drm/i915: add debug logging to ASLE backlight set requests
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
79e53945
JB
35#include "drmP.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
ab2c0672 40#include "drm_dp_helper.h"
79e53945 41#include "drm_crtc_helper.h"
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 47static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
49
50typedef struct {
0206e353
AJ
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
79e53945
JB
60} intel_clock_t;
61
62typedef struct {
0206e353 63 int min, max;
79e53945
JB
64} intel_range_t;
65
66typedef struct {
0206e353
AJ
67 int dot_limit;
68 int p2_slow, p2_fast;
79e53945
JB
69} intel_p2_t;
70
71#define INTEL_P2_NUM 2
d4906093
ML
72typedef struct intel_limit intel_limit_t;
73struct intel_limit {
0206e353
AJ
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 77 int, int, intel_clock_t *, intel_clock_t *);
d4906093 78};
79e53945 79
2377b741
JB
80/* FDI */
81#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
d4906093
ML
83static bool
84intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
d4906093
ML
87static bool
88intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
79e53945 91
a4fc5ed6
KP
92static bool
93intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
5eb08b69 96static bool
f2b115e6 97intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
a4fc5ed6 100
a0c4da24
JB
101static bool
102intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
105
021357ac
CW
106static inline u32 /* units of 100MHz */
107intel_fdi_link_freq(struct drm_device *dev)
108{
8b99e68c
CW
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
021357ac
CW
114}
115
e4b36699 116static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
d4906093 127 .find_pll = intel_find_best_PLL,
e4b36699
KP
128};
129
130static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
d4906093 141 .find_pll = intel_find_best_PLL,
e4b36699 142};
273e27ca 143
e4b36699 144static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
d4906093 155 .find_pll = intel_find_best_PLL,
e4b36699
KP
156};
157
158static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
d4906093 169 .find_pll = intel_find_best_PLL,
e4b36699
KP
170};
171
273e27ca 172
e4b36699 173static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
044c7c41 185 },
d4906093 186 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
187};
188
189static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
d4906093 200 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
201};
202
203static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
044c7c41 214 },
d4906093 215 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
216};
217
218static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
044c7c41 229 },
d4906093 230 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
273e27ca 243 .p2_slow = 10, .p2_fast = 10 },
0206e353 244 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
245};
246
f2b115e6 247static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 250 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
273e27ca 253 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
6115707b 260 .find_pll = intel_find_best_PLL,
e4b36699
KP
261};
262
f2b115e6 263static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
6115707b 274 .find_pll = intel_find_best_PLL,
e4b36699
KP
275};
276
273e27ca
EA
277/* Ironlake / Sandybridge
278 *
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
281 */
b91ad0ec 282static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
4547668a 293 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
294};
295
b91ad0ec 296static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
307 .find_pll = intel_g4x_find_best_PLL,
308};
309
310static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
321 .find_pll = intel_g4x_find_best_PLL,
322};
323
273e27ca 324/* LVDS 100mhz refclk limits. */
b91ad0ec 325static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
0206e353 333 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
336 .find_pll = intel_g4x_find_best_PLL,
337};
338
339static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
0206e353 347 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
350 .find_pll = intel_g4x_find_best_PLL,
351};
352
353static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
273e27ca 363 .p2_slow = 10, .p2_fast = 10 },
0206e353 364 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
365};
366
a0c4da24
JB
367static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
379};
380
381static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
17dc9257 383 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
393};
394
395static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
396 .dot = { .min = 25000, .max = 270000 },
397 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 398 .n = { .min = 1, .max = 7 },
74a4dd2e 399 .m = { .min = 22, .max = 450 },
a0c4da24
JB
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
407};
408
57f350b6
JB
409u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410{
411 unsigned long flags;
412 u32 val = 0;
413
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
418 }
419
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
426 }
427 val = I915_READ(DPIO_DATA);
428
429out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
432}
433
a0c4da24
JB
434static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
436{
437 unsigned long flags;
438
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
443 }
444
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
451
452out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454}
455
57f350b6
JB
456static void vlv_init_dpio(struct drm_device *dev)
457{
458 struct drm_i915_private *dev_priv = dev->dev_private;
459
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
465}
466
618563e3
DV
467static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468{
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
471}
472
473static const struct dmi_system_id intel_dual_link_lvds[] = {
474 {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480 },
481 },
482 { } /* terminating entry */
483};
484
b0354385
TI
485static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
487{
488 unsigned int val;
489
121d527a
TI
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
493
618563e3
DV
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
496
b0354385
TI
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
504 */
505 val = I915_READ(reg);
14d94a3d 506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
509 }
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511}
512
1b894b59
CW
513static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
2c07245f 515{
b91ad0ec
ZW
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 518 const intel_limit_t *limit;
b91ad0ec
ZW
519
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 522 /* LVDS dual channel */
1b894b59 523 if (refclk == 100000)
b91ad0ec
ZW
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
1b894b59 528 if (refclk == 100000)
b91ad0ec
ZW
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
532 }
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
2c07245f 536 else
b91ad0ec 537 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
538
539 return limit;
540}
541
044c7c41
ML
542static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543{
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
547
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 549 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 550 /* LVDS with dual channel */
e4b36699 551 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
552 else
553 /* LVDS with dual channel */
e4b36699 554 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 557 limit = &intel_limits_g4x_hdmi;
044c7c41 558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 559 limit = &intel_limits_g4x_sdvo;
0206e353 560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 561 limit = &intel_limits_g4x_display_port;
044c7c41 562 } else /* The option is for other outputs */
e4b36699 563 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
564
565 return limit;
566}
567
1b894b59 568static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
569{
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
572
bad720ff 573 if (HAS_PCH_SPLIT(dev))
1b894b59 574 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 575 else if (IS_G4X(dev)) {
044c7c41 576 limit = intel_g4x_limit(crtc);
f2b115e6 577 } else if (IS_PINEVIEW(dev)) {
2177832f 578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 579 limit = &intel_limits_pineview_lvds;
2177832f 580 else
f2b115e6 581 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 596 limit = &intel_limits_i8xx_lvds;
79e53945 597 else
e4b36699 598 limit = &intel_limits_i8xx_dvo;
79e53945
JB
599 }
600 return limit;
601}
602
f2b115e6
AJ
603/* m1 is reserved as 0 in Pineview, n is a ring counter */
604static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 605{
2177832f
SL
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
610}
611
612static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613{
f2b115e6
AJ
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
2177832f
SL
616 return;
617 }
79e53945
JB
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
622}
623
79e53945
JB
624/**
625 * Returns whether any output on the specified pipe is of the specified type
626 */
4ef69c7a 627bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 628{
4ef69c7a 629 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
630 struct intel_encoder *encoder;
631
6c2b7c12
DV
632 for_each_encoder_on_crtc(dev, crtc, encoder)
633 if (encoder->type == type)
4ef69c7a
CW
634 return true;
635
636 return false;
79e53945
JB
637}
638
7c04d1d9 639#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
640/**
641 * Returns whether the given set of divisors are valid for a given refclk with
642 * the given connectors.
643 */
644
1b894b59
CW
645static bool intel_PLL_is_valid(struct drm_device *dev,
646 const intel_limit_t *limit,
647 const intel_clock_t *clock)
79e53945 648{
79e53945 649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 650 INTELPllInvalid("p1 out of range\n");
79e53945 651 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 652 INTELPllInvalid("p out of range\n");
79e53945 653 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 654 INTELPllInvalid("m2 out of range\n");
79e53945 655 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 656 INTELPllInvalid("m1 out of range\n");
f2b115e6 657 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 658 INTELPllInvalid("m1 <= m2\n");
79e53945 659 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 660 INTELPllInvalid("m out of range\n");
79e53945 661 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 662 INTELPllInvalid("n out of range\n");
79e53945 663 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 664 INTELPllInvalid("vco out of range\n");
79e53945
JB
665 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 * connector, etc., rather than just a single range.
667 */
668 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 669 INTELPllInvalid("dot out of range\n");
79e53945
JB
670
671 return true;
672}
673
d4906093
ML
674static bool
675intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
d4906093 678
79e53945
JB
679{
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 intel_clock_t clock;
79e53945
JB
683 int err = target;
684
bc5e5718 685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 686 (I915_READ(LVDS)) != 0) {
79e53945
JB
687 /*
688 * For LVDS, if the panel is on, just rely on its current
689 * settings for dual-channel. We haven't figured out how to
690 * reliably set up different single/dual channel state, if we
691 * even can.
692 */
b0354385 693 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
694 clock.p2 = limit->p2.p2_fast;
695 else
696 clock.p2 = limit->p2.p2_slow;
697 } else {
698 if (target < limit->p2.dot_limit)
699 clock.p2 = limit->p2.p2_slow;
700 else
701 clock.p2 = limit->p2.p2_fast;
702 }
703
0206e353 704 memset(best_clock, 0, sizeof(*best_clock));
79e53945 705
42158660
ZY
706 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707 clock.m1++) {
708 for (clock.m2 = limit->m2.min;
709 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
710 /* m1 is always 0 in Pineview */
711 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
712 break;
713 for (clock.n = limit->n.min;
714 clock.n <= limit->n.max; clock.n++) {
715 for (clock.p1 = limit->p1.min;
716 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
717 int this_err;
718
2177832f 719 intel_clock(dev, refclk, &clock);
1b894b59
CW
720 if (!intel_PLL_is_valid(dev, limit,
721 &clock))
79e53945 722 continue;
cec2f356
SP
723 if (match_clock &&
724 clock.p != match_clock->p)
725 continue;
79e53945
JB
726
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
731 }
732 }
733 }
734 }
735 }
736
737 return (err != target);
738}
739
d4906093
ML
740static bool
741intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
742 int target, int refclk, intel_clock_t *match_clock,
743 intel_clock_t *best_clock)
d4906093
ML
744{
745 struct drm_device *dev = crtc->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 intel_clock_t clock;
748 int max_n;
749 bool found;
6ba770dc
AJ
750 /* approximately equals target * 0.00585 */
751 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
752 found = false;
753
754 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
755 int lvds_reg;
756
c619eed4 757 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
758 lvds_reg = PCH_LVDS;
759 else
760 lvds_reg = LVDS;
761 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
762 LVDS_CLKB_POWER_UP)
763 clock.p2 = limit->p2.p2_fast;
764 else
765 clock.p2 = limit->p2.p2_slow;
766 } else {
767 if (target < limit->p2.dot_limit)
768 clock.p2 = limit->p2.p2_slow;
769 else
770 clock.p2 = limit->p2.p2_fast;
771 }
772
773 memset(best_clock, 0, sizeof(*best_clock));
774 max_n = limit->n.max;
f77f13e2 775 /* based on hardware requirement, prefer smaller n to precision */
d4906093 776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 777 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
778 for (clock.m1 = limit->m1.max;
779 clock.m1 >= limit->m1.min; clock.m1--) {
780 for (clock.m2 = limit->m2.max;
781 clock.m2 >= limit->m2.min; clock.m2--) {
782 for (clock.p1 = limit->p1.max;
783 clock.p1 >= limit->p1.min; clock.p1--) {
784 int this_err;
785
2177832f 786 intel_clock(dev, refclk, &clock);
1b894b59
CW
787 if (!intel_PLL_is_valid(dev, limit,
788 &clock))
d4906093 789 continue;
cec2f356
SP
790 if (match_clock &&
791 clock.p != match_clock->p)
792 continue;
1b894b59
CW
793
794 this_err = abs(clock.dot - target);
d4906093
ML
795 if (this_err < err_most) {
796 *best_clock = clock;
797 err_most = this_err;
798 max_n = clock.n;
799 found = true;
800 }
801 }
802 }
803 }
804 }
2c07245f
ZW
805 return found;
806}
807
5eb08b69 808static bool
f2b115e6 809intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
5eb08b69
ZW
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
4547668a 815
5eb08b69
ZW
816 if (target < 200000) {
817 clock.n = 1;
818 clock.p1 = 2;
819 clock.p2 = 10;
820 clock.m1 = 12;
821 clock.m2 = 9;
822 } else {
823 clock.n = 2;
824 clock.p1 = 1;
825 clock.p2 = 10;
826 clock.m1 = 14;
827 clock.m2 = 8;
828 }
829 intel_clock(dev, refclk, &clock);
830 memcpy(best_clock, &clock, sizeof(intel_clock_t));
831 return true;
832}
833
a4fc5ed6
KP
834/* DisplayPort has only two frequencies, 162MHz and 270MHz */
835static bool
836intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
a4fc5ed6 839{
5eddb70b
CW
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.p1 = 2;
843 clock.p2 = 10;
844 clock.n = 2;
845 clock.m1 = 23;
846 clock.m2 = 8;
847 } else {
848 clock.p1 = 1;
849 clock.p2 = 10;
850 clock.n = 1;
851 clock.m1 = 14;
852 clock.m2 = 2;
853 }
854 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855 clock.p = (clock.p1 * clock.p2);
856 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857 clock.vco = 0;
858 memcpy(best_clock, &clock, sizeof(intel_clock_t));
859 return true;
a4fc5ed6 860}
a0c4da24
JB
861static bool
862intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
865{
866 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867 u32 m, n, fastclk;
868 u32 updrate, minupdate, fracbits, p;
869 unsigned long bestppm, ppm, absppm;
870 int dotclk, flag;
871
af447bd3 872 flag = 0;
a0c4da24
JB
873 dotclk = target * 1000;
874 bestppm = 1000000;
875 ppm = absppm = 0;
876 fastclk = dotclk / (2*100);
877 updrate = 0;
878 minupdate = 19200;
879 fracbits = 1;
880 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881 bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883 /* based on hardware requirement, prefer smaller n to precision */
884 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885 updrate = refclk / n;
886 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888 if (p2 > 10)
889 p2 = p2 - 1;
890 p = p1 * p2;
891 /* based on hardware requirement, prefer bigger m1,m2 values */
892 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893 m2 = (((2*(fastclk * p * n / m1 )) +
894 refclk) / (2*refclk));
895 m = m1 * m2;
896 vco = updrate * m;
897 if (vco >= limit->vco.min && vco < limit->vco.max) {
898 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899 absppm = (ppm > 0) ? ppm : (-ppm);
900 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901 bestppm = 0;
902 flag = 1;
903 }
904 if (absppm < bestppm - 10) {
905 bestppm = absppm;
906 flag = 1;
907 }
908 if (flag) {
909 bestn = n;
910 bestm1 = m1;
911 bestm2 = m2;
912 bestp1 = p1;
913 bestp2 = p2;
914 flag = 0;
915 }
916 }
917 }
918 }
919 }
920 }
921 best_clock->n = bestn;
922 best_clock->m1 = bestm1;
923 best_clock->m2 = bestm2;
924 best_clock->p1 = bestp1;
925 best_clock->p2 = bestp2;
926
927 return true;
928}
a4fc5ed6 929
a928d536
PZ
930static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931{
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 frame, frame_reg = PIPEFRAME(pipe);
934
935 frame = I915_READ(frame_reg);
936
937 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938 DRM_DEBUG_KMS("vblank wait timed out\n");
939}
940
9d0498a2
JB
941/**
942 * intel_wait_for_vblank - wait for vblank on a given pipe
943 * @dev: drm device
944 * @pipe: pipe to wait for
945 *
946 * Wait for vblank to occur on a given pipe. Needed for various bits of
947 * mode setting code.
948 */
949void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 950{
9d0498a2 951 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 952 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 953
a928d536
PZ
954 if (INTEL_INFO(dev)->gen >= 5) {
955 ironlake_wait_for_vblank(dev, pipe);
956 return;
957 }
958
300387c0
CW
959 /* Clear existing vblank status. Note this will clear any other
960 * sticky status fields as well.
961 *
962 * This races with i915_driver_irq_handler() with the result
963 * that either function could miss a vblank event. Here it is not
964 * fatal, as we will either wait upon the next vblank interrupt or
965 * timeout. Generally speaking intel_wait_for_vblank() is only
966 * called during modeset at which time the GPU should be idle and
967 * should *not* be performing page flips and thus not waiting on
968 * vblanks...
969 * Currently, the result of us stealing a vblank from the irq
970 * handler is that a single frame will be skipped during swapbuffers.
971 */
972 I915_WRITE(pipestat_reg,
973 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
9d0498a2 975 /* Wait for vblank interrupt bit to set */
481b6af3
CW
976 if (wait_for(I915_READ(pipestat_reg) &
977 PIPE_VBLANK_INTERRUPT_STATUS,
978 50))
9d0498a2
JB
979 DRM_DEBUG_KMS("vblank wait timed out\n");
980}
981
ab7ad7f6
KP
982/*
983 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
984 * @dev: drm device
985 * @pipe: pipe to wait for
986 *
987 * After disabling a pipe, we can't wait for vblank in the usual way,
988 * spinning on the vblank interrupt status bit, since we won't actually
989 * see an interrupt when the pipe is disabled.
990 *
ab7ad7f6
KP
991 * On Gen4 and above:
992 * wait for the pipe register state bit to turn off
993 *
994 * Otherwise:
995 * wait for the display line value to settle (it usually
996 * ends up stopping at the start of the next frame).
58e10eb9 997 *
9d0498a2 998 */
58e10eb9 999void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1000{
1001 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
1002
1003 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 1004 int reg = PIPECONF(pipe);
ab7ad7f6
KP
1005
1006 /* Wait for the Pipe State to go off */
58e10eb9
CW
1007 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008 100))
284637d9 1009 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1010 } else {
837ba00f 1011 u32 last_line, line_mask;
58e10eb9 1012 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1013 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
837ba00f
PZ
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
ab7ad7f6
KP
1020 /* Wait for the display line to settle */
1021 do {
837ba00f 1022 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1023 mdelay(5);
837ba00f 1024 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1025 time_after(timeout, jiffies));
1026 if (time_after(jiffies, timeout))
284637d9 1027 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1028 }
79e53945
JB
1029}
1030
b24e7179
JB
1031static const char *state_string(bool enabled)
1032{
1033 return enabled ? "on" : "off";
1034}
1035
1036/* Only for pre-ILK configs */
1037static void assert_pll(struct drm_i915_private *dev_priv,
1038 enum pipe pipe, bool state)
1039{
1040 int reg;
1041 u32 val;
1042 bool cur_state;
1043
1044 reg = DPLL(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & DPLL_VCO_ENABLE);
1047 WARN(cur_state != state,
1048 "PLL state assertion failure (expected %s, current %s)\n",
1049 state_string(state), state_string(cur_state));
1050}
1051#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
040484af
JB
1054/* For ILK+ */
1055static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1056 struct intel_pch_pll *pll,
1057 struct intel_crtc *crtc,
1058 bool state)
040484af 1059{
040484af
JB
1060 u32 val;
1061 bool cur_state;
1062
9d82aa17
ED
1063 if (HAS_PCH_LPT(dev_priv->dev)) {
1064 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065 return;
1066 }
1067
92b27b08
CW
1068 if (WARN (!pll,
1069 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1070 return;
ee7b9f93 1071
92b27b08
CW
1072 val = I915_READ(pll->pll_reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 WARN(cur_state != state,
1075 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076 pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078 /* Make sure the selected PLL is correctly attached to the transcoder */
1079 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1080 u32 pch_dpll;
1081
1082 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1083 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085 "PLL[%d] not attached to this transcoder %d: %08x\n",
1086 cur_state, crtc->pipe, pch_dpll)) {
1087 cur_state = !!(val >> (4*crtc->pipe + 3));
1088 WARN(cur_state != state,
1089 "PLL[%d] not %s on this transcoder %d: %08x\n",
1090 pll->pll_reg == _PCH_DPLL_B,
1091 state_string(state),
1092 crtc->pipe,
1093 val);
1094 }
d3ccbe86 1095 }
040484af 1096}
92b27b08
CW
1097#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1099
1100static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101 enum pipe pipe, bool state)
1102{
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1106
bf507ef7
ED
1107 if (IS_HASWELL(dev_priv->dev)) {
1108 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109 reg = DDI_FUNC_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112 } else {
1113 reg = FDI_TX_CTL(pipe);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & FDI_TX_ENABLE);
1116 }
040484af
JB
1117 WARN(cur_state != state,
1118 "FDI TX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120}
1121#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125 enum pipe pipe, bool state)
1126{
1127 int reg;
1128 u32 val;
1129 bool cur_state;
1130
59c859d6
ED
1131 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133 return;
1134 } else {
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1138 }
040484af
JB
1139 WARN(cur_state != state,
1140 "FDI RX state assertion failure (expected %s, current %s)\n",
1141 state_string(state), state_string(cur_state));
1142}
1143#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147 enum pipe pipe)
1148{
1149 int reg;
1150 u32 val;
1151
1152 /* ILK FDI PLL is always enabled */
1153 if (dev_priv->info->gen == 5)
1154 return;
1155
bf507ef7
ED
1156 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157 if (IS_HASWELL(dev_priv->dev))
1158 return;
1159
040484af
JB
1160 reg = FDI_TX_CTL(pipe);
1161 val = I915_READ(reg);
1162 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163}
1164
1165static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1167{
1168 int reg;
1169 u32 val;
1170
59c859d6
ED
1171 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173 return;
1174 }
040484af
JB
1175 reg = FDI_RX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178}
1179
ea0760cf
JB
1180static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1182{
1183 int pp_reg, lvds_reg;
1184 u32 val;
1185 enum pipe panel_pipe = PIPE_A;
0de3b485 1186 bool locked = true;
ea0760cf
JB
1187
1188 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189 pp_reg = PCH_PP_CONTROL;
1190 lvds_reg = PCH_LVDS;
1191 } else {
1192 pp_reg = PP_CONTROL;
1193 lvds_reg = LVDS;
1194 }
1195
1196 val = I915_READ(pp_reg);
1197 if (!(val & PANEL_POWER_ON) ||
1198 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199 locked = false;
1200
1201 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202 panel_pipe = PIPE_B;
1203
1204 WARN(panel_pipe == pipe && locked,
1205 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1206 pipe_name(pipe));
ea0760cf
JB
1207}
1208
b840d907
JB
1209void assert_pipe(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, bool state)
b24e7179
JB
1211{
1212 int reg;
1213 u32 val;
63d7bbe9 1214 bool cur_state;
b24e7179 1215
8e636784
DV
1216 /* if we need the pipe A quirk it must be always on */
1217 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218 state = true;
1219
b24e7179
JB
1220 reg = PIPECONF(pipe);
1221 val = I915_READ(reg);
63d7bbe9
JB
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 WARN(cur_state != state,
1224 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1225 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1226}
1227
931872fc
CW
1228static void assert_plane(struct drm_i915_private *dev_priv,
1229 enum plane plane, bool state)
b24e7179
JB
1230{
1231 int reg;
1232 u32 val;
931872fc 1233 bool cur_state;
b24e7179
JB
1234
1235 reg = DSPCNTR(plane);
1236 val = I915_READ(reg);
931872fc
CW
1237 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238 WARN(cur_state != state,
1239 "plane %c assertion failure (expected %s, current %s)\n",
1240 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1241}
1242
931872fc
CW
1243#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
b24e7179
JB
1246static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1248{
1249 int reg, i;
1250 u32 val;
1251 int cur_pipe;
1252
19ec1358 1253 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1254 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255 reg = DSPCNTR(pipe);
1256 val = I915_READ(reg);
1257 WARN((val & DISPLAY_PLANE_ENABLE),
1258 "plane %c assertion failure, should be disabled but not\n",
1259 plane_name(pipe));
19ec1358 1260 return;
28c05794 1261 }
19ec1358 1262
b24e7179
JB
1263 /* Need to check both planes against the pipe */
1264 for (i = 0; i < 2; i++) {
1265 reg = DSPCNTR(i);
1266 val = I915_READ(reg);
1267 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268 DISPPLANE_SEL_PIPE_SHIFT;
1269 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1270 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271 plane_name(i), pipe_name(pipe));
b24e7179
JB
1272 }
1273}
1274
92f2584a
JB
1275static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276{
1277 u32 val;
1278 bool enabled;
1279
9d82aa17
ED
1280 if (HAS_PCH_LPT(dev_priv->dev)) {
1281 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282 return;
1283 }
1284
92f2584a
JB
1285 val = I915_READ(PCH_DREF_CONTROL);
1286 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287 DREF_SUPERSPREAD_SOURCE_MASK));
1288 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289}
1290
1291static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293{
1294 int reg;
1295 u32 val;
1296 bool enabled;
1297
1298 reg = TRANSCONF(pipe);
1299 val = I915_READ(reg);
1300 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1301 WARN(enabled,
1302 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303 pipe_name(pipe));
92f2584a
JB
1304}
1305
4e634389
KP
1306static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1308{
1309 if ((val & DP_PORT_EN) == 0)
1310 return false;
1311
1312 if (HAS_PCH_CPT(dev_priv->dev)) {
1313 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else {
1318 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319 return false;
1320 }
1321 return true;
1322}
1323
1519b995
KP
1324static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe, u32 val)
1326{
1327 if ((val & PORT_ENABLE) == 0)
1328 return false;
1329
1330 if (HAS_PCH_CPT(dev_priv->dev)) {
1331 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332 return false;
1333 } else {
1334 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335 return false;
1336 }
1337 return true;
1338}
1339
1340static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1342{
1343 if ((val & LVDS_PORT_EN) == 0)
1344 return false;
1345
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351 return false;
1352 }
1353 return true;
1354}
1355
1356static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1358{
1359 if ((val & ADPA_DAC_ENABLE) == 0)
1360 return false;
1361 if (HAS_PCH_CPT(dev_priv->dev)) {
1362 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363 return false;
1364 } else {
1365 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366 return false;
1367 }
1368 return true;
1369}
1370
291906f1 1371static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1372 enum pipe pipe, int reg, u32 port_sel)
291906f1 1373{
47a05eca 1374 u32 val = I915_READ(reg);
4e634389 1375 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1376 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1377 reg, pipe_name(pipe));
de9a35ab 1378
75c5da27
DV
1379 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1380 && (val & DP_PIPEB_SELECT),
de9a35ab 1381 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1382}
1383
1384static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, int reg)
1386{
47a05eca 1387 u32 val = I915_READ(reg);
e9a851ed 1388 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1389 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1390 reg, pipe_name(pipe));
de9a35ab 1391
75c5da27
DV
1392 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1393 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1394 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1395}
1396
1397static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399{
1400 int reg;
1401 u32 val;
291906f1 1402
f0575e92
KP
1403 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1404 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1405 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1406
1407 reg = PCH_ADPA;
1408 val = I915_READ(reg);
e9a851ed 1409 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1410 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1411 pipe_name(pipe));
291906f1
JB
1412
1413 reg = PCH_LVDS;
1414 val = I915_READ(reg);
e9a851ed 1415 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1416 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1417 pipe_name(pipe));
291906f1
JB
1418
1419 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1420 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1421 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1422}
1423
63d7bbe9
JB
1424/**
1425 * intel_enable_pll - enable a PLL
1426 * @dev_priv: i915 private structure
1427 * @pipe: pipe PLL to enable
1428 *
1429 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1430 * make sure the PLL reg is writable first though, since the panel write
1431 * protect mechanism may be enabled.
1432 *
1433 * Note! This is for pre-ILK only.
7434a255
TR
1434 *
1435 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9 1436 */
a37b9b34 1437static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9
JB
1438{
1439 int reg;
1440 u32 val;
1441
1442 /* No really, not for ILK+ */
a0c4da24 1443 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1444
1445 /* PLL is protected by panel, make sure we can write it */
1446 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1447 assert_panel_unlocked(dev_priv, pipe);
1448
1449 reg = DPLL(pipe);
1450 val = I915_READ(reg);
1451 val |= DPLL_VCO_ENABLE;
1452
1453 /* We do this three times for luck */
1454 I915_WRITE(reg, val);
1455 POSTING_READ(reg);
1456 udelay(150); /* wait for warmup */
1457 I915_WRITE(reg, val);
1458 POSTING_READ(reg);
1459 udelay(150); /* wait for warmup */
1460 I915_WRITE(reg, val);
1461 POSTING_READ(reg);
1462 udelay(150); /* wait for warmup */
1463}
1464
1465/**
1466 * intel_disable_pll - disable a PLL
1467 * @dev_priv: i915 private structure
1468 * @pipe: pipe PLL to disable
1469 *
1470 * Disable the PLL for @pipe, making sure the pipe is off first.
1471 *
1472 * Note! This is for pre-ILK only.
1473 */
1474static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1475{
1476 int reg;
1477 u32 val;
1478
1479 /* Don't disable pipe A or pipe A PLLs if needed */
1480 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1481 return;
1482
1483 /* Make sure the pipe isn't still relying on us */
1484 assert_pipe_disabled(dev_priv, pipe);
1485
1486 reg = DPLL(pipe);
1487 val = I915_READ(reg);
1488 val &= ~DPLL_VCO_ENABLE;
1489 I915_WRITE(reg, val);
1490 POSTING_READ(reg);
1491}
1492
a416edef
ED
1493/* SBI access */
1494static void
1495intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1496{
1497 unsigned long flags;
1498
1499 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1500 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1501 100)) {
1502 DRM_ERROR("timeout waiting for SBI to become ready\n");
1503 goto out_unlock;
1504 }
1505
1506 I915_WRITE(SBI_ADDR,
1507 (reg << 16));
1508 I915_WRITE(SBI_DATA,
1509 value);
1510 I915_WRITE(SBI_CTL_STAT,
1511 SBI_BUSY |
1512 SBI_CTL_OP_CRWR);
1513
39fb50f6 1514 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1515 100)) {
1516 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1517 goto out_unlock;
1518 }
1519
1520out_unlock:
1521 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1522}
1523
1524static u32
1525intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1526{
1527 unsigned long flags;
39fb50f6 1528 u32 value = 0;
a416edef
ED
1529
1530 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1531 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1532 100)) {
1533 DRM_ERROR("timeout waiting for SBI to become ready\n");
1534 goto out_unlock;
1535 }
1536
1537 I915_WRITE(SBI_ADDR,
1538 (reg << 16));
1539 I915_WRITE(SBI_CTL_STAT,
1540 SBI_BUSY |
1541 SBI_CTL_OP_CRRD);
1542
39fb50f6 1543 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1544 100)) {
1545 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1546 goto out_unlock;
1547 }
1548
1549 value = I915_READ(SBI_DATA);
1550
1551out_unlock:
1552 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1553 return value;
1554}
1555
92f2584a
JB
1556/**
1557 * intel_enable_pch_pll - enable PCH PLL
1558 * @dev_priv: i915 private structure
1559 * @pipe: pipe PLL to enable
1560 *
1561 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1562 * drives the transcoder clock.
