dev)->gen >= 9)
2203 alignment = 256 * 1024;
2204 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2205 alignment = 128 * 1024;
a6c45cf0 2206 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2207 alignment = 4 * 1024;
2208 else
2209 alignment = 64 * 1024;
6b95a207
KH
2210 break;
2211 case I915_TILING_X:
1fada4cc
DL
2212 if (INTEL_INFO(dev)->gen >= 9)
2213 alignment = 256 * 1024;
2214 else {
2215 /* pin() will align the object as required by fence */
2216 alignment = 0;
2217 }
6b95a207
KH
2218 break;
2219 case I915_TILING_Y:
80075d49 2220 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2221 return -EINVAL;
2222 default:
2223 BUG();
2224 }
2225
693db184
CW
2226 /* Note that the w/a also requires 64 PTE of padding following the
2227 * bo. We currently fill all unused PTE with the shadow page and so
2228 * we should always have valid PTE following the scanout preventing
2229 * the VT-d warning.
2230 */
2231 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2232 alignment = 256 * 1024;
2233
d6dd6843
PZ
2234 /*
2235 * Global gtt pte registers are special registers which actually forward
2236 * writes to a chunk of system memory. Which means that there is no risk
2237 * that the register values disappear as soon as we call
2238 * intel_runtime_pm_put(), so it is correct to wrap only the
2239 * pin/unpin/fence and not more.
2240 */
2241 intel_runtime_pm_get(dev_priv);
2242
ce453d81 2243 dev_priv->mm.interruptible = false;
2da3b9b9 2244 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2245 if (ret)
ce453d81 2246 goto err_interruptible;
6b95a207
KH
2247
2248 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2249 * fence, whereas 965+ only requires a fence if using
2250 * framebuffer compression. For simplicity, we always install
2251 * a fence as the cost is not that onerous.
2252 */
06d98131 2253 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2254 if (ret)
2255 goto err_unpin;
1690e1eb 2256
9a5a53b3 2257 i915_gem_object_pin_fence(obj);
6b95a207 2258
ce453d81 2259 dev_priv->mm.interruptible = true;
d6dd6843 2260 intel_runtime_pm_put(dev_priv);
6b95a207 2261 return 0;
48b956c5
CW
2262
2263err_unpin:
cc98b413 2264 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2265err_interruptible:
2266 dev_priv->mm.interruptible = true;
d6dd6843 2267 intel_runtime_pm_put(dev_priv);
48b956c5 2268 return ret;
6b95a207
KH
2269}
2270
1690e1eb
CW
2271void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2272{
ebcdd39e
MR
2273 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2274
1690e1eb 2275 i915_gem_object_unpin_fence(obj);
cc98b413 2276 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2277}
2278
c2c75131
DV
2279/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2280 * is assumed to be a power-of-two. */
bc752862
CW
2281unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2282 unsigned int tiling_mode,
2283 unsigned int cpp,
2284 unsigned int pitch)
c2c75131 2285{
bc752862
CW
2286 if (tiling_mode != I915_TILING_NONE) {
2287 unsigned int tile_rows, tiles;
c2c75131 2288
bc752862
CW
2289 tile_rows = *y / 8;
2290 *y %= 8;
c2c75131 2291
bc752862
CW
2292 tiles = *x / (512/cpp);
2293 *x %= 512/cpp;
2294
2295 return tile_rows * pitch * 8 + tiles * 4096;
2296 } else {
2297 unsigned int offset;
2298
2299 offset = *y * pitch + *x * cpp;
2300 *y = 0;
2301 *x = (offset & 4095) / cpp;
2302 return offset & -4096;
2303 }
c2c75131
DV
2304}
2305
46f297fb
JB
2306int intel_format_to_fourcc(int format)
2307{
2308 switch (format) {
2309 case DISPPLANE_8BPP:
2310 return DRM_FORMAT_C8;
2311 case DISPPLANE_BGRX555:
2312 return DRM_FORMAT_XRGB1555;
2313 case DISPPLANE_BGRX565:
2314 return DRM_FORMAT_RGB565;
2315 default:
2316 case DISPPLANE_BGRX888:
2317 return DRM_FORMAT_XRGB8888;
2318 case DISPPLANE_RGBX888:
2319 return DRM_FORMAT_XBGR8888;
2320 case DISPPLANE_BGRX101010:
2321 return DRM_FORMAT_XRGB2101010;
2322 case DISPPLANE_RGBX101010:
2323 return DRM_FORMAT_XBGR2101010;
2324 }
2325}
2326
484b41dd 2327static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2328 struct intel_plane_config *plane_config)
2329{
2330 struct drm_device *dev = crtc->base.dev;
2331 struct drm_i915_gem_object *obj = NULL;
2332 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2333 u32 base = plane_config->base;
2334
ff2652ea
CW
2335 if (plane_config->size == 0)
2336 return false;
2337
46f297fb
JB
2338 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2339 plane_config->size);
2340 if (!obj)
484b41dd 2341 return false;
46f297fb
JB
2342
2343 if (plane_config->tiled) {
2344 obj->tiling_mode = I915_TILING_X;
66e514c1 2345 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2346 }
2347
66e514c1
DA
2348 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2349 mode_cmd.width = crtc->base.primary->fb->width;
2350 mode_cmd.height = crtc->base.primary->fb->height;
2351 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2352
2353 mutex_lock(&dev->struct_mutex);
2354
66e514c1 2355 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2356 &mode_cmd, obj)) {
46f297fb
JB
2357 DRM_DEBUG_KMS("intel fb init failed\n");
2358 goto out_unref_obj;
2359 }
2360
a071fa00 2361 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2362 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2363
2364 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2365 return true;
46f297fb
JB
2366
2367out_unref_obj:
2368 drm_gem_object_unreference(&obj->base);
2369 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2370 return false;
2371}
2372
2373static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2374 struct intel_plane_config *plane_config)
2375{
2376 struct drm_device *dev = intel_crtc->base.dev;
2377 struct drm_crtc *c;
2378 struct intel_crtc *i;
2ff8fde1 2379 struct drm_i915_gem_object *obj;
484b41dd 2380
66e514c1 2381 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2382 return;
2383
2384 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2385 return;
2386
66e514c1
DA
2387 kfree(intel_crtc->base.primary->fb);
2388 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2389
2390 /*
2391 * Failed to alloc the obj, check to see if we should share
2392 * an fb with another CRTC instead
2393 */
70e1e0ec 2394 for_each_crtc(dev, c) {
484b41dd
JB
2395 i = to_intel_crtc(c);
2396
2397 if (c == &intel_crtc->base)
2398 continue;
2399
2ff8fde1
MR
2400 if (!i->active)
2401 continue;
2402
2403 obj = intel_fb_obj(c->primary->fb);
2404 if (obj == NULL)
484b41dd
JB
2405 continue;
2406
2ff8fde1 2407 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2408 drm_framebuffer_reference(c->primary->fb);
2409 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2410 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2411 break;
2412 }
2413 }
46f297fb
JB
2414}
2415
29b9bde6
DV
2416static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2417 struct drm_framebuffer *fb,
2418 int x, int y)
81255565
JB
2419{
2420 struct drm_device *dev = crtc->dev;
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2423 struct drm_i915_gem_object *obj;
81255565 2424 int plane = intel_crtc->plane;
e506a0c6 2425 unsigned long linear_offset;
81255565 2426 u32 dspcntr;
f45651ba 2427 u32 reg = DSPCNTR(plane);
48404c1e 2428 int pixel_size;
f45651ba 2429
fdd508a6
VS
2430 if (!intel_crtc->primary_enabled) {
2431 I915_WRITE(reg, 0);
2432 if (INTEL_INFO(dev)->gen >= 4)
2433 I915_WRITE(DSPSURF(plane), 0);
2434 else
2435 I915_WRITE(DSPADDR(plane), 0);
2436 POSTING_READ(reg);
2437 return;
2438 }
2439
c9ba6fad
VS
2440 obj = intel_fb_obj(fb);
2441 if (WARN_ON(obj == NULL))
2442 return;
2443
2444 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2445
f45651ba
VS
2446 dspcntr = DISPPLANE_GAMMA_ENABLE;
2447
fdd508a6 2448 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2449
2450 if (INTEL_INFO(dev)->gen < 4) {
2451 if (intel_crtc->pipe == PIPE_B)
2452 dspcntr |= DISPPLANE_SEL_PIPE_B;
2453
2454 /* pipesrc and dspsize control the size that is scaled from,
2455 * which should always be the user's requested size.
2456 */
2457 I915_WRITE(DSPSIZE(plane),
2458 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2459 (intel_crtc->config.pipe_src_w - 1));
2460 I915_WRITE(DSPPOS(plane), 0);
2461 }
81255565 2462
57779d06
VS
2463 switch (fb->pixel_format) {
2464 case DRM_FORMAT_C8:
81255565
JB
2465 dspcntr |= DISPPLANE_8BPP;
2466 break;
57779d06
VS
2467 case DRM_FORMAT_XRGB1555:
2468 case DRM_FORMAT_ARGB1555:
2469 dspcntr |= DISPPLANE_BGRX555;
81255565 2470 break;
57779d06
VS
2471 case DRM_FORMAT_RGB565:
2472 dspcntr |= DISPPLANE_BGRX565;
2473 break;
2474 case DRM_FORMAT_XRGB8888:
2475 case DRM_FORMAT_ARGB8888:
2476 dspcntr |= DISPPLANE_BGRX888;
2477 break;
2478 case DRM_FORMAT_XBGR8888:
2479 case DRM_FORMAT_ABGR8888:
2480 dspcntr |= DISPPLANE_RGBX888;
2481 break;
2482 case DRM_FORMAT_XRGB2101010:
2483 case DRM_FORMAT_ARGB2101010:
2484 dspcntr |= DISPPLANE_BGRX101010;
2485 break;
2486 case DRM_FORMAT_XBGR2101010:
2487 case DRM_FORMAT_ABGR2101010:
2488 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2489 break;
2490 default:
baba133a 2491 BUG();
81255565 2492 }
57779d06 2493
f45651ba
VS
2494 if (INTEL_INFO(dev)->gen >= 4 &&
2495 obj->tiling_mode != I915_TILING_NONE)
2496 dspcntr |= DISPPLANE_TILED;
81255565 2497
de1aa629
VS
2498 if (IS_G4X(dev))
2499 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2500
b9897127 2501 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2502
c2c75131
DV
2503 if (INTEL_INFO(dev)->gen >= 4) {
2504 intel_crtc->dspaddr_offset =
bc752862 2505 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2506 pixel_size,
bc752862 2507 fb->pitches[0]);
c2c75131
DV
2508 linear_offset -= intel_crtc->dspaddr_offset;
2509 } else {
e506a0c6 2510 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2511 }
e506a0c6 2512
48404c1e
SJ
2513 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2514 dspcntr |= DISPPLANE_ROTATE_180;
2515
2516 x += (intel_crtc->config.pipe_src_w - 1);
2517 y += (intel_crtc->config.pipe_src_h - 1);
2518
2519 /* Finding the last pixel of the last line of the display
2520 data and adding to linear_offset*/
2521 linear_offset +=
2522 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2523 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2524 }
2525
2526 I915_WRITE(reg, dspcntr);
2527
f343c5f6
BW
2528 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2529 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2530 fb->pitches[0]);
01f2c773 2531 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2532 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2533 I915_WRITE(DSPSURF(plane),
2534 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2535 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2536 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2537 } else
f343c5f6 2538 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2539 POSTING_READ(reg);
17638cd6
JB
2540}
2541
29b9bde6
DV
2542static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2543 struct drm_framebuffer *fb,
2544 int x, int y)
17638cd6
JB
2545{
2546 struct drm_device *dev = crtc->dev;
2547 struct drm_i915_private *dev_priv = dev->dev_private;
2548 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2549 struct drm_i915_gem_object *obj;
17638cd6 2550 int plane = intel_crtc->plane;
e506a0c6 2551 unsigned long linear_offset;
17638cd6 2552 u32 dspcntr;
f45651ba 2553 u32 reg = DSPCNTR(plane);
48404c1e 2554 int pixel_size;
f45651ba 2555
fdd508a6
VS
2556 if (!intel_crtc->primary_enabled) {
2557 I915_WRITE(reg, 0);
2558 I915_WRITE(DSPSURF(plane), 0);
2559 POSTING_READ(reg);
2560 return;
2561 }
2562
c9ba6fad
VS
2563 obj = intel_fb_obj(fb);
2564 if (WARN_ON(obj == NULL))
2565 return;
2566
2567 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2568
f45651ba
VS
2569 dspcntr = DISPPLANE_GAMMA_ENABLE;
2570
fdd508a6 2571 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2572
2573 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2574 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2575
57779d06
VS
2576 switch (fb->pixel_format) {
2577 case DRM_FORMAT_C8:
17638cd6
JB
2578 dspcntr |= DISPPLANE_8BPP;
2579 break;
57779d06
VS
2580 case DRM_FORMAT_RGB565:
2581 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2582 break;
57779d06
VS
2583 case DRM_FORMAT_XRGB8888:
2584 case DRM_FORMAT_ARGB8888:
2585 dspcntr |= DISPPLANE_BGRX888;
2586 break;
2587 case DRM_FORMAT_XBGR8888:
2588 case DRM_FORMAT_ABGR8888:
2589 dspcntr |= DISPPLANE_RGBX888;
2590 break;
2591 case DRM_FORMAT_XRGB2101010:
2592 case DRM_FORMAT_ARGB2101010:
2593 dspcntr |= DISPPLANE_BGRX101010;
2594 break;
2595 case DRM_FORMAT_XBGR2101010:
2596 case DRM_FORMAT_ABGR2101010:
2597 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2598 break;
2599 default:
baba133a 2600 BUG();
17638cd6
JB
2601 }
2602
2603 if (obj->tiling_mode != I915_TILING_NONE)
2604 dspcntr |= DISPPLANE_TILED;
17638cd6 2605
f45651ba 2606 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2607 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2608
b9897127 2609 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2610 intel_crtc->dspaddr_offset =
bc752862 2611 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2612 pixel_size,
bc752862 2613 fb->pitches[0]);
c2c75131 2614 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2615 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2616 dspcntr |= DISPPLANE_ROTATE_180;
2617
2618 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2619 x += (intel_crtc->config.pipe_src_w - 1);
2620 y += (intel_crtc->config.pipe_src_h - 1);
2621
2622 /* Finding the last pixel of the last line of the display
2623 data and adding to linear_offset*/
2624 linear_offset +=
2625 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2626 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2627 }
2628 }
2629
2630 I915_WRITE(reg, dspcntr);
17638cd6 2631
f343c5f6
BW
2632 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2633 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2634 fb->pitches[0]);
01f2c773 2635 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2636 I915_WRITE(DSPSURF(plane),
2637 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2638 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2639 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2640 } else {
2641 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2642 I915_WRITE(DSPLINOFF(plane), linear_offset);
2643 }
17638cd6 2644 POSTING_READ(reg);
17638cd6
JB
2645}
2646
2647/* Assume fb object is pinned & idle & fenced and just update base pointers */
2648static int
2649intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2650 int x, int y, enum mode_set_atomic state)
2651{
2652 struct drm_device *dev = crtc->dev;
2653 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2654
6b8e6ed0
CW
2655 if (dev_priv->display.disable_fbc)
2656 dev_priv->display.disable_fbc(dev);
cc36513c 2657 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2658
29b9bde6
DV
2659 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2660
2661 return 0;
81255565
JB
2662}
2663
96a02917
VS
2664void intel_display_handle_reset(struct drm_device *dev)
2665{
2666 struct drm_i915_private *dev_priv = dev->dev_private;
2667 struct drm_crtc *crtc;
2668
2669 /*
2670 * Flips in the rings have been nuked by the reset,
2671 * so complete all pending flips so that user space
2672 * will get its events and not get stuck.
2673 *
2674 * Also update the base address of all primary
2675 * planes to the the last fb to make sure we're
2676 * showing the correct fb after a reset.
2677 *
2678 * Need to make two loops over the crtcs so that we
2679 * don't try to grab a crtc mutex before the
2680 * pending_flip_queue really got woken up.
2681 */
2682
70e1e0ec 2683 for_each_crtc(dev, crtc) {
96a02917
VS
2684 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2685 enum plane plane = intel_crtc->plane;
2686
2687 intel_prepare_page_flip(dev, plane);
2688 intel_finish_page_flip_plane(dev, plane);
2689 }
2690
70e1e0ec 2691 for_each_crtc(dev, crtc) {
96a02917
VS
2692 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2693
51fd371b 2694 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2695 /*
2696 * FIXME: Once we have proper support for primary planes (and
2697 * disabling them without disabling the entire crtc) allow again
66e514c1 2698 * a NULL crtc->primary->fb.
947fdaad 2699 */
f4510a27 2700 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2701 dev_priv->display.update_primary_plane(crtc,
66e514c1 2702 crtc->primary->fb,
262ca2b0
MR
2703 crtc->x,
2704 crtc->y);
51fd371b 2705 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2706 }
2707}
2708
14667a4b
CW
2709static int
2710intel_finish_fb(struct drm_framebuffer *old_fb)
2711{
2ff8fde1 2712 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2713 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2714 bool was_interruptible = dev_priv->mm.interruptible;
2715 int ret;
2716
14667a4b
CW
2717 /* Big Hammer, we also need to ensure that any pending
2718 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2719 * current scanout is retired before unpinning the old
2720 * framebuffer.
2721 *
2722 * This should only fail upon a hung GPU, in which case we
2723 * can safely continue.
2724 */
2725 dev_priv->mm.interruptible = false;
2726 ret = i915_gem_object_finish_gpu(obj);
2727 dev_priv->mm.interruptible = was_interruptible;
2728
2729 return ret;
2730}
2731
7d5e3799
CW
2732static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2733{
2734 struct drm_device *dev = crtc->dev;
2735 struct drm_i915_private *dev_priv = dev->dev_private;
2736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2737 unsigned long flags;
2738 bool pending;
2739
2740 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2741 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2742 return false;
2743
2744 spin_lock_irqsave(&dev->event_lock, flags);
2745 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2746 spin_unlock_irqrestore(&dev->event_lock, flags);
2747
2748 return pending;
2749}
2750
5c3b82e2 2751static int
3c4fdcfb 2752intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2753 struct drm_framebuffer *fb)
79e53945
JB
2754{
2755 struct drm_device *dev = crtc->dev;
6b8e6ed0 2756 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2758 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2759 struct drm_framebuffer *old_fb = crtc->primary->fb;
2760 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2761 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2762 int ret;
79e53945 2763
7d5e3799
CW
2764 if (intel_crtc_has_pending_flip(crtc)) {
2765 DRM_ERROR("pipe is still busy with an old pageflip\n");
2766 return -EBUSY;
2767 }
2768
79e53945 2769 /* no fb bound */
94352cf9 2770 if (!fb) {
a5071c2f 2771 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2772 return 0;
2773 }
2774
7eb552ae 2775 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2776 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2777 plane_name(intel_crtc->plane),
2778 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2779 return -EINVAL;
79e53945
JB
2780 }
2781
5c3b82e2 2782 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2783 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2784 if (ret == 0)
91565c85 2785 i915_gem_track_fb(old_obj, obj,
a071fa00 2786 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2787 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2788 if (ret != 0) {
a5071c2f 2789 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2790 return ret;
2791 }
79e53945 2792
bb2043de
DL
2793 /*
2794 * Update pipe size and adjust fitter if needed: the reason for this is
2795 * that in compute_mode_changes we check the native mode (not the pfit
2796 * mode) to see if we can flip rather than do a full mode set. In the
2797 * fastboot case, we'll flip, but if we don't update the pipesrc and
2798 * pfit state, we'll end up with a big fb scanned out into the wrong
2799 * sized surface.
2800 *
2801 * To fix this properly, we need to hoist the checks up into
2802 * compute_mode_changes (or above), check the actual pfit state and
2803 * whether the platform allows pfit disable with pipe active, and only
2804 * then update the pipesrc and pfit state, even on the flip path.
2805 */
d330a953 2806 if (i915.fastboot) {
d7bf63f2
DL
2807 const struct drm_display_mode *adjusted_mode =
2808 &intel_crtc->config.adjusted_mode;
2809
4d6a3e63 2810 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2811 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2812 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2813 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2814 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2815 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2816 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2817 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2818 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2819 }
0637d60d
JB
2820 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2821 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2822 }
2823
29b9bde6 2824 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2825
f99d7069
DV
2826 if (intel_crtc->active)
2827 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2828
f4510a27 2829 crtc->primary->fb = fb;
6c4c86f5
DV
2830 crtc->x = x;
2831 crtc->y = y;
94352cf9 2832
b7f1de28 2833 if (old_fb) {
d7697eea
DV
2834 if (intel_crtc->active && old_fb != fb)
2835 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2836 mutex_lock(&dev->struct_mutex);
2ff8fde1 2837 intel_unpin_fb_obj(old_obj);
8ac36ec1 2838 mutex_unlock(&dev->struct_mutex);
b7f1de28 2839 }
652c393a 2840
8ac36ec1 2841 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2842 intel_update_fbc(dev);
5c3b82e2 2843 mutex_unlock(&dev->struct_mutex);
79e53945 2844
5c3b82e2 2845 return 0;
79e53945
JB
2846}
2847
5e84e1a4
ZW
2848static void intel_fdi_normal_train(struct drm_crtc *crtc)
2849{
2850 struct drm_device *dev = crtc->dev;
2851 struct drm_i915_private *dev_priv = dev->dev_private;
2852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2853 int pipe = intel_crtc->pipe;
2854 u32 reg, temp;
2855
2856 /* enable normal train */
2857 reg = FDI_TX_CTL(pipe);
2858 temp = I915_READ(reg);
61e499bf 2859 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2860 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2861 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2862 } else {
2863 temp &= ~FDI_LINK_TRAIN_NONE;
2864 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2865 }
5e84e1a4
ZW
2866 I915_WRITE(reg, temp);
2867
2868 reg = FDI_RX_CTL(pipe);
2869 temp = I915_READ(reg);
2870 if (HAS_PCH_CPT(dev)) {
2871 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2872 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2873 } else {
2874 temp &= ~FDI_LINK_TRAIN_NONE;
2875 temp |= FDI_LINK_TRAIN_NONE;
2876 }
2877 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2878
2879 /* wait one idle pattern time */
2880 POSTING_READ(reg);
2881 udelay(1000);
357555c0
JB
2882
2883 /* IVB wants error correction enabled */
2884 if (IS_IVYBRIDGE(dev))
2885 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2886 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2887}
2888
1fbc0d78 2889static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2890{
1fbc0d78
DV
2891 return crtc->base.enabled && crtc->active &&
2892 crtc->config.has_pch_encoder;
1e833f40
DV
2893}
2894
01a415fd
DV
2895static void ivb_modeset_global_resources(struct drm_device *dev)
2896{
2897 struct drm_i915_private *dev_priv = dev->dev_private;
2898 struct intel_crtc *pipe_B_crtc =
2899 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2900 struct intel_crtc *pipe_C_crtc =
2901 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2902 uint32_t temp;
2903
1e833f40
DV
2904 /*
2905 * When everything is off disable fdi C so that we could enable fdi B
2906 * with all lanes. Note that we don't care about enabled pipes without
2907 * an enabled pch encoder.
2908 */
2909 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2910 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2911 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2912 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2913
2914 temp = I915_READ(SOUTH_CHICKEN1);
2915 temp &= ~FDI_BC_BIFURCATION_SELECT;
2916 DRM_DEBUG_KMS("disabling fdi C rx\n");
2917 I915_WRITE(SOUTH_CHICKEN1, temp);
2918 }
2919}
2920
8db9d77b
ZW
2921/* The FDI link training functions for ILK/Ibexpeak. */
2922static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2923{
2924 struct drm_device *dev = crtc->dev;
2925 struct drm_i915_private *dev_priv = dev->dev_private;
2926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2927 int pipe = intel_crtc->pipe;
5eddb70b 2928 u32 reg, temp, tries;
8db9d77b 2929
1c8562f6 2930 /* FDI needs bits from pipe first */
0fc932b8 2931 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2932
e1a44743
AJ
2933 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2934 for train result */
5eddb70b
CW
2935 reg = FDI_RX_IMR(pipe);
2936 temp = I915_READ(reg);
e1a44743
AJ
2937 temp &= ~FDI_RX_SYMBOL_LOCK;
2938 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2939 I915_WRITE(reg, temp);
2940 I915_READ(reg);
e1a44743
AJ
2941 udelay(150);
2942
8db9d77b 2943 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2944 reg = FDI_TX_CTL(pipe);
2945 temp = I915_READ(reg);
627eb5a3
DV
2946 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2947 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2948 temp &= ~FDI_LINK_TRAIN_NONE;
2949 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2950 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2951
5eddb70b
CW
2952 reg = FDI_RX_CTL(pipe);
2953 temp = I915_READ(reg);
8db9d77b
ZW
2954 temp &= ~FDI_LINK_TRAIN_NONE;
2955 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2956 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2957
2958 POSTING_READ(reg);
8db9d77b
ZW
2959 udelay(150);
2960
5b2adf89 2961 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2962 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2963 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2964 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2965
5eddb70b 2966 reg = FDI_RX_IIR(pipe);
e1a44743 2967 for (tries = 0; tries < 5; tries++) {
5eddb70b 2968 temp = I915_READ(reg);
8db9d77b
ZW
2969 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2970
2971 if ((temp & FDI_RX_BIT_LOCK)) {
2972 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2973 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2974 break;
2975 }
8db9d77b 2976 }
e1a44743 2977 if (tries == 5)
5eddb70b 2978 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2979
2980 /* Train 2 */
5eddb70b
CW
2981 reg = FDI_TX_CTL(pipe);
2982 temp = I915_READ(reg);
8db9d77b
ZW
2983 temp &= ~FDI_LINK_TRAIN_NONE;
2984 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2985 I915_WRITE(reg, temp);
8db9d77b 2986
5eddb70b
CW
2987 reg = FDI_RX_CTL(pipe);
2988 temp = I915_READ(reg);
8db9d77b
ZW
2989 temp &= ~FDI_LINK_TRAIN_NONE;
2990 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2991 I915_WRITE(reg, temp);
8db9d77b 2992
5eddb70b
CW
2993 POSTING_READ(reg);
2994 udelay(150);
8db9d77b 2995
5eddb70b 2996 reg = FDI_RX_IIR(pipe);
e1a44743 2997 for (tries = 0; tries < 5; tries++) {
5eddb70b 2998 temp = I915_READ(reg);
8db9d77b
ZW
2999 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3000
3001 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3002 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3003 DRM_DEBUG_KMS("FDI train 2 done.\n");
3004 break;
3005 }
8db9d77b 3006 }
e1a44743 3007 if (tries == 5)
5eddb70b 3008 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3009
3010 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3011
8db9d77b
ZW
3012}
3013
0206e353 3014static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3015 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3016 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3017 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3018 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3019};
3020
3021/* The FDI link training functions for SNB/Cougarpoint. */
3022static void gen6_fdi_link_train(struct drm_crtc *crtc)
3023{
3024 struct drm_device *dev = crtc->dev;
3025 struct drm_i915_private *dev_priv = dev->dev_private;
3026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3027 int pipe = intel_crtc->pipe;
fa37d39e 3028 u32 reg, temp, i, retry;
8db9d77b 3029
e1a44743
AJ
3030 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3031 for train result */
5eddb70b
CW
3032 reg = FDI_RX_IMR(pipe);
3033 temp = I915_READ(reg);
e1a44743
AJ
3034 temp &= ~FDI_RX_SYMBOL_LOCK;
3035 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3036 I915_WRITE(reg, temp);
3037
3038 POSTING_READ(reg);
e1a44743
AJ
3039 udelay(150);
3040
8db9d77b 3041 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3042 reg = FDI_TX_CTL(pipe);
3043 temp = I915_READ(reg);
627eb5a3
DV
3044 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3045 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3046 temp &= ~FDI_LINK_TRAIN_NONE;
3047 temp |= FDI_LINK_TRAIN_PATTERN_1;
3048 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3049 /* SNB-B */
3050 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3051 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3052
d74cf324
DV
3053 I915_WRITE(FDI_RX_MISC(pipe),
3054 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3055
5eddb70b
CW
3056 reg = FDI_RX_CTL(pipe);
3057 temp = I915_READ(reg);
8db9d77b
ZW
3058 if (HAS_PCH_CPT(dev)) {
3059 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3060 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3061 } else {
3062 temp &= ~FDI_LINK_TRAIN_NONE;
3063 temp |= FDI_LINK_TRAIN_PATTERN_1;
3064 }
5eddb70b
CW
3065 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3066
3067 POSTING_READ(reg);
8db9d77b
ZW
3068 udelay(150);
3069
0206e353 3070 for (i = 0; i < 4; i++) {
5eddb70b
CW
3071 reg = FDI_TX_CTL(pipe);
3072 temp = I915_READ(reg);
8db9d77b
ZW
3073 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3074 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3075 I915_WRITE(reg, temp);
3076
3077 POSTING_READ(reg);
8db9d77b
ZW
3078 udelay(500);
3079
fa37d39e
SP
3080 for (retry = 0; retry < 5; retry++) {
3081 reg = FDI_RX_IIR(pipe);
3082 temp = I915_READ(reg);
3083 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3084 if (temp & FDI_RX_BIT_LOCK) {
3085 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3086 DRM_DEBUG_KMS("FDI train 1 done.\n");
3087 break;
3088 }
3089 udelay(50);
8db9d77b 3090 }
fa37d39e
SP
3091 if (retry < 5)
3092 break;
8db9d77b
ZW
3093 }
3094 if (i == 4)
5eddb70b 3095 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3096
3097 /* Train 2 */
5eddb70b
CW
3098 reg = FDI_TX_CTL(pipe);
3099 temp = I915_READ(reg);
8db9d77b
ZW
3100 temp &= ~FDI_LINK_TRAIN_NONE;
3101 temp |= FDI_LINK_TRAIN_PATTERN_2;
3102 if (IS_GEN6(dev)) {
3103 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3104 /* SNB-B */
3105 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3106 }
5eddb70b 3107 I915_WRITE(reg, temp);
8db9d77b 3108
5eddb70b
CW
3109 reg = FDI_RX_CTL(pipe);
3110 temp = I915_READ(reg);
8db9d77b
ZW
3111 if (HAS_PCH_CPT(dev)) {
3112 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3113 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3114 } else {
3115 temp &= ~FDI_LINK_TRAIN_NONE;
3116 temp |= FDI_LINK_TRAIN_PATTERN_2;
3117 }
5eddb70b
CW
3118 I915_WRITE(reg, temp);
3119
3120 POSTING_READ(reg);
8db9d77b
ZW
3121 udelay(150);
3122
0206e353 3123 for (i = 0; i < 4; i++) {
5eddb70b
CW
3124 reg = FDI_TX_CTL(pipe);
3125 temp = I915_READ(reg);
8db9d77b
ZW
3126 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3127 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3128 I915_WRITE(reg, temp);
3129
3130 POSTING_READ(reg);
8db9d77b
ZW
3131 udelay(500);
3132
fa37d39e
SP
3133 for (retry = 0; retry < 5; retry++) {
3134 reg = FDI_RX_IIR(pipe);
3135 temp = I915_READ(reg);
3136 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3137 if (temp & FDI_RX_SYMBOL_LOCK) {
3138 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3139 DRM_DEBUG_KMS("FDI train 2 done.\n");
3140 break;
3141 }
3142 udelay(50);
8db9d77b 3143 }
fa37d39e
SP
3144 if (retry < 5)
3145 break;
8db9d77b
ZW
3146 }
3147 if (i == 4)
5eddb70b 3148 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3149
3150 DRM_DEBUG_KMS("FDI train done.\n");
3151}
3152
357555c0
JB
3153/* Manual link training for Ivy Bridge A0 parts */
3154static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3155{
3156 struct drm_device *dev = crtc->dev;
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3159 int pipe = intel_crtc->pipe;
139ccd3f 3160 u32 reg, temp, i, j;
357555c0
JB
3161
3162 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3163 for train result */
3164 reg = FDI_RX_IMR(pipe);
3165 temp = I915_READ(reg);
3166 temp &= ~FDI_RX_SYMBOL_LOCK;
3167 temp &= ~FDI_RX_BIT_LOCK;
3168 I915_WRITE(reg, temp);
3169
3170 POSTING_READ(reg);
3171 udelay(150);
3172
01a415fd
DV
3173 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3174 I915_READ(FDI_RX_IIR(pipe)));
3175
139ccd3f
JB
3176 /* Try each vswing and preemphasis setting twice before moving on */
3177 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3178 /* disable first in case we need to retry */
3179 reg = FDI_TX_CTL(pipe);
3180 temp = I915_READ(reg);
3181 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3182 temp &= ~FDI_TX_ENABLE;
3183 I915_WRITE(reg, temp);
357555c0 3184
139ccd3f
JB
3185 reg = FDI_RX_CTL(pipe);
3186 temp = I915_READ(reg);
3187 temp &= ~FDI_LINK_TRAIN_AUTO;
3188 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3189 temp &= ~FDI_RX_ENABLE;
3190 I915_WRITE(reg, temp);
357555c0 3191
139ccd3f 3192 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3193 reg = FDI_TX_CTL(pipe);
3194 temp = I915_READ(reg);
139ccd3f
JB
3195 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3196 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3197 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3198 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3199 temp |= snb_b_fdi_train_param[j/2];
3200 temp |= FDI_COMPOSITE_SYNC;
3201 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3202
139ccd3f
JB
3203 I915_WRITE(FDI_RX_MISC(pipe),
3204 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3205
139ccd3f 3206 reg = FDI_RX_CTL(pipe);
357555c0 3207 temp = I915_READ(reg);
139ccd3f
JB
3208 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3209 temp |= FDI_COMPOSITE_SYNC;
3210 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3211
139ccd3f
JB
3212 POSTING_READ(reg);
3213 udelay(1); /* should be 0.5us */
357555c0 3214
139ccd3f
JB
3215 for (i = 0; i < 4; i++) {
3216 reg = FDI_RX_IIR(pipe);
3217 temp = I915_READ(reg);
3218 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3219
139ccd3f
JB
3220 if (temp & FDI_RX_BIT_LOCK ||
3221 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3222 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3223 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3224 i);
3225 break;
3226 }
3227 udelay(1); /* should be 0.5us */
3228 }
3229 if (i == 4) {
3230 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3231 continue;
3232 }
357555c0 3233
139ccd3f 3234 /* Train 2 */
357555c0
JB
3235 reg = FDI_TX_CTL(pipe);
3236 temp = I915_READ(reg);
139ccd3f
JB
3237 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3238 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3239 I915_WRITE(reg, temp);
3240
3241 reg = FDI_RX_CTL(pipe);
3242 temp = I915_READ(reg);
3243 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3244 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3245 I915_WRITE(reg, temp);
3246
3247 POSTING_READ(reg);
139ccd3f 3248 udelay(2); /* should be 1.5us */
357555c0 3249
139ccd3f
JB
3250 for (i = 0; i < 4; i++) {
3251 reg = FDI_RX_IIR(pipe);
3252 temp = I915_READ(reg);
3253 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3254
139ccd3f
JB
3255 if (temp & FDI_RX_SYMBOL_LOCK ||
3256 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3257 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3258 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3259 i);
3260 goto train_done;
3261 }
3262 udelay(2); /* should be 1.5us */
357555c0 3263 }
139ccd3f
JB
3264 if (i == 4)
3265 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3266 }
357555c0 3267
139ccd3f 3268train_done:
357555c0
JB
3269 DRM_DEBUG_KMS("FDI train done.\n");
3270}
3271
88cefb6c 3272static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3273{
88cefb6c 3274 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3275 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3276 int pipe = intel_crtc->pipe;
5eddb70b 3277 u32 reg, temp;
79e53945 3278
c64e311e 3279
c98e9dcf 3280 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3281 reg = FDI_RX_CTL(pipe);
3282 temp = I915_READ(reg);
627eb5a3
DV
3283 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3284 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3285 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3286 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3287
3288 POSTING_READ(reg);
c98e9dcf
JB
3289 udelay(200);
3290
3291 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3292 temp = I915_READ(reg);
3293 I915_WRITE(reg, temp | FDI_PCDCLK);
3294
3295 POSTING_READ(reg);
c98e9dcf
JB
3296 udelay(200);
3297
20749730
PZ
3298 /* Enable CPU FDI TX PLL, always on for Ironlake */
3299 reg = FDI_TX_CTL(pipe);
3300 temp = I915_READ(reg);
3301 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3302 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3303
20749730
PZ
3304 POSTING_READ(reg);
3305 udelay(100);
6be4a607 3306 }
0e23b99d
JB
3307}
3308
88cefb6c
DV
3309static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3310{
3311 struct drm_device *dev = intel_crtc->base.dev;
3312 struct drm_i915_private *dev_priv = dev->dev_private;
3313 int pipe = intel_crtc->pipe;
3314 u32 reg, temp;
3315
3316 /* Switch from PCDclk to Rawclk */
3317 reg = FDI_RX_CTL(pipe);
3318 temp = I915_READ(reg);
3319 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3320
3321 /* Disable CPU FDI TX PLL */
3322 reg = FDI_TX_CTL(pipe);
3323 temp = I915_READ(reg);
3324 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3325
3326 POSTING_READ(reg);
3327 udelay(100);
3328
3329 reg = FDI_RX_CTL(pipe);
3330 temp = I915_READ(reg);
3331 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3332
3333 /* Wait for the clocks to turn off. */
3334 POSTING_READ(reg);
3335 udelay(100);
3336}
3337
0fc932b8
JB
3338static void ironlake_fdi_disable(struct drm_crtc *crtc)
3339{
3340 struct drm_device *dev = crtc->dev;
3341 struct drm_i915_private *dev_priv = dev->dev_private;
3342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3343 int pipe = intel_crtc->pipe;
3344 u32 reg, temp;
3345
3346 /* disable CPU FDI tx and PCH FDI rx */
3347 reg = FDI_TX_CTL(pipe);
3348 temp = I915_READ(reg);
3349 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3350 POSTING_READ(reg);
3351
3352 reg = FDI_RX_CTL(pipe);
3353 temp = I915_READ(reg);
3354 temp &= ~(0x7 << 16);
dfd07d72 3355 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3356 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3357
3358 POSTING_READ(reg);
3359 udelay(100);
3360
3361 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3362 if (HAS_PCH_IBX(dev))
6f06ce18 3363 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3364
3365 /* still set train pattern 1 */
3366 reg = FDI_TX_CTL(pipe);
3367 temp = I915_READ(reg);
3368 temp &= ~FDI_LINK_TRAIN_NONE;
3369 temp |= FDI_LINK_TRAIN_PATTERN_1;
3370 I915_WRITE(reg, temp);
3371
3372 reg = FDI_RX_CTL(pipe);
3373 temp = I915_READ(reg);
3374 if (HAS_PCH_CPT(dev)) {
3375 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3376 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3377 } else {
3378 temp &= ~FDI_LINK_TRAIN_NONE;
3379 temp |= FDI_LINK_TRAIN_PATTERN_1;
3380 }
3381 /* BPC in FDI rx is consistent with that in PIPECONF */
3382 temp &= ~(0x07 << 16);
dfd07d72 3383 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3384 I915_WRITE(reg, temp);
3385
3386 POSTING_READ(reg);
3387 udelay(100);
3388}
3389
5dce5b93
CW
3390bool intel_has_pending_fb_unpin(struct drm_device *dev)
3391{
3392 struct intel_crtc *crtc;
3393
3394 /* Note that we don't need to be called with mode_config.lock here
3395 * as our list of CRTC objects is static for the lifetime of the
3396 * device and so cannot disappear as we iterate. Similarly, we can
3397 * happily treat the predicates as racy, atomic checks as userspace
3398 * cannot claim and pin a new fb without at least acquring the
3399 * struct_mutex and so serialising with us.
3400 */
d3fcc808 3401 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3402 if (atomic_read(&crtc->unpin_work_count) == 0)
3403 continue;
3404
3405 if (crtc->unpin_work)
3406 intel_wait_for_vblank(dev, crtc->pipe);
3407
3408 return true;
3409 }
3410
3411 return false;
3412}
3413
d6bbafa1
CW
3414static void page_flip_completed(struct intel_crtc *intel_crtc)
3415{
3416 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3417 struct intel_unpin_work *work = intel_crtc->unpin_work;
3418
3419 /* ensure that the unpin work is consistent wrt ->pending. */
3420 smp_rmb();
3421 intel_crtc->unpin_work = NULL;
3422
3423 if (work->event)
3424 drm_send_vblank_event(intel_crtc->base.dev,
3425 intel_crtc->pipe,
3426 work->event);
3427
3428 drm_crtc_vblank_put(&intel_crtc->base);
3429
3430 wake_up_all(&dev_priv->pending_flip_queue);
3431 queue_work(dev_priv->wq, &work->work);
3432
3433 trace_i915_flip_complete(intel_crtc->plane,
3434 work->pending_flip_obj);
3435}
3436
46a55d30 3437void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3438{
0f91128d 3439 struct drm_device *dev = crtc->dev;
5bb61643 3440 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3441
2c10d571 3442 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3443 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3444 !intel_crtc_has_pending_flip(crtc),
3445 60*HZ) == 0)) {
3446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3447 unsigned long flags;
2c10d571 3448
9c787942
CW
3449 spin_lock_irqsave(&dev->event_lock, flags);
3450 if (intel_crtc->unpin_work) {
3451 WARN_ONCE(1, "Removing stuck page flip\n");
3452 page_flip_completed(intel_crtc);
3453 }
3454 spin_unlock_irqrestore(&dev->event_lock, flags);
3455 }
5bb61643 3456
975d568a
CW
3457 if (crtc->primary->fb) {
3458 mutex_lock(&dev->struct_mutex);
3459 intel_finish_fb(crtc->primary->fb);
3460 mutex_unlock(&dev->struct_mutex);
3461 }
e6c3a2a6
CW
3462}
3463
e615efe4
ED
3464/* Program iCLKIP clock to the desired frequency */
3465static void lpt_program_iclkip(struct drm_crtc *crtc)
3466{
3467 struct drm_device *dev = crtc->dev;
3468 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3469 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3470 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3471 u32 temp;
3472
09153000
DV
3473 mutex_lock(&dev_priv->dpio_lock);
3474
e615efe4
ED
3475 /* It is necessary to ungate the pixclk gate prior to programming
3476 * the divisors, and gate it back when it is done.
3477 */
3478 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3479
3480 /* Disable SSCCTL */
3481 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3482 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3483 SBI_SSCCTL_DISABLE,
3484 SBI_ICLK);
e615efe4
ED
3485
3486 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3487 if (clock == 20000) {
e615efe4
ED
3488 auxdiv = 1;
3489 divsel = 0x41;
3490 phaseinc = 0x20;
3491 } else {
3492 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3493 * but the adjusted_mode->crtc_clock in in KHz. To get the
3494 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3495 * convert the virtual clock precision to KHz here for higher
3496 * precision.
