drm/i915: Make vlv and chv forcewake put generic.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
6b383a7f 76static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 77
f1f644dc 78static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 79 struct intel_crtc_state *pipe_config);
18442d08 80static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 81 struct intel_crtc_state *pipe_config);
f1f644dc 82
e7457a9a
DL
83static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
85static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
5b18e57c
DV
89static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 91static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
29407aab 94static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
95static void haswell_set_pipeconf(struct drm_crtc *crtc);
96static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 97static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 98 const struct intel_crtc_state *pipe_config);
d288f65f 99static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 100 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
101static void intel_begin_crtc_commit(struct drm_crtc *crtc);
102static void intel_finish_crtc_commit(struct drm_crtc *crtc);
e7457a9a 103
0e32b39c
DA
104static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105{
106 if (!connector->mst_port)
107 return connector->encoder;
108 else
109 return &connector->mst_port->mst_encoders[pipe]->base;
110}
111
79e53945 112typedef struct {
0206e353 113 int min, max;
79e53945
JB
114} intel_range_t;
115
116typedef struct {
0206e353
AJ
117 int dot_limit;
118 int p2_slow, p2_fast;
79e53945
JB
119} intel_p2_t;
120
d4906093
ML
121typedef struct intel_limit intel_limit_t;
122struct intel_limit {
0206e353
AJ
123 intel_range_t dot, vco, n, m, m1, m2, p, p1;
124 intel_p2_t p2;
d4906093 125};
79e53945 126
d2acd215
DV
127int
128intel_pch_rawclk(struct drm_device *dev)
129{
130 struct drm_i915_private *dev_priv = dev->dev_private;
131
132 WARN_ON(!HAS_PCH_SPLIT(dev));
133
134 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135}
136
021357ac
CW
137static inline u32 /* units of 100MHz */
138intel_fdi_link_freq(struct drm_device *dev)
139{
8b99e68c
CW
140 if (IS_GEN5(dev)) {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143 } else
144 return 27;
021357ac
CW
145}
146
5d536e28 147static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 148 .dot = { .min = 25000, .max = 350000 },
9c333719 149 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 150 .n = { .min = 2, .max = 16 },
0206e353
AJ
151 .m = { .min = 96, .max = 140 },
152 .m1 = { .min = 18, .max = 26 },
153 .m2 = { .min = 6, .max = 16 },
154 .p = { .min = 4, .max = 128 },
155 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
156 .p2 = { .dot_limit = 165000,
157 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
158};
159
5d536e28
DV
160static const intel_limit_t intel_limits_i8xx_dvo = {
161 .dot = { .min = 25000, .max = 350000 },
9c333719 162 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 163 .n = { .min = 2, .max = 16 },
5d536e28
DV
164 .m = { .min = 96, .max = 140 },
165 .m1 = { .min = 18, .max = 26 },
166 .m2 = { .min = 6, .max = 16 },
167 .p = { .min = 4, .max = 128 },
168 .p1 = { .min = 2, .max = 33 },
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 4, .p2_fast = 4 },
171};
172
e4b36699 173static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 174 .dot = { .min = 25000, .max = 350000 },
9c333719 175 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 176 .n = { .min = 2, .max = 16 },
0206e353
AJ
177 .m = { .min = 96, .max = 140 },
178 .m1 = { .min = 18, .max = 26 },
179 .m2 = { .min = 6, .max = 16 },
180 .p = { .min = 4, .max = 128 },
181 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 14, .p2_fast = 7 },
e4b36699 184};
273e27ca 185
e4b36699 186static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
187 .dot = { .min = 20000, .max = 400000 },
188 .vco = { .min = 1400000, .max = 2800000 },
189 .n = { .min = 1, .max = 6 },
190 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
191 .m1 = { .min = 8, .max = 18 },
192 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
195 .p2 = { .dot_limit = 200000,
196 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
200 .dot = { .min = 20000, .max = 400000 },
201 .vco = { .min = 1400000, .max = 2800000 },
202 .n = { .min = 1, .max = 6 },
203 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
204 .m1 = { .min = 8, .max = 18 },
205 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
206 .p = { .min = 7, .max = 98 },
207 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
208 .p2 = { .dot_limit = 112000,
209 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
210};
211
273e27ca 212
e4b36699 213static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
214 .dot = { .min = 25000, .max = 270000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 10, .max = 30 },
221 .p1 = { .min = 1, .max = 3},
222 .p2 = { .dot_limit = 270000,
223 .p2_slow = 10,
224 .p2_fast = 10
044c7c41 225 },
e4b36699
KP
226};
227
228static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
229 .dot = { .min = 22000, .max = 400000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 4 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 16, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 5, .max = 80 },
236 .p1 = { .min = 1, .max = 8},
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
242 .dot = { .min = 20000, .max = 115000 },
243 .vco = { .min = 1750000, .max = 3500000 },
244 .n = { .min = 1, .max = 3 },
245 .m = { .min = 104, .max = 138 },
246 .m1 = { .min = 17, .max = 23 },
247 .m2 = { .min = 5, .max = 11 },
248 .p = { .min = 28, .max = 112 },
249 .p1 = { .min = 2, .max = 8 },
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 14, .p2_fast = 14
044c7c41 252 },
e4b36699
KP
253};
254
255static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
256 .dot = { .min = 80000, .max = 224000 },
257 .vco = { .min = 1750000, .max = 3500000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 104, .max = 138 },
260 .m1 = { .min = 17, .max = 23 },
261 .m2 = { .min = 5, .max = 11 },
262 .p = { .min = 14, .max = 42 },
263 .p1 = { .min = 2, .max = 6 },
264 .p2 = { .dot_limit = 0,
265 .p2_slow = 7, .p2_fast = 7
044c7c41 266 },
e4b36699
KP
267};
268
f2b115e6 269static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
270 .dot = { .min = 20000, .max = 400000},
271 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 272 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
273 .n = { .min = 3, .max = 6 },
274 .m = { .min = 2, .max = 256 },
273e27ca 275 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 5, .max = 80 },
279 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
280 .p2 = { .dot_limit = 200000,
281 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
282};
283
f2b115e6 284static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
285 .dot = { .min = 20000, .max = 400000 },
286 .vco = { .min = 1700000, .max = 3500000 },
287 .n = { .min = 3, .max = 6 },
288 .m = { .min = 2, .max = 256 },
289 .m1 = { .min = 0, .max = 0 },
290 .m2 = { .min = 0, .max = 254 },
291 .p = { .min = 7, .max = 112 },
292 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
293 .p2 = { .dot_limit = 112000,
294 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
295};
296
273e27ca
EA
297/* Ironlake / Sandybridge
298 *
299 * We calculate clock using (register_value + 2) for N/M1/M2, so here
300 * the range value for them is (actual_value - 2).
301 */
b91ad0ec 302static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 5 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
313};
314
b91ad0ec 315static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 3 },
319 .m = { .min = 79, .max = 118 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 28, .max = 112 },
323 .p1 = { .min = 2, .max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
326};
327
328static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 127 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 14, .max = 56 },
336 .p1 = { .min = 2, .max = 8 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
339};
340
273e27ca 341/* LVDS 100mhz refclk limits. */
b91ad0ec 342static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
343 .dot = { .min = 25000, .max = 350000 },
344 .vco = { .min = 1760000, .max = 3510000 },
345 .n = { .min = 1, .max = 2 },
346 .m = { .min = 79, .max = 126 },
347 .m1 = { .min = 12, .max = 22 },
348 .m2 = { .min = 5, .max = 9 },
349 .p = { .min = 28, .max = 112 },
0206e353 350 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
351 .p2 = { .dot_limit = 225000,
352 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
353};
354
355static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
356 .dot = { .min = 25000, .max = 350000 },
357 .vco = { .min = 1760000, .max = 3510000 },
358 .n = { .min = 1, .max = 3 },
359 .m = { .min = 79, .max = 126 },
360 .m1 = { .min = 12, .max = 22 },
361 .m2 = { .min = 5, .max = 9 },
362 .p = { .min = 14, .max = 42 },
0206e353 363 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
364 .p2 = { .dot_limit = 225000,
365 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
366};
367
dc730512 368static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
369 /*
370 * These are the data rate limits (measured in fast clocks)
371 * since those are the strictest limits we have. The fast
372 * clock and actual rate limits are more relaxed, so checking
373 * them would make no difference.
374 */
375 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 376 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 377 .n = { .min = 1, .max = 7 },
a0c4da24
JB
378 .m1 = { .min = 2, .max = 3 },
379 .m2 = { .min = 11, .max = 156 },
b99ab663 380 .p1 = { .min = 2, .max = 3 },
5fdc9c49 381 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
382};
383
ef9348c8
CML
384static const intel_limit_t intel_limits_chv = {
385 /*
386 * These are the data rate limits (measured in fast clocks)
387 * since those are the strictest limits we have. The fast
388 * clock and actual rate limits are more relaxed, so checking
389 * them would make no difference.
390 */
391 .dot = { .min = 25000 * 5, .max = 540000 * 5},
392 .vco = { .min = 4860000, .max = 6700000 },
393 .n = { .min = 1, .max = 1 },
394 .m1 = { .min = 2, .max = 2 },
395 .m2 = { .min = 24 << 22, .max = 175 << 22 },
396 .p1 = { .min = 2, .max = 4 },
397 .p2 = { .p2_slow = 1, .p2_fast = 14 },
398};
399
6b4bf1c4
VS
400static void vlv_clock(int refclk, intel_clock_t *clock)
401{
402 clock->m = clock->m1 * clock->m2;
403 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
404 if (WARN_ON(clock->n == 0 || clock->p == 0))
405 return;
fb03ac01
VS
406 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
408}
409
e0638cdf
PZ
410/**
411 * Returns whether any output on the specified pipe is of the specified type
412 */
4093561b 413bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 414{
409ee761 415 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
416 struct intel_encoder *encoder;
417
409ee761 418 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
419 if (encoder->type == type)
420 return true;
421
422 return false;
423}
424
d0737e1d
ACO
425/**
426 * Returns whether any output on the specified pipe will have the specified
427 * type after a staged modeset is complete, i.e., the same as
428 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
429 * encoder->crtc.
430 */
431static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
432{
433 struct drm_device *dev = crtc->base.dev;
434 struct intel_encoder *encoder;
435
436 for_each_intel_encoder(dev, encoder)
437 if (encoder->new_crtc == crtc && encoder->type == type)
438 return true;
439
440 return false;
441}
442
409ee761 443static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 444 int refclk)
2c07245f 445{
409ee761 446 struct drm_device *dev = crtc->base.dev;
2c07245f 447 const intel_limit_t *limit;
b91ad0ec 448
d0737e1d 449 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 450 if (intel_is_dual_link_lvds(dev)) {
1b894b59 451 if (refclk == 100000)
b91ad0ec
ZW
452 limit = &intel_limits_ironlake_dual_lvds_100m;
453 else
454 limit = &intel_limits_ironlake_dual_lvds;
455 } else {
1b894b59 456 if (refclk == 100000)
b91ad0ec
ZW
457 limit = &intel_limits_ironlake_single_lvds_100m;
458 else
459 limit = &intel_limits_ironlake_single_lvds;
460 }
c6bb3538 461 } else
b91ad0ec 462 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
463
464 return limit;
465}
466
409ee761 467static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 468{
409ee761 469 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
470 const intel_limit_t *limit;
471
d0737e1d 472 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 473 if (intel_is_dual_link_lvds(dev))
e4b36699 474 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 475 else
e4b36699 476 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
477 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
478 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 479 limit = &intel_limits_g4x_hdmi;
d0737e1d 480 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 481 limit = &intel_limits_g4x_sdvo;
044c7c41 482 } else /* The option is for other outputs */
e4b36699 483 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
484
485 return limit;
486}
487
409ee761 488static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 489{
409ee761 490 struct drm_device *dev = crtc->base.dev;
79e53945
JB
491 const intel_limit_t *limit;
492
bad720ff 493 if (HAS_PCH_SPLIT(dev))
1b894b59 494 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 495 else if (IS_G4X(dev)) {
044c7c41 496 limit = intel_g4x_limit(crtc);
f2b115e6 497 } else if (IS_PINEVIEW(dev)) {
d0737e1d 498 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 499 limit = &intel_limits_pineview_lvds;
2177832f 500 else
f2b115e6 501 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
502 } else if (IS_CHERRYVIEW(dev)) {
503 limit = &intel_limits_chv;
a0c4da24 504 } else if (IS_VALLEYVIEW(dev)) {
dc730512 505 limit = &intel_limits_vlv;
a6c45cf0 506 } else if (!IS_GEN2(dev)) {
d0737e1d 507 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
508 limit = &intel_limits_i9xx_lvds;
509 else
510 limit = &intel_limits_i9xx_sdvo;
79e53945 511 } else {
d0737e1d 512 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 513 limit = &intel_limits_i8xx_lvds;
d0737e1d 514 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 515 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
516 else
517 limit = &intel_limits_i8xx_dac;
79e53945
JB
518 }
519 return limit;
520}
521
f2b115e6
AJ
522/* m1 is reserved as 0 in Pineview, n is a ring counter */
523static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 524{
2177832f
SL
525 clock->m = clock->m2 + 2;
526 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
527 if (WARN_ON(clock->n == 0 || clock->p == 0))
528 return;
fb03ac01
VS
529 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
531}
532
7429e9d4
DV
533static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
534{
535 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
536}
537
ac58c3f0 538static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 539{
7429e9d4 540 clock->m = i9xx_dpll_compute_m(clock);
79e53945 541 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
542 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
543 return;
fb03ac01
VS
544 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
545 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
546}
547
ef9348c8
CML
548static void chv_clock(int refclk, intel_clock_t *clock)
549{
550 clock->m = clock->m1 * clock->m2;
551 clock->p = clock->p1 * clock->p2;
552 if (WARN_ON(clock->n == 0 || clock->p == 0))
553 return;
554 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
555 clock->n << 22);
556 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
557}
558
7c04d1d9 559#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
560/**
561 * Returns whether the given set of divisors are valid for a given refclk with
562 * the given connectors.
563 */
564
1b894b59
CW
565static bool intel_PLL_is_valid(struct drm_device *dev,
566 const intel_limit_t *limit,
567 const intel_clock_t *clock)
79e53945 568{
f01b7962
VS
569 if (clock->n < limit->n.min || limit->n.max < clock->n)
570 INTELPllInvalid("n out of range\n");
79e53945 571 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 572 INTELPllInvalid("p1 out of range\n");
79e53945 573 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 574 INTELPllInvalid("m2 out of range\n");
79e53945 575 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 576 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
577
578 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
579 if (clock->m1 <= clock->m2)
580 INTELPllInvalid("m1 <= m2\n");
581
582 if (!IS_VALLEYVIEW(dev)) {
583 if (clock->p < limit->p.min || limit->p.max < clock->p)
584 INTELPllInvalid("p out of range\n");
585 if (clock->m < limit->m.min || limit->m.max < clock->m)
586 INTELPllInvalid("m out of range\n");
587 }
588
79e53945 589 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 590 INTELPllInvalid("vco out of range\n");
79e53945
JB
591 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
592 * connector, etc., rather than just a single range.
593 */
594 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 595 INTELPllInvalid("dot out of range\n");
79e53945
JB
596
597 return true;
598}
599
d4906093 600static bool
a919ff14 601i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
602 int target, int refclk, intel_clock_t *match_clock,
603 intel_clock_t *best_clock)
79e53945 604{
a919ff14 605 struct drm_device *dev = crtc->base.dev;
79e53945 606 intel_clock_t clock;
79e53945
JB
607 int err = target;
608
d0737e1d 609 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 610 /*
a210b028
DV
611 * For LVDS just rely on its current settings for dual-channel.
612 * We haven't figured out how to reliably set up different
613 * single/dual channel state, if we even can.
79e53945 614 */
1974cad0 615 if (intel_is_dual_link_lvds(dev))
79e53945
JB
616 clock.p2 = limit->p2.p2_fast;
617 else
618 clock.p2 = limit->p2.p2_slow;
619 } else {
620 if (target < limit->p2.dot_limit)
621 clock.p2 = limit->p2.p2_slow;
622 else
623 clock.p2 = limit->p2.p2_fast;
624 }
625
0206e353 626 memset(best_clock, 0, sizeof(*best_clock));
79e53945 627
42158660
ZY
628 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
629 clock.m1++) {
630 for (clock.m2 = limit->m2.min;
631 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 632 if (clock.m2 >= clock.m1)
42158660
ZY
633 break;
634 for (clock.n = limit->n.min;
635 clock.n <= limit->n.max; clock.n++) {
636 for (clock.p1 = limit->p1.min;
637 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
638 int this_err;
639
ac58c3f0
DV
640 i9xx_clock(refclk, &clock);
641 if (!intel_PLL_is_valid(dev, limit,
642 &clock))
643 continue;
644 if (match_clock &&
645 clock.p != match_clock->p)
646 continue;
647
648 this_err = abs(clock.dot - target);
649 if (this_err < err) {
650 *best_clock = clock;
651 err = this_err;
652 }
653 }
654 }
655 }
656 }
657
658 return (err != target);
659}
660
661static bool
a919ff14 662pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
663 int target, int refclk, intel_clock_t *match_clock,
664 intel_clock_t *best_clock)
79e53945 665{
a919ff14 666 struct drm_device *dev = crtc->base.dev;
79e53945 667 intel_clock_t clock;
79e53945
JB
668 int err = target;
669
d0737e1d 670 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 671 /*
a210b028
DV
672 * For LVDS just rely on its current settings for dual-channel.
673 * We haven't figured out how to reliably set up different
674 * single/dual channel state, if we even can.
79e53945 675 */
1974cad0 676 if (intel_is_dual_link_lvds(dev))
79e53945
JB
677 clock.p2 = limit->p2.p2_fast;
678 else
679 clock.p2 = limit->p2.p2_slow;
680 } else {
681 if (target < limit->p2.dot_limit)
682 clock.p2 = limit->p2.p2_slow;
683 else
684 clock.p2 = limit->p2.p2_fast;
685 }
686
0206e353 687 memset(best_clock, 0, sizeof(*best_clock));
79e53945 688
42158660
ZY
689 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 clock.m1++) {
691 for (clock.m2 = limit->m2.min;
692 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
693 for (clock.n = limit->n.min;
694 clock.n <= limit->n.max; clock.n++) {
695 for (clock.p1 = limit->p1.min;
696 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
697 int this_err;
698
ac58c3f0 699 pineview_clock(refclk, &clock);
1b894b59
CW
700 if (!intel_PLL_is_valid(dev, limit,
701 &clock))
79e53945 702 continue;
cec2f356
SP
703 if (match_clock &&
704 clock.p != match_clock->p)
705 continue;
79e53945
JB
706
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
711 }
712 }
713 }
714 }
715 }
716
717 return (err != target);
718}
719
d4906093 720static bool
a919ff14 721g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
722 int target, int refclk, intel_clock_t *match_clock,
723 intel_clock_t *best_clock)
d4906093 724{
a919ff14 725 struct drm_device *dev = crtc->base.dev;
d4906093
ML
726 intel_clock_t clock;
727 int max_n;
728 bool found;
6ba770dc
AJ
729 /* approximately equals target * 0.00585 */
730 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
731 found = false;
732
d0737e1d 733 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 734 if (intel_is_dual_link_lvds(dev))
d4906093
ML
735 clock.p2 = limit->p2.p2_fast;
736 else
737 clock.p2 = limit->p2.p2_slow;
738 } else {
739 if (target < limit->p2.dot_limit)
740 clock.p2 = limit->p2.p2_slow;
741 else
742 clock.p2 = limit->p2.p2_fast;
743 }
744
745 memset(best_clock, 0, sizeof(*best_clock));
746 max_n = limit->n.max;
f77f13e2 747 /* based on hardware requirement, prefer smaller n to precision */
d4906093 748 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 749 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
750 for (clock.m1 = limit->m1.max;
751 clock.m1 >= limit->m1.min; clock.m1--) {
752 for (clock.m2 = limit->m2.max;
753 clock.m2 >= limit->m2.min; clock.m2--) {
754 for (clock.p1 = limit->p1.max;
755 clock.p1 >= limit->p1.min; clock.p1--) {
756 int this_err;
757
ac58c3f0 758 i9xx_clock(refclk, &clock);
1b894b59
CW
759 if (!intel_PLL_is_valid(dev, limit,
760 &clock))
d4906093 761 continue;
1b894b59
CW
762
763 this_err = abs(clock.dot - target);
d4906093
ML
764 if (this_err < err_most) {
765 *best_clock = clock;
766 err_most = this_err;
767 max_n = clock.n;
768 found = true;
769 }
770 }
771 }
772 }
773 }
2c07245f
ZW
774 return found;
775}
776
a0c4da24 777static bool
a919ff14 778vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
779 int target, int refclk, intel_clock_t *match_clock,
780 intel_clock_t *best_clock)
a0c4da24 781{
a919ff14 782 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 783 intel_clock_t clock;
69e4f900 784 unsigned int bestppm = 1000000;
27e639bf
VS
785 /* min update 19.2 MHz */
786 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 787 bool found = false;
a0c4da24 788
6b4bf1c4
VS
789 target *= 5; /* fast clock */
790
791 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
792
793 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 794 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 795 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 796 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 797 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 798 clock.p = clock.p1 * clock.p2;
a0c4da24 799 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 800 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
801 unsigned int ppm, diff;
802
6b4bf1c4
VS
803 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
804 refclk * clock.m1);
805
806 vlv_clock(refclk, &clock);
43b0ac53 807
f01b7962
VS
808 if (!intel_PLL_is_valid(dev, limit,
809 &clock))
43b0ac53
VS
810 continue;
811
6b4bf1c4
VS
812 diff = abs(clock.dot - target);
813 ppm = div_u64(1000000ULL * diff, target);
814
815 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 816 bestppm = 0;
6b4bf1c4 817 *best_clock = clock;
49e497ef 818 found = true;
43b0ac53 819 }
6b4bf1c4 820
c686122c 821 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 822 bestppm = ppm;
6b4bf1c4 823 *best_clock = clock;
49e497ef 824 found = true;
a0c4da24
JB
825 }
826 }
827 }
828 }
829 }
a0c4da24 830
49e497ef 831 return found;
a0c4da24 832}
a4fc5ed6 833
ef9348c8 834static bool
a919ff14 835chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
836 int target, int refclk, intel_clock_t *match_clock,
837 intel_clock_t *best_clock)
838{
a919ff14 839 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
840 intel_clock_t clock;
841 uint64_t m2;
842 int found = false;
843
844 memset(best_clock, 0, sizeof(*best_clock));
845
846 /*
847 * Based on hardware doc, the n always set to 1, and m1 always
848 * set to 2. If requires to support 200Mhz refclk, we need to
849 * revisit this because n may not 1 anymore.
850 */
851 clock.n = 1, clock.m1 = 2;
852 target *= 5; /* fast clock */
853
854 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
855 for (clock.p2 = limit->p2.p2_fast;
856 clock.p2 >= limit->p2.p2_slow;
857 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
858
859 clock.p = clock.p1 * clock.p2;
860
861 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
862 clock.n) << 22, refclk * clock.m1);
863
864 if (m2 > INT_MAX/clock.m1)
865 continue;
866
867 clock.m2 = m2;
868
869 chv_clock(refclk, &clock);
870
871 if (!intel_PLL_is_valid(dev, limit, &clock))
872 continue;
873
874 /* based on hardware requirement, prefer bigger p
875 */
876 if (clock.p > best_clock->p) {
877 *best_clock = clock;
878 found = true;
879 }
880 }
881 }
882
883 return found;
884}
885
20ddf665
VS
886bool intel_crtc_active(struct drm_crtc *crtc)
887{
888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
889
890 /* Be paranoid as we can arrive here with only partial
891 * state retrieved from the hardware during setup.
892 *
241bfc38 893 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
894 * as Haswell has gained clock readout/fastboot support.
895 *
66e514c1 896 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
897 * properly reconstruct framebuffers.
898 */
f4510a27 899 return intel_crtc->active && crtc->primary->fb &&
6e3c9717 900 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
901}
902
a5c961d1
PZ
903enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
904 enum pipe pipe)
905{
906 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
907 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
908
6e3c9717 909 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
910}
911
fbf49ea2
VS
912static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
913{
914 struct drm_i915_private *dev_priv = dev->dev_private;
915 u32 reg = PIPEDSL(pipe);
916 u32 line1, line2;
917 u32 line_mask;
918
919 if (IS_GEN2(dev))
920 line_mask = DSL_LINEMASK_GEN2;
921 else
922 line_mask = DSL_LINEMASK_GEN3;
923
924 line1 = I915_READ(reg) & line_mask;
925 mdelay(5);
926 line2 = I915_READ(reg) & line_mask;
927
928 return line1 == line2;
929}
930
ab7ad7f6
KP
931/*
932 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 933 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
934 *
935 * After disabling a pipe, we can't wait for vblank in the usual way,
936 * spinning on the vblank interrupt status bit, since we won't actually
937 * see an interrupt when the pipe is disabled.
938 *
ab7ad7f6
KP
939 * On Gen4 and above:
940 * wait for the pipe register state bit to turn off
941 *
942 * Otherwise:
943 * wait for the display line value to settle (it usually
944 * ends up stopping at the start of the next frame).
58e10eb9 945 *
9d0498a2 946 */
575f7ab7 947static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 948{
575f7ab7 949 struct drm_device *dev = crtc->base.dev;
9d0498a2 950 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 951 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 952 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
953
954 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 955 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
956
957 /* Wait for the Pipe State to go off */
58e10eb9
CW
958 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
959 100))
284637d9 960 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 961 } else {
ab7ad7f6 962 /* Wait for the display line to settle */
fbf49ea2 963 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 964 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 965 }
79e53945
JB
966}
967
b0ea7d37
DL
968/*
969 * ibx_digital_port_connected - is the specified port connected?
970 * @dev_priv: i915 private structure
971 * @port: the port to test
972 *
973 * Returns true if @port is connected, false otherwise.
974 */
975bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
976 struct intel_digital_port *port)
977{
978 u32 bit;
979
c36346e3 980 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 981 switch (port->port) {
c36346e3
DL
982 case PORT_B:
983 bit = SDE_PORTB_HOTPLUG;
984 break;
985 case PORT_C:
986 bit = SDE_PORTC_HOTPLUG;
987 break;
988 case PORT_D:
989 bit = SDE_PORTD_HOTPLUG;
990 break;
991 default:
992 return true;
993 }
994 } else {
eba905b2 995 switch (port->port) {
c36346e3
DL
996 case PORT_B:
997 bit = SDE_PORTB_HOTPLUG_CPT;
998 break;
999 case PORT_C:
1000 bit = SDE_PORTC_HOTPLUG_CPT;
1001 break;
1002 case PORT_D:
1003 bit = SDE_PORTD_HOTPLUG_CPT;
1004 break;
1005 default:
1006 return true;
1007 }
b0ea7d37
DL
1008 }
1009
1010 return I915_READ(SDEISR) & bit;
1011}
1012
b24e7179
JB
1013static const char *state_string(bool enabled)
1014{
1015 return enabled ? "on" : "off";
1016}
1017
1018/* Only for pre-ILK configs */
55607e8a
DV
1019void assert_pll(struct drm_i915_private *dev_priv,
1020 enum pipe pipe, bool state)
b24e7179
JB
1021{
1022 int reg;
1023 u32 val;
1024 bool cur_state;
1025
1026 reg = DPLL(pipe);
1027 val = I915_READ(reg);
1028 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1029 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1030 "PLL state assertion failure (expected %s, current %s)\n",
1031 state_string(state), state_string(cur_state));
1032}
b24e7179 1033
23538ef1
JN
1034/* XXX: the dsi pll is shared between MIPI DSI ports */
1035static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1036{
1037 u32 val;
1038 bool cur_state;
1039
1040 mutex_lock(&dev_priv->dpio_lock);
1041 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1042 mutex_unlock(&dev_priv->dpio_lock);
1043
1044 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1045 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1046 "DSI PLL state assertion failure (expected %s, current %s)\n",
1047 state_string(state), state_string(cur_state));
1048}
1049#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1050#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1051
55607e8a 1052struct intel_shared_dpll *
e2b78267
DV
1053intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1054{
1055 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1056
6e3c9717 1057 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1058 return NULL;
1059
6e3c9717 1060 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1061}
1062
040484af 1063/* For ILK+ */
55607e8a
DV
1064void assert_shared_dpll(struct drm_i915_private *dev_priv,
1065 struct intel_shared_dpll *pll,
1066 bool state)
040484af 1067{
040484af 1068 bool cur_state;
5358901f 1069 struct intel_dpll_hw_state hw_state;
040484af 1070
92b27b08 1071 if (WARN (!pll,
46edb027 1072 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1073 return;
ee7b9f93 1074
5358901f 1075 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1076 I915_STATE_WARN(cur_state != state,
5358901f
DV
1077 "%s assertion failure (expected %s, current %s)\n",
1078 pll->name, state_string(state), state_string(cur_state));
040484af 1079}
040484af
JB
1080
1081static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1082 enum pipe pipe, bool state)
1083{
1084 int reg;
1085 u32 val;
1086 bool cur_state;
ad80a810
PZ
1087 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1088 pipe);
040484af 1089
affa9354
PZ
1090 if (HAS_DDI(dev_priv->dev)) {
1091 /* DDI does not have a specific FDI_TX register */
ad80a810 1092 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1093 val = I915_READ(reg);
ad80a810 1094 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1095 } else {
1096 reg = FDI_TX_CTL(pipe);
1097 val = I915_READ(reg);
1098 cur_state = !!(val & FDI_TX_ENABLE);
1099 }
e2c719b7 1100 I915_STATE_WARN(cur_state != state,
040484af
JB
1101 "FDI TX state assertion failure (expected %s, current %s)\n",
1102 state_string(state), state_string(cur_state));
1103}
1104#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1105#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1106
1107static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109{
1110 int reg;
1111 u32 val;
1112 bool cur_state;
1113
d63fa0dc
PZ
1114 reg = FDI_RX_CTL(pipe);
1115 val = I915_READ(reg);
1116 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1117 I915_STATE_WARN(cur_state != state,
040484af
JB
1118 "FDI RX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120}
1121#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1122#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1123
1124static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1125 enum pipe pipe)
1126{
1127 int reg;
1128 u32 val;
1129
1130 /* ILK FDI PLL is always enabled */
3d13ef2e 1131 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1132 return;
1133
bf507ef7 1134 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1135 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1136 return;
1137
040484af
JB
1138 reg = FDI_TX_CTL(pipe);
1139 val = I915_READ(reg);
e2c719b7 1140 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1141}
1142
55607e8a
DV
1143void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1144 enum pipe pipe, bool state)
040484af
JB
1145{
1146 int reg;
1147 u32 val;
55607e8a 1148 bool cur_state;
040484af
JB
1149
1150 reg = FDI_RX_CTL(pipe);
1151 val = I915_READ(reg);
55607e8a 1152 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1153 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1154 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1155 state_string(state), state_string(cur_state));
040484af
JB
1156}
1157
b680c37a
DV
1158void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
ea0760cf 1160{
bedd4dba
JN
1161 struct drm_device *dev = dev_priv->dev;
1162 int pp_reg;
ea0760cf
JB
1163 u32 val;
1164 enum pipe panel_pipe = PIPE_A;
0de3b485 1165 bool locked = true;
ea0760cf 1166
bedd4dba
JN
1167 if (WARN_ON(HAS_DDI(dev)))
1168 return;
1169
1170 if (HAS_PCH_SPLIT(dev)) {
1171 u32 port_sel;
1172
ea0760cf 1173 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1174 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1175
1176 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1177 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1178 panel_pipe = PIPE_B;
1179 /* XXX: else fix for eDP */
1180 } else if (IS_VALLEYVIEW(dev)) {
1181 /* presumably write lock depends on pipe, not port select */
1182 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1183 panel_pipe = pipe;
ea0760cf
JB
1184 } else {
1185 pp_reg = PP_CONTROL;
bedd4dba
JN
1186 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1187 panel_pipe = PIPE_B;
ea0760cf
JB
1188 }
1189
1190 val = I915_READ(pp_reg);
1191 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1192 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1193 locked = false;
1194
e2c719b7 1195 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1196 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1197 pipe_name(pipe));
ea0760cf
JB
1198}
1199
93ce0ba6
JN
1200static void assert_cursor(struct drm_i915_private *dev_priv,
1201 enum pipe pipe, bool state)
1202{
1203 struct drm_device *dev = dev_priv->dev;
1204 bool cur_state;
1205
d9d82081 1206 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1207 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1208 else
5efb3e28 1209 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1210
e2c719b7 1211 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1212 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1213 pipe_name(pipe), state_string(state), state_string(cur_state));
1214}
1215#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1216#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1217
b840d907
JB
1218void assert_pipe(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
b24e7179
JB
1220{
1221 int reg;
1222 u32 val;
63d7bbe9 1223 bool cur_state;
702e7a56
PZ
1224 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1225 pipe);
b24e7179 1226
b6b5d049
VS
1227 /* if we need the pipe quirk it must be always on */
1228 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1229 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1230 state = true;
1231
f458ebbc 1232 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1233 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1234 cur_state = false;
1235 } else {
1236 reg = PIPECONF(cpu_transcoder);
1237 val = I915_READ(reg);
1238 cur_state = !!(val & PIPECONF_ENABLE);
1239 }
1240
e2c719b7 1241 I915_STATE_WARN(cur_state != state,
63d7bbe9 1242 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1243 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1244}
1245
931872fc
CW
1246static void assert_plane(struct drm_i915_private *dev_priv,
1247 enum plane plane, bool state)
b24e7179
JB
1248{
1249 int reg;
1250 u32 val;
931872fc 1251 bool cur_state;
b24e7179
JB
1252
1253 reg = DSPCNTR(plane);
1254 val = I915_READ(reg);
931872fc 1255 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1256 I915_STATE_WARN(cur_state != state,
931872fc
CW
1257 "plane %c assertion failure (expected %s, current %s)\n",
1258 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1259}
1260
931872fc
CW
1261#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1262#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1263
b24e7179
JB
1264static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1265 enum pipe pipe)
1266{
653e1026 1267 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1268 int reg, i;
1269 u32 val;
1270 int cur_pipe;
1271
653e1026
VS
1272 /* Primary planes are fixed to pipes on gen4+ */
1273 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1274 reg = DSPCNTR(pipe);
1275 val = I915_READ(reg);
e2c719b7 1276 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1277 "plane %c assertion failure, should be disabled but not\n",
1278 plane_name(pipe));
19ec1358 1279 return;
28c05794 1280 }
19ec1358 1281
b24e7179 1282 /* Need to check both planes against the pipe */
055e393f 1283 for_each_pipe(dev_priv, i) {
b24e7179
JB
1284 reg = DSPCNTR(i);
1285 val = I915_READ(reg);
1286 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1287 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1288 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1289 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1290 plane_name(i), pipe_name(pipe));
b24e7179
JB
1291 }
1292}
1293
19332d7a
JB
1294static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296{
20674eef 1297 struct drm_device *dev = dev_priv->dev;
1fe47785 1298 int reg, sprite;
19332d7a
JB
1299 u32 val;
1300
7feb8b88
DL
1301 if (INTEL_INFO(dev)->gen >= 9) {
1302 for_each_sprite(pipe, sprite) {
1303 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1304 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1305 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1306 sprite, pipe_name(pipe));
1307 }
1308 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1309 for_each_sprite(pipe, sprite) {
1310 reg = SPCNTR(pipe, sprite);
20674eef 1311 val = I915_READ(reg);
e2c719b7 1312 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1313 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1314 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1315 }
1316 } else if (INTEL_INFO(dev)->gen >= 7) {
1317 reg = SPRCTL(pipe);
19332d7a 1318 val = I915_READ(reg);
e2c719b7 1319 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1320 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1321 plane_name(pipe), pipe_name(pipe));
1322 } else if (INTEL_INFO(dev)->gen >= 5) {
1323 reg = DVSCNTR(pipe);
19332d7a 1324 val = I915_READ(reg);
e2c719b7 1325 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1326 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1327 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1328 }
1329}
1330
08c71e5e
VS
1331static void assert_vblank_disabled(struct drm_crtc *crtc)
1332{
e2c719b7 1333 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1334 drm_crtc_vblank_put(crtc);
1335}
1336
89eff4be 1337static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1338{
1339 u32 val;
1340 bool enabled;
1341
e2c719b7 1342 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1343
92f2584a
JB
1344 val = I915_READ(PCH_DREF_CONTROL);
1345 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1346 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1347 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1348}
1349
ab9412ba
DV
1350static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1351 enum pipe pipe)
92f2584a
JB
1352{
1353 int reg;
1354 u32 val;
1355 bool enabled;
1356
ab9412ba 1357 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1358 val = I915_READ(reg);
1359 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1360 I915_STATE_WARN(enabled,
9db4a9c7
JB
1361 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1362 pipe_name(pipe));
92f2584a
JB
1363}
1364
4e634389
KP
1365static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1367{
1368 if ((val & DP_PORT_EN) == 0)
1369 return false;
1370
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1373 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1374 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1375 return false;
44f37d1f
CML
1376 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1377 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1378 return false;
f0575e92
KP
1379 } else {
1380 if ((val & DP_PIPE_MASK) != (pipe << 30))
1381 return false;
1382 }
1383 return true;
1384}
1385
1519b995
KP
1386static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1387 enum pipe pipe, u32 val)
1388{
dc0fa718 1389 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1390 return false;
1391
1392 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1393 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1394 return false;
44f37d1f
CML
1395 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1396 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1397 return false;
1519b995 1398 } else {
dc0fa718 1399 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1400 return false;
1401 }
1402 return true;
1403}
1404
1405static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1406 enum pipe pipe, u32 val)
1407{
1408 if ((val & LVDS_PORT_EN) == 0)
1409 return false;
1410
1411 if (HAS_PCH_CPT(dev_priv->dev)) {
1412 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1413 return false;
1414 } else {
1415 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1416 return false;
1417 }
1418 return true;
1419}
1420
1421static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1422 enum pipe pipe, u32 val)
1423{
1424 if ((val & ADPA_DAC_ENABLE) == 0)
1425 return false;
1426 if (HAS_PCH_CPT(dev_priv->dev)) {
1427 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1428 return false;
1429 } else {
1430 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1431 return false;
1432 }
1433 return true;
1434}
1435
291906f1 1436static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1437 enum pipe pipe, int reg, u32 port_sel)
291906f1 1438{
47a05eca 1439 u32 val = I915_READ(reg);
e2c719b7 1440 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1441 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1442 reg, pipe_name(pipe));
de9a35ab 1443
e2c719b7 1444 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1445 && (val & DP_PIPEB_SELECT),
de9a35ab 1446 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1447}
1448
1449static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1450 enum pipe pipe, int reg)
1451{
47a05eca 1452 u32 val = I915_READ(reg);
e2c719b7 1453 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1454 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1455 reg, pipe_name(pipe));
de9a35ab 1456
e2c719b7 1457 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1458 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1459 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1460}
1461
1462static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1463 enum pipe pipe)
1464{
1465 int reg;
1466 u32 val;
291906f1 1467
f0575e92
KP
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1471
1472 reg = PCH_ADPA;
1473 val = I915_READ(reg);
e2c719b7 1474 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1475 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1476 pipe_name(pipe));
291906f1
JB
1477
1478 reg = PCH_LVDS;
1479 val = I915_READ(reg);
e2c719b7 1480 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1481 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1482 pipe_name(pipe));
291906f1 1483
e2debe91
PZ
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1487}
1488
40e9cf64
JB
1489static void intel_init_dpio(struct drm_device *dev)
1490{
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492
1493 if (!IS_VALLEYVIEW(dev))
1494 return;
1495
a09caddd
CML
1496 /*
1497 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1498 * CHV x1 PHY (DP/HDMI D)
1499 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1500 */
1501 if (IS_CHERRYVIEW(dev)) {
1502 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1504 } else {
1505 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1506 }
5382f5f3
JB
1507}
1508
d288f65f 1509static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1510 const struct intel_crtc_state *pipe_config)
87442f73 1511{
426115cf
DV
1512 struct drm_device *dev = crtc->base.dev;
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514 int reg = DPLL(crtc->pipe);
d288f65f 1515 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1516
426115cf 1517 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1518
1519 /* No really, not for ILK+ */
1520 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1521
1522 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1523 if (IS_MOBILE(dev_priv->dev))
426115cf 1524 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1525
426115cf
DV
1526 I915_WRITE(reg, dpll);
1527 POSTING_READ(reg);
1528 udelay(150);
1529
1530 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1531 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1532
d288f65f 1533 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1534 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1535
1536 /* We do this three times for luck */
426115cf 1537 I915_WRITE(reg, dpll);
87442f73
DV
1538 POSTING_READ(reg);
1539 udelay(150); /* wait for warmup */
426115cf 1540 I915_WRITE(reg, dpll);
87442f73
DV
1541 POSTING_READ(reg);
1542 udelay(150); /* wait for warmup */
426115cf 1543 I915_WRITE(reg, dpll);
87442f73
DV
1544 POSTING_READ(reg);
1545 udelay(150); /* wait for warmup */
1546}
1547
d288f65f 1548static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1549 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1550{
1551 struct drm_device *dev = crtc->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
1553 int pipe = crtc->pipe;
1554 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1555 u32 tmp;
1556
1557 assert_pipe_disabled(dev_priv, crtc->pipe);
1558
1559 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1560
1561 mutex_lock(&dev_priv->dpio_lock);
1562
1563 /* Enable back the 10bit clock to display controller */
1564 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1565 tmp |= DPIO_DCLKP_EN;
1566 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1567
1568 /*
1569 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1570 */
1571 udelay(1);
1572
1573 /* Enable PLL */
d288f65f 1574 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1575
1576 /* Check PLL is locked */
a11b0703 1577 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1578 DRM_ERROR("PLL %d failed to lock\n", pipe);
1579
a11b0703 1580 /* not sure when this should be written */
d288f65f 1581 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1582 POSTING_READ(DPLL_MD(pipe));
1583
9d556c99
CML
1584 mutex_unlock(&dev_priv->dpio_lock);
1585}
1586
1c4e0274
VS
1587static int intel_num_dvo_pipes(struct drm_device *dev)
1588{
1589 struct intel_crtc *crtc;
1590 int count = 0;
1591
1592 for_each_intel_crtc(dev, crtc)
1593 count += crtc->active &&
409ee761 1594 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1595
1596 return count;
1597}
1598
66e3d5c0 1599static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1600{
66e3d5c0
DV
1601 struct drm_device *dev = crtc->base.dev;
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 int reg = DPLL(crtc->pipe);
6e3c9717 1604 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1605
66e3d5c0 1606 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1607
63d7bbe9 1608 /* No really, not for ILK+ */
3d13ef2e 1609 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1610
1611 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1612 if (IS_MOBILE(dev) && !IS_I830(dev))
1613 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1614
1c4e0274
VS
1615 /* Enable DVO 2x clock on both PLLs if necessary */
1616 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1617 /*
1618 * It appears to be important that we don't enable this
1619 * for the current pipe before otherwise configuring the
1620 * PLL. No idea how this should be handled if multiple
1621 * DVO outputs are enabled simultaneosly.