1563 */
ee7b9f93 1564static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1565{
ee7b9f93 1566 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1567 struct intel_pch_pll *pll;
92f2584a
JB
1568 int reg;
1569 u32 val;
1570
48da64a8 1571 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1572 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1573 pll = intel_crtc->pch_pll;
1574 if (pll == NULL)
1575 return;
1576
1577 if (WARN_ON(pll->refcount == 0))
1578 return;
ee7b9f93
JB
1579
1580 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1581 pll->pll_reg, pll->active, pll->on,
1582 intel_crtc->base.base.id);
92f2584a
JB
1583
1584 /* PCH refclock must be enabled first */
1585 assert_pch_refclk_enabled(dev_priv);
1586
ee7b9f93 1587 if (pll->active++ && pll->on) {
92b27b08 1588 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1589 return;
1590 }
1591
1592 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1593
1594 reg = pll->pll_reg;
92f2584a
JB
1595 val = I915_READ(reg);
1596 val |= DPLL_VCO_ENABLE;
1597 I915_WRITE(reg, val);
1598 POSTING_READ(reg);
1599 udelay(200);
ee7b9f93
JB
1600
1601 pll->on = true;
92f2584a
JB
1602}
1603
ee7b9f93 1604static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1605{
ee7b9f93
JB
1606 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1607 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1608 int reg;
ee7b9f93 1609 u32 val;
4c609cb8 1610
92f2584a
JB
1611 /* PCH only available on ILK+ */
1612 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1613 if (pll == NULL)
1614 return;
92f2584a 1615
48da64a8
CW
1616 if (WARN_ON(pll->refcount == 0))
1617 return;
7a419866 1618
ee7b9f93
JB
1619 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1620 pll->pll_reg, pll->active, pll->on,
1621 intel_crtc->base.base.id);
7a419866 1622
48da64a8 1623 if (WARN_ON(pll->active == 0)) {
92b27b08 1624 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1625 return;
1626 }
1627
ee7b9f93 1628 if (--pll->active) {
92b27b08 1629 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1630 return;
ee7b9f93
JB
1631 }
1632
1633 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1634
1635 /* Make sure transcoder isn't still depending on us */
1636 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1637
ee7b9f93 1638 reg = pll->pll_reg;
92f2584a
JB
1639 val = I915_READ(reg);
1640 val &= ~DPLL_VCO_ENABLE;
1641 I915_WRITE(reg, val);
1642 POSTING_READ(reg);
1643 udelay(200);
ee7b9f93
JB
1644
1645 pll->on = false;
92f2584a
JB
1646}
1647
040484af
JB
1648static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1649 enum pipe pipe)
1650{
1651 int reg;
5f7f726d 1652 u32 val, pipeconf_val;
7c26e5c6 1653 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
040484af
JB
1654
1655 /* PCH only available on ILK+ */
1656 BUG_ON(dev_priv->info->gen < 5);
1657
1658 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1659 assert_pch_pll_enabled(dev_priv,
1660 to_intel_crtc(crtc)->pch_pll,
1661 to_intel_crtc(crtc));
040484af
JB
1662
1663 /* FDI must be feeding us bits for PCH ports */
1664 assert_fdi_tx_enabled(dev_priv, pipe);
1665 assert_fdi_rx_enabled(dev_priv, pipe);
1666
59c859d6
ED
1667 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1668 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1669 return;
1670 }
040484af
JB
1671 reg = TRANSCONF(pipe);
1672 val = I915_READ(reg);
5f7f726d 1673 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1674
1675 if (HAS_PCH_IBX(dev_priv->dev)) {
1676 /*
1677 * make the BPC in transcoder be consistent with
1678 * that in pipeconf reg.
1679 */
1680 val &= ~PIPE_BPC_MASK;
5f7f726d 1681 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1682 }
5f7f726d
PZ
1683
1684 val &= ~TRANS_INTERLACE_MASK;
1685 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1686 if (HAS_PCH_IBX(dev_priv->dev) &&
1687 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1688 val |= TRANS_LEGACY_INTERLACED_ILK;
1689 else
1690 val |= TRANS_INTERLACED;
5f7f726d
PZ
1691 else
1692 val |= TRANS_PROGRESSIVE;
1693
040484af
JB
1694 I915_WRITE(reg, val | TRANS_ENABLE);
1695 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1696 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1697}
1698
1699static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1700 enum pipe pipe)
1701{
1702 int reg;
1703 u32 val;
1704
1705 /* FDI relies on the transcoder */
1706 assert_fdi_tx_disabled(dev_priv, pipe);
1707 assert_fdi_rx_disabled(dev_priv, pipe);
1708
291906f1
JB
1709 /* Ports must be off as well */
1710 assert_pch_ports_disabled(dev_priv, pipe);
1711
040484af
JB
1712 reg = TRANSCONF(pipe);
1713 val = I915_READ(reg);
1714 val &= ~TRANS_ENABLE;
1715 I915_WRITE(reg, val);
1716 /* wait for PCH transcoder off, transcoder state */
1717 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1718 DRM_ERROR("failed to disable transcoder %d\n", pipe);
040484af
JB
1719}
1720
b24e7179 1721/**
309cfea8 1722 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1723 * @dev_priv: i915 private structure
1724 * @pipe: pipe to enable
040484af 1725 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1726 *
1727 * Enable @pipe, making sure that various hardware specific requirements
1728 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1729 *
1730 * @pipe should be %PIPE_A or %PIPE_B.
1731 *
1732 * Will wait until the pipe is actually running (i.e. first vblank) before
1733 * returning.
1734 */
040484af
JB
1735static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1736 bool pch_port)
b24e7179
JB
1737{
1738 int reg;
1739 u32 val;
1740
1741 /*
1742 * A pipe without a PLL won't actually be able to drive bits from
1743 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1744 * need the check.
1745 */
1746 if (!HAS_PCH_SPLIT(dev_priv->dev))
1747 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1748 else {
1749 if (pch_port) {
1750 /* if driving the PCH, we need FDI enabled */
1751 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1752 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1753 }
1754 /* FIXME: assert CPU port conditions for SNB+ */
1755 }
b24e7179
JB
1756
1757 reg = PIPECONF(pipe);
1758 val = I915_READ(reg);
00d70b15
CW
1759 if (val & PIPECONF_ENABLE)
1760 return;
1761
1762 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1763 intel_wait_for_vblank(dev_priv->dev, pipe);
1764}
1765
1766/**
309cfea8 1767 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1768 * @dev_priv: i915 private structure
1769 * @pipe: pipe to disable
1770 *
1771 * Disable @pipe, making sure that various hardware specific requirements
1772 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1773 *
1774 * @pipe should be %PIPE_A or %PIPE_B.
1775 *
1776 * Will wait until the pipe has shut down before returning.
1777 */
1778static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1779 enum pipe pipe)
1780{
1781 int reg;
1782 u32 val;
1783
1784 /*
1785 * Make sure planes won't keep trying to pump pixels to us,
1786 * or we might hang the display.
1787 */
1788 assert_planes_disabled(dev_priv, pipe);
1789
1790 /* Don't disable pipe A or pipe A PLLs if needed */
1791 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1792 return;
1793
1794 reg = PIPECONF(pipe);
1795 val = I915_READ(reg);
00d70b15
CW
1796 if ((val & PIPECONF_ENABLE) == 0)
1797 return;
1798
1799 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1800 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1801}
1802
d74362c9
KP
1803/*
1804 * Plane regs are double buffered, going from enabled->disabled needs a
1805 * trigger in order to latch. The display address reg provides this.
1806 */
6f1d69b0 1807void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1808 enum plane plane)
1809{
1810 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1811 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1812}
1813
b24e7179
JB
1814/**
1815 * intel_enable_plane - enable a display plane on a given pipe
1816 * @dev_priv: i915 private structure
1817 * @plane: plane to enable
1818 * @pipe: pipe being fed
1819 *
1820 * Enable @plane on @pipe, making sure that @pipe is running first.
1821 */
1822static void intel_enable_plane(struct drm_i915_private *dev_priv,
1823 enum plane plane, enum pipe pipe)
1824{
1825 int reg;
1826 u32 val;
1827
1828 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1829 assert_pipe_enabled(dev_priv, pipe);
1830
1831 reg = DSPCNTR(plane);
1832 val = I915_READ(reg);
00d70b15
CW
1833 if (val & DISPLAY_PLANE_ENABLE)
1834 return;
1835
1836 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1837 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1838 intel_wait_for_vblank(dev_priv->dev, pipe);
1839}
1840
b24e7179
JB
1841/**
1842 * intel_disable_plane - disable a display plane
1843 * @dev_priv: i915 private structure
1844 * @plane: plane to disable
1845 * @pipe: pipe consuming the data
1846 *
1847 * Disable @plane; should be an independent operation.
1848 */
1849static void intel_disable_plane(struct drm_i915_private *dev_priv,
1850 enum plane plane, enum pipe pipe)
1851{
1852 int reg;
1853 u32 val;
1854
1855 reg = DSPCNTR(plane);
1856 val = I915_READ(reg);
00d70b15
CW
1857 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1858 return;
1859
1860 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1861 intel_flush_display_plane(dev_priv, plane);
1862 intel_wait_for_vblank(dev_priv->dev, pipe);
1863}
1864
127bd2ac 1865int
48b956c5 1866intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1867 struct drm_i915_gem_object *obj,
919926ae 1868 struct intel_ring_buffer *pipelined)
6b95a207 1869{
ce453d81 1870 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1871 u32 alignment;
1872 int ret;
1873
05394f39 1874 switch (obj->tiling_mode) {
6b95a207 1875 case I915_TILING_NONE:
534843da
CW
1876 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1877 alignment = 128 * 1024;
a6c45cf0 1878 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1879 alignment = 4 * 1024;
1880 else
1881 alignment = 64 * 1024;
6b95a207
KH
1882 break;
1883 case I915_TILING_X:
1884 /* pin() will align the object as required by fence */
1885 alignment = 0;
1886 break;
1887 case I915_TILING_Y:
1888 /* FIXME: Is this true? */
1889 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1890 return -EINVAL;
1891 default:
1892 BUG();
1893 }
1894
ce453d81 1895 dev_priv->mm.interruptible = false;
2da3b9b9 1896 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1897 if (ret)
ce453d81 1898 goto err_interruptible;
6b95a207
KH
1899
1900 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1901 * fence, whereas 965+ only requires a fence if using
1902 * framebuffer compression. For simplicity, we always install
1903 * a fence as the cost is not that onerous.
1904 */
06d98131 1905 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1906 if (ret)
1907 goto err_unpin;
1690e1eb 1908
9a5a53b3 1909 i915_gem_object_pin_fence(obj);
6b95a207 1910
ce453d81 1911 dev_priv->mm.interruptible = true;
6b95a207 1912 return 0;
48b956c5
CW
1913
1914err_unpin:
1915 i915_gem_object_unpin(obj);
ce453d81
CW
1916err_interruptible:
1917 dev_priv->mm.interruptible = true;
48b956c5 1918 return ret;
6b95a207
KH
1919}
1920
1690e1eb
CW
1921void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1922{
1923 i915_gem_object_unpin_fence(obj);
1924 i915_gem_object_unpin(obj);
1925}
1926
c2c75131
DV
1927/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1928 * is assumed to be a power-of-two. */
1929static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1930 unsigned int bpp,
1931 unsigned int pitch)
1932{
1933 int tile_rows, tiles;
1934
1935 tile_rows = *y / 8;
1936 *y %= 8;
1937 tiles = *x / (512/bpp);
1938 *x %= 512/bpp;
1939
1940 return tile_rows * pitch * 8 + tiles * 4096;
1941}
1942
17638cd6
JB
1943static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1944 int x, int y)
81255565
JB
1945{
1946 struct drm_device *dev = crtc->dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949 struct intel_framebuffer *intel_fb;
05394f39 1950 struct drm_i915_gem_object *obj;
81255565 1951 int plane = intel_crtc->plane;
e506a0c6 1952 unsigned long linear_offset;
81255565 1953 u32 dspcntr;
5eddb70b 1954 u32 reg;
81255565
JB
1955
1956 switch (plane) {
1957 case 0:
1958 case 1:
1959 break;
1960 default:
1961 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1962 return -EINVAL;
1963 }
1964
1965 intel_fb = to_intel_framebuffer(fb);
1966 obj = intel_fb->obj;
81255565 1967
5eddb70b
CW
1968 reg = DSPCNTR(plane);
1969 dspcntr = I915_READ(reg);
81255565
JB
1970 /* Mask out pixel format bits in case we change it */
1971 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1972 switch (fb->bits_per_pixel) {
1973 case 8:
1974 dspcntr |= DISPPLANE_8BPP;
1975 break;
1976 case 16:
1977 if (fb->depth == 15)
1978 dspcntr |= DISPPLANE_15_16BPP;
1979 else
1980 dspcntr |= DISPPLANE_16BPP;
1981 break;
1982 case 24:
1983 case 32:
1984 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1985 break;
1986 default:
17638cd6 1987 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
1988 return -EINVAL;
1989 }
a6c45cf0 1990 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 1991 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
1992 dspcntr |= DISPPLANE_TILED;
1993 else
1994 dspcntr &= ~DISPPLANE_TILED;
1995 }
1996
5eddb70b 1997 I915_WRITE(reg, dspcntr);
81255565 1998
e506a0c6 1999 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2000
c2c75131
DV
2001 if (INTEL_INFO(dev)->gen >= 4) {
2002 intel_crtc->dspaddr_offset =
2003 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2004 fb->bits_per_pixel / 8,
2005 fb->pitches[0]);
2006 linear_offset -= intel_crtc->dspaddr_offset;
2007 } else {
e506a0c6 2008 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2009 }
e506a0c6
DV
2010
2011 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2012 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2013 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2014 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2015 I915_MODIFY_DISPBASE(DSPSURF(plane),
2016 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2017 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2018 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2019 } else
e506a0c6 2020 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2021 POSTING_READ(reg);
81255565 2022
17638cd6
JB
2023 return 0;
2024}
2025
2026static int ironlake_update_plane(struct drm_crtc *crtc,
2027 struct drm_framebuffer *fb, int x, int y)
2028{
2029 struct drm_device *dev = crtc->dev;
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2032 struct intel_framebuffer *intel_fb;
2033 struct drm_i915_gem_object *obj;
2034 int plane = intel_crtc->plane;
e506a0c6 2035 unsigned long linear_offset;
17638cd6
JB
2036 u32 dspcntr;
2037 u32 reg;
2038
2039 switch (plane) {
2040 case 0:
2041 case 1:
27f8227b 2042 case 2:
17638cd6
JB
2043 break;
2044 default:
2045 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046 return -EINVAL;
2047 }
2048
2049 intel_fb = to_intel_framebuffer(fb);
2050 obj = intel_fb->obj;
2051
2052 reg = DSPCNTR(plane);
2053 dspcntr = I915_READ(reg);
2054 /* Mask out pixel format bits in case we change it */
2055 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056 switch (fb->bits_per_pixel) {
2057 case 8:
2058 dspcntr |= DISPPLANE_8BPP;
2059 break;
2060 case 16:
2061 if (fb->depth != 16)
2062 return -EINVAL;
2063
2064 dspcntr |= DISPPLANE_16BPP;
2065 break;
2066 case 24:
2067 case 32:
2068 if (fb->depth == 24)
2069 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2070 else if (fb->depth == 30)
2071 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2072 else
2073 return -EINVAL;
2074 break;
2075 default:
2076 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2077 return -EINVAL;
2078 }
2079
2080 if (obj->tiling_mode != I915_TILING_NONE)
2081 dspcntr |= DISPPLANE_TILED;
2082 else
2083 dspcntr &= ~DISPPLANE_TILED;
2084
2085 /* must disable */
2086 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2087
2088 I915_WRITE(reg, dspcntr);
2089
e506a0c6 2090 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131
DV
2091 intel_crtc->dspaddr_offset =
2092 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2093 fb->bits_per_pixel / 8,
2094 fb->pitches[0]);
2095 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2096
e506a0c6
DV
2097 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2098 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2099 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2100 I915_MODIFY_DISPBASE(DSPSURF(plane),
2101 obj->gtt_offset + intel_crtc->dspaddr_offset);
17638cd6 2102 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2103 I915_WRITE(DSPLINOFF(plane), linear_offset);
17638cd6
JB
2104 POSTING_READ(reg);
2105
2106 return 0;
2107}
2108
2109/* Assume fb object is pinned & idle & fenced and just update base pointers */
2110static int
2111intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2112 int x, int y, enum mode_set_atomic state)
2113{
2114 struct drm_device *dev = crtc->dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2116
6b8e6ed0
CW
2117 if (dev_priv->display.disable_fbc)
2118 dev_priv->display.disable_fbc(dev);
3dec0095 2119 intel_increase_pllclock(crtc);
81255565 2120
6b8e6ed0 2121 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2122}
2123
14667a4b
CW
2124static int
2125intel_finish_fb(struct drm_framebuffer *old_fb)
2126{
2127 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2128 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2129 bool was_interruptible = dev_priv->mm.interruptible;
2130 int ret;
2131
2132 wait_event(dev_priv->pending_flip_queue,
2133 atomic_read(&dev_priv->mm.wedged) ||
2134 atomic_read(&obj->pending_flip) == 0);
2135
2136 /* Big Hammer, we also need to ensure that any pending
2137 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2138 * current scanout is retired before unpinning the old
2139 * framebuffer.
2140 *
2141 * This should only fail upon a hung GPU, in which case we
2142 * can safely continue.
2143 */
2144 dev_priv->mm.interruptible = false;
2145 ret = i915_gem_object_finish_gpu(obj);
2146 dev_priv->mm.interruptible = was_interruptible;
2147
2148 return ret;
2149}
2150
5c3b82e2 2151static int
3c4fdcfb 2152intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2153 struct drm_framebuffer *fb)
79e53945
JB
2154{
2155 struct drm_device *dev = crtc->dev;
6b8e6ed0 2156 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
2157 struct drm_i915_master_private *master_priv;
2158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2159 struct drm_framebuffer *old_fb;
5c3b82e2 2160 int ret;
79e53945
JB
2161
2162 /* no fb bound */
94352cf9 2163 if (!fb) {
a5071c2f 2164 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2165 return 0;
2166 }
2167
5826eca5
ED
2168 if(intel_crtc->plane > dev_priv->num_pipe) {
2169 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2170 intel_crtc->plane,
2171 dev_priv->num_pipe);
5c3b82e2 2172 return -EINVAL;
79e53945
JB
2173 }
2174
5c3b82e2 2175 mutex_lock(&dev->struct_mutex);
265db958 2176 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2177 to_intel_framebuffer(fb)->obj,
919926ae 2178 NULL);
5c3b82e2
CW
2179 if (ret != 0) {
2180 mutex_unlock(&dev->struct_mutex);
a5071c2f 2181 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2182 return ret;
2183 }
79e53945 2184
94352cf9
DV
2185 if (crtc->fb)
2186 intel_finish_fb(crtc->fb);
265db958 2187
94352cf9 2188 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2189 if (ret) {
94352cf9 2190 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2191 mutex_unlock(&dev->struct_mutex);
a5071c2f 2192 DRM_ERROR("failed to update base address\n");
4e6cfefc 2193 return ret;
79e53945 2194 }
3c4fdcfb 2195
94352cf9
DV
2196 old_fb = crtc->fb;
2197 crtc->fb = fb;
6c4c86f5
DV
2198 crtc->x = x;
2199 crtc->y = y;
94352cf9 2200
b7f1de28
CW
2201 if (old_fb) {
2202 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2203 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2204 }
652c393a 2205
6b8e6ed0 2206 intel_update_fbc(dev);
5c3b82e2 2207 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2208
2209 if (!dev->primary->master)
5c3b82e2 2210 return 0;
79e53945
JB
2211
2212 master_priv = dev->primary->master->driver_priv;
2213 if (!master_priv->sarea_priv)
5c3b82e2 2214 return 0;
79e53945 2215
265db958 2216 if (intel_crtc->pipe) {
79e53945
JB
2217 master_priv->sarea_priv->pipeB_x = x;
2218 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2219 } else {
2220 master_priv->sarea_priv->pipeA_x = x;
2221 master_priv->sarea_priv->pipeA_y = y;
79e53945 2222 }
5c3b82e2
CW
2223
2224 return 0;
79e53945
JB
2225}
2226
5eddb70b 2227static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2228{
2229 struct drm_device *dev = crtc->dev;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 u32 dpa_ctl;
2232
28c97730 2233 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2234 dpa_ctl = I915_READ(DP_A);
2235 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2236
2237 if (clock < 200000) {
2238 u32 temp;
2239 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2240 /* workaround for 160Mhz:
2241 1) program 0x4600c bits 15:0 = 0x8124
2242 2) program 0x46010 bit 0 = 1
2243 3) program 0x46034 bit 24 = 1
2244 4) program 0x64000 bit 14 = 1
2245 */
2246 temp = I915_READ(0x4600c);
2247 temp &= 0xffff0000;
2248 I915_WRITE(0x4600c, temp | 0x8124);
2249
2250 temp = I915_READ(0x46010);
2251 I915_WRITE(0x46010, temp | 1);
2252
2253 temp = I915_READ(0x46034);
2254 I915_WRITE(0x46034, temp | (1 << 24));
2255 } else {
2256 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2257 }
2258 I915_WRITE(DP_A, dpa_ctl);
2259
5eddb70b 2260 POSTING_READ(DP_A);
32f9d658
ZW
2261 udelay(500);
2262}
2263
5e84e1a4
ZW
2264static void intel_fdi_normal_train(struct drm_crtc *crtc)
2265{
2266 struct drm_device *dev = crtc->dev;
2267 struct drm_i915_private *dev_priv = dev->dev_private;
2268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269 int pipe = intel_crtc->pipe;
2270 u32 reg, temp;
2271
2272 /* enable normal train */
2273 reg = FDI_TX_CTL(pipe);
2274 temp = I915_READ(reg);
61e499bf 2275 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2276 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2277 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2278 } else {
2279 temp &= ~FDI_LINK_TRAIN_NONE;
2280 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2281 }
5e84e1a4
ZW
2282 I915_WRITE(reg, temp);
2283
2284 reg = FDI_RX_CTL(pipe);
2285 temp = I915_READ(reg);
2286 if (HAS_PCH_CPT(dev)) {
2287 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2288 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2289 } else {
2290 temp &= ~FDI_LINK_TRAIN_NONE;
2291 temp |= FDI_LINK_TRAIN_NONE;
2292 }
2293 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2294
2295 /* wait one idle pattern time */
2296 POSTING_READ(reg);
2297 udelay(1000);
357555c0
JB
2298
2299 /* IVB wants error correction enabled */
2300 if (IS_IVYBRIDGE(dev))
2301 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2302 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2303}
2304
291427f5
JB
2305static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2306{
2307 struct drm_i915_private *dev_priv = dev->dev_private;
2308 u32 flags = I915_READ(SOUTH_CHICKEN1);
2309
2310 flags |= FDI_PHASE_SYNC_OVR(pipe);
2311 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2312 flags |= FDI_PHASE_SYNC_EN(pipe);
2313 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2314 POSTING_READ(SOUTH_CHICKEN1);
2315}
2316
8db9d77b
ZW
2317/* The FDI link training functions for ILK/Ibexpeak. */
2318static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2319{
2320 struct drm_device *dev = crtc->dev;
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 int pipe = intel_crtc->pipe;
0fc932b8 2324 int plane = intel_crtc->plane;
5eddb70b 2325 u32 reg, temp, tries;
8db9d77b 2326
0fc932b8
JB
2327 /* FDI needs bits from pipe & plane first */
2328 assert_pipe_enabled(dev_priv, pipe);
2329 assert_plane_enabled(dev_priv, plane);
2330
e1a44743
AJ
2331 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2332 for train result */
5eddb70b
CW
2333 reg = FDI_RX_IMR(pipe);
2334 temp = I915_READ(reg);
e1a44743
AJ
2335 temp &= ~FDI_RX_SYMBOL_LOCK;
2336 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2337 I915_WRITE(reg, temp);
2338 I915_READ(reg);
e1a44743
AJ
2339 udelay(150);
2340
8db9d77b 2341 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2342 reg = FDI_TX_CTL(pipe);
2343 temp = I915_READ(reg);
77ffb597
AJ
2344 temp &= ~(7 << 19);
2345 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2346 temp &= ~FDI_LINK_TRAIN_NONE;
2347 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2348 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2349
5eddb70b
CW
2350 reg = FDI_RX_CTL(pipe);
2351 temp = I915_READ(reg);
8db9d77b
ZW
2352 temp &= ~FDI_LINK_TRAIN_NONE;
2353 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2354 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2355
2356 POSTING_READ(reg);
8db9d77b
ZW
2357 udelay(150);
2358
5b2adf89 2359 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2360 if (HAS_PCH_IBX(dev)) {
2361 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363 FDI_RX_PHASE_SYNC_POINTER_EN);
2364 }
5b2adf89 2365
5eddb70b 2366 reg = FDI_RX_IIR(pipe);
e1a44743 2367 for (tries = 0; tries < 5; tries++) {
5eddb70b 2368 temp = I915_READ(reg);
8db9d77b
ZW
2369 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2370
2371 if ((temp & FDI_RX_BIT_LOCK)) {
2372 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2373 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2374 break;
2375 }
8db9d77b 2376 }
e1a44743 2377 if (tries == 5)
5eddb70b 2378 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2379
2380 /* Train 2 */
5eddb70b
CW
2381 reg = FDI_TX_CTL(pipe);
2382 temp = I915_READ(reg);
8db9d77b
ZW
2383 temp &= ~FDI_LINK_TRAIN_NONE;
2384 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2385 I915_WRITE(reg, temp);
8db9d77b 2386
5eddb70b
CW
2387 reg = FDI_RX_CTL(pipe);
2388 temp = I915_READ(reg);
8db9d77b
ZW
2389 temp &= ~FDI_LINK_TRAIN_NONE;
2390 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2391 I915_WRITE(reg, temp);
8db9d77b 2392
5eddb70b
CW
2393 POSTING_READ(reg);
2394 udelay(150);
8db9d77b 2395
5eddb70b 2396 reg = FDI_RX_IIR(pipe);
e1a44743 2397 for (tries = 0; tries < 5; tries++) {
5eddb70b 2398 temp = I915_READ(reg);
8db9d77b
ZW
2399 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2400
2401 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2402 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2403 DRM_DEBUG_KMS("FDI train 2 done.\n");
2404 break;
2405 }
8db9d77b 2406 }
e1a44743 2407 if (tries == 5)
5eddb70b 2408 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2409
2410 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2411
8db9d77b
ZW
2412}
2413
0206e353 2414static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2415 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2416 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2417 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2418 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2419};
2420
2421/* The FDI link training functions for SNB/Cougarpoint. */
2422static void gen6_fdi_link_train(struct drm_crtc *crtc)
2423{
2424 struct drm_device *dev = crtc->dev;
2425 struct drm_i915_private *dev_priv = dev->dev_private;
2426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2427 int pipe = intel_crtc->pipe;
fa37d39e 2428 u32 reg, temp, i, retry;
8db9d77b 2429
e1a44743
AJ
2430 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2431 for train result */
5eddb70b
CW
2432 reg = FDI_RX_IMR(pipe);
2433 temp = I915_READ(reg);
e1a44743
AJ
2434 temp &= ~FDI_RX_SYMBOL_LOCK;
2435 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2436 I915_WRITE(reg, temp);
2437
2438 POSTING_READ(reg);
e1a44743
AJ
2439 udelay(150);
2440
8db9d77b 2441 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2442 reg = FDI_TX_CTL(pipe);
2443 temp = I915_READ(reg);
77ffb597
AJ
2444 temp &= ~(7 << 19);
2445 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2446 temp &= ~FDI_LINK_TRAIN_NONE;
2447 temp |= FDI_LINK_TRAIN_PATTERN_1;
2448 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2449 /* SNB-B */
2450 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2451 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2452
5eddb70b
CW
2453 reg = FDI_RX_CTL(pipe);
2454 temp = I915_READ(reg);
8db9d77b
ZW
2455 if (HAS_PCH_CPT(dev)) {
2456 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2457 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2458 } else {
2459 temp &= ~FDI_LINK_TRAIN_NONE;
2460 temp |= FDI_LINK_TRAIN_PATTERN_1;
2461 }
5eddb70b
CW
2462 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2463
2464 POSTING_READ(reg);
8db9d77b
ZW
2465 udelay(150);
2466
291427f5
JB
2467 if (HAS_PCH_CPT(dev))
2468 cpt_phase_pointer_enable(dev, pipe);
2469
0206e353 2470 for (i = 0; i < 4; i++) {
5eddb70b
CW
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
8db9d77b
ZW
2473 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2474 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2475 I915_WRITE(reg, temp);
2476
2477 POSTING_READ(reg);
8db9d77b
ZW
2478 udelay(500);
2479
fa37d39e
SP
2480 for (retry = 0; retry < 5; retry++) {
2481 reg = FDI_RX_IIR(pipe);
2482 temp = I915_READ(reg);
2483 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484 if (temp & FDI_RX_BIT_LOCK) {
2485 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2486 DRM_DEBUG_KMS("FDI train 1 done.\n");
2487 break;
2488 }
2489 udelay(50);
8db9d77b 2490 }
fa37d39e
SP
2491 if (retry < 5)
2492 break;
8db9d77b
ZW
2493 }
2494 if (i == 4)
5eddb70b 2495 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2496
2497 /* Train 2 */
5eddb70b
CW
2498 reg = FDI_TX_CTL(pipe);
2499 temp = I915_READ(reg);
8db9d77b
ZW
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_2;
2502 if (IS_GEN6(dev)) {
2503 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2504 /* SNB-B */
2505 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2506 }
5eddb70b 2507 I915_WRITE(reg, temp);
8db9d77b 2508
5eddb70b
CW
2509 reg = FDI_RX_CTL(pipe);
2510 temp = I915_READ(reg);
8db9d77b
ZW
2511 if (HAS_PCH_CPT(dev)) {
2512 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2513 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2514 } else {
2515 temp &= ~FDI_LINK_TRAIN_NONE;
2516 temp |= FDI_LINK_TRAIN_PATTERN_2;
2517 }
5eddb70b
CW
2518 I915_WRITE(reg, temp);
2519
2520 POSTING_READ(reg);
8db9d77b
ZW
2521 udelay(150);
2522
0206e353 2523 for (i = 0; i < 4; i++) {
5eddb70b
CW
2524 reg = FDI_TX_CTL(pipe);
2525 temp = I915_READ(reg);
8db9d77b
ZW
2526 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2527 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2528 I915_WRITE(reg, temp);
2529
2530 POSTING_READ(reg);
8db9d77b
ZW
2531 udelay(500);
2532
fa37d39e
SP
2533 for (retry = 0; retry < 5; retry++) {
2534 reg = FDI_RX_IIR(pipe);
2535 temp = I915_READ(reg);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537 if (temp & FDI_RX_SYMBOL_LOCK) {
2538 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2539 DRM_DEBUG_KMS("FDI train 2 done.\n");
2540 break;
2541 }
2542 udelay(50);
8db9d77b 2543 }
fa37d39e
SP
2544 if (retry < 5)
2545 break;
8db9d77b
ZW
2546 }
2547 if (i == 4)
5eddb70b 2548 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2549
2550 DRM_DEBUG_KMS("FDI train done.\n");
2551}
2552
357555c0
JB
2553/* Manual link training for Ivy Bridge A0 parts */
2554static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2555{
2556 struct drm_device *dev = crtc->dev;
2557 struct drm_i915_private *dev_priv = dev->dev_private;
2558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2559 int pipe = intel_crtc->pipe;
2560 u32 reg, temp, i;
2561
2562 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2563 for train result */
2564 reg = FDI_RX_IMR(pipe);
2565 temp = I915_READ(reg);
2566 temp &= ~FDI_RX_SYMBOL_LOCK;
2567 temp &= ~FDI_RX_BIT_LOCK;
2568 I915_WRITE(reg, temp);
2569
2570 POSTING_READ(reg);
2571 udelay(150);
2572
2573 /* enable CPU FDI TX and PCH FDI RX */
2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg);
2576 temp &= ~(7 << 19);
2577 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2578 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2579 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2580 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2581 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2582 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2583 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2584
2585 reg = FDI_RX_CTL(pipe);
2586 temp = I915_READ(reg);
2587 temp &= ~FDI_LINK_TRAIN_AUTO;
2588 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2589 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2590 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2591 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2592
2593 POSTING_READ(reg);
2594 udelay(150);
2595
291427f5
JB
2596 if (HAS_PCH_CPT(dev))
2597 cpt_phase_pointer_enable(dev, pipe);
2598
0206e353 2599 for (i = 0; i < 4; i++) {
357555c0
JB
2600 reg = FDI_TX_CTL(pipe);
2601 temp = I915_READ(reg);
2602 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603 temp |= snb_b_fdi_train_param[i];
2604 I915_WRITE(reg, temp);
2605
2606 POSTING_READ(reg);
2607 udelay(500);
2608
2609 reg = FDI_RX_IIR(pipe);
2610 temp = I915_READ(reg);
2611 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2612
2613 if (temp & FDI_RX_BIT_LOCK ||
2614 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2615 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2616 DRM_DEBUG_KMS("FDI train 1 done.\n");
2617 break;
2618 }
2619 }
2620 if (i == 4)
2621 DRM_ERROR("FDI train 1 fail!\n");
2622
2623 /* Train 2 */
2624 reg = FDI_TX_CTL(pipe);
2625 temp = I915_READ(reg);
2626 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2627 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2628 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2629 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2630 I915_WRITE(reg, temp);
2631
2632 reg = FDI_RX_CTL(pipe);
2633 temp = I915_READ(reg);
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2636 I915_WRITE(reg, temp);
2637
2638 POSTING_READ(reg);
2639 udelay(150);
2640
0206e353 2641 for (i = 0; i < 4; i++) {
357555c0
JB
2642 reg = FDI_TX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645 temp |= snb_b_fdi_train_param[i];
2646 I915_WRITE(reg, temp);
2647
2648 POSTING_READ(reg);
2649 udelay(500);
2650
2651 reg = FDI_RX_IIR(pipe);
2652 temp = I915_READ(reg);
2653 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655 if (temp & FDI_RX_SYMBOL_LOCK) {
2656 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2657 DRM_DEBUG_KMS("FDI train 2 done.\n");
2658 break;
2659 }
2660 }
2661 if (i == 4)
2662 DRM_ERROR("FDI train 2 fail!\n");
2663
2664 DRM_DEBUG_KMS("FDI train done.\n");
2665}
2666
88cefb6c 2667static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2668{
88cefb6c 2669 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2670 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2671 int pipe = intel_crtc->pipe;
5eddb70b 2672 u32 reg, temp;
79e53945 2673
c64e311e 2674 /* Write the TU size bits so error detection works */
5eddb70b
CW
2675 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2676 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2677
c98e9dcf 2678 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2679 reg = FDI_RX_CTL(pipe);
2680 temp = I915_READ(reg);
2681 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2682 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2683 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2684 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2685
2686 POSTING_READ(reg);
c98e9dcf
JB
2687 udelay(200);
2688
2689 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2690 temp = I915_READ(reg);
2691 I915_WRITE(reg, temp | FDI_PCDCLK);
2692
2693 POSTING_READ(reg);
c98e9dcf
JB
2694 udelay(200);
2695
bf507ef7
ED
2696 /* On Haswell, the PLL configuration for ports and pipes is handled
2697 * separately, as part of DDI setup */
2698 if (!IS_HASWELL(dev)) {
2699 /* Enable CPU FDI TX PLL, always on for Ironlake */
2700 reg = FDI_TX_CTL(pipe);
2701 temp = I915_READ(reg);
2702 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2703 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2704
bf507ef7
ED
2705 POSTING_READ(reg);
2706 udelay(100);
2707 }
6be4a607 2708 }
0e23b99d
JB
2709}
2710
88cefb6c
DV
2711static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2712{
2713 struct drm_device *dev = intel_crtc->base.dev;
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 int pipe = intel_crtc->pipe;
2716 u32 reg, temp;
2717
2718 /* Switch from PCDclk to Rawclk */
2719 reg = FDI_RX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2722
2723 /* Disable CPU FDI TX PLL */
2724 reg = FDI_TX_CTL(pipe);
2725 temp = I915_READ(reg);
2726 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2727
2728 POSTING_READ(reg);
2729 udelay(100);
2730
2731 reg = FDI_RX_CTL(pipe);
2732 temp = I915_READ(reg);
2733 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2734
2735 /* Wait for the clocks to turn off. */
2736 POSTING_READ(reg);
2737 udelay(100);
2738}
2739
291427f5
JB
2740static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2741{
2742 struct drm_i915_private *dev_priv = dev->dev_private;
2743 u32 flags = I915_READ(SOUTH_CHICKEN1);
2744
2745 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2746 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2747 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2748 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2749 POSTING_READ(SOUTH_CHICKEN1);
2750}
0fc932b8
JB
2751static void ironlake_fdi_disable(struct drm_crtc *crtc)
2752{
2753 struct drm_device *dev = crtc->dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2756 int pipe = intel_crtc->pipe;
2757 u32 reg, temp;
2758
2759 /* disable CPU FDI tx and PCH FDI rx */
2760 reg = FDI_TX_CTL(pipe);
2761 temp = I915_READ(reg);
2762 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2763 POSTING_READ(reg);
2764
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~(0x7 << 16);
2768 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2769 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2770
2771 POSTING_READ(reg);
2772 udelay(100);
2773
2774 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2775 if (HAS_PCH_IBX(dev)) {
2776 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2777 I915_WRITE(FDI_RX_CHICKEN(pipe),
2778 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2779 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2780 } else if (HAS_PCH_CPT(dev)) {
2781 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2782 }
0fc932b8
JB
2783
2784 /* still set train pattern 1 */
2785 reg = FDI_TX_CTL(pipe);
2786 temp = I915_READ(reg);
2787 temp &= ~FDI_LINK_TRAIN_NONE;
2788 temp |= FDI_LINK_TRAIN_PATTERN_1;
2789 I915_WRITE(reg, temp);
2790
2791 reg = FDI_RX_CTL(pipe);
2792 temp = I915_READ(reg);
2793 if (HAS_PCH_CPT(dev)) {
2794 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2795 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2796 } else {
2797 temp &= ~FDI_LINK_TRAIN_NONE;
2798 temp |= FDI_LINK_TRAIN_PATTERN_1;
2799 }
2800 /* BPC in FDI rx is consistent with that in PIPECONF */
2801 temp &= ~(0x07 << 16);
2802 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2803 I915_WRITE(reg, temp);
2804
2805 POSTING_READ(reg);
2806 udelay(100);
2807}
2808
e6c3a2a6
CW
2809static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2810{
0f91128d 2811 struct drm_device *dev = crtc->dev;
e6c3a2a6
CW
2812
2813 if (crtc->fb == NULL)
2814 return;
2815
0f91128d
CW
2816 mutex_lock(&dev->struct_mutex);
2817 intel_finish_fb(crtc->fb);
2818 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2819}
2820
040484af
JB
2821static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2822{
2823 struct drm_device *dev = crtc->dev;
228d3e36 2824 struct intel_encoder *intel_encoder;
040484af
JB
2825
2826 /*
2827 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2828 * must be driven by its own crtc; no sharing is possible.