3497 */
3498 u32 iclk_virtual_root_freq = 172800 * 1000;
3499 u32 iclk_pi_range = 64;
3500 u32 desired_divisor, msb_divisor_value, pi_value;
3501
12d7ceed 3502 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3503 msb_divisor_value = desired_divisor / iclk_pi_range;
3504 pi_value = desired_divisor % iclk_pi_range;
3505
3506 auxdiv = 0;
3507 divsel = msb_divisor_value - 2;
3508 phaseinc = pi_value;
3509 }
3510
3511 /* This should not happen with any sane values */
3512 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3513 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3514 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3515 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3516
3517 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3518 clock,
e615efe4
ED
3519 auxdiv,
3520 divsel,
3521 phasedir,
3522 phaseinc);
3523
3524 /* Program SSCDIVINTPHASE6 */
988d6ee8 3525 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3526 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3527 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3528 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3529 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3530 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3531 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3532 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3533
3534 /* Program SSCAUXDIV */
988d6ee8 3535 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3536 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3537 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3538 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3539
3540 /* Enable modulator and associated divider */
988d6ee8 3541 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3542 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3543 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3544
3545 /* Wait for initialization time */
3546 udelay(24);
3547
3548 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3549
3550 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3551}
3552
275f01b2
DV
3553static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3554 enum pipe pch_transcoder)
3555{
3556 struct drm_device *dev = crtc->base.dev;
3557 struct drm_i915_private *dev_priv = dev->dev_private;
3558 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3559
3560 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3561 I915_READ(HTOTAL(cpu_transcoder)));
3562 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3563 I915_READ(HBLANK(cpu_transcoder)));
3564 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3565 I915_READ(HSYNC(cpu_transcoder)));
3566
3567 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3568 I915_READ(VTOTAL(cpu_transcoder)));
3569 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3570 I915_READ(VBLANK(cpu_transcoder)));
3571 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3572 I915_READ(VSYNC(cpu_transcoder)));
3573 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3574 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3575}
3576
1fbc0d78
DV
3577static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3578{
3579 struct drm_i915_private *dev_priv = dev->dev_private;
3580 uint32_t temp;
3581
3582 temp = I915_READ(SOUTH_CHICKEN1);
3583 if (temp & FDI_BC_BIFURCATION_SELECT)
3584 return;
3585
3586 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3587 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3588
3589 temp |= FDI_BC_BIFURCATION_SELECT;
3590 DRM_DEBUG_KMS("enabling fdi C rx\n");
3591 I915_WRITE(SOUTH_CHICKEN1, temp);
3592 POSTING_READ(SOUTH_CHICKEN1);
3593}
3594
3595static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3596{
3597 struct drm_device *dev = intel_crtc->base.dev;
3598 struct drm_i915_private *dev_priv = dev->dev_private;
3599
3600 switch (intel_crtc->pipe) {
3601 case PIPE_A:
3602 break;
3603 case PIPE_B:
3604 if (intel_crtc->config.fdi_lanes > 2)
3605 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3606 else
3607 cpt_enable_fdi_bc_bifurcation(dev);
3608
3609 break;
3610 case PIPE_C:
3611 cpt_enable_fdi_bc_bifurcation(dev);
3612
3613 break;
3614 default:
3615 BUG();
3616 }
3617}
3618
f67a559d
JB
3619/*
3620 * Enable PCH resources required for PCH ports:
3621 * - PCH PLLs
3622 * - FDI training & RX/TX
3623 * - update transcoder timings
3624 * - DP transcoding bits
3625 * - transcoder
3626 */
3627static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3628{
3629 struct drm_device *dev = crtc->dev;
3630 struct drm_i915_private *dev_priv = dev->dev_private;
3631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3632 int pipe = intel_crtc->pipe;
ee7b9f93 3633 u32 reg, temp;
2c07245f 3634
ab9412ba 3635 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3636
1fbc0d78
DV
3637 if (IS_IVYBRIDGE(dev))
3638 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3639
cd986abb
DV
3640 /* Write the TU size bits before fdi link training, so that error
3641 * detection works. */
3642 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3643 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3644
c98e9dcf 3645 /* For PCH output, training FDI link */
674cf967 3646 dev_priv->display.fdi_link_train(crtc);
2c07245f 3647
3ad8a208
DV
3648 /* We need to program the right clock selection before writing the pixel
3649 * mutliplier into the DPLL. */
303b81e0 3650 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3651 u32 sel;
4b645f14 3652
c98e9dcf 3653 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3654 temp |= TRANS_DPLL_ENABLE(pipe);
3655 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3656 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3657 temp |= sel;
3658 else
3659 temp &= ~sel;
c98e9dcf 3660 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3661 }
5eddb70b 3662
3ad8a208
DV
3663 /* XXX: pch pll's can be enabled any time before we enable the PCH
3664 * transcoder, and we actually should do this to not upset any PCH
3665 * transcoder that already use the clock when we share it.
3666 *
3667 * Note that enable_shared_dpll tries to do the right thing, but
3668 * get_shared_dpll unconditionally resets the pll - we need that to have
3669 * the right LVDS enable sequence. */
85b3894f 3670 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3671
d9b6cb56
JB
3672 /* set transcoder timing, panel must allow it */
3673 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3674 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3675
303b81e0 3676 intel_fdi_normal_train(crtc);
5e84e1a4 3677
c98e9dcf
JB
3678 /* For PCH DP, enable TRANS_DP_CTL */
3679 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3680 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3681 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3682 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3683 reg = TRANS_DP_CTL(pipe);
3684 temp = I915_READ(reg);
3685 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3686 TRANS_DP_SYNC_MASK |
3687 TRANS_DP_BPC_MASK);
5eddb70b
CW
3688 temp |= (TRANS_DP_OUTPUT_ENABLE |
3689 TRANS_DP_ENH_FRAMING);
9325c9f0 3690 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3691
3692 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3693 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3694 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3695 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3696
3697 switch (intel_trans_dp_port_sel(crtc)) {
3698 case PCH_DP_B:
5eddb70b 3699 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3700 break;
3701 case PCH_DP_C:
5eddb70b 3702 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3703 break;
3704 case PCH_DP_D:
5eddb70b 3705 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3706 break;
3707 default:
e95d41e1 3708 BUG();
32f9d658 3709 }
2c07245f 3710
5eddb70b 3711 I915_WRITE(reg, temp);
6be4a607 3712 }
b52eb4dc 3713
b8a4f404 3714 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3715}
3716
1507e5bd
PZ
3717static void lpt_pch_enable(struct drm_crtc *crtc)
3718{
3719 struct drm_device *dev = crtc->dev;
3720 struct drm_i915_private *dev_priv = dev->dev_private;
3721 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3722 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3723
ab9412ba 3724 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3725
8c52b5e8 3726 lpt_program_iclkip(crtc);
1507e5bd 3727
0540e488 3728 /* Set transcoder timing. */
275f01b2 3729 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3730
937bb610 3731 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3732}
3733
716c2e55 3734void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3735{
e2b78267 3736 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3737
3738 if (pll == NULL)
3739 return;
3740
3741 if (pll->refcount == 0) {
46edb027 3742 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3743 return;
3744 }
3745
f4a091c7
DV
3746 if (--pll->refcount == 0) {
3747 WARN_ON(pll->on);
3748 WARN_ON(pll->active);
3749 }
3750
a43f6e0f 3751 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3752}
3753
716c2e55 3754struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3755{
e2b78267
DV
3756 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3757 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3758 enum intel_dpll_id i;
ee7b9f93 3759
ee7b9f93 3760 if (pll) {
46edb027
DV
3761 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3762 crtc->base.base.id, pll->name);
e2b78267 3763 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3764 }
3765
98b6bd99
DV
3766 if (HAS_PCH_IBX(dev_priv->dev)) {
3767 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3768 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3769 pll = &dev_priv->shared_dplls[i];
98b6bd99 3770
46edb027
DV
3771 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3772 crtc->base.base.id, pll->name);
98b6bd99 3773
f2a69f44
DV
3774 WARN_ON(pll->refcount);
3775
98b6bd99
DV
3776 goto found;
3777 }
3778
e72f9fbf
DV
3779 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3780 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3781
3782 /* Only want to check enabled timings first */
3783 if (pll->refcount == 0)
3784 continue;
3785
b89a1d39
DV
3786 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3787 sizeof(pll->hw_state)) == 0) {
46edb027 3788 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3789 crtc->base.base.id,
46edb027 3790 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3791
3792 goto found;
3793 }
3794 }
3795
3796 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3797 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3798 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3799 if (pll->refcount == 0) {
46edb027
DV
3800 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3801 crtc->base.base.id, pll->name);
ee7b9f93
JB
3802 goto found;
3803 }
3804 }
3805
3806 return NULL;
3807
3808found:
f2a69f44
DV
3809 if (pll->refcount == 0)
3810 pll->hw_state = crtc->config.dpll_hw_state;
3811
a43f6e0f 3812 crtc->config.shared_dpll = i;
46edb027
DV
3813 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3814 pipe_name(crtc->pipe));
ee7b9f93 3815
cdbd2316 3816 pll->refcount++;
e04c7350 3817
ee7b9f93
JB
3818 return pll;
3819}
3820
a1520318 3821static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3822{
3823 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3824 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3825 u32 temp;
3826
3827 temp = I915_READ(dslreg);
3828 udelay(500);
3829 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3830 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3831 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3832 }
3833}
3834
b074cec8
JB
3835static void ironlake_pfit_enable(struct intel_crtc *crtc)
3836{
3837 struct drm_device *dev = crtc->base.dev;
3838 struct drm_i915_private *dev_priv = dev->dev_private;
3839 int pipe = crtc->pipe;
3840
fd4daa9c 3841 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3842 /* Force use of hard-coded filter coefficients
3843 * as some pre-programmed values are broken,
3844 * e.g. x201.
3845 */
3846 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3847 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3848 PF_PIPE_SEL_IVB(pipe));
3849 else
3850 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3851 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3852 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3853 }
3854}
3855
bb53d4ae
VS
3856static void intel_enable_planes(struct drm_crtc *crtc)
3857{
3858 struct drm_device *dev = crtc->dev;
3859 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3860 struct drm_plane *plane;
bb53d4ae
VS
3861 struct intel_plane *intel_plane;
3862
af2b653b
MR
3863 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3864 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3865 if (intel_plane->pipe == pipe)
3866 intel_plane_restore(&intel_plane->base);
af2b653b 3867 }
bb53d4ae
VS
3868}
3869
3870static void intel_disable_planes(struct drm_crtc *crtc)
3871{
3872 struct drm_device *dev = crtc->dev;
3873 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3874 struct drm_plane *plane;
bb53d4ae
VS
3875 struct intel_plane *intel_plane;
3876
af2b653b
MR
3877 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3878 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3879 if (intel_plane->pipe == pipe)
3880 intel_plane_disable(&intel_plane->base);
af2b653b 3881 }
bb53d4ae
VS
3882}
3883
20bc8673 3884void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3885{
cea165c3
VS
3886 struct drm_device *dev = crtc->base.dev;
3887 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3888
3889 if (!crtc->config.ips_enabled)
3890 return;
3891
cea165c3
VS
3892 /* We can only enable IPS after we enable a plane and wait for a vblank */
3893 intel_wait_for_vblank(dev, crtc->pipe);
3894
d77e4531 3895 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3896 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3897 mutex_lock(&dev_priv->rps.hw_lock);
3898 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3899 mutex_unlock(&dev_priv->rps.hw_lock);
3900 /* Quoting Art Runyan: "its not safe to expect any particular
3901 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3902 * mailbox." Moreover, the mailbox may return a bogus state,
3903 * so we need to just enable it and continue on.
2a114cc1
BW
3904 */
3905 } else {
3906 I915_WRITE(IPS_CTL, IPS_ENABLE);
3907 /* The bit only becomes 1 in the next vblank, so this wait here
3908 * is essentially intel_wait_for_vblank. If we don't have this
3909 * and don't wait for vblanks until the end of crtc_enable, then
3910 * the HW state readout code will complain that the expected
3911 * IPS_CTL value is not the one we read. */
3912 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3913 DRM_ERROR("Timed out waiting for IPS enable\n");
3914 }
d77e4531
PZ
3915}
3916
20bc8673 3917void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3918{
3919 struct drm_device *dev = crtc->base.dev;
3920 struct drm_i915_private *dev_priv = dev->dev_private;
3921
3922 if (!crtc->config.ips_enabled)
3923 return;
3924
3925 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3926 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3927 mutex_lock(&dev_priv->rps.hw_lock);
3928 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3929 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3930 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3931 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3932 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3933 } else {
2a114cc1 3934 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3935 POSTING_READ(IPS_CTL);
3936 }
d77e4531
PZ
3937
3938 /* We need to wait for a vblank before we can disable the plane. */
3939 intel_wait_for_vblank(dev, crtc->pipe);
3940}
3941
3942/** Loads the palette/gamma unit for the CRTC with the prepared values */
3943static void intel_crtc_load_lut(struct drm_crtc *crtc)
3944{
3945 struct drm_device *dev = crtc->dev;
3946 struct drm_i915_private *dev_priv = dev->dev_private;
3947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3948 enum pipe pipe = intel_crtc->pipe;
3949 int palreg = PALETTE(pipe);
3950 int i;
3951 bool reenable_ips = false;
3952
3953 /* The clocks have to be on to load the palette. */
3954 if (!crtc->enabled || !intel_crtc->active)
3955 return;
3956
3957 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3958 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3959 assert_dsi_pll_enabled(dev_priv);
3960 else
3961 assert_pll_enabled(dev_priv, pipe);
3962 }
3963
3964 /* use legacy palette for Ironlake */
7a1db49a 3965 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
3966 palreg = LGC_PALETTE(pipe);
3967
3968 /* Workaround : Do not read or write the pipe palette/gamma data while
3969 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3970 */
41e6fc4c 3971 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3972 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3973 GAMMA_MODE_MODE_SPLIT)) {
3974 hsw_disable_ips(intel_crtc);
3975 reenable_ips = true;
3976 }
3977
3978 for (i = 0; i < 256; i++) {
3979 I915_WRITE(palreg + 4 * i,
3980 (intel_crtc->lut_r[i] << 16) |
3981 (intel_crtc->lut_g[i] << 8) |
3982 intel_crtc->lut_b[i]);
3983 }
3984
3985 if (reenable_ips)
3986 hsw_enable_ips(intel_crtc);
3987}
3988
d3eedb1a
VS
3989static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3990{
3991 if (!enable && intel_crtc->overlay) {
3992 struct drm_device *dev = intel_crtc->base.dev;
3993 struct drm_i915_private *dev_priv = dev->dev_private;
3994
3995 mutex_lock(&dev->struct_mutex);
3996 dev_priv->mm.interruptible = false;
3997 (void) intel_overlay_switch_off(intel_crtc->overlay);
3998 dev_priv->mm.interruptible = true;
3999 mutex_unlock(&dev->struct_mutex);
4000 }
4001
4002 /* Let userspace switch the overlay on again. In most cases userspace
4003 * has to recompute where to put it anyway.
4004 */
4005}
4006
d3eedb1a 4007static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4008{
4009 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4011 int pipe = intel_crtc->pipe;
a5c4d7bc 4012
08c71e5e
VS
4013 assert_vblank_disabled(crtc);
4014
f98551ae
VS
4015 drm_vblank_on(dev, pipe);
4016
fdd508a6 4017 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
4018 intel_enable_planes(crtc);
4019 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4020 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4021
4022 hsw_enable_ips(intel_crtc);
4023
4024 mutex_lock(&dev->struct_mutex);
4025 intel_update_fbc(dev);
4026 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4027
4028 /*
4029 * FIXME: Once we grow proper nuclear flip support out of this we need
4030 * to compute the mask of flip planes precisely. For the time being
4031 * consider this a flip from a NULL plane.
4032 */
4033 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4034}
4035
d3eedb1a 4036static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4037{
4038 struct drm_device *dev = crtc->dev;
4039 struct drm_i915_private *dev_priv = dev->dev_private;
4040 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4041 int pipe = intel_crtc->pipe;
4042 int plane = intel_crtc->plane;
4043
4044 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4045
4046 if (dev_priv->fbc.plane == plane)
4047 intel_disable_fbc(dev);
4048
4049 hsw_disable_ips(intel_crtc);
4050
d3eedb1a 4051 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
4052 intel_crtc_update_cursor(crtc, false);
4053 intel_disable_planes(crtc);
fdd508a6 4054 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4055
f99d7069
DV
4056 /*
4057 * FIXME: Once we grow proper nuclear flip support out of this we need
4058 * to compute the mask of flip planes precisely. For the time being
4059 * consider this a flip to a NULL plane.
4060 */
4061 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4062
f98551ae 4063 drm_vblank_off(dev, pipe);
08c71e5e
VS
4064
4065 assert_vblank_disabled(crtc);
a5c4d7bc
VS
4066}
4067
f67a559d
JB
4068static void ironlake_crtc_enable(struct drm_crtc *crtc)
4069{
4070 struct drm_device *dev = crtc->dev;
4071 struct drm_i915_private *dev_priv = dev->dev_private;
4072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4073 struct intel_encoder *encoder;
f67a559d 4074 int pipe = intel_crtc->pipe;
f67a559d 4075
08a48469
DV
4076 WARN_ON(!crtc->enabled);
4077
f67a559d
JB
4078 if (intel_crtc->active)
4079 return;
4080
b14b1055
DV
4081 if (intel_crtc->config.has_pch_encoder)
4082 intel_prepare_shared_dpll(intel_crtc);
4083
29407aab
DV
4084 if (intel_crtc->config.has_dp_encoder)
4085 intel_dp_set_m_n(intel_crtc);
4086
4087 intel_set_pipe_timings(intel_crtc);
4088
4089 if (intel_crtc->config.has_pch_encoder) {
4090 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4091 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4092 }
4093
4094 ironlake_set_pipeconf(crtc);
4095
f67a559d 4096 intel_crtc->active = true;
8664281b
PZ
4097
4098 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4099 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4100
f6736a1a 4101 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4102 if (encoder->pre_enable)
4103 encoder->pre_enable(encoder);
f67a559d 4104
5bfe2ac0 4105 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4106 /* Note: FDI PLL enabling _must_ be done before we enable the
4107 * cpu pipes, hence this is separate from all the other fdi/pch
4108 * enabling. */
88cefb6c 4109 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4110 } else {
4111 assert_fdi_tx_disabled(dev_priv, pipe);
4112 assert_fdi_rx_disabled(dev_priv, pipe);
4113 }
f67a559d 4114
b074cec8 4115 ironlake_pfit_enable(intel_crtc);
f67a559d 4116
9c54c0dd
JB
4117 /*
4118 * On ILK+ LUT must be loaded before the pipe is running but with
4119 * clocks enabled
4120 */
4121 intel_crtc_load_lut(crtc);
4122
f37fcc2a 4123 intel_update_watermarks(crtc);
e1fdc473 4124 intel_enable_pipe(intel_crtc);
f67a559d 4125
5bfe2ac0 4126 if (intel_crtc->config.has_pch_encoder)
f67a559d 4127 ironlake_pch_enable(crtc);
c98e9dcf 4128
fa5c73b1
DV
4129 for_each_encoder_on_crtc(dev, crtc, encoder)
4130 encoder->enable(encoder);
61b77ddd
DV
4131
4132 if (HAS_PCH_CPT(dev))
a1520318 4133 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4134
d3eedb1a 4135 intel_crtc_enable_planes(crtc);
6be4a607
JB
4136}
4137
42db64ef
PZ
4138/* IPS only exists on ULT machines and is tied to pipe A. */
4139static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4140{
f5adf94e 4141 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4142}
4143
e4916946
PZ
4144/*
4145 * This implements the workaround described in the "notes" section of the mode
4146 * set sequence documentation. When going from no pipes or single pipe to
4147 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4148 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4149 */
4150static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4151{
4152 struct drm_device *dev = crtc->base.dev;
4153 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4154
4155 /* We want to get the other_active_crtc only if there's only 1 other
4156 * active crtc. */
d3fcc808 4157 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4158 if (!crtc_it->active || crtc_it == crtc)
4159 continue;
4160
4161 if (other_active_crtc)
4162 return;
4163
4164 other_active_crtc = crtc_it;
4165 }
4166 if (!other_active_crtc)
4167 return;
4168
4169 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4170 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4171}
4172
4f771f10
PZ
4173static void haswell_crtc_enable(struct drm_crtc *crtc)
4174{
4175 struct drm_device *dev = crtc->dev;
4176 struct drm_i915_private *dev_priv = dev->dev_private;
4177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4178 struct intel_encoder *encoder;
4179 int pipe = intel_crtc->pipe;
4f771f10
PZ
4180
4181 WARN_ON(!crtc->enabled);
4182
4183 if (intel_crtc->active)
4184 return;
4185
df8ad70c
DV
4186 if (intel_crtc_to_shared_dpll(intel_crtc))
4187 intel_enable_shared_dpll(intel_crtc);
4188
229fca97
DV
4189 if (intel_crtc->config.has_dp_encoder)
4190 intel_dp_set_m_n(intel_crtc);
4191
4192 intel_set_pipe_timings(intel_crtc);
4193
4194 if (intel_crtc->config.has_pch_encoder) {
4195 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4196 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4197 }
4198
4199 haswell_set_pipeconf(crtc);
4200
4201 intel_set_pipe_csc(crtc);
4202
4f771f10 4203 intel_crtc->active = true;
8664281b
PZ
4204
4205 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4206 for_each_encoder_on_crtc(dev, crtc, encoder)
4207 if (encoder->pre_enable)
4208 encoder->pre_enable(encoder);
4209
4fe9467d
ID
4210 if (intel_crtc->config.has_pch_encoder) {
4211 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4212 dev_priv->display.fdi_link_train(crtc);
4213 }
4214
1f544388 4215 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4216
b074cec8 4217 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4218
4219 /*
4220 * On ILK+ LUT must be loaded before the pipe is running but with
4221 * clocks enabled
4222 */
4223 intel_crtc_load_lut(crtc);
4224
1f544388 4225 intel_ddi_set_pipe_settings(crtc);
8228c251 4226 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4227
f37fcc2a 4228 intel_update_watermarks(crtc);
e1fdc473 4229 intel_enable_pipe(intel_crtc);
42db64ef 4230
5bfe2ac0 4231 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4232 lpt_pch_enable(crtc);
4f771f10 4233
0e32b39c
DA
4234 if (intel_crtc->config.dp_encoder_is_mst)
4235 intel_ddi_set_vc_payload_alloc(crtc, true);
4236
8807e55b 4237 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4238 encoder->enable(encoder);
8807e55b
JN
4239 intel_opregion_notify_encoder(encoder, true);
4240 }
4f771f10 4241
e4916946
PZ
4242 /* If we change the relative order between pipe/planes enabling, we need
4243 * to change the workaround. */
4244 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4245 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4246}
4247
3f8dce3a
DV
4248static void ironlake_pfit_disable(struct intel_crtc *crtc)
4249{
4250 struct drm_device *dev = crtc->base.dev;
4251 struct drm_i915_private *dev_priv = dev->dev_private;
4252 int pipe = crtc->pipe;
4253
4254 /* To avoid upsetting the power well on haswell only disable the pfit if
4255 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4256 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4257 I915_WRITE(PF_CTL(pipe), 0);
4258 I915_WRITE(PF_WIN_POS(pipe), 0);
4259 I915_WRITE(PF_WIN_SZ(pipe), 0);
4260 }
4261}
4262
6be4a607
JB
4263static void ironlake_crtc_disable(struct drm_crtc *crtc)
4264{
4265 struct drm_device *dev = crtc->dev;
4266 struct drm_i915_private *dev_priv = dev->dev_private;
4267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4268 struct intel_encoder *encoder;
6be4a607 4269 int pipe = intel_crtc->pipe;
5eddb70b 4270 u32 reg, temp;
b52eb4dc 4271
f7abfe8b
CW
4272 if (!intel_crtc->active)
4273 return;
4274
d3eedb1a 4275 intel_crtc_disable_planes(crtc);
a5c4d7bc 4276
ea9d758d
DV
4277 for_each_encoder_on_crtc(dev, crtc, encoder)
4278 encoder->disable(encoder);
4279
d925c59a
DV
4280 if (intel_crtc->config.has_pch_encoder)
4281 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4282
575f7ab7 4283 intel_disable_pipe(intel_crtc);
32f9d658 4284
3f8dce3a 4285 ironlake_pfit_disable(intel_crtc);
2c07245f 4286
bf49ec8c
DV
4287 for_each_encoder_on_crtc(dev, crtc, encoder)
4288 if (encoder->post_disable)
4289 encoder->post_disable(encoder);
2c07245f 4290
d925c59a
DV
4291 if (intel_crtc->config.has_pch_encoder) {
4292 ironlake_fdi_disable(crtc);
913d8d11 4293
d925c59a
DV
4294 ironlake_disable_pch_transcoder(dev_priv, pipe);
4295 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4296
d925c59a
DV
4297 if (HAS_PCH_CPT(dev)) {
4298 /* disable TRANS_DP_CTL */
4299 reg = TRANS_DP_CTL(pipe);
4300 temp = I915_READ(reg);
4301 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4302 TRANS_DP_PORT_SEL_MASK);
4303 temp |= TRANS_DP_PORT_SEL_NONE;
4304 I915_WRITE(reg, temp);
4305
4306 /* disable DPLL_SEL */
4307 temp = I915_READ(PCH_DPLL_SEL);
11887397 4308 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4309 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4310 }
e3421a18 4311
d925c59a 4312 /* disable PCH DPLL */
e72f9fbf 4313 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4314
d925c59a
DV
4315 ironlake_fdi_pll_disable(intel_crtc);
4316 }
6b383a7f 4317
f7abfe8b 4318 intel_crtc->active = false;
46ba614c 4319 intel_update_watermarks(crtc);
d1ebd816
BW
4320
4321 mutex_lock(&dev->struct_mutex);
6b383a7f 4322 intel_update_fbc(dev);
d1ebd816 4323 mutex_unlock(&dev->struct_mutex);
6be4a607 4324}
1b3c7a47 4325
4f771f10 4326static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4327{
4f771f10
PZ
4328 struct drm_device *dev = crtc->dev;
4329 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4331 struct intel_encoder *encoder;
3b117c8f 4332 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4333
4f771f10
PZ
4334 if (!intel_crtc->active)
4335 return;
4336
d3eedb1a 4337 intel_crtc_disable_planes(crtc);
dda9a66a 4338
8807e55b
JN
4339 for_each_encoder_on_crtc(dev, crtc, encoder) {
4340 intel_opregion_notify_encoder(encoder, false);
4f771f10 4341 encoder->disable(encoder);
8807e55b 4342 }
4f771f10 4343
8664281b
PZ
4344 if (intel_crtc->config.has_pch_encoder)
4345 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
575f7ab7 4346 intel_disable_pipe(intel_crtc);
4f771f10 4347
a4bf214f
VS
4348 if (intel_crtc->config.dp_encoder_is_mst)
4349 intel_ddi_set_vc_payload_alloc(crtc, false);
4350
ad80a810 4351 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4352
3f8dce3a 4353 ironlake_pfit_disable(intel_crtc);
4f771f10 4354
1f544388 4355 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4356
88adfff1 4357 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4358 lpt_disable_pch_transcoder(dev_priv);
8664281b 4359 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4360 intel_ddi_fdi_disable(crtc);
83616634 4361 }
4f771f10 4362
97b040aa
ID
4363 for_each_encoder_on_crtc(dev, crtc, encoder)
4364 if (encoder->post_disable)
4365 encoder->post_disable(encoder);
4366
4f771f10 4367 intel_crtc->active = false;
46ba614c 4368 intel_update_watermarks(crtc);
4f771f10
PZ
4369
4370 mutex_lock(&dev->struct_mutex);
4371 intel_update_fbc(dev);
4372 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4373
4374 if (intel_crtc_to_shared_dpll(intel_crtc))
4375 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4376}
4377
ee7b9f93
JB
4378static void ironlake_crtc_off(struct drm_crtc *crtc)
4379{
4380 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4381 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4382}
4383
6441ab5f 4384
2dd24552
JB
4385static void i9xx_pfit_enable(struct intel_crtc *crtc)
4386{
4387 struct drm_device *dev = crtc->base.dev;
4388 struct drm_i915_private *dev_priv = dev->dev_private;
4389 struct intel_crtc_config *pipe_config = &crtc->config;
4390
328d8e82 4391 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4392 return;
4393
2dd24552 4394 /*
c0b03411
DV
4395 * The panel fitter should only be adjusted whilst the pipe is disabled,
4396 * according to register description and PRM.
2dd24552 4397 */
c0b03411
DV
4398 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4399 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4400
b074cec8
JB
4401 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4402 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4403
4404 /* Border color in case we don't scale up to the full screen. Black by
4405 * default, change to something else for debugging. */
4406 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4407}
4408
d05410f9
DA
4409static enum intel_display_power_domain port_to_power_domain(enum port port)
4410{
4411 switch (port) {
4412 case PORT_A:
4413 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4414 case PORT_B:
4415 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4416 case PORT_C:
4417 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4418 case PORT_D:
4419 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4420 default:
4421 WARN_ON_ONCE(1);
4422 return POWER_DOMAIN_PORT_OTHER;
4423 }
4424}
4425
77d22dca
ID
4426#define for_each_power_domain(domain, mask) \
4427 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4428 if ((1 << (domain)) & (mask))
4429
319be8ae
ID
4430enum intel_display_power_domain
4431intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4432{
4433 struct drm_device *dev = intel_encoder->base.dev;
4434 struct intel_digital_port *intel_dig_port;
4435
4436 switch (intel_encoder->type) {
4437 case INTEL_OUTPUT_UNKNOWN:
4438 /* Only DDI platforms should ever use this output type */
4439 WARN_ON_ONCE(!HAS_DDI(dev));
4440 case INTEL_OUTPUT_DISPLAYPORT:
4441 case INTEL_OUTPUT_HDMI:
4442 case INTEL_OUTPUT_EDP:
4443 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4444 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4445 case INTEL_OUTPUT_DP_MST:
4446 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4447 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4448 case INTEL_OUTPUT_ANALOG:
4449 return POWER_DOMAIN_PORT_CRT;
4450 case INTEL_OUTPUT_DSI:
4451 return POWER_DOMAIN_PORT_DSI;
4452 default:
4453 return POWER_DOMAIN_PORT_OTHER;
4454 }
4455}
4456
4457static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4458{
319be8ae
ID
4459 struct drm_device *dev = crtc->dev;
4460 struct intel_encoder *intel_encoder;
4461 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4462 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4463 unsigned long mask;
4464 enum transcoder transcoder;
4465
4466 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4467
4468 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4469 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4470 if (intel_crtc->config.pch_pfit.enabled ||
4471 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4472 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4473
319be8ae
ID
4474 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4475 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4476
77d22dca
ID
4477 return mask;
4478}
4479
4480void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4481 bool enable)
4482{
4483 if (dev_priv->power_domains.init_power_on == enable)
4484 return;
4485
4486 if (enable)
4487 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4488 else
4489 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4490
4491 dev_priv->power_domains.init_power_on = enable;
4492}
4493
4494static void modeset_update_crtc_power_domains(struct drm_device *dev)
4495{
4496 struct drm_i915_private *dev_priv = dev->dev_private;
4497 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4498 struct intel_crtc *crtc;
4499
4500 /*
4501 * First get all needed power domains, then put all unneeded, to avoid
4502 * any unnecessary toggling of the power wells.
4503 */
d3fcc808 4504 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4505 enum intel_display_power_domain domain;
4506
4507 if (!crtc->base.enabled)
4508 continue;
4509
319be8ae 4510 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4511
4512 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4513 intel_display_power_get(dev_priv, domain);
4514 }
4515
d3fcc808 4516 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4517 enum intel_display_power_domain domain;
4518
4519 for_each_power_domain(domain, crtc->enabled_power_domains)
4520 intel_display_power_put(dev_priv, domain);
4521
4522 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4523 }
4524
4525 intel_display_set_init_power(dev_priv, false);
4526}
4527
dfcab17e 4528/* returns HPLL frequency in kHz */
f8bf63fd 4529static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4530{
586f49dc 4531 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4532
586f49dc
JB
4533 /* Obtain SKU information */
4534 mutex_lock(&dev_priv->dpio_lock);
4535 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4536 CCK_FUSE_HPLL_FREQ_MASK;
4537 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4538
dfcab17e 4539 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4540}
4541
f8bf63fd
VS
4542static void vlv_update_cdclk(struct drm_device *dev)
4543{
4544 struct drm_i915_private *dev_priv = dev->dev_private;
4545
4546 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4547 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4548 dev_priv->vlv_cdclk_freq);
4549
4550 /*
4551 * Program the gmbus_freq based on the cdclk frequency.
4552 * BSpec erroneously claims we should aim for 4MHz, but
4553 * in fact 1MHz is the correct frequency.
4554 */
4555 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4556}
4557
30a970c6
JB
4558/* Adjust CDclk dividers to allow high res or save power if possible */
4559static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4560{
4561 struct drm_i915_private *dev_priv = dev->dev_private;
4562 u32 val, cmd;
4563
d197b7d3 4564 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4565
dfcab17e 4566 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4567 cmd = 2;
dfcab17e 4568 else if (cdclk == 266667)
30a970c6
JB
4569 cmd = 1;
4570 else
4571 cmd = 0;
4572
4573 mutex_lock(&dev_priv->rps.hw_lock);
4574 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4575 val &= ~DSPFREQGUAR_MASK;
4576 val |= (cmd << DSPFREQGUAR_SHIFT);
4577 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4578 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4579 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4580 50)) {
4581 DRM_ERROR("timed out waiting for CDclk change\n");
4582 }
4583 mutex_unlock(&dev_priv->rps.hw_lock);
4584
dfcab17e 4585 if (cdclk == 400000) {
30a970c6
JB
4586 u32 divider, vco;
4587
4588 vco = valleyview_get_vco(dev_priv);
dfcab17e 4589 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4590
4591 mutex_lock(&dev_priv->dpio_lock);
4592 /* adjust cdclk divider */
4593 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4594 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4595 val |= divider;
4596 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4597
4598 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4599 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4600 50))
4601 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4602 mutex_unlock(&dev_priv->dpio_lock);
4603 }
4604
4605 mutex_lock(&dev_priv->dpio_lock);
4606 /* adjust self-refresh exit latency value */
4607 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4608 val &= ~0x7f;
4609
4610 /*
4611 * For high bandwidth configs, we set a higher latency in the bunit
4612 * so that the core display fetch happens in time to avoid underruns.
4613 */
dfcab17e 4614 if (cdclk == 400000)
30a970c6
JB
4615 val |= 4500 / 250; /* 4.5 usec */
4616 else
4617 val |= 3000 / 250; /* 3.0 usec */
4618 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4619 mutex_unlock(&dev_priv->dpio_lock);
4620
f8bf63fd 4621 vlv_update_cdclk(dev);
30a970c6
JB
4622}
4623
383c5a6a
VS
4624static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4625{
4626 struct drm_i915_private *dev_priv = dev->dev_private;
4627 u32 val, cmd;
4628
4629 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4630
4631 switch (cdclk) {
4632 case 400000:
4633 cmd = 3;
4634 break;
4635 case 333333:
4636 case 320000:
4637 cmd = 2;
4638 break;
4639 case 266667:
4640 cmd = 1;
4641 break;
4642 case 200000:
4643 cmd = 0;
4644 break;
4645 default:
4646 WARN_ON(1);
4647 return;
4648 }
4649
4650 mutex_lock(&dev_priv->rps.hw_lock);
4651 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4652 val &= ~DSPFREQGUAR_MASK_CHV;
4653 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4654 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4655 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4656 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4657 50)) {
4658 DRM_ERROR("timed out waiting for CDclk change\n");
4659 }
4660 mutex_unlock(&dev_priv->rps.hw_lock);
4661
4662 vlv_update_cdclk(dev);
4663}
4664
30a970c6
JB
4665static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4666 int max_pixclk)
4667{
29dc7ef3
VS
4668 int vco = valleyview_get_vco(dev_priv);
4669 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4670
d49a340d
VS
4671 /* FIXME: Punit isn't quite ready yet */
4672 if (IS_CHERRYVIEW(dev_priv->dev))
4673 return 400000;
4674
30a970c6
JB
4675 /*
4676 * Really only a few cases to deal with, as only 4 CDclks are supported:
4677 * 200MHz
4678 * 267MHz
29dc7ef3 4679 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4680 * 400MHz
4681 * So we check to see whether we're above 90% of the lower bin and
4682 * adjust if needed.
e37c67a1
VS
4683 *
4684 * We seem to get an unstable or solid color picture at 200MHz.
4685 * Not sure what's wrong. For now use 200MHz only when all pipes
4686 * are off.
30a970c6 4687 */
29dc7ef3 4688 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4689 return 400000;
4690 else if (max_pixclk > 266667*9/10)
29dc7ef3 4691 return freq_320;
e37c67a1 4692 else if (max_pixclk > 0)
dfcab17e 4693 return 266667;
e37c67a1
VS
4694 else
4695 return 200000;
30a970c6
JB
4696}
4697
2f2d7aa1
VS
4698/* compute the max pixel clock for new configuration */
4699static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4700{
4701 struct drm_device *dev = dev_priv->dev;
4702 struct intel_crtc *intel_crtc;
4703 int max_pixclk = 0;
4704
d3fcc808 4705 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4706 if (intel_crtc->new_enabled)
30a970c6 4707 max_pixclk = max(max_pixclk,
2f2d7aa1 4708 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4709 }
4710
4711 return max_pixclk;
4712}
4713
4714static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4715 unsigned *prepare_pipes)
30a970c6
JB
4716{
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718 struct intel_crtc *intel_crtc;
2f2d7aa1 4719 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4720
d60c4473
ID
4721 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4722 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4723 return;
4724
2f2d7aa1 4725 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4726 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4727 if (intel_crtc->base.enabled)
4728 *prepare_pipes |= (1 << intel_crtc->pipe);
4729}
4730
4731static void valleyview_modeset_global_resources(struct drm_device *dev)
4732{
4733 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4734 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4735 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4736
383c5a6a
VS
4737 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4738 if (IS_CHERRYVIEW(dev))
4739 cherryview_set_cdclk(dev, req_cdclk);
4740 else
4741 valleyview_set_cdclk(dev, req_cdclk);
4742 }
4743
77961eb9 4744 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4745}
4746
89b667f8
JB
4747static void valleyview_crtc_enable(struct drm_crtc *crtc)
4748{
4749 struct drm_device *dev = crtc->dev;
89b667f8
JB
4750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4751 struct intel_encoder *encoder;
4752 int pipe = intel_crtc->pipe;
23538ef1 4753 bool is_dsi;
89b667f8
JB
4754
4755 WARN_ON(!crtc->enabled);
4756
4757 if (intel_crtc->active)
4758 return;
4759
8525a235
SK
4760 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4761
1ae0d137
VS
4762 if (!is_dsi) {
4763 if (IS_CHERRYVIEW(dev))
4764 chv_prepare_pll(intel_crtc);
4765 else
4766 vlv_prepare_pll(intel_crtc);
4767 }
5b18e57c
DV
4768
4769 if (intel_crtc->config.has_dp_encoder)
4770 intel_dp_set_m_n(intel_crtc);
4771
4772 intel_set_pipe_timings(intel_crtc);
4773
5b18e57c
DV
4774 i9xx_set_pipeconf(intel_crtc);
4775
89b667f8 4776 intel_crtc->active = true;
89b667f8 4777
4a3436e8
VS
4778 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4779
89b667f8
JB
4780 for_each_encoder_on_crtc(dev, crtc, encoder)
4781 if (encoder->pre_pll_enable)
4782 encoder->pre_pll_enable(encoder);
4783
9d556c99
CML
4784 if (!is_dsi) {
4785 if (IS_CHERRYVIEW(dev))
4786 chv_enable_pll(intel_crtc);
4787 else
4788 vlv_enable_pll(intel_crtc);
4789 }
89b667f8
JB
4790
4791 for_each_encoder_on_crtc(dev, crtc, encoder)
4792 if (encoder->pre_enable)
4793 encoder->pre_enable(encoder);
4794
2dd24552
JB
4795 i9xx_pfit_enable(intel_crtc);
4796
63cbb074
VS
4797 intel_crtc_load_lut(crtc);
4798
f37fcc2a 4799 intel_update_watermarks(crtc);
e1fdc473 4800 intel_enable_pipe(intel_crtc);
be6a6f8e 4801
5004945f
JN
4802 for_each_encoder_on_crtc(dev, crtc, encoder)
4803 encoder->enable(encoder);
9ab0460b
VS
4804
4805 intel_crtc_enable_planes(crtc);
d40d9187 4806
56b80e1f
VS
4807 /* Underruns don't raise interrupts, so check manually. */
4808 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4809}
4810
f13c2ef3
DV
4811static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4812{
4813 struct drm_device *dev = crtc->base.dev;
4814 struct drm_i915_private *dev_priv = dev->dev_private;
4815
4816 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4817 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4818}
4819
0b8765c6 4820static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4821{
4822 struct drm_device *dev = crtc->dev;
79e53945 4823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4824 struct intel_encoder *encoder;
79e53945 4825 int pipe = intel_crtc->pipe;
79e53945 4826
08a48469
DV
4827 WARN_ON(!crtc->enabled);
4828
f7abfe8b
CW
4829 if (intel_crtc->active)
4830 return;
4831
f13c2ef3
DV
4832 i9xx_set_pll_dividers(intel_crtc);
4833
5b18e57c
DV
4834 if (intel_crtc->config.has_dp_encoder)
4835 intel_dp_set_m_n(intel_crtc);
4836
4837 intel_set_pipe_timings(intel_crtc);
4838
5b18e57c
DV
4839 i9xx_set_pipeconf(intel_crtc);
4840
f7abfe8b 4841 intel_crtc->active = true;
6b383a7f 4842
4a3436e8
VS
4843 if (!IS_GEN2(dev))
4844 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4845
9d6d9f19
MK
4846 for_each_encoder_on_crtc(dev, crtc, encoder)
4847 if (encoder->pre_enable)
4848 encoder->pre_enable(encoder);
4849
f6736a1a
DV
4850 i9xx_enable_pll(intel_crtc);
4851
2dd24552
JB
4852 i9xx_pfit_enable(intel_crtc);
4853
63cbb074
VS
4854 intel_crtc_load_lut(crtc);
4855
f37fcc2a 4856 intel_update_watermarks(crtc);
e1fdc473 4857 intel_enable_pipe(intel_crtc);
be6a6f8e 4858
fa5c73b1
DV
4859 for_each_encoder_on_crtc(dev, crtc, encoder)
4860 encoder->enable(encoder);
9ab0460b
VS
4861
4862 intel_crtc_enable_planes(crtc);
d40d9187 4863
4a3436e8
VS
4864 /*
4865 * Gen2 reports pipe underruns whenever all planes are disabled.
4866 * So don't enable underrun reporting before at least some planes
4867 * are enabled.
4868 * FIXME: Need to fix the logic to work when we turn off all planes
4869 * but leave the pipe running.
4870 */
4871 if (IS_GEN2(dev))
4872 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4873
56b80e1f
VS
4874 /* Underruns don't raise interrupts, so check manually. */
4875 i9xx_check_fifo_underruns(dev);
0b8765c6 4876}
79e53945 4877
87476d63
DV
4878static void i9xx_pfit_disable(struct intel_crtc *crtc)
4879{
4880 struct drm_device *dev = crtc->base.dev;
4881 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4882
328d8e82
DV
4883 if (!crtc->config.gmch_pfit.control)
4884 return;
87476d63 4885
328d8e82 4886 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4887
328d8e82
DV
4888 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4889 I915_READ(PFIT_CONTROL));
4890 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4891}
4892
0b8765c6
JB
4893static void i9xx_crtc_disable(struct drm_crtc *crtc)
4894{
4895 struct drm_device *dev = crtc->dev;
4896 struct drm_i915_private *dev_priv = dev->dev_private;
4897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4898 struct intel_encoder *encoder;
0b8765c6 4899 int pipe = intel_crtc->pipe;
ef9c3aee 4900
f7abfe8b
CW
4901 if (!intel_crtc->active)
4902 return;
4903
4a3436e8
VS
4904 /*
4905 * Gen2 reports pipe underruns whenever all planes are disabled.
4906 * So diasble underrun reporting before all the planes get disabled.
4907 * FIXME: Need to fix the logic to work when we turn off all planes
4908 * but leave the pipe running.
4909 */
4910 if (IS_GEN2(dev))
4911 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4912
564ed191
ID
4913 /*
4914 * Vblank time updates from the shadow to live plane control register
4915 * are blocked if the memory self-refresh mode is active at that
4916 * moment. So to make sure the plane gets truly disabled, disable
4917 * first the self-refresh mode. The self-refresh enable bit in turn
4918 * will be checked/applied by the HW only at the next frame start
4919 * event which is after the vblank start event, so we need to have a
4920 * wait-for-vblank between disabling the plane and the pipe.
4921 */
4922 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4923 intel_crtc_disable_planes(crtc);
4924
ea9d758d
DV
4925 for_each_encoder_on_crtc(dev, crtc, encoder)
4926 encoder->disable(encoder);
4927
6304cd91
VS
4928 /*
4929 * On gen2 planes are double buffered but the pipe isn't, so we must
4930 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4931 * We also need to wait on all gmch platforms because of the
4932 * self-refresh mode constraint explained above.