1622 */
1623 dpll |= DPLL_DVO_2X_MODE;
1624 I915_WRITE(DPLL(!crtc->pipe),
1625 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1626 }
66e3d5c0
DV
1627
1628 /* Wait for the clocks to stabilize. */
1629 POSTING_READ(reg);
1630 udelay(150);
1631
1632 if (INTEL_INFO(dev)->gen >= 4) {
1633 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1634 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1635 } else {
1636 /* The pixel multiplier can only be updated once the
1637 * DPLL is enabled and the clocks are stable.
1638 *
1639 * So write it again.
1640 */
1641 I915_WRITE(reg, dpll);
1642 }
63d7bbe9
JB
1643
1644 /* We do this three times for luck */
66e3d5c0 1645 I915_WRITE(reg, dpll);
63d7bbe9
JB
1646 POSTING_READ(reg);
1647 udelay(150); /* wait for warmup */
66e3d5c0 1648 I915_WRITE(reg, dpll);
63d7bbe9
JB
1649 POSTING_READ(reg);
1650 udelay(150); /* wait for warmup */
66e3d5c0 1651 I915_WRITE(reg, dpll);
63d7bbe9
JB
1652 POSTING_READ(reg);
1653 udelay(150); /* wait for warmup */
1654}
1655
1656/**
50b44a44 1657 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1658 * @dev_priv: i915 private structure
1659 * @pipe: pipe PLL to disable
1660 *
1661 * Disable the PLL for @pipe, making sure the pipe is off first.
1662 *
1663 * Note! This is for pre-ILK only.
1664 */
1c4e0274 1665static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1666{
1c4e0274
VS
1667 struct drm_device *dev = crtc->base.dev;
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 enum pipe pipe = crtc->pipe;
1670
1671 /* Disable DVO 2x clock on both PLLs if necessary */
1672 if (IS_I830(dev) &&
409ee761 1673 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1674 intel_num_dvo_pipes(dev) == 1) {
1675 I915_WRITE(DPLL(PIPE_B),
1676 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1677 I915_WRITE(DPLL(PIPE_A),
1678 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1679 }
1680
b6b5d049
VS
1681 /* Don't disable pipe or pipe PLLs if needed */
1682 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1683 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1684 return;
1685
1686 /* Make sure the pipe isn't still relying on us */
1687 assert_pipe_disabled(dev_priv, pipe);
1688
50b44a44
DV
1689 I915_WRITE(DPLL(pipe), 0);
1690 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1691}
1692
f6071166
JB
1693static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694{
1695 u32 val = 0;
1696
1697 /* Make sure the pipe isn't still relying on us */
1698 assert_pipe_disabled(dev_priv, pipe);
1699
e5cbfbfb
ID
1700 /*
1701 * Leave integrated clock source and reference clock enabled for pipe B.
1702 * The latter is needed for VGA hotplug / manual detection.
1703 */
f6071166 1704 if (pipe == PIPE_B)
e5cbfbfb 1705 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1706 I915_WRITE(DPLL(pipe), val);
1707 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1708
1709}
1710
1711static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1712{
d752048d 1713 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1714 u32 val;
1715
a11b0703
VS
1716 /* Make sure the pipe isn't still relying on us */
1717 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1718
a11b0703 1719 /* Set PLL en = 0 */
d17ec4ce 1720 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1721 if (pipe != PIPE_A)
1722 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723 I915_WRITE(DPLL(pipe), val);
1724 POSTING_READ(DPLL(pipe));
d752048d
VS
1725
1726 mutex_lock(&dev_priv->dpio_lock);
1727
1728 /* Disable 10bit clock to display controller */
1729 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1730 val &= ~DPIO_DCLKP_EN;
1731 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1732
61407f6d
VS
1733 /* disable left/right clock distribution */
1734 if (pipe != PIPE_B) {
1735 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1736 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1737 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1738 } else {
1739 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1740 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1741 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1742 }
1743
d752048d 1744 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1745}
1746
e4607fcf
CML
1747void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748 struct intel_digital_port *dport)
89b667f8
JB
1749{
1750 u32 port_mask;
00fc31b7 1751 int dpll_reg;
89b667f8 1752
e4607fcf
CML
1753 switch (dport->port) {
1754 case PORT_B:
89b667f8 1755 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1756 dpll_reg = DPLL(0);
e4607fcf
CML
1757 break;
1758 case PORT_C:
89b667f8 1759 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1760 dpll_reg = DPLL(0);
1761 break;
1762 case PORT_D:
1763 port_mask = DPLL_PORTD_READY_MASK;
1764 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1765 break;
1766 default:
1767 BUG();
1768 }
89b667f8 1769
00fc31b7 1770 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1771 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1772 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1773}
1774
b14b1055
DV
1775static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1776{
1777 struct drm_device *dev = crtc->base.dev;
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1780
be19f0ff
CW
1781 if (WARN_ON(pll == NULL))
1782 return;
1783
3e369b76 1784 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1785 if (pll->active == 0) {
1786 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1787 WARN_ON(pll->on);
1788 assert_shared_dpll_disabled(dev_priv, pll);
1789
1790 pll->mode_set(dev_priv, pll);
1791 }
1792}
1793
92f2584a 1794/**
85b3894f 1795 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1796 * @dev_priv: i915 private structure
1797 * @pipe: pipe PLL to enable
1798 *
1799 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1800 * drives the transcoder clock.
1801 */
85b3894f 1802static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1803{
3d13ef2e
DL
1804 struct drm_device *dev = crtc->base.dev;
1805 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1806 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1807
87a875bb 1808 if (WARN_ON(pll == NULL))
48da64a8
CW
1809 return;
1810
3e369b76 1811 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1812 return;
ee7b9f93 1813
74dd6928 1814 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1815 pll->name, pll->active, pll->on,
e2b78267 1816 crtc->base.base.id);
92f2584a 1817
cdbd2316
DV
1818 if (pll->active++) {
1819 WARN_ON(!pll->on);
e9d6944e 1820 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1821 return;
1822 }
f4a091c7 1823 WARN_ON(pll->on);
ee7b9f93 1824
bd2bb1b9
PZ
1825 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1826
46edb027 1827 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1828 pll->enable(dev_priv, pll);
ee7b9f93 1829 pll->on = true;
92f2584a
JB
1830}
1831
f6daaec2 1832static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1833{
3d13ef2e
DL
1834 struct drm_device *dev = crtc->base.dev;
1835 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1836 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1837
92f2584a 1838 /* PCH only available on ILK+ */
3d13ef2e 1839 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1840 if (WARN_ON(pll == NULL))
ee7b9f93 1841 return;
92f2584a 1842
3e369b76 1843 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1844 return;
7a419866 1845
46edb027
DV
1846 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1847 pll->name, pll->active, pll->on,
e2b78267 1848 crtc->base.base.id);
7a419866 1849
48da64a8 1850 if (WARN_ON(pll->active == 0)) {
e9d6944e 1851 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1852 return;
1853 }
1854
e9d6944e 1855 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1856 WARN_ON(!pll->on);
cdbd2316 1857 if (--pll->active)
7a419866 1858 return;
ee7b9f93 1859
46edb027 1860 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1861 pll->disable(dev_priv, pll);
ee7b9f93 1862 pll->on = false;
bd2bb1b9
PZ
1863
1864 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1865}
1866
b8a4f404
PZ
1867static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1868 enum pipe pipe)
040484af 1869{
23670b32 1870 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1871 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1873 uint32_t reg, val, pipeconf_val;
040484af
JB
1874
1875 /* PCH only available on ILK+ */
55522f37 1876 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1877
1878 /* Make sure PCH DPLL is enabled */
e72f9fbf 1879 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1880 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1881
1882 /* FDI must be feeding us bits for PCH ports */
1883 assert_fdi_tx_enabled(dev_priv, pipe);
1884 assert_fdi_rx_enabled(dev_priv, pipe);
1885
23670b32
DV
1886 if (HAS_PCH_CPT(dev)) {
1887 /* Workaround: Set the timing override bit before enabling the
1888 * pch transcoder. */
1889 reg = TRANS_CHICKEN2(pipe);
1890 val = I915_READ(reg);
1891 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1892 I915_WRITE(reg, val);
59c859d6 1893 }
23670b32 1894
ab9412ba 1895 reg = PCH_TRANSCONF(pipe);
040484af 1896 val = I915_READ(reg);
5f7f726d 1897 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1898
1899 if (HAS_PCH_IBX(dev_priv->dev)) {
1900 /*
1901 * make the BPC in transcoder be consistent with
1902 * that in pipeconf reg.
1903 */
dfd07d72
DV
1904 val &= ~PIPECONF_BPC_MASK;
1905 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1906 }
5f7f726d
PZ
1907
1908 val &= ~TRANS_INTERLACE_MASK;
1909 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1910 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1911 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1912 val |= TRANS_LEGACY_INTERLACED_ILK;
1913 else
1914 val |= TRANS_INTERLACED;
5f7f726d
PZ
1915 else
1916 val |= TRANS_PROGRESSIVE;
1917
040484af
JB
1918 I915_WRITE(reg, val | TRANS_ENABLE);
1919 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1920 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1921}
1922
8fb033d7 1923static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1924 enum transcoder cpu_transcoder)
040484af 1925{
8fb033d7 1926 u32 val, pipeconf_val;
8fb033d7
PZ
1927
1928 /* PCH only available on ILK+ */
55522f37 1929 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1930
8fb033d7 1931 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1932 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1933 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1934
223a6fdf
PZ
1935 /* Workaround: set timing override bit. */
1936 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1937 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1938 I915_WRITE(_TRANSA_CHICKEN2, val);
1939
25f3ef11 1940 val = TRANS_ENABLE;
937bb610 1941 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1942
9a76b1c6
PZ
1943 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1944 PIPECONF_INTERLACED_ILK)
a35f2679 1945 val |= TRANS_INTERLACED;
8fb033d7
PZ
1946 else
1947 val |= TRANS_PROGRESSIVE;
1948
ab9412ba
DV
1949 I915_WRITE(LPT_TRANSCONF, val);
1950 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1951 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1952}
1953
b8a4f404
PZ
1954static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1955 enum pipe pipe)
040484af 1956{
23670b32
DV
1957 struct drm_device *dev = dev_priv->dev;
1958 uint32_t reg, val;
040484af
JB
1959
1960 /* FDI relies on the transcoder */
1961 assert_fdi_tx_disabled(dev_priv, pipe);
1962 assert_fdi_rx_disabled(dev_priv, pipe);
1963
291906f1
JB
1964 /* Ports must be off as well */
1965 assert_pch_ports_disabled(dev_priv, pipe);
1966
ab9412ba 1967 reg = PCH_TRANSCONF(pipe);
040484af
JB
1968 val = I915_READ(reg);
1969 val &= ~TRANS_ENABLE;
1970 I915_WRITE(reg, val);
1971 /* wait for PCH transcoder off, transcoder state */
1972 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1973 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1974
1975 if (!HAS_PCH_IBX(dev)) {
1976 /* Workaround: Clear the timing override chicken bit again. */
1977 reg = TRANS_CHICKEN2(pipe);
1978 val = I915_READ(reg);
1979 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1980 I915_WRITE(reg, val);
1981 }
040484af
JB
1982}
1983
ab4d966c 1984static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1985{
8fb033d7
PZ
1986 u32 val;
1987
ab9412ba 1988 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1989 val &= ~TRANS_ENABLE;
ab9412ba 1990 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1991 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1992 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1993 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1994
1995 /* Workaround: clear timing override bit. */
1996 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1997 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1998 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1999}
2000
b24e7179 2001/**
309cfea8 2002 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2003 * @crtc: crtc responsible for the pipe
b24e7179 2004 *
0372264a 2005 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2006 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2007 */
e1fdc473 2008static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2009{
0372264a
PZ
2010 struct drm_device *dev = crtc->base.dev;
2011 struct drm_i915_private *dev_priv = dev->dev_private;
2012 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2013 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2014 pipe);
1a240d4d 2015 enum pipe pch_transcoder;
b24e7179
JB
2016 int reg;
2017 u32 val;
2018
58c6eaa2 2019 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2020 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2021 assert_sprites_disabled(dev_priv, pipe);
2022
681e5811 2023 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2024 pch_transcoder = TRANSCODER_A;
2025 else
2026 pch_transcoder = pipe;
2027
b24e7179
JB
2028 /*
2029 * A pipe without a PLL won't actually be able to drive bits from
2030 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2031 * need the check.
2032 */
2033 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2034 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2035 assert_dsi_pll_enabled(dev_priv);
2036 else
2037 assert_pll_enabled(dev_priv, pipe);
040484af 2038 else {
6e3c9717 2039 if (crtc->config->has_pch_encoder) {
040484af 2040 /* if driving the PCH, we need FDI enabled */
cc391bbb 2041 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2042 assert_fdi_tx_pll_enabled(dev_priv,
2043 (enum pipe) cpu_transcoder);
040484af
JB
2044 }
2045 /* FIXME: assert CPU port conditions for SNB+ */
2046 }
b24e7179 2047
702e7a56 2048 reg = PIPECONF(cpu_transcoder);
b24e7179 2049 val = I915_READ(reg);
7ad25d48 2050 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2051 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2052 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2053 return;
7ad25d48 2054 }
00d70b15
CW
2055
2056 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2057 POSTING_READ(reg);
b24e7179
JB
2058}
2059
2060/**
309cfea8 2061 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2062 * @crtc: crtc whose pipes is to be disabled
b24e7179 2063 *
575f7ab7
VS
2064 * Disable the pipe of @crtc, making sure that various hardware
2065 * specific requirements are met, if applicable, e.g. plane
2066 * disabled, panel fitter off, etc.
b24e7179
JB
2067 *
2068 * Will wait until the pipe has shut down before returning.
2069 */
575f7ab7 2070static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2071{
575f7ab7 2072 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2073 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2074 enum pipe pipe = crtc->pipe;
b24e7179
JB
2075 int reg;
2076 u32 val;
2077
2078 /*
2079 * Make sure planes won't keep trying to pump pixels to us,
2080 * or we might hang the display.
2081 */
2082 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2083 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2084 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2085
702e7a56 2086 reg = PIPECONF(cpu_transcoder);
b24e7179 2087 val = I915_READ(reg);
00d70b15
CW
2088 if ((val & PIPECONF_ENABLE) == 0)
2089 return;
2090
67adc644
VS
2091 /*
2092 * Double wide has implications for planes
2093 * so best keep it disabled when not needed.
2094 */
6e3c9717 2095 if (crtc->config->double_wide)
67adc644
VS
2096 val &= ~PIPECONF_DOUBLE_WIDE;
2097
2098 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2099 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2100 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2101 val &= ~PIPECONF_ENABLE;
2102
2103 I915_WRITE(reg, val);
2104 if ((val & PIPECONF_ENABLE) == 0)
2105 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2106}
2107
d74362c9
KP
2108/*
2109 * Plane regs are double buffered, going from enabled->disabled needs a
2110 * trigger in order to latch. The display address reg provides this.
2111 */
1dba99f4
VS
2112void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2113 enum plane plane)
d74362c9 2114{
3d13ef2e
DL
2115 struct drm_device *dev = dev_priv->dev;
2116 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2117
2118 I915_WRITE(reg, I915_READ(reg));
2119 POSTING_READ(reg);
d74362c9
KP
2120}
2121
b24e7179 2122/**
262ca2b0 2123 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2124 * @plane: plane to be enabled
2125 * @crtc: crtc for the plane
b24e7179 2126 *
fdd508a6 2127 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2128 */
fdd508a6
VS
2129static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2130 struct drm_crtc *crtc)
b24e7179 2131{
fdd508a6
VS
2132 struct drm_device *dev = plane->dev;
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2135
2136 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2137 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2138
98ec7739
VS
2139 if (intel_crtc->primary_enabled)
2140 return;
0037f71c 2141
4c445e0e 2142 intel_crtc->primary_enabled = true;
939c2fe8 2143
fdd508a6
VS
2144 dev_priv->display.update_primary_plane(crtc, plane->fb,
2145 crtc->x, crtc->y);
33c3b0d1
VS
2146
2147 /*
2148 * BDW signals flip done immediately if the plane
2149 * is disabled, even if the plane enable is already
2150 * armed to occur at the next vblank :(
2151 */
2152 if (IS_BROADWELL(dev))
2153 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2154}
2155
b24e7179 2156/**
262ca2b0 2157 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2158 * @plane: plane to be disabled
2159 * @crtc: crtc for the plane
b24e7179 2160 *
fdd508a6 2161 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2162 */
fdd508a6
VS
2163static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2164 struct drm_crtc *crtc)
b24e7179 2165{
fdd508a6
VS
2166 struct drm_device *dev = plane->dev;
2167 struct drm_i915_private *dev_priv = dev->dev_private;
2168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2169
32b7eeec
MR
2170 if (WARN_ON(!intel_crtc->active))
2171 return;
b24e7179 2172
98ec7739
VS
2173 if (!intel_crtc->primary_enabled)
2174 return;
0037f71c 2175
4c445e0e 2176 intel_crtc->primary_enabled = false;
939c2fe8 2177
fdd508a6
VS
2178 dev_priv->display.update_primary_plane(crtc, plane->fb,
2179 crtc->x, crtc->y);
b24e7179
JB
2180}
2181
693db184
CW
2182static bool need_vtd_wa(struct drm_device *dev)
2183{
2184#ifdef CONFIG_INTEL_IOMMU
2185 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2186 return true;
2187#endif
2188 return false;
2189}
2190
a57ce0b2
JB
2191static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2192{
2193 int tile_height;
2194
2195 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2196 return ALIGN(height, tile_height);
2197}
2198
127bd2ac 2199int
850c4cdc
TU
2200intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2201 struct drm_framebuffer *fb,
a4872ba6 2202 struct intel_engine_cs *pipelined)
6b95a207 2203{
850c4cdc 2204 struct drm_device *dev = fb->dev;
ce453d81 2205 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2206 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207
KH
2207 u32 alignment;
2208 int ret;
2209
ebcdd39e
MR
2210 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2211
05394f39 2212 switch (obj->tiling_mode) {
6b95a207 2213 case I915_TILING_NONE:
1fada4cc
DL
2214 if (INTEL_INFO(dev)->gen >= 9)
2215 alignment = 256 * 1024;
2216 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2217 alignment = 128 * 1024;
a6c45cf0 2218 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2219 alignment = 4 * 1024;
2220 else
2221 alignment = 64 * 1024;
6b95a207
KH
2222 break;
2223 case I915_TILING_X:
1fada4cc
DL
2224 if (INTEL_INFO(dev)->gen >= 9)
2225 alignment = 256 * 1024;
2226 else {
2227 /* pin() will align the object as required by fence */
2228 alignment = 0;
2229 }
6b95a207
KH
2230 break;
2231 case I915_TILING_Y:
80075d49 2232 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2233 return -EINVAL;
2234 default:
2235 BUG();
2236 }
2237
693db184
CW
2238 /* Note that the w/a also requires 64 PTE of padding following the
2239 * bo. We currently fill all unused PTE with the shadow page and so
2240 * we should always have valid PTE following the scanout preventing
2241 * the VT-d warning.
2242 */
2243 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2244 alignment = 256 * 1024;
2245
d6dd6843
PZ
2246 /*
2247 * Global gtt pte registers are special registers which actually forward
2248 * writes to a chunk of system memory. Which means that there is no risk
2249 * that the register values disappear as soon as we call
2250 * intel_runtime_pm_put(), so it is correct to wrap only the
2251 * pin/unpin/fence and not more.
2252 */
2253 intel_runtime_pm_get(dev_priv);
2254
ce453d81 2255 dev_priv->mm.interruptible = false;
2da3b9b9 2256 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2257 if (ret)
ce453d81 2258 goto err_interruptible;
6b95a207
KH
2259
2260 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2261 * fence, whereas 965+ only requires a fence if using
2262 * framebuffer compression. For simplicity, we always install
2263 * a fence as the cost is not that onerous.
2264 */
06d98131 2265 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2266 if (ret)
2267 goto err_unpin;
1690e1eb 2268
9a5a53b3 2269 i915_gem_object_pin_fence(obj);
6b95a207 2270
ce453d81 2271 dev_priv->mm.interruptible = true;
d6dd6843 2272 intel_runtime_pm_put(dev_priv);
6b95a207 2273 return 0;
48b956c5
CW
2274
2275err_unpin:
cc98b413 2276 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2277err_interruptible:
2278 dev_priv->mm.interruptible = true;
d6dd6843 2279 intel_runtime_pm_put(dev_priv);
48b956c5 2280 return ret;
6b95a207
KH
2281}
2282
1690e1eb
CW
2283void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2284{
ebcdd39e
MR
2285 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2286
1690e1eb 2287 i915_gem_object_unpin_fence(obj);
cc98b413 2288 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2289}
2290
c2c75131
DV
2291/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2292 * is assumed to be a power-of-two. */
bc752862
CW
2293unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2294 unsigned int tiling_mode,
2295 unsigned int cpp,
2296 unsigned int pitch)
c2c75131 2297{
bc752862
CW
2298 if (tiling_mode != I915_TILING_NONE) {
2299 unsigned int tile_rows, tiles;
c2c75131 2300
bc752862
CW
2301 tile_rows = *y / 8;
2302 *y %= 8;
c2c75131 2303
bc752862
CW
2304 tiles = *x / (512/cpp);
2305 *x %= 512/cpp;
2306
2307 return tile_rows * pitch * 8 + tiles * 4096;
2308 } else {
2309 unsigned int offset;
2310
2311 offset = *y * pitch + *x * cpp;
2312 *y = 0;
2313 *x = (offset & 4095) / cpp;
2314 return offset & -4096;
2315 }
c2c75131
DV
2316}
2317
46f297fb
JB
2318int intel_format_to_fourcc(int format)
2319{
2320 switch (format) {
2321 case DISPPLANE_8BPP:
2322 return DRM_FORMAT_C8;
2323 case DISPPLANE_BGRX555:
2324 return DRM_FORMAT_XRGB1555;
2325 case DISPPLANE_BGRX565:
2326 return DRM_FORMAT_RGB565;
2327 default:
2328 case DISPPLANE_BGRX888:
2329 return DRM_FORMAT_XRGB8888;
2330 case DISPPLANE_RGBX888:
2331 return DRM_FORMAT_XBGR8888;
2332 case DISPPLANE_BGRX101010:
2333 return DRM_FORMAT_XRGB2101010;
2334 case DISPPLANE_RGBX101010:
2335 return DRM_FORMAT_XBGR2101010;
2336 }
2337}
2338
484b41dd 2339static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2340 struct intel_plane_config *plane_config)
2341{
2342 struct drm_device *dev = crtc->base.dev;
2343 struct drm_i915_gem_object *obj = NULL;
2344 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2345 u32 base = plane_config->base;
2346
ff2652ea
CW
2347 if (plane_config->size == 0)
2348 return false;
2349
46f297fb
JB
2350 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2351 plane_config->size);
2352 if (!obj)
484b41dd 2353 return false;
46f297fb
JB
2354
2355 if (plane_config->tiled) {
2356 obj->tiling_mode = I915_TILING_X;
66e514c1 2357 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2358 }
2359
66e514c1
DA
2360 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2361 mode_cmd.width = crtc->base.primary->fb->width;
2362 mode_cmd.height = crtc->base.primary->fb->height;
2363 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2364
2365 mutex_lock(&dev->struct_mutex);
2366
66e514c1 2367 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2368 &mode_cmd, obj)) {
46f297fb
JB
2369 DRM_DEBUG_KMS("intel fb init failed\n");
2370 goto out_unref_obj;
2371 }
2372
a071fa00 2373 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2374 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2375
2376 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2377 return true;
46f297fb
JB
2378
2379out_unref_obj:
2380 drm_gem_object_unreference(&obj->base);
2381 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2382 return false;
2383}
2384
2385static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2386 struct intel_plane_config *plane_config)
2387{
2388 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2389 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2390 struct drm_crtc *c;
2391 struct intel_crtc *i;
2ff8fde1 2392 struct drm_i915_gem_object *obj;
484b41dd 2393
66e514c1 2394 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2395 return;
2396
2397 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2398 return;
2399
66e514c1
DA
2400 kfree(intel_crtc->base.primary->fb);
2401 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2402
2403 /*
2404 * Failed to alloc the obj, check to see if we should share
2405 * an fb with another CRTC instead
2406 */
70e1e0ec 2407 for_each_crtc(dev, c) {
484b41dd
JB
2408 i = to_intel_crtc(c);
2409
2410 if (c == &intel_crtc->base)
2411 continue;
2412
2ff8fde1
MR
2413 if (!i->active)
2414 continue;
2415
2416 obj = intel_fb_obj(c->primary->fb);
2417 if (obj == NULL)
484b41dd
JB
2418 continue;
2419
2ff8fde1 2420 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
d9ceb816
JB
2421 if (obj->tiling_mode != I915_TILING_NONE)
2422 dev_priv->preserve_bios_swizzle = true;
2423
66e514c1
DA
2424 drm_framebuffer_reference(c->primary->fb);
2425 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2426 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2427 break;
2428 }
2429 }
46f297fb
JB
2430}
2431
29b9bde6
DV
2432static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2433 struct drm_framebuffer *fb,
2434 int x, int y)
81255565
JB
2435{
2436 struct drm_device *dev = crtc->dev;
2437 struct drm_i915_private *dev_priv = dev->dev_private;
2438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2439 struct drm_i915_gem_object *obj;
81255565 2440 int plane = intel_crtc->plane;
e506a0c6 2441 unsigned long linear_offset;
81255565 2442 u32 dspcntr;
f45651ba 2443 u32 reg = DSPCNTR(plane);
48404c1e 2444 int pixel_size;
f45651ba 2445
fdd508a6
VS
2446 if (!intel_crtc->primary_enabled) {
2447 I915_WRITE(reg, 0);
2448 if (INTEL_INFO(dev)->gen >= 4)
2449 I915_WRITE(DSPSURF(plane), 0);
2450 else
2451 I915_WRITE(DSPADDR(plane), 0);
2452 POSTING_READ(reg);
2453 return;
2454 }
2455
c9ba6fad
VS
2456 obj = intel_fb_obj(fb);
2457 if (WARN_ON(obj == NULL))
2458 return;
2459
2460 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2461
f45651ba
VS
2462 dspcntr = DISPPLANE_GAMMA_ENABLE;
2463
fdd508a6 2464 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2465
2466 if (INTEL_INFO(dev)->gen < 4) {
2467 if (intel_crtc->pipe == PIPE_B)
2468 dspcntr |= DISPPLANE_SEL_PIPE_B;
2469
2470 /* pipesrc and dspsize control the size that is scaled from,
2471 * which should always be the user's requested size.
2472 */
2473 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2474 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2475 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2476 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2477 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2478 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2479 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2480 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2481 I915_WRITE(PRIMPOS(plane), 0);
2482 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2483 }
81255565 2484
57779d06
VS
2485 switch (fb->pixel_format) {
2486 case DRM_FORMAT_C8:
81255565
JB
2487 dspcntr |= DISPPLANE_8BPP;
2488 break;
57779d06
VS
2489 case DRM_FORMAT_XRGB1555:
2490 case DRM_FORMAT_ARGB1555:
2491 dspcntr |= DISPPLANE_BGRX555;
81255565 2492 break;
57779d06
VS
2493 case DRM_FORMAT_RGB565:
2494 dspcntr |= DISPPLANE_BGRX565;
2495 break;
2496 case DRM_FORMAT_XRGB8888:
2497 case DRM_FORMAT_ARGB8888:
2498 dspcntr |= DISPPLANE_BGRX888;
2499 break;
2500 case DRM_FORMAT_XBGR8888:
2501 case DRM_FORMAT_ABGR8888:
2502 dspcntr |= DISPPLANE_RGBX888;
2503 break;
2504 case DRM_FORMAT_XRGB2101010:
2505 case DRM_FORMAT_ARGB2101010:
2506 dspcntr |= DISPPLANE_BGRX101010;
2507 break;
2508 case DRM_FORMAT_XBGR2101010:
2509 case DRM_FORMAT_ABGR2101010:
2510 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2511 break;
2512 default:
baba133a 2513 BUG();
81255565 2514 }
57779d06 2515
f45651ba
VS
2516 if (INTEL_INFO(dev)->gen >= 4 &&
2517 obj->tiling_mode != I915_TILING_NONE)
2518 dspcntr |= DISPPLANE_TILED;
81255565 2519
de1aa629
VS
2520 if (IS_G4X(dev))
2521 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2522
b9897127 2523 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2524
c2c75131
DV
2525 if (INTEL_INFO(dev)->gen >= 4) {
2526 intel_crtc->dspaddr_offset =
bc752862 2527 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2528 pixel_size,
bc752862 2529 fb->pitches[0]);
c2c75131
DV
2530 linear_offset -= intel_crtc->dspaddr_offset;
2531 } else {
e506a0c6 2532 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2533 }
e506a0c6 2534
48404c1e
SJ
2535 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2536 dspcntr |= DISPPLANE_ROTATE_180;
2537
6e3c9717
ACO
2538 x += (intel_crtc->config->pipe_src_w - 1);
2539 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2540
2541 /* Finding the last pixel of the last line of the display
2542 data and adding to linear_offset*/
2543 linear_offset +=
6e3c9717
ACO
2544 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2545 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2546 }
2547
2548 I915_WRITE(reg, dspcntr);
2549
f343c5f6
BW
2550 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2551 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2552 fb->pitches[0]);
01f2c773 2553 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2554 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2555 I915_WRITE(DSPSURF(plane),
2556 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2557 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2558 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2559 } else
f343c5f6 2560 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2561 POSTING_READ(reg);
17638cd6
JB
2562}
2563
29b9bde6
DV
2564static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2565 struct drm_framebuffer *fb,
2566 int x, int y)
17638cd6
JB
2567{
2568 struct drm_device *dev = crtc->dev;
2569 struct drm_i915_private *dev_priv = dev->dev_private;
2570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2571 struct drm_i915_gem_object *obj;
17638cd6 2572 int plane = intel_crtc->plane;
e506a0c6 2573 unsigned long linear_offset;
17638cd6 2574 u32 dspcntr;
f45651ba 2575 u32 reg = DSPCNTR(plane);
48404c1e 2576 int pixel_size;
f45651ba 2577
fdd508a6
VS
2578 if (!intel_crtc->primary_enabled) {
2579 I915_WRITE(reg, 0);
2580 I915_WRITE(DSPSURF(plane), 0);
2581 POSTING_READ(reg);
2582 return;
2583 }
2584
c9ba6fad
VS
2585 obj = intel_fb_obj(fb);
2586 if (WARN_ON(obj == NULL))
2587 return;
2588
2589 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2590
f45651ba
VS
2591 dspcntr = DISPPLANE_GAMMA_ENABLE;
2592
fdd508a6 2593 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2594
2595 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2596 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2597
57779d06
VS
2598 switch (fb->pixel_format) {
2599 case DRM_FORMAT_C8:
17638cd6
JB
2600 dspcntr |= DISPPLANE_8BPP;
2601 break;
57779d06
VS
2602 case DRM_FORMAT_RGB565:
2603 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2604 break;
57779d06
VS
2605 case DRM_FORMAT_XRGB8888:
2606 case DRM_FORMAT_ARGB8888:
2607 dspcntr |= DISPPLANE_BGRX888;
2608 break;
2609 case DRM_FORMAT_XBGR8888:
2610 case DRM_FORMAT_ABGR8888:
2611 dspcntr |= DISPPLANE_RGBX888;
2612 break;
2613 case DRM_FORMAT_XRGB2101010:
2614 case DRM_FORMAT_ARGB2101010:
2615 dspcntr |= DISPPLANE_BGRX101010;
2616 break;
2617 case DRM_FORMAT_XBGR2101010:
2618 case DRM_FORMAT_ABGR2101010:
2619 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2620 break;
2621 default:
baba133a 2622 BUG();
17638cd6
JB
2623 }
2624
2625 if (obj->tiling_mode != I915_TILING_NONE)
2626 dspcntr |= DISPPLANE_TILED;
17638cd6 2627
f45651ba 2628 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2629 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2630
b9897127 2631 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2632 intel_crtc->dspaddr_offset =
bc752862 2633 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2634 pixel_size,
bc752862 2635 fb->pitches[0]);
c2c75131 2636 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2637 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2638 dspcntr |= DISPPLANE_ROTATE_180;
2639
2640 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2641 x += (intel_crtc->config->pipe_src_w - 1);
2642 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2643
2644 /* Finding the last pixel of the last line of the display
2645 data and adding to linear_offset*/
2646 linear_offset +=
6e3c9717
ACO
2647 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2648 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2649 }
2650 }
2651
2652 I915_WRITE(reg, dspcntr);
17638cd6 2653
f343c5f6
BW
2654 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2655 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2656 fb->pitches[0]);
01f2c773 2657 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2658 I915_WRITE(DSPSURF(plane),
2659 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2660 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2661 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2662 } else {
2663 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2664 I915_WRITE(DSPLINOFF(plane), linear_offset);
2665 }
17638cd6 2666 POSTING_READ(reg);
17638cd6
JB
2667}
2668
70d21f0e
DL
2669static void skylake_update_primary_plane(struct drm_crtc *crtc,
2670 struct drm_framebuffer *fb,
2671 int x, int y)
2672{
2673 struct drm_device *dev = crtc->dev;
2674 struct drm_i915_private *dev_priv = dev->dev_private;
2675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2676 struct intel_framebuffer *intel_fb;
2677 struct drm_i915_gem_object *obj;
2678 int pipe = intel_crtc->pipe;
2679 u32 plane_ctl, stride;
2680
2681 if (!intel_crtc->primary_enabled) {
2682 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2683 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2684 POSTING_READ(PLANE_CTL(pipe, 0));
2685 return;
2686 }
2687
2688 plane_ctl = PLANE_CTL_ENABLE |
2689 PLANE_CTL_PIPE_GAMMA_ENABLE |
2690 PLANE_CTL_PIPE_CSC_ENABLE;
2691
2692 switch (fb->pixel_format) {
2693 case DRM_FORMAT_RGB565:
2694 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2695 break;
2696 case DRM_FORMAT_XRGB8888:
2697 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2698 break;
2699 case DRM_FORMAT_XBGR8888:
2700 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2701 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2702 break;
2703 case DRM_FORMAT_XRGB2101010:
2704 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2705 break;
2706 case DRM_FORMAT_XBGR2101010:
2707 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2708 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2709 break;
2710 default:
2711 BUG();
2712 }
2713
2714 intel_fb = to_intel_framebuffer(fb);
2715 obj = intel_fb->obj;
2716
2717 /*
2718 * The stride is either expressed as a multiple of 64 bytes chunks for
2719 * linear buffers or in number of tiles for tiled buffers.
2720 */
2721 switch (obj->tiling_mode) {
2722 case I915_TILING_NONE:
2723 stride = fb->pitches[0] >> 6;
2724 break;
2725 case I915_TILING_X:
2726 plane_ctl |= PLANE_CTL_TILED_X;
2727 stride = fb->pitches[0] >> 9;
2728 break;
2729 default:
2730 BUG();
2731 }
2732
2733 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
1447dde0
SJ
2734 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2735 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2736
2737 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2738
2739 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2740 i915_gem_obj_ggtt_offset(obj),
2741 x, y, fb->width, fb->height,
2742 fb->pitches[0]);
2743
2744 I915_WRITE(PLANE_POS(pipe, 0), 0);
2745 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2746 I915_WRITE(PLANE_SIZE(pipe, 0),
6e3c9717
ACO
2747 (intel_crtc->config->pipe_src_h - 1) << 16 |
2748 (intel_crtc->config->pipe_src_w - 1));
70d21f0e
DL
2749 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2750 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2751
2752 POSTING_READ(PLANE_SURF(pipe, 0));
2753}
2754
17638cd6
JB
2755/* Assume fb object is pinned & idle & fenced and just update base pointers */
2756static int
2757intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2758 int x, int y, enum mode_set_atomic state)
2759{
2760 struct drm_device *dev = crtc->dev;
2761 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2762
6b8e6ed0
CW
2763 if (dev_priv->display.disable_fbc)
2764 dev_priv->display.disable_fbc(dev);
81255565 2765
29b9bde6
DV
2766 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2767
2768 return 0;
81255565
JB
2769}
2770
7514747d 2771static void intel_complete_page_flips(struct drm_device *dev)
96a02917 2772{
96a02917
VS
2773 struct drm_crtc *crtc;
2774
70e1e0ec 2775 for_each_crtc(dev, crtc) {
96a02917
VS
2776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2777 enum plane plane = intel_crtc->plane;
2778
2779 intel_prepare_page_flip(dev, plane);
2780 intel_finish_page_flip_plane(dev, plane);
2781 }
7514747d
VS
2782}
2783
2784static void intel_update_primary_planes(struct drm_device *dev)
2785{
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 struct drm_crtc *crtc;
96a02917 2788
70e1e0ec 2789 for_each_crtc(dev, crtc) {
96a02917
VS
2790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2791
51fd371b 2792 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2793 /*
2794 * FIXME: Once we have proper support for primary planes (and
2795 * disabling them without disabling the entire crtc) allow again
66e514c1 2796 * a NULL crtc->primary->fb.
947fdaad 2797 */
f4510a27 2798 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2799 dev_priv->display.update_primary_plane(crtc,
66e514c1 2800 crtc->primary->fb,
262ca2b0
MR
2801 crtc->x,
2802 crtc->y);
51fd371b 2803 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2804 }
2805}
2806
7514747d
VS
2807void intel_prepare_reset(struct drm_device *dev)
2808{
f98ce92f
VS
2809 struct drm_i915_private *dev_priv = to_i915(dev);
2810 struct intel_crtc *crtc;
2811
7514747d
VS
2812 /* no reset support for gen2 */
2813 if (IS_GEN2(dev))
2814 return;
2815
2816 /* reset doesn't touch the display */
2817 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2818 return;
2819
2820 drm_modeset_lock_all(dev);
f98ce92f
VS
2821
2822 /*
2823 * Disabling the crtcs gracefully seems nicer. Also the
2824 * g33 docs say we should at least disable all the planes.
2825 */
2826 for_each_intel_crtc(dev, crtc) {
2827 if (crtc->active)
2828 dev_priv->display.crtc_disable(&crtc->base);
2829 }
7514747d
VS
2830}
2831
2832void intel_finish_reset(struct drm_device *dev)
2833{
2834 struct drm_i915_private *dev_priv = to_i915(dev);
2835
2836 /*
2837 * Flips in the rings will be nuked by the reset,
2838 * so complete all pending flips so that user space
2839 * will get its events and not get stuck.
2840 */
2841 intel_complete_page_flips(dev);
2842
2843 /* no reset support for gen2 */
2844 if (IS_GEN2(dev))
2845 return;
2846
2847 /* reset doesn't touch the display */
2848 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2849 /*
2850 * Flips in the rings have been nuked by the reset,
2851 * so update the base address of all primary
2852 * planes to the the last fb to make sure we're
2853 * showing the correct fb after a reset.