2829 */
228d3e36 2830 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
040484af 2831
6ee8bab0
ED
2832 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2833 * CPU handles all others */
2834 if (IS_HASWELL(dev)) {
2835 /* It is still unclear how this will work on PPT, so throw up a warning */
2836 WARN_ON(!HAS_PCH_LPT(dev));
2837
228d3e36 2838 if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
6ee8bab0
ED
2839 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2840 return true;
2841 } else {
2842 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
228d3e36 2843 intel_encoder->type);
6ee8bab0
ED
2844 return false;
2845 }
2846 }
2847
228d3e36 2848 switch (intel_encoder->type) {
040484af 2849 case INTEL_OUTPUT_EDP:
228d3e36 2850 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2851 return false;
2852 continue;
2853 }
2854 }
2855
2856 return true;
2857}
2858
e615efe4
ED
2859/* Program iCLKIP clock to the desired frequency */
2860static void lpt_program_iclkip(struct drm_crtc *crtc)
2861{
2862 struct drm_device *dev = crtc->dev;
2863 struct drm_i915_private *dev_priv = dev->dev_private;
2864 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2865 u32 temp;
2866
2867 /* It is necessary to ungate the pixclk gate prior to programming
2868 * the divisors, and gate it back when it is done.
2869 */
2870 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2871
2872 /* Disable SSCCTL */
2873 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2874 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2875 SBI_SSCCTL_DISABLE);
2876
2877 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2878 if (crtc->mode.clock == 20000) {
2879 auxdiv = 1;
2880 divsel = 0x41;
2881 phaseinc = 0x20;
2882 } else {
2883 /* The iCLK virtual clock root frequency is in MHz,
2884 * but the crtc->mode.clock in in KHz. To get the divisors,
2885 * it is necessary to divide one by another, so we
2886 * convert the virtual clock precision to KHz here for higher
2887 * precision.
2888 */
2889 u32 iclk_virtual_root_freq = 172800 * 1000;
2890 u32 iclk_pi_range = 64;
2891 u32 desired_divisor, msb_divisor_value, pi_value;
2892
2893 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2894 msb_divisor_value = desired_divisor / iclk_pi_range;
2895 pi_value = desired_divisor % iclk_pi_range;
2896
2897 auxdiv = 0;
2898 divsel = msb_divisor_value - 2;
2899 phaseinc = pi_value;
2900 }
2901
2902 /* This should not happen with any sane values */
2903 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2904 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2905 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2906 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2907
2908 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2909 crtc->mode.clock,
2910 auxdiv,
2911 divsel,
2912 phasedir,
2913 phaseinc);
2914
2915 /* Program SSCDIVINTPHASE6 */
2916 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2917 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2918 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2919 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2920 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2921 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2922 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2923
2924 intel_sbi_write(dev_priv,
2925 SBI_SSCDIVINTPHASE6,
2926 temp);
2927
2928 /* Program SSCAUXDIV */
2929 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2930 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2931 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2932 intel_sbi_write(dev_priv,
2933 SBI_SSCAUXDIV6,
2934 temp);
2935
2936
2937 /* Enable modulator and associated divider */
2938 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2939 temp &= ~SBI_SSCCTL_DISABLE;
2940 intel_sbi_write(dev_priv,
2941 SBI_SSCCTL6,
2942 temp);
2943
2944 /* Wait for initialization time */
2945 udelay(24);
2946
2947 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2948}
2949
f67a559d
JB
2950/*
2951 * Enable PCH resources required for PCH ports:
2952 * - PCH PLLs
2953 * - FDI training & RX/TX
2954 * - update transcoder timings
2955 * - DP transcoding bits
2956 * - transcoder
2957 */
2958static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2959{
2960 struct drm_device *dev = crtc->dev;
2961 struct drm_i915_private *dev_priv = dev->dev_private;
2962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2963 int pipe = intel_crtc->pipe;
ee7b9f93 2964 u32 reg, temp;
2c07245f 2965
e7e164db
CW
2966 assert_transcoder_disabled(dev_priv, pipe);
2967
c98e9dcf 2968 /* For PCH output, training FDI link */
674cf967 2969 dev_priv->display.fdi_link_train(crtc);
2c07245f 2970
6f13b7b5
CW
2971 intel_enable_pch_pll(intel_crtc);
2972
e615efe4
ED
2973 if (HAS_PCH_LPT(dev)) {
2974 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2975 lpt_program_iclkip(crtc);
2976 } else if (HAS_PCH_CPT(dev)) {
ee7b9f93 2977 u32 sel;
4b645f14 2978
c98e9dcf 2979 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
2980 switch (pipe) {
2981 default:
2982 case 0:
2983 temp |= TRANSA_DPLL_ENABLE;
2984 sel = TRANSA_DPLLB_SEL;
2985 break;
2986 case 1:
2987 temp |= TRANSB_DPLL_ENABLE;
2988 sel = TRANSB_DPLLB_SEL;
2989 break;
2990 case 2:
2991 temp |= TRANSC_DPLL_ENABLE;
2992 sel = TRANSC_DPLLB_SEL;
2993 break;
d64311ab 2994 }
ee7b9f93
JB
2995 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2996 temp |= sel;
2997 else
2998 temp &= ~sel;
c98e9dcf 2999 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3000 }
5eddb70b 3001
d9b6cb56
JB
3002 /* set transcoder timing, panel must allow it */
3003 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3004 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3005 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3006 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3007
5eddb70b
CW
3008 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3009 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3010 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3011 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3012
f57e1e3a
ED
3013 if (!IS_HASWELL(dev))
3014 intel_fdi_normal_train(crtc);
5e84e1a4 3015
c98e9dcf
JB
3016 /* For PCH DP, enable TRANS_DP_CTL */
3017 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3018 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3019 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3020 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3021 reg = TRANS_DP_CTL(pipe);
3022 temp = I915_READ(reg);
3023 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3024 TRANS_DP_SYNC_MASK |
3025 TRANS_DP_BPC_MASK);
5eddb70b
CW
3026 temp |= (TRANS_DP_OUTPUT_ENABLE |
3027 TRANS_DP_ENH_FRAMING);
9325c9f0 3028 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3029
3030 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3031 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3032 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3033 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3034
3035 switch (intel_trans_dp_port_sel(crtc)) {
3036 case PCH_DP_B:
5eddb70b 3037 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3038 break;
3039 case PCH_DP_C:
5eddb70b 3040 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3041 break;
3042 case PCH_DP_D:
5eddb70b 3043 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3044 break;
3045 default:
3046 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 3047 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 3048 break;
32f9d658 3049 }
2c07245f 3050
5eddb70b 3051 I915_WRITE(reg, temp);
6be4a607 3052 }
b52eb4dc 3053
040484af 3054 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
3055}
3056
ee7b9f93
JB
3057static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3058{
3059 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3060
3061 if (pll == NULL)
3062 return;
3063
3064 if (pll->refcount == 0) {
3065 WARN(1, "bad PCH PLL refcount\n");
3066 return;
3067 }
3068
3069 --pll->refcount;
3070 intel_crtc->pch_pll = NULL;
3071}
3072
3073static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3074{
3075 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3076 struct intel_pch_pll *pll;
3077 int i;
3078
3079 pll = intel_crtc->pch_pll;
3080 if (pll) {
3081 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3082 intel_crtc->base.base.id, pll->pll_reg);
3083 goto prepare;
3084 }
3085
98b6bd99
DV
3086 if (HAS_PCH_IBX(dev_priv->dev)) {
3087 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3088 i = intel_crtc->pipe;
3089 pll = &dev_priv->pch_plls[i];
3090
3091 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3092 intel_crtc->base.base.id, pll->pll_reg);
3093
3094 goto found;
3095 }
3096
ee7b9f93
JB
3097 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3098 pll = &dev_priv->pch_plls[i];
3099
3100 /* Only want to check enabled timings first */
3101 if (pll->refcount == 0)
3102 continue;
3103
3104 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3105 fp == I915_READ(pll->fp0_reg)) {
3106 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3107 intel_crtc->base.base.id,
3108 pll->pll_reg, pll->refcount, pll->active);
3109
3110 goto found;
3111 }
3112 }
3113
3114 /* Ok no matching timings, maybe there's a free one? */
3115 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3116 pll = &dev_priv->pch_plls[i];
3117 if (pll->refcount == 0) {
3118 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3119 intel_crtc->base.base.id, pll->pll_reg);
3120 goto found;
3121 }
3122 }
3123
3124 return NULL;
3125
3126found:
3127 intel_crtc->pch_pll = pll;
3128 pll->refcount++;
3129 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3130prepare: /* separate function? */
3131 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3132
e04c7350
CW
3133 /* Wait for the clocks to stabilize before rewriting the regs */
3134 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3135 POSTING_READ(pll->pll_reg);
3136 udelay(150);
e04c7350
CW
3137
3138 I915_WRITE(pll->fp0_reg, fp);
3139 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3140 pll->on = false;
3141 return pll;
3142}
3143
d4270e57
JB
3144void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3145{
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3148 u32 temp;
3149
3150 temp = I915_READ(dslreg);
3151 udelay(500);
3152 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3153 /* Without this, mode sets may fail silently on FDI */
3154 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3155 udelay(250);
3156 I915_WRITE(tc2reg, 0);
3157 if (wait_for(I915_READ(dslreg) != temp, 5))
3158 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3159 }
3160}
3161
f67a559d
JB
3162static void ironlake_crtc_enable(struct drm_crtc *crtc)
3163{
3164 struct drm_device *dev = crtc->dev;
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3167 struct intel_encoder *encoder;
f67a559d
JB
3168 int pipe = intel_crtc->pipe;
3169 int plane = intel_crtc->plane;
3170 u32 temp;
3171 bool is_pch_port;
3172
08a48469
DV
3173 WARN_ON(!crtc->enabled);
3174
f67a559d
JB
3175 if (intel_crtc->active)
3176 return;
3177
3178 intel_crtc->active = true;
3179 intel_update_watermarks(dev);
3180
3181 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3182 temp = I915_READ(PCH_LVDS);
3183 if ((temp & LVDS_PORT_EN) == 0)
3184 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3185 }
3186
3187 is_pch_port = intel_crtc_driving_pch(crtc);
3188
46b6f814 3189 if (is_pch_port) {
88cefb6c 3190 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3191 } else {
3192 assert_fdi_tx_disabled(dev_priv, pipe);
3193 assert_fdi_rx_disabled(dev_priv, pipe);
3194 }
f67a559d 3195
bf49ec8c
DV
3196 for_each_encoder_on_crtc(dev, crtc, encoder)
3197 if (encoder->pre_enable)
3198 encoder->pre_enable(encoder);
3199
f67a559d
JB
3200 /* Enable panel fitting for LVDS */
3201 if (dev_priv->pch_pf_size &&
3202 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3203 /* Force use of hard-coded filter coefficients
3204 * as some pre-programmed values are broken,
3205 * e.g. x201.
3206 */
9db4a9c7
JB
3207 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3208 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3209 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3210 }
3211
9c54c0dd
JB
3212 /*
3213 * On ILK+ LUT must be loaded before the pipe is running but with
3214 * clocks enabled
3215 */
3216 intel_crtc_load_lut(crtc);
3217
f67a559d
JB
3218 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3219 intel_enable_plane(dev_priv, plane, pipe);
3220
3221 if (is_pch_port)
3222 ironlake_pch_enable(crtc);
c98e9dcf 3223
d1ebd816 3224 mutex_lock(&dev->struct_mutex);
bed4a673 3225 intel_update_fbc(dev);
d1ebd816
BW
3226 mutex_unlock(&dev->struct_mutex);
3227
6b383a7f 3228 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3229
fa5c73b1
DV
3230 for_each_encoder_on_crtc(dev, crtc, encoder)
3231 encoder->enable(encoder);
61b77ddd
DV
3232
3233 if (HAS_PCH_CPT(dev))
3234 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6be4a607
JB
3235}
3236
3237static void ironlake_crtc_disable(struct drm_crtc *crtc)
3238{
3239 struct drm_device *dev = crtc->dev;
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3242 struct intel_encoder *encoder;
6be4a607
JB
3243 int pipe = intel_crtc->pipe;
3244 int plane = intel_crtc->plane;
5eddb70b 3245 u32 reg, temp;
b52eb4dc 3246
ef9c3aee 3247
f7abfe8b
CW
3248 if (!intel_crtc->active)
3249 return;
3250
ea9d758d
DV
3251 for_each_encoder_on_crtc(dev, crtc, encoder)
3252 encoder->disable(encoder);
3253
e6c3a2a6 3254 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3255 drm_vblank_off(dev, pipe);
6b383a7f 3256 intel_crtc_update_cursor(crtc, false);
5eddb70b 3257
b24e7179 3258 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3259
973d04f9
CW
3260 if (dev_priv->cfb_plane == plane)
3261 intel_disable_fbc(dev);
2c07245f 3262
b24e7179 3263 intel_disable_pipe(dev_priv, pipe);
32f9d658 3264
6be4a607 3265 /* Disable PF */
9db4a9c7
JB
3266 I915_WRITE(PF_CTL(pipe), 0);
3267 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3268
bf49ec8c
DV
3269 for_each_encoder_on_crtc(dev, crtc, encoder)
3270 if (encoder->post_disable)
3271 encoder->post_disable(encoder);
3272
0fc932b8 3273 ironlake_fdi_disable(crtc);
2c07245f 3274
040484af 3275 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3276
6be4a607
JB
3277 if (HAS_PCH_CPT(dev)) {
3278 /* disable TRANS_DP_CTL */
5eddb70b
CW
3279 reg = TRANS_DP_CTL(pipe);
3280 temp = I915_READ(reg);
3281 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3282 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3283 I915_WRITE(reg, temp);
6be4a607
JB
3284
3285 /* disable DPLL_SEL */
3286 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3287 switch (pipe) {
3288 case 0:
d64311ab 3289 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3290 break;
3291 case 1:
6be4a607 3292 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3293 break;
3294 case 2:
4b645f14 3295 /* C shares PLL A or B */
d64311ab 3296 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3297 break;
3298 default:
3299 BUG(); /* wtf */
3300 }
6be4a607 3301 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3302 }
e3421a18 3303
6be4a607 3304 /* disable PCH DPLL */
ee7b9f93 3305 intel_disable_pch_pll(intel_crtc);
8db9d77b 3306
88cefb6c 3307 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3308
f7abfe8b 3309 intel_crtc->active = false;
6b383a7f 3310 intel_update_watermarks(dev);
d1ebd816
BW
3311
3312 mutex_lock(&dev->struct_mutex);
6b383a7f 3313 intel_update_fbc(dev);
d1ebd816 3314 mutex_unlock(&dev->struct_mutex);
6be4a607 3315}
1b3c7a47 3316
ee7b9f93
JB
3317static void ironlake_crtc_off(struct drm_crtc *crtc)
3318{
3319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3320 intel_put_pch_pll(intel_crtc);
3321}
3322
02e792fb
DV
3323static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3324{
02e792fb 3325 if (!enable && intel_crtc->overlay) {
23f09ce3 3326 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3327 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3328
23f09ce3 3329 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3330 dev_priv->mm.interruptible = false;
3331 (void) intel_overlay_switch_off(intel_crtc->overlay);
3332 dev_priv->mm.interruptible = true;
23f09ce3 3333 mutex_unlock(&dev->struct_mutex);
02e792fb 3334 }
02e792fb 3335
5dcdbcb0
CW
3336 /* Let userspace switch the overlay on again. In most cases userspace
3337 * has to recompute where to put it anyway.
3338 */
02e792fb
DV
3339}
3340
0b8765c6 3341static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3342{
3343 struct drm_device *dev = crtc->dev;
79e53945
JB
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3346 struct intel_encoder *encoder;
79e53945 3347 int pipe = intel_crtc->pipe;
80824003 3348 int plane = intel_crtc->plane;
79e53945 3349
08a48469
DV
3350 WARN_ON(!crtc->enabled);
3351
f7abfe8b
CW
3352 if (intel_crtc->active)
3353 return;
3354
3355 intel_crtc->active = true;
6b383a7f
CW
3356 intel_update_watermarks(dev);
3357
63d7bbe9 3358 intel_enable_pll(dev_priv, pipe);
040484af 3359 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3360 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3361
0b8765c6 3362 intel_crtc_load_lut(crtc);
bed4a673 3363 intel_update_fbc(dev);
79e53945 3364
0b8765c6
JB
3365 /* Give the overlay scaler a chance to enable if it's on this pipe */
3366 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3367 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3368
fa5c73b1
DV
3369 for_each_encoder_on_crtc(dev, crtc, encoder)
3370 encoder->enable(encoder);
0b8765c6 3371}
79e53945 3372
0b8765c6
JB
3373static void i9xx_crtc_disable(struct drm_crtc *crtc)
3374{
3375 struct drm_device *dev = crtc->dev;
3376 struct drm_i915_private *dev_priv = dev->dev_private;
3377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3378 struct intel_encoder *encoder;
0b8765c6
JB
3379 int pipe = intel_crtc->pipe;
3380 int plane = intel_crtc->plane;
b690e96c 3381
ef9c3aee 3382
f7abfe8b
CW
3383 if (!intel_crtc->active)
3384 return;
3385
ea9d758d
DV
3386 for_each_encoder_on_crtc(dev, crtc, encoder)
3387 encoder->disable(encoder);
3388
0b8765c6 3389 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3390 intel_crtc_wait_for_pending_flips(crtc);
3391 drm_vblank_off(dev, pipe);
0b8765c6 3392 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3393 intel_crtc_update_cursor(crtc, false);
0b8765c6 3394
973d04f9
CW
3395 if (dev_priv->cfb_plane == plane)
3396 intel_disable_fbc(dev);
79e53945 3397
b24e7179 3398 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3399 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3400 intel_disable_pll(dev_priv, pipe);
0b8765c6 3401
f7abfe8b 3402 intel_crtc->active = false;
6b383a7f
CW
3403 intel_update_fbc(dev);
3404 intel_update_watermarks(dev);
0b8765c6
JB
3405}
3406
ee7b9f93
JB
3407static void i9xx_crtc_off(struct drm_crtc *crtc)
3408{
3409}
3410
976f8a20
DV
3411static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3412 bool enabled)
2c07245f
ZW
3413{
3414 struct drm_device *dev = crtc->dev;
3415 struct drm_i915_master_private *master_priv;
3416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3417 int pipe = intel_crtc->pipe;
79e53945
JB
3418
3419 if (!dev->primary->master)
3420 return;
3421
3422 master_priv = dev->primary->master->driver_priv;
3423 if (!master_priv->sarea_priv)
3424 return;
3425
79e53945
JB
3426 switch (pipe) {
3427 case 0:
3428 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3429 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3430 break;
3431 case 1:
3432 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3433 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3434 break;
3435 default:
9db4a9c7 3436 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3437 break;
3438 }
79e53945
JB
3439}
3440
976f8a20
DV
3441/**
3442 * Sets the power management mode of the pipe and plane.
3443 */
3444void intel_crtc_update_dpms(struct drm_crtc *crtc)
3445{
3446 struct drm_device *dev = crtc->dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 struct intel_encoder *intel_encoder;
3449 bool enable = false;
3450
3451 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3452 enable |= intel_encoder->connectors_active;
3453
3454 if (enable)
3455 dev_priv->display.crtc_enable(crtc);
3456 else
3457 dev_priv->display.crtc_disable(crtc);
3458
3459 intel_crtc_update_sarea(crtc, enable);
3460}
3461
3462static void intel_crtc_noop(struct drm_crtc *crtc)
3463{
3464}
3465
cdd59983
CW
3466static void intel_crtc_disable(struct drm_crtc *crtc)
3467{
cdd59983 3468 struct drm_device *dev = crtc->dev;
976f8a20 3469 struct drm_connector *connector;
ee7b9f93 3470 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3471
976f8a20
DV
3472 /* crtc should still be enabled when we disable it. */
3473 WARN_ON(!crtc->enabled);
3474
3475 dev_priv->display.crtc_disable(crtc);
3476 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3477 dev_priv->display.off(crtc);
3478
931872fc
CW
3479 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3480 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3481
3482 if (crtc->fb) {
3483 mutex_lock(&dev->struct_mutex);
1690e1eb 3484 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3485 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3486 crtc->fb = NULL;
3487 }
3488
3489 /* Update computed state. */
3490 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3491 if (!connector->encoder || !connector->encoder->crtc)
3492 continue;
3493
3494 if (connector->encoder->crtc != crtc)
3495 continue;
3496
3497 connector->dpms = DRM_MODE_DPMS_OFF;
3498 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3499 }
3500}
3501
a261b246 3502void intel_modeset_disable(struct drm_device *dev)
79e53945 3503{
a261b246
DV
3504 struct drm_crtc *crtc;
3505
3506 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3507 if (crtc->enabled)
3508 intel_crtc_disable(crtc);
3509 }
79e53945
JB
3510}
3511
1f703855 3512void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3513{
7e7d76c3
JB
3514}
3515
ea5b213a 3516void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3517{
4ef69c7a 3518 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3519
ea5b213a
CW
3520 drm_encoder_cleanup(encoder);
3521 kfree(intel_encoder);
7e7d76c3
JB
3522}
3523
5ab432ef
DV
3524/* Simple dpms helper for encodres with just one connector, no cloning and only
3525 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3526 * state of the entire output pipe. */
3527void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3528{
5ab432ef
DV
3529 if (mode == DRM_MODE_DPMS_ON) {
3530 encoder->connectors_active = true;
3531
b2cabb0e 3532 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3533 } else {
3534 encoder->connectors_active = false;
3535
b2cabb0e 3536 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3537 }
79e53945
JB
3538}
3539
0a91ca29
DV
3540/* Cross check the actual hw state with our own modeset state tracking (and it's
3541 * internal consistency). */
b980514c 3542static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3543{
0a91ca29
DV
3544 if (connector->get_hw_state(connector)) {
3545 struct intel_encoder *encoder = connector->encoder;
3546 struct drm_crtc *crtc;
3547 bool encoder_enabled;
3548 enum pipe pipe;
3549
3550 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3551 connector->base.base.id,
3552 drm_get_connector_name(&connector->base));
3553
3554 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3555 "wrong connector dpms state\n");
3556 WARN(connector->base.encoder != &encoder->base,
3557 "active connector not linked to encoder\n");
3558 WARN(!encoder->connectors_active,
3559 "encoder->connectors_active not set\n");
3560
3561 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3562 WARN(!encoder_enabled, "encoder not enabled\n");
3563 if (WARN_ON(!encoder->base.crtc))
3564 return;
3565
3566 crtc = encoder->base.crtc;
3567
3568 WARN(!crtc->enabled, "crtc not enabled\n");
3569 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3570 WARN(pipe != to_intel_crtc(crtc)->pipe,
3571 "encoder active on the wrong pipe\n");
3572 }
79e53945
JB
3573}
3574
5ab432ef
DV
3575/* Even simpler default implementation, if there's really no special case to
3576 * consider. */
3577void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3578{
5ab432ef 3579 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3580
5ab432ef
DV
3581 /* All the simple cases only support two dpms states. */
3582 if (mode != DRM_MODE_DPMS_ON)
3583 mode = DRM_MODE_DPMS_OFF;
d4270e57 3584
5ab432ef
DV
3585 if (mode == connector->dpms)
3586 return;
3587
3588 connector->dpms = mode;
3589
3590 /* Only need to change hw state when actually enabled */
3591 if (encoder->base.crtc)
3592 intel_encoder_dpms(encoder, mode);
3593 else
8af6cf88 3594 WARN_ON(encoder->connectors_active != false);
0a91ca29 3595
b980514c 3596 intel_modeset_check_state(connector->dev);
79e53945
JB
3597}
3598
f0947c37
DV
3599/* Simple connector->get_hw_state implementation for encoders that support only
3600 * one connector and no cloning and hence the encoder state determines the state
3601 * of the connector. */
3602bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3603{
24929352 3604 enum pipe pipe = 0;
f0947c37 3605 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3606
f0947c37 3607 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3608}
3609
79e53945 3610static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3611 const struct drm_display_mode *mode,
79e53945
JB
3612 struct drm_display_mode *adjusted_mode)
3613{
2c07245f 3614 struct drm_device *dev = crtc->dev;
89749350 3615
bad720ff 3616 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3617 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3618 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3619 return false;
2c07245f 3620 }
89749350 3621
f9bef081
DV
3622 /* All interlaced capable intel hw wants timings in frames. Note though
3623 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3624 * timings, so we need to be careful not to clobber these.*/
3625 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3626 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3627
44f46b42
CW
3628 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3629 * with a hsync front porch of 0.