6304cd91 4933 */
564ed191 4934 intel_wait_for_vblank(dev, pipe);
6304cd91 4935
575f7ab7 4936 intel_disable_pipe(intel_crtc);
24a1f16d 4937
87476d63 4938 i9xx_pfit_disable(intel_crtc);
24a1f16d 4939
89b667f8
JB
4940 for_each_encoder_on_crtc(dev, crtc, encoder)
4941 if (encoder->post_disable)
4942 encoder->post_disable(encoder);
4943
076ed3b2
CML
4944 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4945 if (IS_CHERRYVIEW(dev))
4946 chv_disable_pll(dev_priv, pipe);
4947 else if (IS_VALLEYVIEW(dev))
4948 vlv_disable_pll(dev_priv, pipe);
4949 else
4950 i9xx_disable_pll(dev_priv, pipe);
4951 }
0b8765c6 4952
4a3436e8
VS
4953 if (!IS_GEN2(dev))
4954 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4955
f7abfe8b 4956 intel_crtc->active = false;
46ba614c 4957 intel_update_watermarks(crtc);
f37fcc2a 4958
efa9624e 4959 mutex_lock(&dev->struct_mutex);
6b383a7f 4960 intel_update_fbc(dev);
efa9624e 4961 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4962}
4963
ee7b9f93
JB
4964static void i9xx_crtc_off(struct drm_crtc *crtc)
4965{
4966}
4967
976f8a20
DV
4968static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4969 bool enabled)
2c07245f
ZW
4970{
4971 struct drm_device *dev = crtc->dev;
4972 struct drm_i915_master_private *master_priv;
4973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4974 int pipe = intel_crtc->pipe;
79e53945
JB
4975
4976 if (!dev->primary->master)
4977 return;
4978
4979 master_priv = dev->primary->master->driver_priv;
4980 if (!master_priv->sarea_priv)
4981 return;
4982
79e53945
JB
4983 switch (pipe) {
4984 case 0:
4985 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4986 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4987 break;
4988 case 1:
4989 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4990 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4991 break;
4992 default:
9db4a9c7 4993 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4994 break;
4995 }
79e53945
JB
4996}
4997
b04c5bd6
BF
4998/* Master function to enable/disable CRTC and corresponding power wells */
4999void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5000{
5001 struct drm_device *dev = crtc->dev;
5002 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5004 enum intel_display_power_domain domain;
5005 unsigned long domains;
976f8a20 5006
0e572fe7
DV
5007 if (enable) {
5008 if (!intel_crtc->active) {
e1e9fb84
DV
5009 domains = get_crtc_power_domains(crtc);
5010 for_each_power_domain(domain, domains)
5011 intel_display_power_get(dev_priv, domain);
5012 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5013
5014 dev_priv->display.crtc_enable(crtc);
5015 }
5016 } else {
5017 if (intel_crtc->active) {
5018 dev_priv->display.crtc_disable(crtc);
5019
e1e9fb84
DV
5020 domains = intel_crtc->enabled_power_domains;
5021 for_each_power_domain(domain, domains)
5022 intel_display_power_put(dev_priv, domain);
5023 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5024 }
5025 }
b04c5bd6
BF
5026}
5027
5028/**
5029 * Sets the power management mode of the pipe and plane.
5030 */
5031void intel_crtc_update_dpms(struct drm_crtc *crtc)
5032{
5033 struct drm_device *dev = crtc->dev;
5034 struct intel_encoder *intel_encoder;
5035 bool enable = false;
5036
5037 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5038 enable |= intel_encoder->connectors_active;
5039
5040 intel_crtc_control(crtc, enable);
976f8a20
DV
5041
5042 intel_crtc_update_sarea(crtc, enable);
5043}
5044
cdd59983
CW
5045static void intel_crtc_disable(struct drm_crtc *crtc)
5046{
cdd59983 5047 struct drm_device *dev = crtc->dev;
976f8a20 5048 struct drm_connector *connector;
ee7b9f93 5049 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 5050 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 5051 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 5052
976f8a20
DV
5053 /* crtc should still be enabled when we disable it. */
5054 WARN_ON(!crtc->enabled);
5055
5056 dev_priv->display.crtc_disable(crtc);
5057 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
5058 dev_priv->display.off(crtc);
5059
f4510a27 5060 if (crtc->primary->fb) {
cdd59983 5061 mutex_lock(&dev->struct_mutex);
a071fa00
DV
5062 intel_unpin_fb_obj(old_obj);
5063 i915_gem_track_fb(old_obj, NULL,
5064 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 5065 mutex_unlock(&dev->struct_mutex);
f4510a27 5066 crtc->primary->fb = NULL;
976f8a20
DV
5067 }
5068
5069 /* Update computed state. */
5070 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5071 if (!connector->encoder || !connector->encoder->crtc)
5072 continue;
5073
5074 if (connector->encoder->crtc != crtc)
5075 continue;
5076
5077 connector->dpms = DRM_MODE_DPMS_OFF;
5078 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5079 }
5080}
5081
ea5b213a 5082void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5083{
4ef69c7a 5084 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5085
ea5b213a
CW
5086 drm_encoder_cleanup(encoder);
5087 kfree(intel_encoder);
7e7d76c3
JB
5088}
5089
9237329d 5090/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5091 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5092 * state of the entire output pipe. */
9237329d 5093static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5094{
5ab432ef
DV
5095 if (mode == DRM_MODE_DPMS_ON) {
5096 encoder->connectors_active = true;
5097
b2cabb0e 5098 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5099 } else {
5100 encoder->connectors_active = false;
5101
b2cabb0e 5102 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5103 }
79e53945
JB
5104}
5105
0a91ca29
DV
5106/* Cross check the actual hw state with our own modeset state tracking (and it's
5107 * internal consistency). */
b980514c 5108static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5109{
0a91ca29
DV
5110 if (connector->get_hw_state(connector)) {
5111 struct intel_encoder *encoder = connector->encoder;
5112 struct drm_crtc *crtc;
5113 bool encoder_enabled;
5114 enum pipe pipe;
5115
5116 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5117 connector->base.base.id,
c23cc417 5118 connector->base.name);
0a91ca29 5119
0e32b39c
DA
5120 /* there is no real hw state for MST connectors */
5121 if (connector->mst_port)
5122 return;
5123
0a91ca29
DV
5124 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5125 "wrong connector dpms state\n");
5126 WARN(connector->base.encoder != &encoder->base,
5127 "active connector not linked to encoder\n");
0a91ca29 5128
36cd7444
DA
5129 if (encoder) {
5130 WARN(!encoder->connectors_active,
5131 "encoder->connectors_active not set\n");
5132
5133 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5134 WARN(!encoder_enabled, "encoder not enabled\n");
5135 if (WARN_ON(!encoder->base.crtc))
5136 return;
0a91ca29 5137
36cd7444 5138 crtc = encoder->base.crtc;
0a91ca29 5139
36cd7444
DA
5140 WARN(!crtc->enabled, "crtc not enabled\n");
5141 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5142 WARN(pipe != to_intel_crtc(crtc)->pipe,
5143 "encoder active on the wrong pipe\n");
5144 }
0a91ca29 5145 }
79e53945
JB
5146}
5147
5ab432ef
DV
5148/* Even simpler default implementation, if there's really no special case to
5149 * consider. */
5150void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5151{
5ab432ef
DV
5152 /* All the simple cases only support two dpms states. */
5153 if (mode != DRM_MODE_DPMS_ON)
5154 mode = DRM_MODE_DPMS_OFF;
d4270e57 5155
5ab432ef
DV
5156 if (mode == connector->dpms)
5157 return;
5158
5159 connector->dpms = mode;
5160
5161 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5162 if (connector->encoder)
5163 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5164
b980514c 5165 intel_modeset_check_state(connector->dev);
79e53945
JB
5166}
5167
f0947c37
DV
5168/* Simple connector->get_hw_state implementation for encoders that support only
5169 * one connector and no cloning and hence the encoder state determines the state
5170 * of the connector. */
5171bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5172{
24929352 5173 enum pipe pipe = 0;
f0947c37 5174 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5175
f0947c37 5176 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5177}
5178
1857e1da
DV
5179static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5180 struct intel_crtc_config *pipe_config)
5181{
5182 struct drm_i915_private *dev_priv = dev->dev_private;
5183 struct intel_crtc *pipe_B_crtc =
5184 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5185
5186 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5187 pipe_name(pipe), pipe_config->fdi_lanes);
5188 if (pipe_config->fdi_lanes > 4) {
5189 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5190 pipe_name(pipe), pipe_config->fdi_lanes);
5191 return false;
5192 }
5193
bafb6553 5194 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5195 if (pipe_config->fdi_lanes > 2) {
5196 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5197 pipe_config->fdi_lanes);
5198 return false;
5199 } else {
5200 return true;
5201 }
5202 }
5203
5204 if (INTEL_INFO(dev)->num_pipes == 2)
5205 return true;
5206
5207 /* Ivybridge 3 pipe is really complicated */
5208 switch (pipe) {
5209 case PIPE_A:
5210 return true;
5211 case PIPE_B:
5212 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5213 pipe_config->fdi_lanes > 2) {
5214 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5215 pipe_name(pipe), pipe_config->fdi_lanes);
5216 return false;
5217 }
5218 return true;
5219 case PIPE_C:
1e833f40 5220 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5221 pipe_B_crtc->config.fdi_lanes <= 2) {
5222 if (pipe_config->fdi_lanes > 2) {
5223 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5224 pipe_name(pipe), pipe_config->fdi_lanes);
5225 return false;
5226 }
5227 } else {
5228 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5229 return false;
5230 }
5231 return true;
5232 default:
5233 BUG();
5234 }
5235}
5236
e29c22c0
DV
5237#define RETRY 1
5238static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5239 struct intel_crtc_config *pipe_config)
877d48d5 5240{
1857e1da 5241 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5242 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5243 int lane, link_bw, fdi_dotclock;
e29c22c0 5244 bool setup_ok, needs_recompute = false;
877d48d5 5245
e29c22c0 5246retry:
877d48d5
DV
5247 /* FDI is a binary signal running at ~2.7GHz, encoding
5248 * each output octet as 10 bits. The actual frequency
5249 * is stored as a divider into a 100MHz clock, and the
5250 * mode pixel clock is stored in units of 1KHz.
5251 * Hence the bw of each lane in terms of the mode signal
5252 * is:
5253 */
5254 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5255
241bfc38 5256 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5257
2bd89a07 5258 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5259 pipe_config->pipe_bpp);
5260
5261 pipe_config->fdi_lanes = lane;
5262
2bd89a07 5263 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5264 link_bw, &pipe_config->fdi_m_n);
1857e1da 5265
e29c22c0
DV
5266 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5267 intel_crtc->pipe, pipe_config);
5268 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5269 pipe_config->pipe_bpp -= 2*3;
5270 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5271 pipe_config->pipe_bpp);
5272 needs_recompute = true;
5273 pipe_config->bw_constrained = true;
5274
5275 goto retry;
5276 }
5277
5278 if (needs_recompute)
5279 return RETRY;
5280
5281 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5282}
5283
42db64ef
PZ
5284static void hsw_compute_ips_config(struct intel_crtc *crtc,
5285 struct intel_crtc_config *pipe_config)
5286{
d330a953 5287 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5288 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5289 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5290}
5291
a43f6e0f 5292static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5293 struct intel_crtc_config *pipe_config)
79e53945 5294{
a43f6e0f 5295 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5296 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5297
ad3a4479 5298 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5299 if (INTEL_INFO(dev)->gen < 4) {
5300 struct drm_i915_private *dev_priv = dev->dev_private;
5301 int clock_limit =
5302 dev_priv->display.get_display_clock_speed(dev);
5303
5304 /*
5305 * Enable pixel doubling when the dot clock
5306 * is > 90% of the (display) core speed.
5307 *
b397c96b
VS
5308 * GDG double wide on either pipe,
5309 * otherwise pipe A only.
cf532bb2 5310 */
b397c96b 5311 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5312 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5313 clock_limit *= 2;
cf532bb2 5314 pipe_config->double_wide = true;
ad3a4479
VS
5315 }
5316
241bfc38 5317 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5318 return -EINVAL;
2c07245f 5319 }
89749350 5320
1d1d0e27
VS
5321 /*
5322 * Pipe horizontal size must be even in:
5323 * - DVO ganged mode
5324 * - LVDS dual channel mode
5325 * - Double wide pipe
5326 */
5327 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5328 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5329 pipe_config->pipe_src_w &= ~1;
5330
8693a824
DL
5331 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5332 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5333 */
5334 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5335 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5336 return -EINVAL;
44f46b42 5337
bd080ee5 5338 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5339 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5340 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5341 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5342 * for lvds. */
5343 pipe_config->pipe_bpp = 8*3;
5344 }
5345
f5adf94e 5346 if (HAS_IPS(dev))
a43f6e0f
DV
5347 hsw_compute_ips_config(crtc, pipe_config);
5348
12030431
DV
5349 /*
5350 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5351 * old clock survives for now.
5352 */
5353 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5354 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5355
877d48d5 5356 if (pipe_config->has_pch_encoder)
a43f6e0f 5357 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5358
e29c22c0 5359 return 0;
79e53945
JB
5360}
5361
25eb05fc
JB
5362static int valleyview_get_display_clock_speed(struct drm_device *dev)
5363{
d197b7d3
VS
5364 struct drm_i915_private *dev_priv = dev->dev_private;
5365 int vco = valleyview_get_vco(dev_priv);
5366 u32 val;
5367 int divider;
5368
d49a340d
VS
5369 /* FIXME: Punit isn't quite ready yet */
5370 if (IS_CHERRYVIEW(dev))
5371 return 400000;
5372
d197b7d3
VS
5373 mutex_lock(&dev_priv->dpio_lock);
5374 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5375 mutex_unlock(&dev_priv->dpio_lock);
5376
5377 divider = val & DISPLAY_FREQUENCY_VALUES;
5378
7d007f40
VS
5379 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5380 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5381 "cdclk change in progress\n");
5382
d197b7d3 5383 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5384}
5385
e70236a8
JB
5386static int i945_get_display_clock_speed(struct drm_device *dev)
5387{
5388 return 400000;
5389}
79e53945 5390
e70236a8 5391static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5392{
e70236a8
JB
5393 return 333000;
5394}
79e53945 5395
e70236a8
JB
5396static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5397{
5398 return 200000;
5399}
79e53945 5400
257a7ffc
DV
5401static int pnv_get_display_clock_speed(struct drm_device *dev)
5402{
5403 u16 gcfgc = 0;
5404
5405 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5406
5407 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5408 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5409 return 267000;
5410 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5411 return 333000;
5412 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5413 return 444000;
5414 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5415 return 200000;
5416 default:
5417 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5418 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5419 return 133000;
5420 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5421 return 167000;
5422 }
5423}
5424
e70236a8
JB
5425static int i915gm_get_display_clock_speed(struct drm_device *dev)
5426{
5427 u16 gcfgc = 0;
79e53945 5428
e70236a8
JB
5429 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5430
5431 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5432 return 133000;
5433 else {
5434 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5435 case GC_DISPLAY_CLOCK_333_MHZ:
5436 return 333000;
5437 default:
5438 case GC_DISPLAY_CLOCK_190_200_MHZ:
5439 return 190000;
79e53945 5440 }
e70236a8
JB
5441 }
5442}
5443
5444static int i865_get_display_clock_speed(struct drm_device *dev)
5445{
5446 return 266000;
5447}
5448
5449static int i855_get_display_clock_speed(struct drm_device *dev)
5450{
5451 u16 hpllcc = 0;
5452 /* Assume that the hardware is in the high speed state. This
5453 * should be the default.
5454 */
5455 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5456 case GC_CLOCK_133_200:
5457 case GC_CLOCK_100_200:
5458 return 200000;
5459 case GC_CLOCK_166_250:
5460 return 250000;
5461 case GC_CLOCK_100_133:
79e53945 5462 return 133000;
e70236a8 5463 }
79e53945 5464
e70236a8
JB
5465 /* Shouldn't happen */
5466 return 0;
5467}
79e53945 5468
e70236a8
JB
5469static int i830_get_display_clock_speed(struct drm_device *dev)
5470{
5471 return 133000;
79e53945
JB
5472}
5473
2c07245f 5474static void
a65851af 5475intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5476{
a65851af
VS
5477 while (*num > DATA_LINK_M_N_MASK ||
5478 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5479 *num >>= 1;
5480 *den >>= 1;
5481 }
5482}
5483
a65851af
VS
5484static void compute_m_n(unsigned int m, unsigned int n,
5485 uint32_t *ret_m, uint32_t *ret_n)
5486{
5487 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5488 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5489 intel_reduce_m_n_ratio(ret_m, ret_n);
5490}
5491
e69d0bc1
DV
5492void
5493intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5494 int pixel_clock, int link_clock,
5495 struct intel_link_m_n *m_n)
2c07245f 5496{
e69d0bc1 5497 m_n->tu = 64;
a65851af
VS
5498
5499 compute_m_n(bits_per_pixel * pixel_clock,
5500 link_clock * nlanes * 8,
5501 &m_n->gmch_m, &m_n->gmch_n);
5502
5503 compute_m_n(pixel_clock, link_clock,
5504 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5505}
5506
a7615030
CW
5507static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5508{
d330a953
JN
5509 if (i915.panel_use_ssc >= 0)
5510 return i915.panel_use_ssc != 0;
41aa3448 5511 return dev_priv->vbt.lvds_use_ssc
435793df 5512 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5513}
5514
c65d77d8
JB
5515static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5516{
5517 struct drm_device *dev = crtc->dev;
5518 struct drm_i915_private *dev_priv = dev->dev_private;
5519 int refclk;
5520
a0c4da24 5521 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5522 refclk = 100000;
a0c4da24 5523 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5524 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5525 refclk = dev_priv->vbt.lvds_ssc_freq;
5526 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5527 } else if (!IS_GEN2(dev)) {
5528 refclk = 96000;
5529 } else {
5530 refclk = 48000;
5531 }
5532
5533 return refclk;
5534}
5535
7429e9d4 5536static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5537{
7df00d7a 5538 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5539}
f47709a9 5540
7429e9d4
DV
5541static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5542{
5543 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5544}
5545
f47709a9 5546static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5547 intel_clock_t *reduced_clock)
5548{
f47709a9 5549 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5550 u32 fp, fp2 = 0;
5551
5552 if (IS_PINEVIEW(dev)) {
7429e9d4 5553 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5554 if (reduced_clock)
7429e9d4 5555 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5556 } else {
7429e9d4 5557 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5558 if (reduced_clock)
7429e9d4 5559 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5560 }
5561
8bcc2795 5562 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5563
f47709a9
DV
5564 crtc->lowfreq_avail = false;
5565 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5566 reduced_clock && i915.powersave) {
8bcc2795 5567 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5568 crtc->lowfreq_avail = true;
a7516a05 5569 } else {
8bcc2795 5570 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5571 }
5572}
5573
5e69f97f
CML
5574static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5575 pipe)
89b667f8
JB
5576{
5577 u32 reg_val;
5578
5579 /*
5580 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5581 * and set it to a reasonable value instead.
5582 */
ab3c759a 5583 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5584 reg_val &= 0xffffff00;
5585 reg_val |= 0x00000030;
ab3c759a 5586 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5587
ab3c759a 5588 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5589 reg_val &= 0x8cffffff;
5590 reg_val = 0x8c000000;
ab3c759a 5591 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5592
ab3c759a 5593 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5594 reg_val &= 0xffffff00;
ab3c759a 5595 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5596
ab3c759a 5597 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5598 reg_val &= 0x00ffffff;
5599 reg_val |= 0xb0000000;
ab3c759a 5600 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5601}
5602
b551842d
DV
5603static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5604 struct intel_link_m_n *m_n)
5605{
5606 struct drm_device *dev = crtc->base.dev;
5607 struct drm_i915_private *dev_priv = dev->dev_private;
5608 int pipe = crtc->pipe;
5609
e3b95f1e
DV
5610 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5611 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5612 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5613 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5614}
5615
5616static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5617 struct intel_link_m_n *m_n,
5618 struct intel_link_m_n *m2_n2)
b551842d
DV
5619{
5620 struct drm_device *dev = crtc->base.dev;
5621 struct drm_i915_private *dev_priv = dev->dev_private;
5622 int pipe = crtc->pipe;
5623 enum transcoder transcoder = crtc->config.cpu_transcoder;
5624
5625 if (INTEL_INFO(dev)->gen >= 5) {
5626 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5627 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5628 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5629 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5630 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5631 * for gen < 8) and if DRRS is supported (to make sure the
5632 * registers are not unnecessarily accessed).
5633 */
5634 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5635 crtc->config.has_drrs) {
5636 I915_WRITE(PIPE_DATA_M2(transcoder),
5637 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5638 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5639 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5640 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5641 }
b551842d 5642 } else {
e3b95f1e
DV
5643 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5644 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5645 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5646 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5647 }
5648}
5649
f769cd24 5650void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5651{
5652 if (crtc->config.has_pch_encoder)
5653 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5654 else
f769cd24
VK
5655 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5656 &crtc->config.dp_m2_n2);
03afc4a2
DV
5657}
5658
f47709a9 5659static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5660{
5661 u32 dpll, dpll_md;
5662
5663 /*
5664 * Enable DPIO clock input. We should never disable the reference
5665 * clock for pipe B, since VGA hotplug / manual detection depends
5666 * on it.
5667 */
5668 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5669 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5670 /* We should never disable this, set it here for state tracking */
5671 if (crtc->pipe == PIPE_B)
5672 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5673 dpll |= DPLL_VCO_ENABLE;
5674 crtc->config.dpll_hw_state.dpll = dpll;
5675
5676 dpll_md = (crtc->config.pixel_multiplier - 1)
5677 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5678 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5679}
5680
5681static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5682{
f47709a9 5683 struct drm_device *dev = crtc->base.dev;
a0c4da24 5684 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5685 int pipe = crtc->pipe;
bdd4b6a6 5686 u32 mdiv;
a0c4da24 5687 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5688 u32 coreclk, reg_val;
a0c4da24 5689
09153000
DV
5690 mutex_lock(&dev_priv->dpio_lock);
5691
f47709a9
DV
5692 bestn = crtc->config.dpll.n;
5693 bestm1 = crtc->config.dpll.m1;
5694 bestm2 = crtc->config.dpll.m2;
5695 bestp1 = crtc->config.dpll.p1;
5696 bestp2 = crtc->config.dpll.p2;
a0c4da24 5697
89b667f8
JB
5698 /* See eDP HDMI DPIO driver vbios notes doc */
5699
5700 /* PLL B needs special handling */
bdd4b6a6 5701 if (pipe == PIPE_B)
5e69f97f 5702 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5703
5704 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5705 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5706
5707 /* Disable target IRef on PLL */
ab3c759a 5708 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5709 reg_val &= 0x00ffffff;
ab3c759a 5710 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5711
5712 /* Disable fast lock */
ab3c759a 5713 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5714
5715 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5716 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5717 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5718 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5719 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5720
5721 /*
5722 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5723 * but we don't support that).
5724 * Note: don't use the DAC post divider as it seems unstable.
5725 */
5726 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5727 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5728
a0c4da24 5729 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5730 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5731
89b667f8 5732 /* Set HBR and RBR LPF coefficients */
ff9a6750 5733 if (crtc->config.port_clock == 162000 ||
99750bd4 5734 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5735 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5736 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5737 0x009f0003);
89b667f8 5738 else
ab3c759a 5739 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5740 0x00d0000f);
5741
5742 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5743 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5744 /* Use SSC source */
bdd4b6a6 5745 if (pipe == PIPE_A)
ab3c759a 5746 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5747 0x0df40000);
5748 else
ab3c759a 5749 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5750 0x0df70000);
5751 } else { /* HDMI or VGA */
5752 /* Use bend source */
bdd4b6a6 5753 if (pipe == PIPE_A)
ab3c759a 5754 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5755 0x0df70000);
5756 else
ab3c759a 5757 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5758 0x0df40000);
5759 }
a0c4da24 5760
ab3c759a 5761 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5762 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5763 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5764 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5765 coreclk |= 0x01000000;
ab3c759a 5766 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5767
ab3c759a 5768 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5769 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5770}
5771
9d556c99 5772static void chv_update_pll(struct intel_crtc *crtc)
1ae0d137
VS
5773{
5774 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5775 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5776 DPLL_VCO_ENABLE;
5777 if (crtc->pipe != PIPE_A)
5778 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5779
5780 crtc->config.dpll_hw_state.dpll_md =
5781 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5782}
5783
5784static void chv_prepare_pll(struct intel_crtc *crtc)
9d556c99
CML
5785{
5786 struct drm_device *dev = crtc->base.dev;
5787 struct drm_i915_private *dev_priv = dev->dev_private;
5788 int pipe = crtc->pipe;
5789 int dpll_reg = DPLL(crtc->pipe);
5790 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5791 u32 loopfilter, intcoeff;
9d556c99
CML
5792 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5793 int refclk;
5794
9d556c99
CML
5795 bestn = crtc->config.dpll.n;
5796 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5797 bestm1 = crtc->config.dpll.m1;
5798 bestm2 = crtc->config.dpll.m2 >> 22;
5799 bestp1 = crtc->config.dpll.p1;
5800 bestp2 = crtc->config.dpll.p2;
5801
5802 /*
5803 * Enable Refclk and SSC
5804 */
a11b0703
VS
5805 I915_WRITE(dpll_reg,
5806 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5807
5808 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5809
9d556c99
CML
5810 /* p1 and p2 divider */
5811 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5812 5 << DPIO_CHV_S1_DIV_SHIFT |
5813 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5814 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5815 1 << DPIO_CHV_K_DIV_SHIFT);
5816
5817 /* Feedback post-divider - m2 */
5818 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5819
5820 /* Feedback refclk divider - n and m1 */
5821 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5822 DPIO_CHV_M1_DIV_BY_2 |
5823 1 << DPIO_CHV_N_DIV_SHIFT);
5824
5825 /* M2 fraction division */
5826 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5827
5828 /* M2 fraction division enable */
5829 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5830 DPIO_CHV_FRAC_DIV_EN |
5831 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5832
5833 /* Loop filter */
5834 refclk = i9xx_get_refclk(&crtc->base, 0);
5835 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5836 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5837 if (refclk == 100000)
5838 intcoeff = 11;
5839 else if (refclk == 38400)
5840 intcoeff = 10;
5841 else
5842 intcoeff = 9;
5843 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5844 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5845
5846 /* AFC Recal */
5847 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5848 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5849 DPIO_AFC_RECAL);
5850
5851 mutex_unlock(&dev_priv->dpio_lock);
5852}
5853
f47709a9
DV
5854static void i9xx_update_pll(struct intel_crtc *crtc,
5855 intel_clock_t *reduced_clock,
eb1cbe48
DV
5856 int num_connectors)
5857{
f47709a9 5858 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5859 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5860 u32 dpll;
5861 bool is_sdvo;
f47709a9 5862 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5863
f47709a9 5864 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5865
f47709a9
DV
5866 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5867 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5868
5869 dpll = DPLL_VGA_MODE_DIS;
5870
f47709a9 5871 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5872 dpll |= DPLLB_MODE_LVDS;
5873 else
5874 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5875
ef1b460d 5876 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5877 dpll |= (crtc->config.pixel_multiplier - 1)
5878 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5879 }
198a037f
DV
5880
5881 if (is_sdvo)
4a33e48d 5882 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5883
f47709a9 5884 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5885 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5886
5887 /* compute bitmask from p1 value */
5888 if (IS_PINEVIEW(dev))
5889 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5890 else {
5891 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5892 if (IS_G4X(dev) && reduced_clock)
5893 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5894 }
5895 switch (clock->p2) {
5896 case 5:
5897 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5898 break;
5899 case 7:
5900 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5901 break;
5902 case 10:
5903 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5904 break;
5905 case 14:
5906 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5907 break;
5908 }
5909 if (INTEL_INFO(dev)->gen >= 4)
5910 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5911
09ede541 5912 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5913 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5914 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5915 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5916 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5917 else
5918 dpll |= PLL_REF_INPUT_DREFCLK;
5919
5920 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5921 crtc->config.dpll_hw_state.dpll = dpll;
5922
eb1cbe48 5923 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5924 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5925 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5926 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5927 }
5928}
5929
f47709a9 5930static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5931 intel_clock_t *reduced_clock,
eb1cbe48
DV
5932 int num_connectors)
5933{
f47709a9 5934 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5935 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5936 u32 dpll;
f47709a9 5937 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5938
f47709a9 5939 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5940
eb1cbe48
DV
5941 dpll = DPLL_VGA_MODE_DIS;
5942
f47709a9 5943 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5944 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5945 } else {
5946 if (clock->p1 == 2)
5947 dpll |= PLL_P1_DIVIDE_BY_TWO;
5948 else
5949 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5950 if (clock->p2 == 4)
5951 dpll |= PLL_P2_DIVIDE_BY_4;
5952 }
5953
4a33e48d
DV
5954 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5955 dpll |= DPLL_DVO_2X_MODE;
5956
f47709a9 5957 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5958 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5959 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5960 else
5961 dpll |= PLL_REF_INPUT_DREFCLK;
5962
5963 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5964 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5965}
5966
8a654f3b 5967static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5968{
5969 struct drm_device *dev = intel_crtc->base.dev;
5970 struct drm_i915_private *dev_priv = dev->dev_private;
5971 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5972 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5973 struct drm_display_mode *adjusted_mode =
5974 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5975 uint32_t crtc_vtotal, crtc_vblank_end;
5976 int vsyncshift = 0;
4d8a62ea
DV
5977
5978 /* We need to be careful not to changed the adjusted mode, for otherwise
5979 * the hw state checker will get angry at the mismatch. */
5980 crtc_vtotal = adjusted_mode->crtc_vtotal;
5981 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5982
609aeaca 5983 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5984 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5985 crtc_vtotal -= 1;
5986 crtc_vblank_end -= 1;
609aeaca
VS
5987
5988 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5989 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5990 else
5991 vsyncshift = adjusted_mode->crtc_hsync_start -
5992 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5993 if (vsyncshift < 0)
5994 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5995 }
5996
5997 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5998 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5999
fe2b8f9d 6000 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6001 (adjusted_mode->crtc_hdisplay - 1) |
6002 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6003 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6004 (adjusted_mode->crtc_hblank_start - 1) |
6005 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6006 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6007 (adjusted_mode->crtc_hsync_start - 1) |
6008 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6009
fe2b8f9d 6010 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6011 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6012 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6013 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6014 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6015 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6016 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6017 (adjusted_mode->crtc_vsync_start - 1) |
6018 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6019
b5e508d4
PZ
6020 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6021 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6022 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6023 * bits. */
6024 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6025 (pipe == PIPE_B || pipe == PIPE_C))
6026 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6027
b0e77b9c
PZ
6028 /* pipesrc controls the size that is scaled from, which should
6029 * always be the user's requested size.
6030 */
6031 I915_WRITE(PIPESRC(pipe),
37327abd
VS
6032 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6033 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
6034}
6035
1bd1bd80
DV
6036static void intel_get_pipe_timings(struct intel_crtc *crtc,
6037 struct intel_crtc_config *pipe_config)
6038{
6039 struct drm_device *dev = crtc->base.dev;
6040 struct drm_i915_private *dev_priv = dev->dev_private;
6041 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6042 uint32_t tmp;
6043
6044 tmp = I915_READ(HTOTAL(cpu_transcoder));
6045 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6046 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6047 tmp = I915_READ(HBLANK(cpu_transcoder));
6048 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6049 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6050 tmp = I915_READ(HSYNC(cpu_transcoder));
6051 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6052 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6053
6054 tmp = I915_READ(VTOTAL(cpu_transcoder));
6055 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6056 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6057 tmp = I915_READ(VBLANK(cpu_transcoder));
6058 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6059 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6060 tmp = I915_READ(VSYNC(cpu_transcoder));
6061 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6062 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6063
6064 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6065 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6066 pipe_config->adjusted_mode.crtc_vtotal += 1;
6067 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6068 }
6069
6070 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6071 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6072 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6073
6074 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6075 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6076}
6077
f6a83288
DV
6078void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6079 struct intel_crtc_config *pipe_config)
babea61d 6080{
f6a83288
DV
6081 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6082 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6083 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6084 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6085
f6a83288
DV
6086 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6087 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6088 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6089 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6090
f6a83288 6091 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6092
f6a83288
DV
6093 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6094 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6095}
6096
84b046f3
DV
6097static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6098{
6099 struct drm_device *dev = intel_crtc->base.dev;
6100 struct drm_i915_private *dev_priv = dev->dev_private;
6101 uint32_t pipeconf;
6102
9f11a9e4 6103 pipeconf = 0;
84b046f3 6104
b6b5d049
VS
6105 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6106 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6107 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6108
cf532bb2
VS
6109 if (intel_crtc->config.double_wide)
6110 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6111
ff9ce46e
DV
6112 /* only g4x and later have fancy bpc/dither controls */
6113 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6114 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6115 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6116 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6117 PIPECONF_DITHER_TYPE_SP;
84b046f3 6118
ff9ce46e
DV
6119 switch (intel_crtc->config.pipe_bpp) {
6120 case 18:
6121 pipeconf |= PIPECONF_6BPC;
6122 break;
6123 case 24:
6124 pipeconf |= PIPECONF_8BPC;
6125 break;
6126 case 30:
6127 pipeconf |= PIPECONF_10BPC;
6128 break;
6129 default:
6130 /* Case prevented by intel_choose_pipe_bpp_dither. */
6131 BUG();
84b046f3
DV
6132 }
6133 }
6134
6135 if (HAS_PIPE_CXSR(dev)) {
6136 if (intel_crtc->lowfreq_avail) {
6137 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6138 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6139 } else {
6140 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6141 }
6142 }
6143
efc2cfff
VS
6144 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6145 if (INTEL_INFO(dev)->gen < 4 ||
6146 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6147 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6148 else
6149 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6150 } else
84b046f3
DV
6151 pipeconf |= PIPECONF_PROGRESSIVE;
6152
9f11a9e4
DV
6153 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6154 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6155
84b046f3
DV
6156 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6157 POSTING_READ(PIPECONF(intel_crtc->pipe));
6158}
6159
f564048e 6160static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6161 int x, int y,
94352cf9 6162 struct drm_framebuffer *fb)
79e53945
JB
6163{
6164 struct drm_device *dev = crtc->dev;
6165 struct drm_i915_private *dev_priv = dev->dev_private;
6166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6167 int refclk, num_connectors = 0;
652c393a 6168 intel_clock_t clock, reduced_clock;
a16af721 6169 bool ok, has_reduced_clock = false;
e9fd1c02 6170 bool is_lvds = false, is_dsi = false;
5eddb70b 6171 struct intel_encoder *encoder;
d4906093 6172 const intel_limit_t *limit;
79e53945 6173
6c2b7c12 6174 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6175 switch (encoder->type) {
79e53945
JB
6176 case INTEL_OUTPUT_LVDS:
6177 is_lvds = true;
6178 break;
e9fd1c02
JN
6179 case INTEL_OUTPUT_DSI:
6180 is_dsi = true;
6181 break;
79e53945 6182 }
43565a06 6183
c751ce4f 6184 num_connectors++;
79e53945
JB
6185 }
6186
f2335330 6187 if (is_dsi)
5b18e57c 6188 return 0;
f2335330
JN
6189
6190 if (!intel_crtc->config.clock_set) {
6191 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6192
e9fd1c02
JN
6193 /*
6194 * Returns a set of divisors for the desired target clock with
6195 * the given refclk, or FALSE. The returned values represent
6196 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6197 * 2) / p1 / p2.
6198 */
6199 limit = intel_limit(crtc, refclk);
6200 ok = dev_priv->display.find_dpll(limit, crtc,
6201 intel_crtc->config.port_clock,
6202 refclk, NULL, &clock);
f2335330 6203 if (!ok) {
e9fd1c02
JN
6204 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6205 return -EINVAL;
6206 }
79e53945 6207
f2335330
JN
6208 if (is_lvds && dev_priv->lvds_downclock_avail) {
6209 /*
6210 * Ensure we match the reduced clock's P to the target
6211 * clock. If the clocks don't match, we can't switch
6212 * the display clock by using the FP0/FP1. In such case
6213 * we will disable the LVDS downclock feature.
6214 */
6215 has_reduced_clock =
6216 dev_priv->display.find_dpll(limit, crtc,
6217 dev_priv->lvds_downclock,
6218 refclk, &clock,
6219 &reduced_clock);
6220 }
6221 /* Compat-code for transition, will disappear. */
f47709a9
DV
6222 intel_crtc->config.dpll.n = clock.n;
6223 intel_crtc->config.dpll.m1 = clock.m1;
6224 intel_crtc->config.dpll.m2 = clock.m2;
6225 intel_crtc->config.dpll.p1 = clock.p1;
6226 intel_crtc->config.dpll.p2 = clock.p2;
6227 }
7026d4ac 6228
e9fd1c02 6229 if (IS_GEN2(dev)) {
8a654f3b 6230 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6231 has_reduced_clock ? &reduced_clock : NULL,
6232 num_connectors);
9d556c99
CML
6233 } else if (IS_CHERRYVIEW(dev)) {
6234 chv_update_pll(intel_crtc);
e9fd1c02 6235 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6236 vlv_update_pll(intel_crtc);
e9fd1c02 6237 } else {
f47709a9 6238 i9xx_update_pll(intel_crtc,
eb1cbe48 6239 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6240 num_connectors);
e9fd1c02 6241 }
79e53945 6242
c8f7a0db 6243 return 0;
f564048e
EA
6244}
6245
2fa2fe9a
DV
6246static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6247 struct intel_crtc_config *pipe_config)
6248{
6249 struct drm_device *dev = crtc->base.dev;
6250 struct drm_i915_private *dev_priv = dev->dev_private;
6251 uint32_t tmp;
6252
dc9e7dec
VS
6253 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6254 return;
6255
2fa2fe9a 6256 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6257 if (!(tmp & PFIT_ENABLE))
6258 return;
2fa2fe9a 6259
06922821 6260 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6261 if (INTEL_INFO(dev)->gen < 4) {
6262 if (crtc->pipe != PIPE_B)
6263 return;
2fa2fe9a
DV
6264 } else {
6265 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6266 return;
6267 }
6268
06922821 6269 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6270 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6271 if (INTEL_INFO(dev)->gen < 5)
6272 pipe_config->gmch_pfit.lvds_border_bits =
6273 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6274}
6275
acbec814
JB
6276static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6277 struct intel_crtc_config *pipe_config)
6278{
6279 struct drm_device *dev = crtc->base.dev;
6280 struct drm_i915_private *dev_priv = dev->dev_private;
6281 int pipe = pipe_config->cpu_transcoder;
6282 intel_clock_t clock;
6283 u32 mdiv;
662c6ecb 6284 int refclk = 100000;
acbec814 6285
f573de5a
SK
6286 /* In case of MIPI DPLL will not even be used */
6287 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6288 return;
6289
acbec814 6290 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6291 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6292 mutex_unlock(&dev_priv->dpio_lock);
6293
6294 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6295 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6296 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6297 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6298 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6299
f646628b 6300 vlv_clock(refclk, &clock);
acbec814 6301
f646628b
VS
6302 /* clock.dot is the fast clock */
6303 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6304}
6305
1ad292b5
JB
6306static void i9xx_get_plane_config(struct intel_crtc *crtc,
6307 struct intel_plane_config *plane_config)
6308{
6309 struct drm_device *dev = crtc->base.dev;
6310 struct drm_i915_private *dev_priv = dev->dev_private;
6311 u32 val, base, offset;
6312 int pipe = crtc->pipe, plane = crtc->plane;
6313 int fourcc, pixel_format;
6314 int aligned_height;
6315
66e514c1
DA
6316 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6317 if (!crtc->base.primary->fb) {
1ad292b5
JB
6318 DRM_DEBUG_KMS("failed to alloc fb\n");
6319 return;
6320 }
6321
6322 val = I915_READ(DSPCNTR(plane));
6323
6324 if (INTEL_INFO(dev)->gen >= 4)
6325 if (val & DISPPLANE_TILED)
6326 plane_config->tiled = true;
6327
6328 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6329 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6330 crtc->base.primary->fb->pixel_format = fourcc;
6331 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6332 drm_format_plane_cpp(fourcc, 0) * 8;
6333
6334 if (INTEL_INFO(dev)->gen >= 4) {
6335 if (plane_config->tiled)
6336 offset = I915_READ(DSPTILEOFF(plane));
6337 else
6338 offset = I915_READ(DSPLINOFF(plane));
6339 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6340 } else {
6341 base = I915_READ(DSPADDR(plane));
6342 }
6343 plane_config->base = base;
6344
6345 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6346 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6347 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6348
6349 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6350 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6351
66e514c1 6352 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6353 plane_config->tiled);
6354
1267a26b
FF
6355 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6356 aligned_height);
1ad292b5
JB
6357
6358 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6359 pipe, plane, crtc->base.primary->fb->width,
6360 crtc->base.primary->fb->height,
6361 crtc->base.primary->fb->bits_per_pixel, base,
6362 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6363 plane_config->size);
6364
6365}
6366
70b23a98
VS
6367static void chv_crtc_clock_get(struct intel_crtc *crtc,
6368 struct intel_crtc_config *pipe_config)
6369{
6370 struct drm_device *dev = crtc->base.dev;
6371 struct drm_i915_private *dev_priv = dev->dev_private;
6372 int pipe = pipe_config->cpu_transcoder;
6373 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6374 intel_clock_t clock;
6375 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6376 int refclk = 100000;
6377
6378 mutex_lock(&dev_priv->dpio_lock);
6379 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6380 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6381 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6382 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6383 mutex_unlock(&dev_priv->dpio_lock);
6384
6385 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6386 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6387 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6388 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6389 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6390
6391 chv_clock(refclk, &clock);
6392
6393 /* clock.dot is the fast clock */
6394 pipe_config->port_clock = clock.dot / 5;
6395}
6396
0e8ffe1b
DV
6397static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6398 struct intel_crtc_config *pipe_config)
6399{
6400 struct drm_device *dev = crtc->base.dev;
6401 struct drm_i915_private *dev_priv = dev->dev_private;
6402 uint32_t tmp;
6403
b5482bd0
ID
6404 if (!intel_display_power_enabled(dev_priv,
6405 POWER_DOMAIN_PIPE(crtc->pipe)))
6406 return false;
6407
e143a21c 6408 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6409 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6410
0e8ffe1b
DV
6411 tmp = I915_READ(PIPECONF(crtc->pipe));
6412 if (!(tmp & PIPECONF_ENABLE))
6413 return false;
6414
42571aef
VS
6415 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6416 switch (tmp & PIPECONF_BPC_MASK) {
6417 case PIPECONF_6BPC:
6418 pipe_config->pipe_bpp = 18;
6419 break;
6420 case PIPECONF_8BPC:
6421 pipe_config->pipe_bpp = 24;
6422 break;
6423 case PIPECONF_10BPC:
6424 pipe_config->pipe_bpp = 30;
6425 break;
6426 default:
6427 break;
6428 }
6429 }
6430
b5a9fa09
DV
6431 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6432 pipe_config->limited_color_range = true;
6433
282740f7
VS
6434 if (INTEL_INFO(dev)->gen < 4)
6435 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6436
1bd1bd80
DV
6437 intel_get_pipe_timings(crtc, pipe_config);
6438
2fa2fe9a
DV
6439 i9xx_get_pfit_config(crtc, pipe_config);
6440
6c49f241
DV
6441 if (INTEL_INFO(dev)->gen >= 4) {
6442 tmp = I915_READ(DPLL_MD(crtc->pipe));
6443 pipe_config->pixel_multiplier =
6444 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6445 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6446 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6447 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6448 tmp = I915_READ(DPLL(crtc->pipe));
6449 pipe_config->pixel_multiplier =
6450 ((tmp & SDVO_MULTIPLIER_MASK)
6451 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6452 } else {
6453 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6454 * port and will be fixed up in the encoder->get_config
6455 * function. */
6456 pipe_config->pixel_multiplier = 1;
6457 }
8bcc2795
DV
6458 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6459 if (!IS_VALLEYVIEW(dev)) {
6460 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6461 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6462 } else {
6463 /* Mask out read-only status bits. */
6464 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6465 DPLL_PORTC_READY_MASK |
6466 DPLL_PORTB_READY_MASK);
8bcc2795 6467 }
6c49f241 6468
70b23a98
VS
6469 if (IS_CHERRYVIEW(dev))
6470 chv_crtc_clock_get(crtc, pipe_config);
6471 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6472 vlv_crtc_clock_get(crtc, pipe_config);
6473 else
6474 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6475
0e8ffe1b
DV
6476 return true;
6477}
6478
dde86e2d 6479static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6480{
6481 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6482 struct intel_encoder *encoder;
74cfd7ac 6483 u32 val, final;
13d83a67 6484 bool has_lvds = false;
199e5d79 6485 bool has_cpu_edp = false;
199e5d79 6486 bool has_panel = false;
99eb6a01
KP
6487 bool has_ck505 = false;
6488 bool can_ssc = false;
13d83a67
JB
6489
6490 /* We need to take the global config into account */
b2784e15 6491 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6492 switch (encoder->type) {
6493 case INTEL_OUTPUT_LVDS:
6494 has_panel = true;
6495 has_lvds = true;
6496 break;
6497 case INTEL_OUTPUT_EDP:
6498 has_panel = true;
2de6905f 6499 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6500 has_cpu_edp = true;
6501 break;
13d83a67
JB
6502 }
6503 }
6504
99eb6a01 6505 if (HAS_PCH_IBX(dev)) {
41aa3448 6506 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6507 can_ssc = has_ck505;
6508 } else {
6509 has_ck505 = false;
6510 can_ssc = true;
6511 }
6512
2de6905f
ID
6513 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6514 has_panel, has_lvds, has_ck505);
13d83a67
JB
6515
6516 /* Ironlake: try to setup display ref clock before DPLL
6517 * enabling. This is only under driver's control after
6518 * PCH B stepping, previous chipset stepping should be
6519 * ignoring this setting.