2854 */
2855 intel_update_primary_planes(dev);
2856 return;
2857 }
2858
2859 /*
2860 * The display has been reset as well,
2861 * so need a full re-initialization.
2862 */
2863 intel_runtime_pm_disable_interrupts(dev_priv);
2864 intel_runtime_pm_enable_interrupts(dev_priv);
2865
2866 intel_modeset_init_hw(dev);
2867
2868 spin_lock_irq(&dev_priv->irq_lock);
2869 if (dev_priv->display.hpd_irq_setup)
2870 dev_priv->display.hpd_irq_setup(dev);
2871 spin_unlock_irq(&dev_priv->irq_lock);
2872
2873 intel_modeset_setup_hw_state(dev, true);
2874
2875 intel_hpd_init(dev_priv);
2876
2877 drm_modeset_unlock_all(dev);
2878}
2879
14667a4b
CW
2880static int
2881intel_finish_fb(struct drm_framebuffer *old_fb)
2882{
2ff8fde1 2883 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2884 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2885 bool was_interruptible = dev_priv->mm.interruptible;
2886 int ret;
2887
14667a4b
CW
2888 /* Big Hammer, we also need to ensure that any pending
2889 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2890 * current scanout is retired before unpinning the old
2891 * framebuffer.
2892 *
2893 * This should only fail upon a hung GPU, in which case we
2894 * can safely continue.
2895 */
2896 dev_priv->mm.interruptible = false;
2897 ret = i915_gem_object_finish_gpu(obj);
2898 dev_priv->mm.interruptible = was_interruptible;
2899
2900 return ret;
2901}
2902
7d5e3799
CW
2903static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2904{
2905 struct drm_device *dev = crtc->dev;
2906 struct drm_i915_private *dev_priv = dev->dev_private;
2907 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2908 bool pending;
2909
2910 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2911 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2912 return false;
2913
5e2d7afc 2914 spin_lock_irq(&dev->event_lock);
7d5e3799 2915 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2916 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2917
2918 return pending;
2919}
2920
e30e8f75
GP
2921static void intel_update_pipe_size(struct intel_crtc *crtc)
2922{
2923 struct drm_device *dev = crtc->base.dev;
2924 struct drm_i915_private *dev_priv = dev->dev_private;
2925 const struct drm_display_mode *adjusted_mode;
2926
2927 if (!i915.fastboot)
2928 return;
2929
2930 /*
2931 * Update pipe size and adjust fitter if needed: the reason for this is
2932 * that in compute_mode_changes we check the native mode (not the pfit
2933 * mode) to see if we can flip rather than do a full mode set. In the
2934 * fastboot case, we'll flip, but if we don't update the pipesrc and
2935 * pfit state, we'll end up with a big fb scanned out into the wrong
2936 * sized surface.
2937 *
2938 * To fix this properly, we need to hoist the checks up into
2939 * compute_mode_changes (or above), check the actual pfit state and
2940 * whether the platform allows pfit disable with pipe active, and only
2941 * then update the pipesrc and pfit state, even on the flip path.
2942 */
2943
6e3c9717 2944 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
2945
2946 I915_WRITE(PIPESRC(crtc->pipe),
2947 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2948 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 2949 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
2950 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2951 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
2952 I915_WRITE(PF_CTL(crtc->pipe), 0);
2953 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2954 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2955 }
6e3c9717
ACO
2956 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
2957 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
2958}
2959
5e84e1a4
ZW
2960static void intel_fdi_normal_train(struct drm_crtc *crtc)
2961{
2962 struct drm_device *dev = crtc->dev;
2963 struct drm_i915_private *dev_priv = dev->dev_private;
2964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2965 int pipe = intel_crtc->pipe;
2966 u32 reg, temp;
2967
2968 /* enable normal train */
2969 reg = FDI_TX_CTL(pipe);
2970 temp = I915_READ(reg);
61e499bf 2971 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2972 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2973 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2974 } else {
2975 temp &= ~FDI_LINK_TRAIN_NONE;
2976 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2977 }
5e84e1a4
ZW
2978 I915_WRITE(reg, temp);
2979
2980 reg = FDI_RX_CTL(pipe);
2981 temp = I915_READ(reg);
2982 if (HAS_PCH_CPT(dev)) {
2983 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2984 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2985 } else {
2986 temp &= ~FDI_LINK_TRAIN_NONE;
2987 temp |= FDI_LINK_TRAIN_NONE;
2988 }
2989 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2990
2991 /* wait one idle pattern time */
2992 POSTING_READ(reg);
2993 udelay(1000);
357555c0
JB
2994
2995 /* IVB wants error correction enabled */
2996 if (IS_IVYBRIDGE(dev))
2997 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2998 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2999}
3000
1fbc0d78 3001static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 3002{
1fbc0d78 3003 return crtc->base.enabled && crtc->active &&
6e3c9717 3004 crtc->config->has_pch_encoder;
1e833f40
DV
3005}
3006
01a415fd
DV
3007static void ivb_modeset_global_resources(struct drm_device *dev)
3008{
3009 struct drm_i915_private *dev_priv = dev->dev_private;
3010 struct intel_crtc *pipe_B_crtc =
3011 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3012 struct intel_crtc *pipe_C_crtc =
3013 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3014 uint32_t temp;
3015
1e833f40
DV
3016 /*
3017 * When everything is off disable fdi C so that we could enable fdi B
3018 * with all lanes. Note that we don't care about enabled pipes without
3019 * an enabled pch encoder.
3020 */
3021 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3022 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3023 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3024 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3025
3026 temp = I915_READ(SOUTH_CHICKEN1);
3027 temp &= ~FDI_BC_BIFURCATION_SELECT;
3028 DRM_DEBUG_KMS("disabling fdi C rx\n");
3029 I915_WRITE(SOUTH_CHICKEN1, temp);
3030 }
3031}
3032
8db9d77b
ZW
3033/* The FDI link training functions for ILK/Ibexpeak. */
3034static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3035{
3036 struct drm_device *dev = crtc->dev;
3037 struct drm_i915_private *dev_priv = dev->dev_private;
3038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3039 int pipe = intel_crtc->pipe;
5eddb70b 3040 u32 reg, temp, tries;
8db9d77b 3041
1c8562f6 3042 /* FDI needs bits from pipe first */
0fc932b8 3043 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3044
e1a44743
AJ
3045 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3046 for train result */
5eddb70b
CW
3047 reg = FDI_RX_IMR(pipe);
3048 temp = I915_READ(reg);
e1a44743
AJ
3049 temp &= ~FDI_RX_SYMBOL_LOCK;
3050 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3051 I915_WRITE(reg, temp);
3052 I915_READ(reg);
e1a44743
AJ
3053 udelay(150);
3054
8db9d77b 3055 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3056 reg = FDI_TX_CTL(pipe);
3057 temp = I915_READ(reg);
627eb5a3 3058 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3059 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3060 temp &= ~FDI_LINK_TRAIN_NONE;
3061 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3062 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3063
5eddb70b
CW
3064 reg = FDI_RX_CTL(pipe);
3065 temp = I915_READ(reg);
8db9d77b
ZW
3066 temp &= ~FDI_LINK_TRAIN_NONE;
3067 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3068 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3069
3070 POSTING_READ(reg);
8db9d77b
ZW
3071 udelay(150);
3072
5b2adf89 3073 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3074 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3075 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3076 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3077
5eddb70b 3078 reg = FDI_RX_IIR(pipe);
e1a44743 3079 for (tries = 0; tries < 5; tries++) {
5eddb70b 3080 temp = I915_READ(reg);
8db9d77b
ZW
3081 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3082
3083 if ((temp & FDI_RX_BIT_LOCK)) {
3084 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3085 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3086 break;
3087 }
8db9d77b 3088 }
e1a44743 3089 if (tries == 5)
5eddb70b 3090 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3091
3092 /* Train 2 */
5eddb70b
CW
3093 reg = FDI_TX_CTL(pipe);
3094 temp = I915_READ(reg);
8db9d77b
ZW
3095 temp &= ~FDI_LINK_TRAIN_NONE;
3096 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3097 I915_WRITE(reg, temp);
8db9d77b 3098
5eddb70b
CW
3099 reg = FDI_RX_CTL(pipe);
3100 temp = I915_READ(reg);
8db9d77b
ZW
3101 temp &= ~FDI_LINK_TRAIN_NONE;
3102 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3103 I915_WRITE(reg, temp);
8db9d77b 3104
5eddb70b
CW
3105 POSTING_READ(reg);
3106 udelay(150);
8db9d77b 3107
5eddb70b 3108 reg = FDI_RX_IIR(pipe);
e1a44743 3109 for (tries = 0; tries < 5; tries++) {
5eddb70b 3110 temp = I915_READ(reg);
8db9d77b
ZW
3111 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3112
3113 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3114 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3115 DRM_DEBUG_KMS("FDI train 2 done.\n");
3116 break;
3117 }
8db9d77b 3118 }
e1a44743 3119 if (tries == 5)
5eddb70b 3120 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3121
3122 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3123
8db9d77b
ZW
3124}
3125
0206e353 3126static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3127 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3128 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3129 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3130 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3131};
3132
3133/* The FDI link training functions for SNB/Cougarpoint. */
3134static void gen6_fdi_link_train(struct drm_crtc *crtc)
3135{
3136 struct drm_device *dev = crtc->dev;
3137 struct drm_i915_private *dev_priv = dev->dev_private;
3138 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3139 int pipe = intel_crtc->pipe;
fa37d39e 3140 u32 reg, temp, i, retry;
8db9d77b 3141
e1a44743
AJ
3142 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3143 for train result */
5eddb70b
CW
3144 reg = FDI_RX_IMR(pipe);
3145 temp = I915_READ(reg);
e1a44743
AJ
3146 temp &= ~FDI_RX_SYMBOL_LOCK;
3147 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3148 I915_WRITE(reg, temp);
3149
3150 POSTING_READ(reg);
e1a44743
AJ
3151 udelay(150);
3152
8db9d77b 3153 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3154 reg = FDI_TX_CTL(pipe);
3155 temp = I915_READ(reg);
627eb5a3 3156 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3157 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3158 temp &= ~FDI_LINK_TRAIN_NONE;
3159 temp |= FDI_LINK_TRAIN_PATTERN_1;
3160 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3161 /* SNB-B */
3162 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3163 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3164
d74cf324
DV
3165 I915_WRITE(FDI_RX_MISC(pipe),
3166 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3167
5eddb70b
CW
3168 reg = FDI_RX_CTL(pipe);
3169 temp = I915_READ(reg);
8db9d77b
ZW
3170 if (HAS_PCH_CPT(dev)) {
3171 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3172 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3173 } else {
3174 temp &= ~FDI_LINK_TRAIN_NONE;
3175 temp |= FDI_LINK_TRAIN_PATTERN_1;
3176 }
5eddb70b
CW
3177 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3178
3179 POSTING_READ(reg);
8db9d77b
ZW
3180 udelay(150);
3181
0206e353 3182 for (i = 0; i < 4; i++) {
5eddb70b
CW
3183 reg = FDI_TX_CTL(pipe);
3184 temp = I915_READ(reg);
8db9d77b
ZW
3185 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3186 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3187 I915_WRITE(reg, temp);
3188
3189 POSTING_READ(reg);
8db9d77b
ZW
3190 udelay(500);
3191
fa37d39e
SP
3192 for (retry = 0; retry < 5; retry++) {
3193 reg = FDI_RX_IIR(pipe);
3194 temp = I915_READ(reg);
3195 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3196 if (temp & FDI_RX_BIT_LOCK) {
3197 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3198 DRM_DEBUG_KMS("FDI train 1 done.\n");
3199 break;
3200 }
3201 udelay(50);
8db9d77b 3202 }
fa37d39e
SP
3203 if (retry < 5)
3204 break;
8db9d77b
ZW
3205 }
3206 if (i == 4)
5eddb70b 3207 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3208
3209 /* Train 2 */
5eddb70b
CW
3210 reg = FDI_TX_CTL(pipe);
3211 temp = I915_READ(reg);
8db9d77b
ZW
3212 temp &= ~FDI_LINK_TRAIN_NONE;
3213 temp |= FDI_LINK_TRAIN_PATTERN_2;
3214 if (IS_GEN6(dev)) {
3215 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3216 /* SNB-B */
3217 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3218 }
5eddb70b 3219 I915_WRITE(reg, temp);
8db9d77b 3220
5eddb70b
CW
3221 reg = FDI_RX_CTL(pipe);
3222 temp = I915_READ(reg);
8db9d77b
ZW
3223 if (HAS_PCH_CPT(dev)) {
3224 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3225 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3226 } else {
3227 temp &= ~FDI_LINK_TRAIN_NONE;
3228 temp |= FDI_LINK_TRAIN_PATTERN_2;
3229 }
5eddb70b
CW
3230 I915_WRITE(reg, temp);
3231
3232 POSTING_READ(reg);
8db9d77b
ZW
3233 udelay(150);
3234
0206e353 3235 for (i = 0; i < 4; i++) {
5eddb70b
CW
3236 reg = FDI_TX_CTL(pipe);
3237 temp = I915_READ(reg);
8db9d77b
ZW
3238 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3239 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3240 I915_WRITE(reg, temp);
3241
3242 POSTING_READ(reg);
8db9d77b
ZW
3243 udelay(500);
3244
fa37d39e
SP
3245 for (retry = 0; retry < 5; retry++) {
3246 reg = FDI_RX_IIR(pipe);
3247 temp = I915_READ(reg);
3248 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3249 if (temp & FDI_RX_SYMBOL_LOCK) {
3250 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3251 DRM_DEBUG_KMS("FDI train 2 done.\n");
3252 break;
3253 }
3254 udelay(50);
8db9d77b 3255 }
fa37d39e
SP
3256 if (retry < 5)
3257 break;
8db9d77b
ZW
3258 }
3259 if (i == 4)
5eddb70b 3260 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3261
3262 DRM_DEBUG_KMS("FDI train done.\n");
3263}
3264
357555c0
JB
3265/* Manual link training for Ivy Bridge A0 parts */
3266static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3267{
3268 struct drm_device *dev = crtc->dev;
3269 struct drm_i915_private *dev_priv = dev->dev_private;
3270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3271 int pipe = intel_crtc->pipe;
139ccd3f 3272 u32 reg, temp, i, j;
357555c0
JB
3273
3274 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3275 for train result */
3276 reg = FDI_RX_IMR(pipe);
3277 temp = I915_READ(reg);
3278 temp &= ~FDI_RX_SYMBOL_LOCK;
3279 temp &= ~FDI_RX_BIT_LOCK;
3280 I915_WRITE(reg, temp);
3281
3282 POSTING_READ(reg);
3283 udelay(150);
3284
01a415fd
DV
3285 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3286 I915_READ(FDI_RX_IIR(pipe)));
3287
139ccd3f
JB
3288 /* Try each vswing and preemphasis setting twice before moving on */
3289 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3290 /* disable first in case we need to retry */
3291 reg = FDI_TX_CTL(pipe);
3292 temp = I915_READ(reg);
3293 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3294 temp &= ~FDI_TX_ENABLE;
3295 I915_WRITE(reg, temp);
357555c0 3296
139ccd3f
JB
3297 reg = FDI_RX_CTL(pipe);
3298 temp = I915_READ(reg);
3299 temp &= ~FDI_LINK_TRAIN_AUTO;
3300 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3301 temp &= ~FDI_RX_ENABLE;
3302 I915_WRITE(reg, temp);
357555c0 3303
139ccd3f 3304 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3305 reg = FDI_TX_CTL(pipe);
3306 temp = I915_READ(reg);
139ccd3f 3307 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3308 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3309 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3310 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3311 temp |= snb_b_fdi_train_param[j/2];
3312 temp |= FDI_COMPOSITE_SYNC;
3313 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3314
139ccd3f
JB
3315 I915_WRITE(FDI_RX_MISC(pipe),
3316 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3317
139ccd3f 3318 reg = FDI_RX_CTL(pipe);
357555c0 3319 temp = I915_READ(reg);
139ccd3f
JB
3320 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3321 temp |= FDI_COMPOSITE_SYNC;
3322 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3323
139ccd3f
JB
3324 POSTING_READ(reg);
3325 udelay(1); /* should be 0.5us */
357555c0 3326
139ccd3f
JB
3327 for (i = 0; i < 4; i++) {
3328 reg = FDI_RX_IIR(pipe);
3329 temp = I915_READ(reg);
3330 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3331
139ccd3f
JB
3332 if (temp & FDI_RX_BIT_LOCK ||
3333 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3334 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3335 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3336 i);
3337 break;
3338 }
3339 udelay(1); /* should be 0.5us */
3340 }
3341 if (i == 4) {
3342 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3343 continue;
3344 }
357555c0 3345
139ccd3f 3346 /* Train 2 */
357555c0
JB
3347 reg = FDI_TX_CTL(pipe);
3348 temp = I915_READ(reg);
139ccd3f
JB
3349 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3350 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3351 I915_WRITE(reg, temp);
3352
3353 reg = FDI_RX_CTL(pipe);
3354 temp = I915_READ(reg);
3355 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3356 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3357 I915_WRITE(reg, temp);
3358
3359 POSTING_READ(reg);
139ccd3f 3360 udelay(2); /* should be 1.5us */
357555c0 3361
139ccd3f
JB
3362 for (i = 0; i < 4; i++) {
3363 reg = FDI_RX_IIR(pipe);
3364 temp = I915_READ(reg);
3365 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3366
139ccd3f
JB
3367 if (temp & FDI_RX_SYMBOL_LOCK ||
3368 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3369 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3370 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3371 i);
3372 goto train_done;
3373 }
3374 udelay(2); /* should be 1.5us */
357555c0 3375 }
139ccd3f
JB
3376 if (i == 4)
3377 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3378 }
357555c0 3379
139ccd3f 3380train_done:
357555c0
JB
3381 DRM_DEBUG_KMS("FDI train done.\n");
3382}
3383
88cefb6c 3384static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3385{
88cefb6c 3386 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3387 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3388 int pipe = intel_crtc->pipe;
5eddb70b 3389 u32 reg, temp;
79e53945 3390
c64e311e 3391
c98e9dcf 3392 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3393 reg = FDI_RX_CTL(pipe);
3394 temp = I915_READ(reg);
627eb5a3 3395 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3396 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3397 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3398 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3399
3400 POSTING_READ(reg);
c98e9dcf
JB
3401 udelay(200);
3402
3403 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3404 temp = I915_READ(reg);
3405 I915_WRITE(reg, temp | FDI_PCDCLK);
3406
3407 POSTING_READ(reg);
c98e9dcf
JB
3408 udelay(200);
3409
20749730
PZ
3410 /* Enable CPU FDI TX PLL, always on for Ironlake */
3411 reg = FDI_TX_CTL(pipe);
3412 temp = I915_READ(reg);
3413 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3414 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3415
20749730
PZ
3416 POSTING_READ(reg);
3417 udelay(100);
6be4a607 3418 }
0e23b99d
JB
3419}
3420
88cefb6c
DV
3421static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3422{
3423 struct drm_device *dev = intel_crtc->base.dev;
3424 struct drm_i915_private *dev_priv = dev->dev_private;
3425 int pipe = intel_crtc->pipe;
3426 u32 reg, temp;
3427
3428 /* Switch from PCDclk to Rawclk */
3429 reg = FDI_RX_CTL(pipe);
3430 temp = I915_READ(reg);
3431 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3432
3433 /* Disable CPU FDI TX PLL */
3434 reg = FDI_TX_CTL(pipe);
3435 temp = I915_READ(reg);
3436 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3437
3438 POSTING_READ(reg);
3439 udelay(100);
3440
3441 reg = FDI_RX_CTL(pipe);
3442 temp = I915_READ(reg);
3443 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3444
3445 /* Wait for the clocks to turn off. */
3446 POSTING_READ(reg);
3447 udelay(100);
3448}
3449
0fc932b8
JB
3450static void ironlake_fdi_disable(struct drm_crtc *crtc)
3451{
3452 struct drm_device *dev = crtc->dev;
3453 struct drm_i915_private *dev_priv = dev->dev_private;
3454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3455 int pipe = intel_crtc->pipe;
3456 u32 reg, temp;
3457
3458 /* disable CPU FDI tx and PCH FDI rx */
3459 reg = FDI_TX_CTL(pipe);
3460 temp = I915_READ(reg);
3461 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3462 POSTING_READ(reg);
3463
3464 reg = FDI_RX_CTL(pipe);
3465 temp = I915_READ(reg);
3466 temp &= ~(0x7 << 16);
dfd07d72 3467 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3468 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3469
3470 POSTING_READ(reg);
3471 udelay(100);
3472
3473 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3474 if (HAS_PCH_IBX(dev))
6f06ce18 3475 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3476
3477 /* still set train pattern 1 */
3478 reg = FDI_TX_CTL(pipe);
3479 temp = I915_READ(reg);
3480 temp &= ~FDI_LINK_TRAIN_NONE;
3481 temp |= FDI_LINK_TRAIN_PATTERN_1;
3482 I915_WRITE(reg, temp);
3483
3484 reg = FDI_RX_CTL(pipe);
3485 temp = I915_READ(reg);
3486 if (HAS_PCH_CPT(dev)) {
3487 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3488 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3489 } else {
3490 temp &= ~FDI_LINK_TRAIN_NONE;
3491 temp |= FDI_LINK_TRAIN_PATTERN_1;
3492 }
3493 /* BPC in FDI rx is consistent with that in PIPECONF */
3494 temp &= ~(0x07 << 16);
dfd07d72 3495 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3496 I915_WRITE(reg, temp);
3497
3498 POSTING_READ(reg);
3499 udelay(100);
3500}
3501
5dce5b93
CW
3502bool intel_has_pending_fb_unpin(struct drm_device *dev)
3503{
3504 struct intel_crtc *crtc;
3505
3506 /* Note that we don't need to be called with mode_config.lock here
3507 * as our list of CRTC objects is static for the lifetime of the
3508 * device and so cannot disappear as we iterate. Similarly, we can
3509 * happily treat the predicates as racy, atomic checks as userspace
3510 * cannot claim and pin a new fb without at least acquring the
3511 * struct_mutex and so serialising with us.
3512 */
d3fcc808 3513 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3514 if (atomic_read(&crtc->unpin_work_count) == 0)
3515 continue;
3516
3517 if (crtc->unpin_work)
3518 intel_wait_for_vblank(dev, crtc->pipe);
3519
3520 return true;
3521 }
3522
3523 return false;
3524}
3525
d6bbafa1
CW
3526static void page_flip_completed(struct intel_crtc *intel_crtc)
3527{
3528 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3529 struct intel_unpin_work *work = intel_crtc->unpin_work;
3530
3531 /* ensure that the unpin work is consistent wrt ->pending. */
3532 smp_rmb();
3533 intel_crtc->unpin_work = NULL;
3534
3535 if (work->event)
3536 drm_send_vblank_event(intel_crtc->base.dev,
3537 intel_crtc->pipe,
3538 work->event);
3539
3540 drm_crtc_vblank_put(&intel_crtc->base);
3541
3542 wake_up_all(&dev_priv->pending_flip_queue);
3543 queue_work(dev_priv->wq, &work->work);
3544
3545 trace_i915_flip_complete(intel_crtc->plane,
3546 work->pending_flip_obj);
3547}
3548
46a55d30 3549void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3550{
0f91128d 3551 struct drm_device *dev = crtc->dev;
5bb61643 3552 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3553
2c10d571 3554 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3555 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3556 !intel_crtc_has_pending_flip(crtc),
3557 60*HZ) == 0)) {
3558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3559
5e2d7afc 3560 spin_lock_irq(&dev->event_lock);
9c787942
CW
3561 if (intel_crtc->unpin_work) {
3562 WARN_ONCE(1, "Removing stuck page flip\n");
3563 page_flip_completed(intel_crtc);
3564 }
5e2d7afc 3565 spin_unlock_irq(&dev->event_lock);
9c787942 3566 }
5bb61643 3567
975d568a
CW
3568 if (crtc->primary->fb) {
3569 mutex_lock(&dev->struct_mutex);
3570 intel_finish_fb(crtc->primary->fb);
3571 mutex_unlock(&dev->struct_mutex);
3572 }
e6c3a2a6
CW
3573}
3574
e615efe4
ED
3575/* Program iCLKIP clock to the desired frequency */
3576static void lpt_program_iclkip(struct drm_crtc *crtc)
3577{
3578 struct drm_device *dev = crtc->dev;
3579 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3580 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3581 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3582 u32 temp;
3583
09153000
DV
3584 mutex_lock(&dev_priv->dpio_lock);
3585
e615efe4
ED
3586 /* It is necessary to ungate the pixclk gate prior to programming
3587 * the divisors, and gate it back when it is done.
3588 */
3589 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3590
3591 /* Disable SSCCTL */
3592 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3593 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3594 SBI_SSCCTL_DISABLE,
3595 SBI_ICLK);
e615efe4
ED
3596
3597 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3598 if (clock == 20000) {
e615efe4
ED
3599 auxdiv = 1;
3600 divsel = 0x41;
3601 phaseinc = 0x20;
3602 } else {
3603 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3604 * but the adjusted_mode->crtc_clock in in KHz. To get the
3605 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3606 * convert the virtual clock precision to KHz here for higher
3607 * precision.
3608 */
3609 u32 iclk_virtual_root_freq = 172800 * 1000;
3610 u32 iclk_pi_range = 64;
3611 u32 desired_divisor, msb_divisor_value, pi_value;
3612
12d7ceed 3613 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3614 msb_divisor_value = desired_divisor / iclk_pi_range;
3615 pi_value = desired_divisor % iclk_pi_range;
3616
3617 auxdiv = 0;
3618 divsel = msb_divisor_value - 2;
3619 phaseinc = pi_value;
3620 }
3621
3622 /* This should not happen with any sane values */
3623 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3624 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3625 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3626 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3627
3628 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3629 clock,
e615efe4
ED
3630 auxdiv,
3631 divsel,
3632 phasedir,
3633 phaseinc);
3634
3635 /* Program SSCDIVINTPHASE6 */
988d6ee8 3636 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3637 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3638 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3639 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3640 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3641 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3642 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3643 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3644
3645 /* Program SSCAUXDIV */
988d6ee8 3646 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3647 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3648 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3649 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3650
3651 /* Enable modulator and associated divider */
988d6ee8 3652 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3653 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3654 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3655
3656 /* Wait for initialization time */
3657 udelay(24);
3658
3659 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3660
3661 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3662}
3663
275f01b2
DV
3664static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3665 enum pipe pch_transcoder)
3666{
3667 struct drm_device *dev = crtc->base.dev;
3668 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3669 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3670
3671 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3672 I915_READ(HTOTAL(cpu_transcoder)));
3673 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3674 I915_READ(HBLANK(cpu_transcoder)));
3675 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3676 I915_READ(HSYNC(cpu_transcoder)));
3677
3678 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3679 I915_READ(VTOTAL(cpu_transcoder)));
3680 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3681 I915_READ(VBLANK(cpu_transcoder)));
3682 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3683 I915_READ(VSYNC(cpu_transcoder)));
3684 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3685 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3686}
3687
1fbc0d78
DV
3688static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3689{
3690 struct drm_i915_private *dev_priv = dev->dev_private;
3691 uint32_t temp;
3692
3693 temp = I915_READ(SOUTH_CHICKEN1);
3694 if (temp & FDI_BC_BIFURCATION_SELECT)
3695 return;
3696
3697 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3698 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3699
3700 temp |= FDI_BC_BIFURCATION_SELECT;
3701 DRM_DEBUG_KMS("enabling fdi C rx\n");
3702 I915_WRITE(SOUTH_CHICKEN1, temp);
3703 POSTING_READ(SOUTH_CHICKEN1);
3704}
3705
3706static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3707{
3708 struct drm_device *dev = intel_crtc->base.dev;
3709 struct drm_i915_private *dev_priv = dev->dev_private;
3710
3711 switch (intel_crtc->pipe) {
3712 case PIPE_A:
3713 break;
3714 case PIPE_B:
6e3c9717 3715 if (intel_crtc->config->fdi_lanes > 2)
1fbc0d78
DV
3716 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3717 else
3718 cpt_enable_fdi_bc_bifurcation(dev);
3719
3720 break;
3721 case PIPE_C:
3722 cpt_enable_fdi_bc_bifurcation(dev);
3723
3724 break;
3725 default:
3726 BUG();
3727 }
3728}
3729
f67a559d
JB
3730/*
3731 * Enable PCH resources required for PCH ports:
3732 * - PCH PLLs
3733 * - FDI training & RX/TX
3734 * - update transcoder timings
3735 * - DP transcoding bits
3736 * - transcoder
3737 */
3738static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3739{
3740 struct drm_device *dev = crtc->dev;
3741 struct drm_i915_private *dev_priv = dev->dev_private;
3742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3743 int pipe = intel_crtc->pipe;
ee7b9f93 3744 u32 reg, temp;
2c07245f 3745
ab9412ba 3746 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3747
1fbc0d78
DV
3748 if (IS_IVYBRIDGE(dev))
3749 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3750
cd986abb
DV
3751 /* Write the TU size bits before fdi link training, so that error
3752 * detection works. */
3753 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3754 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3755
c98e9dcf 3756 /* For PCH output, training FDI link */
674cf967 3757 dev_priv->display.fdi_link_train(crtc);
2c07245f 3758
3ad8a208
DV
3759 /* We need to program the right clock selection before writing the pixel
3760 * mutliplier into the DPLL. */
303b81e0 3761 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3762 u32 sel;
4b645f14 3763
c98e9dcf 3764 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3765 temp |= TRANS_DPLL_ENABLE(pipe);
3766 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 3767 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3768 temp |= sel;
3769 else
3770 temp &= ~sel;
c98e9dcf 3771 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3772 }
5eddb70b 3773
3ad8a208
DV
3774 /* XXX: pch pll's can be enabled any time before we enable the PCH
3775 * transcoder, and we actually should do this to not upset any PCH
3776 * transcoder that already use the clock when we share it.
3777 *
3778 * Note that enable_shared_dpll tries to do the right thing, but
3779 * get_shared_dpll unconditionally resets the pll - we need that to have
3780 * the right LVDS enable sequence. */
85b3894f 3781 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3782
d9b6cb56
JB
3783 /* set transcoder timing, panel must allow it */
3784 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3785 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3786
303b81e0 3787 intel_fdi_normal_train(crtc);
5e84e1a4 3788
c98e9dcf 3789 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 3790 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 3791 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3792 reg = TRANS_DP_CTL(pipe);
3793 temp = I915_READ(reg);
3794 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3795 TRANS_DP_SYNC_MASK |
3796 TRANS_DP_BPC_MASK);
5eddb70b
CW
3797 temp |= (TRANS_DP_OUTPUT_ENABLE |
3798 TRANS_DP_ENH_FRAMING);
9325c9f0 3799 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3800
3801 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3802 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3803 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3804 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3805
3806 switch (intel_trans_dp_port_sel(crtc)) {
3807 case PCH_DP_B:
5eddb70b 3808 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3809 break;
3810 case PCH_DP_C:
5eddb70b 3811 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3812 break;
3813 case PCH_DP_D:
5eddb70b 3814 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3815 break;
3816 default:
e95d41e1 3817 BUG();
32f9d658 3818 }
2c07245f 3819
5eddb70b 3820 I915_WRITE(reg, temp);
6be4a607 3821 }
b52eb4dc 3822
b8a4f404 3823 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3824}
3825
1507e5bd
PZ
3826static void lpt_pch_enable(struct drm_crtc *crtc)
3827{
3828 struct drm_device *dev = crtc->dev;
3829 struct drm_i915_private *dev_priv = dev->dev_private;
3830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 3831 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 3832
ab9412ba 3833 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3834
8c52b5e8 3835 lpt_program_iclkip(crtc);
1507e5bd 3836
0540e488 3837 /* Set transcoder timing. */
275f01b2 3838 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3839
937bb610 3840 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3841}
3842
716c2e55 3843void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3844{
e2b78267 3845 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3846
3847 if (pll == NULL)
3848 return;
3849
3e369b76 3850 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 3851 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
3852 return;
3853 }
3854
3e369b76
ACO
3855 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3856 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
3857 WARN_ON(pll->on);
3858 WARN_ON(pll->active);
3859 }
3860
6e3c9717 3861 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3862}
3863
190f68c5
ACO
3864struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3865 struct intel_crtc_state *crtc_state)
ee7b9f93 3866{
e2b78267 3867 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 3868 struct intel_shared_dpll *pll;
e2b78267 3869 enum intel_dpll_id i;
ee7b9f93 3870
98b6bd99
DV
3871 if (HAS_PCH_IBX(dev_priv->dev)) {
3872 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3873 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3874 pll = &dev_priv->shared_dplls[i];
98b6bd99 3875
46edb027
DV
3876 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3877 crtc->base.base.id, pll->name);
98b6bd99 3878
8bd31e67 3879 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 3880
98b6bd99
DV
3881 goto found;
3882 }
3883
e72f9fbf
DV
3884 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3885 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3886
3887 /* Only want to check enabled timings first */
8bd31e67 3888 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
3889 continue;
3890
190f68c5 3891 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
3892 &pll->new_config->hw_state,
3893 sizeof(pll->new_config->hw_state)) == 0) {
3894 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 3895 crtc->base.base.id, pll->name,
8bd31e67
ACO
3896 pll->new_config->crtc_mask,
3897 pll->active);
ee7b9f93
JB
3898 goto found;
3899 }
3900 }
3901
3902 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3903 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3904 pll = &dev_priv->shared_dplls[i];
8bd31e67 3905 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
3906 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3907 crtc->base.base.id, pll->name);
ee7b9f93
JB
3908 goto found;
3909 }
3910 }
3911
3912 return NULL;
3913
3914found:
8bd31e67 3915 if (pll->new_config->crtc_mask == 0)
190f68c5 3916 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 3917
190f68c5 3918 crtc_state->shared_dpll = i;
46edb027
DV
3919 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3920 pipe_name(crtc->pipe));
ee7b9f93 3921
8bd31e67 3922 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 3923
ee7b9f93
JB
3924 return pll;
3925}
3926
8bd31e67
ACO
3927/**
3928 * intel_shared_dpll_start_config - start a new PLL staged config
3929 * @dev_priv: DRM device
3930 * @clear_pipes: mask of pipes that will have their PLLs freed
3931 *
3932 * Starts a new PLL staged config, copying the current config but
3933 * releasing the references of pipes specified in clear_pipes.
3934 */
3935static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3936 unsigned clear_pipes)
3937{
3938 struct intel_shared_dpll *pll;
3939 enum intel_dpll_id i;
3940
3941 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3942 pll = &dev_priv->shared_dplls[i];
3943
3944 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3945 GFP_KERNEL);
3946 if (!pll->new_config)
3947 goto cleanup;
3948
3949 pll->new_config->crtc_mask &= ~clear_pipes;
3950 }
3951
3952 return 0;
3953
3954cleanup:
3955 while (--i >= 0) {
3956 pll = &dev_priv->shared_dplls[i];
f354d733 3957 kfree(pll->new_config);
8bd31e67
ACO
3958 pll->new_config = NULL;
3959 }
3960
3961 return -ENOMEM;
3962}
3963
3964static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3965{
3966 struct intel_shared_dpll *pll;
3967 enum intel_dpll_id i;
3968
3969 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3970 pll = &dev_priv->shared_dplls[i];
3971
3972 WARN_ON(pll->new_config == &pll->config);
3973
3974 pll->config = *pll->new_config;
3975 kfree(pll->new_config);
3976 pll->new_config = NULL;
3977 }
3978}
3979
3980static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3981{
3982 struct intel_shared_dpll *pll;
3983 enum intel_dpll_id i;
3984
3985 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3986 pll = &dev_priv->shared_dplls[i];
3987
3988 WARN_ON(pll->new_config == &pll->config);
3989
3990 kfree(pll->new_config);
3991 pll->new_config = NULL;
3992 }
3993}
3994
a1520318 3995static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3996{
3997 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3998 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3999 u32 temp;
4000
4001 temp = I915_READ(dslreg);
4002 udelay(500);
4003 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4004 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4005 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4006 }
4007}
4008
bd2e244f
JB
4009static void skylake_pfit_enable(struct intel_crtc *crtc)
4010{
4011 struct drm_device *dev = crtc->base.dev;
4012 struct drm_i915_private *dev_priv = dev->dev_private;
4013 int pipe = crtc->pipe;
4014
6e3c9717 4015 if (crtc->config->pch_pfit.enabled) {
bd2e244f 4016 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
6e3c9717
ACO
4017 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4018 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
bd2e244f
JB
4019 }
4020}
4021
b074cec8
JB
4022static void ironlake_pfit_enable(struct intel_crtc *crtc)
4023{
4024 struct drm_device *dev = crtc->base.dev;
4025 struct drm_i915_private *dev_priv = dev->dev_private;
4026 int pipe = crtc->pipe;
4027
6e3c9717 4028 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4029 /* Force use of hard-coded filter coefficients
4030 * as some pre-programmed values are broken,
4031 * e.g. x201.
4032 */
4033 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4034 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4035 PF_PIPE_SEL_IVB(pipe));
4036 else
4037 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4038 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4039 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4040 }
4041}
4042
4a3b8769 4043static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4044{
4045 struct drm_device *dev = crtc->dev;
4046 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4047 struct drm_plane *plane;
bb53d4ae
VS
4048 struct intel_plane *intel_plane;
4049
af2b653b
MR
4050 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4051 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4052 if (intel_plane->pipe == pipe)
4053 intel_plane_restore(&intel_plane->base);
af2b653b 4054 }
bb53d4ae
VS
4055}
4056
4a3b8769 4057static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4058{
4059 struct drm_device *dev = crtc->dev;
4060 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4061 struct drm_plane *plane;
bb53d4ae
VS
4062 struct intel_plane *intel_plane;
4063
af2b653b
MR
4064 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4065 intel_plane = to_intel_plane(plane);
bb53d4ae 4066 if (intel_plane->pipe == pipe)
cf4c7c12 4067 plane->funcs->disable_plane(plane);
af2b653b 4068 }
bb53d4ae
VS
4069}
4070
20bc8673 4071void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4072{
cea165c3
VS
4073 struct drm_device *dev = crtc->base.dev;
4074 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4075
6e3c9717 4076 if (!crtc->config->ips_enabled)
d77e4531
PZ
4077 return;
4078
cea165c3
VS
4079 /* We can only enable IPS after we enable a plane and wait for a vblank */
4080 intel_wait_for_vblank(dev, crtc->pipe);
4081
d77e4531 4082 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4083 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4084 mutex_lock(&dev_priv->rps.hw_lock);
4085 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4086 mutex_unlock(&dev_priv->rps.hw_lock);
4087 /* Quoting Art Runyan: "its not safe to expect any particular
4088 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4089 * mailbox." Moreover, the mailbox may return a bogus state,
4090 * so we need to just enable it and continue on.
2a114cc1
BW
4091 */
4092 } else {
4093 I915_WRITE(IPS_CTL, IPS_ENABLE);
4094 /* The bit only becomes 1 in the next vblank, so this wait here
4095 * is essentially intel_wait_for_vblank. If we don't have this
4096 * and don't wait for vblanks until the end of crtc_enable, then
4097 * the HW state readout code will complain that the expected
4098 * IPS_CTL value is not the one we read. */
4099 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4100 DRM_ERROR("Timed out waiting for IPS enable\n");
4101 }
d77e4531
PZ
4102}
4103
20bc8673 4104void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4105{
4106 struct drm_device *dev = crtc->base.dev;
4107 struct drm_i915_private *dev_priv = dev->dev_private;
4108
6e3c9717 4109 if (!crtc->config->ips_enabled)
d77e4531
PZ
4110 return;
4111
4112 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4113 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4114 mutex_lock(&dev_priv->rps.hw_lock);
4115 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4116 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4117 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4118 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4119 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4120 } else {
2a114cc1 4121 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4122 POSTING_READ(IPS_CTL);
4123 }
d77e4531
PZ
4124
4125 /* We need to wait for a vblank before we can disable the plane. */
4126 intel_wait_for_vblank(dev, crtc->pipe);
4127}
4128
4129/** Loads the palette/gamma unit for the CRTC with the prepared values */
4130static void intel_crtc_load_lut(struct drm_crtc *crtc)
4131{
4132 struct drm_device *dev = crtc->dev;
4133 struct drm_i915_private *dev_priv = dev->dev_private;
4134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4135 enum pipe pipe = intel_crtc->pipe;
4136 int palreg = PALETTE(pipe);
4137 int i;
4138 bool reenable_ips = false;
4139
4140 /* The clocks have to be on to load the palette. */
4141 if (!crtc->enabled || !intel_crtc->active)
4142 return;
4143
4144 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4145 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4146 assert_dsi_pll_enabled(dev_priv);
4147 else
4148 assert_pll_enabled(dev_priv, pipe);
4149 }
4150
4151 /* use legacy palette for Ironlake */
7a1db49a 4152 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4153 palreg = LGC_PALETTE(pipe);
4154
4155 /* Workaround : Do not read or write the pipe palette/gamma data while
4156 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4157 */
6e3c9717 4158 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4159 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4160 GAMMA_MODE_MODE_SPLIT)) {
4161 hsw_disable_ips(intel_crtc);
4162 reenable_ips = true;
4163 }
4164
4165 for (i = 0; i < 256; i++) {
4166 I915_WRITE(palreg + 4 * i,
4167 (intel_crtc->lut_r[i] << 16) |
4168 (intel_crtc->lut_g[i] << 8) |
4169 intel_crtc->lut_b[i]);
4170 }
4171
4172 if (reenable_ips)
4173 hsw_enable_ips(intel_crtc);
4174}
4175
d3eedb1a
VS
4176static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4177{
4178 if (!enable && intel_crtc->overlay) {
4179 struct drm_device *dev = intel_crtc->base.dev;
4180 struct drm_i915_private *dev_priv = dev->dev_private;
4181
4182 mutex_lock(&dev->struct_mutex);
4183 dev_priv->mm.interruptible = false;
4184 (void) intel_overlay_switch_off(intel_crtc->overlay);
4185 dev_priv->mm.interruptible = true;
4186 mutex_unlock(&dev->struct_mutex);
4187 }
4188
4189 /* Let userspace switch the overlay on again. In most cases userspace
4190 * has to recompute where to put it anyway.