3630 */
3631 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3632 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3633 return false;
3634
79e53945
JB
3635 return true;
3636}
3637
25eb05fc
JB
3638static int valleyview_get_display_clock_speed(struct drm_device *dev)
3639{
3640 return 400000; /* FIXME */
3641}
3642
e70236a8
JB
3643static int i945_get_display_clock_speed(struct drm_device *dev)
3644{
3645 return 400000;
3646}
79e53945 3647
e70236a8 3648static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3649{
e70236a8
JB
3650 return 333000;
3651}
79e53945 3652
e70236a8
JB
3653static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3654{
3655 return 200000;
3656}
79e53945 3657
e70236a8
JB
3658static int i915gm_get_display_clock_speed(struct drm_device *dev)
3659{
3660 u16 gcfgc = 0;
79e53945 3661
e70236a8
JB
3662 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3663
3664 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3665 return 133000;
3666 else {
3667 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3668 case GC_DISPLAY_CLOCK_333_MHZ:
3669 return 333000;
3670 default:
3671 case GC_DISPLAY_CLOCK_190_200_MHZ:
3672 return 190000;
79e53945 3673 }
e70236a8
JB
3674 }
3675}
3676
3677static int i865_get_display_clock_speed(struct drm_device *dev)
3678{
3679 return 266000;
3680}
3681
3682static int i855_get_display_clock_speed(struct drm_device *dev)
3683{
3684 u16 hpllcc = 0;
3685 /* Assume that the hardware is in the high speed state. This
3686 * should be the default.
3687 */
3688 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3689 case GC_CLOCK_133_200:
3690 case GC_CLOCK_100_200:
3691 return 200000;
3692 case GC_CLOCK_166_250:
3693 return 250000;
3694 case GC_CLOCK_100_133:
79e53945 3695 return 133000;
e70236a8 3696 }
79e53945 3697
e70236a8
JB
3698 /* Shouldn't happen */
3699 return 0;
3700}
79e53945 3701
e70236a8
JB
3702static int i830_get_display_clock_speed(struct drm_device *dev)
3703{
3704 return 133000;
79e53945
JB
3705}
3706
2c07245f
ZW
3707struct fdi_m_n {
3708 u32 tu;
3709 u32 gmch_m;
3710 u32 gmch_n;
3711 u32 link_m;
3712 u32 link_n;
3713};
3714
3715static void
3716fdi_reduce_ratio(u32 *num, u32 *den)
3717{
3718 while (*num > 0xffffff || *den > 0xffffff) {
3719 *num >>= 1;
3720 *den >>= 1;
3721 }
3722}
3723
2c07245f 3724static void
f2b115e6
AJ
3725ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3726 int link_clock, struct fdi_m_n *m_n)
2c07245f 3727{
2c07245f
ZW
3728 m_n->tu = 64; /* default size */
3729
22ed1113
CW
3730 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3731 m_n->gmch_m = bits_per_pixel * pixel_clock;
3732 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3733 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3734
22ed1113
CW
3735 m_n->link_m = pixel_clock;
3736 m_n->link_n = link_clock;
2c07245f
ZW
3737 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3738}
3739
a7615030
CW
3740static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3741{
72bbe58c
KP
3742 if (i915_panel_use_ssc >= 0)
3743 return i915_panel_use_ssc != 0;
3744 return dev_priv->lvds_use_ssc
435793df 3745 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
3746}
3747
5a354204
JB
3748/**
3749 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3750 * @crtc: CRTC structure
3b5c78a3 3751 * @mode: requested mode
5a354204
JB
3752 *
3753 * A pipe may be connected to one or more outputs. Based on the depth of the
3754 * attached framebuffer, choose a good color depth to use on the pipe.
3755 *
3756 * If possible, match the pipe depth to the fb depth. In some cases, this
3757 * isn't ideal, because the connected output supports a lesser or restricted
3758 * set of depths. Resolve that here:
3759 * LVDS typically supports only 6bpc, so clamp down in that case
3760 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3761 * Displays may support a restricted set as well, check EDID and clamp as
3762 * appropriate.
3b5c78a3 3763 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
3764 *
3765 * RETURNS:
3766 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3767 * true if they don't match).
3768 */
3769static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 3770 struct drm_framebuffer *fb,
3b5c78a3
AJ
3771 unsigned int *pipe_bpp,
3772 struct drm_display_mode *mode)
5a354204
JB
3773{
3774 struct drm_device *dev = crtc->dev;
3775 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 3776 struct drm_connector *connector;
6c2b7c12 3777 struct intel_encoder *intel_encoder;
5a354204
JB
3778 unsigned int display_bpc = UINT_MAX, bpc;
3779
3780 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 3781 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
3782
3783 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3784 unsigned int lvds_bpc;
3785
3786 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3787 LVDS_A3_POWER_UP)
3788 lvds_bpc = 8;
3789 else
3790 lvds_bpc = 6;
3791
3792 if (lvds_bpc < display_bpc) {
82820490 3793 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
3794 display_bpc = lvds_bpc;
3795 }
3796 continue;
3797 }
3798
5a354204
JB
3799 /* Not one of the known troublemakers, check the EDID */
3800 list_for_each_entry(connector, &dev->mode_config.connector_list,
3801 head) {
6c2b7c12 3802 if (connector->encoder != &intel_encoder->base)
5a354204
JB
3803 continue;
3804
62ac41a6
JB
3805 /* Don't use an invalid EDID bpc value */
3806 if (connector->display_info.bpc &&
3807 connector->display_info.bpc < display_bpc) {
82820490 3808 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
3809 display_bpc = connector->display_info.bpc;
3810 }
3811 }
3812
3813 /*
3814 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3815 * through, clamp it down. (Note: >12bpc will be caught below.)
3816 */
3817 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3818 if (display_bpc > 8 && display_bpc < 12) {
82820490 3819 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
3820 display_bpc = 12;
3821 } else {
82820490 3822 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
3823 display_bpc = 8;
3824 }
3825 }
3826 }
3827
3b5c78a3
AJ
3828 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3829 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3830 display_bpc = 6;
3831 }
3832
5a354204
JB
3833 /*
3834 * We could just drive the pipe at the highest bpc all the time and
3835 * enable dithering as needed, but that costs bandwidth. So choose
3836 * the minimum value that expresses the full color range of the fb but
3837 * also stays within the max display bpc discovered above.
3838 */
3839
94352cf9 3840 switch (fb->depth) {
5a354204
JB
3841 case 8:
3842 bpc = 8; /* since we go through a colormap */
3843 break;
3844 case 15:
3845 case 16:
3846 bpc = 6; /* min is 18bpp */
3847 break;
3848 case 24:
578393cd 3849 bpc = 8;
5a354204
JB
3850 break;
3851 case 30:
578393cd 3852 bpc = 10;
5a354204
JB
3853 break;
3854 case 48:
578393cd 3855 bpc = 12;
5a354204
JB
3856 break;
3857 default:
3858 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3859 bpc = min((unsigned int)8, display_bpc);
3860 break;
3861 }
3862
578393cd
KP
3863 display_bpc = min(display_bpc, bpc);
3864
82820490
AJ
3865 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3866 bpc, display_bpc);
5a354204 3867
578393cd 3868 *pipe_bpp = display_bpc * 3;
5a354204
JB
3869
3870 return display_bpc != bpc;
3871}
3872
a0c4da24
JB
3873static int vlv_get_refclk(struct drm_crtc *crtc)
3874{
3875 struct drm_device *dev = crtc->dev;
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3877 int refclk = 27000; /* for DP & HDMI */
3878
3879 return 100000; /* only one validated so far */
3880
3881 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3882 refclk = 96000;
3883 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3884 if (intel_panel_use_ssc(dev_priv))
3885 refclk = 100000;
3886 else
3887 refclk = 96000;
3888 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3889 refclk = 100000;
3890 }
3891
3892 return refclk;
3893}
3894
c65d77d8
JB
3895static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3896{
3897 struct drm_device *dev = crtc->dev;
3898 struct drm_i915_private *dev_priv = dev->dev_private;
3899 int refclk;
3900
a0c4da24
JB
3901 if (IS_VALLEYVIEW(dev)) {
3902 refclk = vlv_get_refclk(crtc);
3903 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
3904 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3905 refclk = dev_priv->lvds_ssc_freq * 1000;
3906 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3907 refclk / 1000);
3908 } else if (!IS_GEN2(dev)) {
3909 refclk = 96000;
3910 } else {
3911 refclk = 48000;
3912 }
3913
3914 return refclk;
3915}
3916
3917static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3918 intel_clock_t *clock)
3919{
3920 /* SDVO TV has fixed PLL values depend on its clock range,
3921 this mirrors vbios setting. */
3922 if (adjusted_mode->clock >= 100000
3923 && adjusted_mode->clock < 140500) {
3924 clock->p1 = 2;
3925 clock->p2 = 10;
3926 clock->n = 3;
3927 clock->m1 = 16;
3928 clock->m2 = 8;
3929 } else if (adjusted_mode->clock >= 140500
3930 && adjusted_mode->clock <= 200000) {
3931 clock->p1 = 1;
3932 clock->p2 = 10;
3933 clock->n = 6;
3934 clock->m1 = 12;
3935 clock->m2 = 8;
3936 }
3937}
3938
a7516a05
JB
3939static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3940 intel_clock_t *clock,
3941 intel_clock_t *reduced_clock)
3942{
3943 struct drm_device *dev = crtc->dev;
3944 struct drm_i915_private *dev_priv = dev->dev_private;
3945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3946 int pipe = intel_crtc->pipe;
3947 u32 fp, fp2 = 0;
3948
3949 if (IS_PINEVIEW(dev)) {
3950 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3951 if (reduced_clock)
3952 fp2 = (1 << reduced_clock->n) << 16 |
3953 reduced_clock->m1 << 8 | reduced_clock->m2;
3954 } else {
3955 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3956 if (reduced_clock)
3957 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3958 reduced_clock->m2;
3959 }
3960
3961 I915_WRITE(FP0(pipe), fp);
3962
3963 intel_crtc->lowfreq_avail = false;
3964 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3965 reduced_clock && i915_powersave) {
3966 I915_WRITE(FP1(pipe), fp2);
3967 intel_crtc->lowfreq_avail = true;
3968 } else {
3969 I915_WRITE(FP1(pipe), fp);
3970 }
3971}
3972
93e537a1
DV
3973static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3974 struct drm_display_mode *adjusted_mode)
3975{
3976 struct drm_device *dev = crtc->dev;
3977 struct drm_i915_private *dev_priv = dev->dev_private;
3978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3979 int pipe = intel_crtc->pipe;
284d5df5 3980 u32 temp;
93e537a1
DV
3981
3982 temp = I915_READ(LVDS);
3983 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3984 if (pipe == 1) {
3985 temp |= LVDS_PIPEB_SELECT;
3986 } else {
3987 temp &= ~LVDS_PIPEB_SELECT;
3988 }
3989 /* set the corresponsding LVDS_BORDER bit */
3990 temp |= dev_priv->lvds_border_bits;
3991 /* Set the B0-B3 data pairs corresponding to whether we're going to
3992 * set the DPLLs for dual-channel mode or not.
3993 */
3994 if (clock->p2 == 7)
3995 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3996 else
3997 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3998
3999 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4000 * appropriately here, but we need to look more thoroughly into how
4001 * panels behave in the two modes.
4002 */
4003 /* set the dithering flag on LVDS as needed */
4004 if (INTEL_INFO(dev)->gen >= 4) {
4005 if (dev_priv->lvds_dither)
4006 temp |= LVDS_ENABLE_DITHER;
4007 else
4008 temp &= ~LVDS_ENABLE_DITHER;
4009 }
284d5df5 4010 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4011 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4012 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4013 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4014 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4015 I915_WRITE(LVDS, temp);
4016}
4017
a0c4da24
JB
4018static void vlv_update_pll(struct drm_crtc *crtc,
4019 struct drm_display_mode *mode,
4020 struct drm_display_mode *adjusted_mode,
4021 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4022 int num_connectors)
a0c4da24
JB
4023{
4024 struct drm_device *dev = crtc->dev;
4025 struct drm_i915_private *dev_priv = dev->dev_private;
4026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4027 int pipe = intel_crtc->pipe;
4028 u32 dpll, mdiv, pdiv;
4029 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4030 bool is_sdvo;
4031 u32 temp;
4032
4033 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4034 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4035
2a8f64ca
VP
4036 dpll = DPLL_VGA_MODE_DIS;
4037 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4038 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4039 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4040
4041 I915_WRITE(DPLL(pipe), dpll);
4042 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4043
4044 bestn = clock->n;
4045 bestm1 = clock->m1;
4046 bestm2 = clock->m2;
4047 bestp1 = clock->p1;
4048 bestp2 = clock->p2;
4049
2a8f64ca
VP
4050 /*
4051 * In Valleyview PLL and program lane counter registers are exposed
4052 * through DPIO interface
4053 */
a0c4da24
JB
4054 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4055 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4056 mdiv |= ((bestn << DPIO_N_SHIFT));
4057 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4058 mdiv |= (1 << DPIO_K_SHIFT);
4059 mdiv |= DPIO_ENABLE_CALIBRATION;
4060 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4061
4062 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4063
2a8f64ca 4064 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4065 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4066 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4067 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4068 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4069
2a8f64ca 4070 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4071
4072 dpll |= DPLL_VCO_ENABLE;
4073 I915_WRITE(DPLL(pipe), dpll);
4074 POSTING_READ(DPLL(pipe));
4075 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4076 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4077
2a8f64ca
VP
4078 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4079
4080 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4081 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4082
4083 I915_WRITE(DPLL(pipe), dpll);
4084
4085 /* Wait for the clocks to stabilize. */
4086 POSTING_READ(DPLL(pipe));
4087 udelay(150);
a0c4da24 4088
2a8f64ca
VP
4089 temp = 0;
4090 if (is_sdvo) {
4091 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4092 if (temp > 1)
4093 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4094 else
4095 temp = 0;
a0c4da24 4096 }
2a8f64ca
VP
4097 I915_WRITE(DPLL_MD(pipe), temp);
4098 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4099
2a8f64ca
VP
4100 /* Now program lane control registers */
4101 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4102 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4103 {
4104 temp = 0x1000C4;
4105 if(pipe == 1)
4106 temp |= (1 << 21);
4107 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4108 }
4109 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4110 {
4111 temp = 0x1000C4;
4112 if(pipe == 1)
4113 temp |= (1 << 21);
4114 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4115 }
a0c4da24
JB
4116}
4117
eb1cbe48
DV
4118static void i9xx_update_pll(struct drm_crtc *crtc,
4119 struct drm_display_mode *mode,
4120 struct drm_display_mode *adjusted_mode,
4121 intel_clock_t *clock, intel_clock_t *reduced_clock,
4122 int num_connectors)
4123{
4124 struct drm_device *dev = crtc->dev;
4125 struct drm_i915_private *dev_priv = dev->dev_private;
4126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4127 int pipe = intel_crtc->pipe;
4128 u32 dpll;
4129 bool is_sdvo;
4130
2a8f64ca
VP
4131 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4132
eb1cbe48
DV
4133 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4134 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4135
4136 dpll = DPLL_VGA_MODE_DIS;
4137
4138 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4139 dpll |= DPLLB_MODE_LVDS;
4140 else
4141 dpll |= DPLLB_MODE_DAC_SERIAL;
4142 if (is_sdvo) {
4143 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4144 if (pixel_multiplier > 1) {
4145 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4146 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4147 }
4148 dpll |= DPLL_DVO_HIGH_SPEED;
4149 }
4150 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4151 dpll |= DPLL_DVO_HIGH_SPEED;
4152
4153 /* compute bitmask from p1 value */
4154 if (IS_PINEVIEW(dev))
4155 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4156 else {
4157 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4158 if (IS_G4X(dev) && reduced_clock)
4159 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4160 }
4161 switch (clock->p2) {
4162 case 5:
4163 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4164 break;
4165 case 7:
4166 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4167 break;
4168 case 10:
4169 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4170 break;
4171 case 14:
4172 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4173 break;
4174 }
4175 if (INTEL_INFO(dev)->gen >= 4)
4176 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4177
4178 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4179 dpll |= PLL_REF_INPUT_TVCLKINBC;
4180 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4181 /* XXX: just matching BIOS for now */
4182 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4183 dpll |= 3;
4184 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4185 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4186 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4187 else
4188 dpll |= PLL_REF_INPUT_DREFCLK;
4189
4190 dpll |= DPLL_VCO_ENABLE;
4191 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4192 POSTING_READ(DPLL(pipe));
4193 udelay(150);
4194
4195 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4196 * This is an exception to the general rule that mode_set doesn't turn
4197 * things on.
4198 */
4199 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4200 intel_update_lvds(crtc, clock, adjusted_mode);
4201
4202 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4203 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4204
4205 I915_WRITE(DPLL(pipe), dpll);
4206
4207 /* Wait for the clocks to stabilize. */
4208 POSTING_READ(DPLL(pipe));
4209 udelay(150);
4210
4211 if (INTEL_INFO(dev)->gen >= 4) {
4212 u32 temp = 0;
4213 if (is_sdvo) {
4214 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4215 if (temp > 1)
4216 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4217 else
4218 temp = 0;
4219 }
4220 I915_WRITE(DPLL_MD(pipe), temp);
4221 } else {
4222 /* The pixel multiplier can only be updated once the
4223 * DPLL is enabled and the clocks are stable.
4224 *
4225 * So write it again.
4226 */
4227 I915_WRITE(DPLL(pipe), dpll);
4228 }
4229}
4230
4231static void i8xx_update_pll(struct drm_crtc *crtc,
4232 struct drm_display_mode *adjusted_mode,
2a8f64ca 4233 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4234 int num_connectors)
4235{
4236 struct drm_device *dev = crtc->dev;
4237 struct drm_i915_private *dev_priv = dev->dev_private;
4238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4239 int pipe = intel_crtc->pipe;
4240 u32 dpll;
4241
2a8f64ca
VP
4242 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4243
eb1cbe48
DV
4244 dpll = DPLL_VGA_MODE_DIS;
4245
4246 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4247 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4248 } else {
4249 if (clock->p1 == 2)
4250 dpll |= PLL_P1_DIVIDE_BY_TWO;
4251 else
4252 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4253 if (clock->p2 == 4)
4254 dpll |= PLL_P2_DIVIDE_BY_4;
4255 }
4256
4257 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4258 /* XXX: just matching BIOS for now */
4259 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4260 dpll |= 3;
4261 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4262 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4263 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4264 else
4265 dpll |= PLL_REF_INPUT_DREFCLK;
4266
4267 dpll |= DPLL_VCO_ENABLE;
4268 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4269 POSTING_READ(DPLL(pipe));
4270 udelay(150);
4271
eb1cbe48
DV
4272 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4273 * This is an exception to the general rule that mode_set doesn't turn
4274 * things on.
4275 */
4276 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4277 intel_update_lvds(crtc, clock, adjusted_mode);
4278
5b5896e4
DV
4279 I915_WRITE(DPLL(pipe), dpll);
4280
4281 /* Wait for the clocks to stabilize. */
4282 POSTING_READ(DPLL(pipe));
4283 udelay(150);
4284
eb1cbe48
DV
4285 /* The pixel multiplier can only be updated once the
4286 * DPLL is enabled and the clocks are stable.
4287 *
4288 * So write it again.
4289 */
4290 I915_WRITE(DPLL(pipe), dpll);
4291}
4292
f564048e
EA
4293static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4294 struct drm_display_mode *mode,
4295 struct drm_display_mode *adjusted_mode,
4296 int x, int y,
94352cf9 4297 struct drm_framebuffer *fb)
79e53945
JB
4298{
4299 struct drm_device *dev = crtc->dev;
4300 struct drm_i915_private *dev_priv = dev->dev_private;
4301 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4302 int pipe = intel_crtc->pipe;
80824003 4303 int plane = intel_crtc->plane;
c751ce4f 4304 int refclk, num_connectors = 0;
652c393a 4305 intel_clock_t clock, reduced_clock;
eb1cbe48
DV
4306 u32 dspcntr, pipeconf, vsyncshift;
4307 bool ok, has_reduced_clock = false, is_sdvo = false;
4308 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4309 struct intel_encoder *encoder;
d4906093 4310 const intel_limit_t *limit;
5c3b82e2 4311 int ret;
79e53945 4312
6c2b7c12 4313 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4314 switch (encoder->type) {
79e53945
JB
4315 case INTEL_OUTPUT_LVDS:
4316 is_lvds = true;
4317 break;
4318 case INTEL_OUTPUT_SDVO:
7d57382e 4319 case INTEL_OUTPUT_HDMI:
79e53945 4320 is_sdvo = true;
5eddb70b 4321 if (encoder->needs_tv_clock)
e2f0ba97 4322 is_tv = true;
79e53945 4323 break;
79e53945
JB
4324 case INTEL_OUTPUT_TVOUT:
4325 is_tv = true;
4326 break;
a4fc5ed6
KP
4327 case INTEL_OUTPUT_DISPLAYPORT:
4328 is_dp = true;
4329 break;
79e53945 4330 }
43565a06 4331
c751ce4f 4332 num_connectors++;
79e53945
JB
4333 }
4334
c65d77d8 4335 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4336
d4906093
ML
4337 /*
4338 * Returns a set of divisors for the desired target clock with the given
4339 * refclk, or FALSE. The returned values represent the clock equation:
4340 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4341 */
1b894b59 4342 limit = intel_limit(crtc, refclk);
cec2f356
SP
4343 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4344 &clock);
79e53945
JB
4345 if (!ok) {
4346 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4347 return -EINVAL;
79e53945
JB
4348 }
4349
cda4b7d3 4350 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4351 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4352
ddc9003c 4353 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4354 /*
4355 * Ensure we match the reduced clock's P to the target clock.
4356 * If the clocks don't match, we can't switch the display clock
4357 * by using the FP0/FP1. In such case we will disable the LVDS
4358 * downclock feature.
4359 */
ddc9003c 4360 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4361 dev_priv->lvds_downclock,
4362 refclk,
cec2f356 4363 &clock,
5eddb70b 4364 &reduced_clock);
7026d4ac
ZW
4365 }
4366
c65d77d8
JB
4367 if (is_sdvo && is_tv)
4368 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4369
eb1cbe48 4370 if (IS_GEN2(dev))
2a8f64ca
VP
4371 i8xx_update_pll(crtc, adjusted_mode, &clock,
4372 has_reduced_clock ? &reduced_clock : NULL,
4373 num_connectors);
a0c4da24 4374 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4375 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4376 has_reduced_clock ? &reduced_clock : NULL,
4377 num_connectors);
79e53945 4378 else
eb1cbe48
DV
4379 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4380 has_reduced_clock ? &reduced_clock : NULL,
4381 num_connectors);
79e53945
JB
4382
4383 /* setup pipeconf */
5eddb70b 4384 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4385
4386 /* Set up the display plane register */
4387 dspcntr = DISPPLANE_GAMMA_ENABLE;
4388
929c77fb
EA
4389 if (pipe == 0)
4390 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4391 else
4392 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4393
a6c45cf0 4394 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4395 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4396 * core speed.
4397 *
4398 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4399 * pipe == 0 check?
4400 */
e70236a8
JB
4401 if (mode->clock >
4402 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4403 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4404 else
5eddb70b 4405 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4406 }
4407
3b5c78a3
AJ
4408 /* default to 8bpc */
4409 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4410 if (is_dp) {
4411 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4412 pipeconf |= PIPECONF_BPP_6 |
4413 PIPECONF_DITHER_EN |
4414 PIPECONF_DITHER_TYPE_SP;
4415 }
4416 }
4417
19c03924
GB
4418 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4419 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4420 pipeconf |= PIPECONF_BPP_6 |
4421 PIPECONF_ENABLE |
4422 I965_PIPECONF_ACTIVE;
4423 }
4424 }
4425
28c97730 4426 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4427 drm_mode_debug_printmodeline(mode);
4428
a7516a05
JB
4429 if (HAS_PIPE_CXSR(dev)) {
4430 if (intel_crtc->lowfreq_avail) {
28c97730 4431 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4432 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4433 } else {
28c97730 4434 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4435 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4436 }
4437 }
4438
617cf884 4439 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575
DV
4440 if (!IS_GEN2(dev) &&
4441 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
734b4157
KH
4442 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4443 /* the chip adds 2 halflines automatically */
734b4157 4444 adjusted_mode->crtc_vtotal -= 1;
734b4157 4445 adjusted_mode->crtc_vblank_end -= 1;
0529a0d9
DV
4446 vsyncshift = adjusted_mode->crtc_hsync_start
4447 - adjusted_mode->crtc_htotal/2;
4448 } else {
617cf884 4449 pipeconf |= PIPECONF_PROGRESSIVE;
0529a0d9
DV
4450 vsyncshift = 0;
4451 }
4452
4453 if (!IS_GEN3(dev))
4454 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
734b4157 4455
5eddb70b
CW
4456 I915_WRITE(HTOTAL(pipe),
4457 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 4458 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
4459 I915_WRITE(HBLANK(pipe),
4460 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 4461 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
4462 I915_WRITE(HSYNC(pipe),
4463 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 4464 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
4465
4466 I915_WRITE(VTOTAL(pipe),
4467 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 4468 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
4469 I915_WRITE(VBLANK(pipe),
4470 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 4471 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
4472 I915_WRITE(VSYNC(pipe),
4473 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 4474 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b
CW
4475
4476 /* pipesrc and dspsize control the size that is scaled from,
4477 * which should always be the user's requested size.
79e53945 4478 */
929c77fb
EA
4479 I915_WRITE(DSPSIZE(plane),
4480 ((mode->vdisplay - 1) << 16) |
4481 (mode->hdisplay - 1));
4482 I915_WRITE(DSPPOS(plane), 0);
5eddb70b
CW
4483 I915_WRITE(PIPESRC(pipe),
4484 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 4485
f564048e
EA
4486 I915_WRITE(PIPECONF(pipe), pipeconf);
4487 POSTING_READ(PIPECONF(pipe));
929c77fb 4488 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4489
4490 intel_wait_for_vblank(dev, pipe);
4491
f564048e
EA
4492 I915_WRITE(DSPCNTR(plane), dspcntr);
4493 POSTING_READ(DSPCNTR(plane));
4494
94352cf9 4495 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4496
4497 intel_update_watermarks(dev);
4498
f564048e
EA
4499 return ret;
4500}
4501
9fb526db
KP
4502/*
4503 * Initialize reference clocks when the driver loads
4504 */
4505void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4506{
4507 struct drm_i915_private *dev_priv = dev->dev_private;
4508 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4509 struct intel_encoder *encoder;
13d83a67
JB
4510 u32 temp;
4511 bool has_lvds = false;
199e5d79
KP
4512 bool has_cpu_edp = false;
4513 bool has_pch_edp = false;
4514 bool has_panel = false;
99eb6a01
KP
4515 bool has_ck505 = false;
4516 bool can_ssc = false;
13d83a67
JB
4517
4518 /* We need to take the global config into account */
199e5d79
KP
4519 list_for_each_entry(encoder, &mode_config->encoder_list,
4520 base.head) {
4521 switch (encoder->type) {
4522 case INTEL_OUTPUT_LVDS:
4523 has_panel = true;
4524 has_lvds = true;
4525 break;
4526 case INTEL_OUTPUT_EDP:
4527 has_panel = true;
4528 if (intel_encoder_is_pch_edp(&encoder->base))
4529 has_pch_edp = true;
4530 else
4531 has_cpu_edp = true;
4532 break;
13d83a67
JB
4533 }
4534 }
4535
99eb6a01
KP
4536 if (HAS_PCH_IBX(dev)) {
4537 has_ck505 = dev_priv->display_clock_mode;
4538 can_ssc = has_ck505;
4539 } else {
4540 has_ck505 = false;
4541 can_ssc = true;
4542 }
4543
4544 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4545 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4546 has_ck505);
13d83a67
JB
4547
4548 /* Ironlake: try to setup display ref clock before DPLL
4549 * enabling. This is only under driver's control after
4550 * PCH B stepping, previous chipset stepping should be
4551 * ignoring this setting.