6520 */
74cfd7ac
CW
6521 val = I915_READ(PCH_DREF_CONTROL);
6522
6523 /* As we must carefully and slowly disable/enable each source in turn,
6524 * compute the final state we want first and check if we need to
6525 * make any changes at all.
6526 */
6527 final = val;
6528 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6529 if (has_ck505)
6530 final |= DREF_NONSPREAD_CK505_ENABLE;
6531 else
6532 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6533
6534 final &= ~DREF_SSC_SOURCE_MASK;
6535 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6536 final &= ~DREF_SSC1_ENABLE;
6537
6538 if (has_panel) {
6539 final |= DREF_SSC_SOURCE_ENABLE;
6540
6541 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6542 final |= DREF_SSC1_ENABLE;
6543
6544 if (has_cpu_edp) {
6545 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6546 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6547 else
6548 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6549 } else
6550 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6551 } else {
6552 final |= DREF_SSC_SOURCE_DISABLE;
6553 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6554 }
6555
6556 if (final == val)
6557 return;
6558
13d83a67 6559 /* Always enable nonspread source */
74cfd7ac 6560 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6561
99eb6a01 6562 if (has_ck505)
74cfd7ac 6563 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6564 else
74cfd7ac 6565 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6566
199e5d79 6567 if (has_panel) {
74cfd7ac
CW
6568 val &= ~DREF_SSC_SOURCE_MASK;
6569 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6570
199e5d79 6571 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6572 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6573 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6574 val |= DREF_SSC1_ENABLE;
e77166b5 6575 } else
74cfd7ac 6576 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6577
6578 /* Get SSC going before enabling the outputs */
74cfd7ac 6579 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6580 POSTING_READ(PCH_DREF_CONTROL);
6581 udelay(200);
6582
74cfd7ac 6583 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6584
6585 /* Enable CPU source on CPU attached eDP */
199e5d79 6586 if (has_cpu_edp) {
99eb6a01 6587 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6588 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6589 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6590 } else
74cfd7ac 6591 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6592 } else
74cfd7ac 6593 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6594
74cfd7ac 6595 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6596 POSTING_READ(PCH_DREF_CONTROL);
6597 udelay(200);
6598 } else {
6599 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6600
74cfd7ac 6601 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6602
6603 /* Turn off CPU output */
74cfd7ac 6604 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6605
74cfd7ac 6606 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6607 POSTING_READ(PCH_DREF_CONTROL);
6608 udelay(200);
6609
6610 /* Turn off the SSC source */
74cfd7ac
CW
6611 val &= ~DREF_SSC_SOURCE_MASK;
6612 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6613
6614 /* Turn off SSC1 */
74cfd7ac 6615 val &= ~DREF_SSC1_ENABLE;
199e5d79 6616
74cfd7ac 6617 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6618 POSTING_READ(PCH_DREF_CONTROL);
6619 udelay(200);
6620 }
74cfd7ac
CW
6621
6622 BUG_ON(val != final);
13d83a67
JB
6623}
6624
f31f2d55 6625static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6626{
f31f2d55 6627 uint32_t tmp;
dde86e2d 6628
0ff066a9
PZ
6629 tmp = I915_READ(SOUTH_CHICKEN2);
6630 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6631 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6632
0ff066a9
PZ
6633 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6634 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6635 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6636
0ff066a9
PZ
6637 tmp = I915_READ(SOUTH_CHICKEN2);
6638 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6639 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6640
0ff066a9
PZ
6641 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6642 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6643 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6644}
6645
6646/* WaMPhyProgramming:hsw */
6647static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6648{
6649 uint32_t tmp;
dde86e2d
PZ
6650
6651 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6652 tmp &= ~(0xFF << 24);
6653 tmp |= (0x12 << 24);
6654 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6655
dde86e2d
PZ
6656 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6657 tmp |= (1 << 11);
6658 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6659
6660 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6661 tmp |= (1 << 11);
6662 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6663
dde86e2d
PZ
6664 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6665 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6666 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6667
6668 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6669 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6670 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6671
0ff066a9
PZ
6672 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6673 tmp &= ~(7 << 13);
6674 tmp |= (5 << 13);
6675 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6676
0ff066a9
PZ
6677 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6678 tmp &= ~(7 << 13);
6679 tmp |= (5 << 13);
6680 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6681
6682 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6683 tmp &= ~0xFF;
6684 tmp |= 0x1C;
6685 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6686
6687 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6688 tmp &= ~0xFF;
6689 tmp |= 0x1C;
6690 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6691
6692 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6693 tmp &= ~(0xFF << 16);
6694 tmp |= (0x1C << 16);
6695 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6696
6697 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6698 tmp &= ~(0xFF << 16);
6699 tmp |= (0x1C << 16);
6700 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6701
0ff066a9
PZ
6702 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6703 tmp |= (1 << 27);
6704 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6705
0ff066a9
PZ
6706 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6707 tmp |= (1 << 27);
6708 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6709
0ff066a9
PZ
6710 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6711 tmp &= ~(0xF << 28);
6712 tmp |= (4 << 28);
6713 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6714
0ff066a9
PZ
6715 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6716 tmp &= ~(0xF << 28);
6717 tmp |= (4 << 28);
6718 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6719}
6720
2fa86a1f
PZ
6721/* Implements 3 different sequences from BSpec chapter "Display iCLK
6722 * Programming" based on the parameters passed:
6723 * - Sequence to enable CLKOUT_DP
6724 * - Sequence to enable CLKOUT_DP without spread
6725 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6726 */
6727static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6728 bool with_fdi)
f31f2d55
PZ
6729{
6730 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6731 uint32_t reg, tmp;
6732
6733 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6734 with_spread = true;
6735 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6736 with_fdi, "LP PCH doesn't have FDI\n"))
6737 with_fdi = false;
f31f2d55
PZ
6738
6739 mutex_lock(&dev_priv->dpio_lock);
6740
6741 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6742 tmp &= ~SBI_SSCCTL_DISABLE;
6743 tmp |= SBI_SSCCTL_PATHALT;
6744 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6745
6746 udelay(24);
6747
2fa86a1f
PZ
6748 if (with_spread) {
6749 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6750 tmp &= ~SBI_SSCCTL_PATHALT;
6751 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6752
2fa86a1f
PZ
6753 if (with_fdi) {
6754 lpt_reset_fdi_mphy(dev_priv);
6755 lpt_program_fdi_mphy(dev_priv);
6756 }
6757 }
dde86e2d 6758
2fa86a1f
PZ
6759 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6760 SBI_GEN0 : SBI_DBUFF0;
6761 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6762 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6763 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6764
6765 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6766}
6767
47701c3b
PZ
6768/* Sequence to disable CLKOUT_DP */
6769static void lpt_disable_clkout_dp(struct drm_device *dev)
6770{
6771 struct drm_i915_private *dev_priv = dev->dev_private;
6772 uint32_t reg, tmp;
6773
6774 mutex_lock(&dev_priv->dpio_lock);
6775
6776 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6777 SBI_GEN0 : SBI_DBUFF0;
6778 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6779 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6780 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6781
6782 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6783 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6784 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6785 tmp |= SBI_SSCCTL_PATHALT;
6786 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6787 udelay(32);
6788 }
6789 tmp |= SBI_SSCCTL_DISABLE;
6790 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6791 }
6792
6793 mutex_unlock(&dev_priv->dpio_lock);
6794}
6795
bf8fa3d3
PZ
6796static void lpt_init_pch_refclk(struct drm_device *dev)
6797{
bf8fa3d3
PZ
6798 struct intel_encoder *encoder;
6799 bool has_vga = false;
6800
b2784e15 6801 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6802 switch (encoder->type) {
6803 case INTEL_OUTPUT_ANALOG:
6804 has_vga = true;
6805 break;
6806 }
6807 }
6808
47701c3b
PZ
6809 if (has_vga)
6810 lpt_enable_clkout_dp(dev, true, true);
6811 else
6812 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6813}
6814
dde86e2d
PZ
6815/*
6816 * Initialize reference clocks when the driver loads
6817 */
6818void intel_init_pch_refclk(struct drm_device *dev)
6819{
6820 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6821 ironlake_init_pch_refclk(dev);
6822 else if (HAS_PCH_LPT(dev))
6823 lpt_init_pch_refclk(dev);
6824}
6825
d9d444cb
JB
6826static int ironlake_get_refclk(struct drm_crtc *crtc)
6827{
6828 struct drm_device *dev = crtc->dev;
6829 struct drm_i915_private *dev_priv = dev->dev_private;
6830 struct intel_encoder *encoder;
d9d444cb
JB
6831 int num_connectors = 0;
6832 bool is_lvds = false;
6833
6c2b7c12 6834 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6835 switch (encoder->type) {
6836 case INTEL_OUTPUT_LVDS:
6837 is_lvds = true;
6838 break;
d9d444cb
JB
6839 }
6840 num_connectors++;
6841 }
6842
6843 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6844 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6845 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6846 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6847 }
6848
6849 return 120000;
6850}
6851
6ff93609 6852static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6853{
c8203565 6854 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6856 int pipe = intel_crtc->pipe;
c8203565
PZ
6857 uint32_t val;
6858
78114071 6859 val = 0;
c8203565 6860
965e0c48 6861 switch (intel_crtc->config.pipe_bpp) {
c8203565 6862 case 18:
dfd07d72 6863 val |= PIPECONF_6BPC;
c8203565
PZ
6864 break;
6865 case 24:
dfd07d72 6866 val |= PIPECONF_8BPC;
c8203565
PZ
6867 break;
6868 case 30:
dfd07d72 6869 val |= PIPECONF_10BPC;
c8203565
PZ
6870 break;
6871 case 36:
dfd07d72 6872 val |= PIPECONF_12BPC;
c8203565
PZ
6873 break;
6874 default:
cc769b62
PZ
6875 /* Case prevented by intel_choose_pipe_bpp_dither. */
6876 BUG();
c8203565
PZ
6877 }
6878
d8b32247 6879 if (intel_crtc->config.dither)
c8203565
PZ
6880 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6881
6ff93609 6882 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6883 val |= PIPECONF_INTERLACED_ILK;
6884 else
6885 val |= PIPECONF_PROGRESSIVE;
6886
50f3b016 6887 if (intel_crtc->config.limited_color_range)
3685a8f3 6888 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6889
c8203565
PZ
6890 I915_WRITE(PIPECONF(pipe), val);
6891 POSTING_READ(PIPECONF(pipe));
6892}
6893
86d3efce
VS
6894/*
6895 * Set up the pipe CSC unit.
6896 *
6897 * Currently only full range RGB to limited range RGB conversion
6898 * is supported, but eventually this should handle various
6899 * RGB<->YCbCr scenarios as well.
6900 */
50f3b016 6901static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6902{
6903 struct drm_device *dev = crtc->dev;
6904 struct drm_i915_private *dev_priv = dev->dev_private;
6905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6906 int pipe = intel_crtc->pipe;
6907 uint16_t coeff = 0x7800; /* 1.0 */
6908
6909 /*
6910 * TODO: Check what kind of values actually come out of the pipe
6911 * with these coeff/postoff values and adjust to get the best
6912 * accuracy. Perhaps we even need to take the bpc value into
6913 * consideration.
6914 */
6915
50f3b016 6916 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6917 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6918
6919 /*
6920 * GY/GU and RY/RU should be the other way around according
6921 * to BSpec, but reality doesn't agree. Just set them up in
6922 * a way that results in the correct picture.
6923 */
6924 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6925 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6926
6927 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6928 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6929
6930 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6931 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6932
6933 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6934 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6935 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6936
6937 if (INTEL_INFO(dev)->gen > 6) {
6938 uint16_t postoff = 0;
6939
50f3b016 6940 if (intel_crtc->config.limited_color_range)
32cf0cb0 6941 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6942
6943 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6944 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6945 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6946
6947 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6948 } else {
6949 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6950
50f3b016 6951 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6952 mode |= CSC_BLACK_SCREEN_OFFSET;
6953
6954 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6955 }
6956}
6957
6ff93609 6958static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6959{
756f85cf
PZ
6960 struct drm_device *dev = crtc->dev;
6961 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6963 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6964 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6965 uint32_t val;
6966
3eff4faa 6967 val = 0;
ee2b0b38 6968
756f85cf 6969 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6970 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6971
6ff93609 6972 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6973 val |= PIPECONF_INTERLACED_ILK;
6974 else
6975 val |= PIPECONF_PROGRESSIVE;
6976
702e7a56
PZ
6977 I915_WRITE(PIPECONF(cpu_transcoder), val);
6978 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6979
6980 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6981 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6982
6983 if (IS_BROADWELL(dev)) {
6984 val = 0;
6985
6986 switch (intel_crtc->config.pipe_bpp) {
6987 case 18:
6988 val |= PIPEMISC_DITHER_6_BPC;
6989 break;
6990 case 24:
6991 val |= PIPEMISC_DITHER_8_BPC;
6992 break;
6993 case 30:
6994 val |= PIPEMISC_DITHER_10_BPC;
6995 break;
6996 case 36:
6997 val |= PIPEMISC_DITHER_12_BPC;
6998 break;
6999 default:
7000 /* Case prevented by pipe_config_set_bpp. */
7001 BUG();
7002 }
7003
7004 if (intel_crtc->config.dither)
7005 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7006
7007 I915_WRITE(PIPEMISC(pipe), val);
7008 }
ee2b0b38
PZ
7009}
7010
6591c6e4 7011static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
7012 intel_clock_t *clock,
7013 bool *has_reduced_clock,
7014 intel_clock_t *reduced_clock)
7015{
7016 struct drm_device *dev = crtc->dev;
7017 struct drm_i915_private *dev_priv = dev->dev_private;
7018 struct intel_encoder *intel_encoder;
7019 int refclk;
d4906093 7020 const intel_limit_t *limit;
a16af721 7021 bool ret, is_lvds = false;
79e53945 7022
6591c6e4
PZ
7023 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7024 switch (intel_encoder->type) {
79e53945
JB
7025 case INTEL_OUTPUT_LVDS:
7026 is_lvds = true;
7027 break;
79e53945
JB
7028 }
7029 }
7030
d9d444cb 7031 refclk = ironlake_get_refclk(crtc);
79e53945 7032
d4906093
ML
7033 /*
7034 * Returns a set of divisors for the desired target clock with the given
7035 * refclk, or FALSE. The returned values represent the clock equation:
7036 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7037 */
1b894b59 7038 limit = intel_limit(crtc, refclk);
ff9a6750
DV
7039 ret = dev_priv->display.find_dpll(limit, crtc,
7040 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 7041 refclk, NULL, clock);
6591c6e4
PZ
7042 if (!ret)
7043 return false;
cda4b7d3 7044
ddc9003c 7045 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7046 /*
7047 * Ensure we match the reduced clock's P to the target clock.
7048 * If the clocks don't match, we can't switch the display clock
7049 * by using the FP0/FP1. In such case we will disable the LVDS
7050 * downclock feature.
7051 */
ee9300bb
DV
7052 *has_reduced_clock =
7053 dev_priv->display.find_dpll(limit, crtc,
7054 dev_priv->lvds_downclock,
7055 refclk, clock,
7056 reduced_clock);
652c393a 7057 }
61e9653f 7058
6591c6e4
PZ
7059 return true;
7060}
7061
d4b1931c
PZ
7062int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7063{
7064 /*
7065 * Account for spread spectrum to avoid
7066 * oversubscribing the link. Max center spread
7067 * is 2.5%; use 5% for safety's sake.
7068 */
7069 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7070 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7071}
7072
7429e9d4 7073static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7074{
7429e9d4 7075 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7076}
7077
de13a2e3 7078static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7079 u32 *fp,
9a7c7890 7080 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7081{
de13a2e3 7082 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7083 struct drm_device *dev = crtc->dev;
7084 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7085 struct intel_encoder *intel_encoder;
7086 uint32_t dpll;
6cc5f341 7087 int factor, num_connectors = 0;
09ede541 7088 bool is_lvds = false, is_sdvo = false;
79e53945 7089
de13a2e3
PZ
7090 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7091 switch (intel_encoder->type) {
79e53945
JB
7092 case INTEL_OUTPUT_LVDS:
7093 is_lvds = true;
7094 break;
7095 case INTEL_OUTPUT_SDVO:
7d57382e 7096 case INTEL_OUTPUT_HDMI:
79e53945 7097 is_sdvo = true;
79e53945 7098 break;
79e53945 7099 }
43565a06 7100
c751ce4f 7101 num_connectors++;
79e53945 7102 }
79e53945 7103
c1858123 7104 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7105 factor = 21;
7106 if (is_lvds) {
7107 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7108 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7109 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7110 factor = 25;
09ede541 7111 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7112 factor = 20;
c1858123 7113
7429e9d4 7114 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7115 *fp |= FP_CB_TUNE;
2c07245f 7116
9a7c7890
DV
7117 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7118 *fp2 |= FP_CB_TUNE;
7119
5eddb70b 7120 dpll = 0;
2c07245f 7121
a07d6787
EA
7122 if (is_lvds)
7123 dpll |= DPLLB_MODE_LVDS;
7124 else
7125 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7126
ef1b460d
DV
7127 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7128 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7129
7130 if (is_sdvo)
4a33e48d 7131 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7132 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7133 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7134
a07d6787 7135 /* compute bitmask from p1 value */
7429e9d4 7136 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7137 /* also FPA1 */
7429e9d4 7138 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7139
7429e9d4 7140 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7141 case 5:
7142 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7143 break;
7144 case 7:
7145 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7146 break;
7147 case 10:
7148 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7149 break;
7150 case 14:
7151 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7152 break;
79e53945
JB
7153 }
7154
b4c09f3b 7155 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7156 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7157 else
7158 dpll |= PLL_REF_INPUT_DREFCLK;
7159
959e16d6 7160 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7161}
7162
7163static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7164 int x, int y,
7165 struct drm_framebuffer *fb)
7166{
7167 struct drm_device *dev = crtc->dev;
de13a2e3 7168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7169 int num_connectors = 0;
7170 intel_clock_t clock, reduced_clock;
cbbab5bd 7171 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7172 bool ok, has_reduced_clock = false;
8b47047b 7173 bool is_lvds = false;
de13a2e3 7174 struct intel_encoder *encoder;
e2b78267 7175 struct intel_shared_dpll *pll;
de13a2e3
PZ
7176
7177 for_each_encoder_on_crtc(dev, crtc, encoder) {
7178 switch (encoder->type) {
7179 case INTEL_OUTPUT_LVDS:
7180 is_lvds = true;
7181 break;
de13a2e3
PZ
7182 }
7183
7184 num_connectors++;
a07d6787 7185 }
79e53945 7186
5dc5298b
PZ
7187 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7188 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7189
ff9a6750 7190 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7191 &has_reduced_clock, &reduced_clock);
ee9300bb 7192 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7193 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7194 return -EINVAL;
79e53945 7195 }
f47709a9
DV
7196 /* Compat-code for transition, will disappear. */
7197 if (!intel_crtc->config.clock_set) {
7198 intel_crtc->config.dpll.n = clock.n;
7199 intel_crtc->config.dpll.m1 = clock.m1;
7200 intel_crtc->config.dpll.m2 = clock.m2;
7201 intel_crtc->config.dpll.p1 = clock.p1;
7202 intel_crtc->config.dpll.p2 = clock.p2;
7203 }
79e53945 7204
5dc5298b 7205 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7206 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7207 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7208 if (has_reduced_clock)
7429e9d4 7209 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7210
7429e9d4 7211 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7212 &fp, &reduced_clock,
7213 has_reduced_clock ? &fp2 : NULL);
7214
959e16d6 7215 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7216 intel_crtc->config.dpll_hw_state.fp0 = fp;
7217 if (has_reduced_clock)
7218 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7219 else
7220 intel_crtc->config.dpll_hw_state.fp1 = fp;
7221
b89a1d39 7222 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7223 if (pll == NULL) {
84f44ce7 7224 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7225 pipe_name(intel_crtc->pipe));
4b645f14
JB
7226 return -EINVAL;
7227 }
ee7b9f93 7228 } else
e72f9fbf 7229 intel_put_shared_dpll(intel_crtc);
79e53945 7230
d330a953 7231 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7232 intel_crtc->lowfreq_avail = true;
7233 else
7234 intel_crtc->lowfreq_avail = false;
e2b78267 7235
c8f7a0db 7236 return 0;
79e53945
JB
7237}
7238
eb14cb74
VS
7239static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7240 struct intel_link_m_n *m_n)
7241{
7242 struct drm_device *dev = crtc->base.dev;
7243 struct drm_i915_private *dev_priv = dev->dev_private;
7244 enum pipe pipe = crtc->pipe;
7245
7246 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7247 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7248 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7249 & ~TU_SIZE_MASK;
7250 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7251 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7252 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7253}
7254
7255static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7256 enum transcoder transcoder,
b95af8be
VK
7257 struct intel_link_m_n *m_n,
7258 struct intel_link_m_n *m2_n2)
72419203
DV
7259{
7260 struct drm_device *dev = crtc->base.dev;
7261 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7262 enum pipe pipe = crtc->pipe;
72419203 7263
eb14cb74
VS
7264 if (INTEL_INFO(dev)->gen >= 5) {
7265 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7266 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7267 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7268 & ~TU_SIZE_MASK;
7269 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7270 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7271 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7272 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7273 * gen < 8) and if DRRS is supported (to make sure the
7274 * registers are not unnecessarily read).
7275 */
7276 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7277 crtc->config.has_drrs) {
7278 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7279 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7280 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7281 & ~TU_SIZE_MASK;
7282 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7283 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7284 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7285 }
eb14cb74
VS
7286 } else {
7287 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7288 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7289 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7290 & ~TU_SIZE_MASK;
7291 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7292 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7293 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7294 }
7295}
7296
7297void intel_dp_get_m_n(struct intel_crtc *crtc,
7298 struct intel_crtc_config *pipe_config)
7299{
7300 if (crtc->config.has_pch_encoder)
7301 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7302 else
7303 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7304 &pipe_config->dp_m_n,
7305 &pipe_config->dp_m2_n2);
eb14cb74 7306}
72419203 7307
eb14cb74
VS
7308static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7309 struct intel_crtc_config *pipe_config)
7310{
7311 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7312 &pipe_config->fdi_m_n, NULL);
72419203
DV
7313}
7314
2fa2fe9a
DV
7315static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7316 struct intel_crtc_config *pipe_config)
7317{
7318 struct drm_device *dev = crtc->base.dev;
7319 struct drm_i915_private *dev_priv = dev->dev_private;
7320 uint32_t tmp;
7321
7322 tmp = I915_READ(PF_CTL(crtc->pipe));
7323
7324 if (tmp & PF_ENABLE) {
fd4daa9c 7325 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7326 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7327 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7328
7329 /* We currently do not free assignements of panel fitters on
7330 * ivb/hsw (since we don't use the higher upscaling modes which
7331 * differentiates them) so just WARN about this case for now. */
7332 if (IS_GEN7(dev)) {
7333 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7334 PF_PIPE_SEL_IVB(crtc->pipe));
7335 }
2fa2fe9a 7336 }
79e53945
JB
7337}
7338
4c6baa59
JB
7339static void ironlake_get_plane_config(struct intel_crtc *crtc,
7340 struct intel_plane_config *plane_config)
7341{
7342 struct drm_device *dev = crtc->base.dev;
7343 struct drm_i915_private *dev_priv = dev->dev_private;
7344 u32 val, base, offset;
7345 int pipe = crtc->pipe, plane = crtc->plane;
7346 int fourcc, pixel_format;
7347 int aligned_height;
7348
66e514c1
DA
7349 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7350 if (!crtc->base.primary->fb) {
4c6baa59
JB
7351 DRM_DEBUG_KMS("failed to alloc fb\n");
7352 return;
7353 }
7354
7355 val = I915_READ(DSPCNTR(plane));
7356
7357 if (INTEL_INFO(dev)->gen >= 4)
7358 if (val & DISPPLANE_TILED)
7359 plane_config->tiled = true;
7360
7361 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7362 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7363 crtc->base.primary->fb->pixel_format = fourcc;
7364 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7365 drm_format_plane_cpp(fourcc, 0) * 8;
7366
7367 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7368 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7369 offset = I915_READ(DSPOFFSET(plane));
7370 } else {
7371 if (plane_config->tiled)
7372 offset = I915_READ(DSPTILEOFF(plane));
7373 else
7374 offset = I915_READ(DSPLINOFF(plane));
7375 }
7376 plane_config->base = base;
7377
7378 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7379 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7380 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7381
7382 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7383 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7384
66e514c1 7385 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7386 plane_config->tiled);
7387
1267a26b
FF
7388 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7389 aligned_height);
4c6baa59
JB
7390
7391 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7392 pipe, plane, crtc->base.primary->fb->width,
7393 crtc->base.primary->fb->height,
7394 crtc->base.primary->fb->bits_per_pixel, base,
7395 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7396 plane_config->size);
7397}
7398
0e8ffe1b
DV
7399static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7400 struct intel_crtc_config *pipe_config)
7401{
7402 struct drm_device *dev = crtc->base.dev;
7403 struct drm_i915_private *dev_priv = dev->dev_private;
7404 uint32_t tmp;
7405
930e8c9e
PZ
7406 if (!intel_display_power_enabled(dev_priv,
7407 POWER_DOMAIN_PIPE(crtc->pipe)))
7408 return false;
7409
e143a21c 7410 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7411 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7412
0e8ffe1b
DV
7413 tmp = I915_READ(PIPECONF(crtc->pipe));
7414 if (!(tmp & PIPECONF_ENABLE))
7415 return false;
7416
42571aef
VS
7417 switch (tmp & PIPECONF_BPC_MASK) {
7418 case PIPECONF_6BPC:
7419 pipe_config->pipe_bpp = 18;
7420 break;
7421 case PIPECONF_8BPC:
7422 pipe_config->pipe_bpp = 24;
7423 break;
7424 case PIPECONF_10BPC:
7425 pipe_config->pipe_bpp = 30;
7426 break;
7427 case PIPECONF_12BPC:
7428 pipe_config->pipe_bpp = 36;
7429 break;
7430 default:
7431 break;
7432 }
7433
b5a9fa09
DV
7434 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7435 pipe_config->limited_color_range = true;
7436
ab9412ba 7437 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7438 struct intel_shared_dpll *pll;
7439
88adfff1
DV
7440 pipe_config->has_pch_encoder = true;
7441
627eb5a3
DV
7442 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7443 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7444 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7445
7446 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7447
c0d43d62 7448 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7449 pipe_config->shared_dpll =
7450 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7451 } else {
7452 tmp = I915_READ(PCH_DPLL_SEL);
7453 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7454 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7455 else
7456 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7457 }
66e985c0
DV
7458
7459 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7460
7461 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7462 &pipe_config->dpll_hw_state));
c93f54cf
DV
7463
7464 tmp = pipe_config->dpll_hw_state.dpll;
7465 pipe_config->pixel_multiplier =
7466 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7467 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7468
7469 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7470 } else {
7471 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7472 }
7473
1bd1bd80
DV
7474 intel_get_pipe_timings(crtc, pipe_config);
7475
2fa2fe9a
DV
7476 ironlake_get_pfit_config(crtc, pipe_config);
7477
0e8ffe1b
DV
7478 return true;
7479}
7480
be256dc7
PZ
7481static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7482{
7483 struct drm_device *dev = dev_priv->dev;
be256dc7 7484 struct intel_crtc *crtc;
be256dc7 7485
d3fcc808 7486 for_each_intel_crtc(dev, crtc)
798183c5 7487 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7488 pipe_name(crtc->pipe));
7489
7490 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7491 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7492 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7493 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7494 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7495 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7496 "CPU PWM1 enabled\n");
c5107b87
PZ
7497 if (IS_HASWELL(dev))
7498 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7499 "CPU PWM2 enabled\n");
be256dc7
PZ
7500 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7501 "PCH PWM1 enabled\n");
7502 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7503 "Utility pin enabled\n");
7504 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7505
9926ada1
PZ
7506 /*
7507 * In theory we can still leave IRQs enabled, as long as only the HPD
7508 * interrupts remain enabled. We used to check for that, but since it's
7509 * gen-specific and since we only disable LCPLL after we fully disable
7510 * the interrupts, the check below should be enough.
7511 */
9df7575f 7512 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7513}
7514
9ccd5aeb
PZ
7515static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7516{
7517 struct drm_device *dev = dev_priv->dev;
7518
7519 if (IS_HASWELL(dev))
7520 return I915_READ(D_COMP_HSW);
7521 else
7522 return I915_READ(D_COMP_BDW);
7523}
7524
3c4c9b81
PZ
7525static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7526{
7527 struct drm_device *dev = dev_priv->dev;
7528
7529 if (IS_HASWELL(dev)) {
7530 mutex_lock(&dev_priv->rps.hw_lock);
7531 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7532 val))
f475dadf 7533 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7534 mutex_unlock(&dev_priv->rps.hw_lock);
7535 } else {
9ccd5aeb
PZ
7536 I915_WRITE(D_COMP_BDW, val);
7537 POSTING_READ(D_COMP_BDW);
3c4c9b81 7538 }
be256dc7
PZ
7539}
7540
7541/*
7542 * This function implements pieces of two sequences from BSpec:
7543 * - Sequence for display software to disable LCPLL
7544 * - Sequence for display software to allow package C8+
7545 * The steps implemented here are just the steps that actually touch the LCPLL
7546 * register. Callers should take care of disabling all the display engine
7547 * functions, doing the mode unset, fixing interrupts, etc.
7548 */
6ff58d53
PZ
7549static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7550 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7551{
7552 uint32_t val;
7553
7554 assert_can_disable_lcpll(dev_priv);
7555
7556 val = I915_READ(LCPLL_CTL);
7557
7558 if (switch_to_fclk) {
7559 val |= LCPLL_CD_SOURCE_FCLK;
7560 I915_WRITE(LCPLL_CTL, val);
7561
7562 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7563 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7564 DRM_ERROR("Switching to FCLK failed\n");
7565
7566 val = I915_READ(LCPLL_CTL);
7567 }
7568
7569 val |= LCPLL_PLL_DISABLE;
7570 I915_WRITE(LCPLL_CTL, val);
7571 POSTING_READ(LCPLL_CTL);
7572
7573 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7574 DRM_ERROR("LCPLL still locked\n");
7575
9ccd5aeb 7576 val = hsw_read_dcomp(dev_priv);
be256dc7 7577 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7578 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7579 ndelay(100);
7580
9ccd5aeb
PZ
7581 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7582 1))
be256dc7
PZ
7583 DRM_ERROR("D_COMP RCOMP still in progress\n");
7584
7585 if (allow_power_down) {
7586 val = I915_READ(LCPLL_CTL);
7587 val |= LCPLL_POWER_DOWN_ALLOW;
7588 I915_WRITE(LCPLL_CTL, val);
7589 POSTING_READ(LCPLL_CTL);
7590 }
7591}
7592
7593/*
7594 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7595 * source.
7596 */
6ff58d53 7597static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7598{
7599 uint32_t val;
a8a8bd54 7600 unsigned long irqflags;
be256dc7
PZ
7601
7602 val = I915_READ(LCPLL_CTL);
7603
7604 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7605 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7606 return;
7607
a8a8bd54
PZ
7608 /*
7609 * Make sure we're not on PC8 state before disabling PC8, otherwise
7610 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7611 *
7612 * The other problem is that hsw_restore_lcpll() is called as part of
7613 * the runtime PM resume sequence, so we can't just call
7614 * gen6_gt_force_wake_get() because that function calls
7615 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7616 * while we are on the resume sequence. So to solve this problem we have
7617 * to call special forcewake code that doesn't touch runtime PM and
7618 * doesn't enable the forcewake delayed work.
7619 */
7620 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7621 if (dev_priv->uncore.forcewake_count++ == 0)
7622 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7623 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7624
be256dc7
PZ
7625 if (val & LCPLL_POWER_DOWN_ALLOW) {
7626 val &= ~LCPLL_POWER_DOWN_ALLOW;
7627 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7628 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7629 }
7630
9ccd5aeb 7631 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7632 val |= D_COMP_COMP_FORCE;
7633 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7634 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7635
7636 val = I915_READ(LCPLL_CTL);
7637 val &= ~LCPLL_PLL_DISABLE;
7638 I915_WRITE(LCPLL_CTL, val);
7639
7640 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7641 DRM_ERROR("LCPLL not locked yet\n");
7642
7643 if (val & LCPLL_CD_SOURCE_FCLK) {
7644 val = I915_READ(LCPLL_CTL);
7645 val &= ~LCPLL_CD_SOURCE_FCLK;
7646 I915_WRITE(LCPLL_CTL, val);
7647
7648 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7649 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7650 DRM_ERROR("Switching back to LCPLL failed\n");
7651 }
215733fa 7652
a8a8bd54
PZ
7653 /* See the big comment above. */
7654 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7655 if (--dev_priv->uncore.forcewake_count == 0)
7656 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7657 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7658}
7659
765dab67
PZ
7660/*
7661 * Package states C8 and deeper are really deep PC states that can only be
7662 * reached when all the devices on the system allow it, so even if the graphics
7663 * device allows PC8+, it doesn't mean the system will actually get to these
7664 * states. Our driver only allows PC8+ when going into runtime PM.
7665 *
7666 * The requirements for PC8+ are that all the outputs are disabled, the power
7667 * well is disabled and most interrupts are disabled, and these are also
7668 * requirements for runtime PM. When these conditions are met, we manually do
7669 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7670 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7671 * hang the machine.
7672 *
7673 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7674 * the state of some registers, so when we come back from PC8+ we need to
7675 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7676 * need to take care of the registers kept by RC6. Notice that this happens even
7677 * if we don't put the device in PCI D3 state (which is what currently happens
7678 * because of the runtime PM support).
7679 *
7680 * For more, read "Display Sequences for Package C8" on the hardware
7681 * documentation.
7682 */
a14cb6fc 7683void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7684{
c67a470b
PZ
7685 struct drm_device *dev = dev_priv->dev;
7686 uint32_t val;
7687
c67a470b
PZ
7688 DRM_DEBUG_KMS("Enabling package C8+\n");
7689
c67a470b
PZ
7690 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7691 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7692 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7693 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7694 }
7695
7696 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7697 hsw_disable_lcpll(dev_priv, true, true);
7698}
7699
a14cb6fc 7700void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7701{
7702 struct drm_device *dev = dev_priv->dev;
7703 uint32_t val;
7704
c67a470b
PZ
7705 DRM_DEBUG_KMS("Disabling package C8+\n");
7706
7707 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7708 lpt_init_pch_refclk(dev);
7709
7710 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7711 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7712 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7713 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7714 }
7715
7716 intel_prepare_ddi(dev);
c67a470b
PZ
7717}
7718
9a952a0d
PZ
7719static void snb_modeset_global_resources(struct drm_device *dev)
7720{
7721 modeset_update_crtc_power_domains(dev);
7722}
7723
4f074129
ID
7724static void haswell_modeset_global_resources(struct drm_device *dev)
7725{
da723569 7726 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7727}
7728
09b4ddf9 7729static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7730 int x, int y,
7731 struct drm_framebuffer *fb)
7732{
09b4ddf9 7733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7734
566b734a 7735 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7736 return -EINVAL;
716c2e55 7737
644cef34
DV
7738 intel_crtc->lowfreq_avail = false;
7739
c8f7a0db 7740 return 0;
79e53945
JB
7741}
7742
7d2c8175
DL
7743static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7744 enum port port,
7745 struct intel_crtc_config *pipe_config)
7746{
7747 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7748
7749 switch (pipe_config->ddi_pll_sel) {
7750 case PORT_CLK_SEL_WRPLL1:
7751 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7752 break;
7753 case PORT_CLK_SEL_WRPLL2:
7754 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7755 break;
7756 }
7757}
7758
26804afd
DV
7759static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7760 struct intel_crtc_config *pipe_config)
7761{
7762 struct drm_device *dev = crtc->base.dev;
7763 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7764 struct intel_shared_dpll *pll;
26804afd
DV
7765 enum port port;
7766 uint32_t tmp;
7767
7768 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7769
7770 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7771
7d2c8175 7772 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7773
d452c5b6
DV
7774 if (pipe_config->shared_dpll >= 0) {
7775 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7776
7777 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7778 &pipe_config->dpll_hw_state));
7779 }
7780
26804afd
DV
7781 /*
7782 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7783 * DDI E. So just check whether this pipe is wired to DDI E and whether
7784 * the PCH transcoder is on.
7785 */
7786 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7787 pipe_config->has_pch_encoder = true;
7788
7789 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7790 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7791 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7792
7793 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7794 }
7795}
7796
0e8ffe1b
DV
7797static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7798 struct intel_crtc_config *pipe_config)
7799{
7800 struct drm_device *dev = crtc->base.dev;
7801 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7802 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7803 uint32_t tmp;
7804
b5482bd0
ID
7805 if (!intel_display_power_enabled(dev_priv,
7806 POWER_DOMAIN_PIPE(crtc->pipe)))
7807 return false;
7808
e143a21c 7809 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7810 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7811
eccb140b
DV
7812 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7813 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7814 enum pipe trans_edp_pipe;
7815 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7816 default:
7817 WARN(1, "unknown pipe linked to edp transcoder\n");
7818 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7819 case TRANS_DDI_EDP_INPUT_A_ON:
7820 trans_edp_pipe = PIPE_A;
7821 break;
7822 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7823 trans_edp_pipe = PIPE_B;
7824 break;
7825 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7826 trans_edp_pipe = PIPE_C;
7827 break;
7828 }
7829
7830 if (trans_edp_pipe == crtc->pipe)
7831 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7832 }
7833
da7e29bd 7834 if (!intel_display_power_enabled(dev_priv,
eccb140b 7835 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7836 return false;
7837
eccb140b 7838 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7839 if (!(tmp & PIPECONF_ENABLE))
7840 return false;
7841
26804afd 7842 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7843
1bd1bd80
DV
7844 intel_get_pipe_timings(crtc, pipe_config);
7845
2fa2fe9a 7846 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7847 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7848 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7849
e59150dc
JB
7850 if (IS_HASWELL(dev))
7851 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7852 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7853
6c49f241
DV
7854 pipe_config->pixel_multiplier = 1;
7855
0e8ffe1b
DV
7856 return true;
7857}
7858
1a91510d
JN
7859static struct {
7860 int clock;
7861 u32 config;
7862} hdmi_audio_clock[] = {
7863 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7864 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7865 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7866 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7867 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7868 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7869 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7870 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7871 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7872 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7873};
7874
7875/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7876static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7877{
7878 int i;
7879
7880 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7881 if (mode->clock == hdmi_audio_clock[i].clock)
7882 break;
7883 }
7884
7885 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7886 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7887 i = 1;
7888 }
7889
7890 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7891 hdmi_audio_clock[i].clock,
7892 hdmi_audio_clock[i].config);
7893
7894 return hdmi_audio_clock[i].config;
7895}
7896
3a9627f4
WF
7897static bool intel_eld_uptodate(struct drm_connector *connector,
7898 int reg_eldv, uint32_t bits_eldv,
7899 int reg_elda, uint32_t bits_elda,
7900 int reg_edid)
7901{
7902 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7903 uint8_t *eld = connector->eld;
7904 uint32_t i;
7905
7906 i = I915_READ(reg_eldv);
7907 i &= bits_eldv;
7908
7909 if (!eld[0])
7910 return !i;
7911
7912 if (!i)
7913 return false;
7914
7915 i = I915_READ(reg_elda);
7916 i &= ~bits_elda;
7917 I915_WRITE(reg_elda, i);
7918
7919 for (i = 0; i < eld[2]; i++)
7920 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7921 return false;
7922
7923 return true;
7924}
7925
e0dac65e 7926static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7927 struct drm_crtc *crtc,
7928 struct drm_display_mode *mode)
e0dac65e
WF
7929{
7930 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7931 uint8_t *eld = connector->eld;
7932 uint32_t eldv;
7933 uint32_t len;
7934 uint32_t i;
7935
7936 i = I915_READ(G4X_AUD_VID_DID);
7937
7938 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7939 eldv = G4X_ELDV_DEVCL_DEVBLC;
7940 else
7941 eldv = G4X_ELDV_DEVCTG;
7942
3a9627f4
WF
7943 if (intel_eld_uptodate(connector,
7944 G4X_AUD_CNTL_ST, eldv,
7945 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7946 G4X_HDMIW_HDMIEDID))
7947 return;
7948
e0dac65e
WF
7949 i = I915_READ(G4X_AUD_CNTL_ST);
7950 i &= ~(eldv | G4X_ELD_ADDR);
7951 len = (i >> 9) & 0x1f; /* ELD buffer size */
7952 I915_WRITE(G4X_AUD_CNTL_ST, i);
7953
7954 if (!eld[0])
7955 return;
7956
7957 len = min_t(uint8_t, eld[2], len);
7958 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7959 for (i = 0; i < len; i++)
7960 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7961
7962 i = I915_READ(G4X_AUD_CNTL_ST);
7963 i |= eldv;
7964 I915_WRITE(G4X_AUD_CNTL_ST, i);
7965}
7966
83358c85 7967static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7968 struct drm_crtc *crtc,
7969 struct drm_display_mode *mode)
83358c85
WX
7970{
7971 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7972 uint8_t *eld = connector->eld;
83358c85
WX
7973 uint32_t eldv;
7974 uint32_t i;
7975 int len;
7976 int pipe = to_intel_crtc(crtc)->pipe;
7977 int tmp;
7978
7979 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7980 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7981 int aud_config = HSW_AUD_CFG(pipe);
7982 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7983
83358c85
WX
7984 /* Audio output enable */
7985 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7986 tmp = I915_READ(aud_cntrl_st2);
7987 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7988 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7989 POSTING_READ(aud_cntrl_st2);
83358c85 7990
c7905792 7991 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7992
7993 /* Set ELD valid state */
7994 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7995 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7996 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7997 I915_WRITE(aud_cntrl_st2, tmp);
7998 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7999 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
8000
8001 /* Enable HDMI mode */
8002 tmp = I915_READ(aud_config);
7e7cb34f 8003 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
8004 /* clear N_programing_enable and N_value_index */
8005 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8006 I915_WRITE(aud_config, tmp);
8007
8008 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8009
8010 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8011
8012 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8013 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8014 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8015 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8016 } else {
8017 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8018 }
83358c85
WX
8019
8020 if (intel_eld_uptodate(connector,
8021 aud_cntrl_st2, eldv,
8022 aud_cntl_st, IBX_ELD_ADDRESS,
8023 hdmiw_hdmiedid))
8024 return;
8025
8026 i = I915_READ(aud_cntrl_st2);
8027 i &= ~eldv;
8028 I915_WRITE(aud_cntrl_st2, i);
8029
8030 if (!eld[0])
8031 return;
8032
8033 i = I915_READ(aud_cntl_st);
8034 i &= ~IBX_ELD_ADDRESS;
8035 I915_WRITE(aud_cntl_st, i);
8036 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
8037 DRM_DEBUG_DRIVER("port num:%d\n", i);
8038
8039 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8040 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8041 for (i = 0; i < len; i++)
8042 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8043
8044 i = I915_READ(aud_cntrl_st2);
8045 i |= eldv;
8046 I915_WRITE(aud_cntrl_st2, i);
8047
8048}
8049
e0dac65e 8050static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
8051 struct drm_crtc *crtc,
8052 struct drm_display_mode *mode)
e0dac65e
WF
8053{
8054 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8055 uint8_t *eld = connector->eld;
8056 uint32_t eldv;
8057 uint32_t i;
8058 int len;
8059 int hdmiw_hdmiedid;
b6daa025 8060 int aud_config;
e0dac65e
WF
8061 int aud_cntl_st;
8062 int aud_cntrl_st2;
9b138a83 8063 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 8064
b3f33cbf 8065 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
8066 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8067 aud_config = IBX_AUD_CFG(pipe);
8068 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 8069 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
8070 } else if (IS_VALLEYVIEW(connector->dev)) {
8071 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8072 aud_config = VLV_AUD_CFG(pipe);
8073 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8074 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 8075 } else {
9b138a83
WX
8076 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8077 aud_config = CPT_AUD_CFG(pipe);
8078 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 8079 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
8080 }
8081
9b138a83 8082 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 8083
9ca2fe73
ML
8084 if (IS_VALLEYVIEW(connector->dev)) {
8085 struct intel_encoder *intel_encoder;
8086 struct intel_digital_port *intel_dig_port;
8087
8088 intel_encoder = intel_attached_encoder(connector);
8089 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8090 i = intel_dig_port->port;
8091 } else {
8092 i = I915_READ(aud_cntl_st);
8093 i = (i >> 29) & DIP_PORT_SEL_MASK;
8094 /* DIP_Port_Select, 0x1 = PortB */
8095 }
8096
e0dac65e
WF
8097 if (!i) {
8098 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8099 /* operate blindly on all ports */
1202b4c6
WF
8100 eldv = IBX_ELD_VALIDB;
8101 eldv |= IBX_ELD_VALIDB << 4;
8102 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8103 } else {
2582a850 8104 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8105 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8106 }
8107
3a9627f4
WF
8108 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8109 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8110 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8111 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8112 } else {
8113 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8114 }
e0dac65e 8115
3a9627f4
WF
8116 if (intel_eld_uptodate(connector,
8117 aud_cntrl_st2, eldv,
8118 aud_cntl_st, IBX_ELD_ADDRESS,
8119 hdmiw_hdmiedid))
8120 return;
8121
e0dac65e
WF
8122 i = I915_READ(aud_cntrl_st2);
8123 i &= ~eldv;
8124 I915_WRITE(aud_cntrl_st2, i);
8125
8126 if (!eld[0])
8127 return;
8128
e0dac65e 8129 i = I915_READ(aud_cntl_st);
1202b4c6 8130 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8131 I915_WRITE(aud_cntl_st, i);
8132
8133 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8134 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8135 for (i = 0; i < len; i++)
8136 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8137
8138 i = I915_READ(aud_cntrl_st2);
8139 i |= eldv;
8140 I915_WRITE(aud_cntrl_st2, i);
8141}
8142
8143void intel_write_eld(struct drm_encoder *encoder,
8144 struct drm_display_mode *mode)
8145{
8146 struct drm_crtc *crtc = encoder->crtc;
8147 struct drm_connector *connector;
8148 struct drm_device *dev = encoder->dev;
8149 struct drm_i915_private *dev_priv = dev->dev_private;
8150
8151 connector = drm_select_eld(encoder, mode);
8152 if (!connector)
8153 return;
8154
8155 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8156 connector->base.id,
c23cc417 8157 connector->name,
e0dac65e 8158 connector->encoder->base.id,
8e329a03 8159 connector->encoder->name);
e0dac65e
WF
8160
8161 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8162
8163 if (dev_priv->display.write_eld)
34427052 8164 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8165}
8166
560b85bb
CW
8167static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8168{
8169 struct drm_device *dev = crtc->dev;
8170 struct drm_i915_private *dev_priv = dev->dev_private;
8171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8172 uint32_t cntl = 0, size = 0;
560b85bb 8173
dc41c154
VS
8174 if (base) {
8175 unsigned int width = intel_crtc->cursor_width;
8176 unsigned int height = intel_crtc->cursor_height;
8177 unsigned int stride = roundup_pow_of_two(width) * 4;
8178
8179 switch (stride) {
8180 default:
8181 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8182 width, stride);
8183 stride = 256;
8184 /* fallthrough */
8185 case 256:
8186 case 512:
8187 case 1024:
8188 case 2048:
8189 break;
4b0e333e
CW
8190 }
8191
dc41c154
VS
8192 cntl |= CURSOR_ENABLE |
8193 CURSOR_GAMMA_ENABLE |
8194 CURSOR_FORMAT_ARGB |
8195 CURSOR_STRIDE(stride);
8196
8197 size = (height << 12) | width;
4b0e333e 8198 }
560b85bb 8199
dc41c154
VS
8200 if (intel_crtc->cursor_cntl != 0 &&
8201 (intel_crtc->cursor_base != base ||
8202 intel_crtc->cursor_size != size ||
8203 intel_crtc->cursor_cntl != cntl)) {
8204 /* On these chipsets we can only modify the base/size/stride
8205 * whilst the cursor is disabled.