4191 */
4192}
4193
d3eedb1a 4194static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4195{
4196 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4198 int pipe = intel_crtc->pipe;
a5c4d7bc 4199
fdd508a6 4200 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4201 intel_enable_sprite_planes(crtc);
a5c4d7bc 4202 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4203 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4204
4205 hsw_enable_ips(intel_crtc);
4206
4207 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4208 intel_fbc_update(dev);
a5c4d7bc 4209 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4210
4211 /*
4212 * FIXME: Once we grow proper nuclear flip support out of this we need
4213 * to compute the mask of flip planes precisely. For the time being
4214 * consider this a flip from a NULL plane.
4215 */
4216 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4217}
4218
d3eedb1a 4219static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4220{
4221 struct drm_device *dev = crtc->dev;
4222 struct drm_i915_private *dev_priv = dev->dev_private;
4223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4224 int pipe = intel_crtc->pipe;
4225 int plane = intel_crtc->plane;
4226
4227 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4228
4229 if (dev_priv->fbc.plane == plane)
7ff0ebcc 4230 intel_fbc_disable(dev);
a5c4d7bc
VS
4231
4232 hsw_disable_ips(intel_crtc);
4233
d3eedb1a 4234 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4235 intel_crtc_update_cursor(crtc, false);
4a3b8769 4236 intel_disable_sprite_planes(crtc);
fdd508a6 4237 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4238
f99d7069
DV
4239 /*
4240 * FIXME: Once we grow proper nuclear flip support out of this we need
4241 * to compute the mask of flip planes precisely. For the time being
4242 * consider this a flip to a NULL plane.
4243 */
4244 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4245}
4246
f67a559d
JB
4247static void ironlake_crtc_enable(struct drm_crtc *crtc)
4248{
4249 struct drm_device *dev = crtc->dev;
4250 struct drm_i915_private *dev_priv = dev->dev_private;
4251 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4252 struct intel_encoder *encoder;
f67a559d 4253 int pipe = intel_crtc->pipe;
f67a559d 4254
08a48469
DV
4255 WARN_ON(!crtc->enabled);
4256
f67a559d
JB
4257 if (intel_crtc->active)
4258 return;
4259
6e3c9717 4260 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4261 intel_prepare_shared_dpll(intel_crtc);
4262
6e3c9717 4263 if (intel_crtc->config->has_dp_encoder)
29407aab
DV
4264 intel_dp_set_m_n(intel_crtc);
4265
4266 intel_set_pipe_timings(intel_crtc);
4267
6e3c9717 4268 if (intel_crtc->config->has_pch_encoder) {
29407aab 4269 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4270 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4271 }
4272
4273 ironlake_set_pipeconf(crtc);
4274
f67a559d 4275 intel_crtc->active = true;
8664281b 4276
a72e4c9f
DV
4277 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4278 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4279
f6736a1a 4280 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4281 if (encoder->pre_enable)
4282 encoder->pre_enable(encoder);
f67a559d 4283
6e3c9717 4284 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4285 /* Note: FDI PLL enabling _must_ be done before we enable the
4286 * cpu pipes, hence this is separate from all the other fdi/pch
4287 * enabling. */
88cefb6c 4288 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4289 } else {
4290 assert_fdi_tx_disabled(dev_priv, pipe);
4291 assert_fdi_rx_disabled(dev_priv, pipe);
4292 }
f67a559d 4293
b074cec8 4294 ironlake_pfit_enable(intel_crtc);
f67a559d 4295
9c54c0dd
JB
4296 /*
4297 * On ILK+ LUT must be loaded before the pipe is running but with
4298 * clocks enabled
4299 */
4300 intel_crtc_load_lut(crtc);
4301
f37fcc2a 4302 intel_update_watermarks(crtc);
e1fdc473 4303 intel_enable_pipe(intel_crtc);
f67a559d 4304
6e3c9717 4305 if (intel_crtc->config->has_pch_encoder)
f67a559d 4306 ironlake_pch_enable(crtc);
c98e9dcf 4307
f9b61ff6
DV
4308 assert_vblank_disabled(crtc);
4309 drm_crtc_vblank_on(crtc);
4310
fa5c73b1
DV
4311 for_each_encoder_on_crtc(dev, crtc, encoder)
4312 encoder->enable(encoder);
61b77ddd
DV
4313
4314 if (HAS_PCH_CPT(dev))
a1520318 4315 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4316
d3eedb1a 4317 intel_crtc_enable_planes(crtc);
6be4a607
JB
4318}
4319
42db64ef
PZ
4320/* IPS only exists on ULT machines and is tied to pipe A. */
4321static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4322{
f5adf94e 4323 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4324}
4325
e4916946
PZ
4326/*
4327 * This implements the workaround described in the "notes" section of the mode
4328 * set sequence documentation. When going from no pipes or single pipe to
4329 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4330 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4331 */
4332static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4333{
4334 struct drm_device *dev = crtc->base.dev;
4335 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4336
4337 /* We want to get the other_active_crtc only if there's only 1 other
4338 * active crtc. */
d3fcc808 4339 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4340 if (!crtc_it->active || crtc_it == crtc)
4341 continue;
4342
4343 if (other_active_crtc)
4344 return;
4345
4346 other_active_crtc = crtc_it;
4347 }
4348 if (!other_active_crtc)
4349 return;
4350
4351 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4352 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4353}
4354
4f771f10
PZ
4355static void haswell_crtc_enable(struct drm_crtc *crtc)
4356{
4357 struct drm_device *dev = crtc->dev;
4358 struct drm_i915_private *dev_priv = dev->dev_private;
4359 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4360 struct intel_encoder *encoder;
4361 int pipe = intel_crtc->pipe;
4f771f10
PZ
4362
4363 WARN_ON(!crtc->enabled);
4364
4365 if (intel_crtc->active)
4366 return;
4367
df8ad70c
DV
4368 if (intel_crtc_to_shared_dpll(intel_crtc))
4369 intel_enable_shared_dpll(intel_crtc);
4370
6e3c9717 4371 if (intel_crtc->config->has_dp_encoder)
229fca97
DV
4372 intel_dp_set_m_n(intel_crtc);
4373
4374 intel_set_pipe_timings(intel_crtc);
4375
6e3c9717
ACO
4376 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4377 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4378 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4379 }
4380
6e3c9717 4381 if (intel_crtc->config->has_pch_encoder) {
229fca97 4382 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4383 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4384 }
4385
4386 haswell_set_pipeconf(crtc);
4387
4388 intel_set_pipe_csc(crtc);
4389
4f771f10 4390 intel_crtc->active = true;
8664281b 4391
a72e4c9f 4392 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4393 for_each_encoder_on_crtc(dev, crtc, encoder)
4394 if (encoder->pre_enable)
4395 encoder->pre_enable(encoder);
4396
6e3c9717 4397 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4398 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4399 true);
4fe9467d
ID
4400 dev_priv->display.fdi_link_train(crtc);
4401 }
4402
1f544388 4403 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4404
bd2e244f
JB
4405 if (IS_SKYLAKE(dev))
4406 skylake_pfit_enable(intel_crtc);
4407 else
4408 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4409
4410 /*
4411 * On ILK+ LUT must be loaded before the pipe is running but with
4412 * clocks enabled
4413 */
4414 intel_crtc_load_lut(crtc);
4415
1f544388 4416 intel_ddi_set_pipe_settings(crtc);
8228c251 4417 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4418
f37fcc2a 4419 intel_update_watermarks(crtc);
e1fdc473 4420 intel_enable_pipe(intel_crtc);
42db64ef 4421
6e3c9717 4422 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4423 lpt_pch_enable(crtc);
4f771f10 4424
6e3c9717 4425 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4426 intel_ddi_set_vc_payload_alloc(crtc, true);
4427
f9b61ff6
DV
4428 assert_vblank_disabled(crtc);
4429 drm_crtc_vblank_on(crtc);
4430
8807e55b 4431 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4432 encoder->enable(encoder);
8807e55b
JN
4433 intel_opregion_notify_encoder(encoder, true);
4434 }
4f771f10 4435
e4916946
PZ
4436 /* If we change the relative order between pipe/planes enabling, we need
4437 * to change the workaround. */
4438 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4439 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4440}
4441
bd2e244f
JB
4442static void skylake_pfit_disable(struct intel_crtc *crtc)
4443{
4444 struct drm_device *dev = crtc->base.dev;
4445 struct drm_i915_private *dev_priv = dev->dev_private;
4446 int pipe = crtc->pipe;
4447
4448 /* To avoid upsetting the power well on haswell only disable the pfit if
4449 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4450 if (crtc->config->pch_pfit.enabled) {
bd2e244f
JB
4451 I915_WRITE(PS_CTL(pipe), 0);
4452 I915_WRITE(PS_WIN_POS(pipe), 0);
4453 I915_WRITE(PS_WIN_SZ(pipe), 0);
4454 }
4455}
4456
3f8dce3a
DV
4457static void ironlake_pfit_disable(struct intel_crtc *crtc)
4458{
4459 struct drm_device *dev = crtc->base.dev;
4460 struct drm_i915_private *dev_priv = dev->dev_private;
4461 int pipe = crtc->pipe;
4462
4463 /* To avoid upsetting the power well on haswell only disable the pfit if
4464 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4465 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4466 I915_WRITE(PF_CTL(pipe), 0);
4467 I915_WRITE(PF_WIN_POS(pipe), 0);
4468 I915_WRITE(PF_WIN_SZ(pipe), 0);
4469 }
4470}
4471
6be4a607
JB
4472static void ironlake_crtc_disable(struct drm_crtc *crtc)
4473{
4474 struct drm_device *dev = crtc->dev;
4475 struct drm_i915_private *dev_priv = dev->dev_private;
4476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4477 struct intel_encoder *encoder;
6be4a607 4478 int pipe = intel_crtc->pipe;
5eddb70b 4479 u32 reg, temp;
b52eb4dc 4480
f7abfe8b
CW
4481 if (!intel_crtc->active)
4482 return;
4483
d3eedb1a 4484 intel_crtc_disable_planes(crtc);
a5c4d7bc 4485
ea9d758d
DV
4486 for_each_encoder_on_crtc(dev, crtc, encoder)
4487 encoder->disable(encoder);
4488
f9b61ff6
DV
4489 drm_crtc_vblank_off(crtc);
4490 assert_vblank_disabled(crtc);
4491
6e3c9717 4492 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4493 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4494
575f7ab7 4495 intel_disable_pipe(intel_crtc);
32f9d658 4496
3f8dce3a 4497 ironlake_pfit_disable(intel_crtc);
2c07245f 4498
bf49ec8c
DV
4499 for_each_encoder_on_crtc(dev, crtc, encoder)
4500 if (encoder->post_disable)
4501 encoder->post_disable(encoder);
2c07245f 4502
6e3c9717 4503 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4504 ironlake_fdi_disable(crtc);
913d8d11 4505
d925c59a 4506 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4507
d925c59a
DV
4508 if (HAS_PCH_CPT(dev)) {
4509 /* disable TRANS_DP_CTL */
4510 reg = TRANS_DP_CTL(pipe);
4511 temp = I915_READ(reg);
4512 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4513 TRANS_DP_PORT_SEL_MASK);
4514 temp |= TRANS_DP_PORT_SEL_NONE;
4515 I915_WRITE(reg, temp);
4516
4517 /* disable DPLL_SEL */
4518 temp = I915_READ(PCH_DPLL_SEL);
11887397 4519 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4520 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4521 }
e3421a18 4522
d925c59a 4523 /* disable PCH DPLL */
e72f9fbf 4524 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4525
d925c59a
DV
4526 ironlake_fdi_pll_disable(intel_crtc);
4527 }
6b383a7f 4528
f7abfe8b 4529 intel_crtc->active = false;
46ba614c 4530 intel_update_watermarks(crtc);
d1ebd816
BW
4531
4532 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4533 intel_fbc_update(dev);
d1ebd816 4534 mutex_unlock(&dev->struct_mutex);
6be4a607 4535}
1b3c7a47 4536
4f771f10 4537static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4538{
4f771f10
PZ
4539 struct drm_device *dev = crtc->dev;
4540 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4542 struct intel_encoder *encoder;
6e3c9717 4543 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 4544
4f771f10
PZ
4545 if (!intel_crtc->active)
4546 return;
4547
d3eedb1a 4548 intel_crtc_disable_planes(crtc);
dda9a66a 4549
8807e55b
JN
4550 for_each_encoder_on_crtc(dev, crtc, encoder) {
4551 intel_opregion_notify_encoder(encoder, false);
4f771f10 4552 encoder->disable(encoder);
8807e55b 4553 }
4f771f10 4554
f9b61ff6
DV
4555 drm_crtc_vblank_off(crtc);
4556 assert_vblank_disabled(crtc);
4557
6e3c9717 4558 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
4559 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4560 false);
575f7ab7 4561 intel_disable_pipe(intel_crtc);
4f771f10 4562
6e3c9717 4563 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
4564 intel_ddi_set_vc_payload_alloc(crtc, false);
4565
ad80a810 4566 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4567
bd2e244f
JB
4568 if (IS_SKYLAKE(dev))
4569 skylake_pfit_disable(intel_crtc);
4570 else
4571 ironlake_pfit_disable(intel_crtc);
4f771f10 4572
1f544388 4573 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4574
6e3c9717 4575 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 4576 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 4577 intel_ddi_fdi_disable(crtc);
83616634 4578 }
4f771f10 4579
97b040aa
ID
4580 for_each_encoder_on_crtc(dev, crtc, encoder)
4581 if (encoder->post_disable)
4582 encoder->post_disable(encoder);
4583
4f771f10 4584 intel_crtc->active = false;
46ba614c 4585 intel_update_watermarks(crtc);
4f771f10
PZ
4586
4587 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4588 intel_fbc_update(dev);
4f771f10 4589 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4590
4591 if (intel_crtc_to_shared_dpll(intel_crtc))
4592 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4593}
4594
ee7b9f93
JB
4595static void ironlake_crtc_off(struct drm_crtc *crtc)
4596{
4597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4598 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4599}
4600
6441ab5f 4601
2dd24552
JB
4602static void i9xx_pfit_enable(struct intel_crtc *crtc)
4603{
4604 struct drm_device *dev = crtc->base.dev;
4605 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4606 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 4607
681a8504 4608 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
4609 return;
4610
2dd24552 4611 /*
c0b03411
DV
4612 * The panel fitter should only be adjusted whilst the pipe is disabled,
4613 * according to register description and PRM.
2dd24552 4614 */
c0b03411
DV
4615 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4616 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4617
b074cec8
JB
4618 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4619 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4620
4621 /* Border color in case we don't scale up to the full screen. Black by
4622 * default, change to something else for debugging. */
4623 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4624}
4625
d05410f9
DA
4626static enum intel_display_power_domain port_to_power_domain(enum port port)
4627{
4628 switch (port) {
4629 case PORT_A:
4630 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4631 case PORT_B:
4632 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4633 case PORT_C:
4634 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4635 case PORT_D:
4636 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4637 default:
4638 WARN_ON_ONCE(1);
4639 return POWER_DOMAIN_PORT_OTHER;
4640 }
4641}
4642
77d22dca
ID
4643#define for_each_power_domain(domain, mask) \
4644 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4645 if ((1 << (domain)) & (mask))
4646
319be8ae
ID
4647enum intel_display_power_domain
4648intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4649{
4650 struct drm_device *dev = intel_encoder->base.dev;
4651 struct intel_digital_port *intel_dig_port;
4652
4653 switch (intel_encoder->type) {
4654 case INTEL_OUTPUT_UNKNOWN:
4655 /* Only DDI platforms should ever use this output type */
4656 WARN_ON_ONCE(!HAS_DDI(dev));
4657 case INTEL_OUTPUT_DISPLAYPORT:
4658 case INTEL_OUTPUT_HDMI:
4659 case INTEL_OUTPUT_EDP:
4660 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4661 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4662 case INTEL_OUTPUT_DP_MST:
4663 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4664 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4665 case INTEL_OUTPUT_ANALOG:
4666 return POWER_DOMAIN_PORT_CRT;
4667 case INTEL_OUTPUT_DSI:
4668 return POWER_DOMAIN_PORT_DSI;
4669 default:
4670 return POWER_DOMAIN_PORT_OTHER;
4671 }
4672}
4673
4674static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4675{
319be8ae
ID
4676 struct drm_device *dev = crtc->dev;
4677 struct intel_encoder *intel_encoder;
4678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4679 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4680 unsigned long mask;
4681 enum transcoder transcoder;
4682
4683 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4684
4685 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4686 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
4687 if (intel_crtc->config->pch_pfit.enabled ||
4688 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
4689 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4690
319be8ae
ID
4691 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4692 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4693
77d22dca
ID
4694 return mask;
4695}
4696
77d22dca
ID
4697static void modeset_update_crtc_power_domains(struct drm_device *dev)
4698{
4699 struct drm_i915_private *dev_priv = dev->dev_private;
4700 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4701 struct intel_crtc *crtc;
4702
4703 /*
4704 * First get all needed power domains, then put all unneeded, to avoid
4705 * any unnecessary toggling of the power wells.
4706 */
d3fcc808 4707 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4708 enum intel_display_power_domain domain;
4709
4710 if (!crtc->base.enabled)
4711 continue;
4712
319be8ae 4713 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4714
4715 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4716 intel_display_power_get(dev_priv, domain);
4717 }
4718
50f6e502
VS
4719 if (dev_priv->display.modeset_global_resources)
4720 dev_priv->display.modeset_global_resources(dev);
4721
d3fcc808 4722 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4723 enum intel_display_power_domain domain;
4724
4725 for_each_power_domain(domain, crtc->enabled_power_domains)
4726 intel_display_power_put(dev_priv, domain);
4727
4728 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4729 }
4730
4731 intel_display_set_init_power(dev_priv, false);
4732}
4733
dfcab17e 4734/* returns HPLL frequency in kHz */
f8bf63fd 4735static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4736{
586f49dc 4737 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4738
586f49dc
JB
4739 /* Obtain SKU information */
4740 mutex_lock(&dev_priv->dpio_lock);
4741 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4742 CCK_FUSE_HPLL_FREQ_MASK;
4743 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4744
dfcab17e 4745 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4746}
4747
f8bf63fd
VS
4748static void vlv_update_cdclk(struct drm_device *dev)
4749{
4750 struct drm_i915_private *dev_priv = dev->dev_private;
4751
4752 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4753 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4754 dev_priv->vlv_cdclk_freq);
4755
4756 /*
4757 * Program the gmbus_freq based on the cdclk frequency.
4758 * BSpec erroneously claims we should aim for 4MHz, but
4759 * in fact 1MHz is the correct frequency.
4760 */
6be1e3d3 4761 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
4762}
4763
30a970c6
JB
4764/* Adjust CDclk dividers to allow high res or save power if possible */
4765static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4766{
4767 struct drm_i915_private *dev_priv = dev->dev_private;
4768 u32 val, cmd;
4769
d197b7d3 4770 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4771
dfcab17e 4772 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4773 cmd = 2;
dfcab17e 4774 else if (cdclk == 266667)
30a970c6
JB
4775 cmd = 1;
4776 else
4777 cmd = 0;
4778
4779 mutex_lock(&dev_priv->rps.hw_lock);
4780 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4781 val &= ~DSPFREQGUAR_MASK;
4782 val |= (cmd << DSPFREQGUAR_SHIFT);
4783 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4784 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4785 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4786 50)) {
4787 DRM_ERROR("timed out waiting for CDclk change\n");
4788 }
4789 mutex_unlock(&dev_priv->rps.hw_lock);
4790
dfcab17e 4791 if (cdclk == 400000) {
6bcda4f0 4792 u32 divider;
30a970c6 4793
6bcda4f0 4794 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
4795
4796 mutex_lock(&dev_priv->dpio_lock);
4797 /* adjust cdclk divider */
4798 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4799 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4800 val |= divider;
4801 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4802
4803 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4804 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4805 50))
4806 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4807 mutex_unlock(&dev_priv->dpio_lock);
4808 }
4809
4810 mutex_lock(&dev_priv->dpio_lock);
4811 /* adjust self-refresh exit latency value */
4812 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4813 val &= ~0x7f;
4814
4815 /*
4816 * For high bandwidth configs, we set a higher latency in the bunit
4817 * so that the core display fetch happens in time to avoid underruns.
4818 */
dfcab17e 4819 if (cdclk == 400000)
30a970c6
JB
4820 val |= 4500 / 250; /* 4.5 usec */
4821 else
4822 val |= 3000 / 250; /* 3.0 usec */
4823 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4824 mutex_unlock(&dev_priv->dpio_lock);
4825
f8bf63fd 4826 vlv_update_cdclk(dev);
30a970c6
JB
4827}
4828
383c5a6a
VS
4829static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4830{
4831 struct drm_i915_private *dev_priv = dev->dev_private;
4832 u32 val, cmd;
4833
4834 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4835
4836 switch (cdclk) {
4837 case 400000:
4838 cmd = 3;
4839 break;
4840 case 333333:
4841 case 320000:
4842 cmd = 2;
4843 break;
4844 case 266667:
4845 cmd = 1;
4846 break;
4847 case 200000:
4848 cmd = 0;
4849 break;
4850 default:
5f77eeb0 4851 MISSING_CASE(cdclk);
383c5a6a
VS
4852 return;
4853 }
4854
4855 mutex_lock(&dev_priv->rps.hw_lock);
4856 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4857 val &= ~DSPFREQGUAR_MASK_CHV;
4858 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4859 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4860 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4861 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4862 50)) {
4863 DRM_ERROR("timed out waiting for CDclk change\n");
4864 }
4865 mutex_unlock(&dev_priv->rps.hw_lock);
4866
4867 vlv_update_cdclk(dev);
4868}
4869
30a970c6
JB
4870static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4871 int max_pixclk)
4872{
6bcda4f0 4873 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
29dc7ef3 4874
d49a340d
VS
4875 /* FIXME: Punit isn't quite ready yet */
4876 if (IS_CHERRYVIEW(dev_priv->dev))
4877 return 400000;
4878
30a970c6
JB
4879 /*
4880 * Really only a few cases to deal with, as only 4 CDclks are supported:
4881 * 200MHz
4882 * 267MHz
29dc7ef3 4883 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4884 * 400MHz
4885 * So we check to see whether we're above 90% of the lower bin and
4886 * adjust if needed.
e37c67a1
VS
4887 *
4888 * We seem to get an unstable or solid color picture at 200MHz.
4889 * Not sure what's wrong. For now use 200MHz only when all pipes
4890 * are off.
30a970c6 4891 */
29dc7ef3 4892 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4893 return 400000;
4894 else if (max_pixclk > 266667*9/10)
29dc7ef3 4895 return freq_320;
e37c67a1 4896 else if (max_pixclk > 0)
dfcab17e 4897 return 266667;
e37c67a1
VS
4898 else
4899 return 200000;
30a970c6
JB
4900}
4901
2f2d7aa1
VS
4902/* compute the max pixel clock for new configuration */
4903static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4904{
4905 struct drm_device *dev = dev_priv->dev;
4906 struct intel_crtc *intel_crtc;
4907 int max_pixclk = 0;
4908
d3fcc808 4909 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4910 if (intel_crtc->new_enabled)
30a970c6 4911 max_pixclk = max(max_pixclk,
2d112de7 4912 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
30a970c6
JB
4913 }
4914
4915 return max_pixclk;
4916}
4917
4918static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4919 unsigned *prepare_pipes)
30a970c6
JB
4920{
4921 struct drm_i915_private *dev_priv = dev->dev_private;
4922 struct intel_crtc *intel_crtc;
2f2d7aa1 4923 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4924
d60c4473
ID
4925 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4926 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4927 return;
4928
2f2d7aa1 4929 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4930 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4931 if (intel_crtc->base.enabled)
4932 *prepare_pipes |= (1 << intel_crtc->pipe);
4933}
4934
4935static void valleyview_modeset_global_resources(struct drm_device *dev)
4936{
4937 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4938 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4939 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4940
383c5a6a 4941 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
4942 /*
4943 * FIXME: We can end up here with all power domains off, yet
4944 * with a CDCLK frequency other than the minimum. To account
4945 * for this take the PIPE-A power domain, which covers the HW
4946 * blocks needed for the following programming. This can be
4947 * removed once it's guaranteed that we get here either with
4948 * the minimum CDCLK set, or the required power domains
4949 * enabled.
4950 */
4951 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4952
383c5a6a
VS
4953 if (IS_CHERRYVIEW(dev))
4954 cherryview_set_cdclk(dev, req_cdclk);
4955 else
4956 valleyview_set_cdclk(dev, req_cdclk);
738c05c0
ID
4957
4958 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 4959 }
30a970c6
JB
4960}
4961
89b667f8
JB
4962static void valleyview_crtc_enable(struct drm_crtc *crtc)
4963{
4964 struct drm_device *dev = crtc->dev;
a72e4c9f 4965 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
4966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4967 struct intel_encoder *encoder;
4968 int pipe = intel_crtc->pipe;
23538ef1 4969 bool is_dsi;
89b667f8
JB
4970
4971 WARN_ON(!crtc->enabled);
4972
4973 if (intel_crtc->active)
4974 return;
4975
409ee761 4976 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 4977
1ae0d137
VS
4978 if (!is_dsi) {
4979 if (IS_CHERRYVIEW(dev))
6e3c9717 4980 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 4981 else
6e3c9717 4982 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 4983 }
5b18e57c 4984
6e3c9717 4985 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
4986 intel_dp_set_m_n(intel_crtc);
4987
4988 intel_set_pipe_timings(intel_crtc);
4989
c14b0485
VS
4990 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992
4993 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4994 I915_WRITE(CHV_CANVAS(pipe), 0);
4995 }
4996
5b18e57c
DV
4997 i9xx_set_pipeconf(intel_crtc);
4998
89b667f8 4999 intel_crtc->active = true;
89b667f8 5000
a72e4c9f 5001 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5002
89b667f8
JB
5003 for_each_encoder_on_crtc(dev, crtc, encoder)
5004 if (encoder->pre_pll_enable)
5005 encoder->pre_pll_enable(encoder);
5006
9d556c99
CML
5007 if (!is_dsi) {
5008 if (IS_CHERRYVIEW(dev))
6e3c9717 5009 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5010 else
6e3c9717 5011 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5012 }
89b667f8
JB
5013
5014 for_each_encoder_on_crtc(dev, crtc, encoder)
5015 if (encoder->pre_enable)
5016 encoder->pre_enable(encoder);
5017
2dd24552
JB
5018 i9xx_pfit_enable(intel_crtc);
5019
63cbb074
VS
5020 intel_crtc_load_lut(crtc);
5021
f37fcc2a 5022 intel_update_watermarks(crtc);
e1fdc473 5023 intel_enable_pipe(intel_crtc);
be6a6f8e 5024
4b3a9526
VS
5025 assert_vblank_disabled(crtc);
5026 drm_crtc_vblank_on(crtc);
5027
f9b61ff6
DV
5028 for_each_encoder_on_crtc(dev, crtc, encoder)
5029 encoder->enable(encoder);
5030
9ab0460b 5031 intel_crtc_enable_planes(crtc);
d40d9187 5032
56b80e1f 5033 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5034 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5035}
5036
f13c2ef3
DV
5037static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5038{
5039 struct drm_device *dev = crtc->base.dev;
5040 struct drm_i915_private *dev_priv = dev->dev_private;
5041
6e3c9717
ACO
5042 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5043 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5044}
5045
0b8765c6 5046static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5047{
5048 struct drm_device *dev = crtc->dev;
a72e4c9f 5049 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5050 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5051 struct intel_encoder *encoder;
79e53945 5052 int pipe = intel_crtc->pipe;
79e53945 5053
08a48469
DV
5054 WARN_ON(!crtc->enabled);
5055
f7abfe8b
CW
5056 if (intel_crtc->active)
5057 return;
5058
f13c2ef3
DV
5059 i9xx_set_pll_dividers(intel_crtc);
5060
6e3c9717 5061 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5062 intel_dp_set_m_n(intel_crtc);
5063
5064 intel_set_pipe_timings(intel_crtc);
5065
5b18e57c
DV
5066 i9xx_set_pipeconf(intel_crtc);
5067
f7abfe8b 5068 intel_crtc->active = true;
6b383a7f 5069
4a3436e8 5070 if (!IS_GEN2(dev))
a72e4c9f 5071 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5072
9d6d9f19
MK
5073 for_each_encoder_on_crtc(dev, crtc, encoder)
5074 if (encoder->pre_enable)
5075 encoder->pre_enable(encoder);
5076
f6736a1a
DV
5077 i9xx_enable_pll(intel_crtc);
5078
2dd24552
JB
5079 i9xx_pfit_enable(intel_crtc);
5080
63cbb074
VS
5081 intel_crtc_load_lut(crtc);
5082
f37fcc2a 5083 intel_update_watermarks(crtc);
e1fdc473 5084 intel_enable_pipe(intel_crtc);
be6a6f8e 5085
4b3a9526
VS
5086 assert_vblank_disabled(crtc);
5087 drm_crtc_vblank_on(crtc);
5088
f9b61ff6
DV
5089 for_each_encoder_on_crtc(dev, crtc, encoder)
5090 encoder->enable(encoder);
5091
9ab0460b 5092 intel_crtc_enable_planes(crtc);
d40d9187 5093
4a3436e8
VS
5094 /*
5095 * Gen2 reports pipe underruns whenever all planes are disabled.
5096 * So don't enable underrun reporting before at least some planes
5097 * are enabled.
5098 * FIXME: Need to fix the logic to work when we turn off all planes
5099 * but leave the pipe running.
5100 */
5101 if (IS_GEN2(dev))
a72e4c9f 5102 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5103
56b80e1f 5104 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5105 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5106}
79e53945 5107
87476d63
DV
5108static void i9xx_pfit_disable(struct intel_crtc *crtc)
5109{
5110 struct drm_device *dev = crtc->base.dev;
5111 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5112
6e3c9717 5113 if (!crtc->config->gmch_pfit.control)
328d8e82 5114 return;
87476d63 5115
328d8e82 5116 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5117
328d8e82
DV
5118 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5119 I915_READ(PFIT_CONTROL));
5120 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5121}
5122
0b8765c6
JB
5123static void i9xx_crtc_disable(struct drm_crtc *crtc)
5124{
5125 struct drm_device *dev = crtc->dev;
5126 struct drm_i915_private *dev_priv = dev->dev_private;
5127 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5128 struct intel_encoder *encoder;
0b8765c6 5129 int pipe = intel_crtc->pipe;
ef9c3aee 5130
f7abfe8b
CW
5131 if (!intel_crtc->active)
5132 return;
5133
4a3436e8
VS
5134 /*
5135 * Gen2 reports pipe underruns whenever all planes are disabled.
5136 * So diasble underrun reporting before all the planes get disabled.
5137 * FIXME: Need to fix the logic to work when we turn off all planes
5138 * but leave the pipe running.
5139 */
5140 if (IS_GEN2(dev))
a72e4c9f 5141 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5142
564ed191
ID
5143 /*
5144 * Vblank time updates from the shadow to live plane control register
5145 * are blocked if the memory self-refresh mode is active at that
5146 * moment. So to make sure the plane gets truly disabled, disable
5147 * first the self-refresh mode. The self-refresh enable bit in turn
5148 * will be checked/applied by the HW only at the next frame start
5149 * event which is after the vblank start event, so we need to have a
5150 * wait-for-vblank between disabling the plane and the pipe.
5151 */
5152 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5153 intel_crtc_disable_planes(crtc);
5154
6304cd91
VS
5155 /*
5156 * On gen2 planes are double buffered but the pipe isn't, so we must
5157 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5158 * We also need to wait on all gmch platforms because of the
5159 * self-refresh mode constraint explained above.
6304cd91 5160 */
564ed191 5161 intel_wait_for_vblank(dev, pipe);
6304cd91 5162
4b3a9526
VS
5163 for_each_encoder_on_crtc(dev, crtc, encoder)
5164 encoder->disable(encoder);
5165
f9b61ff6
DV
5166 drm_crtc_vblank_off(crtc);
5167 assert_vblank_disabled(crtc);
5168
575f7ab7 5169 intel_disable_pipe(intel_crtc);
24a1f16d 5170
87476d63 5171 i9xx_pfit_disable(intel_crtc);
24a1f16d 5172
89b667f8
JB
5173 for_each_encoder_on_crtc(dev, crtc, encoder)
5174 if (encoder->post_disable)
5175 encoder->post_disable(encoder);
5176
409ee761 5177 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5178 if (IS_CHERRYVIEW(dev))
5179 chv_disable_pll(dev_priv, pipe);
5180 else if (IS_VALLEYVIEW(dev))
5181 vlv_disable_pll(dev_priv, pipe);
5182 else
1c4e0274 5183 i9xx_disable_pll(intel_crtc);
076ed3b2 5184 }
0b8765c6 5185
4a3436e8 5186 if (!IS_GEN2(dev))
a72e4c9f 5187 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5188
f7abfe8b 5189 intel_crtc->active = false;
46ba614c 5190 intel_update_watermarks(crtc);
f37fcc2a 5191
efa9624e 5192 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5193 intel_fbc_update(dev);
efa9624e 5194 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5195}
5196
ee7b9f93
JB
5197static void i9xx_crtc_off(struct drm_crtc *crtc)
5198{
5199}
5200
b04c5bd6
BF
5201/* Master function to enable/disable CRTC and corresponding power wells */
5202void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5203{
5204 struct drm_device *dev = crtc->dev;
5205 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5207 enum intel_display_power_domain domain;
5208 unsigned long domains;
976f8a20 5209
0e572fe7
DV
5210 if (enable) {
5211 if (!intel_crtc->active) {
e1e9fb84
DV
5212 domains = get_crtc_power_domains(crtc);
5213 for_each_power_domain(domain, domains)
5214 intel_display_power_get(dev_priv, domain);
5215 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5216
5217 dev_priv->display.crtc_enable(crtc);
5218 }
5219 } else {
5220 if (intel_crtc->active) {
5221 dev_priv->display.crtc_disable(crtc);
5222
e1e9fb84
DV
5223 domains = intel_crtc->enabled_power_domains;
5224 for_each_power_domain(domain, domains)
5225 intel_display_power_put(dev_priv, domain);
5226 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5227 }
5228 }
b04c5bd6
BF
5229}
5230
5231/**
5232 * Sets the power management mode of the pipe and plane.
5233 */
5234void intel_crtc_update_dpms(struct drm_crtc *crtc)
5235{
5236 struct drm_device *dev = crtc->dev;
5237 struct intel_encoder *intel_encoder;
5238 bool enable = false;
5239
5240 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5241 enable |= intel_encoder->connectors_active;
5242
5243 intel_crtc_control(crtc, enable);
976f8a20
DV
5244}
5245
cdd59983
CW
5246static void intel_crtc_disable(struct drm_crtc *crtc)
5247{
cdd59983 5248 struct drm_device *dev = crtc->dev;
976f8a20 5249 struct drm_connector *connector;
ee7b9f93 5250 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5251
976f8a20
DV
5252 /* crtc should still be enabled when we disable it. */
5253 WARN_ON(!crtc->enabled);
5254
5255 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5256 dev_priv->display.off(crtc);
5257
455a6808 5258 crtc->primary->funcs->disable_plane(crtc->primary);
976f8a20
DV
5259
5260 /* Update computed state. */
5261 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5262 if (!connector->encoder || !connector->encoder->crtc)
5263 continue;
5264
5265 if (connector->encoder->crtc != crtc)
5266 continue;
5267
5268 connector->dpms = DRM_MODE_DPMS_OFF;
5269 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5270 }
5271}
5272
ea5b213a 5273void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5274{
4ef69c7a 5275 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5276
ea5b213a
CW
5277 drm_encoder_cleanup(encoder);
5278 kfree(intel_encoder);
7e7d76c3
JB
5279}
5280
9237329d 5281/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5282 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5283 * state of the entire output pipe. */
9237329d 5284static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5285{
5ab432ef
DV
5286 if (mode == DRM_MODE_DPMS_ON) {
5287 encoder->connectors_active = true;
5288
b2cabb0e 5289 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5290 } else {
5291 encoder->connectors_active = false;
5292
b2cabb0e 5293 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5294 }
79e53945
JB
5295}
5296
0a91ca29
DV
5297/* Cross check the actual hw state with our own modeset state tracking (and it's
5298 * internal consistency). */
b980514c 5299static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5300{
0a91ca29
DV
5301 if (connector->get_hw_state(connector)) {
5302 struct intel_encoder *encoder = connector->encoder;
5303 struct drm_crtc *crtc;
5304 bool encoder_enabled;
5305 enum pipe pipe;
5306
5307 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5308 connector->base.base.id,
c23cc417 5309 connector->base.name);
0a91ca29 5310
0e32b39c
DA
5311 /* there is no real hw state for MST connectors */
5312 if (connector->mst_port)
5313 return;
5314
e2c719b7 5315 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 5316 "wrong connector dpms state\n");
e2c719b7 5317 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 5318 "active connector not linked to encoder\n");
0a91ca29 5319
36cd7444 5320 if (encoder) {
e2c719b7 5321 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
5322 "encoder->connectors_active not set\n");
5323
5324 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
5325 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5326 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 5327 return;
0a91ca29 5328
36cd7444 5329 crtc = encoder->base.crtc;
0a91ca29 5330
e2c719b7
RC
5331 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5332 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5333 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
5334 "encoder active on the wrong pipe\n");
5335 }
0a91ca29 5336 }
79e53945
JB
5337}
5338
5ab432ef
DV
5339/* Even simpler default implementation, if there's really no special case to
5340 * consider. */
5341void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5342{
5ab432ef
DV
5343 /* All the simple cases only support two dpms states. */
5344 if (mode != DRM_MODE_DPMS_ON)
5345 mode = DRM_MODE_DPMS_OFF;
d4270e57 5346
5ab432ef
DV
5347 if (mode == connector->dpms)
5348 return;
5349
5350 connector->dpms = mode;
5351
5352 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5353 if (connector->encoder)
5354 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5355
b980514c 5356 intel_modeset_check_state(connector->dev);
79e53945
JB
5357}
5358
f0947c37
DV
5359/* Simple connector->get_hw_state implementation for encoders that support only
5360 * one connector and no cloning and hence the encoder state determines the state
5361 * of the connector. */
5362bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5363{
24929352 5364 enum pipe pipe = 0;
f0947c37 5365 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5366
f0947c37 5367 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5368}
5369
1857e1da 5370static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 5371 struct intel_crtc_state *pipe_config)
1857e1da
DV
5372{
5373 struct drm_i915_private *dev_priv = dev->dev_private;
5374 struct intel_crtc *pipe_B_crtc =
5375 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5376
5377 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5378 pipe_name(pipe), pipe_config->fdi_lanes);
5379 if (pipe_config->fdi_lanes > 4) {
5380 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5381 pipe_name(pipe), pipe_config->fdi_lanes);
5382 return false;
5383 }
5384
bafb6553 5385 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5386 if (pipe_config->fdi_lanes > 2) {
5387 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5388 pipe_config->fdi_lanes);
5389 return false;
5390 } else {
5391 return true;
5392 }
5393 }
5394
5395 if (INTEL_INFO(dev)->num_pipes == 2)
5396 return true;
5397
5398 /* Ivybridge 3 pipe is really complicated */
5399 switch (pipe) {
5400 case PIPE_A:
5401 return true;
5402 case PIPE_B:
5403 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5404 pipe_config->fdi_lanes > 2) {
5405 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5406 pipe_name(pipe), pipe_config->fdi_lanes);
5407 return false;
5408 }
5409 return true;
5410 case PIPE_C:
1e833f40 5411 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
6e3c9717 5412 pipe_B_crtc->config->fdi_lanes <= 2) {
1857e1da
DV
5413 if (pipe_config->fdi_lanes > 2) {
5414 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5415 pipe_name(pipe), pipe_config->fdi_lanes);
5416 return false;
5417 }
5418 } else {
5419 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5420 return false;
5421 }
5422 return true;
5423 default:
5424 BUG();
5425 }
5426}
5427
e29c22c0
DV
5428#define RETRY 1
5429static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 5430 struct intel_crtc_state *pipe_config)
877d48d5 5431{
1857e1da 5432 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 5433 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
ff9a6750 5434 int lane, link_bw, fdi_dotclock;
e29c22c0 5435 bool setup_ok, needs_recompute = false;
877d48d5 5436
e29c22c0 5437retry:
877d48d5
DV
5438 /* FDI is a binary signal running at ~2.7GHz, encoding
5439 * each output octet as 10 bits. The actual frequency
5440 * is stored as a divider into a 100MHz clock, and the
5441 * mode pixel clock is stored in units of 1KHz.