4552 */
4553 temp = I915_READ(PCH_DREF_CONTROL);
4554 /* Always enable nonspread source */
4555 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4556
99eb6a01
KP
4557 if (has_ck505)
4558 temp |= DREF_NONSPREAD_CK505_ENABLE;
4559 else
4560 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4561
199e5d79
KP
4562 if (has_panel) {
4563 temp &= ~DREF_SSC_SOURCE_MASK;
4564 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4565
199e5d79 4566 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4567 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4568 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4569 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4570 } else
4571 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4572
4573 /* Get SSC going before enabling the outputs */
4574 I915_WRITE(PCH_DREF_CONTROL, temp);
4575 POSTING_READ(PCH_DREF_CONTROL);
4576 udelay(200);
4577
13d83a67
JB
4578 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4579
4580 /* Enable CPU source on CPU attached eDP */
199e5d79 4581 if (has_cpu_edp) {
99eb6a01 4582 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4583 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4584 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4585 }
13d83a67
JB
4586 else
4587 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4588 } else
4589 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4590
4591 I915_WRITE(PCH_DREF_CONTROL, temp);
4592 POSTING_READ(PCH_DREF_CONTROL);
4593 udelay(200);
4594 } else {
4595 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4596
4597 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4598
4599 /* Turn off CPU output */
4600 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4601
4602 I915_WRITE(PCH_DREF_CONTROL, temp);
4603 POSTING_READ(PCH_DREF_CONTROL);
4604 udelay(200);
4605
4606 /* Turn off the SSC source */
4607 temp &= ~DREF_SSC_SOURCE_MASK;
4608 temp |= DREF_SSC_SOURCE_DISABLE;
4609
4610 /* Turn off SSC1 */
4611 temp &= ~ DREF_SSC1_ENABLE;
4612
13d83a67
JB
4613 I915_WRITE(PCH_DREF_CONTROL, temp);
4614 POSTING_READ(PCH_DREF_CONTROL);
4615 udelay(200);
4616 }
4617}
4618
d9d444cb
JB
4619static int ironlake_get_refclk(struct drm_crtc *crtc)
4620{
4621 struct drm_device *dev = crtc->dev;
4622 struct drm_i915_private *dev_priv = dev->dev_private;
4623 struct intel_encoder *encoder;
d9d444cb
JB
4624 struct intel_encoder *edp_encoder = NULL;
4625 int num_connectors = 0;
4626 bool is_lvds = false;
4627
6c2b7c12 4628 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
4629 switch (encoder->type) {
4630 case INTEL_OUTPUT_LVDS:
4631 is_lvds = true;
4632 break;
4633 case INTEL_OUTPUT_EDP:
4634 edp_encoder = encoder;
4635 break;
4636 }
4637 num_connectors++;
4638 }
4639
4640 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4641 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4642 dev_priv->lvds_ssc_freq);
4643 return dev_priv->lvds_ssc_freq * 1000;
4644 }
4645
4646 return 120000;
4647}
4648
c8203565
PZ
4649static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4650 struct drm_display_mode *adjusted_mode,
4651 bool dither)
4652{
4653 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4655 int pipe = intel_crtc->pipe;
4656 uint32_t val;
4657
4658 val = I915_READ(PIPECONF(pipe));
4659
4660 val &= ~PIPE_BPC_MASK;
4661 switch (intel_crtc->bpp) {
4662 case 18:
4663 val |= PIPE_6BPC;
4664 break;
4665 case 24:
4666 val |= PIPE_8BPC;
4667 break;
4668 case 30:
4669 val |= PIPE_10BPC;
4670 break;
4671 case 36:
4672 val |= PIPE_12BPC;
4673 break;
4674 default:
cc769b62
PZ
4675 /* Case prevented by intel_choose_pipe_bpp_dither. */
4676 BUG();
c8203565
PZ
4677 }
4678
4679 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4680 if (dither)
4681 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4682
4683 val &= ~PIPECONF_INTERLACE_MASK;
4684 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4685 val |= PIPECONF_INTERLACED_ILK;
4686 else
4687 val |= PIPECONF_PROGRESSIVE;
4688
4689 I915_WRITE(PIPECONF(pipe), val);
4690 POSTING_READ(PIPECONF(pipe));
4691}
4692
6591c6e4
PZ
4693static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4694 struct drm_display_mode *adjusted_mode,
4695 intel_clock_t *clock,
4696 bool *has_reduced_clock,
4697 intel_clock_t *reduced_clock)
4698{
4699 struct drm_device *dev = crtc->dev;
4700 struct drm_i915_private *dev_priv = dev->dev_private;
4701 struct intel_encoder *intel_encoder;
4702 int refclk;
4703 const intel_limit_t *limit;
4704 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4705
4706 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4707 switch (intel_encoder->type) {
4708 case INTEL_OUTPUT_LVDS:
4709 is_lvds = true;
4710 break;
4711 case INTEL_OUTPUT_SDVO:
4712 case INTEL_OUTPUT_HDMI:
4713 is_sdvo = true;
4714 if (intel_encoder->needs_tv_clock)
4715 is_tv = true;
4716 break;
4717 case INTEL_OUTPUT_TVOUT:
4718 is_tv = true;
4719 break;
4720 }
4721 }
4722
4723 refclk = ironlake_get_refclk(crtc);
4724
4725 /*
4726 * Returns a set of divisors for the desired target clock with the given
4727 * refclk, or FALSE. The returned values represent the clock equation:
4728 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4729 */
4730 limit = intel_limit(crtc, refclk);
4731 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4732 clock);
4733 if (!ret)
4734 return false;
4735
4736 if (is_lvds && dev_priv->lvds_downclock_avail) {
4737 /*
4738 * Ensure we match the reduced clock's P to the target clock.
4739 * If the clocks don't match, we can't switch the display clock
4740 * by using the FP0/FP1. In such case we will disable the LVDS
4741 * downclock feature.
4742 */
4743 *has_reduced_clock = limit->find_pll(limit, crtc,
4744 dev_priv->lvds_downclock,
4745 refclk,
4746 clock,
4747 reduced_clock);
4748 }
4749
4750 if (is_sdvo && is_tv)
4751 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4752
4753 return true;
4754}
4755
f48d8f23
PZ
4756static void ironlake_set_m_n(struct drm_crtc *crtc,
4757 struct drm_display_mode *mode,
4758 struct drm_display_mode *adjusted_mode)
4759{
4760 struct drm_device *dev = crtc->dev;
4761 struct drm_i915_private *dev_priv = dev->dev_private;
4762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4763 enum pipe pipe = intel_crtc->pipe;
4764 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
4765 struct fdi_m_n m_n = {0};
4766 int target_clock, pixel_multiplier, lane, link_bw;
4767 bool is_dp = false, is_cpu_edp = false;
4768
4769 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4770 switch (intel_encoder->type) {
4771 case INTEL_OUTPUT_DISPLAYPORT:
4772 is_dp = true;
4773 break;
4774 case INTEL_OUTPUT_EDP:
4775 is_dp = true;
4776 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
4777 is_cpu_edp = true;
4778 edp_encoder = intel_encoder;
4779 break;
4780 }
4781 }
4782
4783 /* FDI link */
4784 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4785 lane = 0;
4786 /* CPU eDP doesn't require FDI link, so just set DP M/N
4787 according to current link config */
4788 if (is_cpu_edp) {
4789 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4790 } else {
4791 /* FDI is a binary signal running at ~2.7GHz, encoding
4792 * each output octet as 10 bits. The actual frequency
4793 * is stored as a divider into a 100MHz clock, and the
4794 * mode pixel clock is stored in units of 1KHz.
4795 * Hence the bw of each lane in terms of the mode signal
4796 * is:
4797 */
4798 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4799 }
4800
4801 /* [e]DP over FDI requires target mode clock instead of link clock. */
4802 if (edp_encoder)
4803 target_clock = intel_edp_target_clock(edp_encoder, mode);
4804 else if (is_dp)
4805 target_clock = mode->clock;
4806 else
4807 target_clock = adjusted_mode->clock;
4808
4809 if (!lane) {
4810 /*
4811 * Account for spread spectrum to avoid
4812 * oversubscribing the link. Max center spread
4813 * is 2.5%; use 5% for safety's sake.
4814 */
4815 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4816 lane = bps / (link_bw * 8) + 1;
4817 }
4818
4819 intel_crtc->fdi_lanes = lane;
4820
4821 if (pixel_multiplier > 1)
4822 link_bw *= pixel_multiplier;
4823 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4824 &m_n);
4825
4826 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4827 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4828 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4829 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4830}
4831
de13a2e3
PZ
4832static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
4833 struct drm_display_mode *adjusted_mode,
4834 intel_clock_t *clock, u32 fp)
79e53945 4835{
de13a2e3 4836 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
4837 struct drm_device *dev = crtc->dev;
4838 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
4839 struct intel_encoder *intel_encoder;
4840 uint32_t dpll;
4841 int factor, pixel_multiplier, num_connectors = 0;
4842 bool is_lvds = false, is_sdvo = false, is_tv = false;
4843 bool is_dp = false, is_cpu_edp = false;
79e53945 4844
de13a2e3
PZ
4845 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4846 switch (intel_encoder->type) {
79e53945
JB
4847 case INTEL_OUTPUT_LVDS:
4848 is_lvds = true;
4849 break;
4850 case INTEL_OUTPUT_SDVO:
7d57382e 4851 case INTEL_OUTPUT_HDMI:
79e53945 4852 is_sdvo = true;
de13a2e3 4853 if (intel_encoder->needs_tv_clock)
e2f0ba97 4854 is_tv = true;
79e53945 4855 break;
79e53945
JB
4856 case INTEL_OUTPUT_TVOUT:
4857 is_tv = true;
4858 break;
a4fc5ed6
KP
4859 case INTEL_OUTPUT_DISPLAYPORT:
4860 is_dp = true;
4861 break;
32f9d658 4862 case INTEL_OUTPUT_EDP:
e3aef172 4863 is_dp = true;
de13a2e3 4864 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 4865 is_cpu_edp = true;
32f9d658 4866 break;
79e53945 4867 }
43565a06 4868
c751ce4f 4869 num_connectors++;
79e53945
JB
4870 }
4871
c1858123 4872 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
4873 factor = 21;
4874 if (is_lvds) {
4875 if ((intel_panel_use_ssc(dev_priv) &&
4876 dev_priv->lvds_ssc_freq == 100) ||
4877 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4878 factor = 25;
4879 } else if (is_sdvo && is_tv)
4880 factor = 20;
c1858123 4881
de13a2e3 4882 if (clock->m < factor * clock->n)
8febb297 4883 fp |= FP_CB_TUNE;
2c07245f 4884
5eddb70b 4885 dpll = 0;
2c07245f 4886
a07d6787
EA
4887 if (is_lvds)
4888 dpll |= DPLLB_MODE_LVDS;
4889 else
4890 dpll |= DPLLB_MODE_DAC_SERIAL;
4891 if (is_sdvo) {
de13a2e3 4892 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
4893 if (pixel_multiplier > 1) {
4894 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 4895 }
a07d6787
EA
4896 dpll |= DPLL_DVO_HIGH_SPEED;
4897 }
e3aef172 4898 if (is_dp && !is_cpu_edp)
a07d6787 4899 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 4900
a07d6787 4901 /* compute bitmask from p1 value */
de13a2e3 4902 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 4903 /* also FPA1 */
de13a2e3 4904 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 4905
de13a2e3 4906 switch (clock->p2) {
a07d6787
EA
4907 case 5:
4908 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4909 break;
4910 case 7:
4911 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4912 break;
4913 case 10:
4914 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4915 break;
4916 case 14:
4917 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4918 break;
79e53945
JB
4919 }
4920
43565a06
KH
4921 if (is_sdvo && is_tv)
4922 dpll |= PLL_REF_INPUT_TVCLKINBC;
4923 else if (is_tv)
79e53945 4924 /* XXX: just matching BIOS for now */
43565a06 4925 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 4926 dpll |= 3;
a7615030 4927 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 4928 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
4929 else
4930 dpll |= PLL_REF_INPUT_DREFCLK;
4931
de13a2e3
PZ
4932 return dpll;
4933}
4934
4935static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4936 struct drm_display_mode *mode,
4937 struct drm_display_mode *adjusted_mode,
4938 int x, int y,
4939 struct drm_framebuffer *fb)
4940{
4941 struct drm_device *dev = crtc->dev;
4942 struct drm_i915_private *dev_priv = dev->dev_private;
4943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4944 int pipe = intel_crtc->pipe;
4945 int plane = intel_crtc->plane;
4946 int num_connectors = 0;
4947 intel_clock_t clock, reduced_clock;
4948 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
4949 bool ok, has_reduced_clock = false;
4950 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
4951 struct intel_encoder *encoder;
4952 u32 temp;
4953 int ret;
4954 bool dither;
de13a2e3
PZ
4955
4956 for_each_encoder_on_crtc(dev, crtc, encoder) {
4957 switch (encoder->type) {
4958 case INTEL_OUTPUT_LVDS:
4959 is_lvds = true;
4960 break;
de13a2e3
PZ
4961 case INTEL_OUTPUT_DISPLAYPORT:
4962 is_dp = true;
4963 break;
4964 case INTEL_OUTPUT_EDP:
4965 is_dp = true;
e2f12b07 4966 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
4967 is_cpu_edp = true;
4968 break;
4969 }
4970
4971 num_connectors++;
4972 }
4973
4974 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
4975 &has_reduced_clock, &reduced_clock);
4976 if (!ok) {
4977 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4978 return -EINVAL;
4979 }
4980
4981 /* Ensure that the cursor is valid for the new mode before changing... */
4982 intel_crtc_update_cursor(crtc, true);
4983
4984 /* determine panel color depth */
4985 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
4986 if (is_lvds && dev_priv->lvds_dither)
4987 dither = true;
4988
4989 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4990 if (has_reduced_clock)
4991 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4992 reduced_clock.m2;
4993
4994 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
4995
f7cb34d4 4996 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
4997 drm_mode_debug_printmodeline(mode);
4998
9d82aa17
ED
4999 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
5000 * pre-Haswell/LPT generation */
5001 if (HAS_PCH_LPT(dev)) {
5002 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
5003 pipe);
5004 } else if (!is_cpu_edp) {
ee7b9f93 5005 struct intel_pch_pll *pll;
4b645f14 5006
ee7b9f93
JB
5007 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5008 if (pll == NULL) {
5009 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5010 pipe);
4b645f14
JB
5011 return -EINVAL;
5012 }
ee7b9f93
JB
5013 } else
5014 intel_put_pch_pll(intel_crtc);
79e53945
JB
5015
5016 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5017 * This is an exception to the general rule that mode_set doesn't turn
5018 * things on.
5019 */
5020 if (is_lvds) {
fae14981 5021 temp = I915_READ(PCH_LVDS);
5eddb70b 5022 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5023 if (HAS_PCH_CPT(dev)) {
5024 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5025 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5026 } else {
5027 if (pipe == 1)
5028 temp |= LVDS_PIPEB_SELECT;
5029 else
5030 temp &= ~LVDS_PIPEB_SELECT;
5031 }
4b645f14 5032
a3e17eb8 5033 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5034 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5035 /* Set the B0-B3 data pairs corresponding to whether we're going to
5036 * set the DPLLs for dual-channel mode or not.
5037 */
5038 if (clock.p2 == 7)
5eddb70b 5039 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5040 else
5eddb70b 5041 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5042
5043 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5044 * appropriately here, but we need to look more thoroughly into how
5045 * panels behave in the two modes.
5046 */
284d5df5 5047 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5048 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5049 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5050 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5051 temp |= LVDS_VSYNC_POLARITY;
fae14981 5052 I915_WRITE(PCH_LVDS, temp);
79e53945 5053 }
434ed097 5054
e3aef172 5055 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5056 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5057 } else {
8db9d77b 5058 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5059 I915_WRITE(TRANSDATA_M1(pipe), 0);
5060 I915_WRITE(TRANSDATA_N1(pipe), 0);
5061 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5062 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5063 }
79e53945 5064
ee7b9f93
JB
5065 if (intel_crtc->pch_pll) {
5066 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5067
32f9d658 5068 /* Wait for the clocks to stabilize. */
ee7b9f93 5069 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5070 udelay(150);
5071
8febb297
EA
5072 /* The pixel multiplier can only be updated once the
5073 * DPLL is enabled and the clocks are stable.
5074 *
5075 * So write it again.
5076 */
ee7b9f93 5077 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5078 }
79e53945 5079
5eddb70b 5080 intel_crtc->lowfreq_avail = false;
ee7b9f93 5081 if (intel_crtc->pch_pll) {
4b645f14 5082 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5083 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5084 intel_crtc->lowfreq_avail = true;
4b645f14 5085 } else {
ee7b9f93 5086 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5087 }
5088 }
5089
734b4157 5090 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
734b4157 5091 /* the chip adds 2 halflines automatically */
734b4157 5092 adjusted_mode->crtc_vtotal -= 1;
734b4157 5093 adjusted_mode->crtc_vblank_end -= 1;
0529a0d9
DV
5094 I915_WRITE(VSYNCSHIFT(pipe),
5095 adjusted_mode->crtc_hsync_start
5096 - adjusted_mode->crtc_htotal/2);
5097 } else {
0529a0d9
DV
5098 I915_WRITE(VSYNCSHIFT(pipe), 0);
5099 }
734b4157 5100
5eddb70b
CW
5101 I915_WRITE(HTOTAL(pipe),
5102 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5103 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5104 I915_WRITE(HBLANK(pipe),
5105 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5106 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5107 I915_WRITE(HSYNC(pipe),
5108 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5109 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5110
5111 I915_WRITE(VTOTAL(pipe),
5112 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5113 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5114 I915_WRITE(VBLANK(pipe),
5115 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5116 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5117 I915_WRITE(VSYNC(pipe),
5118 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5119 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b 5120
8febb297
EA
5121 /* pipesrc controls the size that is scaled from, which should
5122 * always be the user's requested size.
79e53945 5123 */
5eddb70b
CW
5124 I915_WRITE(PIPESRC(pipe),
5125 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5126
f48d8f23 5127 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5128
e3aef172 5129 if (is_cpu_edp)
8febb297 5130 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5131
c8203565 5132 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5133
9d0498a2 5134 intel_wait_for_vblank(dev, pipe);
79e53945 5135
a1f9e77e
PZ
5136 /* Set up the display plane register */
5137 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5138 POSTING_READ(DSPCNTR(plane));
79e53945 5139
94352cf9 5140 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5141
5142 intel_update_watermarks(dev);
5143
1f8eeabf
ED
5144 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5145
1f803ee5 5146 return ret;
79e53945
JB
5147}
5148
f564048e
EA
5149static int intel_crtc_mode_set(struct drm_crtc *crtc,
5150 struct drm_display_mode *mode,
5151 struct drm_display_mode *adjusted_mode,
5152 int x, int y,
94352cf9 5153 struct drm_framebuffer *fb)
f564048e
EA
5154{
5155 struct drm_device *dev = crtc->dev;
5156 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5158 int pipe = intel_crtc->pipe;
f564048e
EA
5159 int ret;
5160
0b701d27 5161 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5162
f564048e 5163 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5164 x, y, fb);
79e53945 5165 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5166
1f803ee5 5167 return ret;
79e53945
JB
5168}
5169
3a9627f4
WF
5170static bool intel_eld_uptodate(struct drm_connector *connector,
5171 int reg_eldv, uint32_t bits_eldv,
5172 int reg_elda, uint32_t bits_elda,
5173 int reg_edid)
5174{
5175 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5176 uint8_t *eld = connector->eld;
5177 uint32_t i;
5178
5179 i = I915_READ(reg_eldv);
5180 i &= bits_eldv;
5181
5182 if (!eld[0])
5183 return !i;
5184
5185 if (!i)
5186 return false;
5187
5188 i = I915_READ(reg_elda);
5189 i &= ~bits_elda;
5190 I915_WRITE(reg_elda, i);
5191
5192 for (i = 0; i < eld[2]; i++)
5193 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5194 return false;
5195
5196 return true;
5197}
5198
e0dac65e
WF
5199static void g4x_write_eld(struct drm_connector *connector,
5200 struct drm_crtc *crtc)
5201{
5202 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5203 uint8_t *eld = connector->eld;
5204 uint32_t eldv;
5205 uint32_t len;
5206 uint32_t i;
5207
5208 i = I915_READ(G4X_AUD_VID_DID);
5209
5210 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5211 eldv = G4X_ELDV_DEVCL_DEVBLC;
5212 else
5213 eldv = G4X_ELDV_DEVCTG;
5214
3a9627f4
WF
5215 if (intel_eld_uptodate(connector,
5216 G4X_AUD_CNTL_ST, eldv,
5217 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5218 G4X_HDMIW_HDMIEDID))
5219 return;
5220
e0dac65e
WF
5221 i = I915_READ(G4X_AUD_CNTL_ST);
5222 i &= ~(eldv | G4X_ELD_ADDR);
5223 len = (i >> 9) & 0x1f; /* ELD buffer size */
5224 I915_WRITE(G4X_AUD_CNTL_ST, i);
5225
5226 if (!eld[0])
5227 return;
5228
5229 len = min_t(uint8_t, eld[2], len);
5230 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5231 for (i = 0; i < len; i++)
5232 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5233
5234 i = I915_READ(G4X_AUD_CNTL_ST);
5235 i |= eldv;
5236 I915_WRITE(G4X_AUD_CNTL_ST, i);
5237}
5238
83358c85
WX
5239static void haswell_write_eld(struct drm_connector *connector,
5240 struct drm_crtc *crtc)
5241{
5242 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5243 uint8_t *eld = connector->eld;
5244 struct drm_device *dev = crtc->dev;
5245 uint32_t eldv;
5246 uint32_t i;
5247 int len;
5248 int pipe = to_intel_crtc(crtc)->pipe;
5249 int tmp;
5250
5251 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5252 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5253 int aud_config = HSW_AUD_CFG(pipe);
5254 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5255
5256
5257 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5258
5259 /* Audio output enable */
5260 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5261 tmp = I915_READ(aud_cntrl_st2);
5262 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5263 I915_WRITE(aud_cntrl_st2, tmp);
5264
5265 /* Wait for 1 vertical blank */
5266 intel_wait_for_vblank(dev, pipe);
5267
5268 /* Set ELD valid state */
5269 tmp = I915_READ(aud_cntrl_st2);
5270 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5271 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5272 I915_WRITE(aud_cntrl_st2, tmp);
5273 tmp = I915_READ(aud_cntrl_st2);
5274 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5275
5276 /* Enable HDMI mode */
5277 tmp = I915_READ(aud_config);
5278 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5279 /* clear N_programing_enable and N_value_index */
5280 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5281 I915_WRITE(aud_config, tmp);
5282
5283 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5284
5285 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5286
5287 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5288 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5289 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5290 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5291 } else
5292 I915_WRITE(aud_config, 0);
5293
5294 if (intel_eld_uptodate(connector,
5295 aud_cntrl_st2, eldv,
5296 aud_cntl_st, IBX_ELD_ADDRESS,
5297 hdmiw_hdmiedid))
5298 return;
5299
5300 i = I915_READ(aud_cntrl_st2);
5301 i &= ~eldv;
5302 I915_WRITE(aud_cntrl_st2, i);
5303
5304 if (!eld[0])
5305 return;
5306
5307 i = I915_READ(aud_cntl_st);
5308 i &= ~IBX_ELD_ADDRESS;
5309 I915_WRITE(aud_cntl_st, i);
5310 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5311 DRM_DEBUG_DRIVER("port num:%d\n", i);
5312
5313 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5314 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5315 for (i = 0; i < len; i++)
5316 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5317
5318 i = I915_READ(aud_cntrl_st2);
5319 i |= eldv;
5320 I915_WRITE(aud_cntrl_st2, i);
5321
5322}
5323
e0dac65e
WF
5324static void ironlake_write_eld(struct drm_connector *connector,
5325 struct drm_crtc *crtc)
5326{
5327 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5328 uint8_t *eld = connector->eld;
5329 uint32_t eldv;
5330 uint32_t i;
5331 int len;
5332 int hdmiw_hdmiedid;
b6daa025 5333 int aud_config;
e0dac65e
WF
5334 int aud_cntl_st;
5335 int aud_cntrl_st2;
9b138a83 5336 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 5337
b3f33cbf 5338 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
5339 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5340 aud_config = IBX_AUD_CFG(pipe);
5341 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 5342 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 5343 } else {
9b138a83
WX
5344 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5345 aud_config = CPT_AUD_CFG(pipe);
5346 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 5347 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
5348 }
5349
9b138a83 5350 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
5351
5352 i = I915_READ(aud_cntl_st);
9b138a83 5353 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
5354 if (!i) {
5355 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5356 /* operate blindly on all ports */
1202b4c6
WF
5357 eldv = IBX_ELD_VALIDB;
5358 eldv |= IBX_ELD_VALIDB << 4;
5359 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
5360 } else {
5361 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 5362 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
5363 }
5364
3a9627f4
WF
5365 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5366 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5367 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
5368 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5369 } else
5370 I915_WRITE(aud_config, 0);
e0dac65e 5371
3a9627f4
WF
5372 if (intel_eld_uptodate(connector,
5373 aud_cntrl_st2, eldv,
5374 aud_cntl_st, IBX_ELD_ADDRESS,
5375 hdmiw_hdmiedid))
5376 return;
5377
e0dac65e
WF
5378 i = I915_READ(aud_cntrl_st2);
5379 i &= ~eldv;
5380 I915_WRITE(aud_cntrl_st2, i);
5381
5382 if (!eld[0])
5383 return;
5384
e0dac65e 5385 i = I915_READ(aud_cntl_st);
1202b4c6 5386 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
5387 I915_WRITE(aud_cntl_st, i);
5388
5389 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5390 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5391 for (i = 0; i < len; i++)
5392 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5393
5394 i = I915_READ(aud_cntrl_st2);
5395 i |= eldv;
5396 I915_WRITE(aud_cntrl_st2, i);
5397}
5398
5399void intel_write_eld(struct drm_encoder *encoder,
5400 struct drm_display_mode *mode)
5401{
5402 struct drm_crtc *crtc = encoder->crtc;
5403 struct drm_connector *connector;
5404 struct drm_device *dev = encoder->dev;
5405 struct drm_i915_private *dev_priv = dev->dev_private;
5406
5407 connector = drm_select_eld(encoder, mode);
5408 if (!connector)
5409 return;
5410
5411 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5412 connector->base.id,
5413 drm_get_connector_name(connector),
5414 connector->encoder->base.id,
5415 drm_get_encoder_name(connector->encoder));
5416
5417 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5418
5419 if (dev_priv->display.write_eld)
5420 dev_priv->display.write_eld(connector, crtc);
5421}
5422
79e53945
JB
5423/** Loads the palette/gamma unit for the CRTC with the prepared values */
5424void intel_crtc_load_lut(struct drm_crtc *crtc)
5425{
5426 struct drm_device *dev = crtc->dev;
5427 struct drm_i915_private *dev_priv = dev->dev_private;
5428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 5429 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
5430 int i;
5431
5432 /* The clocks have to be on to load the palette. */
aed3f09d 5433 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
5434 return;
5435
f2b115e6 5436 /* use legacy palette for Ironlake */
bad720ff 5437 if (HAS_PCH_SPLIT(dev))
9db4a9c7 5438 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 5439
79e53945
JB
5440 for (i = 0; i < 256; i++) {
5441 I915_WRITE(palreg + 4 * i,
5442 (intel_crtc->lut_r[i] << 16) |
5443 (intel_crtc->lut_g[i] << 8) |
5444 intel_crtc->lut_b[i]);
5445 }
5446}
5447
560b85bb
CW
5448static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5449{
5450 struct drm_device *dev = crtc->dev;
5451 struct drm_i915_private *dev_priv = dev->dev_private;
5452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5453 bool visible = base != 0;
5454 u32 cntl;
5455
5456 if (intel_crtc->cursor_visible == visible)
5457 return;
5458
9db4a9c7 5459 cntl = I915_READ(_CURACNTR);
560b85bb
CW
5460 if (visible) {
5461 /* On these chipsets we can only modify the base whilst
5462 * the cursor is disabled.
5463 */
9db4a9c7 5464 I915_WRITE(_CURABASE, base);
560b85bb
CW
5465
5466 cntl &= ~(CURSOR_FORMAT_MASK);
5467 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5468 cntl |= CURSOR_ENABLE |
5469 CURSOR_GAMMA_ENABLE |
5470 CURSOR_FORMAT_ARGB;
5471 } else
5472 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 5473 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
5474
5475 intel_crtc->cursor_visible = visible;
5476}
5477
5478static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5479{
5480 struct drm_device *dev = crtc->dev;
5481 struct drm_i915_private *dev_priv = dev->dev_private;
5482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5483 int pipe = intel_crtc->pipe;
5484 bool visible = base != 0;
5485
5486 if (intel_crtc->cursor_visible != visible) {
548f245b 5487 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
5488 if (base) {
5489 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5490 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5491 cntl |= pipe << 28; /* Connect to correct pipe */
5492 } else {
5493 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5494 cntl |= CURSOR_MODE_DISABLE;
5495 }
9db4a9c7 5496 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
5497
5498 intel_crtc->cursor_visible = visible;
5499 }
5500 /* and commit changes on next vblank */
9db4a9c7 5501 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
5502}
5503
65a21cd6
JB
5504static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5505{
5506 struct drm_device *dev = crtc->dev;
5507 struct drm_i915_private *dev_priv = dev->dev_private;
5508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5509 int pipe = intel_crtc->pipe;
5510 bool visible = base != 0;
5511
5512 if (intel_crtc->cursor_visible != visible) {
5513 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5514 if (base) {
5515 cntl &= ~CURSOR_MODE;
5516 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5517 } else {
5518 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5519 cntl |= CURSOR_MODE_DISABLE;
5520 }
5521 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5522
5523 intel_crtc->cursor_visible = visible;
5524 }
5525 /* and commit changes on next vblank */
5526 I915_WRITE(CURBASE_IVB(pipe), base);
5527}
5528
cda4b7d3 5529/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
5530static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5531 bool on)
cda4b7d3
CW
5532{
5533 struct drm_device *dev = crtc->dev;
5534 struct drm_i915_private *dev_priv = dev->dev_private;
5535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5536 int pipe = intel_crtc->pipe;
5537 int x = intel_crtc->cursor_x;
5538 int y = intel_crtc->cursor_y;
560b85bb 5539 u32 base, pos;
cda4b7d3
CW
5540 bool visible;
5541
5542 pos = 0;
5543
6b383a7f 5544 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
5545 base = intel_crtc->cursor_addr;
5546 if (x > (int) crtc->fb->width)
5547 base = 0;
5548
5549 if (y > (int) crtc->fb->height)
5550 base = 0;
5551 } else
5552 base = 0;
5553
5554 if (x < 0) {
5555 if (x + intel_crtc->cursor_width < 0)
5556 base = 0;
5557
5558 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5559 x = -x;
5560 }
5561 pos |= x << CURSOR_X_SHIFT;
5562
5563 if (y < 0) {
5564 if (y + intel_crtc->cursor_height < 0)
5565 base = 0;
5566
5567 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5568 y = -y;
5569 }
5570 pos |= y << CURSOR_Y_SHIFT;
5571
5572 visible = base != 0;
560b85bb 5573 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
5574 return;
5575
0cd83aa9 5576 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
5577 I915_WRITE(CURPOS_IVB(pipe), pos);
5578 ivb_update_cursor(crtc, base);
5579 } else {
5580 I915_WRITE(CURPOS(pipe), pos);
5581 if (IS_845G(dev) || IS_I865G(dev))
5582 i845_update_cursor(crtc, base);
5583 else
5584 i9xx_update_cursor(crtc, base);
5585 }
cda4b7d3
CW
5586}
5587
79e53945 5588static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 5589 struct drm_file *file,
79e53945
JB
5590 uint32_t handle,
5591 uint32_t width, uint32_t height)
5592{
5593 struct drm_device *dev = crtc->dev;
5594 struct drm_i915_private *dev_priv = dev->dev_private;
5595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 5596 struct drm_i915_gem_object *obj;
cda4b7d3 5597 uint32_t addr;
3f8bc370 5598 int ret;
79e53945 5599
79e53945
JB
5600 /* if we want to turn off the cursor ignore width and height */
5601 if (!handle) {
28c97730 5602 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 5603 addr = 0;
05394f39 5604 obj = NULL;
5004417d 5605 mutex_lock(&dev->struct_mutex);
3f8bc370 5606 goto finish;
79e53945
JB
5607 }
5608
5609 /* Currently we only support 64x64 cursors */
5610 if (width != 64 || height != 64) {
5611 DRM_ERROR("we currently only support 64x64 cursors\n");
5612 return -EINVAL;
5613 }
5614
05394f39 5615 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 5616 if (&obj->base == NULL)
79e53945
JB
5617 return -ENOENT;
5618
05394f39 5619 if (obj->base.size < width * height * 4) {
79e53945 5620 DRM_ERROR("buffer is to small\n");
34b8686e
DA
5621 ret = -ENOMEM;
5622 goto fail;
79e53945
JB
5623 }
5624
71acb5eb 5625 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 5626 mutex_lock(&dev->struct_mutex);
b295d1b6 5627 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
5628 if (obj->tiling_mode) {
5629 DRM_ERROR("cursor cannot be tiled\n");
5630 ret = -EINVAL;
5631 goto fail_locked;
5632 }
5633
2da3b9b9 5634 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
5635 if (ret) {
5636 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 5637 goto fail_locked;
e7b526bb
CW
5638 }
5639
d9e86c0e
CW
5640 ret = i915_gem_object_put_fence(obj);
5641 if (ret) {
2da3b9b9 5642 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
5643 goto fail_unpin;
5644 }
5645
05394f39 5646 addr = obj->gtt_offset;
71acb5eb 5647 } else {
6eeefaf3 5648 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 5649 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
5650 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5651 align);
71acb5eb
DA
5652 if (ret) {
5653 DRM_ERROR("failed to attach phys object\n");
7f9872e0 5654 goto fail_locked;
71acb5eb 5655 }
05394f39 5656 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
5657 }
5658
a6c45cf0 5659 if (IS_GEN2(dev))
14b60391
JB
5660 I915_WRITE(CURSIZE, (height << 12) | width);
5661
3f8bc370 5662 finish:
3f8bc370 5663 if (intel_crtc->cursor_bo) {
b295d1b6 5664 if (dev_priv->info->cursor_needs_physical) {
05394f39 5665 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
5666 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5667 } else
5668 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 5669 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 5670 }
80824003 5671
7f9872e0 5672 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
5673
5674 intel_crtc->cursor_addr = addr;
05394f39 5675 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
5676 intel_crtc->cursor_width = width;
5677 intel_crtc->cursor_height = height;
5678
6b383a7f 5679 intel_crtc_update_cursor(crtc, true);
3f8bc370 5680
79e53945 5681 return 0;
e7b526bb 5682fail_unpin:
05394f39 5683 i915_gem_object_unpin(obj);
7f9872e0 5684fail_locked:
34b8686e 5685 mutex_unlock(&dev->struct_mutex);
bc9025bd 5686fail:
05394f39 5687 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 5688 return ret;
79e53945
JB
5689}
5690
5691static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5692{
79e53945 5693 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5694
cda4b7d3
CW
5695 intel_crtc->cursor_x = x;
5696 intel_crtc->cursor_y = y;
652c393a 5697
6b383a7f 5698 intel_crtc_update_cursor(crtc, true);
79e53945
JB
5699
5700 return 0;
5701}
5702
5703/** Sets the color ramps on behalf of RandR */
5704void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5705 u16 blue, int regno)
5706{
5707 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5708
5709 intel_crtc->lut_r[regno] = red >> 8;
5710 intel_crtc->lut_g[regno] = green >> 8;
5711 intel_crtc->lut_b[regno] = blue >> 8;
5712}
5713
b8c00ac5
DA
5714void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5715 u16 *blue, int regno)
5716{
5717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5718
5719 *red = intel_crtc->lut_r[regno] << 8;
5720 *green = intel_crtc->lut_g[regno] << 8;
5721 *blue = intel_crtc->lut_b[regno] << 8;
5722}
5723
79e53945 5724static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 5725 u16 *blue, uint32_t start, uint32_t size)
79e53945 5726{
7203425a 5727 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 5728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5729
7203425a 5730 for (i = start; i < end; i++) {
79e53945
JB
5731 intel_crtc->lut_r[i] = red[i] >> 8;
5732 intel_crtc->lut_g[i] = green[i] >> 8;
5733 intel_crtc->lut_b[i] = blue[i] >> 8;
5734 }
5735
5736 intel_crtc_load_lut(crtc);
5737}
5738
5739/**
5740 * Get a pipe with a simple mode set on it for doing load-based monitor
5741 * detection.