8206 */
8207 I915_WRITE(_CURACNTR, 0);
4b0e333e 8208 POSTING_READ(_CURACNTR);
dc41c154 8209 intel_crtc->cursor_cntl = 0;
4b0e333e 8210 }
560b85bb 8211
dc41c154 8212 if (intel_crtc->cursor_base != base)
9db4a9c7 8213 I915_WRITE(_CURABASE, base);
4726e0b0 8214
dc41c154
VS
8215 if (intel_crtc->cursor_size != size) {
8216 I915_WRITE(CURSIZE, size);
8217 intel_crtc->cursor_size = size;
4b0e333e 8218 }
560b85bb 8219
4b0e333e 8220 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8221 I915_WRITE(_CURACNTR, cntl);
8222 POSTING_READ(_CURACNTR);
4b0e333e 8223 intel_crtc->cursor_cntl = cntl;
560b85bb 8224 }
560b85bb
CW
8225}
8226
560b85bb 8227static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8228{
8229 struct drm_device *dev = crtc->dev;
8230 struct drm_i915_private *dev_priv = dev->dev_private;
8231 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8232 int pipe = intel_crtc->pipe;
4b0e333e
CW
8233 uint32_t cntl;
8234
8235 cntl = 0;
8236 if (base) {
8237 cntl = MCURSOR_GAMMA_ENABLE;
8238 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8239 case 64:
8240 cntl |= CURSOR_MODE_64_ARGB_AX;
8241 break;
8242 case 128:
8243 cntl |= CURSOR_MODE_128_ARGB_AX;
8244 break;
8245 case 256:
8246 cntl |= CURSOR_MODE_256_ARGB_AX;
8247 break;
8248 default:
8249 WARN_ON(1);
8250 return;
65a21cd6 8251 }
4b0e333e 8252 cntl |= pipe << 28; /* Connect to correct pipe */
4b0e333e
CW
8253 }
8254 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8255 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8256
4b0e333e
CW
8257 if (intel_crtc->cursor_cntl != cntl) {
8258 I915_WRITE(CURCNTR(pipe), cntl);
8259 POSTING_READ(CURCNTR(pipe));
8260 intel_crtc->cursor_cntl = cntl;
65a21cd6 8261 }
4b0e333e 8262
65a21cd6 8263 /* and commit changes on next vblank */
5efb3e28
VS
8264 I915_WRITE(CURBASE(pipe), base);
8265 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8266}
8267
cda4b7d3 8268/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8269static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8270 bool on)
cda4b7d3
CW
8271{
8272 struct drm_device *dev = crtc->dev;
8273 struct drm_i915_private *dev_priv = dev->dev_private;
8274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8275 int pipe = intel_crtc->pipe;
3d7d6510
MR
8276 int x = crtc->cursor_x;
8277 int y = crtc->cursor_y;
d6e4db15 8278 u32 base = 0, pos = 0;
cda4b7d3 8279
d6e4db15 8280 if (on)
cda4b7d3 8281 base = intel_crtc->cursor_addr;
cda4b7d3 8282
d6e4db15
VS
8283 if (x >= intel_crtc->config.pipe_src_w)
8284 base = 0;
8285
8286 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8287 base = 0;
8288
8289 if (x < 0) {
efc9064e 8290 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8291 base = 0;
8292
8293 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8294 x = -x;
8295 }
8296 pos |= x << CURSOR_X_SHIFT;
8297
8298 if (y < 0) {
efc9064e 8299 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8300 base = 0;
8301
8302 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8303 y = -y;
8304 }
8305 pos |= y << CURSOR_Y_SHIFT;
8306
4b0e333e 8307 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8308 return;
8309
5efb3e28
VS
8310 I915_WRITE(CURPOS(pipe), pos);
8311
8ac54669 8312 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8313 i845_update_cursor(crtc, base);
8314 else
8315 i9xx_update_cursor(crtc, base);
4b0e333e 8316 intel_crtc->cursor_base = base;
cda4b7d3
CW
8317}
8318
dc41c154
VS
8319static bool cursor_size_ok(struct drm_device *dev,
8320 uint32_t width, uint32_t height)
8321{
8322 if (width == 0 || height == 0)
8323 return false;
8324
8325 /*
8326 * 845g/865g are special in that they are only limited by
8327 * the width of their cursors, the height is arbitrary up to
8328 * the precision of the register. Everything else requires
8329 * square cursors, limited to a few power-of-two sizes.
8330 */
8331 if (IS_845G(dev) || IS_I865G(dev)) {
8332 if ((width & 63) != 0)
8333 return false;
8334
8335 if (width > (IS_845G(dev) ? 64 : 512))
8336 return false;
8337
8338 if (height > 1023)
8339 return false;
8340 } else {
8341 switch (width | height) {
8342 case 256:
8343 case 128:
8344 if (IS_GEN2(dev))
8345 return false;
8346 case 64:
8347 break;
8348 default:
8349 return false;
8350 }
8351 }
8352
8353 return true;
8354}
8355
e3287951
MR
8356/*
8357 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8358 *
8359 * Note that the object's reference will be consumed if the update fails. If
8360 * the update succeeds, the reference of the old object (if any) will be
8361 * consumed.
8362 */
8363static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8364 struct drm_i915_gem_object *obj,
8365 uint32_t width, uint32_t height)
79e53945
JB
8366{
8367 struct drm_device *dev = crtc->dev;
8368 struct drm_i915_private *dev_priv = dev->dev_private;
8369 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8370 enum pipe pipe = intel_crtc->pipe;
dc41c154 8371 unsigned old_width, stride;
cda4b7d3 8372 uint32_t addr;
3f8bc370 8373 int ret;
79e53945 8374
79e53945 8375 /* if we want to turn off the cursor ignore width and height */
e3287951 8376 if (!obj) {
28c97730 8377 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8378 addr = 0;
5004417d 8379 mutex_lock(&dev->struct_mutex);
3f8bc370 8380 goto finish;
79e53945
JB
8381 }
8382
4726e0b0 8383 /* Check for which cursor types we support */
dc41c154 8384 if (!cursor_size_ok(dev, width, height)) {
4726e0b0 8385 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8386 return -EINVAL;
8387 }
8388
dc41c154
VS
8389 stride = roundup_pow_of_two(width) * 4;
8390 if (obj->base.size < stride * height) {
e3287951 8391 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8392 ret = -ENOMEM;
8393 goto fail;
79e53945
JB
8394 }
8395
71acb5eb 8396 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8397 mutex_lock(&dev->struct_mutex);
3d13ef2e 8398 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8399 unsigned alignment;
8400
d9e86c0e 8401 if (obj->tiling_mode) {
3b25b31f 8402 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8403 ret = -EINVAL;
8404 goto fail_locked;
8405 }
8406
d6dd6843
PZ
8407 /*
8408 * Global gtt pte registers are special registers which actually
8409 * forward writes to a chunk of system memory. Which means that
8410 * there is no risk that the register values disappear as soon
8411 * as we call intel_runtime_pm_put(), so it is correct to wrap
8412 * only the pin/unpin/fence and not more.
8413 */
8414 intel_runtime_pm_get(dev_priv);
8415
693db184
CW
8416 /* Note that the w/a also requires 2 PTE of padding following
8417 * the bo. We currently fill all unused PTE with the shadow
8418 * page and so we should always have valid PTE following the
8419 * cursor preventing the VT-d warning.
8420 */
8421 alignment = 0;
8422 if (need_vtd_wa(dev))
8423 alignment = 64*1024;
8424
8425 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8426 if (ret) {
3b25b31f 8427 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
d6dd6843 8428 intel_runtime_pm_put(dev_priv);
2da3b9b9 8429 goto fail_locked;
e7b526bb
CW
8430 }
8431
d9e86c0e
CW
8432 ret = i915_gem_object_put_fence(obj);
8433 if (ret) {
3b25b31f 8434 DRM_DEBUG_KMS("failed to release fence for cursor");
d6dd6843 8435 intel_runtime_pm_put(dev_priv);
d9e86c0e
CW
8436 goto fail_unpin;
8437 }
8438
f343c5f6 8439 addr = i915_gem_obj_ggtt_offset(obj);
d6dd6843
PZ
8440
8441 intel_runtime_pm_put(dev_priv);
71acb5eb 8442 } else {
6eeefaf3 8443 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8444 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8445 if (ret) {
3b25b31f 8446 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8447 goto fail_locked;
71acb5eb 8448 }
00731155 8449 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8450 }
8451
3f8bc370 8452 finish:
3f8bc370 8453 if (intel_crtc->cursor_bo) {
00731155 8454 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8455 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8456 }
80824003 8457
a071fa00
DV
8458 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8459 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8460 mutex_unlock(&dev->struct_mutex);
3f8bc370 8461
64f962e3
CW
8462 old_width = intel_crtc->cursor_width;
8463
3f8bc370 8464 intel_crtc->cursor_addr = addr;
05394f39 8465 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8466 intel_crtc->cursor_width = width;
8467 intel_crtc->cursor_height = height;
8468
64f962e3
CW
8469 if (intel_crtc->active) {
8470 if (old_width != width)
8471 intel_update_watermarks(crtc);
f2f5f771 8472 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8473 }
3f8bc370 8474
f99d7069
DV
8475 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8476
79e53945 8477 return 0;
e7b526bb 8478fail_unpin:
cc98b413 8479 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8480fail_locked:
34b8686e 8481 mutex_unlock(&dev->struct_mutex);
bc9025bd 8482fail:
05394f39 8483 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8484 return ret;
79e53945
JB
8485}
8486
79e53945 8487static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8488 u16 *blue, uint32_t start, uint32_t size)
79e53945 8489{
7203425a 8490 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8491 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8492
7203425a 8493 for (i = start; i < end; i++) {
79e53945
JB
8494 intel_crtc->lut_r[i] = red[i] >> 8;
8495 intel_crtc->lut_g[i] = green[i] >> 8;
8496 intel_crtc->lut_b[i] = blue[i] >> 8;
8497 }
8498
8499 intel_crtc_load_lut(crtc);
8500}
8501
79e53945
JB
8502/* VESA 640x480x72Hz mode to set on the pipe */
8503static struct drm_display_mode load_detect_mode = {
8504 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8505 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8506};
8507
a8bb6818
DV
8508struct drm_framebuffer *
8509__intel_framebuffer_create(struct drm_device *dev,
8510 struct drm_mode_fb_cmd2 *mode_cmd,
8511 struct drm_i915_gem_object *obj)
d2dff872
CW
8512{
8513 struct intel_framebuffer *intel_fb;
8514 int ret;
8515
8516 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8517 if (!intel_fb) {
8518 drm_gem_object_unreference_unlocked(&obj->base);
8519 return ERR_PTR(-ENOMEM);
8520 }
8521
8522 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8523 if (ret)
8524 goto err;
d2dff872
CW
8525
8526 return &intel_fb->base;
dd4916c5
DV
8527err:
8528 drm_gem_object_unreference_unlocked(&obj->base);
8529 kfree(intel_fb);
8530
8531 return ERR_PTR(ret);
d2dff872
CW
8532}
8533
b5ea642a 8534static struct drm_framebuffer *
a8bb6818
DV
8535intel_framebuffer_create(struct drm_device *dev,
8536 struct drm_mode_fb_cmd2 *mode_cmd,
8537 struct drm_i915_gem_object *obj)
8538{
8539 struct drm_framebuffer *fb;
8540 int ret;
8541
8542 ret = i915_mutex_lock_interruptible(dev);
8543 if (ret)
8544 return ERR_PTR(ret);
8545 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8546 mutex_unlock(&dev->struct_mutex);
8547
8548 return fb;
8549}
8550
d2dff872
CW
8551static u32
8552intel_framebuffer_pitch_for_width(int width, int bpp)
8553{
8554 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8555 return ALIGN(pitch, 64);
8556}
8557
8558static u32
8559intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8560{
8561 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8562 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8563}
8564
8565static struct drm_framebuffer *
8566intel_framebuffer_create_for_mode(struct drm_device *dev,
8567 struct drm_display_mode *mode,
8568 int depth, int bpp)
8569{
8570 struct drm_i915_gem_object *obj;
0fed39bd 8571 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8572
8573 obj = i915_gem_alloc_object(dev,
8574 intel_framebuffer_size_for_mode(mode, bpp));
8575 if (obj == NULL)
8576 return ERR_PTR(-ENOMEM);
8577
8578 mode_cmd.width = mode->hdisplay;
8579 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8580 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8581 bpp);
5ca0c34a 8582 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8583
8584 return intel_framebuffer_create(dev, &mode_cmd, obj);
8585}
8586
8587static struct drm_framebuffer *
8588mode_fits_in_fbdev(struct drm_device *dev,
8589 struct drm_display_mode *mode)
8590{
4520f53a 8591#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8592 struct drm_i915_private *dev_priv = dev->dev_private;
8593 struct drm_i915_gem_object *obj;
8594 struct drm_framebuffer *fb;
8595
4c0e5528 8596 if (!dev_priv->fbdev)
d2dff872
CW
8597 return NULL;
8598
4c0e5528 8599 if (!dev_priv->fbdev->fb)
d2dff872
CW
8600 return NULL;
8601
4c0e5528
DV
8602 obj = dev_priv->fbdev->fb->obj;
8603 BUG_ON(!obj);
8604
8bcd4553 8605 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8606 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8607 fb->bits_per_pixel))
d2dff872
CW
8608 return NULL;
8609
01f2c773 8610 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8611 return NULL;
8612
8613 return fb;
4520f53a
DV
8614#else
8615 return NULL;
8616#endif
d2dff872
CW
8617}
8618
d2434ab7 8619bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8620 struct drm_display_mode *mode,
51fd371b
RC
8621 struct intel_load_detect_pipe *old,
8622 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8623{
8624 struct intel_crtc *intel_crtc;
d2434ab7
DV
8625 struct intel_encoder *intel_encoder =
8626 intel_attached_encoder(connector);
79e53945 8627 struct drm_crtc *possible_crtc;
4ef69c7a 8628 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8629 struct drm_crtc *crtc = NULL;
8630 struct drm_device *dev = encoder->dev;
94352cf9 8631 struct drm_framebuffer *fb;
51fd371b
RC
8632 struct drm_mode_config *config = &dev->mode_config;
8633 int ret, i = -1;
79e53945 8634
d2dff872 8635 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8636 connector->base.id, connector->name,
8e329a03 8637 encoder->base.id, encoder->name);
d2dff872 8638
51fd371b
RC
8639retry:
8640 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8641 if (ret)
8642 goto fail_unlock;
6e9f798d 8643
79e53945
JB
8644 /*
8645 * Algorithm gets a little messy:
7a5e4805 8646 *
79e53945
JB
8647 * - if the connector already has an assigned crtc, use it (but make
8648 * sure it's on first)
7a5e4805 8649 *
79e53945
JB
8650 * - try to find the first unused crtc that can drive this connector,
8651 * and use that if we find one
79e53945
JB
8652 */
8653
8654 /* See if we already have a CRTC for this connector */
8655 if (encoder->crtc) {
8656 crtc = encoder->crtc;
8261b191 8657
51fd371b
RC
8658 ret = drm_modeset_lock(&crtc->mutex, ctx);
8659 if (ret)
8660 goto fail_unlock;
7b24056b 8661
24218aac 8662 old->dpms_mode = connector->dpms;
8261b191
CW
8663 old->load_detect_temp = false;
8664
8665 /* Make sure the crtc and connector are running */
24218aac
DV
8666 if (connector->dpms != DRM_MODE_DPMS_ON)
8667 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8668
7173188d 8669 return true;
79e53945
JB
8670 }
8671
8672 /* Find an unused one (if possible) */
70e1e0ec 8673 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8674 i++;
8675 if (!(encoder->possible_crtcs & (1 << i)))
8676 continue;
a459249c
VS
8677 if (possible_crtc->enabled)
8678 continue;
8679 /* This can occur when applying the pipe A quirk on resume. */
8680 if (to_intel_crtc(possible_crtc)->new_enabled)
8681 continue;
8682
8683 crtc = possible_crtc;
8684 break;
79e53945
JB
8685 }
8686
8687 /*
8688 * If we didn't find an unused CRTC, don't use any.
8689 */
8690 if (!crtc) {
7173188d 8691 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8692 goto fail_unlock;
79e53945
JB
8693 }
8694
51fd371b
RC
8695 ret = drm_modeset_lock(&crtc->mutex, ctx);
8696 if (ret)
8697 goto fail_unlock;
fc303101
DV
8698 intel_encoder->new_crtc = to_intel_crtc(crtc);
8699 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8700
8701 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8702 intel_crtc->new_enabled = true;
8703 intel_crtc->new_config = &intel_crtc->config;
24218aac 8704 old->dpms_mode = connector->dpms;
8261b191 8705 old->load_detect_temp = true;
d2dff872 8706 old->release_fb = NULL;
79e53945 8707
6492711d
CW
8708 if (!mode)
8709 mode = &load_detect_mode;
79e53945 8710
d2dff872
CW
8711 /* We need a framebuffer large enough to accommodate all accesses
8712 * that the plane may generate whilst we perform load detection.
8713 * We can not rely on the fbcon either being present (we get called
8714 * during its initialisation to detect all boot displays, or it may
8715 * not even exist) or that it is large enough to satisfy the
8716 * requested mode.
8717 */
94352cf9
DV
8718 fb = mode_fits_in_fbdev(dev, mode);
8719 if (fb == NULL) {
d2dff872 8720 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8721 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8722 old->release_fb = fb;
d2dff872
CW
8723 } else
8724 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8725 if (IS_ERR(fb)) {
d2dff872 8726 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8727 goto fail;
79e53945 8728 }
79e53945 8729
c0c36b94 8730 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8731 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8732 if (old->release_fb)
8733 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8734 goto fail;
79e53945 8735 }
7173188d 8736
79e53945 8737 /* let the connector get through one full cycle before testing */
9d0498a2 8738 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8739 return true;
412b61d8
VS
8740
8741 fail:
8742 intel_crtc->new_enabled = crtc->enabled;
8743 if (intel_crtc->new_enabled)
8744 intel_crtc->new_config = &intel_crtc->config;
8745 else
8746 intel_crtc->new_config = NULL;
51fd371b
RC
8747fail_unlock:
8748 if (ret == -EDEADLK) {
8749 drm_modeset_backoff(ctx);
8750 goto retry;
8751 }
8752
412b61d8 8753 return false;
79e53945
JB
8754}
8755
d2434ab7 8756void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8757 struct intel_load_detect_pipe *old)
79e53945 8758{
d2434ab7
DV
8759 struct intel_encoder *intel_encoder =
8760 intel_attached_encoder(connector);
4ef69c7a 8761 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8762 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8763 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8764
d2dff872 8765 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8766 connector->base.id, connector->name,
8e329a03 8767 encoder->base.id, encoder->name);
d2dff872 8768
8261b191 8769 if (old->load_detect_temp) {
fc303101
DV
8770 to_intel_connector(connector)->new_encoder = NULL;
8771 intel_encoder->new_crtc = NULL;
412b61d8
VS
8772 intel_crtc->new_enabled = false;
8773 intel_crtc->new_config = NULL;
fc303101 8774 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8775
36206361
DV
8776 if (old->release_fb) {
8777 drm_framebuffer_unregister_private(old->release_fb);
8778 drm_framebuffer_unreference(old->release_fb);
8779 }
d2dff872 8780
0622a53c 8781 return;
79e53945
JB
8782 }
8783
c751ce4f 8784 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8785 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8786 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8787}
8788
da4a1efa
VS
8789static int i9xx_pll_refclk(struct drm_device *dev,
8790 const struct intel_crtc_config *pipe_config)
8791{
8792 struct drm_i915_private *dev_priv = dev->dev_private;
8793 u32 dpll = pipe_config->dpll_hw_state.dpll;
8794
8795 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8796 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8797 else if (HAS_PCH_SPLIT(dev))
8798 return 120000;
8799 else if (!IS_GEN2(dev))
8800 return 96000;
8801 else
8802 return 48000;
8803}
8804
79e53945 8805/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8806static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8807 struct intel_crtc_config *pipe_config)
79e53945 8808{
f1f644dc 8809 struct drm_device *dev = crtc->base.dev;
79e53945 8810 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8811 int pipe = pipe_config->cpu_transcoder;
293623f7 8812 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8813 u32 fp;
8814 intel_clock_t clock;
da4a1efa 8815 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8816
8817 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8818 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8819 else
293623f7 8820 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8821
8822 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8823 if (IS_PINEVIEW(dev)) {
8824 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8825 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8826 } else {
8827 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8828 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8829 }
8830
a6c45cf0 8831 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8832 if (IS_PINEVIEW(dev))
8833 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8834 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8835 else
8836 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8837 DPLL_FPA01_P1_POST_DIV_SHIFT);
8838
8839 switch (dpll & DPLL_MODE_MASK) {
8840 case DPLLB_MODE_DAC_SERIAL:
8841 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8842 5 : 10;
8843 break;
8844 case DPLLB_MODE_LVDS:
8845 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8846 7 : 14;
8847 break;
8848 default:
28c97730 8849 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8850 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8851 return;
79e53945
JB
8852 }
8853
ac58c3f0 8854 if (IS_PINEVIEW(dev))
da4a1efa 8855 pineview_clock(refclk, &clock);
ac58c3f0 8856 else
da4a1efa 8857 i9xx_clock(refclk, &clock);
79e53945 8858 } else {
0fb58223 8859 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8860 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8861
8862 if (is_lvds) {
8863 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8864 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8865
8866 if (lvds & LVDS_CLKB_POWER_UP)
8867 clock.p2 = 7;
8868 else
8869 clock.p2 = 14;
79e53945
JB
8870 } else {
8871 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8872 clock.p1 = 2;
8873 else {
8874 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8875 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8876 }
8877 if (dpll & PLL_P2_DIVIDE_BY_4)
8878 clock.p2 = 4;
8879 else
8880 clock.p2 = 2;
79e53945 8881 }
da4a1efa
VS
8882
8883 i9xx_clock(refclk, &clock);
79e53945
JB
8884 }
8885
18442d08
VS
8886 /*
8887 * This value includes pixel_multiplier. We will use
241bfc38 8888 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8889 * encoder's get_config() function.
8890 */
8891 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8892}
8893
6878da05
VS
8894int intel_dotclock_calculate(int link_freq,
8895 const struct intel_link_m_n *m_n)
f1f644dc 8896{
f1f644dc
JB
8897 /*
8898 * The calculation for the data clock is:
1041a02f 8899 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8900 * But we want to avoid losing precison if possible, so:
1041a02f 8901 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8902 *
8903 * and the link clock is simpler:
1041a02f 8904 * link_clock = (m * link_clock) / n
f1f644dc
JB
8905 */
8906
6878da05
VS
8907 if (!m_n->link_n)
8908 return 0;
f1f644dc 8909
6878da05
VS
8910 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8911}
f1f644dc 8912
18442d08
VS
8913static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8914 struct intel_crtc_config *pipe_config)
6878da05
VS
8915{
8916 struct drm_device *dev = crtc->base.dev;
79e53945 8917
18442d08
VS
8918 /* read out port_clock from the DPLL */
8919 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8920
f1f644dc 8921 /*
18442d08 8922 * This value does not include pixel_multiplier.
241bfc38 8923 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8924 * agree once we know their relationship in the encoder's
8925 * get_config() function.
79e53945 8926 */
241bfc38 8927 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8928 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8929 &pipe_config->fdi_m_n);
79e53945
JB
8930}
8931
8932/** Returns the currently programmed mode of the given pipe. */
8933struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8934 struct drm_crtc *crtc)
8935{
548f245b 8936 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8937 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8938 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8939 struct drm_display_mode *mode;
f1f644dc 8940 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8941 int htot = I915_READ(HTOTAL(cpu_transcoder));
8942 int hsync = I915_READ(HSYNC(cpu_transcoder));
8943 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8944 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8945 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8946
8947 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8948 if (!mode)
8949 return NULL;
8950
f1f644dc
JB
8951 /*
8952 * Construct a pipe_config sufficient for getting the clock info
8953 * back out of crtc_clock_get.
8954 *
8955 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8956 * to use a real value here instead.
8957 */
293623f7 8958 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8959 pipe_config.pixel_multiplier = 1;
293623f7
VS
8960 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8961 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8962 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8963 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8964
773ae034 8965 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8966 mode->hdisplay = (htot & 0xffff) + 1;
8967 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8968 mode->hsync_start = (hsync & 0xffff) + 1;
8969 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8970 mode->vdisplay = (vtot & 0xffff) + 1;
8971 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8972 mode->vsync_start = (vsync & 0xffff) + 1;
8973 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8974
8975 drm_mode_set_name(mode);
79e53945
JB
8976
8977 return mode;
8978}
8979
cc36513c
DV
8980static void intel_increase_pllclock(struct drm_device *dev,
8981 enum pipe pipe)
652c393a 8982{
fbee40df 8983 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8984 int dpll_reg = DPLL(pipe);
8985 int dpll;
652c393a 8986
baff296c 8987 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8988 return;
8989
8990 if (!dev_priv->lvds_downclock_avail)
8991 return;
8992
dbdc6479 8993 dpll = I915_READ(dpll_reg);
652c393a 8994 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8995 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8996
8ac5a6d5 8997 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8998
8999 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
9000 I915_WRITE(dpll_reg, dpll);
9d0498a2 9001 intel_wait_for_vblank(dev, pipe);
dbdc6479 9002
652c393a
JB
9003 dpll = I915_READ(dpll_reg);
9004 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 9005 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 9006 }
652c393a
JB
9007}
9008
9009static void intel_decrease_pllclock(struct drm_crtc *crtc)
9010{
9011 struct drm_device *dev = crtc->dev;
fbee40df 9012 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9013 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9014
baff296c 9015 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9016 return;
9017
9018 if (!dev_priv->lvds_downclock_avail)
9019 return;
9020
9021 /*
9022 * Since this is called by a timer, we should never get here in
9023 * the manual case.
9024 */
9025 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9026 int pipe = intel_crtc->pipe;
9027 int dpll_reg = DPLL(pipe);
9028 int dpll;
f6e5b160 9029
44d98a61 9030 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9031
8ac5a6d5 9032 assert_panel_unlocked(dev_priv, pipe);
652c393a 9033
dc257cf1 9034 dpll = I915_READ(dpll_reg);
652c393a
JB
9035 dpll |= DISPLAY_RATE_SELECT_FPA1;
9036 I915_WRITE(dpll_reg, dpll);
9d0498a2 9037 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9038 dpll = I915_READ(dpll_reg);
9039 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9040 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9041 }
9042
9043}
9044
f047e395
CW
9045void intel_mark_busy(struct drm_device *dev)
9046{
c67a470b
PZ
9047 struct drm_i915_private *dev_priv = dev->dev_private;
9048
f62a0076
CW
9049 if (dev_priv->mm.busy)
9050 return;
9051
43694d69 9052 intel_runtime_pm_get(dev_priv);
c67a470b 9053 i915_update_gfx_val(dev_priv);
f62a0076 9054 dev_priv->mm.busy = true;
f047e395
CW
9055}
9056
9057void intel_mark_idle(struct drm_device *dev)
652c393a 9058{
c67a470b 9059 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9060 struct drm_crtc *crtc;
652c393a 9061
f62a0076
CW
9062 if (!dev_priv->mm.busy)
9063 return;
9064
9065 dev_priv->mm.busy = false;
9066
d330a953 9067 if (!i915.powersave)
bb4cdd53 9068 goto out;
652c393a 9069
70e1e0ec 9070 for_each_crtc(dev, crtc) {
f4510a27 9071 if (!crtc->primary->fb)
652c393a
JB
9072 continue;
9073
725a5b54 9074 intel_decrease_pllclock(crtc);
652c393a 9075 }
b29c19b6 9076
3d13ef2e 9077 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9078 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9079
9080out:
43694d69 9081 intel_runtime_pm_put(dev_priv);
652c393a
JB
9082}
9083
7c8f8a70 9084
f99d7069
DV
9085/**
9086 * intel_mark_fb_busy - mark given planes as busy
9087 * @dev: DRM device
9088 * @frontbuffer_bits: bits for the affected planes
9089 * @ring: optional ring for asynchronous commands
9090 *
9091 * This function gets called every time the screen contents change. It can be
9092 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9093 */
9094static void intel_mark_fb_busy(struct drm_device *dev,
9095 unsigned frontbuffer_bits,
9096 struct intel_engine_cs *ring)
652c393a 9097{
055e393f 9098 struct drm_i915_private *dev_priv = dev->dev_private;
cc36513c 9099 enum pipe pipe;
652c393a 9100
d330a953 9101 if (!i915.powersave)
acb87dfb
CW
9102 return;
9103
055e393f 9104 for_each_pipe(dev_priv, pipe) {
f99d7069 9105 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
9106 continue;
9107
cc36513c 9108 intel_increase_pllclock(dev, pipe);
c65355bb
CW
9109 if (ring && intel_fbc_enabled(dev))
9110 ring->fbc_dirty = true;
652c393a
JB
9111 }
9112}
9113
f99d7069
DV
9114/**
9115 * intel_fb_obj_invalidate - invalidate frontbuffer object
9116 * @obj: GEM object to invalidate
9117 * @ring: set for asynchronous rendering
9118 *
9119 * This function gets called every time rendering on the given object starts and
9120 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9121 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9122 * until the rendering completes or a flip on this frontbuffer plane is
9123 * scheduled.
9124 */
9125void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9126 struct intel_engine_cs *ring)
9127{
9128 struct drm_device *dev = obj->base.dev;
9129 struct drm_i915_private *dev_priv = dev->dev_private;
9130
9131 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9132
9133 if (!obj->frontbuffer_bits)
9134 return;
9135
9136 if (ring) {
9137 mutex_lock(&dev_priv->fb_tracking.lock);
9138 dev_priv->fb_tracking.busy_bits
9139 |= obj->frontbuffer_bits;
9140 dev_priv->fb_tracking.flip_bits
9141 &= ~obj->frontbuffer_bits;
9142 mutex_unlock(&dev_priv->fb_tracking.lock);
9143 }
9144
9145 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9146
9ca15301 9147 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
9148}
9149
9150/**
9151 * intel_frontbuffer_flush - flush frontbuffer
9152 * @dev: DRM device
9153 * @frontbuffer_bits: frontbuffer plane tracking bits
9154 *
9155 * This function gets called every time rendering on the given planes has
9156 * completed and frontbuffer caching can be started again. Flushes will get
9157 * delayed if they're blocked by some oustanding asynchronous rendering.
9158 *
9159 * Can be called without any locks held.
9160 */
9161void intel_frontbuffer_flush(struct drm_device *dev,
9162 unsigned frontbuffer_bits)
9163{
9164 struct drm_i915_private *dev_priv = dev->dev_private;
9165
9166 /* Delay flushing when rings are still busy.*/
9167 mutex_lock(&dev_priv->fb_tracking.lock);
9168 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9169 mutex_unlock(&dev_priv->fb_tracking.lock);
9170
9171 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9172
9ca15301 9173 intel_edp_psr_flush(dev, frontbuffer_bits);
c5ad011d 9174
c317adcd
VS
9175 /*
9176 * FIXME: Unconditional fbc flushing here is a rather gross hack and
9177 * needs to be reworked into a proper frontbuffer tracking scheme like
9178 * psr employs.
9179 */
9180 if (IS_BROADWELL(dev))
c5ad011d 9181 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
f99d7069
DV
9182}
9183
9184/**
9185 * intel_fb_obj_flush - flush frontbuffer object
9186 * @obj: GEM object to flush
9187 * @retire: set when retiring asynchronous rendering
9188 *
9189 * This function gets called every time rendering on the given object has
9190 * completed and frontbuffer caching can be started again. If @retire is true
9191 * then any delayed flushes will be unblocked.
9192 */
9193void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9194 bool retire)
9195{
9196 struct drm_device *dev = obj->base.dev;
9197 struct drm_i915_private *dev_priv = dev->dev_private;
9198 unsigned frontbuffer_bits;
9199
9200 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9201
9202 if (!obj->frontbuffer_bits)
9203 return;
9204
9205 frontbuffer_bits = obj->frontbuffer_bits;
9206
9207 if (retire) {
9208 mutex_lock(&dev_priv->fb_tracking.lock);
9209 /* Filter out new bits since rendering started. */
9210 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9211
9212 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9213 mutex_unlock(&dev_priv->fb_tracking.lock);
9214 }
9215
9216 intel_frontbuffer_flush(dev, frontbuffer_bits);
9217}
9218
9219/**
9220 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9221 * @dev: DRM device
9222 * @frontbuffer_bits: frontbuffer plane tracking bits
9223 *
9224 * This function gets called after scheduling a flip on @obj. The actual
9225 * frontbuffer flushing will be delayed until completion is signalled with
9226 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9227 * flush will be cancelled.
9228 *
9229 * Can be called without any locks held.
9230 */
9231void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9232 unsigned frontbuffer_bits)
9233{
9234 struct drm_i915_private *dev_priv = dev->dev_private;
9235
9236 mutex_lock(&dev_priv->fb_tracking.lock);
9237 dev_priv->fb_tracking.flip_bits
9238 |= frontbuffer_bits;
9239 mutex_unlock(&dev_priv->fb_tracking.lock);
9240}
9241
9242/**
9243 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9244 * @dev: DRM device
9245 * @frontbuffer_bits: frontbuffer plane tracking bits
9246 *
9247 * This function gets called after the flip has been latched and will complete
9248 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9249 *
9250 * Can be called without any locks held.
9251 */
9252void intel_frontbuffer_flip_complete(struct drm_device *dev,
9253 unsigned frontbuffer_bits)
9254{
9255 struct drm_i915_private *dev_priv = dev->dev_private;
9256
9257 mutex_lock(&dev_priv->fb_tracking.lock);
9258 /* Mask any cancelled flips. */
9259 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9260 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9261 mutex_unlock(&dev_priv->fb_tracking.lock);
9262
9263 intel_frontbuffer_flush(dev, frontbuffer_bits);
9264}
9265
79e53945
JB
9266static void intel_crtc_destroy(struct drm_crtc *crtc)
9267{
9268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9269 struct drm_device *dev = crtc->dev;
9270 struct intel_unpin_work *work;
9271 unsigned long flags;
9272
9273 spin_lock_irqsave(&dev->event_lock, flags);
9274 work = intel_crtc->unpin_work;
9275 intel_crtc->unpin_work = NULL;
9276 spin_unlock_irqrestore(&dev->event_lock, flags);
9277
9278 if (work) {
9279 cancel_work_sync(&work->work);
9280 kfree(work);
9281 }
79e53945
JB
9282
9283 drm_crtc_cleanup(crtc);
67e77c5a 9284
79e53945
JB
9285 kfree(intel_crtc);
9286}
9287
6b95a207
KH
9288static void intel_unpin_work_fn(struct work_struct *__work)
9289{
9290 struct intel_unpin_work *work =
9291 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9292 struct drm_device *dev = work->crtc->dev;
f99d7069 9293 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9294
b4a98e57 9295 mutex_lock(&dev->struct_mutex);
1690e1eb 9296 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9297 drm_gem_object_unreference(&work->pending_flip_obj->base);
9298 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9299
b4a98e57
CW
9300 intel_update_fbc(dev);
9301 mutex_unlock(&dev->struct_mutex);
9302
f99d7069
DV
9303 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9304
b4a98e57
CW
9305 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9306 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9307
6b95a207
KH
9308 kfree(work);
9309}
9310
1afe3e9d 9311static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9312 struct drm_crtc *crtc)
6b95a207 9313{
6b95a207
KH
9314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9315 struct intel_unpin_work *work;
6b95a207
KH
9316 unsigned long flags;
9317
9318 /* Ignore early vblank irqs */
9319 if (intel_crtc == NULL)
9320 return;
9321
9322 spin_lock_irqsave(&dev->event_lock, flags);
9323 work = intel_crtc->unpin_work;
e7d841ca
CW
9324
9325 /* Ensure we don't miss a work->pending update ... */
9326 smp_rmb();
9327
9328 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9329 spin_unlock_irqrestore(&dev->event_lock, flags);
9330 return;
9331 }
9332
d6bbafa1 9333 page_flip_completed(intel_crtc);
0af7e4df 9334
6b95a207 9335 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9336}
9337
1afe3e9d
JB
9338void intel_finish_page_flip(struct drm_device *dev, int pipe)
9339{
fbee40df 9340 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9341 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9342
49b14a5c 9343 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9344}
9345
9346void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9347{
fbee40df 9348 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9349 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9350
49b14a5c 9351 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9352}
9353
75f7f3ec
VS
9354/* Is 'a' after or equal to 'b'? */
9355static bool g4x_flip_count_after_eq(u32 a, u32 b)
9356{
9357 return !((a - b) & 0x80000000);
9358}
9359
9360static bool page_flip_finished(struct intel_crtc *crtc)
9361{
9362 struct drm_device *dev = crtc->base.dev;
9363 struct drm_i915_private *dev_priv = dev->dev_private;
9364
9365 /*
9366 * The relevant registers doen't exist on pre-ctg.
9367 * As the flip done interrupt doesn't trigger for mmio
9368 * flips on gmch platforms, a flip count check isn't
9369 * really needed there. But since ctg has the registers,
9370 * include it in the check anyway.
9371 */
9372 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9373 return true;
9374
9375 /*
9376 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9377 * used the same base address. In that case the mmio flip might
9378 * have completed, but the CS hasn't even executed the flip yet.
9379 *
9380 * A flip count check isn't enough as the CS might have updated
9381 * the base address just after start of vblank, but before we
9382 * managed to process the interrupt. This means we'd complete the
9383 * CS flip too soon.
9384 *
9385 * Combining both checks should get us a good enough result. It may
9386 * still happen that the CS flip has been executed, but has not
9387 * yet actually completed. But in case the base address is the same
9388 * anyway, we don't really care.
9389 */
9390 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9391 crtc->unpin_work->gtt_offset &&
9392 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9393 crtc->unpin_work->flip_count);
9394}
9395
6b95a207
KH
9396void intel_prepare_page_flip(struct drm_device *dev, int plane)
9397{
fbee40df 9398 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9399 struct intel_crtc *intel_crtc =
9400 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9401 unsigned long flags;
9402
e7d841ca
CW
9403 /* NB: An MMIO update of the plane base pointer will also
9404 * generate a page-flip completion irq, i.e. every modeset
9405 * is also accompanied by a spurious intel_prepare_page_flip().
9406 */
6b95a207 9407 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9408 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9409 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9410 spin_unlock_irqrestore(&dev->event_lock, flags);
9411}
9412
eba905b2 9413static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9414{
9415 /* Ensure that the work item is consistent when activating it ... */
9416 smp_wmb();
9417 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9418 /* and that it is marked active as soon as the irq could fire. */
9419 smp_wmb();
9420}
9421
8c9f3aaf
JB
9422static int intel_gen2_queue_flip(struct drm_device *dev,
9423 struct drm_crtc *crtc,
9424 struct drm_framebuffer *fb,
ed8d1975 9425 struct drm_i915_gem_object *obj,
a4872ba6 9426 struct intel_engine_cs *ring,
ed8d1975 9427 uint32_t flags)
8c9f3aaf 9428{
8c9f3aaf 9429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9430 u32 flip_mask;
9431 int ret;
9432
6d90c952 9433 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9434 if (ret)
4fa62c89 9435 return ret;
8c9f3aaf
JB
9436
9437 /* Can't queue multiple flips, so wait for the previous
9438 * one to finish before executing the next.
9439 */
9440 if (intel_crtc->plane)
9441 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9442 else
9443 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9444 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9445 intel_ring_emit(ring, MI_NOOP);
9446 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9447 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9448 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9449 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9450 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9451
9452 intel_mark_page_flip_active(intel_crtc);
09246732 9453 __intel_ring_advance(ring);
83d4092b 9454 return 0;
8c9f3aaf
JB
9455}
9456
9457static int intel_gen3_queue_flip(struct drm_device *dev,
9458 struct drm_crtc *crtc,
9459 struct drm_framebuffer *fb,
ed8d1975 9460 struct drm_i915_gem_object *obj,
a4872ba6 9461 struct intel_engine_cs *ring,
ed8d1975 9462 uint32_t flags)
8c9f3aaf 9463{
8c9f3aaf 9464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9465 u32 flip_mask;
9466 int ret;
9467
6d90c952 9468 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9469 if (ret)
4fa62c89 9470 return ret;
8c9f3aaf
JB
9471
9472 if (intel_crtc->plane)
9473 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9474 else
9475 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9476 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9477 intel_ring_emit(ring, MI_NOOP);
9478 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9479 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9480 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9481 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9482 intel_ring_emit(ring, MI_NOOP);
9483
e7d841ca 9484 intel_mark_page_flip_active(intel_crtc);
09246732 9485 __intel_ring_advance(ring);
83d4092b 9486 return 0;
8c9f3aaf
JB
9487}
9488
9489static int intel_gen4_queue_flip(struct drm_device *dev,
9490 struct drm_crtc *crtc,
9491 struct drm_framebuffer *fb,
ed8d1975 9492 struct drm_i915_gem_object *obj,
a4872ba6 9493 struct intel_engine_cs *ring,
ed8d1975 9494 uint32_t flags)
8c9f3aaf
JB
9495{
9496 struct drm_i915_private *dev_priv = dev->dev_private;
9497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9498 uint32_t pf, pipesrc;
9499 int ret;
9500
6d90c952 9501 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9502 if (ret)
4fa62c89 9503 return ret;
8c9f3aaf
JB
9504
9505 /* i965+ uses the linear or tiled offsets from the
9506 * Display Registers (which do not change across a page-flip)
9507 * so we need only reprogram the base address.