5442 * Hence the bw of each lane in terms of the mode signal
5443 * is:
5444 */
5445 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5446
241bfc38 5447 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5448
2bd89a07 5449 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5450 pipe_config->pipe_bpp);
5451
5452 pipe_config->fdi_lanes = lane;
5453
2bd89a07 5454 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5455 link_bw, &pipe_config->fdi_m_n);
1857e1da 5456
e29c22c0
DV
5457 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5458 intel_crtc->pipe, pipe_config);
5459 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5460 pipe_config->pipe_bpp -= 2*3;
5461 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5462 pipe_config->pipe_bpp);
5463 needs_recompute = true;
5464 pipe_config->bw_constrained = true;
5465
5466 goto retry;
5467 }
5468
5469 if (needs_recompute)
5470 return RETRY;
5471
5472 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5473}
5474
42db64ef 5475static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 5476 struct intel_crtc_state *pipe_config)
42db64ef 5477{
d330a953 5478 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5479 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5480 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5481}
5482
a43f6e0f 5483static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 5484 struct intel_crtc_state *pipe_config)
79e53945 5485{
a43f6e0f 5486 struct drm_device *dev = crtc->base.dev;
8bd31e67 5487 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 5488 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 5489
ad3a4479 5490 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5491 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5492 int clock_limit =
5493 dev_priv->display.get_display_clock_speed(dev);
5494
5495 /*
5496 * Enable pixel doubling when the dot clock
5497 * is > 90% of the (display) core speed.
5498 *
b397c96b
VS
5499 * GDG double wide on either pipe,
5500 * otherwise pipe A only.
cf532bb2 5501 */
b397c96b 5502 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5503 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5504 clock_limit *= 2;
cf532bb2 5505 pipe_config->double_wide = true;
ad3a4479
VS
5506 }
5507
241bfc38 5508 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5509 return -EINVAL;
2c07245f 5510 }
89749350 5511
1d1d0e27
VS
5512 /*
5513 * Pipe horizontal size must be even in:
5514 * - DVO ganged mode
5515 * - LVDS dual channel mode
5516 * - Double wide pipe
5517 */
409ee761 5518 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5519 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5520 pipe_config->pipe_src_w &= ~1;
5521
8693a824
DL
5522 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5523 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5524 */
5525 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5526 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5527 return -EINVAL;
44f46b42 5528
bd080ee5 5529 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5530 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5531 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5532 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5533 * for lvds. */
5534 pipe_config->pipe_bpp = 8*3;
5535 }
5536
f5adf94e 5537 if (HAS_IPS(dev))
a43f6e0f
DV
5538 hsw_compute_ips_config(crtc, pipe_config);
5539
877d48d5 5540 if (pipe_config->has_pch_encoder)
a43f6e0f 5541 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5542
e29c22c0 5543 return 0;
79e53945
JB
5544}
5545
25eb05fc
JB
5546static int valleyview_get_display_clock_speed(struct drm_device *dev)
5547{
d197b7d3 5548 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5549 u32 val;
5550 int divider;
5551
d49a340d
VS
5552 /* FIXME: Punit isn't quite ready yet */
5553 if (IS_CHERRYVIEW(dev))
5554 return 400000;
5555
6bcda4f0
VS
5556 if (dev_priv->hpll_freq == 0)
5557 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5558
d197b7d3
VS
5559 mutex_lock(&dev_priv->dpio_lock);
5560 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5561 mutex_unlock(&dev_priv->dpio_lock);
5562
5563 divider = val & DISPLAY_FREQUENCY_VALUES;
5564
7d007f40
VS
5565 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5566 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5567 "cdclk change in progress\n");
5568
6bcda4f0 5569 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5570}
5571
e70236a8
JB
5572static int i945_get_display_clock_speed(struct drm_device *dev)
5573{
5574 return 400000;
5575}
79e53945 5576
e70236a8 5577static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5578{
e70236a8
JB
5579 return 333000;
5580}
79e53945 5581
e70236a8
JB
5582static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5583{
5584 return 200000;
5585}
79e53945 5586
257a7ffc
DV
5587static int pnv_get_display_clock_speed(struct drm_device *dev)
5588{
5589 u16 gcfgc = 0;
5590
5591 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5592
5593 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5594 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5595 return 267000;
5596 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5597 return 333000;
5598 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5599 return 444000;
5600 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5601 return 200000;
5602 default:
5603 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5604 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5605 return 133000;
5606 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5607 return 167000;
5608 }
5609}
5610
e70236a8
JB
5611static int i915gm_get_display_clock_speed(struct drm_device *dev)
5612{
5613 u16 gcfgc = 0;
79e53945 5614
e70236a8
JB
5615 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5616
5617 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5618 return 133000;
5619 else {
5620 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5621 case GC_DISPLAY_CLOCK_333_MHZ:
5622 return 333000;
5623 default:
5624 case GC_DISPLAY_CLOCK_190_200_MHZ:
5625 return 190000;
79e53945 5626 }
e70236a8
JB
5627 }
5628}
5629
5630static int i865_get_display_clock_speed(struct drm_device *dev)
5631{
5632 return 266000;
5633}
5634
5635static int i855_get_display_clock_speed(struct drm_device *dev)
5636{
5637 u16 hpllcc = 0;
5638 /* Assume that the hardware is in the high speed state. This
5639 * should be the default.
5640 */
5641 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5642 case GC_CLOCK_133_200:
5643 case GC_CLOCK_100_200:
5644 return 200000;
5645 case GC_CLOCK_166_250:
5646 return 250000;
5647 case GC_CLOCK_100_133:
79e53945 5648 return 133000;
e70236a8 5649 }
79e53945 5650
e70236a8
JB
5651 /* Shouldn't happen */
5652 return 0;
5653}
79e53945 5654
e70236a8
JB
5655static int i830_get_display_clock_speed(struct drm_device *dev)
5656{
5657 return 133000;
79e53945
JB
5658}
5659
2c07245f 5660static void
a65851af 5661intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5662{
a65851af
VS
5663 while (*num > DATA_LINK_M_N_MASK ||
5664 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5665 *num >>= 1;
5666 *den >>= 1;
5667 }
5668}
5669
a65851af
VS
5670static void compute_m_n(unsigned int m, unsigned int n,
5671 uint32_t *ret_m, uint32_t *ret_n)
5672{
5673 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5674 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5675 intel_reduce_m_n_ratio(ret_m, ret_n);
5676}
5677
e69d0bc1
DV
5678void
5679intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5680 int pixel_clock, int link_clock,
5681 struct intel_link_m_n *m_n)
2c07245f 5682{
e69d0bc1 5683 m_n->tu = 64;
a65851af
VS
5684
5685 compute_m_n(bits_per_pixel * pixel_clock,
5686 link_clock * nlanes * 8,
5687 &m_n->gmch_m, &m_n->gmch_n);
5688
5689 compute_m_n(pixel_clock, link_clock,
5690 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5691}
5692
a7615030
CW
5693static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5694{
d330a953
JN
5695 if (i915.panel_use_ssc >= 0)
5696 return i915.panel_use_ssc != 0;
41aa3448 5697 return dev_priv->vbt.lvds_use_ssc
435793df 5698 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5699}
5700
409ee761 5701static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5702{
409ee761 5703 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5704 struct drm_i915_private *dev_priv = dev->dev_private;
5705 int refclk;
5706
a0c4da24 5707 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5708 refclk = 100000;
d0737e1d 5709 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5710 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5711 refclk = dev_priv->vbt.lvds_ssc_freq;
5712 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5713 } else if (!IS_GEN2(dev)) {
5714 refclk = 96000;
5715 } else {
5716 refclk = 48000;
5717 }
5718
5719 return refclk;
5720}
5721
7429e9d4 5722static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5723{
7df00d7a 5724 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5725}
f47709a9 5726
7429e9d4
DV
5727static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5728{
5729 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5730}
5731
f47709a9 5732static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 5733 struct intel_crtc_state *crtc_state,
a7516a05
JB
5734 intel_clock_t *reduced_clock)
5735{
f47709a9 5736 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5737 u32 fp, fp2 = 0;
5738
5739 if (IS_PINEVIEW(dev)) {
190f68c5 5740 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5741 if (reduced_clock)
7429e9d4 5742 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5743 } else {
190f68c5 5744 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5745 if (reduced_clock)
7429e9d4 5746 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5747 }
5748
190f68c5 5749 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 5750
f47709a9 5751 crtc->lowfreq_avail = false;
e1f234bd 5752 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5753 reduced_clock && i915.powersave) {
190f68c5 5754 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 5755 crtc->lowfreq_avail = true;
a7516a05 5756 } else {
190f68c5 5757 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
5758 }
5759}
5760
5e69f97f
CML
5761static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5762 pipe)
89b667f8
JB
5763{
5764 u32 reg_val;
5765
5766 /*
5767 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5768 * and set it to a reasonable value instead.
5769 */
ab3c759a 5770 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5771 reg_val &= 0xffffff00;
5772 reg_val |= 0x00000030;
ab3c759a 5773 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5774
ab3c759a 5775 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5776 reg_val &= 0x8cffffff;
5777 reg_val = 0x8c000000;
ab3c759a 5778 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5779
ab3c759a 5780 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5781 reg_val &= 0xffffff00;
ab3c759a 5782 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5783
ab3c759a 5784 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5785 reg_val &= 0x00ffffff;
5786 reg_val |= 0xb0000000;
ab3c759a 5787 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5788}
5789
b551842d
DV
5790static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5791 struct intel_link_m_n *m_n)
5792{
5793 struct drm_device *dev = crtc->base.dev;
5794 struct drm_i915_private *dev_priv = dev->dev_private;
5795 int pipe = crtc->pipe;
5796
e3b95f1e
DV
5797 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5798 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5799 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5800 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5801}
5802
5803static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5804 struct intel_link_m_n *m_n,
5805 struct intel_link_m_n *m2_n2)
b551842d
DV
5806{
5807 struct drm_device *dev = crtc->base.dev;
5808 struct drm_i915_private *dev_priv = dev->dev_private;
5809 int pipe = crtc->pipe;
6e3c9717 5810 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
5811
5812 if (INTEL_INFO(dev)->gen >= 5) {
5813 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5814 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5815 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5816 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5817 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5818 * for gen < 8) and if DRRS is supported (to make sure the
5819 * registers are not unnecessarily accessed).
5820 */
5821 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 5822 crtc->config->has_drrs) {
f769cd24
VK
5823 I915_WRITE(PIPE_DATA_M2(transcoder),
5824 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5825 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5826 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5827 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5828 }
b551842d 5829 } else {
e3b95f1e
DV
5830 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5831 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5832 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5833 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5834 }
5835}
5836
f769cd24 5837void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2 5838{
6e3c9717
ACO
5839 if (crtc->config->has_pch_encoder)
5840 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 5841 else
6e3c9717
ACO
5842 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5843 &crtc->config->dp_m2_n2);
03afc4a2
DV
5844}
5845
d288f65f 5846static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 5847 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
5848{
5849 u32 dpll, dpll_md;
5850
5851 /*
5852 * Enable DPIO clock input. We should never disable the reference
5853 * clock for pipe B, since VGA hotplug / manual detection depends
5854 * on it.
5855 */
5856 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5857 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5858 /* We should never disable this, set it here for state tracking */
5859 if (crtc->pipe == PIPE_B)
5860 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5861 dpll |= DPLL_VCO_ENABLE;
d288f65f 5862 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 5863
d288f65f 5864 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 5865 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 5866 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
5867}
5868
d288f65f 5869static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 5870 const struct intel_crtc_state *pipe_config)
a0c4da24 5871{
f47709a9 5872 struct drm_device *dev = crtc->base.dev;
a0c4da24 5873 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5874 int pipe = crtc->pipe;
bdd4b6a6 5875 u32 mdiv;
a0c4da24 5876 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5877 u32 coreclk, reg_val;
a0c4da24 5878
09153000
DV
5879 mutex_lock(&dev_priv->dpio_lock);
5880
d288f65f
VS
5881 bestn = pipe_config->dpll.n;
5882 bestm1 = pipe_config->dpll.m1;
5883 bestm2 = pipe_config->dpll.m2;
5884 bestp1 = pipe_config->dpll.p1;
5885 bestp2 = pipe_config->dpll.p2;
a0c4da24 5886
89b667f8
JB
5887 /* See eDP HDMI DPIO driver vbios notes doc */
5888
5889 /* PLL B needs special handling */
bdd4b6a6 5890 if (pipe == PIPE_B)
5e69f97f 5891 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5892
5893 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5894 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5895
5896 /* Disable target IRef on PLL */
ab3c759a 5897 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5898 reg_val &= 0x00ffffff;
ab3c759a 5899 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5900
5901 /* Disable fast lock */
ab3c759a 5902 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5903
5904 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5905 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5906 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5907 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5908 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5909
5910 /*
5911 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5912 * but we don't support that).
5913 * Note: don't use the DAC post divider as it seems unstable.
5914 */
5915 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5916 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5917
a0c4da24 5918 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5919 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5920
89b667f8 5921 /* Set HBR and RBR LPF coefficients */
d288f65f 5922 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
5923 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5924 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5925 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5926 0x009f0003);
89b667f8 5927 else
ab3c759a 5928 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5929 0x00d0000f);
5930
681a8504 5931 if (pipe_config->has_dp_encoder) {
89b667f8 5932 /* Use SSC source */
bdd4b6a6 5933 if (pipe == PIPE_A)
ab3c759a 5934 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5935 0x0df40000);
5936 else
ab3c759a 5937 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5938 0x0df70000);
5939 } else { /* HDMI or VGA */
5940 /* Use bend source */
bdd4b6a6 5941 if (pipe == PIPE_A)
ab3c759a 5942 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5943 0x0df70000);
5944 else
ab3c759a 5945 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5946 0x0df40000);
5947 }
a0c4da24 5948
ab3c759a 5949 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 5950 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
5951 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5952 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 5953 coreclk |= 0x01000000;
ab3c759a 5954 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5955
ab3c759a 5956 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5957 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5958}
5959
d288f65f 5960static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 5961 struct intel_crtc_state *pipe_config)
1ae0d137 5962{
d288f65f 5963 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
5964 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5965 DPLL_VCO_ENABLE;
5966 if (crtc->pipe != PIPE_A)
d288f65f 5967 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 5968
d288f65f
VS
5969 pipe_config->dpll_hw_state.dpll_md =
5970 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
5971}
5972
d288f65f 5973static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 5974 const struct intel_crtc_state *pipe_config)
9d556c99
CML
5975{
5976 struct drm_device *dev = crtc->base.dev;
5977 struct drm_i915_private *dev_priv = dev->dev_private;
5978 int pipe = crtc->pipe;
5979 int dpll_reg = DPLL(crtc->pipe);
5980 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5981 u32 loopfilter, intcoeff;
9d556c99
CML
5982 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5983 int refclk;
5984
d288f65f
VS
5985 bestn = pipe_config->dpll.n;
5986 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5987 bestm1 = pipe_config->dpll.m1;
5988 bestm2 = pipe_config->dpll.m2 >> 22;
5989 bestp1 = pipe_config->dpll.p1;
5990 bestp2 = pipe_config->dpll.p2;
9d556c99
CML
5991
5992 /*
5993 * Enable Refclk and SSC
5994 */
a11b0703 5995 I915_WRITE(dpll_reg,
d288f65f 5996 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
5997
5998 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5999
9d556c99
CML
6000 /* p1 and p2 divider */
6001 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6002 5 << DPIO_CHV_S1_DIV_SHIFT |
6003 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6004 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6005 1 << DPIO_CHV_K_DIV_SHIFT);
6006
6007 /* Feedback post-divider - m2 */
6008 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6009
6010 /* Feedback refclk divider - n and m1 */
6011 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6012 DPIO_CHV_M1_DIV_BY_2 |
6013 1 << DPIO_CHV_N_DIV_SHIFT);
6014
6015 /* M2 fraction division */
6016 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6017
6018 /* M2 fraction division enable */
6019 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6020 DPIO_CHV_FRAC_DIV_EN |
6021 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6022
6023 /* Loop filter */
409ee761 6024 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
6025 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6026 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6027 if (refclk == 100000)
6028 intcoeff = 11;
6029 else if (refclk == 38400)
6030 intcoeff = 10;
6031 else
6032 intcoeff = 9;
6033 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6034 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6035
6036 /* AFC Recal */
6037 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6038 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6039 DPIO_AFC_RECAL);
6040
6041 mutex_unlock(&dev_priv->dpio_lock);
6042}
6043
d288f65f
VS
6044/**
6045 * vlv_force_pll_on - forcibly enable just the PLL
6046 * @dev_priv: i915 private structure
6047 * @pipe: pipe PLL to enable
6048 * @dpll: PLL configuration
6049 *
6050 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6051 * in cases where we need the PLL enabled even when @pipe is not going to
6052 * be enabled.
6053 */
6054void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6055 const struct dpll *dpll)
6056{
6057 struct intel_crtc *crtc =
6058 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6059 struct intel_crtc_state pipe_config = {
d288f65f
VS
6060 .pixel_multiplier = 1,
6061 .dpll = *dpll,
6062 };
6063
6064 if (IS_CHERRYVIEW(dev)) {
6065 chv_update_pll(crtc, &pipe_config);
6066 chv_prepare_pll(crtc, &pipe_config);
6067 chv_enable_pll(crtc, &pipe_config);
6068 } else {
6069 vlv_update_pll(crtc, &pipe_config);
6070 vlv_prepare_pll(crtc, &pipe_config);
6071 vlv_enable_pll(crtc, &pipe_config);
6072 }
6073}
6074
6075/**
6076 * vlv_force_pll_off - forcibly disable just the PLL
6077 * @dev_priv: i915 private structure
6078 * @pipe: pipe PLL to disable
6079 *
6080 * Disable the PLL for @pipe. To be used in cases where we need
6081 * the PLL enabled even when @pipe is not going to be enabled.
6082 */
6083void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6084{
6085 if (IS_CHERRYVIEW(dev))
6086 chv_disable_pll(to_i915(dev), pipe);
6087 else
6088 vlv_disable_pll(to_i915(dev), pipe);
6089}
6090
f47709a9 6091static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 6092 struct intel_crtc_state *crtc_state,
f47709a9 6093 intel_clock_t *reduced_clock,
eb1cbe48
DV
6094 int num_connectors)
6095{
f47709a9 6096 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6097 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6098 u32 dpll;
6099 bool is_sdvo;
190f68c5 6100 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6101
190f68c5 6102 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6103
d0737e1d
ACO
6104 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6105 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6106
6107 dpll = DPLL_VGA_MODE_DIS;
6108
d0737e1d 6109 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6110 dpll |= DPLLB_MODE_LVDS;
6111 else
6112 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6113
ef1b460d 6114 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 6115 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 6116 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6117 }
198a037f
DV
6118
6119 if (is_sdvo)
4a33e48d 6120 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6121
190f68c5 6122 if (crtc_state->has_dp_encoder)
4a33e48d 6123 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6124
6125 /* compute bitmask from p1 value */
6126 if (IS_PINEVIEW(dev))
6127 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6128 else {
6129 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6130 if (IS_G4X(dev) && reduced_clock)
6131 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6132 }
6133 switch (clock->p2) {
6134 case 5:
6135 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6136 break;
6137 case 7:
6138 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6139 break;
6140 case 10:
6141 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6142 break;
6143 case 14:
6144 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6145 break;
6146 }
6147 if (INTEL_INFO(dev)->gen >= 4)
6148 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6149
190f68c5 6150 if (crtc_state->sdvo_tv_clock)
eb1cbe48 6151 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6152 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6153 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6154 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6155 else
6156 dpll |= PLL_REF_INPUT_DREFCLK;
6157
6158 dpll |= DPLL_VCO_ENABLE;
190f68c5 6159 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 6160
eb1cbe48 6161 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 6162 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 6163 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 6164 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6165 }
6166}
6167
f47709a9 6168static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 6169 struct intel_crtc_state *crtc_state,
f47709a9 6170 intel_clock_t *reduced_clock,
eb1cbe48
DV
6171 int num_connectors)
6172{
f47709a9 6173 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6174 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6175 u32 dpll;
190f68c5 6176 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6177
190f68c5 6178 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6179
eb1cbe48
DV
6180 dpll = DPLL_VGA_MODE_DIS;
6181
d0737e1d 6182 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6183 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6184 } else {
6185 if (clock->p1 == 2)
6186 dpll |= PLL_P1_DIVIDE_BY_TWO;
6187 else
6188 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6189 if (clock->p2 == 4)
6190 dpll |= PLL_P2_DIVIDE_BY_4;
6191 }
6192
d0737e1d 6193 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6194 dpll |= DPLL_DVO_2X_MODE;
6195
d0737e1d 6196 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6197 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6198 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6199 else
6200 dpll |= PLL_REF_INPUT_DREFCLK;
6201
6202 dpll |= DPLL_VCO_ENABLE;
190f68c5 6203 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6204}
6205
8a654f3b 6206static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6207{
6208 struct drm_device *dev = intel_crtc->base.dev;
6209 struct drm_i915_private *dev_priv = dev->dev_private;
6210 enum pipe pipe = intel_crtc->pipe;
6e3c9717 6211 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 6212 struct drm_display_mode *adjusted_mode =
6e3c9717 6213 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
6214 uint32_t crtc_vtotal, crtc_vblank_end;
6215 int vsyncshift = 0;
4d8a62ea
DV
6216
6217 /* We need to be careful not to changed the adjusted mode, for otherwise
6218 * the hw state checker will get angry at the mismatch. */
6219 crtc_vtotal = adjusted_mode->crtc_vtotal;
6220 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6221
609aeaca 6222 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6223 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6224 crtc_vtotal -= 1;
6225 crtc_vblank_end -= 1;
609aeaca 6226
409ee761 6227 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6228 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6229 else
6230 vsyncshift = adjusted_mode->crtc_hsync_start -
6231 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6232 if (vsyncshift < 0)
6233 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6234 }
6235
6236 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6237 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6238
fe2b8f9d 6239 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6240 (adjusted_mode->crtc_hdisplay - 1) |
6241 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6242 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6243 (adjusted_mode->crtc_hblank_start - 1) |
6244 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6245 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6246 (adjusted_mode->crtc_hsync_start - 1) |
6247 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6248
fe2b8f9d 6249 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6250 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6251 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6252 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6253 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6254 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6255 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6256 (adjusted_mode->crtc_vsync_start - 1) |
6257 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6258
b5e508d4
PZ
6259 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6260 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6261 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6262 * bits. */
6263 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6264 (pipe == PIPE_B || pipe == PIPE_C))
6265 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6266
b0e77b9c
PZ
6267 /* pipesrc controls the size that is scaled from, which should
6268 * always be the user's requested size.
6269 */
6270 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
6271 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6272 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
6273}
6274
1bd1bd80 6275static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 6276 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
6277{
6278 struct drm_device *dev = crtc->base.dev;
6279 struct drm_i915_private *dev_priv = dev->dev_private;
6280 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6281 uint32_t tmp;
6282
6283 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
6284 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6285 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6286 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
6287 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6288 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6289 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
6290 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6291 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6292
6293 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
6294 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6295 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6296 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
6297 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6298 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6299 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
6300 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6301 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6302
6303 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
6304 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6305 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6306 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
6307 }
6308
6309 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6310 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6311 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6312
2d112de7
ACO
6313 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6314 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6315}
6316
f6a83288 6317void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 6318 struct intel_crtc_state *pipe_config)
babea61d 6319{
2d112de7
ACO
6320 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6321 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6322 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6323 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 6324
2d112de7
ACO
6325 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6326 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6327 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6328 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 6329
2d112de7 6330 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 6331
2d112de7
ACO
6332 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6333 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
6334}
6335
84b046f3
DV
6336static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6337{
6338 struct drm_device *dev = intel_crtc->base.dev;
6339 struct drm_i915_private *dev_priv = dev->dev_private;
6340 uint32_t pipeconf;
6341
9f11a9e4 6342 pipeconf = 0;
84b046f3 6343
b6b5d049
VS
6344 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6345 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6346 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6347
6e3c9717 6348 if (intel_crtc->config->double_wide)
cf532bb2 6349 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6350
ff9ce46e
DV
6351 /* only g4x and later have fancy bpc/dither controls */
6352 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 6353 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 6354 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 6355 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6356 PIPECONF_DITHER_TYPE_SP;
84b046f3 6357
6e3c9717 6358 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
6359 case 18:
6360 pipeconf |= PIPECONF_6BPC;
6361 break;
6362 case 24:
6363 pipeconf |= PIPECONF_8BPC;
6364 break;
6365 case 30:
6366 pipeconf |= PIPECONF_10BPC;
6367 break;
6368 default:
6369 /* Case prevented by intel_choose_pipe_bpp_dither. */
6370 BUG();
84b046f3
DV
6371 }
6372 }
6373
6374 if (HAS_PIPE_CXSR(dev)) {
6375 if (intel_crtc->lowfreq_avail) {
6376 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6377 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6378 } else {
6379 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6380 }
6381 }
6382
6e3c9717 6383 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 6384 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6385 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6386 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6387 else
6388 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6389 } else
84b046f3
DV
6390 pipeconf |= PIPECONF_PROGRESSIVE;
6391
6e3c9717 6392 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 6393 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6394
84b046f3
DV
6395 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6396 POSTING_READ(PIPECONF(intel_crtc->pipe));
6397}
6398
190f68c5
ACO
6399static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6400 struct intel_crtc_state *crtc_state)
79e53945 6401{
c7653199 6402 struct drm_device *dev = crtc->base.dev;
79e53945 6403 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6404 int refclk, num_connectors = 0;
652c393a 6405 intel_clock_t clock, reduced_clock;
a16af721 6406 bool ok, has_reduced_clock = false;
e9fd1c02 6407 bool is_lvds = false, is_dsi = false;
5eddb70b 6408 struct intel_encoder *encoder;
d4906093 6409 const intel_limit_t *limit;
79e53945 6410
d0737e1d
ACO
6411 for_each_intel_encoder(dev, encoder) {
6412 if (encoder->new_crtc != crtc)
6413 continue;
6414
5eddb70b 6415 switch (encoder->type) {
79e53945
JB
6416 case INTEL_OUTPUT_LVDS:
6417 is_lvds = true;
6418 break;
e9fd1c02
JN
6419 case INTEL_OUTPUT_DSI:
6420 is_dsi = true;
6421 break;
6847d71b
PZ
6422 default:
6423 break;
79e53945 6424 }
43565a06 6425
c751ce4f 6426 num_connectors++;
79e53945
JB
6427 }
6428
f2335330 6429 if (is_dsi)
5b18e57c 6430 return 0;
f2335330 6431
190f68c5 6432 if (!crtc_state->clock_set) {
409ee761 6433 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6434
e9fd1c02
JN
6435 /*
6436 * Returns a set of divisors for the desired target clock with
6437 * the given refclk, or FALSE. The returned values represent
6438 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6439 * 2) / p1 / p2.
6440 */
409ee761 6441 limit = intel_limit(crtc, refclk);
c7653199 6442 ok = dev_priv->display.find_dpll(limit, crtc,
190f68c5 6443 crtc_state->port_clock,
e9fd1c02 6444 refclk, NULL, &clock);
f2335330 6445 if (!ok) {
e9fd1c02
JN
6446 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6447 return -EINVAL;
6448 }
79e53945 6449
f2335330
JN
6450 if (is_lvds && dev_priv->lvds_downclock_avail) {
6451 /*
6452 * Ensure we match the reduced clock's P to the target
6453 * clock. If the clocks don't match, we can't switch
6454 * the display clock by using the FP0/FP1. In such case
6455 * we will disable the LVDS downclock feature.
6456 */
6457 has_reduced_clock =
c7653199 6458 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6459 dev_priv->lvds_downclock,
6460 refclk, &clock,
6461 &reduced_clock);
6462 }
6463 /* Compat-code for transition, will disappear. */
190f68c5
ACO
6464 crtc_state->dpll.n = clock.n;
6465 crtc_state->dpll.m1 = clock.m1;
6466 crtc_state->dpll.m2 = clock.m2;
6467 crtc_state->dpll.p1 = clock.p1;
6468 crtc_state->dpll.p2 = clock.p2;
f47709a9 6469 }
7026d4ac 6470
e9fd1c02 6471 if (IS_GEN2(dev)) {
190f68c5 6472 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
6473 has_reduced_clock ? &reduced_clock : NULL,
6474 num_connectors);
9d556c99 6475 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 6476 chv_update_pll(crtc, crtc_state);
e9fd1c02 6477 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 6478 vlv_update_pll(crtc, crtc_state);
e9fd1c02 6479 } else {
190f68c5 6480 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 6481 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6482 num_connectors);
e9fd1c02 6483 }
79e53945 6484
c8f7a0db 6485 return 0;
f564048e
EA
6486}
6487
2fa2fe9a 6488static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 6489 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
6490{
6491 struct drm_device *dev = crtc->base.dev;
6492 struct drm_i915_private *dev_priv = dev->dev_private;
6493 uint32_t tmp;
6494
dc9e7dec
VS
6495 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6496 return;
6497
2fa2fe9a 6498 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6499 if (!(tmp & PFIT_ENABLE))
6500 return;
2fa2fe9a 6501
06922821 6502 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6503 if (INTEL_INFO(dev)->gen < 4) {
6504 if (crtc->pipe != PIPE_B)
6505 return;
2fa2fe9a
DV
6506 } else {
6507 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6508 return;
6509 }
6510
06922821 6511 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6512 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6513 if (INTEL_INFO(dev)->gen < 5)
6514 pipe_config->gmch_pfit.lvds_border_bits =
6515 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6516}
6517
acbec814 6518static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6519 struct intel_crtc_state *pipe_config)
acbec814
JB
6520{
6521 struct drm_device *dev = crtc->base.dev;
6522 struct drm_i915_private *dev_priv = dev->dev_private;
6523 int pipe = pipe_config->cpu_transcoder;
6524 intel_clock_t clock;
6525 u32 mdiv;
662c6ecb 6526 int refclk = 100000;
acbec814 6527
f573de5a
SK
6528 /* In case of MIPI DPLL will not even be used */
6529 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6530 return;
6531
acbec814 6532 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6533 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6534 mutex_unlock(&dev_priv->dpio_lock);
6535
6536 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6537 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6538 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6539 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6540 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6541
f646628b 6542 vlv_clock(refclk, &clock);
acbec814 6543
f646628b
VS
6544 /* clock.dot is the fast clock */
6545 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6546}
6547
1ad292b5
JB
6548static void i9xx_get_plane_config(struct intel_crtc *crtc,
6549 struct intel_plane_config *plane_config)
6550{
6551 struct drm_device *dev = crtc->base.dev;
6552 struct drm_i915_private *dev_priv = dev->dev_private;
6553 u32 val, base, offset;
6554 int pipe = crtc->pipe, plane = crtc->plane;
6555 int fourcc, pixel_format;
6556 int aligned_height;
6557
66e514c1
DA
6558 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6559 if (!crtc->base.primary->fb) {
1ad292b5
JB
6560 DRM_DEBUG_KMS("failed to alloc fb\n");
6561 return;
6562 }
6563
6564 val = I915_READ(DSPCNTR(plane));
6565
6566 if (INTEL_INFO(dev)->gen >= 4)
6567 if (val & DISPPLANE_TILED)
6568 plane_config->tiled = true;
6569
6570 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6571 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6572 crtc->base.primary->fb->pixel_format = fourcc;
6573 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6574 drm_format_plane_cpp(fourcc, 0) * 8;
6575
6576 if (INTEL_INFO(dev)->gen >= 4) {
6577 if (plane_config->tiled)
6578 offset = I915_READ(DSPTILEOFF(plane));
6579 else
6580 offset = I915_READ(DSPLINOFF(plane));
6581 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6582 } else {
6583 base = I915_READ(DSPADDR(plane));
6584 }
6585 plane_config->base = base;
6586
6587 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6588 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6589 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6590
6591 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6592 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6593
66e514c1 6594 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6595 plane_config->tiled);
6596
1267a26b
FF
6597 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6598 aligned_height);
1ad292b5
JB
6599
6600 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6601 pipe, plane, crtc->base.primary->fb->width,
6602 crtc->base.primary->fb->height,
6603 crtc->base.primary->fb->bits_per_pixel, base,
6604 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6605 plane_config->size);
6606
6607}
6608
70b23a98 6609static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6610 struct intel_crtc_state *pipe_config)
70b23a98
VS
6611{
6612 struct drm_device *dev = crtc->base.dev;
6613 struct drm_i915_private *dev_priv = dev->dev_private;
6614 int pipe = pipe_config->cpu_transcoder;
6615 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6616 intel_clock_t clock;
6617 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6618 int refclk = 100000;
6619
6620 mutex_lock(&dev_priv->dpio_lock);
6621 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6622 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6623 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6624 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6625 mutex_unlock(&dev_priv->dpio_lock);
6626
6627 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6628 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6629 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6630 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6631 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6632
6633 chv_clock(refclk, &clock);
6634
6635 /* clock.dot is the fast clock */
6636 pipe_config->port_clock = clock.dot / 5;
6637}
6638
0e8ffe1b 6639static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 6640 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
6641{
6642 struct drm_device *dev = crtc->base.dev;
6643 struct drm_i915_private *dev_priv = dev->dev_private;
6644 uint32_t tmp;
6645
f458ebbc
DV
6646 if (!intel_display_power_is_enabled(dev_priv,
6647 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6648 return false;
6649
e143a21c 6650 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6651 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6652
0e8ffe1b
DV
6653 tmp = I915_READ(PIPECONF(crtc->pipe));
6654 if (!(tmp & PIPECONF_ENABLE))
6655 return false;
6656
42571aef
VS
6657 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6658 switch (tmp & PIPECONF_BPC_MASK) {
6659 case PIPECONF_6BPC:
6660 pipe_config->pipe_bpp = 18;
6661 break;
6662 case PIPECONF_8BPC:
6663 pipe_config->pipe_bpp = 24;
6664 break;
6665 case PIPECONF_10BPC:
6666 pipe_config->pipe_bpp = 30;
6667 break;
6668 default:
6669 break;
6670 }
6671 }
6672
b5a9fa09
DV
6673 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6674 pipe_config->limited_color_range = true;
6675
282740f7
VS
6676 if (INTEL_INFO(dev)->gen < 4)
6677 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6678
1bd1bd80
DV
6679 intel_get_pipe_timings(crtc, pipe_config);
6680
2fa2fe9a
DV
6681 i9xx_get_pfit_config(crtc, pipe_config);
6682
6c49f241
DV
6683 if (INTEL_INFO(dev)->gen >= 4) {
6684 tmp = I915_READ(DPLL_MD(crtc->pipe));
6685 pipe_config->pixel_multiplier =
6686 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6687 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6688 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6689 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6690 tmp = I915_READ(DPLL(crtc->pipe));
6691 pipe_config->pixel_multiplier =
6692 ((tmp & SDVO_MULTIPLIER_MASK)
6693 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6694 } else {
6695 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6696 * port and will be fixed up in the encoder->get_config
6697 * function. */
6698 pipe_config->pixel_multiplier = 1;
6699 }
8bcc2795
DV
6700 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6701 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6702 /*
6703 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6704 * on 830. Filter it out here so that we don't
6705 * report errors due to that.
6706 */
6707 if (IS_I830(dev))
6708 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6709
8bcc2795
DV
6710 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6711 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6712 } else {
6713 /* Mask out read-only status bits. */
6714 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6715 DPLL_PORTC_READY_MASK |
6716 DPLL_PORTB_READY_MASK);
8bcc2795 6717 }
6c49f241 6718
70b23a98
VS
6719 if (IS_CHERRYVIEW(dev))
6720 chv_crtc_clock_get(crtc, pipe_config);
6721 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6722 vlv_crtc_clock_get(crtc, pipe_config);
6723 else
6724 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6725
0e8ffe1b
DV
6726 return true;
6727}
6728
dde86e2d 6729static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6730{
6731 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6732 struct intel_encoder *encoder;
74cfd7ac 6733 u32 val, final;
13d83a67 6734 bool has_lvds = false;
199e5d79 6735 bool has_cpu_edp = false;
199e5d79 6736 bool has_panel = false;
99eb6a01
KP
6737 bool has_ck505 = false;
6738 bool can_ssc = false;
13d83a67
JB
6739
6740 /* We need to take the global config into account */
b2784e15 6741 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6742 switch (encoder->type) {
6743 case INTEL_OUTPUT_LVDS:
6744 has_panel = true;
6745 has_lvds = true;
6746 break;
6747 case INTEL_OUTPUT_EDP:
6748 has_panel = true;
2de6905f 6749 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6750 has_cpu_edp = true;
6751 break;
6847d71b
PZ
6752 default:
6753 break;
13d83a67
JB
6754 }
6755 }
6756
99eb6a01 6757 if (HAS_PCH_IBX(dev)) {
41aa3448 6758 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6759 can_ssc = has_ck505;
6760 } else {
6761 has_ck505 = false;
6762 can_ssc = true;
6763 }
6764
2de6905f
ID
6765 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6766 has_panel, has_lvds, has_ck505);
13d83a67
JB
6767
6768 /* Ironlake: try to setup display ref clock before DPLL
6769 * enabling. This is only under driver's control after
6770 * PCH B stepping, previous chipset stepping should be
6771 * ignoring this setting.
6772 */
74cfd7ac
CW
6773 val = I915_READ(PCH_DREF_CONTROL);
6774
6775 /* As we must carefully and slowly disable/enable each source in turn,
6776 * compute the final state we want first and check if we need to
6777 * make any changes at all.