5742 *
5743 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 5744 * its requirements. The pipe will be connected to no other encoders.
79e53945 5745 *
c751ce4f 5746 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
5747 * configured for it. In the future, it could choose to temporarily disable
5748 * some outputs to free up a pipe for its use.
5749 *
5750 * \return crtc, or NULL if no pipes are available.
5751 */
5752
5753/* VESA 640x480x72Hz mode to set on the pipe */
5754static struct drm_display_mode load_detect_mode = {
5755 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5756 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5757};
5758
d2dff872
CW
5759static struct drm_framebuffer *
5760intel_framebuffer_create(struct drm_device *dev,
308e5bcb 5761 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
5762 struct drm_i915_gem_object *obj)
5763{
5764 struct intel_framebuffer *intel_fb;
5765 int ret;
5766
5767 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5768 if (!intel_fb) {
5769 drm_gem_object_unreference_unlocked(&obj->base);
5770 return ERR_PTR(-ENOMEM);
5771 }
5772
5773 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5774 if (ret) {
5775 drm_gem_object_unreference_unlocked(&obj->base);
5776 kfree(intel_fb);
5777 return ERR_PTR(ret);
5778 }
5779
5780 return &intel_fb->base;
5781}
5782
5783static u32
5784intel_framebuffer_pitch_for_width(int width, int bpp)
5785{
5786 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5787 return ALIGN(pitch, 64);
5788}
5789
5790static u32
5791intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5792{
5793 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5794 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5795}
5796
5797static struct drm_framebuffer *
5798intel_framebuffer_create_for_mode(struct drm_device *dev,
5799 struct drm_display_mode *mode,
5800 int depth, int bpp)
5801{
5802 struct drm_i915_gem_object *obj;
308e5bcb 5803 struct drm_mode_fb_cmd2 mode_cmd;
d2dff872
CW
5804
5805 obj = i915_gem_alloc_object(dev,
5806 intel_framebuffer_size_for_mode(mode, bpp));
5807 if (obj == NULL)
5808 return ERR_PTR(-ENOMEM);
5809
5810 mode_cmd.width = mode->hdisplay;
5811 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
5812 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5813 bpp);
5ca0c34a 5814 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
5815
5816 return intel_framebuffer_create(dev, &mode_cmd, obj);
5817}
5818
5819static struct drm_framebuffer *
5820mode_fits_in_fbdev(struct drm_device *dev,
5821 struct drm_display_mode *mode)
5822{
5823 struct drm_i915_private *dev_priv = dev->dev_private;
5824 struct drm_i915_gem_object *obj;
5825 struct drm_framebuffer *fb;
5826
5827 if (dev_priv->fbdev == NULL)
5828 return NULL;
5829
5830 obj = dev_priv->fbdev->ifb.obj;
5831 if (obj == NULL)
5832 return NULL;
5833
5834 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
5835 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5836 fb->bits_per_pixel))
d2dff872
CW
5837 return NULL;
5838
01f2c773 5839 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
5840 return NULL;
5841
5842 return fb;
5843}
5844
d2434ab7 5845bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 5846 struct drm_display_mode *mode,
8261b191 5847 struct intel_load_detect_pipe *old)
79e53945
JB
5848{
5849 struct intel_crtc *intel_crtc;
d2434ab7
DV
5850 struct intel_encoder *intel_encoder =
5851 intel_attached_encoder(connector);
79e53945 5852 struct drm_crtc *possible_crtc;
4ef69c7a 5853 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
5854 struct drm_crtc *crtc = NULL;
5855 struct drm_device *dev = encoder->dev;
94352cf9 5856 struct drm_framebuffer *fb;
79e53945
JB
5857 int i = -1;
5858
d2dff872
CW
5859 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5860 connector->base.id, drm_get_connector_name(connector),
5861 encoder->base.id, drm_get_encoder_name(encoder));
5862
79e53945
JB
5863 /*
5864 * Algorithm gets a little messy:
7a5e4805 5865 *
79e53945
JB
5866 * - if the connector already has an assigned crtc, use it (but make
5867 * sure it's on first)
7a5e4805 5868 *
79e53945
JB
5869 * - try to find the first unused crtc that can drive this connector,
5870 * and use that if we find one
79e53945
JB
5871 */
5872
5873 /* See if we already have a CRTC for this connector */
5874 if (encoder->crtc) {
5875 crtc = encoder->crtc;
8261b191 5876
24218aac 5877 old->dpms_mode = connector->dpms;
8261b191
CW
5878 old->load_detect_temp = false;
5879
5880 /* Make sure the crtc and connector are running */
24218aac
DV
5881 if (connector->dpms != DRM_MODE_DPMS_ON)
5882 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 5883
7173188d 5884 return true;
79e53945
JB
5885 }
5886
5887 /* Find an unused one (if possible) */
5888 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5889 i++;
5890 if (!(encoder->possible_crtcs & (1 << i)))
5891 continue;
5892 if (!possible_crtc->enabled) {
5893 crtc = possible_crtc;
5894 break;
5895 }
79e53945
JB
5896 }
5897
5898 /*
5899 * If we didn't find an unused CRTC, don't use any.
5900 */
5901 if (!crtc) {
7173188d
CW
5902 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5903 return false;
79e53945
JB
5904 }
5905
fc303101
DV
5906 intel_encoder->new_crtc = to_intel_crtc(crtc);
5907 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
5908
5909 intel_crtc = to_intel_crtc(crtc);
24218aac 5910 old->dpms_mode = connector->dpms;
8261b191 5911 old->load_detect_temp = true;
d2dff872 5912 old->release_fb = NULL;
79e53945 5913
6492711d
CW
5914 if (!mode)
5915 mode = &load_detect_mode;
79e53945 5916
d2dff872
CW
5917 /* We need a framebuffer large enough to accommodate all accesses
5918 * that the plane may generate whilst we perform load detection.
5919 * We can not rely on the fbcon either being present (we get called
5920 * during its initialisation to detect all boot displays, or it may
5921 * not even exist) or that it is large enough to satisfy the
5922 * requested mode.
5923 */
94352cf9
DV
5924 fb = mode_fits_in_fbdev(dev, mode);
5925 if (fb == NULL) {
d2dff872 5926 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
5927 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5928 old->release_fb = fb;
d2dff872
CW
5929 } else
5930 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 5931 if (IS_ERR(fb)) {
d2dff872 5932 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
24218aac 5933 goto fail;
79e53945 5934 }
79e53945 5935
94352cf9 5936 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 5937 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
5938 if (old->release_fb)
5939 old->release_fb->funcs->destroy(old->release_fb);
24218aac 5940 goto fail;
79e53945 5941 }
7173188d 5942
79e53945 5943 /* let the connector get through one full cycle before testing */
9d0498a2 5944 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 5945
7173188d 5946 return true;
24218aac
DV
5947fail:
5948 connector->encoder = NULL;
5949 encoder->crtc = NULL;
24218aac 5950 return false;
79e53945
JB
5951}
5952
d2434ab7 5953void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 5954 struct intel_load_detect_pipe *old)
79e53945 5955{
d2434ab7
DV
5956 struct intel_encoder *intel_encoder =
5957 intel_attached_encoder(connector);
4ef69c7a 5958 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 5959
d2dff872
CW
5960 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5961 connector->base.id, drm_get_connector_name(connector),
5962 encoder->base.id, drm_get_encoder_name(encoder));
5963
8261b191 5964 if (old->load_detect_temp) {
fc303101
DV
5965 struct drm_crtc *crtc = encoder->crtc;
5966
5967 to_intel_connector(connector)->new_encoder = NULL;
5968 intel_encoder->new_crtc = NULL;
5969 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
5970
5971 if (old->release_fb)
5972 old->release_fb->funcs->destroy(old->release_fb);
5973
0622a53c 5974 return;
79e53945
JB
5975 }
5976
c751ce4f 5977 /* Switch crtc and encoder back off if necessary */
24218aac
DV
5978 if (old->dpms_mode != DRM_MODE_DPMS_ON)
5979 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
5980}
5981
5982/* Returns the clock of the currently programmed mode of the given pipe. */
5983static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5984{
5985 struct drm_i915_private *dev_priv = dev->dev_private;
5986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5987 int pipe = intel_crtc->pipe;
548f245b 5988 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
5989 u32 fp;
5990 intel_clock_t clock;
5991
5992 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 5993 fp = I915_READ(FP0(pipe));
79e53945 5994 else
39adb7a5 5995 fp = I915_READ(FP1(pipe));
79e53945
JB
5996
5997 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
5998 if (IS_PINEVIEW(dev)) {
5999 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6000 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6001 } else {
6002 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6003 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6004 }
6005
a6c45cf0 6006 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6007 if (IS_PINEVIEW(dev))
6008 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6009 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6010 else
6011 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6012 DPLL_FPA01_P1_POST_DIV_SHIFT);
6013
6014 switch (dpll & DPLL_MODE_MASK) {
6015 case DPLLB_MODE_DAC_SERIAL:
6016 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6017 5 : 10;
6018 break;
6019 case DPLLB_MODE_LVDS:
6020 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6021 7 : 14;
6022 break;
6023 default:
28c97730 6024 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6025 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6026 return 0;
6027 }
6028
6029 /* XXX: Handle the 100Mhz refclk */
2177832f 6030 intel_clock(dev, 96000, &clock);
79e53945
JB
6031 } else {
6032 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6033
6034 if (is_lvds) {
6035 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6036 DPLL_FPA01_P1_POST_DIV_SHIFT);
6037 clock.p2 = 14;
6038
6039 if ((dpll & PLL_REF_INPUT_MASK) ==
6040 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6041 /* XXX: might not be 66MHz */
2177832f 6042 intel_clock(dev, 66000, &clock);
79e53945 6043 } else
2177832f 6044 intel_clock(dev, 48000, &clock);
79e53945
JB
6045 } else {
6046 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6047 clock.p1 = 2;
6048 else {
6049 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6050 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6051 }
6052 if (dpll & PLL_P2_DIVIDE_BY_4)
6053 clock.p2 = 4;
6054 else
6055 clock.p2 = 2;
6056
2177832f 6057 intel_clock(dev, 48000, &clock);
79e53945
JB
6058 }
6059 }
6060
6061 /* XXX: It would be nice to validate the clocks, but we can't reuse
6062 * i830PllIsValid() because it relies on the xf86_config connector
6063 * configuration being accurate, which it isn't necessarily.
6064 */
6065
6066 return clock.dot;
6067}
6068
6069/** Returns the currently programmed mode of the given pipe. */
6070struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6071 struct drm_crtc *crtc)
6072{
548f245b 6073 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
6074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6075 int pipe = intel_crtc->pipe;
6076 struct drm_display_mode *mode;
548f245b
JB
6077 int htot = I915_READ(HTOTAL(pipe));
6078 int hsync = I915_READ(HSYNC(pipe));
6079 int vtot = I915_READ(VTOTAL(pipe));
6080 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
6081
6082 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6083 if (!mode)
6084 return NULL;
6085
6086 mode->clock = intel_crtc_clock_get(dev, crtc);
6087 mode->hdisplay = (htot & 0xffff) + 1;
6088 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6089 mode->hsync_start = (hsync & 0xffff) + 1;
6090 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6091 mode->vdisplay = (vtot & 0xffff) + 1;
6092 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6093 mode->vsync_start = (vsync & 0xffff) + 1;
6094 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6095
6096 drm_mode_set_name(mode);
79e53945
JB
6097
6098 return mode;
6099}
6100
3dec0095 6101static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6102{
6103 struct drm_device *dev = crtc->dev;
6104 drm_i915_private_t *dev_priv = dev->dev_private;
6105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6106 int pipe = intel_crtc->pipe;
dbdc6479
JB
6107 int dpll_reg = DPLL(pipe);
6108 int dpll;
652c393a 6109
bad720ff 6110 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6111 return;
6112
6113 if (!dev_priv->lvds_downclock_avail)
6114 return;
6115
dbdc6479 6116 dpll = I915_READ(dpll_reg);
652c393a 6117 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6118 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6119
8ac5a6d5 6120 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6121
6122 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6123 I915_WRITE(dpll_reg, dpll);
9d0498a2 6124 intel_wait_for_vblank(dev, pipe);
dbdc6479 6125
652c393a
JB
6126 dpll = I915_READ(dpll_reg);
6127 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6128 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6129 }
652c393a
JB
6130}
6131
6132static void intel_decrease_pllclock(struct drm_crtc *crtc)
6133{
6134 struct drm_device *dev = crtc->dev;
6135 drm_i915_private_t *dev_priv = dev->dev_private;
6136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6137
bad720ff 6138 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6139 return;
6140
6141 if (!dev_priv->lvds_downclock_avail)
6142 return;
6143
6144 /*
6145 * Since this is called by a timer, we should never get here in
6146 * the manual case.
6147 */
6148 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6149 int pipe = intel_crtc->pipe;
6150 int dpll_reg = DPLL(pipe);
6151 int dpll;
f6e5b160 6152
44d98a61 6153 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6154
8ac5a6d5 6155 assert_panel_unlocked(dev_priv, pipe);
652c393a 6156
dc257cf1 6157 dpll = I915_READ(dpll_reg);
652c393a
JB
6158 dpll |= DISPLAY_RATE_SELECT_FPA1;
6159 I915_WRITE(dpll_reg, dpll);
9d0498a2 6160 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6161 dpll = I915_READ(dpll_reg);
6162 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6163 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6164 }
6165
6166}
6167
f047e395
CW
6168void intel_mark_busy(struct drm_device *dev)
6169{
f047e395
CW
6170 i915_update_gfx_val(dev->dev_private);
6171}
6172
6173void intel_mark_idle(struct drm_device *dev)
652c393a 6174{
f047e395
CW
6175}
6176
6177void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6178{
6179 struct drm_device *dev = obj->base.dev;
652c393a 6180 struct drm_crtc *crtc;
652c393a
JB
6181
6182 if (!i915_powersave)
6183 return;
6184
652c393a 6185 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6186 if (!crtc->fb)
6187 continue;
6188
f047e395
CW
6189 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6190 intel_increase_pllclock(crtc);
652c393a 6191 }
652c393a
JB
6192}
6193
f047e395 6194void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6195{
f047e395
CW
6196 struct drm_device *dev = obj->base.dev;
6197 struct drm_crtc *crtc;
652c393a 6198
f047e395 6199 if (!i915_powersave)
acb87dfb
CW
6200 return;
6201
652c393a
JB
6202 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6203 if (!crtc->fb)
6204 continue;
6205
f047e395
CW
6206 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6207 intel_decrease_pllclock(crtc);
652c393a
JB
6208 }
6209}
6210
79e53945
JB
6211static void intel_crtc_destroy(struct drm_crtc *crtc)
6212{
6213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6214 struct drm_device *dev = crtc->dev;
6215 struct intel_unpin_work *work;
6216 unsigned long flags;
6217
6218 spin_lock_irqsave(&dev->event_lock, flags);
6219 work = intel_crtc->unpin_work;
6220 intel_crtc->unpin_work = NULL;
6221 spin_unlock_irqrestore(&dev->event_lock, flags);
6222
6223 if (work) {
6224 cancel_work_sync(&work->work);
6225 kfree(work);
6226 }
79e53945
JB
6227
6228 drm_crtc_cleanup(crtc);
67e77c5a 6229
79e53945
JB
6230 kfree(intel_crtc);
6231}
6232
6b95a207
KH
6233static void intel_unpin_work_fn(struct work_struct *__work)
6234{
6235 struct intel_unpin_work *work =
6236 container_of(__work, struct intel_unpin_work, work);
6237
6238 mutex_lock(&work->dev->struct_mutex);
1690e1eb 6239 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6240 drm_gem_object_unreference(&work->pending_flip_obj->base);
6241 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6242
7782de3b 6243 intel_update_fbc(work->dev);
6b95a207
KH
6244 mutex_unlock(&work->dev->struct_mutex);
6245 kfree(work);
6246}
6247
1afe3e9d 6248static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6249 struct drm_crtc *crtc)
6b95a207
KH
6250{
6251 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6253 struct intel_unpin_work *work;
05394f39 6254 struct drm_i915_gem_object *obj;
6b95a207 6255 struct drm_pending_vblank_event *e;
49b14a5c 6256 struct timeval tnow, tvbl;
6b95a207
KH
6257 unsigned long flags;
6258
6259 /* Ignore early vblank irqs */
6260 if (intel_crtc == NULL)
6261 return;
6262
49b14a5c
MK
6263 do_gettimeofday(&tnow);
6264
6b95a207
KH
6265 spin_lock_irqsave(&dev->event_lock, flags);
6266 work = intel_crtc->unpin_work;
6267 if (work == NULL || !work->pending) {
6268 spin_unlock_irqrestore(&dev->event_lock, flags);
6269 return;
6270 }
6271
6272 intel_crtc->unpin_work = NULL;
6b95a207
KH
6273
6274 if (work->event) {
6275 e = work->event;
49b14a5c 6276 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df
MK
6277
6278 /* Called before vblank count and timestamps have
6279 * been updated for the vblank interval of flip
6280 * completion? Need to increment vblank count and
6281 * add one videorefresh duration to returned timestamp
49b14a5c
MK
6282 * to account for this. We assume this happened if we
6283 * get called over 0.9 frame durations after the last
6284 * timestamped vblank.
6285 *
6286 * This calculation can not be used with vrefresh rates
6287 * below 5Hz (10Hz to be on the safe side) without
6288 * promoting to 64 integers.
0af7e4df 6289 */
49b14a5c
MK
6290 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6291 9 * crtc->framedur_ns) {
0af7e4df 6292 e->event.sequence++;
49b14a5c
MK
6293 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6294 crtc->framedur_ns);
0af7e4df
MK
6295 }
6296
49b14a5c
MK
6297 e->event.tv_sec = tvbl.tv_sec;
6298 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6299
6b95a207
KH
6300 list_add_tail(&e->base.link,
6301 &e->base.file_priv->event_list);
6302 wake_up_interruptible(&e->base.file_priv->event_wait);
6303 }
6304
0af7e4df
MK
6305 drm_vblank_put(dev, intel_crtc->pipe);
6306
6b95a207
KH
6307 spin_unlock_irqrestore(&dev->event_lock, flags);
6308
05394f39 6309 obj = work->old_fb_obj;
d9e86c0e 6310
e59f2bac 6311 atomic_clear_mask(1 << intel_crtc->plane,
05394f39
CW
6312 &obj->pending_flip.counter);
6313 if (atomic_read(&obj->pending_flip) == 0)
f787a5f5 6314 wake_up(&dev_priv->pending_flip_queue);
d9e86c0e 6315
6b95a207 6316 schedule_work(&work->work);
e5510fac
JB
6317
6318 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6319}
6320
1afe3e9d
JB
6321void intel_finish_page_flip(struct drm_device *dev, int pipe)
6322{
6323 drm_i915_private_t *dev_priv = dev->dev_private;
6324 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6325
49b14a5c 6326 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6327}
6328
6329void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6330{
6331 drm_i915_private_t *dev_priv = dev->dev_private;
6332 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6333
49b14a5c 6334 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6335}
6336
6b95a207
KH
6337void intel_prepare_page_flip(struct drm_device *dev, int plane)
6338{
6339 drm_i915_private_t *dev_priv = dev->dev_private;
6340 struct intel_crtc *intel_crtc =
6341 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6342 unsigned long flags;
6343
6344 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6345 if (intel_crtc->unpin_work) {
4e5359cd
SF
6346 if ((++intel_crtc->unpin_work->pending) > 1)
6347 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6348 } else {
6349 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6350 }
6b95a207
KH
6351 spin_unlock_irqrestore(&dev->event_lock, flags);
6352}
6353
8c9f3aaf
JB
6354static int intel_gen2_queue_flip(struct drm_device *dev,
6355 struct drm_crtc *crtc,
6356 struct drm_framebuffer *fb,
6357 struct drm_i915_gem_object *obj)
6358{
6359 struct drm_i915_private *dev_priv = dev->dev_private;
6360 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6361 u32 flip_mask;
6d90c952 6362 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6363 int ret;
6364
6d90c952 6365 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6366 if (ret)
83d4092b 6367 goto err;
8c9f3aaf 6368
6d90c952 6369 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6370 if (ret)
83d4092b 6371 goto err_unpin;
8c9f3aaf
JB
6372
6373 /* Can't queue multiple flips, so wait for the previous
6374 * one to finish before executing the next.
6375 */
6376 if (intel_crtc->plane)
6377 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6378 else
6379 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6380 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6381 intel_ring_emit(ring, MI_NOOP);
6382 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6383 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6384 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6385 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6386 intel_ring_emit(ring, 0); /* aux display base address, unused */
6387 intel_ring_advance(ring);
83d4092b
CW
6388 return 0;
6389
6390err_unpin:
6391 intel_unpin_fb_obj(obj);
6392err:
8c9f3aaf
JB
6393 return ret;
6394}
6395
6396static int intel_gen3_queue_flip(struct drm_device *dev,
6397 struct drm_crtc *crtc,
6398 struct drm_framebuffer *fb,
6399 struct drm_i915_gem_object *obj)
6400{
6401 struct drm_i915_private *dev_priv = dev->dev_private;
6402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6403 u32 flip_mask;
6d90c952 6404 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6405 int ret;
6406
6d90c952 6407 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6408 if (ret)
83d4092b 6409 goto err;
8c9f3aaf 6410
6d90c952 6411 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6412 if (ret)
83d4092b 6413 goto err_unpin;
8c9f3aaf
JB
6414
6415 if (intel_crtc->plane)
6416 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6417 else
6418 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6419 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6420 intel_ring_emit(ring, MI_NOOP);
6421 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6422 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6423 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6424 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6425 intel_ring_emit(ring, MI_NOOP);
6426
6427 intel_ring_advance(ring);
83d4092b
CW
6428 return 0;
6429
6430err_unpin:
6431 intel_unpin_fb_obj(obj);
6432err:
8c9f3aaf
JB
6433 return ret;
6434}
6435
6436static int intel_gen4_queue_flip(struct drm_device *dev,
6437 struct drm_crtc *crtc,
6438 struct drm_framebuffer *fb,
6439 struct drm_i915_gem_object *obj)
6440{
6441 struct drm_i915_private *dev_priv = dev->dev_private;
6442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6443 uint32_t pf, pipesrc;
6d90c952 6444 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6445 int ret;
6446
6d90c952 6447 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6448 if (ret)
83d4092b 6449 goto err;
8c9f3aaf 6450
6d90c952 6451 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6452 if (ret)
83d4092b 6453 goto err_unpin;
8c9f3aaf
JB
6454
6455 /* i965+ uses the linear or tiled offsets from the
6456 * Display Registers (which do not change across a page-flip)
6457 * so we need only reprogram the base address.
6458 */
6d90c952
DV
6459 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6460 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6461 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
6462 intel_ring_emit(ring,
6463 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6464 obj->tiling_mode);
8c9f3aaf
JB
6465
6466 /* XXX Enabling the panel-fitter across page-flip is so far
6467 * untested on non-native modes, so ignore it for now.
6468 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6469 */
6470 pf = 0;
6471 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6472 intel_ring_emit(ring, pf | pipesrc);
6473 intel_ring_advance(ring);
83d4092b
CW
6474 return 0;
6475
6476err_unpin:
6477 intel_unpin_fb_obj(obj);
6478err:
8c9f3aaf
JB
6479 return ret;
6480}
6481
6482static int intel_gen6_queue_flip(struct drm_device *dev,
6483 struct drm_crtc *crtc,
6484 struct drm_framebuffer *fb,
6485 struct drm_i915_gem_object *obj)
6486{
6487 struct drm_i915_private *dev_priv = dev->dev_private;
6488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 6489 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6490 uint32_t pf, pipesrc;
6491 int ret;
6492
6d90c952 6493 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6494 if (ret)
83d4092b 6495 goto err;
8c9f3aaf 6496
6d90c952 6497 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6498 if (ret)
83d4092b 6499 goto err_unpin;
8c9f3aaf 6500
6d90c952
DV
6501 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6502 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6503 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 6504 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 6505
dc257cf1
DV
6506 /* Contrary to the suggestions in the documentation,
6507 * "Enable Panel Fitter" does not seem to be required when page
6508 * flipping with a non-native mode, and worse causes a normal
6509 * modeset to fail.
6510 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6511 */
6512 pf = 0;
8c9f3aaf 6513 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6514 intel_ring_emit(ring, pf | pipesrc);
6515 intel_ring_advance(ring);
83d4092b
CW
6516 return 0;
6517
6518err_unpin:
6519 intel_unpin_fb_obj(obj);
6520err:
8c9f3aaf
JB
6521 return ret;
6522}
6523
7c9017e5
JB
6524/*
6525 * On gen7 we currently use the blit ring because (in early silicon at least)
6526 * the render ring doesn't give us interrpts for page flip completion, which
6527 * means clients will hang after the first flip is queued. Fortunately the
6528 * blit ring generates interrupts properly, so use it instead.
6529 */
6530static int intel_gen7_queue_flip(struct drm_device *dev,
6531 struct drm_crtc *crtc,
6532 struct drm_framebuffer *fb,
6533 struct drm_i915_gem_object *obj)
6534{
6535 struct drm_i915_private *dev_priv = dev->dev_private;
6536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6537 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 6538 uint32_t plane_bit = 0;
7c9017e5
JB
6539 int ret;
6540
6541 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6542 if (ret)
83d4092b 6543 goto err;
7c9017e5 6544
cb05d8de
DV
6545 switch(intel_crtc->plane) {
6546 case PLANE_A:
6547 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6548 break;
6549 case PLANE_B:
6550 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6551 break;
6552 case PLANE_C:
6553 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6554 break;
6555 default:
6556 WARN_ONCE(1, "unknown plane in flip command\n");
6557 ret = -ENODEV;
ab3951eb 6558 goto err_unpin;
cb05d8de
DV
6559 }
6560
7c9017e5
JB
6561 ret = intel_ring_begin(ring, 4);
6562 if (ret)
83d4092b 6563 goto err_unpin;
7c9017e5 6564
cb05d8de 6565 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 6566 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 6567 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5
JB
6568 intel_ring_emit(ring, (MI_NOOP));
6569 intel_ring_advance(ring);
83d4092b
CW
6570 return 0;
6571
6572err_unpin:
6573 intel_unpin_fb_obj(obj);
6574err:
7c9017e5
JB
6575 return ret;
6576}
6577
8c9f3aaf
JB
6578static int intel_default_queue_flip(struct drm_device *dev,
6579 struct drm_crtc *crtc,
6580 struct drm_framebuffer *fb,
6581 struct drm_i915_gem_object *obj)
6582{
6583 return -ENODEV;
6584}
6585
6b95a207
KH
6586static int intel_crtc_page_flip(struct drm_crtc *crtc,
6587 struct drm_framebuffer *fb,
6588 struct drm_pending_vblank_event *event)
6589{
6590 struct drm_device *dev = crtc->dev;
6591 struct drm_i915_private *dev_priv = dev->dev_private;
6592 struct intel_framebuffer *intel_fb;
05394f39 6593 struct drm_i915_gem_object *obj;
6b95a207
KH
6594 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6595 struct intel_unpin_work *work;
8c9f3aaf 6596 unsigned long flags;
52e68630 6597 int ret;
6b95a207 6598
e6a595d2
VS
6599 /* Can't change pixel format via MI display flips. */
6600 if (fb->pixel_format != crtc->fb->pixel_format)
6601 return -EINVAL;
6602
6603 /*
6604 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6605 * Note that pitch changes could also affect these register.