9508 */
6d90c952
DV
9509 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9510 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9511 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9512 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9513 obj->tiling_mode);
8c9f3aaf
JB
9514
9515 /* XXX Enabling the panel-fitter across page-flip is so far
9516 * untested on non-native modes, so ignore it for now.
9517 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9518 */
9519 pf = 0;
9520 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9521 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9522
9523 intel_mark_page_flip_active(intel_crtc);
09246732 9524 __intel_ring_advance(ring);
83d4092b 9525 return 0;
8c9f3aaf
JB
9526}
9527
9528static int intel_gen6_queue_flip(struct drm_device *dev,
9529 struct drm_crtc *crtc,
9530 struct drm_framebuffer *fb,
ed8d1975 9531 struct drm_i915_gem_object *obj,
a4872ba6 9532 struct intel_engine_cs *ring,
ed8d1975 9533 uint32_t flags)
8c9f3aaf
JB
9534{
9535 struct drm_i915_private *dev_priv = dev->dev_private;
9536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9537 uint32_t pf, pipesrc;
9538 int ret;
9539
6d90c952 9540 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9541 if (ret)
4fa62c89 9542 return ret;
8c9f3aaf 9543
6d90c952
DV
9544 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9545 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9546 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9547 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9548
dc257cf1
DV
9549 /* Contrary to the suggestions in the documentation,
9550 * "Enable Panel Fitter" does not seem to be required when page
9551 * flipping with a non-native mode, and worse causes a normal
9552 * modeset to fail.
9553 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9554 */
9555 pf = 0;
8c9f3aaf 9556 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9557 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9558
9559 intel_mark_page_flip_active(intel_crtc);
09246732 9560 __intel_ring_advance(ring);
83d4092b 9561 return 0;
8c9f3aaf
JB
9562}
9563
7c9017e5
JB
9564static int intel_gen7_queue_flip(struct drm_device *dev,
9565 struct drm_crtc *crtc,
9566 struct drm_framebuffer *fb,
ed8d1975 9567 struct drm_i915_gem_object *obj,
a4872ba6 9568 struct intel_engine_cs *ring,
ed8d1975 9569 uint32_t flags)
7c9017e5 9570{
7c9017e5 9571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9572 uint32_t plane_bit = 0;
ffe74d75
CW
9573 int len, ret;
9574
eba905b2 9575 switch (intel_crtc->plane) {
cb05d8de
DV
9576 case PLANE_A:
9577 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9578 break;
9579 case PLANE_B:
9580 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9581 break;
9582 case PLANE_C:
9583 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9584 break;
9585 default:
9586 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9587 return -ENODEV;
cb05d8de
DV
9588 }
9589
ffe74d75 9590 len = 4;
f476828a 9591 if (ring->id == RCS) {
ffe74d75 9592 len += 6;
f476828a
DL
9593 /*
9594 * On Gen 8, SRM is now taking an extra dword to accommodate
9595 * 48bits addresses, and we need a NOOP for the batch size to
9596 * stay even.
9597 */
9598 if (IS_GEN8(dev))
9599 len += 2;
9600 }
ffe74d75 9601
f66fab8e
VS
9602 /*
9603 * BSpec MI_DISPLAY_FLIP for IVB:
9604 * "The full packet must be contained within the same cache line."
9605 *
9606 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9607 * cacheline, if we ever start emitting more commands before
9608 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9609 * then do the cacheline alignment, and finally emit the
9610 * MI_DISPLAY_FLIP.
9611 */
9612 ret = intel_ring_cacheline_align(ring);
9613 if (ret)
4fa62c89 9614 return ret;
f66fab8e 9615
ffe74d75 9616 ret = intel_ring_begin(ring, len);
7c9017e5 9617 if (ret)
4fa62c89 9618 return ret;
7c9017e5 9619
ffe74d75
CW
9620 /* Unmask the flip-done completion message. Note that the bspec says that
9621 * we should do this for both the BCS and RCS, and that we must not unmask
9622 * more than one flip event at any time (or ensure that one flip message
9623 * can be sent by waiting for flip-done prior to queueing new flips).
9624 * Experimentation says that BCS works despite DERRMR masking all
9625 * flip-done completion events and that unmasking all planes at once
9626 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9627 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9628 */
9629 if (ring->id == RCS) {
9630 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9631 intel_ring_emit(ring, DERRMR);
9632 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9633 DERRMR_PIPEB_PRI_FLIP_DONE |
9634 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9635 if (IS_GEN8(dev))
9636 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9637 MI_SRM_LRM_GLOBAL_GTT);
9638 else
9639 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9640 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9641 intel_ring_emit(ring, DERRMR);
9642 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9643 if (IS_GEN8(dev)) {
9644 intel_ring_emit(ring, 0);
9645 intel_ring_emit(ring, MI_NOOP);
9646 }
ffe74d75
CW
9647 }
9648
cb05d8de 9649 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9650 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9651 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9652 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9653
9654 intel_mark_page_flip_active(intel_crtc);
09246732 9655 __intel_ring_advance(ring);
83d4092b 9656 return 0;
7c9017e5
JB
9657}
9658
84c33a64
SG
9659static bool use_mmio_flip(struct intel_engine_cs *ring,
9660 struct drm_i915_gem_object *obj)
9661{
9662 /*
9663 * This is not being used for older platforms, because
9664 * non-availability of flip done interrupt forces us to use
9665 * CS flips. Older platforms derive flip done using some clever
9666 * tricks involving the flip_pending status bits and vblank irqs.
9667 * So using MMIO flips there would disrupt this mechanism.
9668 */
9669
8e09bf83
CW
9670 if (ring == NULL)
9671 return true;
9672
84c33a64
SG
9673 if (INTEL_INFO(ring->dev)->gen < 5)
9674 return false;
9675
9676 if (i915.use_mmio_flip < 0)
9677 return false;
9678 else if (i915.use_mmio_flip > 0)
9679 return true;
14bf993e
OM
9680 else if (i915.enable_execlists)
9681 return true;
84c33a64
SG
9682 else
9683 return ring != obj->ring;
9684}
9685
9686static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9687{
9688 struct drm_device *dev = intel_crtc->base.dev;
9689 struct drm_i915_private *dev_priv = dev->dev_private;
9690 struct intel_framebuffer *intel_fb =
9691 to_intel_framebuffer(intel_crtc->base.primary->fb);
9692 struct drm_i915_gem_object *obj = intel_fb->obj;
9693 u32 dspcntr;
9694 u32 reg;
9695
9696 intel_mark_page_flip_active(intel_crtc);
9697
9698 reg = DSPCNTR(intel_crtc->plane);
9699 dspcntr = I915_READ(reg);
9700
9701 if (INTEL_INFO(dev)->gen >= 4) {
9702 if (obj->tiling_mode != I915_TILING_NONE)
9703 dspcntr |= DISPPLANE_TILED;
9704 else
9705 dspcntr &= ~DISPPLANE_TILED;
9706 }
9707 I915_WRITE(reg, dspcntr);
9708
9709 I915_WRITE(DSPSURF(intel_crtc->plane),
9710 intel_crtc->unpin_work->gtt_offset);
9711 POSTING_READ(DSPSURF(intel_crtc->plane));
9712}
9713
9714static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9715{
9716 struct intel_engine_cs *ring;
9717 int ret;
9718
9719 lockdep_assert_held(&obj->base.dev->struct_mutex);
9720
9721 if (!obj->last_write_seqno)
9722 return 0;
9723
9724 ring = obj->ring;
9725
9726 if (i915_seqno_passed(ring->get_seqno(ring, true),
9727 obj->last_write_seqno))
9728 return 0;
9729
9730 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9731 if (ret)
9732 return ret;
9733
9734 if (WARN_ON(!ring->irq_get(ring)))
9735 return 0;
9736
9737 return 1;
9738}
9739
9740void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9741{
9742 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9743 struct intel_crtc *intel_crtc;
9744 unsigned long irq_flags;
9745 u32 seqno;
9746
9747 seqno = ring->get_seqno(ring, false);
9748
9749 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9750 for_each_intel_crtc(ring->dev, intel_crtc) {
9751 struct intel_mmio_flip *mmio_flip;
9752
9753 mmio_flip = &intel_crtc->mmio_flip;
9754 if (mmio_flip->seqno == 0)
9755 continue;
9756
9757 if (ring->id != mmio_flip->ring_id)
9758 continue;
9759
9760 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9761 intel_do_mmio_flip(intel_crtc);
9762 mmio_flip->seqno = 0;
9763 ring->irq_put(ring);
9764 }
9765 }
9766 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9767}
9768
9769static int intel_queue_mmio_flip(struct drm_device *dev,
9770 struct drm_crtc *crtc,
9771 struct drm_framebuffer *fb,
9772 struct drm_i915_gem_object *obj,
9773 struct intel_engine_cs *ring,
9774 uint32_t flags)
9775{
9776 struct drm_i915_private *dev_priv = dev->dev_private;
9777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9778 unsigned long irq_flags;
9779 int ret;
9780
9781 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9782 return -EBUSY;
9783
9784 ret = intel_postpone_flip(obj);
9785 if (ret < 0)
9786 return ret;
9787 if (ret == 0) {
9788 intel_do_mmio_flip(intel_crtc);
9789 return 0;
9790 }
9791
9792 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9793 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9794 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9795 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9796
9797 /*
9798 * Double check to catch cases where irq fired before
9799 * mmio flip data was ready
9800 */
9801 intel_notify_mmio_flip(obj->ring);
9802 return 0;
9803}
9804
8c9f3aaf
JB
9805static int intel_default_queue_flip(struct drm_device *dev,
9806 struct drm_crtc *crtc,
9807 struct drm_framebuffer *fb,
ed8d1975 9808 struct drm_i915_gem_object *obj,
a4872ba6 9809 struct intel_engine_cs *ring,
ed8d1975 9810 uint32_t flags)
8c9f3aaf
JB
9811{
9812 return -ENODEV;
9813}
9814
d6bbafa1
CW
9815static bool __intel_pageflip_stall_check(struct drm_device *dev,
9816 struct drm_crtc *crtc)
9817{
9818 struct drm_i915_private *dev_priv = dev->dev_private;
9819 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9820 struct intel_unpin_work *work = intel_crtc->unpin_work;
9821 u32 addr;
9822
9823 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9824 return true;
9825
9826 if (!work->enable_stall_check)
9827 return false;
9828
9829 if (work->flip_ready_vblank == 0) {
9830 if (work->flip_queued_ring &&
9831 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9832 work->flip_queued_seqno))
9833 return false;
9834
9835 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9836 }
9837
9838 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9839 return false;
9840
9841 /* Potential stall - if we see that the flip has happened,
9842 * assume a missed interrupt. */
9843 if (INTEL_INFO(dev)->gen >= 4)
9844 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9845 else
9846 addr = I915_READ(DSPADDR(intel_crtc->plane));
9847
9848 /* There is a potential issue here with a false positive after a flip
9849 * to the same address. We could address this by checking for a
9850 * non-incrementing frame counter.
9851 */
9852 return addr == work->gtt_offset;
9853}
9854
9855void intel_check_page_flip(struct drm_device *dev, int pipe)
9856{
9857 struct drm_i915_private *dev_priv = dev->dev_private;
9858 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9860 unsigned long flags;
9861
9862 if (crtc == NULL)
9863 return;
9864
9865 spin_lock_irqsave(&dev->event_lock, flags);
9866 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9867 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9868 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9869 page_flip_completed(intel_crtc);
9870 }
9871 spin_unlock_irqrestore(&dev->event_lock, flags);
9872}
9873
6b95a207
KH
9874static int intel_crtc_page_flip(struct drm_crtc *crtc,
9875 struct drm_framebuffer *fb,
ed8d1975
KP
9876 struct drm_pending_vblank_event *event,
9877 uint32_t page_flip_flags)
6b95a207
KH
9878{
9879 struct drm_device *dev = crtc->dev;
9880 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9881 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9882 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9884 enum pipe pipe = intel_crtc->pipe;
6b95a207 9885 struct intel_unpin_work *work;
a4872ba6 9886 struct intel_engine_cs *ring;
8c9f3aaf 9887 unsigned long flags;
52e68630 9888 int ret;
6b95a207 9889
c76bb61a
DS
9890 //trigger software GT busyness calculation
9891 gen8_flip_interrupt(dev);
9892
2ff8fde1
MR
9893 /*
9894 * drm_mode_page_flip_ioctl() should already catch this, but double
9895 * check to be safe. In the future we may enable pageflipping from
9896 * a disabled primary plane.
9897 */
9898 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9899 return -EBUSY;
9900
e6a595d2 9901 /* Can't change pixel format via MI display flips. */
f4510a27 9902 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9903 return -EINVAL;
9904
9905 /*
9906 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9907 * Note that pitch changes could also affect these register.
9908 */
9909 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9910 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9911 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9912 return -EINVAL;
9913
f900db47
CW
9914 if (i915_terminally_wedged(&dev_priv->gpu_error))
9915 goto out_hang;
9916
b14c5679 9917 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9918 if (work == NULL)
9919 return -ENOMEM;
9920
6b95a207 9921 work->event = event;
b4a98e57 9922 work->crtc = crtc;
2ff8fde1 9923 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9924 INIT_WORK(&work->work, intel_unpin_work_fn);
9925
87b6b101 9926 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9927 if (ret)
9928 goto free_work;
9929
6b95a207
KH
9930 /* We borrow the event spin lock for protecting unpin_work */
9931 spin_lock_irqsave(&dev->event_lock, flags);
9932 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9933 /* Before declaring the flip queue wedged, check if
9934 * the hardware completed the operation behind our backs.
9935 */
9936 if (__intel_pageflip_stall_check(dev, crtc)) {
9937 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9938 page_flip_completed(intel_crtc);
9939 } else {
9940 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9941 spin_unlock_irqrestore(&dev->event_lock, flags);
468f0b44 9942
d6bbafa1
CW
9943 drm_crtc_vblank_put(crtc);
9944 kfree(work);
9945 return -EBUSY;
9946 }
6b95a207
KH
9947 }
9948 intel_crtc->unpin_work = work;
9949 spin_unlock_irqrestore(&dev->event_lock, flags);
9950
b4a98e57
CW
9951 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9952 flush_workqueue(dev_priv->wq);
9953
79158103
CW
9954 ret = i915_mutex_lock_interruptible(dev);
9955 if (ret)
9956 goto cleanup;
6b95a207 9957
75dfca80 9958 /* Reference the objects for the scheduled work. */
05394f39
CW
9959 drm_gem_object_reference(&work->old_fb_obj->base);
9960 drm_gem_object_reference(&obj->base);
6b95a207 9961
f4510a27 9962 crtc->primary->fb = fb;
96b099fd 9963
e1f99ce6 9964 work->pending_flip_obj = obj;
e1f99ce6 9965
b4a98e57 9966 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9967 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9968
75f7f3ec 9969 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9970 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9971
4fa62c89
VS
9972 if (IS_VALLEYVIEW(dev)) {
9973 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9974 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9975 /* vlv: DISPLAY_FLIP fails to change tiling */
9976 ring = NULL;
2a92d5bc
CW
9977 } else if (IS_IVYBRIDGE(dev)) {
9978 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9979 } else if (INTEL_INFO(dev)->gen >= 7) {
9980 ring = obj->ring;
9981 if (ring == NULL || ring->id != RCS)
9982 ring = &dev_priv->ring[BCS];
9983 } else {
9984 ring = &dev_priv->ring[RCS];
9985 }
9986
9987 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9988 if (ret)
9989 goto cleanup_pending;
6b95a207 9990
4fa62c89
VS
9991 work->gtt_offset =
9992 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9993
d6bbafa1 9994 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9995 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9996 page_flip_flags);
d6bbafa1
CW
9997 if (ret)
9998 goto cleanup_unpin;
9999
10000 work->flip_queued_seqno = obj->last_write_seqno;
10001 work->flip_queued_ring = obj->ring;
10002 } else {
84c33a64 10003 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
10004 page_flip_flags);
10005 if (ret)
10006 goto cleanup_unpin;
10007
10008 work->flip_queued_seqno = intel_ring_get_seqno(ring);
10009 work->flip_queued_ring = ring;
10010 }
10011
10012 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10013 work->enable_stall_check = true;
4fa62c89 10014
a071fa00
DV
10015 i915_gem_track_fb(work->old_fb_obj, obj,
10016 INTEL_FRONTBUFFER_PRIMARY(pipe));
10017
7782de3b 10018 intel_disable_fbc(dev);
f99d7069 10019 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
10020 mutex_unlock(&dev->struct_mutex);
10021
e5510fac
JB
10022 trace_i915_flip_request(intel_crtc->plane, obj);
10023
6b95a207 10024 return 0;
96b099fd 10025
4fa62c89
VS
10026cleanup_unpin:
10027 intel_unpin_fb_obj(obj);
8c9f3aaf 10028cleanup_pending:
b4a98e57 10029 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 10030 crtc->primary->fb = old_fb;
05394f39
CW
10031 drm_gem_object_unreference(&work->old_fb_obj->base);
10032 drm_gem_object_unreference(&obj->base);
96b099fd
CW
10033 mutex_unlock(&dev->struct_mutex);
10034
79158103 10035cleanup:
96b099fd
CW
10036 spin_lock_irqsave(&dev->event_lock, flags);
10037 intel_crtc->unpin_work = NULL;
10038 spin_unlock_irqrestore(&dev->event_lock, flags);
10039
87b6b101 10040 drm_crtc_vblank_put(crtc);
7317c75e 10041free_work:
96b099fd
CW
10042 kfree(work);
10043
f900db47
CW
10044 if (ret == -EIO) {
10045out_hang:
10046 intel_crtc_wait_for_pending_flips(crtc);
10047 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
10048 if (ret == 0 && event)
a071fa00 10049 drm_send_vblank_event(dev, pipe, event);
f900db47 10050 }
96b099fd 10051 return ret;
6b95a207
KH
10052}
10053
f6e5b160 10054static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
10055 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10056 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
10057};
10058
9a935856
DV
10059/**
10060 * intel_modeset_update_staged_output_state
10061 *
10062 * Updates the staged output configuration state, e.g. after we've read out the
10063 * current hw state.
10064 */
10065static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 10066{
7668851f 10067 struct intel_crtc *crtc;
9a935856
DV
10068 struct intel_encoder *encoder;
10069 struct intel_connector *connector;
f6e5b160 10070
9a935856
DV
10071 list_for_each_entry(connector, &dev->mode_config.connector_list,
10072 base.head) {
10073 connector->new_encoder =
10074 to_intel_encoder(connector->base.encoder);
10075 }
f6e5b160 10076
b2784e15 10077 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10078 encoder->new_crtc =
10079 to_intel_crtc(encoder->base.crtc);
10080 }
7668851f 10081
d3fcc808 10082 for_each_intel_crtc(dev, crtc) {
7668851f 10083 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
10084
10085 if (crtc->new_enabled)
10086 crtc->new_config = &crtc->config;
10087 else
10088 crtc->new_config = NULL;
7668851f 10089 }
f6e5b160
CW
10090}
10091
9a935856
DV
10092/**
10093 * intel_modeset_commit_output_state
10094 *
10095 * This function copies the stage display pipe configuration to the real one.
10096 */
10097static void intel_modeset_commit_output_state(struct drm_device *dev)
10098{
7668851f 10099 struct intel_crtc *crtc;
9a935856
DV
10100 struct intel_encoder *encoder;
10101 struct intel_connector *connector;
f6e5b160 10102
9a935856
DV
10103 list_for_each_entry(connector, &dev->mode_config.connector_list,
10104 base.head) {
10105 connector->base.encoder = &connector->new_encoder->base;
10106 }
f6e5b160 10107
b2784e15 10108 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10109 encoder->base.crtc = &encoder->new_crtc->base;
10110 }
7668851f 10111
d3fcc808 10112 for_each_intel_crtc(dev, crtc) {
7668851f
VS
10113 crtc->base.enabled = crtc->new_enabled;
10114 }
9a935856
DV
10115}
10116
050f7aeb 10117static void
eba905b2 10118connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
10119 struct intel_crtc_config *pipe_config)
10120{
10121 int bpp = pipe_config->pipe_bpp;
10122
10123 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10124 connector->base.base.id,
c23cc417 10125 connector->base.name);
050f7aeb
DV
10126
10127 /* Don't use an invalid EDID bpc value */
10128 if (connector->base.display_info.bpc &&
10129 connector->base.display_info.bpc * 3 < bpp) {
10130 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10131 bpp, connector->base.display_info.bpc*3);
10132 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10133 }
10134
10135 /* Clamp bpp to 8 on screens without EDID 1.4 */
10136 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10137 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10138 bpp);
10139 pipe_config->pipe_bpp = 24;
10140 }
10141}
10142
4e53c2e0 10143static int
050f7aeb
DV
10144compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10145 struct drm_framebuffer *fb,
10146 struct intel_crtc_config *pipe_config)
4e53c2e0 10147{
050f7aeb
DV
10148 struct drm_device *dev = crtc->base.dev;
10149 struct intel_connector *connector;
4e53c2e0
DV
10150 int bpp;
10151
d42264b1
DV
10152 switch (fb->pixel_format) {
10153 case DRM_FORMAT_C8:
4e53c2e0
DV
10154 bpp = 8*3; /* since we go through a colormap */
10155 break;
d42264b1
DV
10156 case DRM_FORMAT_XRGB1555:
10157 case DRM_FORMAT_ARGB1555:
10158 /* checked in intel_framebuffer_init already */
10159 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10160 return -EINVAL;
10161 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10162 bpp = 6*3; /* min is 18bpp */
10163 break;
d42264b1
DV
10164 case DRM_FORMAT_XBGR8888:
10165 case DRM_FORMAT_ABGR8888:
10166 /* checked in intel_framebuffer_init already */
10167 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10168 return -EINVAL;
10169 case DRM_FORMAT_XRGB8888:
10170 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10171 bpp = 8*3;
10172 break;
d42264b1
DV
10173 case DRM_FORMAT_XRGB2101010:
10174 case DRM_FORMAT_ARGB2101010:
10175 case DRM_FORMAT_XBGR2101010:
10176 case DRM_FORMAT_ABGR2101010:
10177 /* checked in intel_framebuffer_init already */
10178 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10179 return -EINVAL;
4e53c2e0
DV
10180 bpp = 10*3;
10181 break;
baba133a 10182 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10183 default:
10184 DRM_DEBUG_KMS("unsupported depth\n");
10185 return -EINVAL;
10186 }
10187
4e53c2e0
DV
10188 pipe_config->pipe_bpp = bpp;
10189
10190 /* Clamp display bpp to EDID value */
10191 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10192 base.head) {
1b829e05
DV
10193 if (!connector->new_encoder ||
10194 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10195 continue;
10196
050f7aeb 10197 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10198 }
10199
10200 return bpp;
10201}
10202
644db711
DV
10203static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10204{
10205 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10206 "type: 0x%x flags: 0x%x\n",
1342830c 10207 mode->crtc_clock,
644db711
DV
10208 mode->crtc_hdisplay, mode->crtc_hsync_start,
10209 mode->crtc_hsync_end, mode->crtc_htotal,
10210 mode->crtc_vdisplay, mode->crtc_vsync_start,
10211 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10212}
10213
c0b03411
DV
10214static void intel_dump_pipe_config(struct intel_crtc *crtc,
10215 struct intel_crtc_config *pipe_config,
10216 const char *context)
10217{
10218 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10219 context, pipe_name(crtc->pipe));
10220
10221 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10222 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10223 pipe_config->pipe_bpp, pipe_config->dither);
10224 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10225 pipe_config->has_pch_encoder,
10226 pipe_config->fdi_lanes,
10227 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10228 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10229 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10230 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10231 pipe_config->has_dp_encoder,
10232 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10233 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10234 pipe_config->dp_m_n.tu);
b95af8be
VK
10235
10236 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10237 pipe_config->has_dp_encoder,
10238 pipe_config->dp_m2_n2.gmch_m,
10239 pipe_config->dp_m2_n2.gmch_n,
10240 pipe_config->dp_m2_n2.link_m,
10241 pipe_config->dp_m2_n2.link_n,
10242 pipe_config->dp_m2_n2.tu);
10243
c0b03411
DV
10244 DRM_DEBUG_KMS("requested mode:\n");
10245 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10246 DRM_DEBUG_KMS("adjusted mode:\n");
10247 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10248 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10249 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10250 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10251 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10252 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10253 pipe_config->gmch_pfit.control,
10254 pipe_config->gmch_pfit.pgm_ratios,
10255 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10256 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10257 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10258 pipe_config->pch_pfit.size,
10259 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10260 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10261 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10262}
10263
bc079e8b
VS
10264static bool encoders_cloneable(const struct intel_encoder *a,
10265 const struct intel_encoder *b)
accfc0c5 10266{
bc079e8b
VS
10267 /* masks could be asymmetric, so check both ways */
10268 return a == b || (a->cloneable & (1 << b->type) &&
10269 b->cloneable & (1 << a->type));
10270}
10271
10272static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10273 struct intel_encoder *encoder)
10274{
10275 struct drm_device *dev = crtc->base.dev;
10276 struct intel_encoder *source_encoder;
10277
b2784e15 10278 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10279 if (source_encoder->new_crtc != crtc)
10280 continue;
10281
10282 if (!encoders_cloneable(encoder, source_encoder))
10283 return false;
10284 }
10285
10286 return true;
10287}
10288
10289static bool check_encoder_cloning(struct intel_crtc *crtc)
10290{
10291 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10292 struct intel_encoder *encoder;
10293
b2784e15 10294 for_each_intel_encoder(dev, encoder) {
bc079e8b 10295 if (encoder->new_crtc != crtc)
accfc0c5
DV
10296 continue;
10297
bc079e8b
VS
10298 if (!check_single_encoder_cloning(crtc, encoder))
10299 return false;
accfc0c5
DV
10300 }
10301
bc079e8b 10302 return true;
accfc0c5
DV
10303}
10304
b8cecdf5
DV
10305static struct intel_crtc_config *
10306intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10307 struct drm_framebuffer *fb,
b8cecdf5 10308 struct drm_display_mode *mode)
ee7b9f93 10309{
7758a113 10310 struct drm_device *dev = crtc->dev;
7758a113 10311 struct intel_encoder *encoder;
b8cecdf5 10312 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10313 int plane_bpp, ret = -EINVAL;
10314 bool retry = true;
ee7b9f93 10315
bc079e8b 10316 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10317 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10318 return ERR_PTR(-EINVAL);
10319 }
10320
b8cecdf5
DV
10321 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10322 if (!pipe_config)
7758a113
DV
10323 return ERR_PTR(-ENOMEM);
10324
b8cecdf5
DV
10325 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10326 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10327
e143a21c
DV
10328 pipe_config->cpu_transcoder =
10329 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10330 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10331
2960bc9c
ID
10332 /*
10333 * Sanitize sync polarity flags based on requested ones. If neither
10334 * positive or negative polarity is requested, treat this as meaning
10335 * negative polarity.
10336 */
10337 if (!(pipe_config->adjusted_mode.flags &
10338 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10339 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10340
10341 if (!(pipe_config->adjusted_mode.flags &
10342 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10343 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10344
050f7aeb
DV
10345 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10346 * plane pixel format and any sink constraints into account. Returns the
10347 * source plane bpp so that dithering can be selected on mismatches
10348 * after encoders and crtc also have had their say. */
10349 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10350 fb, pipe_config);
4e53c2e0
DV
10351 if (plane_bpp < 0)
10352 goto fail;
10353
e41a56be
VS
10354 /*
10355 * Determine the real pipe dimensions. Note that stereo modes can
10356 * increase the actual pipe size due to the frame doubling and
10357 * insertion of additional space for blanks between the frame. This
10358 * is stored in the crtc timings. We use the requested mode to do this
10359 * computation to clearly distinguish it from the adjusted mode, which
10360 * can be changed by the connectors in the below retry loop.
10361 */
10362 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10363 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10364 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10365
e29c22c0 10366encoder_retry:
ef1b460d 10367 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10368 pipe_config->port_clock = 0;
ef1b460d 10369 pipe_config->pixel_multiplier = 1;
ff9a6750 10370
135c81b8 10371 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10372 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10373
7758a113
DV
10374 /* Pass our mode to the connectors and the CRTC to give them a chance to
10375 * adjust it according to limitations or connector properties, and also
10376 * a chance to reject the mode entirely.
47f1c6c9 10377 */
b2784e15 10378 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10379
7758a113
DV
10380 if (&encoder->new_crtc->base != crtc)
10381 continue;
7ae89233 10382
efea6e8e
DV
10383 if (!(encoder->compute_config(encoder, pipe_config))) {
10384 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10385 goto fail;
10386 }
ee7b9f93 10387 }
47f1c6c9 10388
ff9a6750
DV
10389 /* Set default port clock if not overwritten by the encoder. Needs to be
10390 * done afterwards in case the encoder adjusts the mode. */
10391 if (!pipe_config->port_clock)
241bfc38
DL
10392 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10393 * pipe_config->pixel_multiplier;
ff9a6750 10394
a43f6e0f 10395 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10396 if (ret < 0) {
7758a113
DV
10397 DRM_DEBUG_KMS("CRTC fixup failed\n");
10398 goto fail;
ee7b9f93 10399 }
e29c22c0
DV
10400
10401 if (ret == RETRY) {
10402 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10403 ret = -EINVAL;
10404 goto fail;
10405 }
10406
10407 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10408 retry = false;
10409 goto encoder_retry;
10410 }
10411
4e53c2e0
DV
10412 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10413 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10414 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10415
b8cecdf5 10416 return pipe_config;
7758a113 10417fail:
b8cecdf5 10418 kfree(pipe_config);
e29c22c0 10419 return ERR_PTR(ret);
ee7b9f93 10420}
47f1c6c9 10421
e2e1ed41
DV
10422/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10423 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10424static void
10425intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10426 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10427{
10428 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10429 struct drm_device *dev = crtc->dev;
10430 struct intel_encoder *encoder;
10431 struct intel_connector *connector;
10432 struct drm_crtc *tmp_crtc;
79e53945 10433
e2e1ed41 10434 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10435
e2e1ed41
DV
10436 /* Check which crtcs have changed outputs connected to them, these need
10437 * to be part of the prepare_pipes mask. We don't (yet) support global
10438 * modeset across multiple crtcs, so modeset_pipes will only have one
10439 * bit set at most. */
10440 list_for_each_entry(connector, &dev->mode_config.connector_list,
10441 base.head) {
10442 if (connector->base.encoder == &connector->new_encoder->base)
10443 continue;
79e53945 10444
e2e1ed41
DV
10445 if (connector->base.encoder) {
10446 tmp_crtc = connector->base.encoder->crtc;
10447
10448 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10449 }
10450
10451 if (connector->new_encoder)
10452 *prepare_pipes |=
10453 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10454 }
10455
b2784e15 10456 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10457 if (encoder->base.crtc == &encoder->new_crtc->base)
10458 continue;
10459
10460 if (encoder->base.crtc) {
10461 tmp_crtc = encoder->base.crtc;
10462
10463 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10464 }
10465
10466 if (encoder->new_crtc)
10467 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10468 }
10469
7668851f 10470 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10471 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10472 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10473 continue;
7e7d76c3 10474
7668851f 10475 if (!intel_crtc->new_enabled)
e2e1ed41 10476 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10477 else
10478 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10479 }
10480
e2e1ed41
DV
10481
10482 /* set_mode is also used to update properties on life display pipes. */
10483 intel_crtc = to_intel_crtc(crtc);
7668851f 10484 if (intel_crtc->new_enabled)
e2e1ed41
DV
10485 *prepare_pipes |= 1 << intel_crtc->pipe;
10486
b6c5164d
DV
10487 /*
10488 * For simplicity do a full modeset on any pipe where the output routing
10489 * changed. We could be more clever, but that would require us to be
10490 * more careful with calling the relevant encoder->mode_set functions.
10491 */
e2e1ed41
DV
10492 if (*prepare_pipes)
10493 *modeset_pipes = *prepare_pipes;
10494
10495 /* ... and mask these out. */
10496 *modeset_pipes &= ~(*disable_pipes);
10497 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10498
10499 /*
10500 * HACK: We don't (yet) fully support global modesets. intel_set_config
10501 * obies this rule, but the modeset restore mode of
10502 * intel_modeset_setup_hw_state does not.
10503 */
10504 *modeset_pipes &= 1 << intel_crtc->pipe;
10505 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10506
10507 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10508 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10509}
79e53945 10510
ea9d758d 10511static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10512{
ea9d758d 10513 struct drm_encoder *encoder;
f6e5b160 10514 struct drm_device *dev = crtc->dev;
f6e5b160 10515
ea9d758d
DV
10516 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10517 if (encoder->crtc == crtc)
10518 return true;
10519
10520 return false;
10521}
10522
10523static void
10524intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10525{
10526 struct intel_encoder *intel_encoder;
10527 struct intel_crtc *intel_crtc;
10528 struct drm_connector *connector;
10529
b2784e15 10530 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10531 if (!intel_encoder->base.crtc)
10532 continue;
10533
10534 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10535
10536 if (prepare_pipes & (1 << intel_crtc->pipe))
10537 intel_encoder->connectors_active = false;
10538 }
10539
10540 intel_modeset_commit_output_state(dev);
10541
7668851f 10542 /* Double check state. */
d3fcc808 10543 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10544 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10545 WARN_ON(intel_crtc->new_config &&
10546 intel_crtc->new_config != &intel_crtc->config);
10547 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10548 }
10549
10550 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10551 if (!connector->encoder || !connector->encoder->crtc)
10552 continue;
10553
10554 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10555
10556 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10557 struct drm_property *dpms_property =
10558 dev->mode_config.dpms_property;
10559
ea9d758d 10560 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10561 drm_object_property_set_value(&connector->base,
68d34720
DV
10562 dpms_property,
10563 DRM_MODE_DPMS_ON);
ea9d758d
DV
10564
10565 intel_encoder = to_intel_encoder(connector->encoder);
10566 intel_encoder->connectors_active = true;
10567 }
10568 }
10569
10570}
10571
3bd26263 10572static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10573{
3bd26263 10574 int diff;
f1f644dc
JB
10575
10576 if (clock1 == clock2)
10577 return true;
10578
10579 if (!clock1 || !clock2)
10580 return false;
10581
10582 diff = abs(clock1 - clock2);
10583
10584 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10585 return true;
10586
10587 return false;
10588}
10589
25c5b266
DV
10590#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10591 list_for_each_entry((intel_crtc), \
10592 &(dev)->mode_config.crtc_list, \
10593 base.head) \
0973f18f 10594 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10595
0e8ffe1b 10596static bool
2fa2fe9a
DV
10597intel_pipe_config_compare(struct drm_device *dev,
10598 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10599 struct intel_crtc_config *pipe_config)
10600{
66e985c0
DV
10601#define PIPE_CONF_CHECK_X(name) \
10602 if (current_config->name != pipe_config->name) { \
10603 DRM_ERROR("mismatch in " #name " " \
10604 "(expected 0x%08x, found 0x%08x)\n", \
10605 current_config->name, \
10606 pipe_config->name); \
10607 return false; \
10608 }
10609
08a24034
DV
10610#define PIPE_CONF_CHECK_I(name) \
10611 if (current_config->name != pipe_config->name) { \
10612 DRM_ERROR("mismatch in " #name " " \
10613 "(expected %i, found %i)\n", \
10614 current_config->name, \
10615 pipe_config->name); \
10616 return false; \
88adfff1
DV
10617 }
10618
b95af8be
VK
10619/* This is required for BDW+ where there is only one set of registers for
10620 * switching between high and low RR.
10621 * This macro can be used whenever a comparison has to be made between one
10622 * hw state and multiple sw state variables.
10623 */
10624#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10625 if ((current_config->name != pipe_config->name) && \
10626 (current_config->alt_name != pipe_config->name)) { \
10627 DRM_ERROR("mismatch in " #name " " \
10628 "(expected %i or %i, found %i)\n", \
10629 current_config->name, \
10630 current_config->alt_name, \
10631 pipe_config->name); \
10632 return false; \
10633 }
10634
1bd1bd80
DV
10635#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10636 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10637 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10638 "(expected %i, found %i)\n", \
10639 current_config->name & (mask), \
10640 pipe_config->name & (mask)); \
10641 return false; \
10642 }
10643
5e550656
VS
10644#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10645 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10646 DRM_ERROR("mismatch in " #name " " \
10647 "(expected %i, found %i)\n", \
10648 current_config->name, \
10649 pipe_config->name); \
10650 return false; \
10651 }
10652
bb760063
DV
10653#define PIPE_CONF_QUIRK(quirk) \
10654 ((current_config->quirks | pipe_config->quirks) & (quirk))
10655
eccb140b
DV
10656 PIPE_CONF_CHECK_I(cpu_transcoder);
10657
08a24034
DV
10658 PIPE_CONF_CHECK_I(has_pch_encoder);
10659 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10660 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10661 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10662 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10663 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10664 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10665
eb14cb74 10666 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10667
10668 if (INTEL_INFO(dev)->gen < 8) {
10669 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10670 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10671 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10672 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10673 PIPE_CONF_CHECK_I(dp_m_n.tu);
10674
10675 if (current_config->has_drrs) {
10676 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10677 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10678 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10679 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10680 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10681 }
10682 } else {
10683 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10684 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10685 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10686 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10687 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10688 }
eb14cb74 10689
1bd1bd80
DV
10690 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10691 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10692 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10693 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10694 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10695 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10696
10697 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10698 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10699 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10700 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10701 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10702 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10703
c93f54cf 10704 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10705 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10706 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10707 IS_VALLEYVIEW(dev))
10708 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10709
9ed109a7
DV
10710 PIPE_CONF_CHECK_I(has_audio);
10711
1bd1bd80
DV
10712 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10713 DRM_MODE_FLAG_INTERLACE);
10714
bb760063
DV
10715 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10716 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10717 DRM_MODE_FLAG_PHSYNC);
10718 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10719 DRM_MODE_FLAG_NHSYNC);
10720 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10721 DRM_MODE_FLAG_PVSYNC);
10722 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10723 DRM_MODE_FLAG_NVSYNC);
10724 }
045ac3b5 10725
37327abd
VS
10726 PIPE_CONF_CHECK_I(pipe_src_w);
10727 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10728
9953599b
DV
10729 /*
10730 * FIXME: BIOS likes to set up a cloned config with lvds+external
10731 * screen. Since we don't yet re-compute the pipe config when moving
10732 * just the lvds port away to another pipe the sw tracking won't match.
10733 *
10734 * Proper atomic modesets with recomputed global state will fix this.
10735 * Until then just don't check gmch state for inherited modes.
10736 */
10737 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10738 PIPE_CONF_CHECK_I(gmch_pfit.control);
10739 /* pfit ratios are autocomputed by the hw on gen4+ */
10740 if (INTEL_INFO(dev)->gen < 4)
10741 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10742 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10743 }
10744
fd4daa9c
CW
10745 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10746 if (current_config->pch_pfit.enabled) {
10747 PIPE_CONF_CHECK_I(pch_pfit.pos);
10748 PIPE_CONF_CHECK_I(pch_pfit.size);
10749 }
2fa2fe9a 10750
e59150dc
JB
10751 /* BDW+ don't expose a synchronous way to read the state */
10752 if (IS_HASWELL(dev))
10753 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10754
282740f7
VS
10755 PIPE_CONF_CHECK_I(double_wide);
10756
26804afd
DV
10757 PIPE_CONF_CHECK_X(ddi_pll_sel);
10758
c0d43d62 10759 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10760 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10761 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10762 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10763 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10764 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10765
42571aef
VS
10766 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10767 PIPE_CONF_CHECK_I(pipe_bpp);
10768
a9a7e98a
JB
10769 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10770 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10771
66e985c0 10772#undef PIPE_CONF_CHECK_X
08a24034 10773#undef PIPE_CONF_CHECK_I
b95af8be 10774#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10775#undef PIPE_CONF_CHECK_FLAGS
5e550656 10776#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10777#undef PIPE_CONF_QUIRK
88adfff1 10778
0e8ffe1b
DV
10779 return true;
10780}
10781
91d1b4bd
DV
10782static void
10783check_connector_state(struct drm_device *dev)
8af6cf88 10784{
8af6cf88
DV
10785 struct intel_connector *connector;
10786
10787 list_for_each_entry(connector, &dev->mode_config.connector_list,
10788 base.head) {
10789 /* This also checks the encoder/connector hw state with the
10790 * ->get_hw_state callbacks. */
10791 intel_connector_check_state(connector);
10792
10793 WARN(&connector->new_encoder->base != connector->base.encoder,
10794 "connector's staged encoder doesn't match current encoder\n");
10795 }
91d1b4bd
DV
10796}
10797
10798static void
10799check_encoder_state(struct drm_device *dev)
10800{
10801 struct intel_encoder *encoder;
10802 struct intel_connector *connector;
8af6cf88 10803
b2784e15 10804 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10805 bool enabled = false;
10806 bool active = false;
10807 enum pipe pipe, tracked_pipe;
10808
10809 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10810 encoder->base.base.id,
8e329a03 10811 encoder->base.name);
8af6cf88
DV
10812
10813 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10814 "encoder's stage crtc doesn't match current crtc\n");
10815 WARN(encoder->connectors_active && !encoder->base.crtc,
10816 "encoder's active_connectors set, but no crtc\n");
10817
10818 list_for_each_entry(connector, &dev->mode_config.connector_list,
10819 base.head) {
10820 if (connector->base.encoder != &encoder->base)
10821 continue;
10822 enabled = true;
10823 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10824 active = true;
10825 }
0e32b39c
DA
10826 /*
10827 * for MST connectors if we unplug the connector is gone
10828 * away but the encoder is still connected to a crtc
10829 * until a modeset happens in response to the hotplug.