6778 */
6779 final = val;
6780 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6781 if (has_ck505)
6782 final |= DREF_NONSPREAD_CK505_ENABLE;
6783 else
6784 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6785
6786 final &= ~DREF_SSC_SOURCE_MASK;
6787 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6788 final &= ~DREF_SSC1_ENABLE;
6789
6790 if (has_panel) {
6791 final |= DREF_SSC_SOURCE_ENABLE;
6792
6793 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6794 final |= DREF_SSC1_ENABLE;
6795
6796 if (has_cpu_edp) {
6797 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6798 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6799 else
6800 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6801 } else
6802 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6803 } else {
6804 final |= DREF_SSC_SOURCE_DISABLE;
6805 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6806 }
6807
6808 if (final == val)
6809 return;
6810
13d83a67 6811 /* Always enable nonspread source */
74cfd7ac 6812 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6813
99eb6a01 6814 if (has_ck505)
74cfd7ac 6815 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6816 else
74cfd7ac 6817 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6818
199e5d79 6819 if (has_panel) {
74cfd7ac
CW
6820 val &= ~DREF_SSC_SOURCE_MASK;
6821 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6822
199e5d79 6823 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6824 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6825 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6826 val |= DREF_SSC1_ENABLE;
e77166b5 6827 } else
74cfd7ac 6828 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6829
6830 /* Get SSC going before enabling the outputs */
74cfd7ac 6831 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6832 POSTING_READ(PCH_DREF_CONTROL);
6833 udelay(200);
6834
74cfd7ac 6835 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6836
6837 /* Enable CPU source on CPU attached eDP */
199e5d79 6838 if (has_cpu_edp) {
99eb6a01 6839 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6840 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6841 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6842 } else
74cfd7ac 6843 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6844 } else
74cfd7ac 6845 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6846
74cfd7ac 6847 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6848 POSTING_READ(PCH_DREF_CONTROL);
6849 udelay(200);
6850 } else {
6851 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6852
74cfd7ac 6853 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6854
6855 /* Turn off CPU output */
74cfd7ac 6856 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6857
74cfd7ac 6858 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6859 POSTING_READ(PCH_DREF_CONTROL);
6860 udelay(200);
6861
6862 /* Turn off the SSC source */
74cfd7ac
CW
6863 val &= ~DREF_SSC_SOURCE_MASK;
6864 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6865
6866 /* Turn off SSC1 */
74cfd7ac 6867 val &= ~DREF_SSC1_ENABLE;
199e5d79 6868
74cfd7ac 6869 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6870 POSTING_READ(PCH_DREF_CONTROL);
6871 udelay(200);
6872 }
74cfd7ac
CW
6873
6874 BUG_ON(val != final);
13d83a67
JB
6875}
6876
f31f2d55 6877static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6878{
f31f2d55 6879 uint32_t tmp;
dde86e2d 6880
0ff066a9
PZ
6881 tmp = I915_READ(SOUTH_CHICKEN2);
6882 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6883 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6884
0ff066a9
PZ
6885 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6886 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6887 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6888
0ff066a9
PZ
6889 tmp = I915_READ(SOUTH_CHICKEN2);
6890 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6891 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6892
0ff066a9
PZ
6893 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6894 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6895 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6896}
6897
6898/* WaMPhyProgramming:hsw */
6899static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6900{
6901 uint32_t tmp;
dde86e2d
PZ
6902
6903 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6904 tmp &= ~(0xFF << 24);
6905 tmp |= (0x12 << 24);
6906 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6907
dde86e2d
PZ
6908 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6909 tmp |= (1 << 11);
6910 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6911
6912 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6913 tmp |= (1 << 11);
6914 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6915
dde86e2d
PZ
6916 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6917 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6918 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6919
6920 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6921 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6922 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6923
0ff066a9
PZ
6924 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6925 tmp &= ~(7 << 13);
6926 tmp |= (5 << 13);
6927 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6928
0ff066a9
PZ
6929 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6930 tmp &= ~(7 << 13);
6931 tmp |= (5 << 13);
6932 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6933
6934 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6935 tmp &= ~0xFF;
6936 tmp |= 0x1C;
6937 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6938
6939 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6940 tmp &= ~0xFF;
6941 tmp |= 0x1C;
6942 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6943
6944 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6945 tmp &= ~(0xFF << 16);
6946 tmp |= (0x1C << 16);
6947 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6948
6949 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6950 tmp &= ~(0xFF << 16);
6951 tmp |= (0x1C << 16);
6952 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6953
0ff066a9
PZ
6954 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6955 tmp |= (1 << 27);
6956 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6957
0ff066a9
PZ
6958 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6959 tmp |= (1 << 27);
6960 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6961
0ff066a9
PZ
6962 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6963 tmp &= ~(0xF << 28);
6964 tmp |= (4 << 28);
6965 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6966
0ff066a9
PZ
6967 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6968 tmp &= ~(0xF << 28);
6969 tmp |= (4 << 28);
6970 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6971}
6972
2fa86a1f
PZ
6973/* Implements 3 different sequences from BSpec chapter "Display iCLK
6974 * Programming" based on the parameters passed:
6975 * - Sequence to enable CLKOUT_DP
6976 * - Sequence to enable CLKOUT_DP without spread
6977 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6978 */
6979static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6980 bool with_fdi)
f31f2d55
PZ
6981{
6982 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6983 uint32_t reg, tmp;
6984
6985 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6986 with_spread = true;
6987 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6988 with_fdi, "LP PCH doesn't have FDI\n"))
6989 with_fdi = false;
f31f2d55
PZ
6990
6991 mutex_lock(&dev_priv->dpio_lock);
6992
6993 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6994 tmp &= ~SBI_SSCCTL_DISABLE;
6995 tmp |= SBI_SSCCTL_PATHALT;
6996 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6997
6998 udelay(24);
6999
2fa86a1f
PZ
7000 if (with_spread) {
7001 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7002 tmp &= ~SBI_SSCCTL_PATHALT;
7003 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7004
2fa86a1f
PZ
7005 if (with_fdi) {
7006 lpt_reset_fdi_mphy(dev_priv);
7007 lpt_program_fdi_mphy(dev_priv);
7008 }
7009 }
dde86e2d 7010
2fa86a1f
PZ
7011 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7012 SBI_GEN0 : SBI_DBUFF0;
7013 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7014 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7015 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7016
7017 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7018}
7019
47701c3b
PZ
7020/* Sequence to disable CLKOUT_DP */
7021static void lpt_disable_clkout_dp(struct drm_device *dev)
7022{
7023 struct drm_i915_private *dev_priv = dev->dev_private;
7024 uint32_t reg, tmp;
7025
7026 mutex_lock(&dev_priv->dpio_lock);
7027
7028 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7029 SBI_GEN0 : SBI_DBUFF0;
7030 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7031 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7032 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7033
7034 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7035 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7036 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7037 tmp |= SBI_SSCCTL_PATHALT;
7038 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7039 udelay(32);
7040 }
7041 tmp |= SBI_SSCCTL_DISABLE;
7042 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7043 }
7044
7045 mutex_unlock(&dev_priv->dpio_lock);
7046}
7047
bf8fa3d3
PZ
7048static void lpt_init_pch_refclk(struct drm_device *dev)
7049{
bf8fa3d3
PZ
7050 struct intel_encoder *encoder;
7051 bool has_vga = false;
7052
b2784e15 7053 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7054 switch (encoder->type) {
7055 case INTEL_OUTPUT_ANALOG:
7056 has_vga = true;
7057 break;
6847d71b
PZ
7058 default:
7059 break;
bf8fa3d3
PZ
7060 }
7061 }
7062
47701c3b
PZ
7063 if (has_vga)
7064 lpt_enable_clkout_dp(dev, true, true);
7065 else
7066 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7067}
7068
dde86e2d
PZ
7069/*
7070 * Initialize reference clocks when the driver loads
7071 */
7072void intel_init_pch_refclk(struct drm_device *dev)
7073{
7074 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7075 ironlake_init_pch_refclk(dev);
7076 else if (HAS_PCH_LPT(dev))
7077 lpt_init_pch_refclk(dev);
7078}
7079
d9d444cb
JB
7080static int ironlake_get_refclk(struct drm_crtc *crtc)
7081{
7082 struct drm_device *dev = crtc->dev;
7083 struct drm_i915_private *dev_priv = dev->dev_private;
7084 struct intel_encoder *encoder;
d9d444cb
JB
7085 int num_connectors = 0;
7086 bool is_lvds = false;
7087
d0737e1d
ACO
7088 for_each_intel_encoder(dev, encoder) {
7089 if (encoder->new_crtc != to_intel_crtc(crtc))
7090 continue;
7091
d9d444cb
JB
7092 switch (encoder->type) {
7093 case INTEL_OUTPUT_LVDS:
7094 is_lvds = true;
7095 break;
6847d71b
PZ
7096 default:
7097 break;
d9d444cb
JB
7098 }
7099 num_connectors++;
7100 }
7101
7102 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7103 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7104 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7105 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7106 }
7107
7108 return 120000;
7109}
7110
6ff93609 7111static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7112{
c8203565 7113 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7115 int pipe = intel_crtc->pipe;
c8203565
PZ
7116 uint32_t val;
7117
78114071 7118 val = 0;
c8203565 7119
6e3c9717 7120 switch (intel_crtc->config->pipe_bpp) {
c8203565 7121 case 18:
dfd07d72 7122 val |= PIPECONF_6BPC;
c8203565
PZ
7123 break;
7124 case 24:
dfd07d72 7125 val |= PIPECONF_8BPC;
c8203565
PZ
7126 break;
7127 case 30:
dfd07d72 7128 val |= PIPECONF_10BPC;
c8203565
PZ
7129 break;
7130 case 36:
dfd07d72 7131 val |= PIPECONF_12BPC;
c8203565
PZ
7132 break;
7133 default:
cc769b62
PZ
7134 /* Case prevented by intel_choose_pipe_bpp_dither. */
7135 BUG();
c8203565
PZ
7136 }
7137
6e3c9717 7138 if (intel_crtc->config->dither)
c8203565
PZ
7139 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7140
6e3c9717 7141 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7142 val |= PIPECONF_INTERLACED_ILK;
7143 else
7144 val |= PIPECONF_PROGRESSIVE;
7145
6e3c9717 7146 if (intel_crtc->config->limited_color_range)
3685a8f3 7147 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7148
c8203565
PZ
7149 I915_WRITE(PIPECONF(pipe), val);
7150 POSTING_READ(PIPECONF(pipe));
7151}
7152
86d3efce
VS
7153/*
7154 * Set up the pipe CSC unit.
7155 *
7156 * Currently only full range RGB to limited range RGB conversion
7157 * is supported, but eventually this should handle various
7158 * RGB<->YCbCr scenarios as well.
7159 */
50f3b016 7160static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7161{
7162 struct drm_device *dev = crtc->dev;
7163 struct drm_i915_private *dev_priv = dev->dev_private;
7164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7165 int pipe = intel_crtc->pipe;
7166 uint16_t coeff = 0x7800; /* 1.0 */
7167
7168 /*
7169 * TODO: Check what kind of values actually come out of the pipe
7170 * with these coeff/postoff values and adjust to get the best
7171 * accuracy. Perhaps we even need to take the bpc value into
7172 * consideration.
7173 */
7174
6e3c9717 7175 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7176 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7177
7178 /*
7179 * GY/GU and RY/RU should be the other way around according
7180 * to BSpec, but reality doesn't agree. Just set them up in
7181 * a way that results in the correct picture.
7182 */
7183 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7184 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7185
7186 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7187 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7188
7189 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7190 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7191
7192 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7193 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7194 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7195
7196 if (INTEL_INFO(dev)->gen > 6) {
7197 uint16_t postoff = 0;
7198
6e3c9717 7199 if (intel_crtc->config->limited_color_range)
32cf0cb0 7200 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7201
7202 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7203 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7204 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7205
7206 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7207 } else {
7208 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7209
6e3c9717 7210 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7211 mode |= CSC_BLACK_SCREEN_OFFSET;
7212
7213 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7214 }
7215}
7216
6ff93609 7217static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7218{
756f85cf
PZ
7219 struct drm_device *dev = crtc->dev;
7220 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7222 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7223 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
7224 uint32_t val;
7225
3eff4faa 7226 val = 0;
ee2b0b38 7227
6e3c9717 7228 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
7229 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7230
6e3c9717 7231 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7232 val |= PIPECONF_INTERLACED_ILK;
7233 else
7234 val |= PIPECONF_PROGRESSIVE;
7235
702e7a56
PZ
7236 I915_WRITE(PIPECONF(cpu_transcoder), val);
7237 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7238
7239 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7240 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7241
3cdf122c 7242 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7243 val = 0;
7244
6e3c9717 7245 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
7246 case 18:
7247 val |= PIPEMISC_DITHER_6_BPC;
7248 break;
7249 case 24:
7250 val |= PIPEMISC_DITHER_8_BPC;
7251 break;
7252 case 30:
7253 val |= PIPEMISC_DITHER_10_BPC;
7254 break;
7255 case 36:
7256 val |= PIPEMISC_DITHER_12_BPC;
7257 break;
7258 default:
7259 /* Case prevented by pipe_config_set_bpp. */
7260 BUG();
7261 }
7262
6e3c9717 7263 if (intel_crtc->config->dither)
756f85cf
PZ
7264 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7265
7266 I915_WRITE(PIPEMISC(pipe), val);
7267 }
ee2b0b38
PZ
7268}
7269
6591c6e4 7270static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 7271 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
7272 intel_clock_t *clock,
7273 bool *has_reduced_clock,
7274 intel_clock_t *reduced_clock)
7275{
7276 struct drm_device *dev = crtc->dev;
7277 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7278 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7279 int refclk;
d4906093 7280 const intel_limit_t *limit;
a16af721 7281 bool ret, is_lvds = false;
79e53945 7282
d0737e1d 7283 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7284
d9d444cb 7285 refclk = ironlake_get_refclk(crtc);
79e53945 7286
d4906093
ML
7287 /*
7288 * Returns a set of divisors for the desired target clock with the given
7289 * refclk, or FALSE. The returned values represent the clock equation:
7290 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7291 */
409ee761 7292 limit = intel_limit(intel_crtc, refclk);
a919ff14 7293 ret = dev_priv->display.find_dpll(limit, intel_crtc,
190f68c5 7294 crtc_state->port_clock,
ee9300bb 7295 refclk, NULL, clock);
6591c6e4
PZ
7296 if (!ret)
7297 return false;
cda4b7d3 7298
ddc9003c 7299 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7300 /*
7301 * Ensure we match the reduced clock's P to the target clock.
7302 * If the clocks don't match, we can't switch the display clock
7303 * by using the FP0/FP1. In such case we will disable the LVDS
7304 * downclock feature.
7305 */
ee9300bb 7306 *has_reduced_clock =
a919ff14 7307 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7308 dev_priv->lvds_downclock,
7309 refclk, clock,
7310 reduced_clock);
652c393a 7311 }
61e9653f 7312
6591c6e4
PZ
7313 return true;
7314}
7315
d4b1931c
PZ
7316int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7317{
7318 /*
7319 * Account for spread spectrum to avoid
7320 * oversubscribing the link. Max center spread
7321 * is 2.5%; use 5% for safety's sake.
7322 */
7323 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7324 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7325}
7326
7429e9d4 7327static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7328{
7429e9d4 7329 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7330}
7331
de13a2e3 7332static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 7333 struct intel_crtc_state *crtc_state,
7429e9d4 7334 u32 *fp,
9a7c7890 7335 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7336{
de13a2e3 7337 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7338 struct drm_device *dev = crtc->dev;
7339 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7340 struct intel_encoder *intel_encoder;
7341 uint32_t dpll;
6cc5f341 7342 int factor, num_connectors = 0;
09ede541 7343 bool is_lvds = false, is_sdvo = false;
79e53945 7344
d0737e1d
ACO
7345 for_each_intel_encoder(dev, intel_encoder) {
7346 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7347 continue;
7348
de13a2e3 7349 switch (intel_encoder->type) {
79e53945
JB
7350 case INTEL_OUTPUT_LVDS:
7351 is_lvds = true;
7352 break;
7353 case INTEL_OUTPUT_SDVO:
7d57382e 7354 case INTEL_OUTPUT_HDMI:
79e53945 7355 is_sdvo = true;
79e53945 7356 break;
6847d71b
PZ
7357 default:
7358 break;
79e53945 7359 }
43565a06 7360
c751ce4f 7361 num_connectors++;
79e53945 7362 }
79e53945 7363
c1858123 7364 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7365 factor = 21;
7366 if (is_lvds) {
7367 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7368 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7369 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7370 factor = 25;
190f68c5 7371 } else if (crtc_state->sdvo_tv_clock)
8febb297 7372 factor = 20;
c1858123 7373
190f68c5 7374 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 7375 *fp |= FP_CB_TUNE;
2c07245f 7376
9a7c7890
DV
7377 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7378 *fp2 |= FP_CB_TUNE;
7379
5eddb70b 7380 dpll = 0;
2c07245f 7381
a07d6787
EA
7382 if (is_lvds)
7383 dpll |= DPLLB_MODE_LVDS;
7384 else
7385 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7386
190f68c5 7387 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 7388 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7389
7390 if (is_sdvo)
4a33e48d 7391 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 7392 if (crtc_state->has_dp_encoder)
4a33e48d 7393 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7394
a07d6787 7395 /* compute bitmask from p1 value */
190f68c5 7396 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7397 /* also FPA1 */
190f68c5 7398 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7399
190f68c5 7400 switch (crtc_state->dpll.p2) {
a07d6787
EA
7401 case 5:
7402 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7403 break;
7404 case 7:
7405 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7406 break;
7407 case 10:
7408 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7409 break;
7410 case 14:
7411 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7412 break;
79e53945
JB
7413 }
7414
b4c09f3b 7415 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7416 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7417 else
7418 dpll |= PLL_REF_INPUT_DREFCLK;
7419
959e16d6 7420 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7421}
7422
190f68c5
ACO
7423static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7424 struct intel_crtc_state *crtc_state)
de13a2e3 7425{
c7653199 7426 struct drm_device *dev = crtc->base.dev;
de13a2e3 7427 intel_clock_t clock, reduced_clock;
cbbab5bd 7428 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7429 bool ok, has_reduced_clock = false;
8b47047b 7430 bool is_lvds = false;
e2b78267 7431 struct intel_shared_dpll *pll;
de13a2e3 7432
409ee761 7433 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7434
5dc5298b
PZ
7435 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7436 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7437
190f68c5 7438 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 7439 &has_reduced_clock, &reduced_clock);
190f68c5 7440 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
7441 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7442 return -EINVAL;
79e53945 7443 }
f47709a9 7444 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7445 if (!crtc_state->clock_set) {
7446 crtc_state->dpll.n = clock.n;
7447 crtc_state->dpll.m1 = clock.m1;
7448 crtc_state->dpll.m2 = clock.m2;
7449 crtc_state->dpll.p1 = clock.p1;
7450 crtc_state->dpll.p2 = clock.p2;
f47709a9 7451 }
79e53945 7452
5dc5298b 7453 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
7454 if (crtc_state->has_pch_encoder) {
7455 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 7456 if (has_reduced_clock)
7429e9d4 7457 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7458
190f68c5 7459 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
7460 &fp, &reduced_clock,
7461 has_reduced_clock ? &fp2 : NULL);
7462
190f68c5
ACO
7463 crtc_state->dpll_hw_state.dpll = dpll;
7464 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 7465 if (has_reduced_clock)
190f68c5 7466 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 7467 else
190f68c5 7468 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 7469
190f68c5 7470 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 7471 if (pll == NULL) {
84f44ce7 7472 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7473 pipe_name(crtc->pipe));
4b645f14
JB
7474 return -EINVAL;
7475 }
3fb37703 7476 }
79e53945 7477
d330a953 7478 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7479 crtc->lowfreq_avail = true;
bcd644e0 7480 else
c7653199 7481 crtc->lowfreq_avail = false;
e2b78267 7482
c8f7a0db 7483 return 0;
79e53945
JB
7484}
7485
eb14cb74
VS
7486static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7487 struct intel_link_m_n *m_n)
7488{
7489 struct drm_device *dev = crtc->base.dev;
7490 struct drm_i915_private *dev_priv = dev->dev_private;
7491 enum pipe pipe = crtc->pipe;
7492
7493 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7494 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7495 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7496 & ~TU_SIZE_MASK;
7497 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7498 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7499 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7500}
7501
7502static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7503 enum transcoder transcoder,
b95af8be
VK
7504 struct intel_link_m_n *m_n,
7505 struct intel_link_m_n *m2_n2)
72419203
DV
7506{
7507 struct drm_device *dev = crtc->base.dev;
7508 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7509 enum pipe pipe = crtc->pipe;
72419203 7510
eb14cb74
VS
7511 if (INTEL_INFO(dev)->gen >= 5) {
7512 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7513 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7514 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7515 & ~TU_SIZE_MASK;
7516 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7517 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7518 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7519 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7520 * gen < 8) and if DRRS is supported (to make sure the
7521 * registers are not unnecessarily read).
7522 */
7523 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 7524 crtc->config->has_drrs) {
b95af8be
VK
7525 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7526 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7527 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7528 & ~TU_SIZE_MASK;
7529 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7530 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7531 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7532 }
eb14cb74
VS
7533 } else {
7534 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7535 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7536 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7537 & ~TU_SIZE_MASK;
7538 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7539 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7540 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7541 }
7542}
7543
7544void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 7545 struct intel_crtc_state *pipe_config)
eb14cb74 7546{
681a8504 7547 if (pipe_config->has_pch_encoder)
eb14cb74
VS
7548 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7549 else
7550 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7551 &pipe_config->dp_m_n,
7552 &pipe_config->dp_m2_n2);
eb14cb74 7553}
72419203 7554
eb14cb74 7555static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 7556 struct intel_crtc_state *pipe_config)
eb14cb74
VS
7557{
7558 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7559 &pipe_config->fdi_m_n, NULL);
72419203
DV
7560}
7561
bd2e244f 7562static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7563 struct intel_crtc_state *pipe_config)
bd2e244f
JB
7564{
7565 struct drm_device *dev = crtc->base.dev;
7566 struct drm_i915_private *dev_priv = dev->dev_private;
7567 uint32_t tmp;
7568
7569 tmp = I915_READ(PS_CTL(crtc->pipe));
7570
7571 if (tmp & PS_ENABLE) {
7572 pipe_config->pch_pfit.enabled = true;
7573 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7574 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7575 }
7576}
7577
2fa2fe9a 7578static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7579 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7580{
7581 struct drm_device *dev = crtc->base.dev;
7582 struct drm_i915_private *dev_priv = dev->dev_private;
7583 uint32_t tmp;
7584
7585 tmp = I915_READ(PF_CTL(crtc->pipe));
7586
7587 if (tmp & PF_ENABLE) {
fd4daa9c 7588 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7589 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7590 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7591
7592 /* We currently do not free assignements of panel fitters on
7593 * ivb/hsw (since we don't use the higher upscaling modes which
7594 * differentiates them) so just WARN about this case for now. */
7595 if (IS_GEN7(dev)) {
7596 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7597 PF_PIPE_SEL_IVB(crtc->pipe));
7598 }
2fa2fe9a 7599 }
79e53945
JB
7600}
7601
4c6baa59
JB
7602static void ironlake_get_plane_config(struct intel_crtc *crtc,
7603 struct intel_plane_config *plane_config)
7604{
7605 struct drm_device *dev = crtc->base.dev;
7606 struct drm_i915_private *dev_priv = dev->dev_private;
7607 u32 val, base, offset;
7608 int pipe = crtc->pipe, plane = crtc->plane;
7609 int fourcc, pixel_format;
7610 int aligned_height;
7611
66e514c1
DA
7612 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7613 if (!crtc->base.primary->fb) {
4c6baa59
JB
7614 DRM_DEBUG_KMS("failed to alloc fb\n");
7615 return;
7616 }
7617
7618 val = I915_READ(DSPCNTR(plane));
7619
7620 if (INTEL_INFO(dev)->gen >= 4)
7621 if (val & DISPPLANE_TILED)
7622 plane_config->tiled = true;
7623
7624 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7625 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7626 crtc->base.primary->fb->pixel_format = fourcc;
7627 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7628 drm_format_plane_cpp(fourcc, 0) * 8;
7629
7630 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7631 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7632 offset = I915_READ(DSPOFFSET(plane));
7633 } else {
7634 if (plane_config->tiled)
7635 offset = I915_READ(DSPTILEOFF(plane));
7636 else
7637 offset = I915_READ(DSPLINOFF(plane));
7638 }
7639 plane_config->base = base;
7640
7641 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7642 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7643 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7644
7645 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7646 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7647
66e514c1 7648 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7649 plane_config->tiled);
7650
1267a26b
FF
7651 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7652 aligned_height);
4c6baa59
JB
7653
7654 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7655 pipe, plane, crtc->base.primary->fb->width,
7656 crtc->base.primary->fb->height,
7657 crtc->base.primary->fb->bits_per_pixel, base,
7658 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7659 plane_config->size);
7660}
7661
0e8ffe1b 7662static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 7663 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
7664{
7665 struct drm_device *dev = crtc->base.dev;
7666 struct drm_i915_private *dev_priv = dev->dev_private;
7667 uint32_t tmp;
7668
f458ebbc
DV
7669 if (!intel_display_power_is_enabled(dev_priv,
7670 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7671 return false;
7672
e143a21c 7673 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7674 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7675
0e8ffe1b
DV
7676 tmp = I915_READ(PIPECONF(crtc->pipe));
7677 if (!(tmp & PIPECONF_ENABLE))
7678 return false;
7679
42571aef
VS
7680 switch (tmp & PIPECONF_BPC_MASK) {
7681 case PIPECONF_6BPC:
7682 pipe_config->pipe_bpp = 18;
7683 break;
7684 case PIPECONF_8BPC:
7685 pipe_config->pipe_bpp = 24;
7686 break;
7687 case PIPECONF_10BPC:
7688 pipe_config->pipe_bpp = 30;
7689 break;
7690 case PIPECONF_12BPC:
7691 pipe_config->pipe_bpp = 36;
7692 break;
7693 default:
7694 break;
7695 }
7696
b5a9fa09
DV
7697 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7698 pipe_config->limited_color_range = true;
7699
ab9412ba 7700 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7701 struct intel_shared_dpll *pll;
7702
88adfff1
DV
7703 pipe_config->has_pch_encoder = true;
7704
627eb5a3
DV
7705 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7706 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7707 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7708
7709 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7710
c0d43d62 7711 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7712 pipe_config->shared_dpll =
7713 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7714 } else {
7715 tmp = I915_READ(PCH_DPLL_SEL);
7716 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7717 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7718 else
7719 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7720 }
66e985c0
DV
7721
7722 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7723
7724 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7725 &pipe_config->dpll_hw_state));
c93f54cf
DV
7726
7727 tmp = pipe_config->dpll_hw_state.dpll;
7728 pipe_config->pixel_multiplier =
7729 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7730 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7731
7732 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7733 } else {
7734 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7735 }
7736
1bd1bd80
DV
7737 intel_get_pipe_timings(crtc, pipe_config);
7738
2fa2fe9a
DV
7739 ironlake_get_pfit_config(crtc, pipe_config);
7740
0e8ffe1b
DV
7741 return true;
7742}
7743
be256dc7
PZ
7744static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7745{
7746 struct drm_device *dev = dev_priv->dev;
be256dc7 7747 struct intel_crtc *crtc;
be256dc7 7748
d3fcc808 7749 for_each_intel_crtc(dev, crtc)
e2c719b7 7750 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7751 pipe_name(crtc->pipe));
7752
e2c719b7
RC
7753 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7754 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7755 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7756 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7757 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7758 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 7759 "CPU PWM1 enabled\n");
c5107b87 7760 if (IS_HASWELL(dev))
e2c719b7 7761 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 7762 "CPU PWM2 enabled\n");
e2c719b7 7763 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 7764 "PCH PWM1 enabled\n");
e2c719b7 7765 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 7766 "Utility pin enabled\n");
e2c719b7 7767 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 7768
9926ada1
PZ
7769 /*
7770 * In theory we can still leave IRQs enabled, as long as only the HPD
7771 * interrupts remain enabled. We used to check for that, but since it's
7772 * gen-specific and since we only disable LCPLL after we fully disable
7773 * the interrupts, the check below should be enough.
7774 */
e2c719b7 7775 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7776}
7777
9ccd5aeb
PZ
7778static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7779{
7780 struct drm_device *dev = dev_priv->dev;
7781
7782 if (IS_HASWELL(dev))
7783 return I915_READ(D_COMP_HSW);
7784 else
7785 return I915_READ(D_COMP_BDW);
7786}
7787
3c4c9b81
PZ
7788static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7789{
7790 struct drm_device *dev = dev_priv->dev;
7791
7792 if (IS_HASWELL(dev)) {
7793 mutex_lock(&dev_priv->rps.hw_lock);
7794 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7795 val))
f475dadf 7796 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7797 mutex_unlock(&dev_priv->rps.hw_lock);
7798 } else {
9ccd5aeb
PZ
7799 I915_WRITE(D_COMP_BDW, val);
7800 POSTING_READ(D_COMP_BDW);
3c4c9b81 7801 }
be256dc7
PZ
7802}
7803
7804/*
7805 * This function implements pieces of two sequences from BSpec:
7806 * - Sequence for display software to disable LCPLL
7807 * - Sequence for display software to allow package C8+
7808 * The steps implemented here are just the steps that actually touch the LCPLL
7809 * register. Callers should take care of disabling all the display engine
7810 * functions, doing the mode unset, fixing interrupts, etc.
7811 */
6ff58d53
PZ
7812static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7813 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7814{
7815 uint32_t val;
7816
7817 assert_can_disable_lcpll(dev_priv);
7818
7819 val = I915_READ(LCPLL_CTL);
7820
7821 if (switch_to_fclk) {
7822 val |= LCPLL_CD_SOURCE_FCLK;
7823 I915_WRITE(LCPLL_CTL, val);
7824
7825 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7826 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7827 DRM_ERROR("Switching to FCLK failed\n");
7828
7829 val = I915_READ(LCPLL_CTL);
7830 }
7831
7832 val |= LCPLL_PLL_DISABLE;
7833 I915_WRITE(LCPLL_CTL, val);
7834 POSTING_READ(LCPLL_CTL);
7835
7836 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7837 DRM_ERROR("LCPLL still locked\n");
7838
9ccd5aeb 7839 val = hsw_read_dcomp(dev_priv);
be256dc7 7840 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7841 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7842 ndelay(100);
7843
9ccd5aeb
PZ
7844 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7845 1))
be256dc7
PZ
7846 DRM_ERROR("D_COMP RCOMP still in progress\n");
7847
7848 if (allow_power_down) {
7849 val = I915_READ(LCPLL_CTL);
7850 val |= LCPLL_POWER_DOWN_ALLOW;
7851 I915_WRITE(LCPLL_CTL, val);
7852 POSTING_READ(LCPLL_CTL);
7853 }
7854}
7855
7856/*
7857 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7858 * source.
7859 */
6ff58d53 7860static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7861{
7862 uint32_t val;
7863
7864 val = I915_READ(LCPLL_CTL);
7865
7866 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7867 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7868 return;
7869
a8a8bd54
PZ
7870 /*
7871 * Make sure we're not on PC8 state before disabling PC8, otherwise
7872 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 7873 */
6daccb0b 7874 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
215733fa 7875
be256dc7
PZ
7876 if (val & LCPLL_POWER_DOWN_ALLOW) {
7877 val &= ~LCPLL_POWER_DOWN_ALLOW;
7878 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7879 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7880 }
7881
9ccd5aeb 7882 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7883 val |= D_COMP_COMP_FORCE;
7884 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7885 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7886
7887 val = I915_READ(LCPLL_CTL);
7888 val &= ~LCPLL_PLL_DISABLE;
7889 I915_WRITE(LCPLL_CTL, val);
7890
7891 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7892 DRM_ERROR("LCPLL not locked yet\n");
7893
7894 if (val & LCPLL_CD_SOURCE_FCLK) {
7895 val = I915_READ(LCPLL_CTL);
7896 val &= ~LCPLL_CD_SOURCE_FCLK;
7897 I915_WRITE(LCPLL_CTL, val);
7898
7899 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7900 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7901 DRM_ERROR("Switching back to LCPLL failed\n");
7902 }
215733fa 7903
6daccb0b 7904 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
7905}
7906
765dab67
PZ
7907/*
7908 * Package states C8 and deeper are really deep PC states that can only be
7909 * reached when all the devices on the system allow it, so even if the graphics
7910 * device allows PC8+, it doesn't mean the system will actually get to these
7911 * states. Our driver only allows PC8+ when going into runtime PM.
7912 *
7913 * The requirements for PC8+ are that all the outputs are disabled, the power
7914 * well is disabled and most interrupts are disabled, and these are also
7915 * requirements for runtime PM. When these conditions are met, we manually do
7916 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7917 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7918 * hang the machine.
7919 *
7920 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7921 * the state of some registers, so when we come back from PC8+ we need to
7922 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7923 * need to take care of the registers kept by RC6. Notice that this happens even
7924 * if we don't put the device in PCI D3 state (which is what currently happens
7925 * because of the runtime PM support).
7926 *
7927 * For more, read "Display Sequences for Package C8" on the hardware
7928 * documentation.
7929 */
a14cb6fc 7930void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7931{
c67a470b
PZ
7932 struct drm_device *dev = dev_priv->dev;
7933 uint32_t val;
7934
c67a470b
PZ
7935 DRM_DEBUG_KMS("Enabling package C8+\n");
7936
c67a470b
PZ
7937 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7938 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7939 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7940 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7941 }
7942
7943 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7944 hsw_disable_lcpll(dev_priv, true, true);
7945}
7946
a14cb6fc 7947void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7948{
7949 struct drm_device *dev = dev_priv->dev;
7950 uint32_t val;
7951
c67a470b
PZ
7952 DRM_DEBUG_KMS("Disabling package C8+\n");
7953
7954 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7955 lpt_init_pch_refclk(dev);
7956
7957 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7958 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7959 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7960 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7961 }
7962
7963 intel_prepare_ddi(dev);
c67a470b
PZ
7964}
7965
190f68c5
ACO
7966static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
7967 struct intel_crtc_state *crtc_state)
09b4ddf9 7968{
190f68c5 7969 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 7970 return -EINVAL;
716c2e55 7971
c7653199 7972 crtc->lowfreq_avail = false;
644cef34 7973
c8f7a0db 7974 return 0;
79e53945
JB
7975}
7976
96b7dfb7
S
7977static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
7978 enum port port,
5cec258b 7979 struct intel_crtc_state *pipe_config)
96b7dfb7 7980{
3148ade7 7981 u32 temp, dpll_ctl1;
96b7dfb7
S
7982
7983 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
7984 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
7985
7986 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
7987 case SKL_DPLL0:
7988 /*
7989 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
7990 * of the shared DPLL framework and thus needs to be read out
7991 * separately
7992 */
7993 dpll_ctl1 = I915_READ(DPLL_CTRL1);
7994 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
7995 break;
96b7dfb7
S
7996 case SKL_DPLL1:
7997 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
7998 break;
7999 case SKL_DPLL2:
8000 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8001 break;
8002 case SKL_DPLL3:
8003 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8004 break;
96b7dfb7
S
8005 }
8006}
8007
7d2c8175
DL
8008static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8009 enum port port,
5cec258b 8010 struct intel_crtc_state *pipe_config)
7d2c8175
DL
8011{
8012 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8013
8014 switch (pipe_config->ddi_pll_sel) {
8015 case PORT_CLK_SEL_WRPLL1:
8016 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8017 break;
8018 case PORT_CLK_SEL_WRPLL2:
8019 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8020 break;
8021 }
8022}
8023
26804afd 8024static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 8025 struct intel_crtc_state *pipe_config)
26804afd
DV
8026{
8027 struct drm_device *dev = crtc->base.dev;
8028 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8029 struct intel_shared_dpll *pll;
26804afd
DV
8030 enum port port;
8031 uint32_t tmp;
8032
8033 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8034
8035 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8036
96b7dfb7
S
8037 if (IS_SKYLAKE(dev))
8038 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8039 else
8040 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8041
d452c5b6
DV
8042 if (pipe_config->shared_dpll >= 0) {
8043 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8044
8045 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8046 &pipe_config->dpll_hw_state));
8047 }
8048
26804afd
DV
8049 /*
8050 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8051 * DDI E. So just check whether this pipe is wired to DDI E and whether
8052 * the PCH transcoder is on.
8053 */
ca370455
DL
8054 if (INTEL_INFO(dev)->gen < 9 &&
8055 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8056 pipe_config->has_pch_encoder = true;
8057
8058 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8059 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8060 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8061
8062 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8063 }
8064}
8065
0e8ffe1b 8066static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8067 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8068{
8069 struct drm_device *dev = crtc->base.dev;
8070 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8071 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8072 uint32_t tmp;
8073
f458ebbc 8074 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8075 POWER_DOMAIN_PIPE(crtc->pipe)))
8076 return false;
8077
e143a21c 8078 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8079 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8080
eccb140b
DV
8081 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8082 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8083 enum pipe trans_edp_pipe;
8084 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8085 default:
8086 WARN(1, "unknown pipe linked to edp transcoder\n");
8087 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8088 case TRANS_DDI_EDP_INPUT_A_ON:
8089 trans_edp_pipe = PIPE_A;
8090 break;
8091 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8092 trans_edp_pipe = PIPE_B;
8093 break;
8094 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8095 trans_edp_pipe = PIPE_C;
8096 break;
8097 }
8098
8099 if (trans_edp_pipe == crtc->pipe)
8100 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8101 }
8102
f458ebbc 8103 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8104 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8105 return false;
8106
eccb140b 8107 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8108 if (!(tmp & PIPECONF_ENABLE))
8109 return false;
8110
26804afd 8111 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8112
1bd1bd80
DV
8113 intel_get_pipe_timings(crtc, pipe_config);
8114
2fa2fe9a 8115 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8116 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8117 if (IS_SKYLAKE(dev))
8118 skylake_get_pfit_config(crtc, pipe_config);
8119 else
8120 ironlake_get_pfit_config(crtc, pipe_config);
8121 }
88adfff1 8122
e59150dc
JB
8123 if (IS_HASWELL(dev))
8124 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8125 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8126
ebb69c95
CT
8127 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8128 pipe_config->pixel_multiplier =
8129 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8130 } else {
8131 pipe_config->pixel_multiplier = 1;
8132 }
6c49f241 8133
0e8ffe1b
DV
8134 return true;
8135}
8136
560b85bb
CW
8137static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8138{
8139 struct drm_device *dev = crtc->dev;
8140 struct drm_i915_private *dev_priv = dev->dev_private;
8141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8142 uint32_t cntl = 0, size = 0;
560b85bb 8143
dc41c154
VS
8144 if (base) {
8145 unsigned int width = intel_crtc->cursor_width;
8146 unsigned int height = intel_crtc->cursor_height;
8147 unsigned int stride = roundup_pow_of_two(width) * 4;
8148
8149 switch (stride) {
8150 default:
8151 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8152 width, stride);
8153 stride = 256;
8154 /* fallthrough */
8155 case 256:
8156 case 512:
8157 case 1024:
8158 case 2048:
8159 break;
4b0e333e
CW
8160 }
8161
dc41c154
VS
8162 cntl |= CURSOR_ENABLE |
8163 CURSOR_GAMMA_ENABLE |
8164 CURSOR_FORMAT_ARGB |
8165 CURSOR_STRIDE(stride);
8166
8167 size = (height << 12) | width;
4b0e333e 8168 }
560b85bb 8169
dc41c154
VS
8170 if (intel_crtc->cursor_cntl != 0 &&
8171 (intel_crtc->cursor_base != base ||
8172 intel_crtc->cursor_size != size ||
8173 intel_crtc->cursor_cntl != cntl)) {
8174 /* On these chipsets we can only modify the base/size/stride
8175 * whilst the cursor is disabled.
8176 */
8177 I915_WRITE(_CURACNTR, 0);
4b0e333e 8178 POSTING_READ(_CURACNTR);
dc41c154 8179 intel_crtc->cursor_cntl = 0;
4b0e333e 8180 }
560b85bb 8181
99d1f387 8182 if (intel_crtc->cursor_base != base) {
9db4a9c7 8183 I915_WRITE(_CURABASE, base);
99d1f387
VS
8184 intel_crtc->cursor_base = base;
8185 }
4726e0b0 8186
dc41c154
VS
8187 if (intel_crtc->cursor_size != size) {
8188 I915_WRITE(CURSIZE, size);
8189 intel_crtc->cursor_size = size;
4b0e333e 8190 }
560b85bb 8191
4b0e333e 8192 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8193 I915_WRITE(_CURACNTR, cntl);
8194 POSTING_READ(_CURACNTR);
4b0e333e 8195 intel_crtc->cursor_cntl = cntl;
560b85bb 8196 }
560b85bb
CW
8197}
8198
560b85bb 8199static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8200{
8201 struct drm_device *dev = crtc->dev;
8202 struct drm_i915_private *dev_priv = dev->dev_private;
8203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8204 int pipe = intel_crtc->pipe;
4b0e333e
CW
8205 uint32_t cntl;
8206
8207 cntl = 0;
8208 if (base) {
8209 cntl = MCURSOR_GAMMA_ENABLE;
8210 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8211 case 64:
8212 cntl |= CURSOR_MODE_64_ARGB_AX;
8213 break;
8214 case 128:
8215 cntl |= CURSOR_MODE_128_ARGB_AX;
8216 break;
8217 case 256:
8218 cntl |= CURSOR_MODE_256_ARGB_AX;
8219 break;
8220 default:
5f77eeb0 8221 MISSING_CASE(intel_crtc->cursor_width);
4726e0b0 8222 return;
65a21cd6 8223 }
4b0e333e 8224 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8225
8226 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8227 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8228 }
65a21cd6 8229
4398ad45
VS
8230 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8231 cntl |= CURSOR_ROTATE_180;
8232
4b0e333e
CW
8233 if (intel_crtc->cursor_cntl != cntl) {
8234 I915_WRITE(CURCNTR(pipe), cntl);
8235 POSTING_READ(CURCNTR(pipe));
8236 intel_crtc->cursor_cntl = cntl;
65a21cd6 8237 }
4b0e333e 8238
65a21cd6 8239 /* and commit changes on next vblank */
5efb3e28
VS
8240 I915_WRITE(CURBASE(pipe), base);
8241 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8242
8243 intel_crtc->cursor_base = base;
65a21cd6
JB
8244}
8245
cda4b7d3 8246/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8247static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8248 bool on)
cda4b7d3
CW
8249{
8250 struct drm_device *dev = crtc->dev;
8251 struct drm_i915_private *dev_priv = dev->dev_private;
8252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8253 int pipe = intel_crtc->pipe;
3d7d6510
MR
8254 int x = crtc->cursor_x;
8255 int y = crtc->cursor_y;
d6e4db15 8256 u32 base = 0, pos = 0;
cda4b7d3 8257
d6e4db15 8258 if (on)
cda4b7d3 8259 base = intel_crtc->cursor_addr;
cda4b7d3 8260
6e3c9717 8261 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
8262 base = 0;
8263
6e3c9717 8264 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
8265 base = 0;
8266
8267 if (x < 0) {
efc9064e 8268 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8269 base = 0;
8270
8271 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8272 x = -x;
8273 }
8274 pos |= x << CURSOR_X_SHIFT;
8275
8276 if (y < 0) {
efc9064e 8277 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8278 base = 0;
8279
8280 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8281 y = -y;
8282 }
8283 pos |= y << CURSOR_Y_SHIFT;
8284
4b0e333e 8285 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8286 return;
8287
5efb3e28
VS
8288 I915_WRITE(CURPOS(pipe), pos);
8289
4398ad45
VS
8290 /* ILK+ do this automagically */
8291 if (HAS_GMCH_DISPLAY(dev) &&
8292 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8293 base += (intel_crtc->cursor_height *
8294 intel_crtc->cursor_width - 1) * 4;
8295 }
8296
8ac54669 8297 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8298 i845_update_cursor(crtc, base);
8299 else
8300 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8301}
8302
dc41c154
VS
8303static bool cursor_size_ok(struct drm_device *dev,
8304 uint32_t width, uint32_t height)
8305{
8306 if (width == 0 || height == 0)
8307 return false;
8308
8309 /*
8310 * 845g/865g are special in that they are only limited by
8311 * the width of their cursors, the height is arbitrary up to
8312 * the precision of the register. Everything else requires
8313 * square cursors, limited to a few power-of-two sizes.