6606 */
6607 if (INTEL_INFO(dev)->gen > 3 &&
6608 (fb->offsets[0] != crtc->fb->offsets[0] ||
6609 fb->pitches[0] != crtc->fb->pitches[0]))
6610 return -EINVAL;
6611
6b95a207
KH
6612 work = kzalloc(sizeof *work, GFP_KERNEL);
6613 if (work == NULL)
6614 return -ENOMEM;
6615
6b95a207
KH
6616 work->event = event;
6617 work->dev = crtc->dev;
6618 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 6619 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
6620 INIT_WORK(&work->work, intel_unpin_work_fn);
6621
7317c75e
JB
6622 ret = drm_vblank_get(dev, intel_crtc->pipe);
6623 if (ret)
6624 goto free_work;
6625
6b95a207
KH
6626 /* We borrow the event spin lock for protecting unpin_work */
6627 spin_lock_irqsave(&dev->event_lock, flags);
6628 if (intel_crtc->unpin_work) {
6629 spin_unlock_irqrestore(&dev->event_lock, flags);
6630 kfree(work);
7317c75e 6631 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
6632
6633 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
6634 return -EBUSY;
6635 }
6636 intel_crtc->unpin_work = work;
6637 spin_unlock_irqrestore(&dev->event_lock, flags);
6638
6639 intel_fb = to_intel_framebuffer(fb);
6640 obj = intel_fb->obj;
6641
79158103
CW
6642 ret = i915_mutex_lock_interruptible(dev);
6643 if (ret)
6644 goto cleanup;
6b95a207 6645
75dfca80 6646 /* Reference the objects for the scheduled work. */
05394f39
CW
6647 drm_gem_object_reference(&work->old_fb_obj->base);
6648 drm_gem_object_reference(&obj->base);
6b95a207
KH
6649
6650 crtc->fb = fb;
96b099fd 6651
e1f99ce6 6652 work->pending_flip_obj = obj;
e1f99ce6 6653
4e5359cd
SF
6654 work->enable_stall_check = true;
6655
e1f99ce6
CW
6656 /* Block clients from rendering to the new back buffer until
6657 * the flip occurs and the object is no longer visible.
6658 */
05394f39 6659 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 6660
8c9f3aaf
JB
6661 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6662 if (ret)
6663 goto cleanup_pending;
6b95a207 6664
7782de3b 6665 intel_disable_fbc(dev);
f047e395 6666 intel_mark_fb_busy(obj);
6b95a207
KH
6667 mutex_unlock(&dev->struct_mutex);
6668
e5510fac
JB
6669 trace_i915_flip_request(intel_crtc->plane, obj);
6670
6b95a207 6671 return 0;
96b099fd 6672
8c9f3aaf
JB
6673cleanup_pending:
6674 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
6675 drm_gem_object_unreference(&work->old_fb_obj->base);
6676 drm_gem_object_unreference(&obj->base);
96b099fd
CW
6677 mutex_unlock(&dev->struct_mutex);
6678
79158103 6679cleanup:
96b099fd
CW
6680 spin_lock_irqsave(&dev->event_lock, flags);
6681 intel_crtc->unpin_work = NULL;
6682 spin_unlock_irqrestore(&dev->event_lock, flags);
6683
7317c75e
JB
6684 drm_vblank_put(dev, intel_crtc->pipe);
6685free_work:
96b099fd
CW
6686 kfree(work);
6687
6688 return ret;
6b95a207
KH
6689}
6690
f6e5b160 6691static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
6692 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6693 .load_lut = intel_crtc_load_lut,
976f8a20 6694 .disable = intel_crtc_noop,
f6e5b160
CW
6695};
6696
6ed0f796 6697bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 6698{
6ed0f796
DV
6699 struct intel_encoder *other_encoder;
6700 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 6701
6ed0f796
DV
6702 if (WARN_ON(!crtc))
6703 return false;
6704
6705 list_for_each_entry(other_encoder,
6706 &crtc->dev->mode_config.encoder_list,
6707 base.head) {
6708
6709 if (&other_encoder->new_crtc->base != crtc ||
6710 encoder == other_encoder)
6711 continue;
6712 else
6713 return true;
f47166d2
CW
6714 }
6715
6ed0f796
DV
6716 return false;
6717}
47f1c6c9 6718
50f56119
DV
6719static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6720 struct drm_crtc *crtc)
6721{
6722 struct drm_device *dev;
6723 struct drm_crtc *tmp;
6724 int crtc_mask = 1;
47f1c6c9 6725
50f56119 6726 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 6727
50f56119 6728 dev = crtc->dev;
47f1c6c9 6729
50f56119
DV
6730 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6731 if (tmp == crtc)
6732 break;
6733 crtc_mask <<= 1;
6734 }
47f1c6c9 6735
50f56119
DV
6736 if (encoder->possible_crtcs & crtc_mask)
6737 return true;
6738 return false;
47f1c6c9 6739}
79e53945 6740
9a935856
DV
6741/**
6742 * intel_modeset_update_staged_output_state
6743 *
6744 * Updates the staged output configuration state, e.g. after we've read out the
6745 * current hw state.
6746 */
6747static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 6748{
9a935856
DV
6749 struct intel_encoder *encoder;
6750 struct intel_connector *connector;
f6e5b160 6751
9a935856
DV
6752 list_for_each_entry(connector, &dev->mode_config.connector_list,
6753 base.head) {
6754 connector->new_encoder =
6755 to_intel_encoder(connector->base.encoder);
6756 }
f6e5b160 6757
9a935856
DV
6758 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6759 base.head) {
6760 encoder->new_crtc =
6761 to_intel_crtc(encoder->base.crtc);
6762 }
f6e5b160
CW
6763}
6764
9a935856
DV
6765/**
6766 * intel_modeset_commit_output_state
6767 *
6768 * This function copies the stage display pipe configuration to the real one.
6769 */
6770static void intel_modeset_commit_output_state(struct drm_device *dev)
6771{
6772 struct intel_encoder *encoder;
6773 struct intel_connector *connector;
f6e5b160 6774
9a935856
DV
6775 list_for_each_entry(connector, &dev->mode_config.connector_list,
6776 base.head) {
6777 connector->base.encoder = &connector->new_encoder->base;
6778 }
f6e5b160 6779
9a935856
DV
6780 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6781 base.head) {
6782 encoder->base.crtc = &encoder->new_crtc->base;
6783 }
6784}
6785
7758a113
DV
6786static struct drm_display_mode *
6787intel_modeset_adjusted_mode(struct drm_crtc *crtc,
6788 struct drm_display_mode *mode)
ee7b9f93 6789{
7758a113
DV
6790 struct drm_device *dev = crtc->dev;
6791 struct drm_display_mode *adjusted_mode;
6792 struct drm_encoder_helper_funcs *encoder_funcs;
6793 struct intel_encoder *encoder;
ee7b9f93 6794
7758a113
DV
6795 adjusted_mode = drm_mode_duplicate(dev, mode);
6796 if (!adjusted_mode)
6797 return ERR_PTR(-ENOMEM);
6798
6799 /* Pass our mode to the connectors and the CRTC to give them a chance to
6800 * adjust it according to limitations or connector properties, and also
6801 * a chance to reject the mode entirely.
6802 */
6803 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6804 base.head) {
6805
6806 if (&encoder->new_crtc->base != crtc)
6807 continue;
6808 encoder_funcs = encoder->base.helper_private;
6809 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
6810 adjusted_mode))) {
6811 DRM_DEBUG_KMS("Encoder fixup failed\n");
6812 goto fail;
6813 }
ee7b9f93
JB
6814 }
6815
7758a113
DV
6816 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6817 DRM_DEBUG_KMS("CRTC fixup failed\n");
6818 goto fail;
ee7b9f93 6819 }
7758a113
DV
6820 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6821
6822 return adjusted_mode;
6823fail:
6824 drm_mode_destroy(dev, adjusted_mode);
6825 return ERR_PTR(-EINVAL);
ee7b9f93
JB
6826}
6827
e2e1ed41
DV
6828/* Computes which crtcs are affected and sets the relevant bits in the mask. For
6829 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
6830static void
6831intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
6832 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
6833{
6834 struct intel_crtc *intel_crtc;
e2e1ed41
DV
6835 struct drm_device *dev = crtc->dev;
6836 struct intel_encoder *encoder;
6837 struct intel_connector *connector;
6838 struct drm_crtc *tmp_crtc;
79e53945 6839
e2e1ed41 6840 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 6841
e2e1ed41
DV
6842 /* Check which crtcs have changed outputs connected to them, these need
6843 * to be part of the prepare_pipes mask. We don't (yet) support global
6844 * modeset across multiple crtcs, so modeset_pipes will only have one
6845 * bit set at most. */
6846 list_for_each_entry(connector, &dev->mode_config.connector_list,
6847 base.head) {
6848 if (connector->base.encoder == &connector->new_encoder->base)
6849 continue;
79e53945 6850
e2e1ed41
DV
6851 if (connector->base.encoder) {
6852 tmp_crtc = connector->base.encoder->crtc;
6853
6854 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6855 }
6856
6857 if (connector->new_encoder)
6858 *prepare_pipes |=
6859 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
6860 }
6861
e2e1ed41
DV
6862 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6863 base.head) {
6864 if (encoder->base.crtc == &encoder->new_crtc->base)
6865 continue;
6866
6867 if (encoder->base.crtc) {
6868 tmp_crtc = encoder->base.crtc;
6869
6870 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6871 }
6872
6873 if (encoder->new_crtc)
6874 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
6875 }
6876
e2e1ed41
DV
6877 /* Check for any pipes that will be fully disabled ... */
6878 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6879 base.head) {
6880 bool used = false;
22fd0fab 6881
e2e1ed41
DV
6882 /* Don't try to disable disabled crtcs. */
6883 if (!intel_crtc->base.enabled)
6884 continue;
7e7d76c3 6885
e2e1ed41
DV
6886 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6887 base.head) {
6888 if (encoder->new_crtc == intel_crtc)
6889 used = true;
6890 }
6891
6892 if (!used)
6893 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
6894 }
6895
e2e1ed41
DV
6896
6897 /* set_mode is also used to update properties on life display pipes. */
6898 intel_crtc = to_intel_crtc(crtc);
6899 if (crtc->enabled)
6900 *prepare_pipes |= 1 << intel_crtc->pipe;
6901
6902 /* We only support modeset on one single crtc, hence we need to do that
6903 * only for the passed in crtc iff we change anything else than just
6904 * disable crtcs.
6905 *
6906 * This is actually not true, to be fully compatible with the old crtc
6907 * helper we automatically disable _any_ output (i.e. doesn't need to be
6908 * connected to the crtc we're modesetting on) if it's disconnected.
6909 * Which is a rather nutty api (since changed the output configuration
6910 * without userspace's explicit request can lead to confusion), but
6911 * alas. Hence we currently need to modeset on all pipes we prepare. */
6912 if (*prepare_pipes)
6913 *modeset_pipes = *prepare_pipes;
6914
6915 /* ... and mask these out. */
6916 *modeset_pipes &= ~(*disable_pipes);
6917 *prepare_pipes &= ~(*disable_pipes);
6918}
6919
ea9d758d
DV
6920static bool intel_crtc_in_use(struct drm_crtc *crtc)
6921{
6922 struct drm_encoder *encoder;
6923 struct drm_device *dev = crtc->dev;
6924
6925 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
6926 if (encoder->crtc == crtc)
6927 return true;
6928
6929 return false;
6930}
6931
6932static void
6933intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
6934{
6935 struct intel_encoder *intel_encoder;
6936 struct intel_crtc *intel_crtc;
6937 struct drm_connector *connector;
6938
6939 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
6940 base.head) {
6941 if (!intel_encoder->base.crtc)
6942 continue;
6943
6944 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
6945
6946 if (prepare_pipes & (1 << intel_crtc->pipe))
6947 intel_encoder->connectors_active = false;
6948 }
6949
6950 intel_modeset_commit_output_state(dev);
6951
6952 /* Update computed state. */
6953 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6954 base.head) {
6955 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
6956 }
6957
6958 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6959 if (!connector->encoder || !connector->encoder->crtc)
6960 continue;
6961
6962 intel_crtc = to_intel_crtc(connector->encoder->crtc);
6963
6964 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
6965 struct drm_property *dpms_property =
6966 dev->mode_config.dpms_property;
6967
ea9d758d 6968 connector->dpms = DRM_MODE_DPMS_ON;
68d34720
DV
6969 drm_connector_property_set_value(connector,
6970 dpms_property,
6971 DRM_MODE_DPMS_ON);
ea9d758d
DV
6972
6973 intel_encoder = to_intel_encoder(connector->encoder);
6974 intel_encoder->connectors_active = true;
6975 }
6976 }
6977
6978}
6979
25c5b266
DV
6980#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
6981 list_for_each_entry((intel_crtc), \
6982 &(dev)->mode_config.crtc_list, \
6983 base.head) \
6984 if (mask & (1 <<(intel_crtc)->pipe)) \
6985
b980514c 6986void
8af6cf88
DV
6987intel_modeset_check_state(struct drm_device *dev)
6988{
6989 struct intel_crtc *crtc;
6990 struct intel_encoder *encoder;
6991 struct intel_connector *connector;
6992
6993 list_for_each_entry(connector, &dev->mode_config.connector_list,
6994 base.head) {
6995 /* This also checks the encoder/connector hw state with the
6996 * ->get_hw_state callbacks. */
6997 intel_connector_check_state(connector);
6998
6999 WARN(&connector->new_encoder->base != connector->base.encoder,
7000 "connector's staged encoder doesn't match current encoder\n");
7001 }
7002
7003 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7004 base.head) {
7005 bool enabled = false;
7006 bool active = false;
7007 enum pipe pipe, tracked_pipe;
7008
7009 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7010 encoder->base.base.id,
7011 drm_get_encoder_name(&encoder->base));
7012
7013 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7014 "encoder's stage crtc doesn't match current crtc\n");
7015 WARN(encoder->connectors_active && !encoder->base.crtc,
7016 "encoder's active_connectors set, but no crtc\n");
7017
7018 list_for_each_entry(connector, &dev->mode_config.connector_list,
7019 base.head) {
7020 if (connector->base.encoder != &encoder->base)
7021 continue;
7022 enabled = true;
7023 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7024 active = true;
7025 }
7026 WARN(!!encoder->base.crtc != enabled,
7027 "encoder's enabled state mismatch "
7028 "(expected %i, found %i)\n",
7029 !!encoder->base.crtc, enabled);
7030 WARN(active && !encoder->base.crtc,
7031 "active encoder with no crtc\n");
7032
7033 WARN(encoder->connectors_active != active,
7034 "encoder's computed active state doesn't match tracked active state "
7035 "(expected %i, found %i)\n", active, encoder->connectors_active);
7036
7037 active = encoder->get_hw_state(encoder, &pipe);
7038 WARN(active != encoder->connectors_active,
7039 "encoder's hw state doesn't match sw tracking "
7040 "(expected %i, found %i)\n",
7041 encoder->connectors_active, active);
7042
7043 if (!encoder->base.crtc)
7044 continue;
7045
7046 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7047 WARN(active && pipe != tracked_pipe,
7048 "active encoder's pipe doesn't match"
7049 "(expected %i, found %i)\n",
7050 tracked_pipe, pipe);
7051
7052 }
7053
7054 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7055 base.head) {
7056 bool enabled = false;
7057 bool active = false;
7058
7059 DRM_DEBUG_KMS("[CRTC:%d]\n",
7060 crtc->base.base.id);
7061
7062 WARN(crtc->active && !crtc->base.enabled,
7063 "active crtc, but not enabled in sw tracking\n");
7064
7065 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7066 base.head) {
7067 if (encoder->base.crtc != &crtc->base)
7068 continue;
7069 enabled = true;
7070 if (encoder->connectors_active)
7071 active = true;
7072 }
7073 WARN(active != crtc->active,
7074 "crtc's computed active state doesn't match tracked active state "
7075 "(expected %i, found %i)\n", active, crtc->active);
7076 WARN(enabled != crtc->base.enabled,
7077 "crtc's computed enabled state doesn't match tracked enabled state "
7078 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7079
7080 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7081 }
7082}
7083
a6778b3c
DV
7084bool intel_set_mode(struct drm_crtc *crtc,
7085 struct drm_display_mode *mode,
94352cf9 7086 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7087{
7088 struct drm_device *dev = crtc->dev;
dbf2b54e 7089 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7090 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
a6778b3c 7091 struct drm_encoder_helper_funcs *encoder_funcs;
a6778b3c 7092 struct drm_encoder *encoder;
25c5b266
DV
7093 struct intel_crtc *intel_crtc;
7094 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7095 bool ret = true;
7096
e2e1ed41 7097 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7098 &prepare_pipes, &disable_pipes);
7099
7100 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7101 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7102
976f8a20
DV
7103 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7104 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7105
a6778b3c
DV
7106 saved_hwmode = crtc->hwmode;
7107 saved_mode = crtc->mode;
a6778b3c 7108
25c5b266
DV
7109 /* Hack: Because we don't (yet) support global modeset on multiple
7110 * crtcs, we don't keep track of the new mode for more than one crtc.
7111 * Hence simply check whether any bit is set in modeset_pipes in all the
7112 * pieces of code that are not yet converted to deal with mutliple crtcs
7113 * changing their mode at the same time. */
7114 adjusted_mode = NULL;
7115 if (modeset_pipes) {
7116 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7117 if (IS_ERR(adjusted_mode)) {
7118 return false;
7119 }
25c5b266 7120 }
a6778b3c 7121
ea9d758d
DV
7122 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7123 if (intel_crtc->base.enabled)
7124 dev_priv->display.crtc_disable(&intel_crtc->base);
7125 }
a6778b3c 7126
6c4c86f5
DV
7127 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7128 * to set it here already despite that we pass it down the callchain.
7129 */
7130 if (modeset_pipes)
25c5b266 7131 crtc->mode = *mode;
7758a113 7132
ea9d758d
DV
7133 /* Only after disabling all output pipelines that will be changed can we
7134 * update the the output configuration. */
7135 intel_modeset_update_state(dev, prepare_pipes);
7136
a6778b3c
DV
7137 /* Set up the DPLL and any encoders state that needs to adjust or depend
7138 * on the DPLL.
7139 */
25c5b266
DV
7140 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7141 ret = !intel_crtc_mode_set(&intel_crtc->base,
7142 mode, adjusted_mode,
7143 x, y, fb);
7144 if (!ret)
7145 goto done;
a6778b3c 7146
25c5b266 7147 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
a6778b3c 7148
25c5b266
DV
7149 if (encoder->crtc != &intel_crtc->base)
7150 continue;
a6778b3c 7151
25c5b266
DV
7152 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7153 encoder->base.id, drm_get_encoder_name(encoder),
7154 mode->base.id, mode->name);
7155 encoder_funcs = encoder->helper_private;
7156 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7157 }
a6778b3c
DV
7158 }
7159
7160 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7161 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7162 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7163
25c5b266
DV
7164 if (modeset_pipes) {
7165 /* Store real post-adjustment hardware mode. */
7166 crtc->hwmode = *adjusted_mode;
a6778b3c 7167
25c5b266
DV
7168 /* Calculate and store various constants which
7169 * are later needed by vblank and swap-completion
7170 * timestamping. They are derived from true hwmode.
7171 */
7172 drm_calc_timestamping_constants(crtc);
7173 }
a6778b3c
DV
7174
7175 /* FIXME: add subpixel order */
7176done:
7177 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7178 if (!ret && crtc->enabled) {
a6778b3c
DV
7179 crtc->hwmode = saved_hwmode;
7180 crtc->mode = saved_mode;
8af6cf88
DV
7181 } else {
7182 intel_modeset_check_state(dev);
a6778b3c
DV
7183 }
7184
7185 return ret;
7186}
7187
25c5b266
DV
7188#undef for_each_intel_crtc_masked
7189
d9e55608
DV
7190static void intel_set_config_free(struct intel_set_config *config)
7191{
7192 if (!config)
7193 return;
7194
1aa4b628
DV
7195 kfree(config->save_connector_encoders);
7196 kfree(config->save_encoder_crtcs);
d9e55608
DV
7197 kfree(config);
7198}
7199
85f9eb71
DV
7200static int intel_set_config_save_state(struct drm_device *dev,
7201 struct intel_set_config *config)
7202{
85f9eb71
DV
7203 struct drm_encoder *encoder;
7204 struct drm_connector *connector;
7205 int count;
7206
1aa4b628
DV
7207 config->save_encoder_crtcs =
7208 kcalloc(dev->mode_config.num_encoder,
7209 sizeof(struct drm_crtc *), GFP_KERNEL);
7210 if (!config->save_encoder_crtcs)
85f9eb71
DV
7211 return -ENOMEM;
7212
1aa4b628
DV
7213 config->save_connector_encoders =
7214 kcalloc(dev->mode_config.num_connector,
7215 sizeof(struct drm_encoder *), GFP_KERNEL);
7216 if (!config->save_connector_encoders)
85f9eb71
DV
7217 return -ENOMEM;
7218
7219 /* Copy data. Note that driver private data is not affected.
7220 * Should anything bad happen only the expected state is
7221 * restored, not the drivers personal bookkeeping.
7222 */
85f9eb71
DV
7223 count = 0;
7224 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7225 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7226 }
7227
7228 count = 0;
7229 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7230 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7231 }
7232
7233 return 0;
7234}
7235
7236static void intel_set_config_restore_state(struct drm_device *dev,
7237 struct intel_set_config *config)
7238{
9a935856
DV
7239 struct intel_encoder *encoder;
7240 struct intel_connector *connector;
85f9eb71
DV
7241 int count;
7242
85f9eb71 7243 count = 0;
9a935856
DV
7244 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7245 encoder->new_crtc =
7246 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7247 }
7248
7249 count = 0;
9a935856
DV
7250 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7251 connector->new_encoder =
7252 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7253 }
7254}
7255
5e2b584e
DV
7256static void
7257intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7258 struct intel_set_config *config)
7259{
7260
7261 /* We should be able to check here if the fb has the same properties
7262 * and then just flip_or_move it */
7263 if (set->crtc->fb != set->fb) {
7264 /* If we have no fb then treat it as a full mode set */
7265 if (set->crtc->fb == NULL) {
7266 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7267 config->mode_changed = true;
7268 } else if (set->fb == NULL) {
7269 config->mode_changed = true;
7270 } else if (set->fb->depth != set->crtc->fb->depth) {
7271 config->mode_changed = true;
7272 } else if (set->fb->bits_per_pixel !=
7273 set->crtc->fb->bits_per_pixel) {
7274 config->mode_changed = true;
7275 } else
7276 config->fb_changed = true;
7277 }
7278
835c5873 7279 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7280 config->fb_changed = true;
7281
7282 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7283 DRM_DEBUG_KMS("modes are different, full mode set\n");
7284 drm_mode_debug_printmodeline(&set->crtc->mode);
7285 drm_mode_debug_printmodeline(set->mode);
7286 config->mode_changed = true;
7287 }
7288}
7289
2e431051 7290static int
9a935856
DV
7291intel_modeset_stage_output_state(struct drm_device *dev,
7292 struct drm_mode_set *set,
7293 struct intel_set_config *config)
50f56119 7294{
85f9eb71 7295 struct drm_crtc *new_crtc;
9a935856
DV
7296 struct intel_connector *connector;
7297 struct intel_encoder *encoder;
2e431051 7298 int count, ro;
50f56119 7299
9a935856
DV
7300 /* The upper layers ensure that we either disabl a crtc or have a list
7301 * of connectors. For paranoia, double-check this. */
7302 WARN_ON(!set->fb && (set->num_connectors != 0));
7303 WARN_ON(set->fb && (set->num_connectors == 0));
7304
50f56119 7305 count = 0;
9a935856
DV
7306 list_for_each_entry(connector, &dev->mode_config.connector_list,
7307 base.head) {
7308 /* Otherwise traverse passed in connector list and get encoders
7309 * for them. */
50f56119 7310 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7311 if (set->connectors[ro] == &connector->base) {
7312 connector->new_encoder = connector->encoder;
50f56119
DV
7313 break;
7314 }
7315 }
7316
9a935856
DV
7317 /* If we disable the crtc, disable all its connectors. Also, if
7318 * the connector is on the changing crtc but not on the new
7319 * connector list, disable it. */
7320 if ((!set->fb || ro == set->num_connectors) &&
7321 connector->base.encoder &&
7322 connector->base.encoder->crtc == set->crtc) {
7323 connector->new_encoder = NULL;
7324
7325 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7326 connector->base.base.id,
7327 drm_get_connector_name(&connector->base));
7328 }
7329
7330
7331 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 7332 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 7333 config->mode_changed = true;
50f56119 7334 }
9a935856
DV
7335
7336 /* Disable all disconnected encoders. */
7337 if (connector->base.status == connector_status_disconnected)
7338 connector->new_encoder = NULL;
50f56119 7339 }
9a935856 7340 /* connector->new_encoder is now updated for all connectors. */
50f56119 7341
9a935856 7342 /* Update crtc of enabled connectors. */
50f56119 7343 count = 0;
9a935856
DV
7344 list_for_each_entry(connector, &dev->mode_config.connector_list,
7345 base.head) {
7346 if (!connector->new_encoder)
50f56119
DV
7347 continue;
7348
9a935856 7349 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
7350
7351 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 7352 if (set->connectors[ro] == &connector->base)
50f56119
DV
7353 new_crtc = set->crtc;
7354 }
7355
7356 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
7357 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7358 new_crtc)) {
5e2b584e 7359 return -EINVAL;
50f56119 7360 }
9a935856
DV
7361 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7362
7363 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7364 connector->base.base.id,
7365 drm_get_connector_name(&connector->base),
7366 new_crtc->base.id);
7367 }
7368
7369 /* Check for any encoders that needs to be disabled. */
7370 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7371 base.head) {
7372 list_for_each_entry(connector,
7373 &dev->mode_config.connector_list,
7374 base.head) {
7375 if (connector->new_encoder == encoder) {
7376 WARN_ON(!connector->new_encoder->new_crtc);
7377
7378 goto next_encoder;
7379 }
7380 }
7381 encoder->new_crtc = NULL;
7382next_encoder:
7383 /* Only now check for crtc changes so we don't miss encoders
7384 * that will be disabled. */
7385 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 7386 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 7387 config->mode_changed = true;
50f56119
DV
7388 }
7389 }
9a935856 7390 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 7391
2e431051
DV
7392 return 0;
7393}
7394
7395static int intel_crtc_set_config(struct drm_mode_set *set)
7396{
7397 struct drm_device *dev;
2e431051
DV
7398 struct drm_mode_set save_set;
7399 struct intel_set_config *config;
7400 int ret;
2e431051 7401
8d3e375e
DV
7402 BUG_ON(!set);
7403 BUG_ON(!set->crtc);
7404 BUG_ON(!set->crtc->helper_private);
2e431051
DV
7405
7406 if (!set->mode)
7407 set->fb = NULL;
7408
431e50f7
DV
7409 /* The fb helper likes to play gross jokes with ->mode_set_config.