10830 */
10831 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10832 continue;
10833
8af6cf88
DV
10834 WARN(!!encoder->base.crtc != enabled,
10835 "encoder's enabled state mismatch "
10836 "(expected %i, found %i)\n",
10837 !!encoder->base.crtc, enabled);
10838 WARN(active && !encoder->base.crtc,
10839 "active encoder with no crtc\n");
10840
10841 WARN(encoder->connectors_active != active,
10842 "encoder's computed active state doesn't match tracked active state "
10843 "(expected %i, found %i)\n", active, encoder->connectors_active);
10844
10845 active = encoder->get_hw_state(encoder, &pipe);
10846 WARN(active != encoder->connectors_active,
10847 "encoder's hw state doesn't match sw tracking "
10848 "(expected %i, found %i)\n",
10849 encoder->connectors_active, active);
10850
10851 if (!encoder->base.crtc)
10852 continue;
10853
10854 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10855 WARN(active && pipe != tracked_pipe,
10856 "active encoder's pipe doesn't match"
10857 "(expected %i, found %i)\n",
10858 tracked_pipe, pipe);
10859
10860 }
91d1b4bd
DV
10861}
10862
10863static void
10864check_crtc_state(struct drm_device *dev)
10865{
fbee40df 10866 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10867 struct intel_crtc *crtc;
10868 struct intel_encoder *encoder;
10869 struct intel_crtc_config pipe_config;
8af6cf88 10870
d3fcc808 10871 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10872 bool enabled = false;
10873 bool active = false;
10874
045ac3b5
JB
10875 memset(&pipe_config, 0, sizeof(pipe_config));
10876
8af6cf88
DV
10877 DRM_DEBUG_KMS("[CRTC:%d]\n",
10878 crtc->base.base.id);
10879
10880 WARN(crtc->active && !crtc->base.enabled,
10881 "active crtc, but not enabled in sw tracking\n");
10882
b2784e15 10883 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10884 if (encoder->base.crtc != &crtc->base)
10885 continue;
10886 enabled = true;
10887 if (encoder->connectors_active)
10888 active = true;
10889 }
6c49f241 10890
8af6cf88
DV
10891 WARN(active != crtc->active,
10892 "crtc's computed active state doesn't match tracked active state "
10893 "(expected %i, found %i)\n", active, crtc->active);
10894 WARN(enabled != crtc->base.enabled,
10895 "crtc's computed enabled state doesn't match tracked enabled state "
10896 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10897
0e8ffe1b
DV
10898 active = dev_priv->display.get_pipe_config(crtc,
10899 &pipe_config);
d62cf62a 10900
b6b5d049
VS
10901 /* hw state is inconsistent with the pipe quirk */
10902 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10903 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10904 active = crtc->active;
10905
b2784e15 10906 for_each_intel_encoder(dev, encoder) {
3eaba51c 10907 enum pipe pipe;
6c49f241
DV
10908 if (encoder->base.crtc != &crtc->base)
10909 continue;
1d37b689 10910 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10911 encoder->get_config(encoder, &pipe_config);
10912 }
10913
0e8ffe1b
DV
10914 WARN(crtc->active != active,
10915 "crtc active state doesn't match with hw state "
10916 "(expected %i, found %i)\n", crtc->active, active);
10917
c0b03411
DV
10918 if (active &&
10919 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10920 WARN(1, "pipe state doesn't match!\n");
10921 intel_dump_pipe_config(crtc, &pipe_config,
10922 "[hw state]");
10923 intel_dump_pipe_config(crtc, &crtc->config,
10924 "[sw state]");
10925 }
8af6cf88
DV
10926 }
10927}
10928
91d1b4bd
DV
10929static void
10930check_shared_dpll_state(struct drm_device *dev)
10931{
fbee40df 10932 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10933 struct intel_crtc *crtc;
10934 struct intel_dpll_hw_state dpll_hw_state;
10935 int i;
5358901f
DV
10936
10937 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10938 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10939 int enabled_crtcs = 0, active_crtcs = 0;
10940 bool active;
10941
10942 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10943
10944 DRM_DEBUG_KMS("%s\n", pll->name);
10945
10946 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10947
10948 WARN(pll->active > pll->refcount,
10949 "more active pll users than references: %i vs %i\n",
10950 pll->active, pll->refcount);
10951 WARN(pll->active && !pll->on,
10952 "pll in active use but not on in sw tracking\n");
35c95375
DV
10953 WARN(pll->on && !pll->active,
10954 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10955 WARN(pll->on != active,
10956 "pll on state mismatch (expected %i, found %i)\n",
10957 pll->on, active);
10958
d3fcc808 10959 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10960 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10961 enabled_crtcs++;
10962 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10963 active_crtcs++;
10964 }
10965 WARN(pll->active != active_crtcs,
10966 "pll active crtcs mismatch (expected %i, found %i)\n",
10967 pll->active, active_crtcs);
10968 WARN(pll->refcount != enabled_crtcs,
10969 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10970 pll->refcount, enabled_crtcs);
66e985c0
DV
10971
10972 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10973 sizeof(dpll_hw_state)),
10974 "pll hw state mismatch\n");
5358901f 10975 }
8af6cf88
DV
10976}
10977
91d1b4bd
DV
10978void
10979intel_modeset_check_state(struct drm_device *dev)
10980{
10981 check_connector_state(dev);
10982 check_encoder_state(dev);
10983 check_crtc_state(dev);
10984 check_shared_dpll_state(dev);
10985}
10986
18442d08
VS
10987void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10988 int dotclock)
10989{
10990 /*
10991 * FDI already provided one idea for the dotclock.
10992 * Yell if the encoder disagrees.
10993 */
241bfc38 10994 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10995 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10996 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10997}
10998
80715b2f
VS
10999static void update_scanline_offset(struct intel_crtc *crtc)
11000{
11001 struct drm_device *dev = crtc->base.dev;
11002
11003 /*
11004 * The scanline counter increments at the leading edge of hsync.
11005 *
11006 * On most platforms it starts counting from vtotal-1 on the
11007 * first active line. That means the scanline counter value is
11008 * always one less than what we would expect. Ie. just after
11009 * start of vblank, which also occurs at start of hsync (on the
11010 * last active line), the scanline counter will read vblank_start-1.
11011 *
11012 * On gen2 the scanline counter starts counting from 1 instead
11013 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11014 * to keep the value positive), instead of adding one.
11015 *
11016 * On HSW+ the behaviour of the scanline counter depends on the output
11017 * type. For DP ports it behaves like most other platforms, but on HDMI
11018 * there's an extra 1 line difference. So we need to add two instead of
11019 * one to the value.
11020 */
11021 if (IS_GEN2(dev)) {
11022 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11023 int vtotal;
11024
11025 vtotal = mode->crtc_vtotal;
11026 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11027 vtotal /= 2;
11028
11029 crtc->scanline_offset = vtotal - 1;
11030 } else if (HAS_DDI(dev) &&
11031 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11032 crtc->scanline_offset = 2;
11033 } else
11034 crtc->scanline_offset = 1;
11035}
11036
f30da187
DV
11037static int __intel_set_mode(struct drm_crtc *crtc,
11038 struct drm_display_mode *mode,
11039 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
11040{
11041 struct drm_device *dev = crtc->dev;
fbee40df 11042 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11043 struct drm_display_mode *saved_mode;
b8cecdf5 11044 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
11045 struct intel_crtc *intel_crtc;
11046 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 11047 int ret = 0;
a6778b3c 11048
4b4b9238 11049 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11050 if (!saved_mode)
11051 return -ENOMEM;
a6778b3c 11052
e2e1ed41 11053 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
11054 &prepare_pipes, &disable_pipes);
11055
3ac18232 11056 *saved_mode = crtc->mode;
a6778b3c 11057
25c5b266
DV
11058 /* Hack: Because we don't (yet) support global modeset on multiple
11059 * crtcs, we don't keep track of the new mode for more than one crtc.
11060 * Hence simply check whether any bit is set in modeset_pipes in all the
11061 * pieces of code that are not yet converted to deal with mutliple crtcs
11062 * changing their mode at the same time. */
25c5b266 11063 if (modeset_pipes) {
4e53c2e0 11064 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
11065 if (IS_ERR(pipe_config)) {
11066 ret = PTR_ERR(pipe_config);
11067 pipe_config = NULL;
11068
3ac18232 11069 goto out;
25c5b266 11070 }
c0b03411
DV
11071 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11072 "[modeset]");
50741abc 11073 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 11074 }
a6778b3c 11075
30a970c6
JB
11076 /*
11077 * See if the config requires any additional preparation, e.g.
11078 * to adjust global state with pipes off. We need to do this
11079 * here so we can get the modeset_pipe updated config for the new
11080 * mode set on this crtc. For other crtcs we need to use the
11081 * adjusted_mode bits in the crtc directly.
11082 */
c164f833 11083 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11084 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11085
c164f833
VS
11086 /* may have added more to prepare_pipes than we should */
11087 prepare_pipes &= ~disable_pipes;
11088 }
11089
460da916
DV
11090 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11091 intel_crtc_disable(&intel_crtc->base);
11092
ea9d758d
DV
11093 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11094 if (intel_crtc->base.enabled)
11095 dev_priv->display.crtc_disable(&intel_crtc->base);
11096 }
a6778b3c 11097
6c4c86f5
DV
11098 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11099 * to set it here already despite that we pass it down the callchain.
f6e5b160 11100 */
b8cecdf5 11101 if (modeset_pipes) {
25c5b266 11102 crtc->mode = *mode;
b8cecdf5
DV
11103 /* mode_set/enable/disable functions rely on a correct pipe
11104 * config. */
11105 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 11106 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
11107
11108 /*
11109 * Calculate and store various constants which
11110 * are later needed by vblank and swap-completion
11111 * timestamping. They are derived from true hwmode.
11112 */
11113 drm_calc_timestamping_constants(crtc,
11114 &pipe_config->adjusted_mode);
b8cecdf5 11115 }
7758a113 11116
ea9d758d
DV
11117 /* Only after disabling all output pipelines that will be changed can we
11118 * update the the output configuration. */
11119 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11120
47fab737
DV
11121 if (dev_priv->display.modeset_global_resources)
11122 dev_priv->display.modeset_global_resources(dev);
11123
a6778b3c
DV
11124 /* Set up the DPLL and any encoders state that needs to adjust or depend
11125 * on the DPLL.
f6e5b160 11126 */
25c5b266 11127 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
11128 struct drm_framebuffer *old_fb = crtc->primary->fb;
11129 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11130 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
11131
11132 mutex_lock(&dev->struct_mutex);
11133 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 11134 obj,
4c10794f
DV
11135 NULL);
11136 if (ret != 0) {
11137 DRM_ERROR("pin & fence failed\n");
11138 mutex_unlock(&dev->struct_mutex);
11139 goto done;
11140 }
2ff8fde1 11141 if (old_fb)
a071fa00 11142 intel_unpin_fb_obj(old_obj);
a071fa00
DV
11143 i915_gem_track_fb(old_obj, obj,
11144 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
11145 mutex_unlock(&dev->struct_mutex);
11146
11147 crtc->primary->fb = fb;
11148 crtc->x = x;
11149 crtc->y = y;
11150
4271b753
DV
11151 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11152 x, y, fb);
c0c36b94
CW
11153 if (ret)
11154 goto done;
a6778b3c
DV
11155 }
11156
11157 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11158 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11159 update_scanline_offset(intel_crtc);
11160
25c5b266 11161 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11162 }
a6778b3c 11163
a6778b3c
DV
11164 /* FIXME: add subpixel order */
11165done:
4b4b9238 11166 if (ret && crtc->enabled)
3ac18232 11167 crtc->mode = *saved_mode;
a6778b3c 11168
3ac18232 11169out:
b8cecdf5 11170 kfree(pipe_config);
3ac18232 11171 kfree(saved_mode);
a6778b3c 11172 return ret;
f6e5b160
CW
11173}
11174
e7457a9a
DL
11175static int intel_set_mode(struct drm_crtc *crtc,
11176 struct drm_display_mode *mode,
11177 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11178{
11179 int ret;
11180
11181 ret = __intel_set_mode(crtc, mode, x, y, fb);
11182
11183 if (ret == 0)
11184 intel_modeset_check_state(crtc->dev);
11185
11186 return ret;
11187}
11188
c0c36b94
CW
11189void intel_crtc_restore_mode(struct drm_crtc *crtc)
11190{
f4510a27 11191 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11192}
11193
25c5b266
DV
11194#undef for_each_intel_crtc_masked
11195
d9e55608
DV
11196static void intel_set_config_free(struct intel_set_config *config)
11197{
11198 if (!config)
11199 return;
11200
1aa4b628
DV
11201 kfree(config->save_connector_encoders);
11202 kfree(config->save_encoder_crtcs);
7668851f 11203 kfree(config->save_crtc_enabled);
d9e55608
DV
11204 kfree(config);
11205}
11206
85f9eb71
DV
11207static int intel_set_config_save_state(struct drm_device *dev,
11208 struct intel_set_config *config)
11209{
7668851f 11210 struct drm_crtc *crtc;
85f9eb71
DV
11211 struct drm_encoder *encoder;
11212 struct drm_connector *connector;
11213 int count;
11214
7668851f
VS
11215 config->save_crtc_enabled =
11216 kcalloc(dev->mode_config.num_crtc,
11217 sizeof(bool), GFP_KERNEL);
11218 if (!config->save_crtc_enabled)
11219 return -ENOMEM;
11220
1aa4b628
DV
11221 config->save_encoder_crtcs =
11222 kcalloc(dev->mode_config.num_encoder,
11223 sizeof(struct drm_crtc *), GFP_KERNEL);
11224 if (!config->save_encoder_crtcs)
85f9eb71
DV
11225 return -ENOMEM;
11226
1aa4b628
DV
11227 config->save_connector_encoders =
11228 kcalloc(dev->mode_config.num_connector,
11229 sizeof(struct drm_encoder *), GFP_KERNEL);
11230 if (!config->save_connector_encoders)
85f9eb71
DV
11231 return -ENOMEM;
11232
11233 /* Copy data. Note that driver private data is not affected.
11234 * Should anything bad happen only the expected state is
11235 * restored, not the drivers personal bookkeeping.
11236 */
7668851f 11237 count = 0;
70e1e0ec 11238 for_each_crtc(dev, crtc) {
7668851f
VS
11239 config->save_crtc_enabled[count++] = crtc->enabled;
11240 }
11241
85f9eb71
DV
11242 count = 0;
11243 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11244 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11245 }
11246
11247 count = 0;
11248 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11249 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11250 }
11251
11252 return 0;
11253}
11254
11255static void intel_set_config_restore_state(struct drm_device *dev,
11256 struct intel_set_config *config)
11257{
7668851f 11258 struct intel_crtc *crtc;
9a935856
DV
11259 struct intel_encoder *encoder;
11260 struct intel_connector *connector;
85f9eb71
DV
11261 int count;
11262
7668851f 11263 count = 0;
d3fcc808 11264 for_each_intel_crtc(dev, crtc) {
7668851f 11265 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11266
11267 if (crtc->new_enabled)
11268 crtc->new_config = &crtc->config;
11269 else
11270 crtc->new_config = NULL;
7668851f
VS
11271 }
11272
85f9eb71 11273 count = 0;
b2784e15 11274 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11275 encoder->new_crtc =
11276 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11277 }
11278
11279 count = 0;
9a935856
DV
11280 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11281 connector->new_encoder =
11282 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11283 }
11284}
11285
e3de42b6 11286static bool
2e57f47d 11287is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11288{
11289 int i;
11290
2e57f47d
CW
11291 if (set->num_connectors == 0)
11292 return false;
11293
11294 if (WARN_ON(set->connectors == NULL))
11295 return false;
11296
11297 for (i = 0; i < set->num_connectors; i++)
11298 if (set->connectors[i]->encoder &&
11299 set->connectors[i]->encoder->crtc == set->crtc &&
11300 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11301 return true;
11302
11303 return false;
11304}
11305
5e2b584e
DV
11306static void
11307intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11308 struct intel_set_config *config)
11309{
11310
11311 /* We should be able to check here if the fb has the same properties
11312 * and then just flip_or_move it */
2e57f47d
CW
11313 if (is_crtc_connector_off(set)) {
11314 config->mode_changed = true;
f4510a27 11315 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11316 /*
11317 * If we have no fb, we can only flip as long as the crtc is
11318 * active, otherwise we need a full mode set. The crtc may
11319 * be active if we've only disabled the primary plane, or
11320 * in fastboot situations.
11321 */
f4510a27 11322 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11323 struct intel_crtc *intel_crtc =
11324 to_intel_crtc(set->crtc);
11325
3b150f08 11326 if (intel_crtc->active) {
319d9827
JB
11327 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11328 config->fb_changed = true;
11329 } else {
11330 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11331 config->mode_changed = true;
11332 }
5e2b584e
DV
11333 } else if (set->fb == NULL) {
11334 config->mode_changed = true;
72f4901e 11335 } else if (set->fb->pixel_format !=
f4510a27 11336 set->crtc->primary->fb->pixel_format) {
5e2b584e 11337 config->mode_changed = true;
e3de42b6 11338 } else {
5e2b584e 11339 config->fb_changed = true;
e3de42b6 11340 }
5e2b584e
DV
11341 }
11342
835c5873 11343 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11344 config->fb_changed = true;
11345
11346 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11347 DRM_DEBUG_KMS("modes are different, full mode set\n");
11348 drm_mode_debug_printmodeline(&set->crtc->mode);
11349 drm_mode_debug_printmodeline(set->mode);
11350 config->mode_changed = true;
11351 }
a1d95703
CW
11352
11353 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11354 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11355}
11356
2e431051 11357static int
9a935856
DV
11358intel_modeset_stage_output_state(struct drm_device *dev,
11359 struct drm_mode_set *set,
11360 struct intel_set_config *config)
50f56119 11361{
9a935856
DV
11362 struct intel_connector *connector;
11363 struct intel_encoder *encoder;
7668851f 11364 struct intel_crtc *crtc;
f3f08572 11365 int ro;
50f56119 11366
9abdda74 11367 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11368 * of connectors. For paranoia, double-check this. */
11369 WARN_ON(!set->fb && (set->num_connectors != 0));
11370 WARN_ON(set->fb && (set->num_connectors == 0));
11371
9a935856
DV
11372 list_for_each_entry(connector, &dev->mode_config.connector_list,
11373 base.head) {
11374 /* Otherwise traverse passed in connector list and get encoders
11375 * for them. */
50f56119 11376 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11377 if (set->connectors[ro] == &connector->base) {
0e32b39c 11378 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11379 break;
11380 }
11381 }
11382
9a935856
DV
11383 /* If we disable the crtc, disable all its connectors. Also, if
11384 * the connector is on the changing crtc but not on the new
11385 * connector list, disable it. */
11386 if ((!set->fb || ro == set->num_connectors) &&
11387 connector->base.encoder &&
11388 connector->base.encoder->crtc == set->crtc) {
11389 connector->new_encoder = NULL;
11390
11391 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11392 connector->base.base.id,
c23cc417 11393 connector->base.name);
9a935856
DV
11394 }
11395
11396
11397 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11398 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11399 config->mode_changed = true;
50f56119
DV
11400 }
11401 }
9a935856 11402 /* connector->new_encoder is now updated for all connectors. */
50f56119 11403
9a935856 11404 /* Update crtc of enabled connectors. */
9a935856
DV
11405 list_for_each_entry(connector, &dev->mode_config.connector_list,
11406 base.head) {
7668851f
VS
11407 struct drm_crtc *new_crtc;
11408
9a935856 11409 if (!connector->new_encoder)
50f56119
DV
11410 continue;
11411
9a935856 11412 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11413
11414 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11415 if (set->connectors[ro] == &connector->base)
50f56119
DV
11416 new_crtc = set->crtc;
11417 }
11418
11419 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11420 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11421 new_crtc)) {
5e2b584e 11422 return -EINVAL;
50f56119 11423 }
0e32b39c 11424 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11425
11426 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11427 connector->base.base.id,
c23cc417 11428 connector->base.name,
9a935856
DV
11429 new_crtc->base.id);
11430 }
11431
11432 /* Check for any encoders that needs to be disabled. */
b2784e15 11433 for_each_intel_encoder(dev, encoder) {
5a65f358 11434 int num_connectors = 0;
9a935856
DV
11435 list_for_each_entry(connector,
11436 &dev->mode_config.connector_list,
11437 base.head) {
11438 if (connector->new_encoder == encoder) {
11439 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11440 num_connectors++;
9a935856
DV
11441 }
11442 }
5a65f358
PZ
11443
11444 if (num_connectors == 0)
11445 encoder->new_crtc = NULL;
11446 else if (num_connectors > 1)
11447 return -EINVAL;
11448
9a935856
DV
11449 /* Only now check for crtc changes so we don't miss encoders
11450 * that will be disabled. */
11451 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11452 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11453 config->mode_changed = true;
50f56119
DV
11454 }
11455 }
9a935856 11456 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11457 list_for_each_entry(connector, &dev->mode_config.connector_list,
11458 base.head) {
11459 if (connector->new_encoder)
11460 if (connector->new_encoder != connector->encoder)
11461 connector->encoder = connector->new_encoder;
11462 }
d3fcc808 11463 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11464 crtc->new_enabled = false;
11465
b2784e15 11466 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11467 if (encoder->new_crtc == crtc) {
11468 crtc->new_enabled = true;
11469 break;
11470 }
11471 }
11472
11473 if (crtc->new_enabled != crtc->base.enabled) {
11474 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11475 crtc->new_enabled ? "en" : "dis");
11476 config->mode_changed = true;
11477 }
7bd0a8e7
VS
11478
11479 if (crtc->new_enabled)
11480 crtc->new_config = &crtc->config;
11481 else
11482 crtc->new_config = NULL;
7668851f
VS
11483 }
11484
2e431051
DV
11485 return 0;
11486}
11487
7d00a1f5
VS
11488static void disable_crtc_nofb(struct intel_crtc *crtc)
11489{
11490 struct drm_device *dev = crtc->base.dev;
11491 struct intel_encoder *encoder;
11492 struct intel_connector *connector;
11493
11494 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11495 pipe_name(crtc->pipe));
11496
11497 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11498 if (connector->new_encoder &&
11499 connector->new_encoder->new_crtc == crtc)
11500 connector->new_encoder = NULL;
11501 }
11502
b2784e15 11503 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11504 if (encoder->new_crtc == crtc)
11505 encoder->new_crtc = NULL;
11506 }
11507
11508 crtc->new_enabled = false;
7bd0a8e7 11509 crtc->new_config = NULL;
7d00a1f5
VS
11510}
11511
2e431051
DV
11512static int intel_crtc_set_config(struct drm_mode_set *set)
11513{
11514 struct drm_device *dev;
2e431051
DV
11515 struct drm_mode_set save_set;
11516 struct intel_set_config *config;
11517 int ret;
2e431051 11518
8d3e375e
DV
11519 BUG_ON(!set);
11520 BUG_ON(!set->crtc);
11521 BUG_ON(!set->crtc->helper_private);
2e431051 11522
7e53f3a4
DV
11523 /* Enforce sane interface api - has been abused by the fb helper. */
11524 BUG_ON(!set->mode && set->fb);
11525 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11526
2e431051
DV
11527 if (set->fb) {
11528 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11529 set->crtc->base.id, set->fb->base.id,
11530 (int)set->num_connectors, set->x, set->y);
11531 } else {
11532 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11533 }
11534
11535 dev = set->crtc->dev;
11536
11537 ret = -ENOMEM;
11538 config = kzalloc(sizeof(*config), GFP_KERNEL);
11539 if (!config)
11540 goto out_config;
11541
11542 ret = intel_set_config_save_state(dev, config);
11543 if (ret)
11544 goto out_config;
11545
11546 save_set.crtc = set->crtc;
11547 save_set.mode = &set->crtc->mode;
11548 save_set.x = set->crtc->x;
11549 save_set.y = set->crtc->y;
f4510a27 11550 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11551
11552 /* Compute whether we need a full modeset, only an fb base update or no
11553 * change at all. In the future we might also check whether only the
11554 * mode changed, e.g. for LVDS where we only change the panel fitter in
11555 * such cases. */
11556 intel_set_config_compute_mode_changes(set, config);
11557
9a935856 11558 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11559 if (ret)
11560 goto fail;
11561
5e2b584e 11562 if (config->mode_changed) {
c0c36b94
CW
11563 ret = intel_set_mode(set->crtc, set->mode,
11564 set->x, set->y, set->fb);
5e2b584e 11565 } else if (config->fb_changed) {
3b150f08
MR
11566 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11567
4878cae2
VS
11568 intel_crtc_wait_for_pending_flips(set->crtc);
11569
4f660f49 11570 ret = intel_pipe_set_base(set->crtc,
94352cf9 11571 set->x, set->y, set->fb);
3b150f08
MR
11572
11573 /*
11574 * We need to make sure the primary plane is re-enabled if it
11575 * has previously been turned off.
11576 */
11577 if (!intel_crtc->primary_enabled && ret == 0) {
11578 WARN_ON(!intel_crtc->active);
fdd508a6 11579 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11580 }
11581
7ca51a3a
JB
11582 /*
11583 * In the fastboot case this may be our only check of the
11584 * state after boot. It would be better to only do it on
11585 * the first update, but we don't have a nice way of doing that
11586 * (and really, set_config isn't used much for high freq page
11587 * flipping, so increasing its cost here shouldn't be a big
11588 * deal).
11589 */
d330a953 11590 if (i915.fastboot && ret == 0)
7ca51a3a 11591 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11592 }
11593
2d05eae1 11594 if (ret) {
bf67dfeb
DV
11595 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11596 set->crtc->base.id, ret);
50f56119 11597fail:
2d05eae1 11598 intel_set_config_restore_state(dev, config);
50f56119 11599
7d00a1f5
VS
11600 /*
11601 * HACK: if the pipe was on, but we didn't have a framebuffer,
11602 * force the pipe off to avoid oopsing in the modeset code
11603 * due to fb==NULL. This should only happen during boot since
11604 * we don't yet reconstruct the FB from the hardware state.
11605 */
11606 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11607 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11608
2d05eae1
CW
11609 /* Try to restore the config */
11610 if (config->mode_changed &&
11611 intel_set_mode(save_set.crtc, save_set.mode,
11612 save_set.x, save_set.y, save_set.fb))
11613 DRM_ERROR("failed to restore config after modeset failure\n");
11614 }
50f56119 11615
d9e55608
DV
11616out_config:
11617 intel_set_config_free(config);
50f56119
DV
11618 return ret;
11619}
f6e5b160
CW
11620
11621static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11622 .gamma_set = intel_crtc_gamma_set,
50f56119 11623 .set_config = intel_crtc_set_config,
f6e5b160
CW
11624 .destroy = intel_crtc_destroy,
11625 .page_flip = intel_crtc_page_flip,
11626};
11627
5358901f
DV
11628static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11629 struct intel_shared_dpll *pll,
11630 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11631{
5358901f 11632 uint32_t val;
ee7b9f93 11633
bd2bb1b9
PZ
11634 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11635 return false;
11636
5358901f 11637 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11638 hw_state->dpll = val;
11639 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11640 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11641
11642 return val & DPLL_VCO_ENABLE;
11643}
11644
15bdd4cf
DV
11645static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11646 struct intel_shared_dpll *pll)
11647{
11648 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11649 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11650}
11651
e7b903d2
DV
11652static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11653 struct intel_shared_dpll *pll)
11654{
e7b903d2 11655 /* PCH refclock must be enabled first */
89eff4be 11656 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11657
15bdd4cf
DV
11658 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11659
11660 /* Wait for the clocks to stabilize. */
11661 POSTING_READ(PCH_DPLL(pll->id));
11662 udelay(150);
11663
11664 /* The pixel multiplier can only be updated once the
11665 * DPLL is enabled and the clocks are stable.
11666 *
11667 * So write it again.
11668 */
11669 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11670 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11671 udelay(200);
11672}
11673
11674static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11675 struct intel_shared_dpll *pll)
11676{
11677 struct drm_device *dev = dev_priv->dev;
11678 struct intel_crtc *crtc;
e7b903d2
DV
11679
11680 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11681 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11682 if (intel_crtc_to_shared_dpll(crtc) == pll)
11683 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11684 }
11685
15bdd4cf
DV
11686 I915_WRITE(PCH_DPLL(pll->id), 0);
11687 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11688 udelay(200);
11689}
11690
46edb027
DV
11691static char *ibx_pch_dpll_names[] = {
11692 "PCH DPLL A",
11693 "PCH DPLL B",
11694};
11695
7c74ade1 11696static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11697{
e7b903d2 11698 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11699 int i;
11700
7c74ade1 11701 dev_priv->num_shared_dpll = 2;
ee7b9f93 11702
e72f9fbf 11703 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11704 dev_priv->shared_dplls[i].id = i;
11705 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11706 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11707 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11708 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11709 dev_priv->shared_dplls[i].get_hw_state =
11710 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11711 }
11712}
11713
7c74ade1
DV
11714static void intel_shared_dpll_init(struct drm_device *dev)
11715{
e7b903d2 11716 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11717
9cd86933
DV
11718 if (HAS_DDI(dev))
11719 intel_ddi_pll_init(dev);
11720 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11721 ibx_pch_dpll_init(dev);
11722 else
11723 dev_priv->num_shared_dpll = 0;
11724
11725 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11726}
11727
465c120c
MR
11728static int
11729intel_primary_plane_disable(struct drm_plane *plane)
11730{
11731 struct drm_device *dev = plane->dev;
465c120c
MR
11732 struct intel_crtc *intel_crtc;
11733
11734 if (!plane->fb)
11735 return 0;
11736
11737 BUG_ON(!plane->crtc);
11738
11739 intel_crtc = to_intel_crtc(plane->crtc);
11740
11741 /*
11742 * Even though we checked plane->fb above, it's still possible that
11743 * the primary plane has been implicitly disabled because the crtc
11744 * coordinates given weren't visible, or because we detected
11745 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11746 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11747 * In either case, we need to unpin the FB and let the fb pointer get
11748 * updated, but otherwise we don't need to touch the hardware.
11749 */
11750 if (!intel_crtc->primary_enabled)
11751 goto disable_unpin;
11752
11753 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11754 intel_disable_primary_hw_plane(plane, plane->crtc);
11755
465c120c 11756disable_unpin:
4c34574f 11757 mutex_lock(&dev->struct_mutex);
2ff8fde1 11758 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11759 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11760 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11761 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11762 plane->fb = NULL;
11763
11764 return 0;
11765}
11766
11767static int
11768intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11769 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11770 unsigned int crtc_w, unsigned int crtc_h,
11771 uint32_t src_x, uint32_t src_y,
11772 uint32_t src_w, uint32_t src_h)
11773{
11774 struct drm_device *dev = crtc->dev;
48404c1e 11775 struct drm_i915_private *dev_priv = dev->dev_private;
465c120c 11776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1
MR
11777 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11778 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11779 struct drm_rect dest = {
11780 /* integer pixels */
11781 .x1 = crtc_x,
11782 .y1 = crtc_y,
11783 .x2 = crtc_x + crtc_w,
11784 .y2 = crtc_y + crtc_h,
11785 };
11786 struct drm_rect src = {
11787 /* 16.16 fixed point */
11788 .x1 = src_x,
11789 .y1 = src_y,
11790 .x2 = src_x + src_w,
11791 .y2 = src_y + src_h,
11792 };
11793 const struct drm_rect clip = {
11794 /* integer pixels */
11795 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11796 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11797 };
ce54d85a
SJ
11798 const struct {
11799 int crtc_x, crtc_y;
11800 unsigned int crtc_w, crtc_h;
11801 uint32_t src_x, src_y, src_w, src_h;
11802 } orig = {
11803 .crtc_x = crtc_x,
11804 .crtc_y = crtc_y,
11805 .crtc_w = crtc_w,
11806 .crtc_h = crtc_h,
11807 .src_x = src_x,
11808 .src_y = src_y,
11809 .src_w = src_w,
11810 .src_h = src_h,
11811 };
11812 struct intel_plane *intel_plane = to_intel_plane(plane);
465c120c
MR
11813 bool visible;
11814 int ret;
11815
11816 ret = drm_plane_helper_check_update(plane, crtc, fb,
11817 &src, &dest, &clip,
11818 DRM_PLANE_HELPER_NO_SCALING,
11819 DRM_PLANE_HELPER_NO_SCALING,
11820 false, true, &visible);
11821
11822 if (ret)
11823 return ret;
11824
11825 /*
11826 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11827 * updating the fb pointer, and returning without touching the
11828 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11829 * turn on the display with all planes setup as desired.
11830 */
11831 if (!crtc->enabled) {
4c34574f
MR
11832 mutex_lock(&dev->struct_mutex);
11833
465c120c
MR
11834 /*
11835 * If we already called setplane while the crtc was disabled,
11836 * we may have an fb pinned; unpin it.
11837 */
11838 if (plane->fb)
a071fa00
DV
11839 intel_unpin_fb_obj(old_obj);
11840
11841 i915_gem_track_fb(old_obj, obj,
11842 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11843
11844 /* Pin and return without programming hardware */
4c34574f
MR
11845 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11846 mutex_unlock(&dev->struct_mutex);
11847
11848 return ret;
465c120c
MR
11849 }
11850
11851 intel_crtc_wait_for_pending_flips(crtc);
11852
11853 /*
11854 * If clipping results in a non-visible primary plane, we'll disable
11855 * the primary plane. Note that this is a bit different than what
11856 * happens if userspace explicitly disables the plane by passing fb=0
11857 * because plane->fb still gets set and pinned.
11858 */
11859 if (!visible) {
4c34574f
MR
11860 mutex_lock(&dev->struct_mutex);
11861
465c120c
MR
11862 /*
11863 * Try to pin the new fb first so that we can bail out if we
11864 * fail.
11865 */
11866 if (plane->fb != fb) {
a071fa00 11867 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11868 if (ret) {
11869 mutex_unlock(&dev->struct_mutex);
465c120c 11870 return ret;
4c34574f 11871 }
465c120c
MR
11872 }
11873
a071fa00
DV
11874 i915_gem_track_fb(old_obj, obj,
11875 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11876
465c120c 11877 if (intel_crtc->primary_enabled)
fdd508a6 11878 intel_disable_primary_hw_plane(plane, crtc);
465c120c
MR
11879
11880
11881 if (plane->fb != fb)
11882 if (plane->fb)
a071fa00 11883 intel_unpin_fb_obj(old_obj);
465c120c 11884
4c34574f
MR
11885 mutex_unlock(&dev->struct_mutex);
11886
ce54d85a 11887 } else {
48404c1e
SJ
11888 if (intel_crtc && intel_crtc->active &&
11889 intel_crtc->primary_enabled) {
11890 /*
11891 * FBC does not work on some platforms for rotated
11892 * planes, so disable it when rotation is not 0 and
11893 * update it when rotation is set back to 0.
11894 *
11895 * FIXME: This is redundant with the fbc update done in
11896 * the primary plane enable function except that that
11897 * one is done too late. We eventually need to unify
11898 * this.