8314 */
8315 if (IS_845G(dev) || IS_I865G(dev)) {
8316 if ((width & 63) != 0)
8317 return false;
8318
8319 if (width > (IS_845G(dev) ? 64 : 512))
8320 return false;
8321
8322 if (height > 1023)
8323 return false;
8324 } else {
8325 switch (width | height) {
8326 case 256:
8327 case 128:
8328 if (IS_GEN2(dev))
8329 return false;
8330 case 64:
8331 break;
8332 default:
8333 return false;
8334 }
8335 }
8336
8337 return true;
8338}
8339
79e53945 8340static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8341 u16 *blue, uint32_t start, uint32_t size)
79e53945 8342{
7203425a 8343 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8344 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8345
7203425a 8346 for (i = start; i < end; i++) {
79e53945
JB
8347 intel_crtc->lut_r[i] = red[i] >> 8;
8348 intel_crtc->lut_g[i] = green[i] >> 8;
8349 intel_crtc->lut_b[i] = blue[i] >> 8;
8350 }
8351
8352 intel_crtc_load_lut(crtc);
8353}
8354
79e53945
JB
8355/* VESA 640x480x72Hz mode to set on the pipe */
8356static struct drm_display_mode load_detect_mode = {
8357 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8358 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8359};
8360
a8bb6818
DV
8361struct drm_framebuffer *
8362__intel_framebuffer_create(struct drm_device *dev,
8363 struct drm_mode_fb_cmd2 *mode_cmd,
8364 struct drm_i915_gem_object *obj)
d2dff872
CW
8365{
8366 struct intel_framebuffer *intel_fb;
8367 int ret;
8368
8369 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8370 if (!intel_fb) {
6ccb81f2 8371 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8372 return ERR_PTR(-ENOMEM);
8373 }
8374
8375 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8376 if (ret)
8377 goto err;
d2dff872
CW
8378
8379 return &intel_fb->base;
dd4916c5 8380err:
6ccb81f2 8381 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8382 kfree(intel_fb);
8383
8384 return ERR_PTR(ret);
d2dff872
CW
8385}
8386
b5ea642a 8387static struct drm_framebuffer *
a8bb6818
DV
8388intel_framebuffer_create(struct drm_device *dev,
8389 struct drm_mode_fb_cmd2 *mode_cmd,
8390 struct drm_i915_gem_object *obj)
8391{
8392 struct drm_framebuffer *fb;
8393 int ret;
8394
8395 ret = i915_mutex_lock_interruptible(dev);
8396 if (ret)
8397 return ERR_PTR(ret);
8398 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8399 mutex_unlock(&dev->struct_mutex);
8400
8401 return fb;
8402}
8403
d2dff872
CW
8404static u32
8405intel_framebuffer_pitch_for_width(int width, int bpp)
8406{
8407 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8408 return ALIGN(pitch, 64);
8409}
8410
8411static u32
8412intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8413{
8414 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8415 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8416}
8417
8418static struct drm_framebuffer *
8419intel_framebuffer_create_for_mode(struct drm_device *dev,
8420 struct drm_display_mode *mode,
8421 int depth, int bpp)
8422{
8423 struct drm_i915_gem_object *obj;
0fed39bd 8424 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8425
8426 obj = i915_gem_alloc_object(dev,
8427 intel_framebuffer_size_for_mode(mode, bpp));
8428 if (obj == NULL)
8429 return ERR_PTR(-ENOMEM);
8430
8431 mode_cmd.width = mode->hdisplay;
8432 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8433 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8434 bpp);
5ca0c34a 8435 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8436
8437 return intel_framebuffer_create(dev, &mode_cmd, obj);
8438}
8439
8440static struct drm_framebuffer *
8441mode_fits_in_fbdev(struct drm_device *dev,
8442 struct drm_display_mode *mode)
8443{
4520f53a 8444#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8445 struct drm_i915_private *dev_priv = dev->dev_private;
8446 struct drm_i915_gem_object *obj;
8447 struct drm_framebuffer *fb;
8448
4c0e5528 8449 if (!dev_priv->fbdev)
d2dff872
CW
8450 return NULL;
8451
4c0e5528 8452 if (!dev_priv->fbdev->fb)
d2dff872
CW
8453 return NULL;
8454
4c0e5528
DV
8455 obj = dev_priv->fbdev->fb->obj;
8456 BUG_ON(!obj);
8457
8bcd4553 8458 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8459 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8460 fb->bits_per_pixel))
d2dff872
CW
8461 return NULL;
8462
01f2c773 8463 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8464 return NULL;
8465
8466 return fb;
4520f53a
DV
8467#else
8468 return NULL;
8469#endif
d2dff872
CW
8470}
8471
d2434ab7 8472bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8473 struct drm_display_mode *mode,
51fd371b
RC
8474 struct intel_load_detect_pipe *old,
8475 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8476{
8477 struct intel_crtc *intel_crtc;
d2434ab7
DV
8478 struct intel_encoder *intel_encoder =
8479 intel_attached_encoder(connector);
79e53945 8480 struct drm_crtc *possible_crtc;
4ef69c7a 8481 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8482 struct drm_crtc *crtc = NULL;
8483 struct drm_device *dev = encoder->dev;
94352cf9 8484 struct drm_framebuffer *fb;
51fd371b
RC
8485 struct drm_mode_config *config = &dev->mode_config;
8486 int ret, i = -1;
79e53945 8487
d2dff872 8488 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8489 connector->base.id, connector->name,
8e329a03 8490 encoder->base.id, encoder->name);
d2dff872 8491
51fd371b
RC
8492retry:
8493 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8494 if (ret)
8495 goto fail_unlock;
6e9f798d 8496
79e53945
JB
8497 /*
8498 * Algorithm gets a little messy:
7a5e4805 8499 *
79e53945
JB
8500 * - if the connector already has an assigned crtc, use it (but make
8501 * sure it's on first)
7a5e4805 8502 *
79e53945
JB
8503 * - try to find the first unused crtc that can drive this connector,
8504 * and use that if we find one
79e53945
JB
8505 */
8506
8507 /* See if we already have a CRTC for this connector */
8508 if (encoder->crtc) {
8509 crtc = encoder->crtc;
8261b191 8510
51fd371b 8511 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8512 if (ret)
8513 goto fail_unlock;
8514 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8515 if (ret)
8516 goto fail_unlock;
7b24056b 8517
24218aac 8518 old->dpms_mode = connector->dpms;
8261b191
CW
8519 old->load_detect_temp = false;
8520
8521 /* Make sure the crtc and connector are running */
24218aac
DV
8522 if (connector->dpms != DRM_MODE_DPMS_ON)
8523 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8524
7173188d 8525 return true;
79e53945
JB
8526 }
8527
8528 /* Find an unused one (if possible) */
70e1e0ec 8529 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8530 i++;
8531 if (!(encoder->possible_crtcs & (1 << i)))
8532 continue;
a459249c
VS
8533 if (possible_crtc->enabled)
8534 continue;
8535 /* This can occur when applying the pipe A quirk on resume. */
8536 if (to_intel_crtc(possible_crtc)->new_enabled)
8537 continue;
8538
8539 crtc = possible_crtc;
8540 break;
79e53945
JB
8541 }
8542
8543 /*
8544 * If we didn't find an unused CRTC, don't use any.
8545 */
8546 if (!crtc) {
7173188d 8547 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8548 goto fail_unlock;
79e53945
JB
8549 }
8550
51fd371b
RC
8551 ret = drm_modeset_lock(&crtc->mutex, ctx);
8552 if (ret)
4d02e2de
DV
8553 goto fail_unlock;
8554 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8555 if (ret)
51fd371b 8556 goto fail_unlock;
fc303101
DV
8557 intel_encoder->new_crtc = to_intel_crtc(crtc);
8558 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8559
8560 intel_crtc = to_intel_crtc(crtc);
412b61d8 8561 intel_crtc->new_enabled = true;
6e3c9717 8562 intel_crtc->new_config = intel_crtc->config;
24218aac 8563 old->dpms_mode = connector->dpms;
8261b191 8564 old->load_detect_temp = true;
d2dff872 8565 old->release_fb = NULL;
79e53945 8566
6492711d
CW
8567 if (!mode)
8568 mode = &load_detect_mode;
79e53945 8569
d2dff872
CW
8570 /* We need a framebuffer large enough to accommodate all accesses
8571 * that the plane may generate whilst we perform load detection.
8572 * We can not rely on the fbcon either being present (we get called
8573 * during its initialisation to detect all boot displays, or it may
8574 * not even exist) or that it is large enough to satisfy the
8575 * requested mode.
8576 */
94352cf9
DV
8577 fb = mode_fits_in_fbdev(dev, mode);
8578 if (fb == NULL) {
d2dff872 8579 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8580 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8581 old->release_fb = fb;
d2dff872
CW
8582 } else
8583 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8584 if (IS_ERR(fb)) {
d2dff872 8585 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8586 goto fail;
79e53945 8587 }
79e53945 8588
c0c36b94 8589 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8590 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8591 if (old->release_fb)
8592 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8593 goto fail;
79e53945 8594 }
7173188d 8595
79e53945 8596 /* let the connector get through one full cycle before testing */
9d0498a2 8597 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8598 return true;
412b61d8
VS
8599
8600 fail:
8601 intel_crtc->new_enabled = crtc->enabled;
8602 if (intel_crtc->new_enabled)
6e3c9717 8603 intel_crtc->new_config = intel_crtc->config;
412b61d8
VS
8604 else
8605 intel_crtc->new_config = NULL;
51fd371b
RC
8606fail_unlock:
8607 if (ret == -EDEADLK) {
8608 drm_modeset_backoff(ctx);
8609 goto retry;
8610 }
8611
412b61d8 8612 return false;
79e53945
JB
8613}
8614
d2434ab7 8615void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8616 struct intel_load_detect_pipe *old)
79e53945 8617{
d2434ab7
DV
8618 struct intel_encoder *intel_encoder =
8619 intel_attached_encoder(connector);
4ef69c7a 8620 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8621 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8623
d2dff872 8624 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8625 connector->base.id, connector->name,
8e329a03 8626 encoder->base.id, encoder->name);
d2dff872 8627
8261b191 8628 if (old->load_detect_temp) {
fc303101
DV
8629 to_intel_connector(connector)->new_encoder = NULL;
8630 intel_encoder->new_crtc = NULL;
412b61d8
VS
8631 intel_crtc->new_enabled = false;
8632 intel_crtc->new_config = NULL;
fc303101 8633 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8634
36206361
DV
8635 if (old->release_fb) {
8636 drm_framebuffer_unregister_private(old->release_fb);
8637 drm_framebuffer_unreference(old->release_fb);
8638 }
d2dff872 8639
0622a53c 8640 return;
79e53945
JB
8641 }
8642
c751ce4f 8643 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8644 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8645 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8646}
8647
da4a1efa 8648static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 8649 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
8650{
8651 struct drm_i915_private *dev_priv = dev->dev_private;
8652 u32 dpll = pipe_config->dpll_hw_state.dpll;
8653
8654 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8655 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8656 else if (HAS_PCH_SPLIT(dev))
8657 return 120000;
8658 else if (!IS_GEN2(dev))
8659 return 96000;
8660 else
8661 return 48000;
8662}
8663
79e53945 8664/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 8665static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8666 struct intel_crtc_state *pipe_config)
79e53945 8667{
f1f644dc 8668 struct drm_device *dev = crtc->base.dev;
79e53945 8669 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8670 int pipe = pipe_config->cpu_transcoder;
293623f7 8671 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8672 u32 fp;
8673 intel_clock_t clock;
da4a1efa 8674 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8675
8676 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8677 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8678 else
293623f7 8679 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8680
8681 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8682 if (IS_PINEVIEW(dev)) {
8683 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8684 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8685 } else {
8686 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8687 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8688 }
8689
a6c45cf0 8690 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8691 if (IS_PINEVIEW(dev))
8692 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8693 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8694 else
8695 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8696 DPLL_FPA01_P1_POST_DIV_SHIFT);
8697
8698 switch (dpll & DPLL_MODE_MASK) {
8699 case DPLLB_MODE_DAC_SERIAL:
8700 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8701 5 : 10;
8702 break;
8703 case DPLLB_MODE_LVDS:
8704 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8705 7 : 14;
8706 break;
8707 default:
28c97730 8708 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8709 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8710 return;
79e53945
JB
8711 }
8712
ac58c3f0 8713 if (IS_PINEVIEW(dev))
da4a1efa 8714 pineview_clock(refclk, &clock);
ac58c3f0 8715 else
da4a1efa 8716 i9xx_clock(refclk, &clock);
79e53945 8717 } else {
0fb58223 8718 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8719 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8720
8721 if (is_lvds) {
8722 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8723 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8724
8725 if (lvds & LVDS_CLKB_POWER_UP)
8726 clock.p2 = 7;
8727 else
8728 clock.p2 = 14;
79e53945
JB
8729 } else {
8730 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8731 clock.p1 = 2;
8732 else {
8733 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8734 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8735 }
8736 if (dpll & PLL_P2_DIVIDE_BY_4)
8737 clock.p2 = 4;
8738 else
8739 clock.p2 = 2;
79e53945 8740 }
da4a1efa
VS
8741
8742 i9xx_clock(refclk, &clock);
79e53945
JB
8743 }
8744
18442d08
VS
8745 /*
8746 * This value includes pixel_multiplier. We will use
241bfc38 8747 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8748 * encoder's get_config() function.
8749 */
8750 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8751}
8752
6878da05
VS
8753int intel_dotclock_calculate(int link_freq,
8754 const struct intel_link_m_n *m_n)
f1f644dc 8755{
f1f644dc
JB
8756 /*
8757 * The calculation for the data clock is:
1041a02f 8758 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8759 * But we want to avoid losing precison if possible, so:
1041a02f 8760 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8761 *
8762 * and the link clock is simpler:
1041a02f 8763 * link_clock = (m * link_clock) / n
f1f644dc
JB
8764 */
8765
6878da05
VS
8766 if (!m_n->link_n)
8767 return 0;
f1f644dc 8768
6878da05
VS
8769 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8770}
f1f644dc 8771
18442d08 8772static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 8773 struct intel_crtc_state *pipe_config)
6878da05
VS
8774{
8775 struct drm_device *dev = crtc->base.dev;
79e53945 8776
18442d08
VS
8777 /* read out port_clock from the DPLL */
8778 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8779
f1f644dc 8780 /*
18442d08 8781 * This value does not include pixel_multiplier.
241bfc38 8782 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8783 * agree once we know their relationship in the encoder's
8784 * get_config() function.
79e53945 8785 */
2d112de7 8786 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
8787 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8788 &pipe_config->fdi_m_n);
79e53945
JB
8789}
8790
8791/** Returns the currently programmed mode of the given pipe. */
8792struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8793 struct drm_crtc *crtc)
8794{
548f245b 8795 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 8797 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 8798 struct drm_display_mode *mode;
5cec258b 8799 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
8800 int htot = I915_READ(HTOTAL(cpu_transcoder));
8801 int hsync = I915_READ(HSYNC(cpu_transcoder));
8802 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8803 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8804 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8805
8806 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8807 if (!mode)
8808 return NULL;
8809
f1f644dc
JB
8810 /*
8811 * Construct a pipe_config sufficient for getting the clock info
8812 * back out of crtc_clock_get.
8813 *
8814 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8815 * to use a real value here instead.
8816 */
293623f7 8817 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8818 pipe_config.pixel_multiplier = 1;
293623f7
VS
8819 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8820 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8821 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8822 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8823
773ae034 8824 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8825 mode->hdisplay = (htot & 0xffff) + 1;
8826 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8827 mode->hsync_start = (hsync & 0xffff) + 1;
8828 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8829 mode->vdisplay = (vtot & 0xffff) + 1;
8830 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8831 mode->vsync_start = (vsync & 0xffff) + 1;
8832 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8833
8834 drm_mode_set_name(mode);
79e53945
JB
8835
8836 return mode;
8837}
8838
652c393a
JB
8839static void intel_decrease_pllclock(struct drm_crtc *crtc)
8840{
8841 struct drm_device *dev = crtc->dev;
fbee40df 8842 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8843 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8844
baff296c 8845 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8846 return;
8847
8848 if (!dev_priv->lvds_downclock_avail)
8849 return;
8850
8851 /*
8852 * Since this is called by a timer, we should never get here in
8853 * the manual case.
8854 */
8855 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8856 int pipe = intel_crtc->pipe;
8857 int dpll_reg = DPLL(pipe);
8858 int dpll;
f6e5b160 8859
44d98a61 8860 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8861
8ac5a6d5 8862 assert_panel_unlocked(dev_priv, pipe);
652c393a 8863
dc257cf1 8864 dpll = I915_READ(dpll_reg);
652c393a
JB
8865 dpll |= DISPLAY_RATE_SELECT_FPA1;
8866 I915_WRITE(dpll_reg, dpll);
9d0498a2 8867 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8868 dpll = I915_READ(dpll_reg);
8869 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8870 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8871 }
8872
8873}
8874
f047e395
CW
8875void intel_mark_busy(struct drm_device *dev)
8876{
c67a470b
PZ
8877 struct drm_i915_private *dev_priv = dev->dev_private;
8878
f62a0076
CW
8879 if (dev_priv->mm.busy)
8880 return;
8881
43694d69 8882 intel_runtime_pm_get(dev_priv);
c67a470b 8883 i915_update_gfx_val(dev_priv);
f62a0076 8884 dev_priv->mm.busy = true;
f047e395
CW
8885}
8886
8887void intel_mark_idle(struct drm_device *dev)
652c393a 8888{
c67a470b 8889 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8890 struct drm_crtc *crtc;
652c393a 8891
f62a0076
CW
8892 if (!dev_priv->mm.busy)
8893 return;
8894
8895 dev_priv->mm.busy = false;
8896
d330a953 8897 if (!i915.powersave)
bb4cdd53 8898 goto out;
652c393a 8899
70e1e0ec 8900 for_each_crtc(dev, crtc) {
f4510a27 8901 if (!crtc->primary->fb)
652c393a
JB
8902 continue;
8903
725a5b54 8904 intel_decrease_pllclock(crtc);
652c393a 8905 }
b29c19b6 8906
3d13ef2e 8907 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8908 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8909
8910out:
43694d69 8911 intel_runtime_pm_put(dev_priv);
652c393a
JB
8912}
8913
f5de6e07
ACO
8914static void intel_crtc_set_state(struct intel_crtc *crtc,
8915 struct intel_crtc_state *crtc_state)
8916{
8917 kfree(crtc->config);
8918 crtc->config = crtc_state;
16f3f658 8919 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
8920}
8921
79e53945
JB
8922static void intel_crtc_destroy(struct drm_crtc *crtc)
8923{
8924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
8925 struct drm_device *dev = crtc->dev;
8926 struct intel_unpin_work *work;
67e77c5a 8927
5e2d7afc 8928 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
8929 work = intel_crtc->unpin_work;
8930 intel_crtc->unpin_work = NULL;
5e2d7afc 8931 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
8932
8933 if (work) {
8934 cancel_work_sync(&work->work);
8935 kfree(work);
8936 }
79e53945 8937
f5de6e07 8938 intel_crtc_set_state(intel_crtc, NULL);
79e53945 8939 drm_crtc_cleanup(crtc);
67e77c5a 8940
79e53945
JB
8941 kfree(intel_crtc);
8942}
8943
6b95a207
KH
8944static void intel_unpin_work_fn(struct work_struct *__work)
8945{
8946 struct intel_unpin_work *work =
8947 container_of(__work, struct intel_unpin_work, work);
b4a98e57 8948 struct drm_device *dev = work->crtc->dev;
f99d7069 8949 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 8950
b4a98e57 8951 mutex_lock(&dev->struct_mutex);
1690e1eb 8952 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
8953 drm_gem_object_unreference(&work->pending_flip_obj->base);
8954 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 8955
7ff0ebcc 8956 intel_fbc_update(dev);
f06cc1b9
JH
8957
8958 if (work->flip_queued_req)
146d84f0 8959 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
8960 mutex_unlock(&dev->struct_mutex);
8961
f99d7069
DV
8962 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
8963
b4a98e57
CW
8964 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8965 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8966
6b95a207
KH
8967 kfree(work);
8968}
8969
1afe3e9d 8970static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 8971 struct drm_crtc *crtc)
6b95a207 8972{
6b95a207
KH
8973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8974 struct intel_unpin_work *work;
6b95a207
KH
8975 unsigned long flags;
8976
8977 /* Ignore early vblank irqs */
8978 if (intel_crtc == NULL)
8979 return;
8980
f326038a
DV
8981 /*
8982 * This is called both by irq handlers and the reset code (to complete
8983 * lost pageflips) so needs the full irqsave spinlocks.
8984 */
6b95a207
KH
8985 spin_lock_irqsave(&dev->event_lock, flags);
8986 work = intel_crtc->unpin_work;
e7d841ca
CW
8987
8988 /* Ensure we don't miss a work->pending update ... */
8989 smp_rmb();
8990
8991 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
8992 spin_unlock_irqrestore(&dev->event_lock, flags);
8993 return;
8994 }
8995
d6bbafa1 8996 page_flip_completed(intel_crtc);
0af7e4df 8997
6b95a207 8998 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
8999}
9000
1afe3e9d
JB
9001void intel_finish_page_flip(struct drm_device *dev, int pipe)
9002{
fbee40df 9003 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9004 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9005
49b14a5c 9006 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9007}
9008
9009void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9010{
fbee40df 9011 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9012 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9013
49b14a5c 9014 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9015}
9016
75f7f3ec
VS
9017/* Is 'a' after or equal to 'b'? */
9018static bool g4x_flip_count_after_eq(u32 a, u32 b)
9019{
9020 return !((a - b) & 0x80000000);
9021}
9022
9023static bool page_flip_finished(struct intel_crtc *crtc)
9024{
9025 struct drm_device *dev = crtc->base.dev;
9026 struct drm_i915_private *dev_priv = dev->dev_private;
9027
bdfa7542
VS
9028 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9029 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9030 return true;
9031
75f7f3ec
VS
9032 /*
9033 * The relevant registers doen't exist on pre-ctg.
9034 * As the flip done interrupt doesn't trigger for mmio
9035 * flips on gmch platforms, a flip count check isn't
9036 * really needed there. But since ctg has the registers,
9037 * include it in the check anyway.
9038 */
9039 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9040 return true;
9041
9042 /*
9043 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9044 * used the same base address. In that case the mmio flip might
9045 * have completed, but the CS hasn't even executed the flip yet.
9046 *
9047 * A flip count check isn't enough as the CS might have updated
9048 * the base address just after start of vblank, but before we
9049 * managed to process the interrupt. This means we'd complete the
9050 * CS flip too soon.
9051 *
9052 * Combining both checks should get us a good enough result. It may
9053 * still happen that the CS flip has been executed, but has not
9054 * yet actually completed. But in case the base address is the same
9055 * anyway, we don't really care.
9056 */
9057 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9058 crtc->unpin_work->gtt_offset &&
9059 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9060 crtc->unpin_work->flip_count);
9061}
9062
6b95a207
KH
9063void intel_prepare_page_flip(struct drm_device *dev, int plane)
9064{
fbee40df 9065 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9066 struct intel_crtc *intel_crtc =
9067 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9068 unsigned long flags;
9069
f326038a
DV
9070
9071 /*
9072 * This is called both by irq handlers and the reset code (to complete
9073 * lost pageflips) so needs the full irqsave spinlocks.
9074 *
9075 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9076 * generate a page-flip completion irq, i.e. every modeset
9077 * is also accompanied by a spurious intel_prepare_page_flip().
9078 */
6b95a207 9079 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9080 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9081 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9082 spin_unlock_irqrestore(&dev->event_lock, flags);
9083}
9084
eba905b2 9085static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9086{
9087 /* Ensure that the work item is consistent when activating it ... */
9088 smp_wmb();
9089 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9090 /* and that it is marked active as soon as the irq could fire. */
9091 smp_wmb();
9092}
9093
8c9f3aaf
JB
9094static int intel_gen2_queue_flip(struct drm_device *dev,
9095 struct drm_crtc *crtc,
9096 struct drm_framebuffer *fb,
ed8d1975 9097 struct drm_i915_gem_object *obj,
a4872ba6 9098 struct intel_engine_cs *ring,
ed8d1975 9099 uint32_t flags)
8c9f3aaf 9100{
8c9f3aaf 9101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9102 u32 flip_mask;
9103 int ret;
9104
6d90c952 9105 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9106 if (ret)
4fa62c89 9107 return ret;
8c9f3aaf
JB
9108
9109 /* Can't queue multiple flips, so wait for the previous
9110 * one to finish before executing the next.
9111 */
9112 if (intel_crtc->plane)
9113 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9114 else
9115 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9116 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9117 intel_ring_emit(ring, MI_NOOP);
9118 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9119 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9120 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9121 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9122 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9123
9124 intel_mark_page_flip_active(intel_crtc);
09246732 9125 __intel_ring_advance(ring);
83d4092b 9126 return 0;
8c9f3aaf
JB
9127}
9128
9129static int intel_gen3_queue_flip(struct drm_device *dev,
9130 struct drm_crtc *crtc,
9131 struct drm_framebuffer *fb,
ed8d1975 9132 struct drm_i915_gem_object *obj,
a4872ba6 9133 struct intel_engine_cs *ring,
ed8d1975 9134 uint32_t flags)
8c9f3aaf 9135{
8c9f3aaf 9136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9137 u32 flip_mask;
9138 int ret;
9139
6d90c952 9140 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9141 if (ret)
4fa62c89 9142 return ret;
8c9f3aaf
JB
9143
9144 if (intel_crtc->plane)
9145 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9146 else
9147 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9148 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9149 intel_ring_emit(ring, MI_NOOP);
9150 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9151 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9152 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9153 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9154 intel_ring_emit(ring, MI_NOOP);
9155
e7d841ca 9156 intel_mark_page_flip_active(intel_crtc);
09246732 9157 __intel_ring_advance(ring);
83d4092b 9158 return 0;
8c9f3aaf
JB
9159}
9160
9161static int intel_gen4_queue_flip(struct drm_device *dev,
9162 struct drm_crtc *crtc,
9163 struct drm_framebuffer *fb,
ed8d1975 9164 struct drm_i915_gem_object *obj,
a4872ba6 9165 struct intel_engine_cs *ring,
ed8d1975 9166 uint32_t flags)
8c9f3aaf
JB
9167{
9168 struct drm_i915_private *dev_priv = dev->dev_private;
9169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9170 uint32_t pf, pipesrc;
9171 int ret;
9172
6d90c952 9173 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9174 if (ret)
4fa62c89 9175 return ret;
8c9f3aaf
JB
9176
9177 /* i965+ uses the linear or tiled offsets from the
9178 * Display Registers (which do not change across a page-flip)
9179 * so we need only reprogram the base address.
9180 */
6d90c952
DV
9181 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9182 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9183 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9184 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9185 obj->tiling_mode);
8c9f3aaf
JB
9186
9187 /* XXX Enabling the panel-fitter across page-flip is so far
9188 * untested on non-native modes, so ignore it for now.
9189 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9190 */
9191 pf = 0;
9192 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9193 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9194
9195 intel_mark_page_flip_active(intel_crtc);
09246732 9196 __intel_ring_advance(ring);
83d4092b 9197 return 0;
8c9f3aaf
JB
9198}
9199
9200static int intel_gen6_queue_flip(struct drm_device *dev,
9201 struct drm_crtc *crtc,
9202 struct drm_framebuffer *fb,
ed8d1975 9203 struct drm_i915_gem_object *obj,
a4872ba6 9204 struct intel_engine_cs *ring,
ed8d1975 9205 uint32_t flags)
8c9f3aaf
JB
9206{
9207 struct drm_i915_private *dev_priv = dev->dev_private;
9208 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9209 uint32_t pf, pipesrc;
9210 int ret;
9211
6d90c952 9212 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9213 if (ret)
4fa62c89 9214 return ret;
8c9f3aaf 9215
6d90c952
DV
9216 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9217 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9218 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9219 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9220
dc257cf1
DV
9221 /* Contrary to the suggestions in the documentation,
9222 * "Enable Panel Fitter" does not seem to be required when page
9223 * flipping with a non-native mode, and worse causes a normal
9224 * modeset to fail.
9225 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9226 */
9227 pf = 0;
8c9f3aaf 9228 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9229 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9230
9231 intel_mark_page_flip_active(intel_crtc);
09246732 9232 __intel_ring_advance(ring);
83d4092b 9233 return 0;
8c9f3aaf
JB
9234}
9235
7c9017e5
JB
9236static int intel_gen7_queue_flip(struct drm_device *dev,
9237 struct drm_crtc *crtc,
9238 struct drm_framebuffer *fb,
ed8d1975 9239 struct drm_i915_gem_object *obj,
a4872ba6 9240 struct intel_engine_cs *ring,
ed8d1975 9241 uint32_t flags)
7c9017e5 9242{
7c9017e5 9243 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9244 uint32_t plane_bit = 0;
ffe74d75
CW
9245 int len, ret;
9246
eba905b2 9247 switch (intel_crtc->plane) {
cb05d8de
DV
9248 case PLANE_A:
9249 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9250 break;
9251 case PLANE_B:
9252 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9253 break;
9254 case PLANE_C:
9255 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9256 break;
9257 default:
9258 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9259 return -ENODEV;
cb05d8de
DV
9260 }
9261
ffe74d75 9262 len = 4;
f476828a 9263 if (ring->id == RCS) {
ffe74d75 9264 len += 6;
f476828a
DL
9265 /*
9266 * On Gen 8, SRM is now taking an extra dword to accommodate
9267 * 48bits addresses, and we need a NOOP for the batch size to
9268 * stay even.
9269 */
9270 if (IS_GEN8(dev))
9271 len += 2;
9272 }
ffe74d75 9273
f66fab8e
VS
9274 /*
9275 * BSpec MI_DISPLAY_FLIP for IVB:
9276 * "The full packet must be contained within the same cache line."
9277 *
9278 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9279 * cacheline, if we ever start emitting more commands before
9280 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9281 * then do the cacheline alignment, and finally emit the
9282 * MI_DISPLAY_FLIP.
9283 */
9284 ret = intel_ring_cacheline_align(ring);
9285 if (ret)
4fa62c89 9286 return ret;
f66fab8e 9287
ffe74d75 9288 ret = intel_ring_begin(ring, len);
7c9017e5 9289 if (ret)
4fa62c89 9290 return ret;
7c9017e5 9291
ffe74d75
CW
9292 /* Unmask the flip-done completion message. Note that the bspec says that
9293 * we should do this for both the BCS and RCS, and that we must not unmask
9294 * more than one flip event at any time (or ensure that one flip message
9295 * can be sent by waiting for flip-done prior to queueing new flips).
9296 * Experimentation says that BCS works despite DERRMR masking all
9297 * flip-done completion events and that unmasking all planes at once
9298 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9299 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9300 */
9301 if (ring->id == RCS) {
9302 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9303 intel_ring_emit(ring, DERRMR);
9304 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9305 DERRMR_PIPEB_PRI_FLIP_DONE |
9306 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9307 if (IS_GEN8(dev))
9308 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9309 MI_SRM_LRM_GLOBAL_GTT);
9310 else
9311 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9312 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9313 intel_ring_emit(ring, DERRMR);
9314 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9315 if (IS_GEN8(dev)) {
9316 intel_ring_emit(ring, 0);
9317 intel_ring_emit(ring, MI_NOOP);
9318 }
ffe74d75
CW
9319 }
9320
cb05d8de 9321 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9322 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9323 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9324 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9325
9326 intel_mark_page_flip_active(intel_crtc);
09246732 9327 __intel_ring_advance(ring);
83d4092b 9328 return 0;
7c9017e5
JB
9329}
9330
84c33a64
SG
9331static bool use_mmio_flip(struct intel_engine_cs *ring,
9332 struct drm_i915_gem_object *obj)
9333{
9334 /*
9335 * This is not being used for older platforms, because
9336 * non-availability of flip done interrupt forces us to use
9337 * CS flips. Older platforms derive flip done using some clever
9338 * tricks involving the flip_pending status bits and vblank irqs.
9339 * So using MMIO flips there would disrupt this mechanism.
9340 */
9341
8e09bf83
CW
9342 if (ring == NULL)
9343 return true;
9344
84c33a64
SG
9345 if (INTEL_INFO(ring->dev)->gen < 5)
9346 return false;
9347
9348 if (i915.use_mmio_flip < 0)
9349 return false;
9350 else if (i915.use_mmio_flip > 0)
9351 return true;
14bf993e
OM
9352 else if (i915.enable_execlists)
9353 return true;
84c33a64 9354 else
41c52415 9355 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9356}
9357
ff944564
DL
9358static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9359{
9360 struct drm_device *dev = intel_crtc->base.dev;
9361 struct drm_i915_private *dev_priv = dev->dev_private;
9362 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9363 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9364 struct drm_i915_gem_object *obj = intel_fb->obj;
9365 const enum pipe pipe = intel_crtc->pipe;
9366 u32 ctl, stride;
9367
9368 ctl = I915_READ(PLANE_CTL(pipe, 0));
9369 ctl &= ~PLANE_CTL_TILED_MASK;
9370 if (obj->tiling_mode == I915_TILING_X)
9371 ctl |= PLANE_CTL_TILED_X;
9372
9373 /*
9374 * The stride is either expressed as a multiple of 64 bytes chunks for
9375 * linear buffers or in number of tiles for tiled buffers.
9376 */
9377 stride = fb->pitches[0] >> 6;
9378 if (obj->tiling_mode == I915_TILING_X)
9379 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9380
9381 /*
9382 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9383 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9384 */
9385 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9386 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9387
9388 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9389 POSTING_READ(PLANE_SURF(pipe, 0));
9390}
9391
9392static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9393{
9394 struct drm_device *dev = intel_crtc->base.dev;
9395 struct drm_i915_private *dev_priv = dev->dev_private;
9396 struct intel_framebuffer *intel_fb =
9397 to_intel_framebuffer(intel_crtc->base.primary->fb);
9398 struct drm_i915_gem_object *obj = intel_fb->obj;
9399 u32 dspcntr;
9400 u32 reg;
9401
84c33a64
SG
9402 reg = DSPCNTR(intel_crtc->plane);
9403 dspcntr = I915_READ(reg);
9404
c5d97472
DL
9405 if (obj->tiling_mode != I915_TILING_NONE)
9406 dspcntr |= DISPPLANE_TILED;
9407 else
9408 dspcntr &= ~DISPPLANE_TILED;
9409
84c33a64
SG
9410 I915_WRITE(reg, dspcntr);
9411
9412 I915_WRITE(DSPSURF(intel_crtc->plane),
9413 intel_crtc->unpin_work->gtt_offset);
9414 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9415
ff944564
DL
9416}
9417
9418/*
9419 * XXX: This is the temporary way to update the plane registers until we get
9420 * around to using the usual plane update functions for MMIO flips
9421 */
9422static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9423{
9424 struct drm_device *dev = intel_crtc->base.dev;
9425 bool atomic_update;
9426 u32 start_vbl_count;
9427
9428 intel_mark_page_flip_active(intel_crtc);
9429
9430 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9431
9432 if (INTEL_INFO(dev)->gen >= 9)
9433 skl_do_mmio_flip(intel_crtc);
9434 else
9435 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9436 ilk_do_mmio_flip(intel_crtc);
9437
9362c7c5
ACO
9438 if (atomic_update)
9439 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9440}
9441
9362c7c5 9442static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9443{
cc8c4cc2 9444 struct intel_crtc *crtc =
9362c7c5 9445 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9446 struct intel_mmio_flip *mmio_flip;
84c33a64 9447
cc8c4cc2
JH
9448 mmio_flip = &crtc->mmio_flip;
9449 if (mmio_flip->req)
9c654818
JH
9450 WARN_ON(__i915_wait_request(mmio_flip->req,
9451 crtc->reset_counter,
9452 false, NULL, NULL) != 0);
84c33a64 9453
cc8c4cc2
JH
9454 intel_do_mmio_flip(crtc);
9455 if (mmio_flip->req) {
9456 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 9457 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
9458 mutex_unlock(&crtc->base.dev->struct_mutex);
9459 }
84c33a64
SG
9460}
9461
9462static int intel_queue_mmio_flip(struct drm_device *dev,
9463 struct drm_crtc *crtc,
9464 struct drm_framebuffer *fb,
9465 struct drm_i915_gem_object *obj,
9466 struct intel_engine_cs *ring,
9467 uint32_t flags)
9468{
84c33a64 9469 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9470
cc8c4cc2
JH
9471 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9472 obj->last_write_req);
536f5b5e
ACO
9473
9474 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 9475
84c33a64
SG
9476 return 0;
9477}
9478
830c81db
DL
9479static int intel_gen9_queue_flip(struct drm_device *dev,
9480 struct drm_crtc *crtc,
9481 struct drm_framebuffer *fb,
9482 struct drm_i915_gem_object *obj,
9483 struct intel_engine_cs *ring,
9484 uint32_t flags)
9485{
9486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9487 uint32_t plane = 0, stride;
9488 int ret;
9489
9490 switch(intel_crtc->pipe) {
9491 case PIPE_A:
9492 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9493 break;
9494 case PIPE_B:
9495 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9496 break;
9497 case PIPE_C:
9498 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9499 break;
9500 default:
9501 WARN_ONCE(1, "unknown plane in flip command\n");
9502 return -ENODEV;
9503 }
9504
9505 switch (obj->tiling_mode) {
9506 case I915_TILING_NONE:
9507 stride = fb->pitches[0] >> 6;
9508 break;
9509 case I915_TILING_X:
9510 stride = fb->pitches[0] >> 9;
9511 break;
9512 default:
9513 WARN_ONCE(1, "unknown tiling in flip command\n");
9514 return -ENODEV;
9515 }
9516
9517 ret = intel_ring_begin(ring, 10);
9518 if (ret)
9519 return ret;
9520
9521 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9522 intel_ring_emit(ring, DERRMR);
9523 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9524 DERRMR_PIPEB_PRI_FLIP_DONE |
9525 DERRMR_PIPEC_PRI_FLIP_DONE));
9526 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9527 MI_SRM_LRM_GLOBAL_GTT);
9528 intel_ring_emit(ring, DERRMR);
9529 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9530 intel_ring_emit(ring, 0);
9531
9532 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9533 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9534 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9535
9536 intel_mark_page_flip_active(intel_crtc);
9537 __intel_ring_advance(ring);
9538
9539 return 0;
9540}
9541
8c9f3aaf
JB
9542static int intel_default_queue_flip(struct drm_device *dev,
9543 struct drm_crtc *crtc,
9544 struct drm_framebuffer *fb,
ed8d1975 9545 struct drm_i915_gem_object *obj,
a4872ba6 9546 struct intel_engine_cs *ring,
ed8d1975 9547 uint32_t flags)
8c9f3aaf
JB
9548{
9549 return -ENODEV;
9550}
9551
d6bbafa1
CW
9552static bool __intel_pageflip_stall_check(struct drm_device *dev,
9553 struct drm_crtc *crtc)
9554{
9555 struct drm_i915_private *dev_priv = dev->dev_private;
9556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9557 struct intel_unpin_work *work = intel_crtc->unpin_work;
9558 u32 addr;
9559
9560 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9561 return true;
9562
9563 if (!work->enable_stall_check)
9564 return false;
9565
9566 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
9567 if (work->flip_queued_req &&
9568 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
9569 return false;
9570
9571 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9572 }
9573
9574 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9575 return false;
9576
9577 /* Potential stall - if we see that the flip has happened,
9578 * assume a missed interrupt. */
9579 if (INTEL_INFO(dev)->gen >= 4)
9580 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9581 else
9582 addr = I915_READ(DSPADDR(intel_crtc->plane));
9583
9584 /* There is a potential issue here with a false positive after a flip
9585 * to the same address. We could address this by checking for a
9586 * non-incrementing frame counter.