7410 * Unfortunately the crtc helper doesn't do much at all for this case,
7411 * so we have to cope with this madness until the fb helper is fixed up. */
7412 if (set->fb && set->num_connectors == 0)
7413 return 0;
7414
2e431051
DV
7415 if (set->fb) {
7416 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7417 set->crtc->base.id, set->fb->base.id,
7418 (int)set->num_connectors, set->x, set->y);
7419 } else {
7420 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
7421 }
7422
7423 dev = set->crtc->dev;
7424
7425 ret = -ENOMEM;
7426 config = kzalloc(sizeof(*config), GFP_KERNEL);
7427 if (!config)
7428 goto out_config;
7429
7430 ret = intel_set_config_save_state(dev, config);
7431 if (ret)
7432 goto out_config;
7433
7434 save_set.crtc = set->crtc;
7435 save_set.mode = &set->crtc->mode;
7436 save_set.x = set->crtc->x;
7437 save_set.y = set->crtc->y;
7438 save_set.fb = set->crtc->fb;
7439
7440 /* Compute whether we need a full modeset, only an fb base update or no
7441 * change at all. In the future we might also check whether only the
7442 * mode changed, e.g. for LVDS where we only change the panel fitter in
7443 * such cases. */
7444 intel_set_config_compute_mode_changes(set, config);
7445
9a935856 7446 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
7447 if (ret)
7448 goto fail;
7449
5e2b584e 7450 if (config->mode_changed) {
87f1faa6 7451 if (set->mode) {
50f56119
DV
7452 DRM_DEBUG_KMS("attempting to set mode from"
7453 " userspace\n");
7454 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
7455 }
7456
7457 if (!intel_set_mode(set->crtc, set->mode,
7458 set->x, set->y, set->fb)) {
7459 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7460 set->crtc->base.id);
7461 ret = -EINVAL;
7462 goto fail;
7463 }
5e2b584e 7464 } else if (config->fb_changed) {
4f660f49 7465 ret = intel_pipe_set_base(set->crtc,
94352cf9 7466 set->x, set->y, set->fb);
50f56119
DV
7467 }
7468
d9e55608
DV
7469 intel_set_config_free(config);
7470
50f56119
DV
7471 return 0;
7472
7473fail:
85f9eb71 7474 intel_set_config_restore_state(dev, config);
50f56119
DV
7475
7476 /* Try to restore the config */
5e2b584e 7477 if (config->mode_changed &&
a6778b3c
DV
7478 !intel_set_mode(save_set.crtc, save_set.mode,
7479 save_set.x, save_set.y, save_set.fb))
50f56119
DV
7480 DRM_ERROR("failed to restore config after modeset failure\n");
7481
d9e55608
DV
7482out_config:
7483 intel_set_config_free(config);
50f56119
DV
7484 return ret;
7485}
7486
f6e5b160 7487static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
7488 .cursor_set = intel_crtc_cursor_set,
7489 .cursor_move = intel_crtc_cursor_move,
7490 .gamma_set = intel_crtc_gamma_set,
50f56119 7491 .set_config = intel_crtc_set_config,
f6e5b160
CW
7492 .destroy = intel_crtc_destroy,
7493 .page_flip = intel_crtc_page_flip,
7494};
7495
ee7b9f93
JB
7496static void intel_pch_pll_init(struct drm_device *dev)
7497{
7498 drm_i915_private_t *dev_priv = dev->dev_private;
7499 int i;
7500
7501 if (dev_priv->num_pch_pll == 0) {
7502 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7503 return;
7504 }
7505
7506 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7507 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7508 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7509 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7510 }
7511}
7512
b358d0a6 7513static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 7514{
22fd0fab 7515 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
7516 struct intel_crtc *intel_crtc;
7517 int i;
7518
7519 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7520 if (intel_crtc == NULL)
7521 return;
7522
7523 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7524
7525 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
7526 for (i = 0; i < 256; i++) {
7527 intel_crtc->lut_r[i] = i;
7528 intel_crtc->lut_g[i] = i;
7529 intel_crtc->lut_b[i] = i;
7530 }
7531
80824003
JB
7532 /* Swap pipes & planes for FBC on pre-965 */
7533 intel_crtc->pipe = pipe;
7534 intel_crtc->plane = pipe;
e2e767ab 7535 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 7536 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 7537 intel_crtc->plane = !pipe;
80824003
JB
7538 }
7539
22fd0fab
JB
7540 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7541 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7542 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7543 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7544
5a354204 7545 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 7546
79e53945 7547 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
7548}
7549
08d7b3d1 7550int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 7551 struct drm_file *file)
08d7b3d1 7552{
08d7b3d1 7553 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7554 struct drm_mode_object *drmmode_obj;
7555 struct intel_crtc *crtc;
08d7b3d1 7556
1cff8f6b
DV
7557 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7558 return -ENODEV;
08d7b3d1 7559
c05422d5
DV
7560 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7561 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7562
c05422d5 7563 if (!drmmode_obj) {
08d7b3d1
CW
7564 DRM_ERROR("no such CRTC id\n");
7565 return -EINVAL;
7566 }
7567
c05422d5
DV
7568 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7569 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7570
c05422d5 7571 return 0;
08d7b3d1
CW
7572}
7573
66a9278e 7574static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 7575{
66a9278e
DV
7576 struct drm_device *dev = encoder->base.dev;
7577 struct intel_encoder *source_encoder;
79e53945 7578 int index_mask = 0;
79e53945
JB
7579 int entry = 0;
7580
66a9278e
DV
7581 list_for_each_entry(source_encoder,
7582 &dev->mode_config.encoder_list, base.head) {
7583
7584 if (encoder == source_encoder)
79e53945 7585 index_mask |= (1 << entry);
66a9278e
DV
7586
7587 /* Intel hw has only one MUX where enocoders could be cloned. */
7588 if (encoder->cloneable && source_encoder->cloneable)
7589 index_mask |= (1 << entry);
7590
79e53945
JB
7591 entry++;
7592 }
4ef69c7a 7593
79e53945
JB
7594 return index_mask;
7595}
7596
4d302442
CW
7597static bool has_edp_a(struct drm_device *dev)
7598{
7599 struct drm_i915_private *dev_priv = dev->dev_private;
7600
7601 if (!IS_MOBILE(dev))
7602 return false;
7603
7604 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7605 return false;
7606
7607 if (IS_GEN5(dev) &&
7608 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7609 return false;
7610
7611 return true;
7612}
7613
79e53945
JB
7614static void intel_setup_outputs(struct drm_device *dev)
7615{
725e30ad 7616 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7617 struct intel_encoder *encoder;
cb0953d7 7618 bool dpd_is_edp = false;
f3cfcba6 7619 bool has_lvds;
79e53945 7620
f3cfcba6 7621 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
7622 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7623 /* disable the panel fitter on everything but LVDS */
7624 I915_WRITE(PFIT_CONTROL, 0);
7625 }
79e53945 7626
bad720ff 7627 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 7628 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 7629
4d302442 7630 if (has_edp_a(dev))
ab9d7c30 7631 intel_dp_init(dev, DP_A, PORT_A);
32f9d658 7632
cb0953d7 7633 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 7634 intel_dp_init(dev, PCH_DP_D, PORT_D);
cb0953d7
AJ
7635 }
7636
7637 intel_crt_init(dev);
7638
0e72a5b5
ED
7639 if (IS_HASWELL(dev)) {
7640 int found;
7641
7642 /* Haswell uses DDI functions to detect digital outputs */
7643 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7644 /* DDI A only supports eDP */
7645 if (found)
7646 intel_ddi_init(dev, PORT_A);
7647
7648 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7649 * register */
7650 found = I915_READ(SFUSE_STRAP);
7651
7652 if (found & SFUSE_STRAP_DDIB_DETECTED)
7653 intel_ddi_init(dev, PORT_B);
7654 if (found & SFUSE_STRAP_DDIC_DETECTED)
7655 intel_ddi_init(dev, PORT_C);
7656 if (found & SFUSE_STRAP_DDID_DETECTED)
7657 intel_ddi_init(dev, PORT_D);
7658 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7
AJ
7659 int found;
7660
30ad48b7 7661 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 7662 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 7663 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 7664 if (!found)
08d644ad 7665 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 7666 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 7667 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
7668 }
7669
7670 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 7671 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 7672
b708a1d5 7673 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 7674 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 7675
5eb08b69 7676 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 7677 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 7678
cb0953d7 7679 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 7680 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
7681 } else if (IS_VALLEYVIEW(dev)) {
7682 int found;
7683
19c03924
GB
7684 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
7685 if (I915_READ(DP_C) & DP_DETECTED)
7686 intel_dp_init(dev, DP_C, PORT_C);
7687
4a87d65d
JB
7688 if (I915_READ(SDVOB) & PORT_DETECTED) {
7689 /* SDVOB multiplex with HDMIB */
7690 found = intel_sdvo_init(dev, SDVOB, true);
7691 if (!found)
08d644ad 7692 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 7693 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 7694 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
7695 }
7696
7697 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 7698 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 7699
103a196f 7700 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 7701 bool found = false;
7d57382e 7702
725e30ad 7703 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 7704 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 7705 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
7706 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7707 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 7708 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 7709 }
27185ae1 7710
b01f2c3a
JB
7711 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7712 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 7713 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 7714 }
725e30ad 7715 }
13520b05
KH
7716
7717 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 7718
b01f2c3a
JB
7719 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7720 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 7721 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 7722 }
27185ae1
ML
7723
7724 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7725
b01f2c3a
JB
7726 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7727 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 7728 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
7729 }
7730 if (SUPPORTS_INTEGRATED_DP(dev)) {
7731 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 7732 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 7733 }
725e30ad 7734 }
27185ae1 7735
b01f2c3a
JB
7736 if (SUPPORTS_INTEGRATED_DP(dev) &&
7737 (I915_READ(DP_D) & DP_DETECTED)) {
7738 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 7739 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 7740 }
bad720ff 7741 } else if (IS_GEN2(dev))
79e53945
JB
7742 intel_dvo_init(dev);
7743
103a196f 7744 if (SUPPORTS_TV(dev))
79e53945
JB
7745 intel_tv_init(dev);
7746
4ef69c7a
CW
7747 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7748 encoder->base.possible_crtcs = encoder->crtc_mask;
7749 encoder->base.possible_clones =
66a9278e 7750 intel_encoder_clones(encoder);
79e53945 7751 }
47356eb6 7752
40579abe 7753 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 7754 ironlake_init_pch_refclk(dev);
79e53945
JB
7755}
7756
7757static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7758{
7759 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
7760
7761 drm_framebuffer_cleanup(fb);
05394f39 7762 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
7763
7764 kfree(intel_fb);
7765}
7766
7767static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 7768 struct drm_file *file,
79e53945
JB
7769 unsigned int *handle)
7770{
7771 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 7772 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 7773
05394f39 7774 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
7775}
7776
7777static const struct drm_framebuffer_funcs intel_fb_funcs = {
7778 .destroy = intel_user_framebuffer_destroy,
7779 .create_handle = intel_user_framebuffer_create_handle,
7780};
7781
38651674
DA
7782int intel_framebuffer_init(struct drm_device *dev,
7783 struct intel_framebuffer *intel_fb,
308e5bcb 7784 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 7785 struct drm_i915_gem_object *obj)
79e53945 7786{
79e53945
JB
7787 int ret;
7788
05394f39 7789 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
7790 return -EINVAL;
7791
308e5bcb 7792 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
7793 return -EINVAL;
7794
308e5bcb 7795 switch (mode_cmd->pixel_format) {
04b3924d
VS
7796 case DRM_FORMAT_RGB332:
7797 case DRM_FORMAT_RGB565:
7798 case DRM_FORMAT_XRGB8888:
b250da79 7799 case DRM_FORMAT_XBGR8888:
04b3924d
VS
7800 case DRM_FORMAT_ARGB8888:
7801 case DRM_FORMAT_XRGB2101010:
7802 case DRM_FORMAT_ARGB2101010:
308e5bcb 7803 /* RGB formats are common across chipsets */
b5626747 7804 break;
04b3924d
VS
7805 case DRM_FORMAT_YUYV:
7806 case DRM_FORMAT_UYVY:
7807 case DRM_FORMAT_YVYU:
7808 case DRM_FORMAT_VYUY:
57cd6508
CW
7809 break;
7810 default:
aca25848
ED
7811 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7812 mode_cmd->pixel_format);
57cd6508
CW
7813 return -EINVAL;
7814 }
7815
79e53945
JB
7816 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7817 if (ret) {
7818 DRM_ERROR("framebuffer init failed %d\n", ret);
7819 return ret;
7820 }
7821
7822 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 7823 intel_fb->obj = obj;
79e53945
JB
7824 return 0;
7825}
7826
79e53945
JB
7827static struct drm_framebuffer *
7828intel_user_framebuffer_create(struct drm_device *dev,
7829 struct drm_file *filp,
308e5bcb 7830 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 7831{
05394f39 7832 struct drm_i915_gem_object *obj;
79e53945 7833
308e5bcb
JB
7834 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7835 mode_cmd->handles[0]));
c8725226 7836 if (&obj->base == NULL)
cce13ff7 7837 return ERR_PTR(-ENOENT);
79e53945 7838
d2dff872 7839 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
7840}
7841
79e53945 7842static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 7843 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 7844 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
7845};
7846
e70236a8
JB
7847/* Set up chip specific display functions */
7848static void intel_init_display(struct drm_device *dev)
7849{
7850 struct drm_i915_private *dev_priv = dev->dev_private;
7851
7852 /* We always want a DPMS function */
f564048e 7853 if (HAS_PCH_SPLIT(dev)) {
f564048e 7854 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
7855 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7856 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 7857 dev_priv->display.off = ironlake_crtc_off;
17638cd6 7858 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 7859 } else {
f564048e 7860 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
7861 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7862 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 7863 dev_priv->display.off = i9xx_crtc_off;
17638cd6 7864 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 7865 }
e70236a8 7866
e70236a8 7867 /* Returns the core display clock speed */
25eb05fc
JB
7868 if (IS_VALLEYVIEW(dev))
7869 dev_priv->display.get_display_clock_speed =
7870 valleyview_get_display_clock_speed;
7871 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
7872 dev_priv->display.get_display_clock_speed =
7873 i945_get_display_clock_speed;
7874 else if (IS_I915G(dev))
7875 dev_priv->display.get_display_clock_speed =
7876 i915_get_display_clock_speed;
f2b115e6 7877 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
7878 dev_priv->display.get_display_clock_speed =
7879 i9xx_misc_get_display_clock_speed;
7880 else if (IS_I915GM(dev))
7881 dev_priv->display.get_display_clock_speed =
7882 i915gm_get_display_clock_speed;
7883 else if (IS_I865G(dev))
7884 dev_priv->display.get_display_clock_speed =
7885 i865_get_display_clock_speed;
f0f8a9ce 7886 else if (IS_I85X(dev))
e70236a8
JB
7887 dev_priv->display.get_display_clock_speed =
7888 i855_get_display_clock_speed;
7889 else /* 852, 830 */
7890 dev_priv->display.get_display_clock_speed =
7891 i830_get_display_clock_speed;
7892
7f8a8569 7893 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 7894 if (IS_GEN5(dev)) {
674cf967 7895 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 7896 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 7897 } else if (IS_GEN6(dev)) {
674cf967 7898 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 7899 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
7900 } else if (IS_IVYBRIDGE(dev)) {
7901 /* FIXME: detect B0+ stepping and use auto training */
7902 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 7903 dev_priv->display.write_eld = ironlake_write_eld;
c82e4d26
ED
7904 } else if (IS_HASWELL(dev)) {
7905 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 7906 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
7907 } else
7908 dev_priv->display.update_wm = NULL;
6067aaea 7909 } else if (IS_G4X(dev)) {
e0dac65e 7910 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 7911 }
8c9f3aaf
JB
7912
7913 /* Default just returns -ENODEV to indicate unsupported */
7914 dev_priv->display.queue_flip = intel_default_queue_flip;
7915
7916 switch (INTEL_INFO(dev)->gen) {
7917 case 2:
7918 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7919 break;
7920
7921 case 3:
7922 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7923 break;
7924
7925 case 4:
7926 case 5:
7927 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7928 break;
7929
7930 case 6:
7931 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7932 break;
7c9017e5
JB
7933 case 7:
7934 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7935 break;
8c9f3aaf 7936 }
e70236a8
JB
7937}
7938
b690e96c
JB
7939/*
7940 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7941 * resume, or other times. This quirk makes sure that's the case for
7942 * affected systems.
7943 */
0206e353 7944static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
7945{
7946 struct drm_i915_private *dev_priv = dev->dev_private;
7947
7948 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 7949 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
7950}
7951
435793df
KP
7952/*
7953 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7954 */
7955static void quirk_ssc_force_disable(struct drm_device *dev)
7956{
7957 struct drm_i915_private *dev_priv = dev->dev_private;
7958 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 7959 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
7960}
7961
4dca20ef 7962/*
5a15ab5b
CE
7963 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7964 * brightness value
4dca20ef
CE
7965 */
7966static void quirk_invert_brightness(struct drm_device *dev)
7967{
7968 struct drm_i915_private *dev_priv = dev->dev_private;
7969 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 7970 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
7971}
7972
b690e96c
JB
7973struct intel_quirk {
7974 int device;
7975 int subsystem_vendor;
7976 int subsystem_device;
7977 void (*hook)(struct drm_device *dev);
7978};
7979
c43b5634 7980static struct intel_quirk intel_quirks[] = {
b690e96c 7981 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 7982 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 7983
b690e96c
JB
7984 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7985 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7986
b690e96c
JB
7987 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7988 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7989
7990 /* 855 & before need to leave pipe A & dpll A up */
7991 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7992 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 7993 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
7994
7995 /* Lenovo U160 cannot use SSC on LVDS */
7996 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
7997
7998 /* Sony Vaio Y cannot use SSC on LVDS */
7999 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
8000
8001 /* Acer Aspire 5734Z must invert backlight brightness */
8002 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
8003};
8004
8005static void intel_init_quirks(struct drm_device *dev)
8006{
8007 struct pci_dev *d = dev->pdev;
8008 int i;
8009
8010 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8011 struct intel_quirk *q = &intel_quirks[i];
8012
8013 if (d->device == q->device &&
8014 (d->subsystem_vendor == q->subsystem_vendor ||
8015 q->subsystem_vendor == PCI_ANY_ID) &&
8016 (d->subsystem_device == q->subsystem_device ||
8017 q->subsystem_device == PCI_ANY_ID))
8018 q->hook(dev);
8019 }
8020}
8021
9cce37f4
JB
8022/* Disable the VGA plane that we never use */
8023static void i915_disable_vga(struct drm_device *dev)
8024{
8025 struct drm_i915_private *dev_priv = dev->dev_private;
8026 u8 sr1;
8027 u32 vga_reg;
8028
8029 if (HAS_PCH_SPLIT(dev))
8030 vga_reg = CPU_VGACNTRL;
8031 else
8032 vga_reg = VGACNTRL;
8033
8034 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8035 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8036 sr1 = inb(VGA_SR_DATA);
8037 outb(sr1 | 1<<5, VGA_SR_DATA);
8038 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8039 udelay(300);
8040
8041 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8042 POSTING_READ(vga_reg);
8043}
8044
f817586c
DV
8045void intel_modeset_init_hw(struct drm_device *dev)
8046{
0232e927
ED
8047 /* We attempt to init the necessary power wells early in the initialization
8048 * time, so the subsystems that expect power to be enabled can work.
8049 */
8050 intel_init_power_wells(dev);
8051
a8f78b58
ED
8052 intel_prepare_ddi(dev);
8053
f817586c
DV
8054 intel_init_clock_gating(dev);
8055
79f5b2c7 8056 mutex_lock(&dev->struct_mutex);
8090c6b9 8057 intel_enable_gt_powersave(dev);
79f5b2c7 8058 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8059}
8060
79e53945
JB
8061void intel_modeset_init(struct drm_device *dev)
8062{
652c393a 8063 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8064 int i, ret;
79e53945
JB
8065
8066 drm_mode_config_init(dev);
8067
8068 dev->mode_config.min_width = 0;
8069 dev->mode_config.min_height = 0;
8070
019d96cb
DA
8071 dev->mode_config.preferred_depth = 24;
8072 dev->mode_config.prefer_shadow = 1;
8073
e6ecefaa 8074 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8075
b690e96c
JB
8076 intel_init_quirks(dev);
8077
1fa61106
ED
8078 intel_init_pm(dev);
8079
e70236a8
JB
8080 intel_init_display(dev);
8081
a6c45cf0
CW
8082 if (IS_GEN2(dev)) {
8083 dev->mode_config.max_width = 2048;
8084 dev->mode_config.max_height = 2048;
8085 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8086 dev->mode_config.max_width = 4096;
8087 dev->mode_config.max_height = 4096;
79e53945 8088 } else {
a6c45cf0
CW
8089 dev->mode_config.max_width = 8192;
8090 dev->mode_config.max_height = 8192;
79e53945 8091 }
dd2757f8 8092 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8093
28c97730 8094 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8095 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8096
a3524f1b 8097 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8098 intel_crtc_init(dev, i);
00c2064b
JB
8099 ret = intel_plane_init(dev, i);
8100 if (ret)
8101 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8102 }
8103
ee7b9f93
JB
8104 intel_pch_pll_init(dev);
8105
9cce37f4
JB
8106 /* Just disable it once at startup */
8107 i915_disable_vga(dev);
79e53945 8108 intel_setup_outputs(dev);
2c7111db
CW
8109}
8110
24929352
DV
8111static void
8112intel_connector_break_all_links(struct intel_connector *connector)
8113{
8114 connector->base.dpms = DRM_MODE_DPMS_OFF;
8115 connector->base.encoder = NULL;
8116 connector->encoder->connectors_active = false;
8117 connector->encoder->base.crtc = NULL;
8118}
8119
7fad798e
DV
8120static void intel_enable_pipe_a(struct drm_device *dev)
8121{
8122 struct intel_connector *connector;
8123 struct drm_connector *crt = NULL;
8124 struct intel_load_detect_pipe load_detect_temp;
8125
8126 /* We can't just switch on the pipe A, we need to set things up with a
8127 * proper mode and output configuration. As a gross hack, enable pipe A
8128 * by enabling the load detect pipe once. */
8129 list_for_each_entry(connector,
8130 &dev->mode_config.connector_list,
8131 base.head) {
8132 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8133 crt = &connector->base;
8134 break;
8135 }
8136 }
8137
8138 if (!crt)
8139 return;
8140
8141 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8142 intel_release_load_detect_pipe(crt, &load_detect_temp);
8143
8144
8145}
8146
24929352
DV
8147static void intel_sanitize_crtc(struct intel_crtc *crtc)
8148{
8149 struct drm_device *dev = crtc->base.dev;
8150 struct drm_i915_private *dev_priv = dev->dev_private;
8151 u32 reg, val;
8152
24929352
DV
8153 /* Clear any frame start delays used for debugging left by the BIOS */
8154 reg = PIPECONF(crtc->pipe);
8155 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8156
8157 /* We need to sanitize the plane -> pipe mapping first because this will
8158 * disable the crtc (and hence change the state) if it is wrong. */
8159 if (!HAS_PCH_SPLIT(dev)) {
8160 struct intel_connector *connector;
8161 bool plane;
8162
8163 reg = DSPCNTR(crtc->plane);
8164 val = I915_READ(reg);
8165
8166 if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
8167 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8168 goto ok;
8169
8170 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8171 crtc->base.base.id);
8172
8173 /* Pipe has the wrong plane attached and the plane is active.
8174 * Temporarily change the plane mapping and disable everything
8175 * ... */
8176 plane = crtc->plane;
8177 crtc->plane = !plane;
8178 dev_priv->display.crtc_disable(&crtc->base);
8179 crtc->plane = plane;
8180
8181 /* ... and break all links. */
8182 list_for_each_entry(connector, &dev->mode_config.connector_list,
8183 base.head) {
8184 if (connector->encoder->base.crtc != &crtc->base)
8185 continue;
8186
8187 intel_connector_break_all_links(connector);
8188 }
8189
8190 WARN_ON(crtc->active);
8191 crtc->base.enabled = false;
8192 }
8193ok:
8194
7fad798e
DV
8195 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8196 crtc->pipe == PIPE_A && !crtc->active) {
8197 /* BIOS forgot to enable pipe A, this mostly happens after
8198 * resume. Force-enable the pipe to fix this, the update_dpms
8199 * call below we restore the pipe to the right state, but leave
8200 * the required bits on. */
8201 intel_enable_pipe_a(dev);
8202 }
8203
24929352
DV
8204 /* Adjust the state of the output pipe according to whether we
8205 * have active connectors/encoders. */
8206 intel_crtc_update_dpms(&crtc->base);
8207
8208 if (crtc->active != crtc->base.enabled) {
8209 struct intel_encoder *encoder;
8210
8211 /* This can happen either due to bugs in the get_hw_state
8212 * functions or because the pipe is force-enabled due to the
8213 * pipe A quirk. */
8214 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8215 crtc->base.base.id,
8216 crtc->base.enabled ? "enabled" : "disabled",
8217 crtc->active ? "enabled" : "disabled");
8218
8219 crtc->base.enabled = crtc->active;
8220
8221 /* Because we only establish the connector -> encoder ->
8222 * crtc links if something is active, this means the
8223 * crtc is now deactivated. Break the links. connector
8224 * -> encoder links are only establish when things are
8225 * actually up, hence no need to break them. */
8226 WARN_ON(crtc->active);
8227
8228 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8229 WARN_ON(encoder->connectors_active);
8230 encoder->base.crtc = NULL;
8231 }
8232 }
8233}
8234
8235static void intel_sanitize_encoder(struct intel_encoder *encoder)
8236{
8237 struct intel_connector *connector;
8238 struct drm_device *dev = encoder->base.dev;
8239
8240 /* We need to check both for a crtc link (meaning that the
8241 * encoder is active and trying to read from a pipe) and the
8242 * pipe itself being active. */
8243 bool has_active_crtc = encoder->base.crtc &&
8244 to_intel_crtc(encoder->base.crtc)->active;
8245
8246 if (encoder->connectors_active && !has_active_crtc) {
8247 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8248 encoder->base.base.id,
8249 drm_get_encoder_name(&encoder->base));
8250
8251 /* Connector is active, but has no active pipe. This is
8252 * fallout from our resume register restoring. Disable
8253 * the encoder manually again. */
8254 if (encoder->base.crtc) {
8255 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8256 encoder->base.base.id,
8257 drm_get_encoder_name(&encoder->base));
8258 encoder->disable(encoder);
8259 }
8260
8261 /* Inconsistent output/port/pipe state happens presumably due to
8262 * a bug in one of the get_hw_state functions. Or someplace else
8263 * in our code, like the register restore mess on resume. Clamp
8264 * things to off as a safer default. */
8265 list_for_each_entry(connector,
8266 &dev->mode_config.connector_list,
8267 base.head) {
8268 if (connector->encoder != encoder)
8269 continue;
8270
8271 intel_connector_break_all_links(connector);
8272 }
8273 }
8274 /* Enabled encoders without active connectors will be fixed in
8275 * the crtc fixup. */
8276}
8277
8278/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8279 * and i915 state tracking structures. */
8280void intel_modeset_setup_hw_state(struct drm_device *dev)
8281{
8282 struct drm_i915_private *dev_priv = dev->dev_private;
8283 enum pipe pipe;
8284 u32 tmp;
8285 struct intel_crtc *crtc;
8286 struct intel_encoder *encoder;
8287 struct intel_connector *connector;
8288
8289 for_each_pipe(pipe) {
8290 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8291
8292 tmp = I915_READ(PIPECONF(pipe));
8293 if (tmp & PIPECONF_ENABLE)
8294 crtc->active = true;
8295 else
8296 crtc->active = false;
8297
8298 crtc->base.enabled = crtc->active;
8299
8300 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8301 crtc->base.base.id,
8302 crtc->active ? "enabled" : "disabled");
8303 }
8304
8305 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8306 base.head) {
8307 pipe = 0;
8308
8309 if (encoder->get_hw_state(encoder, &pipe)) {
8310 encoder->base.crtc =
8311 dev_priv->pipe_to_crtc_mapping[pipe];
8312 } else {
8313 encoder->base.crtc = NULL;
8314 }
8315
8316 encoder->connectors_active = false;
8317 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8318 encoder->base.base.id,
8319 drm_get_encoder_name(&encoder->base),
8320 encoder->base.crtc ? "enabled" : "disabled",
8321 pipe);
8322 }
8323
8324 list_for_each_entry(connector, &dev->mode_config.connector_list,
8325 base.head) {
8326 if (connector->get_hw_state(connector)) {
8327 connector->base.dpms = DRM_MODE_DPMS_ON;
8328 connector->encoder->connectors_active = true;
8329 connector->base.encoder = &connector->encoder->base;
8330 } else {
8331 connector->base.dpms = DRM_MODE_DPMS_OFF;
8332 connector->base.encoder = NULL;
8333 }
8334 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8335 connector->base.base.id,
8336 drm_get_connector_name(&connector->base),
8337 connector->base.encoder ? "enabled" : "disabled");
8338 }
8339
8340 /* HW state is read out, now we need to sanitize this mess. */
8341 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8342 base.head) {
8343 intel_sanitize_encoder(encoder);
8344 }
8345
8346 for_each_pipe(pipe) {
8347 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8348 intel_sanitize_crtc(crtc);
8349 }
9a935856
DV
8350
8351 intel_modeset_update_staged_output_state(dev);
8af6cf88
DV
8352
8353 intel_modeset_check_state(dev);
24929352
DV
8354}
8355
2c7111db
CW
8356void intel_modeset_gem_init(struct drm_device *dev)
8357{
1833b134 8358 intel_modeset_init_hw(dev);
02e792fb
DV
8359
8360 intel_setup_overlay(dev);
24929352
DV
8361
8362 intel_modeset_setup_hw_state(dev);
79e53945
JB
8363}
8364
8365void intel_modeset_cleanup(struct drm_device *dev)
8366{
652c393a
JB
8367 struct drm_i915_private *dev_priv = dev->dev_private;
8368 struct drm_crtc *crtc;
8369 struct intel_crtc *intel_crtc;
8370
f87ea761 8371 drm_kms_helper_poll_fini(dev);
652c393a
JB
8372 mutex_lock(&dev->struct_mutex);
8373
723bfd70
JB
8374 intel_unregister_dsm_handler();
8375
8376
652c393a
JB
8377 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8378 /* Skip inactive CRTCs */
8379 if (!crtc->fb)
8380 continue;
8381
8382 intel_crtc = to_intel_crtc(crtc);
3dec0095 8383 intel_increase_pllclock(crtc);
652c393a
JB
8384 }
8385
973d04f9 8386 intel_disable_fbc(dev);
e70236a8 8387
8090c6b9 8388 intel_disable_gt_powersave(dev);
0cdab21f 8389
930ebb46
DV
8390 ironlake_teardown_rc6(dev);
8391
57f350b6
JB
8392 if (IS_VALLEYVIEW(dev))
8393 vlv_init_dpio(dev);
8394
69341a5e
KH
8395 mutex_unlock(&dev->struct_mutex);
8396
6c0d9350
DV
8397 /* Disable the irq before mode object teardown, for the irq might
8398 * enqueue unpin/hotplug work. */
8399 drm_irq_uninstall(dev);
8400 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 8401 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 8402
1630fe75
CW
8403 /* flush any delayed tasks or pending work */
8404 flush_scheduled_work();
8405
79e53945
JB
8406 drm_mode_config_cleanup(dev);
8407}
8408
f1c79df3
ZW
8409/*
8410 * Return which encoder is currently attached for connector.
8411 */
df0e9248 8412struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 8413{
df0e9248
CW
8414 return &intel_attached_encoder(connector)->base;
8415}
f1c79df3 8416
df0e9248
CW
8417void intel_connector_attach_encoder(struct intel_connector *connector,
8418 struct intel_encoder *encoder)
8419{
8420 connector->encoder = encoder;
8421 drm_mode_connector_attach_encoder(&connector->base,
8422 &encoder->base);
79e53945 8423}
28d52043
DA
8424
8425/*
8426 * set vga decode state - true == enable VGA decode
8427 */
8428int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8429{
8430 struct drm_i915_private *dev_priv = dev->dev_private;
8431 u16 gmch_ctrl;
8432
8433 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8434 if (state)
8435 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8436 else
8437 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8438 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8439 return 0;
8440}
c4a1d9e4
CW
8441
8442#ifdef CONFIG_DEBUG_FS
8443#include <linux/seq_file.h>
8444
8445struct intel_display_error_state {
8446 struct intel_cursor_error_state {
8447 u32 control;
8448 u32 position;
8449 u32 base;
8450 u32 size;
52331309 8451 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
8452
8453 struct intel_pipe_error_state {
8454 u32 conf;
8455 u32 source;
8456
8457 u32 htotal;
8458 u32 hblank;
8459 u32 hsync;
8460 u32 vtotal;
8461 u32 vblank;
8462 u32 vsync;
52331309 8463 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
8464
8465 struct intel_plane_error_state {
8466 u32 control;
8467 u32 stride;
8468 u32 size;
8469 u32 pos;
8470 u32 addr;
8471 u32 surface;
8472 u32 tile_offset;
52331309 8473 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
8474};
8475
8476struct intel_display_error_state *
8477intel_display_capture_error_state(struct drm_device *dev)
8478{
0206e353 8479 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8480 struct intel_display_error_state *error;
8481 int i;
8482
8483 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8484 if (error == NULL)
8485 return NULL;
8486
52331309 8487 for_each_pipe(i) {
c4a1d9e4
CW
8488 error->cursor[i].control = I915_READ(CURCNTR(i));
8489 error->cursor[i].position = I915_READ(CURPOS(i));
8490 error->cursor[i].base = I915_READ(CURBASE(i));
8491
8492 error->plane[i].control = I915_READ(DSPCNTR(i));
8493 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8494 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 8495 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
8496 error->plane[i].addr = I915_READ(DSPADDR(i));
8497 if (INTEL_INFO(dev)->gen >= 4) {
8498 error->plane[i].surface = I915_READ(DSPSURF(i));
8499 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8500 }
8501
8502 error->pipe[i].conf = I915_READ(PIPECONF(i));
8503 error->pipe[i].source = I915_READ(PIPESRC(i));
8504 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8505 error->pipe[i].hblank = I915_READ(HBLANK(i));
8506 error->pipe[i].hsync = I915_READ(HSYNC(i));
8507 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8508 error->pipe[i].vblank = I915_READ(VBLANK(i));
8509 error->pipe[i].vsync = I915_READ(VSYNC(i));
8510 }
8511
8512 return error;
8513}
8514
8515void
8516intel_display_print_error_state(struct seq_file *m,
8517 struct drm_device *dev,
8518 struct intel_display_error_state *error)
8519{
52331309 8520 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8521 int i;
8522
52331309
DL
8523 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8524 for_each_pipe(i) {
c4a1d9e4
CW
8525 seq_printf(m, "Pipe [%d]:\n", i);
8526 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8527 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8528 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8529 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8530 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8531 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8532 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8533 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8534
8535 seq_printf(m, "Plane [%d]:\n", i);
8536 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8537 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8538 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8539 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8540 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8541 if (INTEL_INFO(dev)->gen >= 4) {
8542 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8543 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8544 }
8545
8546 seq_printf(m, "Cursor [%d]:\n", i);
8547 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8548 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8549 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8550 }
8551}
8552#endif
This page took 1.634453 seconds and 5 git commands to generate.