11899 */
11900 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11901 dev_priv->fbc.plane == intel_crtc->plane &&
11902 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11903 intel_disable_fbc(dev);
11904 }
11905 }
ce54d85a
SJ
11906 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11907 if (ret)
11908 return ret;
465c120c 11909
ce54d85a
SJ
11910 if (!intel_crtc->primary_enabled)
11911 intel_enable_primary_hw_plane(plane, crtc);
11912 }
465c120c 11913
ce54d85a
SJ
11914 intel_plane->crtc_x = orig.crtc_x;
11915 intel_plane->crtc_y = orig.crtc_y;
11916 intel_plane->crtc_w = orig.crtc_w;
11917 intel_plane->crtc_h = orig.crtc_h;
11918 intel_plane->src_x = orig.src_x;
11919 intel_plane->src_y = orig.src_y;
11920 intel_plane->src_w = orig.src_w;
11921 intel_plane->src_h = orig.src_h;
11922 intel_plane->obj = obj;
465c120c
MR
11923
11924 return 0;
11925}
11926
3d7d6510
MR
11927/* Common destruction function for both primary and cursor planes */
11928static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11929{
11930 struct intel_plane *intel_plane = to_intel_plane(plane);
11931 drm_plane_cleanup(plane);
11932 kfree(intel_plane);
11933}
11934
11935static const struct drm_plane_funcs intel_primary_plane_funcs = {
11936 .update_plane = intel_primary_plane_setplane,
11937 .disable_plane = intel_primary_plane_disable,
3d7d6510 11938 .destroy = intel_plane_destroy,
48404c1e 11939 .set_property = intel_plane_set_property
465c120c
MR
11940};
11941
11942static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11943 int pipe)
11944{
11945 struct intel_plane *primary;
11946 const uint32_t *intel_primary_formats;
11947 int num_formats;
11948
11949 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11950 if (primary == NULL)
11951 return NULL;
11952
11953 primary->can_scale = false;
11954 primary->max_downscale = 1;
11955 primary->pipe = pipe;
11956 primary->plane = pipe;
48404c1e 11957 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
11958 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11959 primary->plane = !pipe;
11960
11961 if (INTEL_INFO(dev)->gen <= 3) {
11962 intel_primary_formats = intel_primary_formats_gen2;
11963 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11964 } else {
11965 intel_primary_formats = intel_primary_formats_gen4;
11966 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11967 }
11968
11969 drm_universal_plane_init(dev, &primary->base, 0,
11970 &intel_primary_plane_funcs,
11971 intel_primary_formats, num_formats,
11972 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
11973
11974 if (INTEL_INFO(dev)->gen >= 4) {
11975 if (!dev->mode_config.rotation_property)
11976 dev->mode_config.rotation_property =
11977 drm_mode_create_rotation_property(dev,
11978 BIT(DRM_ROTATE_0) |
11979 BIT(DRM_ROTATE_180));
11980 if (dev->mode_config.rotation_property)
11981 drm_object_attach_property(&primary->base.base,
11982 dev->mode_config.rotation_property,
11983 primary->rotation);
11984 }
11985
465c120c
MR
11986 return &primary->base;
11987}
11988
3d7d6510
MR
11989static int
11990intel_cursor_plane_disable(struct drm_plane *plane)
11991{
11992 if (!plane->fb)
11993 return 0;
11994
11995 BUG_ON(!plane->crtc);
11996
11997 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11998}
11999
12000static int
12001intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12002 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12003 unsigned int crtc_w, unsigned int crtc_h,
12004 uint32_t src_x, uint32_t src_y,
12005 uint32_t src_w, uint32_t src_h)
12006{
12007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12008 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12009 struct drm_i915_gem_object *obj = intel_fb->obj;
12010 struct drm_rect dest = {
12011 /* integer pixels */
12012 .x1 = crtc_x,
12013 .y1 = crtc_y,
12014 .x2 = crtc_x + crtc_w,
12015 .y2 = crtc_y + crtc_h,
12016 };
12017 struct drm_rect src = {
12018 /* 16.16 fixed point */
12019 .x1 = src_x,
12020 .y1 = src_y,
12021 .x2 = src_x + src_w,
12022 .y2 = src_y + src_h,
12023 };
12024 const struct drm_rect clip = {
12025 /* integer pixels */
1add143c
VS
12026 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
12027 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
3d7d6510
MR
12028 };
12029 bool visible;
12030 int ret;
12031
12032 ret = drm_plane_helper_check_update(plane, crtc, fb,
12033 &src, &dest, &clip,
12034 DRM_PLANE_HELPER_NO_SCALING,
12035 DRM_PLANE_HELPER_NO_SCALING,
12036 true, true, &visible);
12037 if (ret)
12038 return ret;
12039
12040 crtc->cursor_x = crtc_x;
12041 crtc->cursor_y = crtc_y;
12042 if (fb != crtc->cursor->fb) {
12043 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12044 } else {
12045 intel_crtc_update_cursor(crtc, visible);
4ed91096
DV
12046
12047 intel_frontbuffer_flip(crtc->dev,
12048 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12049
3d7d6510
MR
12050 return 0;
12051 }
12052}
12053static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12054 .update_plane = intel_cursor_plane_update,
12055 .disable_plane = intel_cursor_plane_disable,
12056 .destroy = intel_plane_destroy,
12057};
12058
12059static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12060 int pipe)
12061{
12062 struct intel_plane *cursor;
12063
12064 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12065 if (cursor == NULL)
12066 return NULL;
12067
12068 cursor->can_scale = false;
12069 cursor->max_downscale = 1;
12070 cursor->pipe = pipe;
12071 cursor->plane = pipe;
12072
12073 drm_universal_plane_init(dev, &cursor->base, 0,
12074 &intel_cursor_plane_funcs,
12075 intel_cursor_formats,
12076 ARRAY_SIZE(intel_cursor_formats),
12077 DRM_PLANE_TYPE_CURSOR);
12078 return &cursor->base;
12079}
12080
b358d0a6 12081static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12082{
fbee40df 12083 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12084 struct intel_crtc *intel_crtc;
3d7d6510
MR
12085 struct drm_plane *primary = NULL;
12086 struct drm_plane *cursor = NULL;
465c120c 12087 int i, ret;
79e53945 12088
955382f3 12089 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12090 if (intel_crtc == NULL)
12091 return;
12092
465c120c 12093 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12094 if (!primary)
12095 goto fail;
12096
12097 cursor = intel_cursor_plane_create(dev, pipe);
12098 if (!cursor)
12099 goto fail;
12100
465c120c 12101 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12102 cursor, &intel_crtc_funcs);
12103 if (ret)
12104 goto fail;
79e53945
JB
12105
12106 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12107 for (i = 0; i < 256; i++) {
12108 intel_crtc->lut_r[i] = i;
12109 intel_crtc->lut_g[i] = i;
12110 intel_crtc->lut_b[i] = i;
12111 }
12112
1f1c2e24
VS
12113 /*
12114 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12115 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12116 */
80824003
JB
12117 intel_crtc->pipe = pipe;
12118 intel_crtc->plane = pipe;
3a77c4c4 12119 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12120 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12121 intel_crtc->plane = !pipe;
80824003
JB
12122 }
12123
4b0e333e
CW
12124 intel_crtc->cursor_base = ~0;
12125 intel_crtc->cursor_cntl = ~0;
dc41c154 12126 intel_crtc->cursor_size = ~0;
8d7849db 12127
22fd0fab
JB
12128 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12129 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12130 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12131 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12132
79e53945 12133 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12134
12135 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12136 return;
12137
12138fail:
12139 if (primary)
12140 drm_plane_cleanup(primary);
12141 if (cursor)
12142 drm_plane_cleanup(cursor);
12143 kfree(intel_crtc);
79e53945
JB
12144}
12145
752aa88a
JB
12146enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12147{
12148 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12149 struct drm_device *dev = connector->base.dev;
752aa88a 12150
51fd371b 12151 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
12152
12153 if (!encoder)
12154 return INVALID_PIPE;
12155
12156 return to_intel_crtc(encoder->crtc)->pipe;
12157}
12158
08d7b3d1 12159int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12160 struct drm_file *file)
08d7b3d1 12161{
08d7b3d1 12162 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12163 struct drm_crtc *drmmode_crtc;
c05422d5 12164 struct intel_crtc *crtc;
08d7b3d1 12165
1cff8f6b
DV
12166 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12167 return -ENODEV;
08d7b3d1 12168
7707e653 12169 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12170
7707e653 12171 if (!drmmode_crtc) {
08d7b3d1 12172 DRM_ERROR("no such CRTC id\n");
3f2c2057 12173 return -ENOENT;
08d7b3d1
CW
12174 }
12175
7707e653 12176 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12177 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12178
c05422d5 12179 return 0;
08d7b3d1
CW
12180}
12181
66a9278e 12182static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12183{
66a9278e
DV
12184 struct drm_device *dev = encoder->base.dev;
12185 struct intel_encoder *source_encoder;
79e53945 12186 int index_mask = 0;
79e53945
JB
12187 int entry = 0;
12188
b2784e15 12189 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12190 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12191 index_mask |= (1 << entry);
12192
79e53945
JB
12193 entry++;
12194 }
4ef69c7a 12195
79e53945
JB
12196 return index_mask;
12197}
12198
4d302442
CW
12199static bool has_edp_a(struct drm_device *dev)
12200{
12201 struct drm_i915_private *dev_priv = dev->dev_private;
12202
12203 if (!IS_MOBILE(dev))
12204 return false;
12205
12206 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12207 return false;
12208
e3589908 12209 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12210 return false;
12211
12212 return true;
12213}
12214
ba0fbca4
DL
12215const char *intel_output_name(int output)
12216{
12217 static const char *names[] = {
12218 [INTEL_OUTPUT_UNUSED] = "Unused",
12219 [INTEL_OUTPUT_ANALOG] = "Analog",
12220 [INTEL_OUTPUT_DVO] = "DVO",
12221 [INTEL_OUTPUT_SDVO] = "SDVO",
12222 [INTEL_OUTPUT_LVDS] = "LVDS",
12223 [INTEL_OUTPUT_TVOUT] = "TV",
12224 [INTEL_OUTPUT_HDMI] = "HDMI",
12225 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12226 [INTEL_OUTPUT_EDP] = "eDP",
12227 [INTEL_OUTPUT_DSI] = "DSI",
12228 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12229 };
12230
12231 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12232 return "Invalid";
12233
12234 return names[output];
12235}
12236
84b4e042
JB
12237static bool intel_crt_present(struct drm_device *dev)
12238{
12239 struct drm_i915_private *dev_priv = dev->dev_private;
12240
12241 if (IS_ULT(dev))
12242 return false;
12243
12244 if (IS_CHERRYVIEW(dev))
12245 return false;
12246
12247 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12248 return false;
12249
12250 return true;
12251}
12252
79e53945
JB
12253static void intel_setup_outputs(struct drm_device *dev)
12254{
725e30ad 12255 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12256 struct intel_encoder *encoder;
cb0953d7 12257 bool dpd_is_edp = false;
79e53945 12258
c9093354 12259 intel_lvds_init(dev);
79e53945 12260
84b4e042 12261 if (intel_crt_present(dev))
79935fca 12262 intel_crt_init(dev);
cb0953d7 12263
affa9354 12264 if (HAS_DDI(dev)) {
0e72a5b5
ED
12265 int found;
12266
12267 /* Haswell uses DDI functions to detect digital outputs */
12268 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12269 /* DDI A only supports eDP */
12270 if (found)
12271 intel_ddi_init(dev, PORT_A);
12272
12273 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12274 * register */
12275 found = I915_READ(SFUSE_STRAP);
12276
12277 if (found & SFUSE_STRAP_DDIB_DETECTED)
12278 intel_ddi_init(dev, PORT_B);
12279 if (found & SFUSE_STRAP_DDIC_DETECTED)
12280 intel_ddi_init(dev, PORT_C);
12281 if (found & SFUSE_STRAP_DDID_DETECTED)
12282 intel_ddi_init(dev, PORT_D);
12283 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12284 int found;
5d8a7752 12285 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12286
12287 if (has_edp_a(dev))
12288 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12289
dc0fa718 12290 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12291 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12292 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12293 if (!found)
e2debe91 12294 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12295 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12296 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12297 }
12298
dc0fa718 12299 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12300 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12301
dc0fa718 12302 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12303 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12304
5eb08b69 12305 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12306 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12307
270b3042 12308 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12309 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12310 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12311 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12312 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12313 PORT_B);
12314 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12315 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12316 }
12317
6f6005a5
JB
12318 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12319 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12320 PORT_C);
12321 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12322 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12323 }
19c03924 12324
9418c1f1
VS
12325 if (IS_CHERRYVIEW(dev)) {
12326 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12327 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12328 PORT_D);
12329 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12330 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12331 }
12332 }
12333
3cfca973 12334 intel_dsi_init(dev);
103a196f 12335 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12336 bool found = false;
7d57382e 12337
e2debe91 12338 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12339 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12340 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12341 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12342 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12343 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12344 }
27185ae1 12345
e7281eab 12346 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12347 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12348 }
13520b05
KH
12349
12350 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12351
e2debe91 12352 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12353 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12354 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12355 }
27185ae1 12356
e2debe91 12357 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12358
b01f2c3a
JB
12359 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12360 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12361 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12362 }
e7281eab 12363 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12364 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12365 }
27185ae1 12366
b01f2c3a 12367 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12368 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12369 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12370 } else if (IS_GEN2(dev))
79e53945
JB
12371 intel_dvo_init(dev);
12372
103a196f 12373 if (SUPPORTS_TV(dev))
79e53945
JB
12374 intel_tv_init(dev);
12375
7c8f8a70
RV
12376 intel_edp_psr_init(dev);
12377
b2784e15 12378 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12379 encoder->base.possible_crtcs = encoder->crtc_mask;
12380 encoder->base.possible_clones =
66a9278e 12381 intel_encoder_clones(encoder);
79e53945 12382 }
47356eb6 12383
dde86e2d 12384 intel_init_pch_refclk(dev);
270b3042
DV
12385
12386 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12387}
12388
12389static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12390{
60a5ca01 12391 struct drm_device *dev = fb->dev;
79e53945 12392 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12393
ef2d633e 12394 drm_framebuffer_cleanup(fb);
60a5ca01 12395 mutex_lock(&dev->struct_mutex);
ef2d633e 12396 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12397 drm_gem_object_unreference(&intel_fb->obj->base);
12398 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12399 kfree(intel_fb);
12400}
12401
12402static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12403 struct drm_file *file,
79e53945
JB
12404 unsigned int *handle)
12405{
12406 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12407 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12408
05394f39 12409 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12410}
12411
12412static const struct drm_framebuffer_funcs intel_fb_funcs = {
12413 .destroy = intel_user_framebuffer_destroy,
12414 .create_handle = intel_user_framebuffer_create_handle,
12415};
12416
b5ea642a
DV
12417static int intel_framebuffer_init(struct drm_device *dev,
12418 struct intel_framebuffer *intel_fb,
12419 struct drm_mode_fb_cmd2 *mode_cmd,
12420 struct drm_i915_gem_object *obj)
79e53945 12421{
a57ce0b2 12422 int aligned_height;
a35cdaa0 12423 int pitch_limit;
79e53945
JB
12424 int ret;
12425
dd4916c5
DV
12426 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12427
c16ed4be
CW
12428 if (obj->tiling_mode == I915_TILING_Y) {
12429 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12430 return -EINVAL;
c16ed4be 12431 }
57cd6508 12432
c16ed4be
CW
12433 if (mode_cmd->pitches[0] & 63) {
12434 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12435 mode_cmd->pitches[0]);
57cd6508 12436 return -EINVAL;
c16ed4be 12437 }
57cd6508 12438
a35cdaa0
CW
12439 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12440 pitch_limit = 32*1024;
12441 } else if (INTEL_INFO(dev)->gen >= 4) {
12442 if (obj->tiling_mode)
12443 pitch_limit = 16*1024;
12444 else
12445 pitch_limit = 32*1024;
12446 } else if (INTEL_INFO(dev)->gen >= 3) {
12447 if (obj->tiling_mode)
12448 pitch_limit = 8*1024;
12449 else
12450 pitch_limit = 16*1024;
12451 } else
12452 /* XXX DSPC is limited to 4k tiled */
12453 pitch_limit = 8*1024;
12454
12455 if (mode_cmd->pitches[0] > pitch_limit) {
12456 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12457 obj->tiling_mode ? "tiled" : "linear",
12458 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12459 return -EINVAL;
c16ed4be 12460 }
5d7bd705
VS
12461
12462 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12463 mode_cmd->pitches[0] != obj->stride) {
12464 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12465 mode_cmd->pitches[0], obj->stride);
5d7bd705 12466 return -EINVAL;
c16ed4be 12467 }
5d7bd705 12468
57779d06 12469 /* Reject formats not supported by any plane early. */
308e5bcb 12470 switch (mode_cmd->pixel_format) {
57779d06 12471 case DRM_FORMAT_C8:
04b3924d
VS
12472 case DRM_FORMAT_RGB565:
12473 case DRM_FORMAT_XRGB8888:
12474 case DRM_FORMAT_ARGB8888:
57779d06
VS
12475 break;
12476 case DRM_FORMAT_XRGB1555:
12477 case DRM_FORMAT_ARGB1555:
c16ed4be 12478 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12479 DRM_DEBUG("unsupported pixel format: %s\n",
12480 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12481 return -EINVAL;
c16ed4be 12482 }
57779d06
VS
12483 break;
12484 case DRM_FORMAT_XBGR8888:
12485 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12486 case DRM_FORMAT_XRGB2101010:
12487 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12488 case DRM_FORMAT_XBGR2101010:
12489 case DRM_FORMAT_ABGR2101010:
c16ed4be 12490 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12491 DRM_DEBUG("unsupported pixel format: %s\n",
12492 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12493 return -EINVAL;
c16ed4be 12494 }
b5626747 12495 break;
04b3924d
VS
12496 case DRM_FORMAT_YUYV:
12497 case DRM_FORMAT_UYVY:
12498 case DRM_FORMAT_YVYU:
12499 case DRM_FORMAT_VYUY:
c16ed4be 12500 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12501 DRM_DEBUG("unsupported pixel format: %s\n",
12502 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12503 return -EINVAL;
c16ed4be 12504 }
57cd6508
CW
12505 break;
12506 default:
4ee62c76
VS
12507 DRM_DEBUG("unsupported pixel format: %s\n",
12508 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12509 return -EINVAL;
12510 }
12511
90f9a336
VS
12512 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12513 if (mode_cmd->offsets[0] != 0)
12514 return -EINVAL;
12515
a57ce0b2
JB
12516 aligned_height = intel_align_height(dev, mode_cmd->height,
12517 obj->tiling_mode);
53155c0a
DV
12518 /* FIXME drm helper for size checks (especially planar formats)? */
12519 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12520 return -EINVAL;
12521
c7d73f6a
DV
12522 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12523 intel_fb->obj = obj;
80075d49 12524 intel_fb->obj->framebuffer_references++;
c7d73f6a 12525
79e53945
JB
12526 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12527 if (ret) {
12528 DRM_ERROR("framebuffer init failed %d\n", ret);
12529 return ret;
12530 }
12531
79e53945
JB
12532 return 0;
12533}
12534
79e53945
JB
12535static struct drm_framebuffer *
12536intel_user_framebuffer_create(struct drm_device *dev,
12537 struct drm_file *filp,
308e5bcb 12538 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12539{
05394f39 12540 struct drm_i915_gem_object *obj;
79e53945 12541
308e5bcb
JB
12542 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12543 mode_cmd->handles[0]));
c8725226 12544 if (&obj->base == NULL)
cce13ff7 12545 return ERR_PTR(-ENOENT);
79e53945 12546
d2dff872 12547 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12548}
12549
4520f53a 12550#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12551static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12552{
12553}
12554#endif
12555
79e53945 12556static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12557 .fb_create = intel_user_framebuffer_create,
0632fef6 12558 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12559};
12560
e70236a8
JB
12561/* Set up chip specific display functions */
12562static void intel_init_display(struct drm_device *dev)
12563{
12564 struct drm_i915_private *dev_priv = dev->dev_private;
12565
ee9300bb
DV
12566 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12567 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12568 else if (IS_CHERRYVIEW(dev))
12569 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12570 else if (IS_VALLEYVIEW(dev))
12571 dev_priv->display.find_dpll = vlv_find_best_dpll;
12572 else if (IS_PINEVIEW(dev))
12573 dev_priv->display.find_dpll = pnv_find_best_dpll;
12574 else
12575 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12576
affa9354 12577 if (HAS_DDI(dev)) {
0e8ffe1b 12578 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12579 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12580 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12581 dev_priv->display.crtc_enable = haswell_crtc_enable;
12582 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12583 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12584 dev_priv->display.update_primary_plane =
12585 ironlake_update_primary_plane;
09b4ddf9 12586 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12587 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12588 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12589 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12590 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12591 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12592 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12593 dev_priv->display.update_primary_plane =
12594 ironlake_update_primary_plane;
89b667f8
JB
12595 } else if (IS_VALLEYVIEW(dev)) {
12596 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12597 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12598 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12599 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12600 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12601 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12602 dev_priv->display.update_primary_plane =
12603 i9xx_update_primary_plane;
f564048e 12604 } else {
0e8ffe1b 12605 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12606 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12607 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12608 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12609 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12610 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12611 dev_priv->display.update_primary_plane =
12612 i9xx_update_primary_plane;
f564048e 12613 }
e70236a8 12614
e70236a8 12615 /* Returns the core display clock speed */
25eb05fc
JB
12616 if (IS_VALLEYVIEW(dev))
12617 dev_priv->display.get_display_clock_speed =
12618 valleyview_get_display_clock_speed;
12619 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12620 dev_priv->display.get_display_clock_speed =
12621 i945_get_display_clock_speed;
12622 else if (IS_I915G(dev))
12623 dev_priv->display.get_display_clock_speed =
12624 i915_get_display_clock_speed;
257a7ffc 12625 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12626 dev_priv->display.get_display_clock_speed =
12627 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12628 else if (IS_PINEVIEW(dev))
12629 dev_priv->display.get_display_clock_speed =
12630 pnv_get_display_clock_speed;
e70236a8
JB
12631 else if (IS_I915GM(dev))
12632 dev_priv->display.get_display_clock_speed =
12633 i915gm_get_display_clock_speed;
12634 else if (IS_I865G(dev))
12635 dev_priv->display.get_display_clock_speed =
12636 i865_get_display_clock_speed;
f0f8a9ce 12637 else if (IS_I85X(dev))
e70236a8
JB
12638 dev_priv->display.get_display_clock_speed =
12639 i855_get_display_clock_speed;
12640 else /* 852, 830 */
12641 dev_priv->display.get_display_clock_speed =
12642 i830_get_display_clock_speed;
12643
3bb11b53 12644 if (IS_G4X(dev)) {
e0dac65e 12645 dev_priv->display.write_eld = g4x_write_eld;
3bb11b53
SJ
12646 } else if (IS_GEN5(dev)) {
12647 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12648 dev_priv->display.write_eld = ironlake_write_eld;
12649 } else if (IS_GEN6(dev)) {
12650 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12651 dev_priv->display.write_eld = ironlake_write_eld;
12652 dev_priv->display.modeset_global_resources =
12653 snb_modeset_global_resources;
12654 } else if (IS_IVYBRIDGE(dev)) {
12655 /* FIXME: detect B0+ stepping and use auto training */
12656 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12657 dev_priv->display.write_eld = ironlake_write_eld;
12658 dev_priv->display.modeset_global_resources =
12659 ivb_modeset_global_resources;
059b2fe9 12660 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53
SJ
12661 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12662 dev_priv->display.write_eld = haswell_write_eld;
12663 dev_priv->display.modeset_global_resources =
12664 haswell_modeset_global_resources;
30a970c6
JB
12665 } else if (IS_VALLEYVIEW(dev)) {
12666 dev_priv->display.modeset_global_resources =
12667 valleyview_modeset_global_resources;
9ca2fe73 12668 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12669 }
8c9f3aaf
JB
12670
12671 /* Default just returns -ENODEV to indicate unsupported */
12672 dev_priv->display.queue_flip = intel_default_queue_flip;
12673
12674 switch (INTEL_INFO(dev)->gen) {
12675 case 2:
12676 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12677 break;
12678
12679 case 3:
12680 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12681 break;
12682
12683 case 4:
12684 case 5:
12685 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12686 break;
12687
12688 case 6:
12689 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12690 break;
7c9017e5 12691 case 7:
4e0bbc31 12692 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12693 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12694 break;
8c9f3aaf 12695 }
7bd688cd
JN
12696
12697 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12698
12699 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12700}
12701
b690e96c
JB
12702/*
12703 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12704 * resume, or other times. This quirk makes sure that's the case for
12705 * affected systems.
12706 */
0206e353 12707static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12708{
12709 struct drm_i915_private *dev_priv = dev->dev_private;
12710
12711 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12712 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12713}
12714
b6b5d049
VS
12715static void quirk_pipeb_force(struct drm_device *dev)
12716{
12717 struct drm_i915_private *dev_priv = dev->dev_private;
12718
12719 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12720 DRM_INFO("applying pipe b force quirk\n");
12721}
12722
435793df
KP
12723/*
12724 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12725 */
12726static void quirk_ssc_force_disable(struct drm_device *dev)
12727{
12728 struct drm_i915_private *dev_priv = dev->dev_private;
12729 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12730 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12731}
12732
4dca20ef 12733/*
5a15ab5b
CE
12734 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12735 * brightness value
4dca20ef
CE
12736 */
12737static void quirk_invert_brightness(struct drm_device *dev)
12738{
12739 struct drm_i915_private *dev_priv = dev->dev_private;
12740 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12741 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12742}
12743
9c72cc6f
SD
12744/* Some VBT's incorrectly indicate no backlight is present */
12745static void quirk_backlight_present(struct drm_device *dev)
12746{
12747 struct drm_i915_private *dev_priv = dev->dev_private;
12748 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12749 DRM_INFO("applying backlight present quirk\n");
12750}
12751
b690e96c
JB
12752struct intel_quirk {
12753 int device;
12754 int subsystem_vendor;
12755 int subsystem_device;
12756 void (*hook)(struct drm_device *dev);
12757};
12758
5f85f176
EE
12759/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12760struct intel_dmi_quirk {
12761 void (*hook)(struct drm_device *dev);
12762 const struct dmi_system_id (*dmi_id_list)[];
12763};
12764
12765static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12766{
12767 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12768 return 1;
12769}
12770
12771static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12772 {
12773 .dmi_id_list = &(const struct dmi_system_id[]) {
12774 {
12775 .callback = intel_dmi_reverse_brightness,
12776 .ident = "NCR Corporation",
12777 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12778 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12779 },
12780 },
12781 { } /* terminating entry */
12782 },
12783 .hook = quirk_invert_brightness,
12784 },
12785};
12786
c43b5634 12787static struct intel_quirk intel_quirks[] = {
b690e96c 12788 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12789 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12790
b690e96c
JB
12791 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12792 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12793
b690e96c
JB
12794 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12795 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12796
5f080c0f
VS
12797 /* 830 needs to leave pipe A & dpll A up */
12798 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12799
b6b5d049
VS
12800 /* 830 needs to leave pipe B & dpll B up */
12801 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12802
435793df
KP
12803 /* Lenovo U160 cannot use SSC on LVDS */
12804 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12805
12806 /* Sony Vaio Y cannot use SSC on LVDS */
12807 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12808
be505f64
AH
12809 /* Acer Aspire 5734Z must invert backlight brightness */
12810 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12811
12812 /* Acer/eMachines G725 */
12813 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12814
12815 /* Acer/eMachines e725 */
12816 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12817
12818 /* Acer/Packard Bell NCL20 */
12819 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12820
12821 /* Acer Aspire 4736Z */
12822 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12823
12824 /* Acer Aspire 5336 */
12825 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12826
12827 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12828 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 12829
dfb3d47b
SD
12830 /* Acer C720 Chromebook (Core i3 4005U) */
12831 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12832
d4967d8c
SD
12833 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12834 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12835
12836 /* HP Chromebook 14 (Celeron 2955U) */
12837 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12838};
12839
12840static void intel_init_quirks(struct drm_device *dev)
12841{
12842 struct pci_dev *d = dev->pdev;
12843 int i;
12844
12845 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12846 struct intel_quirk *q = &intel_quirks[i];
12847
12848 if (d->device == q->device &&
12849 (d->subsystem_vendor == q->subsystem_vendor ||
12850 q->subsystem_vendor == PCI_ANY_ID) &&
12851 (d->subsystem_device == q->subsystem_device ||
12852 q->subsystem_device == PCI_ANY_ID))
12853 q->hook(dev);
12854 }
5f85f176
EE
12855 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12856 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12857 intel_dmi_quirks[i].hook(dev);
12858 }
b690e96c
JB
12859}
12860
9cce37f4
JB
12861/* Disable the VGA plane that we never use */
12862static void i915_disable_vga(struct drm_device *dev)
12863{
12864 struct drm_i915_private *dev_priv = dev->dev_private;
12865 u8 sr1;
766aa1c4 12866 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12867
2b37c616 12868 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12869 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12870 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12871 sr1 = inb(VGA_SR_DATA);
12872 outb(sr1 | 1<<5, VGA_SR_DATA);
12873 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12874 udelay(300);
12875
69769f9a
VS
12876 /*
12877 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12878 * from S3 without preserving (some of?) the other bits.
12879 */
12880 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
9cce37f4
JB
12881 POSTING_READ(vga_reg);
12882}
12883
f817586c
DV
12884void intel_modeset_init_hw(struct drm_device *dev)
12885{
a8f78b58
ED
12886 intel_prepare_ddi(dev);
12887
f8bf63fd
VS
12888 if (IS_VALLEYVIEW(dev))
12889 vlv_update_cdclk(dev);
12890
f817586c
DV
12891 intel_init_clock_gating(dev);
12892
8090c6b9 12893 intel_enable_gt_powersave(dev);
f817586c
DV
12894}
12895
7d708ee4
ID
12896void intel_modeset_suspend_hw(struct drm_device *dev)
12897{
12898 intel_suspend_hw(dev);
12899}
12900
79e53945
JB
12901void intel_modeset_init(struct drm_device *dev)
12902{
652c393a 12903 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12904 int sprite, ret;
8cc87b75 12905 enum pipe pipe;
46f297fb 12906 struct intel_crtc *crtc;
79e53945
JB
12907
12908 drm_mode_config_init(dev);
12909
12910 dev->mode_config.min_width = 0;
12911 dev->mode_config.min_height = 0;
12912
019d96cb
DA
12913 dev->mode_config.preferred_depth = 24;
12914 dev->mode_config.prefer_shadow = 1;
12915
e6ecefaa 12916 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12917
b690e96c
JB
12918 intel_init_quirks(dev);
12919
1fa61106
ED
12920 intel_init_pm(dev);
12921
e3c74757
BW
12922 if (INTEL_INFO(dev)->num_pipes == 0)
12923 return;
12924
e70236a8
JB
12925 intel_init_display(dev);
12926
a6c45cf0
CW
12927 if (IS_GEN2(dev)) {
12928 dev->mode_config.max_width = 2048;
12929 dev->mode_config.max_height = 2048;
12930 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12931 dev->mode_config.max_width = 4096;
12932 dev->mode_config.max_height = 4096;
79e53945 12933 } else {
a6c45cf0
CW
12934 dev->mode_config.max_width = 8192;
12935 dev->mode_config.max_height = 8192;
79e53945 12936 }
068be561 12937
dc41c154
VS
12938 if (IS_845G(dev) || IS_I865G(dev)) {
12939 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12940 dev->mode_config.cursor_height = 1023;
12941 } else if (IS_GEN2(dev)) {
068be561
DL
12942 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12943 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12944 } else {
12945 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12946 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12947 }
12948
5d4545ae 12949 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12950
28c97730 12951 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12952 INTEL_INFO(dev)->num_pipes,
12953 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12954
055e393f 12955 for_each_pipe(dev_priv, pipe) {
8cc87b75 12956 intel_crtc_init(dev, pipe);
1fe47785
DL
12957 for_each_sprite(pipe, sprite) {
12958 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12959 if (ret)
06da8da2 12960 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12961 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12962 }
79e53945
JB
12963 }
12964
f42bb70d
JB
12965 intel_init_dpio(dev);
12966
e72f9fbf 12967 intel_shared_dpll_init(dev);
ee7b9f93 12968
69769f9a
VS
12969 /* save the BIOS value before clobbering it */
12970 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
9cce37f4
JB
12971 /* Just disable it once at startup */
12972 i915_disable_vga(dev);
79e53945 12973 intel_setup_outputs(dev);
11be49eb
CW
12974
12975 /* Just in case the BIOS is doing something questionable. */
12976 intel_disable_fbc(dev);
fa9fa083 12977
6e9f798d 12978 drm_modeset_lock_all(dev);
fa9fa083 12979 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12980 drm_modeset_unlock_all(dev);
46f297fb 12981
d3fcc808 12982 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12983 if (!crtc->active)
12984 continue;
12985
46f297fb 12986 /*
46f297fb
JB
12987 * Note that reserving the BIOS fb up front prevents us
12988 * from stuffing other stolen allocations like the ring
12989 * on top. This prevents some ugliness at boot time, and
12990 * can even allow for smooth boot transitions if the BIOS
12991 * fb is large enough for the active pipe configuration.
12992 */
12993 if (dev_priv->display.get_plane_config) {
12994 dev_priv->display.get_plane_config(crtc,
12995 &crtc->plane_config);
12996 /*
12997 * If the fb is shared between multiple heads, we'll
12998 * just get the first one.
12999 */
484b41dd 13000 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13001 }
46f297fb 13002 }
2c7111db
CW
13003}
13004
7fad798e
DV
13005static void intel_enable_pipe_a(struct drm_device *dev)
13006{
13007 struct intel_connector *connector;
13008 struct drm_connector *crt = NULL;
13009 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13010 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13011
13012 /* We can't just switch on the pipe A, we need to set things up with a
13013 * proper mode and output configuration. As a gross hack, enable pipe A
13014 * by enabling the load detect pipe once. */
13015 list_for_each_entry(connector,
13016 &dev->mode_config.connector_list,
13017 base.head) {
13018 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13019 crt = &connector->base;
13020 break;
13021 }
13022 }
13023
13024 if (!crt)
13025 return;
13026
208bf9fd
VS
13027 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13028 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13029}
13030
fa555837
DV
13031static bool
13032intel_check_plane_mapping(struct intel_crtc *crtc)
13033{
7eb552ae
BW
13034 struct drm_device *dev = crtc->base.dev;
13035 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13036 u32 reg, val;
13037
7eb552ae 13038 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13039 return true;
13040
13041 reg = DSPCNTR(!crtc->plane);
13042 val = I915_READ(reg);
13043
13044 if ((val & DISPLAY_PLANE_ENABLE) &&
13045 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13046 return false;
13047
13048 return true;
13049}
13050
24929352
DV
13051static void intel_sanitize_crtc(struct intel_crtc *crtc)
13052{
13053 struct drm_device *dev = crtc->base.dev;
13054 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13055 u32 reg;
24929352 13056
24929352 13057 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 13058 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
13059 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13060
d3eaf884 13061 /* restore vblank interrupts to correct state */
d297e103
VS
13062 if (crtc->active) {
13063 update_scanline_offset(crtc);
d3eaf884 13064 drm_vblank_on(dev, crtc->pipe);
d297e103 13065 } else
d3eaf884
VS
13066 drm_vblank_off(dev, crtc->pipe);
13067
24929352 13068 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13069 * disable the crtc (and hence change the state) if it is wrong. Note
13070 * that gen4+ has a fixed plane -> pipe mapping. */
13071 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13072 struct intel_connector *connector;
13073 bool plane;
13074
24929352
DV
13075 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13076 crtc->base.base.id);
13077
13078 /* Pipe has the wrong plane attached and the plane is active.
13079 * Temporarily change the plane mapping and disable everything
13080 * ... */
13081 plane = crtc->plane;
13082 crtc->plane = !plane;
9c8958bc 13083 crtc->primary_enabled = true;
24929352
DV
13084 dev_priv->display.crtc_disable(&crtc->base);
13085 crtc->plane = plane;
13086
13087 /* ... and break all links. */
13088 list_for_each_entry(connector, &dev->mode_config.connector_list,
13089 base.head) {
13090 if (connector->encoder->base.crtc != &crtc->base)
13091 continue;
13092
7f1950fb
EE
13093 connector->base.dpms = DRM_MODE_DPMS_OFF;
13094 connector->base.encoder = NULL;
24929352 13095 }
7f1950fb
EE
13096 /* multiple connectors may have the same encoder:
13097 * handle them and break crtc link separately */
13098 list_for_each_entry(connector, &dev->mode_config.connector_list,
13099 base.head)
13100 if (connector->encoder->base.crtc == &crtc->base) {
13101 connector->encoder->base.crtc = NULL;
13102 connector->encoder->connectors_active = false;
13103 }
24929352
DV
13104
13105 WARN_ON(crtc->active);
13106 crtc->base.enabled = false;
13107 }
24929352 13108
7fad798e
DV
13109 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13110 crtc->pipe == PIPE_A && !crtc->active) {
13111 /* BIOS forgot to enable pipe A, this mostly happens after
13112 * resume. Force-enable the pipe to fix this, the update_dpms
13113 * call below we restore the pipe to the right state, but leave
13114 * the required bits on. */
13115 intel_enable_pipe_a(dev);
13116 }
13117
24929352
DV
13118 /* Adjust the state of the output pipe according to whether we
13119 * have active connectors/encoders. */
13120 intel_crtc_update_dpms(&crtc->base);
13121
13122 if (crtc->active != crtc->base.enabled) {
13123 struct intel_encoder *encoder;
13124
13125 /* This can happen either due to bugs in the get_hw_state
13126 * functions or because the pipe is force-enabled due to the
13127 * pipe A quirk. */
13128 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13129 crtc->base.base.id,
13130 crtc->base.enabled ? "enabled" : "disabled",
13131 crtc->active ? "enabled" : "disabled");
13132
13133 crtc->base.enabled = crtc->active;
13134
13135 /* Because we only establish the connector -> encoder ->
13136 * crtc links if something is active, this means the
13137 * crtc is now deactivated. Break the links. connector
13138 * -> encoder links are only establish when things are
13139 * actually up, hence no need to break them. */
13140 WARN_ON(crtc->active);
13141
13142 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13143 WARN_ON(encoder->connectors_active);
13144 encoder->base.crtc = NULL;
13145 }
13146 }
c5ab3bc0 13147
a3ed6aad 13148 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13149 /*
13150 * We start out with underrun reporting disabled to avoid races.
13151 * For correct bookkeeping mark this on active crtcs.
13152 *
c5ab3bc0
DV
13153 * Also on gmch platforms we dont have any hardware bits to
13154 * disable the underrun reporting. Which means we need to start
13155 * out with underrun reporting disabled also on inactive pipes,
13156 * since otherwise we'll complain about the garbage we read when
13157 * e.g. coming up after runtime pm.
13158 *
4cc31489
DV
13159 * No protection against concurrent access is required - at
13160 * worst a fifo underrun happens which also sets this to false.
13161 */
13162 crtc->cpu_fifo_underrun_disabled = true;
13163 crtc->pch_fifo_underrun_disabled = true;
13164 }
24929352
DV
13165}
13166
13167static void intel_sanitize_encoder(struct intel_encoder *encoder)
13168{
13169 struct intel_connector *connector;
13170 struct drm_device *dev = encoder->base.dev;
13171
13172 /* We need to check both for a crtc link (meaning that the
13173 * encoder is active and trying to read from a pipe) and the
13174 * pipe itself being active. */
13175 bool has_active_crtc = encoder->base.crtc &&
13176 to_intel_crtc(encoder->base.crtc)->active;
13177
13178 if (encoder->connectors_active && !has_active_crtc) {
13179 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13180 encoder->base.base.id,
8e329a03 13181 encoder->base.name);
24929352
DV
13182
13183 /* Connector is active, but has no active pipe. This is
13184 * fallout from our resume register restoring. Disable
13185 * the encoder manually again. */
13186 if (encoder->base.crtc) {
13187 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13188 encoder->base.base.id,
8e329a03 13189 encoder->base.name);
24929352 13190 encoder->disable(encoder);
a62d1497
VS
13191 if (encoder->post_disable)
13192 encoder->post_disable(encoder);
24929352 13193 }
7f1950fb
EE
13194 encoder->base.crtc = NULL;
13195 encoder->connectors_active = false;
24929352
DV
13196
13197 /* Inconsistent output/port/pipe state happens presumably due to
13198 * a bug in one of the get_hw_state functions. Or someplace else
13199 * in our code, like the register restore mess on resume. Clamp
13200 * things to off as a safer default. */
13201 list_for_each_entry(connector,
13202 &dev->mode_config.connector_list,
13203 base.head) {
13204 if (connector->encoder != encoder)
13205 continue;
7f1950fb
EE
13206 connector->base.dpms = DRM_MODE_DPMS_OFF;
13207 connector->base.encoder = NULL;
24929352
DV
13208 }
13209 }
13210 /* Enabled encoders without active connectors will be fixed in
13211 * the crtc fixup. */
13212}
13213
04098753 13214void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13215{
13216 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13217 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13218
04098753
ID
13219 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13220 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13221 i915_disable_vga(dev);
13222 }
13223}
13224
13225void i915_redisable_vga(struct drm_device *dev)
13226{
13227 struct drm_i915_private *dev_priv = dev->dev_private;
13228
8dc8a27c
PZ
13229 /* This function can be called both from intel_modeset_setup_hw_state or
13230 * at a very early point in our resume sequence, where the power well
13231 * structures are not yet restored. Since this function is at a very
13232 * paranoid "someone might have enabled VGA while we were not looking"
13233 * level, just check if the power well is enabled instead of trying to
13234 * follow the "don't touch the power well if we don't need it" policy
13235 * the rest of the driver uses. */
04098753 13236 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13237 return;
13238
04098753 13239 i915_redisable_vga_power_on(dev);
0fde901f
KM
13240}
13241
98ec7739
VS
13242static bool primary_get_hw_state(struct intel_crtc *crtc)
13243{
13244 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13245
13246 if (!crtc->active)
13247 return false;
13248
13249 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13250}
13251
30e984df 13252static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13253{
13254 struct drm_i915_private *dev_priv = dev->dev_private;
13255 enum pipe pipe;
24929352
DV
13256 struct intel_crtc *crtc;
13257 struct intel_encoder *encoder;
13258 struct intel_connector *connector;
5358901f 13259 int i;
24929352 13260
d3fcc808 13261 for_each_intel_crtc(dev, crtc) {
88adfff1 13262 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13263
9953599b
DV
13264 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13265
0e8ffe1b
DV
13266 crtc->active = dev_priv->display.get_pipe_config(crtc,
13267 &crtc->config);
24929352
DV
13268
13269 crtc->base.enabled = crtc->active;
98ec7739 13270 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13271
13272 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13273 crtc->base.base.id,
13274 crtc->active ? "enabled" : "disabled");
13275 }
13276
5358901f
DV
13277 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13278 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13279
13280 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13281 pll->active = 0;
d3fcc808 13282 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13283 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13284 pll->active++;
13285 }
13286 pll->refcount = pll->active;
13287
35c95375
DV
13288 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13289 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13290
13291 if (pll->refcount)
13292 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13293 }
13294
b2784e15 13295 for_each_intel_encoder(dev, encoder) {
24929352
DV
13296 pipe = 0;
13297
13298 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13299 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13300 encoder->base.crtc = &crtc->base;
1d37b689 13301 encoder->get_config(encoder, &crtc->config);
24929352
DV
13302 } else {
13303 encoder->base.crtc = NULL;
13304 }
13305
13306 encoder->connectors_active = false;
6f2bcceb 13307 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13308 encoder->base.base.id,
8e329a03 13309 encoder->base.name,
24929352 13310 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13311 pipe_name(pipe));
24929352
DV
13312 }
13313
13314 list_for_each_entry(connector, &dev->mode_config.connector_list,
13315 base.head) {
13316 if (connector->get_hw_state(connector)) {
13317 connector->base.dpms = DRM_MODE_DPMS_ON;
13318 connector->encoder->connectors_active = true;
13319 connector->base.encoder = &connector->encoder->base;
13320 } else {
13321 connector->base.dpms = DRM_MODE_DPMS_OFF;
13322 connector->base.encoder = NULL;
13323 }
13324 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13325 connector->base.base.id,
c23cc417 13326 connector->base.name,
24929352
DV
13327 connector->base.encoder ? "enabled" : "disabled");
13328 }
30e984df
DV
13329}
13330
13331/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13332 * and i915 state tracking structures. */
13333void intel_modeset_setup_hw_state(struct drm_device *dev,
13334 bool force_restore)
13335{
13336 struct drm_i915_private *dev_priv = dev->dev_private;
13337 enum pipe pipe;
30e984df
DV
13338 struct intel_crtc *crtc;
13339 struct intel_encoder *encoder;
35c95375 13340 int i;
30e984df
DV
13341
13342 intel_modeset_readout_hw_state(dev);
24929352 13343
babea61d
JB
13344 /*
13345 * Now that we have the config, copy it to each CRTC struct
13346 * Note that this could go away if we move to using crtc_config
13347 * checking everywhere.
13348 */
d3fcc808 13349 for_each_intel_crtc(dev, crtc) {
d330a953 13350 if (crtc->active && i915.fastboot) {
f6a83288 13351 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13352 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13353 crtc->base.base.id);
13354 drm_mode_debug_printmodeline(&crtc->base.mode);
13355 }
13356 }
13357
24929352 13358 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13359 for_each_intel_encoder(dev, encoder) {
24929352
DV
13360 intel_sanitize_encoder(encoder);
13361 }
13362
055e393f 13363 for_each_pipe(dev_priv, pipe) {
24929352
DV
13364 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13365 intel_sanitize_crtc(crtc);
c0b03411 13366 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13367 }
9a935856 13368
35c95375
DV
13369 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13370 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13371
13372 if (!pll->on || pll->active)
13373 continue;
13374
13375 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13376
13377 pll->disable(dev_priv, pll);
13378 pll->on = false;
13379 }
13380
96f90c54 13381 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13382 ilk_wm_get_hw_state(dev);
13383
45e2b5f6 13384 if (force_restore) {
7d0bc1ea
VS
13385 i915_redisable_vga(dev);
13386
f30da187
DV
13387 /*
13388 * We need to use raw interfaces for restoring state to avoid
13389 * checking (bogus) intermediate states.
13390 */
055e393f 13391 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13392 struct drm_crtc *crtc =
13393 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13394
13395 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13396 crtc->primary->fb);
45e2b5f6
DV
13397 }
13398 } else {
13399 intel_modeset_update_staged_output_state(dev);
13400 }
8af6cf88
DV
13401
13402 intel_modeset_check_state(dev);
2c7111db
CW
13403}
13404
13405void intel_modeset_gem_init(struct drm_device *dev)
13406{
484b41dd 13407 struct drm_crtc *c;
2ff8fde1 13408 struct drm_i915_gem_object *obj;
484b41dd 13409
ae48434c
ID
13410 mutex_lock(&dev->struct_mutex);
13411 intel_init_gt_powersave(dev);
13412 mutex_unlock(&dev->struct_mutex);
13413
1833b134 13414 intel_modeset_init_hw(dev);
02e792fb
DV
13415
13416 intel_setup_overlay(dev);
484b41dd
JB
13417
13418 /*
13419 * Make sure any fbs we allocated at startup are properly
13420 * pinned & fenced. When we do the allocation it's too early
13421 * for this.
13422 */
13423 mutex_lock(&dev->struct_mutex);
70e1e0ec 13424 for_each_crtc(dev, c) {
2ff8fde1
MR
13425 obj = intel_fb_obj(c->primary->fb);
13426 if (obj == NULL)
484b41dd
JB
13427 continue;
13428
2ff8fde1 13429 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13430 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13431 to_intel_crtc(c)->pipe);
66e514c1
DA
13432 drm_framebuffer_unreference(c->primary->fb);
13433 c->primary->fb = NULL;
484b41dd
JB
13434 }
13435 }
13436 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13437}
13438
4932e2c3
ID
13439void intel_connector_unregister(struct intel_connector *intel_connector)
13440{
13441 struct drm_connector *connector = &intel_connector->base;
13442
13443 intel_panel_destroy_backlight(connector);
34ea3d38 13444 drm_connector_unregister(connector);
4932e2c3
ID
13445}
13446
79e53945
JB
13447void intel_modeset_cleanup(struct drm_device *dev)
13448{
652c393a 13449 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13450 struct drm_connector *connector;
652c393a 13451
fd0c0642
DV
13452 /*
13453 * Interrupts and polling as the first thing to avoid creating havoc.
13454 * Too much stuff here (turning of rps, connectors, ...) would
13455 * experience fancy races otherwise.
13456 */
13457 drm_irq_uninstall(dev);
1d0d343a 13458 intel_hpd_cancel_work(dev_priv);
eb21b92b
JB
13459 dev_priv->pm._irqs_disabled = true;
13460
fd0c0642
DV
13461 /*
13462 * Due to the hpd irq storm handling the hotplug work can re-arm the
13463 * poll handlers. Hence disable polling after hpd handling is shut down.
13464 */
f87ea761 13465 drm_kms_helper_poll_fini(dev);
fd0c0642 13466
652c393a
JB
13467 mutex_lock(&dev->struct_mutex);
13468
723bfd70
JB
13469 intel_unregister_dsm_handler();
13470
973d04f9 13471 intel_disable_fbc(dev);
e70236a8 13472
8090c6b9 13473 intel_disable_gt_powersave(dev);
0cdab21f 13474
930ebb46
DV
13475 ironlake_teardown_rc6(dev);
13476
69341a5e
KH
13477 mutex_unlock(&dev->struct_mutex);
13478
1630fe75
CW
13479 /* flush any delayed tasks or pending work */
13480 flush_scheduled_work();
13481
db31af1d
JN
13482 /* destroy the backlight and sysfs files before encoders/connectors */
13483 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13484 struct intel_connector *intel_connector;
13485
13486 intel_connector = to_intel_connector(connector);
13487 intel_connector->unregister(intel_connector);
db31af1d 13488 }
d9255d57 13489
79e53945 13490 drm_mode_config_cleanup(dev);
4d7bb011
DV
13491
13492 intel_cleanup_overlay(dev);
ae48434c
ID
13493
13494 mutex_lock(&dev->struct_mutex);
13495 intel_cleanup_gt_powersave(dev);
13496 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13497}
13498
f1c79df3
ZW
13499/*
13500 * Return which encoder is currently attached for connector.
13501 */
df0e9248 13502struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13503{
df0e9248
CW
13504 return &intel_attached_encoder(connector)->base;
13505}
f1c79df3 13506
df0e9248
CW
13507void intel_connector_attach_encoder(struct intel_connector *connector,
13508 struct intel_encoder *encoder)
13509{
13510 connector->encoder = encoder;
13511 drm_mode_connector_attach_encoder(&connector->base,
13512 &encoder->base);
79e53945 13513}
28d52043
DA
13514
13515/*
13516 * set vga decode state - true == enable VGA decode
13517 */
13518int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13519{
13520 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13521 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13522 u16 gmch_ctrl;
13523
75fa041d
CW
13524 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13525 DRM_ERROR("failed to read control word\n");
13526 return -EIO;
13527 }
13528
c0cc8a55
CW
13529 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13530 return 0;
13531
28d52043
DA
13532 if (state)
13533 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13534 else
13535 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13536
13537 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13538 DRM_ERROR("failed to write control word\n");
13539 return -EIO;
13540 }
13541
28d52043
DA
13542 return 0;
13543}
c4a1d9e4 13544
c4a1d9e4 13545struct intel_display_error_state {
ff57f1b0
PZ
13546
13547 u32 power_well_driver;
13548
63b66e5b
CW
13549 int num_transcoders;
13550
c4a1d9e4
CW
13551 struct intel_cursor_error_state {
13552 u32 control;
13553 u32 position;
13554 u32 base;
13555 u32 size;
52331309 13556 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13557
13558 struct intel_pipe_error_state {
ddf9c536 13559 bool power_domain_on;
c4a1d9e4 13560 u32 source;
f301b1e1 13561 u32 stat;
52331309 13562 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13563
13564 struct intel_plane_error_state {
13565 u32 control;
13566 u32 stride;
13567 u32 size;
13568 u32 pos;
13569 u32 addr;
13570 u32 surface;
13571 u32 tile_offset;
52331309 13572 } plane[I915_MAX_PIPES];
63b66e5b
CW
13573
13574 struct intel_transcoder_error_state {
ddf9c536 13575 bool power_domain_on;
63b66e5b
CW
13576 enum transcoder cpu_transcoder;
13577
13578 u32 conf;
13579
13580 u32 htotal;
13581 u32 hblank;
13582 u32 hsync;
13583 u32 vtotal;
13584 u32 vblank;
13585 u32 vsync;
13586 } transcoder[4];
c4a1d9e4
CW
13587};
13588
13589struct intel_display_error_state *
13590intel_display_capture_error_state(struct drm_device *dev)
13591{
fbee40df 13592 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13593 struct intel_display_error_state *error;
63b66e5b
CW
13594 int transcoders[] = {
13595 TRANSCODER_A,
13596 TRANSCODER_B,
13597 TRANSCODER_C,
13598 TRANSCODER_EDP,
13599 };
c4a1d9e4
CW
13600 int i;
13601
63b66e5b
CW
13602 if (INTEL_INFO(dev)->num_pipes == 0)
13603 return NULL;
13604
9d1cb914 13605 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13606 if (error == NULL)
13607 return NULL;
13608
190be112 13609 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13610 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13611
055e393f 13612 for_each_pipe(dev_priv, i) {
ddf9c536 13613 error->pipe[i].power_domain_on =
bfafe93a
ID
13614 intel_display_power_enabled_unlocked(dev_priv,
13615 POWER_DOMAIN_PIPE(i));
ddf9c536 13616 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13617 continue;
13618
5efb3e28
VS
13619 error->cursor[i].control = I915_READ(CURCNTR(i));
13620 error->cursor[i].position = I915_READ(CURPOS(i));
13621 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13622
13623 error->plane[i].control = I915_READ(DSPCNTR(i));
13624 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13625 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13626 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13627 error->plane[i].pos = I915_READ(DSPPOS(i));
13628 }
ca291363
PZ
13629 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13630 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13631 if (INTEL_INFO(dev)->gen >= 4) {
13632 error->plane[i].surface = I915_READ(DSPSURF(i));
13633 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13634 }
13635
c4a1d9e4 13636 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13637
3abfce77 13638 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13639 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13640 }
13641
13642 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13643 if (HAS_DDI(dev_priv->dev))
13644 error->num_transcoders++; /* Account for eDP. */
13645
13646 for (i = 0; i < error->num_transcoders; i++) {
13647 enum transcoder cpu_transcoder = transcoders[i];
13648
ddf9c536 13649 error->transcoder[i].power_domain_on =
bfafe93a 13650 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13651 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13652 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13653 continue;
13654
63b66e5b
CW
13655 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13656
13657 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13658 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13659 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13660 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13661 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13662 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13663 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13664 }
13665
13666 return error;
13667}
13668
edc3d884
MK
13669#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13670
c4a1d9e4 13671void
edc3d884 13672intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13673 struct drm_device *dev,
13674 struct intel_display_error_state *error)
13675{
055e393f 13676 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13677 int i;
13678
63b66e5b
CW
13679 if (!error)
13680 return;
13681
edc3d884 13682 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13683 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13684 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13685 error->power_well_driver);
055e393f 13686 for_each_pipe(dev_priv, i) {
edc3d884 13687 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13688 err_printf(m, " Power: %s\n",
13689 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13690 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13691 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13692
13693 err_printf(m, "Plane [%d]:\n", i);
13694 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13695 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13696 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13697 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13698 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13699 }
4b71a570 13700 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13701 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13702 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13703 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13704 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13705 }
13706
edc3d884
MK
13707 err_printf(m, "Cursor [%d]:\n", i);
13708 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13709 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13710 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13711 }
63b66e5b
CW
13712
13713 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13714 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13715 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13716 err_printf(m, " Power: %s\n",
13717 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13718 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13719 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13720 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13721 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13722 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13723 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13724 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13725 }
c4a1d9e4 13726}
e2fcdaa9
VS
13727
13728void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13729{
13730 struct intel_crtc *crtc;
13731
13732 for_each_intel_crtc(dev, crtc) {
13733 struct intel_unpin_work *work;
13734 unsigned long irqflags;
13735
13736 spin_lock_irqsave(&dev->event_lock, irqflags);
13737
13738 work = crtc->unpin_work;
13739
13740 if (work && work->event &&
13741 work->event->base.file_priv == file) {
13742 kfree(work->event);
13743 work->event = NULL;
13744 }
13745
13746 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13747 }
13748}
This page took 2.347741 seconds and 5 git commands to generate.