9587 */
9588 return addr == work->gtt_offset;
9589}
9590
9591void intel_check_page_flip(struct drm_device *dev, int pipe)
9592{
9593 struct drm_i915_private *dev_priv = dev->dev_private;
9594 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9596
9597 WARN_ON(!in_irq());
d6bbafa1
CW
9598
9599 if (crtc == NULL)
9600 return;
9601
f326038a 9602 spin_lock(&dev->event_lock);
d6bbafa1
CW
9603 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9604 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9605 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9606 page_flip_completed(intel_crtc);
9607 }
f326038a 9608 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9609}
9610
6b95a207
KH
9611static int intel_crtc_page_flip(struct drm_crtc *crtc,
9612 struct drm_framebuffer *fb,
ed8d1975
KP
9613 struct drm_pending_vblank_event *event,
9614 uint32_t page_flip_flags)
6b95a207
KH
9615{
9616 struct drm_device *dev = crtc->dev;
9617 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9618 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9619 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 9621 struct drm_plane *primary = crtc->primary;
a071fa00 9622 enum pipe pipe = intel_crtc->pipe;
6b95a207 9623 struct intel_unpin_work *work;
a4872ba6 9624 struct intel_engine_cs *ring;
52e68630 9625 int ret;
6b95a207 9626
2ff8fde1
MR
9627 /*
9628 * drm_mode_page_flip_ioctl() should already catch this, but double
9629 * check to be safe. In the future we may enable pageflipping from
9630 * a disabled primary plane.
9631 */
9632 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9633 return -EBUSY;
9634
e6a595d2 9635 /* Can't change pixel format via MI display flips. */
f4510a27 9636 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9637 return -EINVAL;
9638
9639 /*
9640 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9641 * Note that pitch changes could also affect these register.
9642 */
9643 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9644 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9645 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9646 return -EINVAL;
9647
f900db47
CW
9648 if (i915_terminally_wedged(&dev_priv->gpu_error))
9649 goto out_hang;
9650
b14c5679 9651 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9652 if (work == NULL)
9653 return -ENOMEM;
9654
6b95a207 9655 work->event = event;
b4a98e57 9656 work->crtc = crtc;
2ff8fde1 9657 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9658 INIT_WORK(&work->work, intel_unpin_work_fn);
9659
87b6b101 9660 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9661 if (ret)
9662 goto free_work;
9663
6b95a207 9664 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9665 spin_lock_irq(&dev->event_lock);
6b95a207 9666 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9667 /* Before declaring the flip queue wedged, check if
9668 * the hardware completed the operation behind our backs.
9669 */
9670 if (__intel_pageflip_stall_check(dev, crtc)) {
9671 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9672 page_flip_completed(intel_crtc);
9673 } else {
9674 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9675 spin_unlock_irq(&dev->event_lock);
468f0b44 9676
d6bbafa1
CW
9677 drm_crtc_vblank_put(crtc);
9678 kfree(work);
9679 return -EBUSY;
9680 }
6b95a207
KH
9681 }
9682 intel_crtc->unpin_work = work;
5e2d7afc 9683 spin_unlock_irq(&dev->event_lock);
6b95a207 9684
b4a98e57
CW
9685 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9686 flush_workqueue(dev_priv->wq);
9687
79158103
CW
9688 ret = i915_mutex_lock_interruptible(dev);
9689 if (ret)
9690 goto cleanup;
6b95a207 9691
75dfca80 9692 /* Reference the objects for the scheduled work. */
05394f39
CW
9693 drm_gem_object_reference(&work->old_fb_obj->base);
9694 drm_gem_object_reference(&obj->base);
6b95a207 9695
f4510a27 9696 crtc->primary->fb = fb;
96b099fd 9697
e1f99ce6 9698 work->pending_flip_obj = obj;
e1f99ce6 9699
b4a98e57 9700 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9701 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9702
75f7f3ec 9703 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9704 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9705
4fa62c89
VS
9706 if (IS_VALLEYVIEW(dev)) {
9707 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9708 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9709 /* vlv: DISPLAY_FLIP fails to change tiling */
9710 ring = NULL;
48bf5b2d 9711 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 9712 ring = &dev_priv->ring[BCS];
4fa62c89 9713 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 9714 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
9715 if (ring == NULL || ring->id != RCS)
9716 ring = &dev_priv->ring[BCS];
9717 } else {
9718 ring = &dev_priv->ring[RCS];
9719 }
9720
850c4cdc 9721 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
8c9f3aaf
JB
9722 if (ret)
9723 goto cleanup_pending;
6b95a207 9724
4fa62c89
VS
9725 work->gtt_offset =
9726 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9727
d6bbafa1 9728 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9729 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9730 page_flip_flags);
d6bbafa1
CW
9731 if (ret)
9732 goto cleanup_unpin;
9733
f06cc1b9
JH
9734 i915_gem_request_assign(&work->flip_queued_req,
9735 obj->last_write_req);
d6bbafa1 9736 } else {
84c33a64 9737 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9738 page_flip_flags);
9739 if (ret)
9740 goto cleanup_unpin;
9741
f06cc1b9
JH
9742 i915_gem_request_assign(&work->flip_queued_req,
9743 intel_ring_get_request(ring));
d6bbafa1
CW
9744 }
9745
9746 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9747 work->enable_stall_check = true;
4fa62c89 9748
a071fa00
DV
9749 i915_gem_track_fb(work->old_fb_obj, obj,
9750 INTEL_FRONTBUFFER_PRIMARY(pipe));
9751
7ff0ebcc 9752 intel_fbc_disable(dev);
f99d7069 9753 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9754 mutex_unlock(&dev->struct_mutex);
9755
e5510fac
JB
9756 trace_i915_flip_request(intel_crtc->plane, obj);
9757
6b95a207 9758 return 0;
96b099fd 9759
4fa62c89
VS
9760cleanup_unpin:
9761 intel_unpin_fb_obj(obj);
8c9f3aaf 9762cleanup_pending:
b4a98e57 9763 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9764 crtc->primary->fb = old_fb;
05394f39
CW
9765 drm_gem_object_unreference(&work->old_fb_obj->base);
9766 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9767 mutex_unlock(&dev->struct_mutex);
9768
79158103 9769cleanup:
5e2d7afc 9770 spin_lock_irq(&dev->event_lock);
96b099fd 9771 intel_crtc->unpin_work = NULL;
5e2d7afc 9772 spin_unlock_irq(&dev->event_lock);
96b099fd 9773
87b6b101 9774 drm_crtc_vblank_put(crtc);
7317c75e 9775free_work:
96b099fd
CW
9776 kfree(work);
9777
f900db47
CW
9778 if (ret == -EIO) {
9779out_hang:
53a366b9 9780 ret = intel_plane_restore(primary);
f0d3dad3 9781 if (ret == 0 && event) {
5e2d7afc 9782 spin_lock_irq(&dev->event_lock);
a071fa00 9783 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9784 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9785 }
f900db47 9786 }
96b099fd 9787 return ret;
6b95a207
KH
9788}
9789
f6e5b160 9790static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9791 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9792 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
9793 .atomic_begin = intel_begin_crtc_commit,
9794 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
9795};
9796
9a935856
DV
9797/**
9798 * intel_modeset_update_staged_output_state
9799 *
9800 * Updates the staged output configuration state, e.g. after we've read out the
9801 * current hw state.
9802 */
9803static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9804{
7668851f 9805 struct intel_crtc *crtc;
9a935856
DV
9806 struct intel_encoder *encoder;
9807 struct intel_connector *connector;
f6e5b160 9808
9a935856
DV
9809 list_for_each_entry(connector, &dev->mode_config.connector_list,
9810 base.head) {
9811 connector->new_encoder =
9812 to_intel_encoder(connector->base.encoder);
9813 }
f6e5b160 9814
b2784e15 9815 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9816 encoder->new_crtc =
9817 to_intel_crtc(encoder->base.crtc);
9818 }
7668851f 9819
d3fcc808 9820 for_each_intel_crtc(dev, crtc) {
7668851f 9821 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9822
9823 if (crtc->new_enabled)
6e3c9717 9824 crtc->new_config = crtc->config;
7bd0a8e7
VS
9825 else
9826 crtc->new_config = NULL;
7668851f 9827 }
f6e5b160
CW
9828}
9829
9a935856
DV
9830/**
9831 * intel_modeset_commit_output_state
9832 *
9833 * This function copies the stage display pipe configuration to the real one.
9834 */
9835static void intel_modeset_commit_output_state(struct drm_device *dev)
9836{
7668851f 9837 struct intel_crtc *crtc;
9a935856
DV
9838 struct intel_encoder *encoder;
9839 struct intel_connector *connector;
f6e5b160 9840
9a935856
DV
9841 list_for_each_entry(connector, &dev->mode_config.connector_list,
9842 base.head) {
9843 connector->base.encoder = &connector->new_encoder->base;
9844 }
f6e5b160 9845
b2784e15 9846 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9847 encoder->base.crtc = &encoder->new_crtc->base;
9848 }
7668851f 9849
d3fcc808 9850 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9851 crtc->base.enabled = crtc->new_enabled;
9852 }
9a935856
DV
9853}
9854
050f7aeb 9855static void
eba905b2 9856connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 9857 struct intel_crtc_state *pipe_config)
050f7aeb
DV
9858{
9859 int bpp = pipe_config->pipe_bpp;
9860
9861 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9862 connector->base.base.id,
c23cc417 9863 connector->base.name);
050f7aeb
DV
9864
9865 /* Don't use an invalid EDID bpc value */
9866 if (connector->base.display_info.bpc &&
9867 connector->base.display_info.bpc * 3 < bpp) {
9868 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9869 bpp, connector->base.display_info.bpc*3);
9870 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9871 }
9872
9873 /* Clamp bpp to 8 on screens without EDID 1.4 */
9874 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9875 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9876 bpp);
9877 pipe_config->pipe_bpp = 24;
9878 }
9879}
9880
4e53c2e0 9881static int
050f7aeb
DV
9882compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9883 struct drm_framebuffer *fb,
5cec258b 9884 struct intel_crtc_state *pipe_config)
4e53c2e0 9885{
050f7aeb
DV
9886 struct drm_device *dev = crtc->base.dev;
9887 struct intel_connector *connector;
4e53c2e0
DV
9888 int bpp;
9889
d42264b1
DV
9890 switch (fb->pixel_format) {
9891 case DRM_FORMAT_C8:
4e53c2e0
DV
9892 bpp = 8*3; /* since we go through a colormap */
9893 break;
d42264b1
DV
9894 case DRM_FORMAT_XRGB1555:
9895 case DRM_FORMAT_ARGB1555:
9896 /* checked in intel_framebuffer_init already */
9897 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9898 return -EINVAL;
9899 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9900 bpp = 6*3; /* min is 18bpp */
9901 break;
d42264b1
DV
9902 case DRM_FORMAT_XBGR8888:
9903 case DRM_FORMAT_ABGR8888:
9904 /* checked in intel_framebuffer_init already */
9905 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9906 return -EINVAL;
9907 case DRM_FORMAT_XRGB8888:
9908 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9909 bpp = 8*3;
9910 break;
d42264b1
DV
9911 case DRM_FORMAT_XRGB2101010:
9912 case DRM_FORMAT_ARGB2101010:
9913 case DRM_FORMAT_XBGR2101010:
9914 case DRM_FORMAT_ABGR2101010:
9915 /* checked in intel_framebuffer_init already */
9916 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9917 return -EINVAL;
4e53c2e0
DV
9918 bpp = 10*3;
9919 break;
baba133a 9920 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9921 default:
9922 DRM_DEBUG_KMS("unsupported depth\n");
9923 return -EINVAL;
9924 }
9925
4e53c2e0
DV
9926 pipe_config->pipe_bpp = bpp;
9927
9928 /* Clamp display bpp to EDID value */
9929 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9930 base.head) {
1b829e05
DV
9931 if (!connector->new_encoder ||
9932 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9933 continue;
9934
050f7aeb 9935 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9936 }
9937
9938 return bpp;
9939}
9940
644db711
DV
9941static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9942{
9943 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9944 "type: 0x%x flags: 0x%x\n",
1342830c 9945 mode->crtc_clock,
644db711
DV
9946 mode->crtc_hdisplay, mode->crtc_hsync_start,
9947 mode->crtc_hsync_end, mode->crtc_htotal,
9948 mode->crtc_vdisplay, mode->crtc_vsync_start,
9949 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9950}
9951
c0b03411 9952static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 9953 struct intel_crtc_state *pipe_config,
c0b03411
DV
9954 const char *context)
9955{
9956 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9957 context, pipe_name(crtc->pipe));
9958
9959 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9960 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9961 pipe_config->pipe_bpp, pipe_config->dither);
9962 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9963 pipe_config->has_pch_encoder,
9964 pipe_config->fdi_lanes,
9965 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9966 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9967 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9968 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9969 pipe_config->has_dp_encoder,
9970 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9971 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9972 pipe_config->dp_m_n.tu);
b95af8be
VK
9973
9974 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9975 pipe_config->has_dp_encoder,
9976 pipe_config->dp_m2_n2.gmch_m,
9977 pipe_config->dp_m2_n2.gmch_n,
9978 pipe_config->dp_m2_n2.link_m,
9979 pipe_config->dp_m2_n2.link_n,
9980 pipe_config->dp_m2_n2.tu);
9981
55072d19
DV
9982 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
9983 pipe_config->has_audio,
9984 pipe_config->has_infoframe);
9985
c0b03411 9986 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 9987 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 9988 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
9989 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
9990 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 9991 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9992 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9993 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9994 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9995 pipe_config->gmch_pfit.control,
9996 pipe_config->gmch_pfit.pgm_ratios,
9997 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9998 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9999 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10000 pipe_config->pch_pfit.size,
10001 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10002 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10003 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10004}
10005
bc079e8b
VS
10006static bool encoders_cloneable(const struct intel_encoder *a,
10007 const struct intel_encoder *b)
accfc0c5 10008{
bc079e8b
VS
10009 /* masks could be asymmetric, so check both ways */
10010 return a == b || (a->cloneable & (1 << b->type) &&
10011 b->cloneable & (1 << a->type));
10012}
10013
10014static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10015 struct intel_encoder *encoder)
10016{
10017 struct drm_device *dev = crtc->base.dev;
10018 struct intel_encoder *source_encoder;
10019
b2784e15 10020 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10021 if (source_encoder->new_crtc != crtc)
10022 continue;
10023
10024 if (!encoders_cloneable(encoder, source_encoder))
10025 return false;
10026 }
10027
10028 return true;
10029}
10030
10031static bool check_encoder_cloning(struct intel_crtc *crtc)
10032{
10033 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10034 struct intel_encoder *encoder;
10035
b2784e15 10036 for_each_intel_encoder(dev, encoder) {
bc079e8b 10037 if (encoder->new_crtc != crtc)
accfc0c5
DV
10038 continue;
10039
bc079e8b
VS
10040 if (!check_single_encoder_cloning(crtc, encoder))
10041 return false;
accfc0c5
DV
10042 }
10043
bc079e8b 10044 return true;
accfc0c5
DV
10045}
10046
00f0b378
VS
10047static bool check_digital_port_conflicts(struct drm_device *dev)
10048{
10049 struct intel_connector *connector;
10050 unsigned int used_ports = 0;
10051
10052 /*
10053 * Walk the connector list instead of the encoder
10054 * list to detect the problem on ddi platforms
10055 * where there's just one encoder per digital port.
10056 */
10057 list_for_each_entry(connector,
10058 &dev->mode_config.connector_list, base.head) {
10059 struct intel_encoder *encoder = connector->new_encoder;
10060
10061 if (!encoder)
10062 continue;
10063
10064 WARN_ON(!encoder->new_crtc);
10065
10066 switch (encoder->type) {
10067 unsigned int port_mask;
10068 case INTEL_OUTPUT_UNKNOWN:
10069 if (WARN_ON(!HAS_DDI(dev)))
10070 break;
10071 case INTEL_OUTPUT_DISPLAYPORT:
10072 case INTEL_OUTPUT_HDMI:
10073 case INTEL_OUTPUT_EDP:
10074 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10075
10076 /* the same port mustn't appear more than once */
10077 if (used_ports & port_mask)
10078 return false;
10079
10080 used_ports |= port_mask;
10081 default:
10082 break;
10083 }
10084 }
10085
10086 return true;
10087}
10088
5cec258b 10089static struct intel_crtc_state *
b8cecdf5 10090intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10091 struct drm_framebuffer *fb,
b8cecdf5 10092 struct drm_display_mode *mode)
ee7b9f93 10093{
7758a113 10094 struct drm_device *dev = crtc->dev;
7758a113 10095 struct intel_encoder *encoder;
5cec258b 10096 struct intel_crtc_state *pipe_config;
e29c22c0
DV
10097 int plane_bpp, ret = -EINVAL;
10098 bool retry = true;
ee7b9f93 10099
bc079e8b 10100 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10101 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10102 return ERR_PTR(-EINVAL);
10103 }
10104
00f0b378
VS
10105 if (!check_digital_port_conflicts(dev)) {
10106 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10107 return ERR_PTR(-EINVAL);
10108 }
10109
b8cecdf5
DV
10110 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10111 if (!pipe_config)
7758a113
DV
10112 return ERR_PTR(-ENOMEM);
10113
2d112de7
ACO
10114 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10115 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 10116
e143a21c
DV
10117 pipe_config->cpu_transcoder =
10118 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10119 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10120
2960bc9c
ID
10121 /*
10122 * Sanitize sync polarity flags based on requested ones. If neither
10123 * positive or negative polarity is requested, treat this as meaning
10124 * negative polarity.
10125 */
2d112de7 10126 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10127 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 10128 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 10129
2d112de7 10130 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10131 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 10132 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 10133
050f7aeb
DV
10134 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10135 * plane pixel format and any sink constraints into account. Returns the
10136 * source plane bpp so that dithering can be selected on mismatches
10137 * after encoders and crtc also have had their say. */
10138 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10139 fb, pipe_config);
4e53c2e0
DV
10140 if (plane_bpp < 0)
10141 goto fail;
10142
e41a56be
VS
10143 /*
10144 * Determine the real pipe dimensions. Note that stereo modes can
10145 * increase the actual pipe size due to the frame doubling and
10146 * insertion of additional space for blanks between the frame. This
10147 * is stored in the crtc timings. We use the requested mode to do this
10148 * computation to clearly distinguish it from the adjusted mode, which
10149 * can be changed by the connectors in the below retry loop.
10150 */
2d112de7 10151 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
10152 &pipe_config->pipe_src_w,
10153 &pipe_config->pipe_src_h);
e41a56be 10154
e29c22c0 10155encoder_retry:
ef1b460d 10156 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10157 pipe_config->port_clock = 0;
ef1b460d 10158 pipe_config->pixel_multiplier = 1;
ff9a6750 10159
135c81b8 10160 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
10161 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10162 CRTC_STEREO_DOUBLE);
135c81b8 10163
7758a113
DV
10164 /* Pass our mode to the connectors and the CRTC to give them a chance to
10165 * adjust it according to limitations or connector properties, and also
10166 * a chance to reject the mode entirely.
47f1c6c9 10167 */
b2784e15 10168 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10169
7758a113
DV
10170 if (&encoder->new_crtc->base != crtc)
10171 continue;
7ae89233 10172
efea6e8e
DV
10173 if (!(encoder->compute_config(encoder, pipe_config))) {
10174 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10175 goto fail;
10176 }
ee7b9f93 10177 }
47f1c6c9 10178
ff9a6750
DV
10179 /* Set default port clock if not overwritten by the encoder. Needs to be
10180 * done afterwards in case the encoder adjusts the mode. */
10181 if (!pipe_config->port_clock)
2d112de7 10182 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 10183 * pipe_config->pixel_multiplier;
ff9a6750 10184
a43f6e0f 10185 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10186 if (ret < 0) {
7758a113
DV
10187 DRM_DEBUG_KMS("CRTC fixup failed\n");
10188 goto fail;
ee7b9f93 10189 }
e29c22c0
DV
10190
10191 if (ret == RETRY) {
10192 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10193 ret = -EINVAL;
10194 goto fail;
10195 }
10196
10197 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10198 retry = false;
10199 goto encoder_retry;
10200 }
10201
4e53c2e0
DV
10202 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10203 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10204 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10205
b8cecdf5 10206 return pipe_config;
7758a113 10207fail:
b8cecdf5 10208 kfree(pipe_config);
e29c22c0 10209 return ERR_PTR(ret);
ee7b9f93 10210}
47f1c6c9 10211
e2e1ed41
DV
10212/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10213 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10214static void
10215intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10216 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10217{
10218 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10219 struct drm_device *dev = crtc->dev;
10220 struct intel_encoder *encoder;
10221 struct intel_connector *connector;
10222 struct drm_crtc *tmp_crtc;
79e53945 10223
e2e1ed41 10224 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10225
e2e1ed41
DV
10226 /* Check which crtcs have changed outputs connected to them, these need
10227 * to be part of the prepare_pipes mask. We don't (yet) support global
10228 * modeset across multiple crtcs, so modeset_pipes will only have one
10229 * bit set at most. */
10230 list_for_each_entry(connector, &dev->mode_config.connector_list,
10231 base.head) {
10232 if (connector->base.encoder == &connector->new_encoder->base)
10233 continue;
79e53945 10234
e2e1ed41
DV
10235 if (connector->base.encoder) {
10236 tmp_crtc = connector->base.encoder->crtc;
10237
10238 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10239 }
10240
10241 if (connector->new_encoder)
10242 *prepare_pipes |=
10243 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10244 }
10245
b2784e15 10246 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10247 if (encoder->base.crtc == &encoder->new_crtc->base)
10248 continue;
10249
10250 if (encoder->base.crtc) {
10251 tmp_crtc = encoder->base.crtc;
10252
10253 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10254 }
10255
10256 if (encoder->new_crtc)
10257 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10258 }
10259
7668851f 10260 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10261 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10262 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10263 continue;
7e7d76c3 10264
7668851f 10265 if (!intel_crtc->new_enabled)
e2e1ed41 10266 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10267 else
10268 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10269 }
10270
e2e1ed41
DV
10271
10272 /* set_mode is also used to update properties on life display pipes. */
10273 intel_crtc = to_intel_crtc(crtc);
7668851f 10274 if (intel_crtc->new_enabled)
e2e1ed41
DV
10275 *prepare_pipes |= 1 << intel_crtc->pipe;
10276
b6c5164d
DV
10277 /*
10278 * For simplicity do a full modeset on any pipe where the output routing
10279 * changed. We could be more clever, but that would require us to be
10280 * more careful with calling the relevant encoder->mode_set functions.
10281 */
e2e1ed41
DV
10282 if (*prepare_pipes)
10283 *modeset_pipes = *prepare_pipes;
10284
10285 /* ... and mask these out. */
10286 *modeset_pipes &= ~(*disable_pipes);
10287 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10288
10289 /*
10290 * HACK: We don't (yet) fully support global modesets. intel_set_config
10291 * obies this rule, but the modeset restore mode of
10292 * intel_modeset_setup_hw_state does not.
10293 */
10294 *modeset_pipes &= 1 << intel_crtc->pipe;
10295 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10296
10297 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10298 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10299}
79e53945 10300
ea9d758d 10301static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10302{
ea9d758d 10303 struct drm_encoder *encoder;
f6e5b160 10304 struct drm_device *dev = crtc->dev;
f6e5b160 10305
ea9d758d
DV
10306 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10307 if (encoder->crtc == crtc)
10308 return true;
10309
10310 return false;
10311}
10312
10313static void
10314intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10315{
ba41c0de 10316 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10317 struct intel_encoder *intel_encoder;
10318 struct intel_crtc *intel_crtc;
10319 struct drm_connector *connector;
10320
ba41c0de
DV
10321 intel_shared_dpll_commit(dev_priv);
10322
b2784e15 10323 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10324 if (!intel_encoder->base.crtc)
10325 continue;
10326
10327 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10328
10329 if (prepare_pipes & (1 << intel_crtc->pipe))
10330 intel_encoder->connectors_active = false;
10331 }
10332
10333 intel_modeset_commit_output_state(dev);
10334
7668851f 10335 /* Double check state. */
d3fcc808 10336 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10337 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7 10338 WARN_ON(intel_crtc->new_config &&
6e3c9717 10339 intel_crtc->new_config != intel_crtc->config);
7bd0a8e7 10340 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10341 }
10342
10343 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10344 if (!connector->encoder || !connector->encoder->crtc)
10345 continue;
10346
10347 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10348
10349 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10350 struct drm_property *dpms_property =
10351 dev->mode_config.dpms_property;
10352
ea9d758d 10353 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10354 drm_object_property_set_value(&connector->base,
68d34720
DV
10355 dpms_property,
10356 DRM_MODE_DPMS_ON);
ea9d758d
DV
10357
10358 intel_encoder = to_intel_encoder(connector->encoder);
10359 intel_encoder->connectors_active = true;
10360 }
10361 }
10362
10363}
10364
3bd26263 10365static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10366{
3bd26263 10367 int diff;
f1f644dc
JB
10368
10369 if (clock1 == clock2)
10370 return true;
10371
10372 if (!clock1 || !clock2)
10373 return false;
10374
10375 diff = abs(clock1 - clock2);
10376
10377 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10378 return true;
10379
10380 return false;
10381}
10382
25c5b266
DV
10383#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10384 list_for_each_entry((intel_crtc), \
10385 &(dev)->mode_config.crtc_list, \
10386 base.head) \
0973f18f 10387 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10388
0e8ffe1b 10389static bool
2fa2fe9a 10390intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
10391 struct intel_crtc_state *current_config,
10392 struct intel_crtc_state *pipe_config)
0e8ffe1b 10393{
66e985c0
DV
10394#define PIPE_CONF_CHECK_X(name) \
10395 if (current_config->name != pipe_config->name) { \
10396 DRM_ERROR("mismatch in " #name " " \
10397 "(expected 0x%08x, found 0x%08x)\n", \
10398 current_config->name, \
10399 pipe_config->name); \
10400 return false; \
10401 }
10402
08a24034
DV
10403#define PIPE_CONF_CHECK_I(name) \
10404 if (current_config->name != pipe_config->name) { \
10405 DRM_ERROR("mismatch in " #name " " \
10406 "(expected %i, found %i)\n", \
10407 current_config->name, \
10408 pipe_config->name); \
10409 return false; \
88adfff1
DV
10410 }
10411
b95af8be
VK
10412/* This is required for BDW+ where there is only one set of registers for
10413 * switching between high and low RR.
10414 * This macro can be used whenever a comparison has to be made between one
10415 * hw state and multiple sw state variables.
10416 */
10417#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10418 if ((current_config->name != pipe_config->name) && \
10419 (current_config->alt_name != pipe_config->name)) { \
10420 DRM_ERROR("mismatch in " #name " " \
10421 "(expected %i or %i, found %i)\n", \
10422 current_config->name, \
10423 current_config->alt_name, \
10424 pipe_config->name); \
10425 return false; \
10426 }
10427
1bd1bd80
DV
10428#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10429 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10430 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10431 "(expected %i, found %i)\n", \
10432 current_config->name & (mask), \
10433 pipe_config->name & (mask)); \
10434 return false; \
10435 }
10436
5e550656
VS
10437#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10438 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10439 DRM_ERROR("mismatch in " #name " " \
10440 "(expected %i, found %i)\n", \
10441 current_config->name, \
10442 pipe_config->name); \
10443 return false; \
10444 }
10445
bb760063
DV
10446#define PIPE_CONF_QUIRK(quirk) \
10447 ((current_config->quirks | pipe_config->quirks) & (quirk))
10448
eccb140b
DV
10449 PIPE_CONF_CHECK_I(cpu_transcoder);
10450
08a24034
DV
10451 PIPE_CONF_CHECK_I(has_pch_encoder);
10452 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10453 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10454 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10455 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10456 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10457 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10458
eb14cb74 10459 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10460
10461 if (INTEL_INFO(dev)->gen < 8) {
10462 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10463 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10464 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10465 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10466 PIPE_CONF_CHECK_I(dp_m_n.tu);
10467
10468 if (current_config->has_drrs) {
10469 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10470 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10471 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10472 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10473 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10474 }
10475 } else {
10476 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10477 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10478 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10479 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10480 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10481 }
eb14cb74 10482
2d112de7
ACO
10483 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10484 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10485 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10486 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10487 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10488 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 10489
2d112de7
ACO
10490 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10491 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10492 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10493 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10494 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10495 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 10496
c93f54cf 10497 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10498 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10499 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10500 IS_VALLEYVIEW(dev))
10501 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 10502 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 10503
9ed109a7
DV
10504 PIPE_CONF_CHECK_I(has_audio);
10505
2d112de7 10506 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
10507 DRM_MODE_FLAG_INTERLACE);
10508
bb760063 10509 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 10510 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10511 DRM_MODE_FLAG_PHSYNC);
2d112de7 10512 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10513 DRM_MODE_FLAG_NHSYNC);
2d112de7 10514 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10515 DRM_MODE_FLAG_PVSYNC);
2d112de7 10516 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
10517 DRM_MODE_FLAG_NVSYNC);
10518 }
045ac3b5 10519
37327abd
VS
10520 PIPE_CONF_CHECK_I(pipe_src_w);
10521 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10522
9953599b
DV
10523 /*
10524 * FIXME: BIOS likes to set up a cloned config with lvds+external
10525 * screen. Since we don't yet re-compute the pipe config when moving
10526 * just the lvds port away to another pipe the sw tracking won't match.
10527 *
10528 * Proper atomic modesets with recomputed global state will fix this.
10529 * Until then just don't check gmch state for inherited modes.
10530 */
10531 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10532 PIPE_CONF_CHECK_I(gmch_pfit.control);
10533 /* pfit ratios are autocomputed by the hw on gen4+ */
10534 if (INTEL_INFO(dev)->gen < 4)
10535 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10536 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10537 }
10538
fd4daa9c
CW
10539 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10540 if (current_config->pch_pfit.enabled) {
10541 PIPE_CONF_CHECK_I(pch_pfit.pos);
10542 PIPE_CONF_CHECK_I(pch_pfit.size);
10543 }
2fa2fe9a 10544
e59150dc
JB
10545 /* BDW+ don't expose a synchronous way to read the state */
10546 if (IS_HASWELL(dev))
10547 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10548
282740f7
VS
10549 PIPE_CONF_CHECK_I(double_wide);
10550
26804afd
DV
10551 PIPE_CONF_CHECK_X(ddi_pll_sel);
10552
c0d43d62 10553 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10554 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10555 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10556 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10557 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10558 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
10559 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10560 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10561 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 10562
42571aef
VS
10563 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10564 PIPE_CONF_CHECK_I(pipe_bpp);
10565
2d112de7 10566 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 10567 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10568
66e985c0 10569#undef PIPE_CONF_CHECK_X
08a24034 10570#undef PIPE_CONF_CHECK_I
b95af8be 10571#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10572#undef PIPE_CONF_CHECK_FLAGS
5e550656 10573#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10574#undef PIPE_CONF_QUIRK
88adfff1 10575
0e8ffe1b
DV
10576 return true;
10577}
10578
08db6652
DL
10579static void check_wm_state(struct drm_device *dev)
10580{
10581 struct drm_i915_private *dev_priv = dev->dev_private;
10582 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10583 struct intel_crtc *intel_crtc;
10584 int plane;
10585
10586 if (INTEL_INFO(dev)->gen < 9)
10587 return;
10588
10589 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10590 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10591
10592 for_each_intel_crtc(dev, intel_crtc) {
10593 struct skl_ddb_entry *hw_entry, *sw_entry;
10594 const enum pipe pipe = intel_crtc->pipe;
10595
10596 if (!intel_crtc->active)
10597 continue;
10598
10599 /* planes */
10600 for_each_plane(pipe, plane) {
10601 hw_entry = &hw_ddb.plane[pipe][plane];
10602 sw_entry = &sw_ddb->plane[pipe][plane];
10603
10604 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10605 continue;
10606
10607 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10608 "(expected (%u,%u), found (%u,%u))\n",
10609 pipe_name(pipe), plane + 1,
10610 sw_entry->start, sw_entry->end,
10611 hw_entry->start, hw_entry->end);
10612 }
10613
10614 /* cursor */
10615 hw_entry = &hw_ddb.cursor[pipe];
10616 sw_entry = &sw_ddb->cursor[pipe];
10617
10618 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10619 continue;
10620
10621 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10622 "(expected (%u,%u), found (%u,%u))\n",
10623 pipe_name(pipe),
10624 sw_entry->start, sw_entry->end,
10625 hw_entry->start, hw_entry->end);
10626 }
10627}
10628
91d1b4bd
DV
10629static void
10630check_connector_state(struct drm_device *dev)
8af6cf88 10631{
8af6cf88
DV
10632 struct intel_connector *connector;
10633
10634 list_for_each_entry(connector, &dev->mode_config.connector_list,
10635 base.head) {
10636 /* This also checks the encoder/connector hw state with the
10637 * ->get_hw_state callbacks. */
10638 intel_connector_check_state(connector);
10639
e2c719b7 10640 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
10641 "connector's staged encoder doesn't match current encoder\n");
10642 }
91d1b4bd
DV
10643}
10644
10645static void
10646check_encoder_state(struct drm_device *dev)
10647{
10648 struct intel_encoder *encoder;
10649 struct intel_connector *connector;
8af6cf88 10650
b2784e15 10651 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10652 bool enabled = false;
10653 bool active = false;
10654 enum pipe pipe, tracked_pipe;
10655
10656 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10657 encoder->base.base.id,
8e329a03 10658 encoder->base.name);
8af6cf88 10659
e2c719b7 10660 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 10661 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 10662 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
10663 "encoder's active_connectors set, but no crtc\n");
10664
10665 list_for_each_entry(connector, &dev->mode_config.connector_list,
10666 base.head) {
10667 if (connector->base.encoder != &encoder->base)
10668 continue;
10669 enabled = true;
10670 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10671 active = true;
10672 }
0e32b39c
DA
10673 /*
10674 * for MST connectors if we unplug the connector is gone
10675 * away but the encoder is still connected to a crtc
10676 * until a modeset happens in response to the hotplug.
10677 */
10678 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10679 continue;
10680
e2c719b7 10681 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
10682 "encoder's enabled state mismatch "
10683 "(expected %i, found %i)\n",
10684 !!encoder->base.crtc, enabled);
e2c719b7 10685 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
10686 "active encoder with no crtc\n");
10687
e2c719b7 10688 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
10689 "encoder's computed active state doesn't match tracked active state "
10690 "(expected %i, found %i)\n", active, encoder->connectors_active);
10691
10692 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 10693 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
10694 "encoder's hw state doesn't match sw tracking "
10695 "(expected %i, found %i)\n",
10696 encoder->connectors_active, active);
10697
10698 if (!encoder->base.crtc)
10699 continue;
10700
10701 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 10702 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
10703 "active encoder's pipe doesn't match"
10704 "(expected %i, found %i)\n",
10705 tracked_pipe, pipe);
10706
10707 }
91d1b4bd
DV
10708}
10709
10710static void
10711check_crtc_state(struct drm_device *dev)
10712{
fbee40df 10713 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10714 struct intel_crtc *crtc;
10715 struct intel_encoder *encoder;
5cec258b 10716 struct intel_crtc_state pipe_config;
8af6cf88 10717
d3fcc808 10718 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10719 bool enabled = false;
10720 bool active = false;
10721
045ac3b5
JB
10722 memset(&pipe_config, 0, sizeof(pipe_config));
10723
8af6cf88
DV
10724 DRM_DEBUG_KMS("[CRTC:%d]\n",
10725 crtc->base.base.id);
10726
e2c719b7 10727 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
8af6cf88
DV
10728 "active crtc, but not enabled in sw tracking\n");
10729
b2784e15 10730 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10731 if (encoder->base.crtc != &crtc->base)
10732 continue;
10733 enabled = true;
10734 if (encoder->connectors_active)
10735 active = true;
10736 }
6c49f241 10737
e2c719b7 10738 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
10739 "crtc's computed active state doesn't match tracked active state "
10740 "(expected %i, found %i)\n", active, crtc->active);
e2c719b7 10741 I915_STATE_WARN(enabled != crtc->base.enabled,
8af6cf88
DV
10742 "crtc's computed enabled state doesn't match tracked enabled state "
10743 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10744
0e8ffe1b
DV
10745 active = dev_priv->display.get_pipe_config(crtc,
10746 &pipe_config);
d62cf62a 10747
b6b5d049
VS
10748 /* hw state is inconsistent with the pipe quirk */
10749 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10750 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10751 active = crtc->active;
10752
b2784e15 10753 for_each_intel_encoder(dev, encoder) {
3eaba51c 10754 enum pipe pipe;
6c49f241
DV
10755 if (encoder->base.crtc != &crtc->base)
10756 continue;
1d37b689 10757 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10758 encoder->get_config(encoder, &pipe_config);
10759 }
10760
e2c719b7 10761 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
10762 "crtc active state doesn't match with hw state "
10763 "(expected %i, found %i)\n", crtc->active, active);
10764
c0b03411 10765 if (active &&
6e3c9717 10766 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 10767 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
10768 intel_dump_pipe_config(crtc, &pipe_config,
10769 "[hw state]");
6e3c9717 10770 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
10771 "[sw state]");
10772 }
8af6cf88
DV
10773 }
10774}
10775
91d1b4bd
DV
10776static void
10777check_shared_dpll_state(struct drm_device *dev)
10778{
fbee40df 10779 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10780 struct intel_crtc *crtc;
10781 struct intel_dpll_hw_state dpll_hw_state;
10782 int i;
5358901f
DV
10783
10784 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10785 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10786 int enabled_crtcs = 0, active_crtcs = 0;
10787 bool active;
10788
10789 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10790
10791 DRM_DEBUG_KMS("%s\n", pll->name);
10792
10793 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10794
e2c719b7 10795 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 10796 "more active pll users than references: %i vs %i\n",
3e369b76 10797 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 10798 I915_STATE_WARN(pll->active && !pll->on,
5358901f 10799 "pll in active use but not on in sw tracking\n");
e2c719b7 10800 I915_STATE_WARN(pll->on && !pll->active,
35c95375 10801 "pll in on but not on in use in sw tracking\n");
e2c719b7 10802 I915_STATE_WARN(pll->on != active,
5358901f
DV
10803 "pll on state mismatch (expected %i, found %i)\n",
10804 pll->on, active);
10805
d3fcc808 10806 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10807 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10808 enabled_crtcs++;
10809 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10810 active_crtcs++;
10811 }
e2c719b7 10812 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
10813 "pll active crtcs mismatch (expected %i, found %i)\n",
10814 pll->active, active_crtcs);
e2c719b7 10815 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 10816 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 10817 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 10818
e2c719b7 10819 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
10820 sizeof(dpll_hw_state)),
10821 "pll hw state mismatch\n");
5358901f 10822 }
8af6cf88
DV
10823}
10824
91d1b4bd
DV
10825void
10826intel_modeset_check_state(struct drm_device *dev)
10827{
08db6652 10828 check_wm_state(dev);
91d1b4bd
DV
10829 check_connector_state(dev);
10830 check_encoder_state(dev);
10831 check_crtc_state(dev);
10832 check_shared_dpll_state(dev);
10833}
10834
5cec258b 10835void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
10836 int dotclock)
10837{
10838 /*
10839 * FDI already provided one idea for the dotclock.
10840 * Yell if the encoder disagrees.
10841 */
2d112de7 10842 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 10843 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 10844 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10845}
10846
80715b2f
VS
10847static void update_scanline_offset(struct intel_crtc *crtc)
10848{
10849 struct drm_device *dev = crtc->base.dev;
10850
10851 /*
10852 * The scanline counter increments at the leading edge of hsync.
10853 *
10854 * On most platforms it starts counting from vtotal-1 on the
10855 * first active line. That means the scanline counter value is
10856 * always one less than what we would expect. Ie. just after
10857 * start of vblank, which also occurs at start of hsync (on the
10858 * last active line), the scanline counter will read vblank_start-1.
10859 *
10860 * On gen2 the scanline counter starts counting from 1 instead
10861 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10862 * to keep the value positive), instead of adding one.
10863 *
10864 * On HSW+ the behaviour of the scanline counter depends on the output
10865 * type. For DP ports it behaves like most other platforms, but on HDMI
10866 * there's an extra 1 line difference. So we need to add two instead of
10867 * one to the value.
10868 */
10869 if (IS_GEN2(dev)) {
6e3c9717 10870 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
10871 int vtotal;
10872
10873 vtotal = mode->crtc_vtotal;
10874 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10875 vtotal /= 2;
10876
10877 crtc->scanline_offset = vtotal - 1;
10878 } else if (HAS_DDI(dev) &&
409ee761 10879 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
10880 crtc->scanline_offset = 2;
10881 } else
10882 crtc->scanline_offset = 1;
10883}
10884
5cec258b 10885static struct intel_crtc_state *
7f27126e
JB
10886intel_modeset_compute_config(struct drm_crtc *crtc,
10887 struct drm_display_mode *mode,
10888 struct drm_framebuffer *fb,
10889 unsigned *modeset_pipes,
10890 unsigned *prepare_pipes,
10891 unsigned *disable_pipes)
10892{
5cec258b 10893 struct intel_crtc_state *pipe_config = NULL;
7f27126e
JB
10894
10895 intel_modeset_affected_pipes(crtc, modeset_pipes,
10896 prepare_pipes, disable_pipes);
10897
10898 if ((*modeset_pipes) == 0)
10899 goto out;
10900
10901 /*
10902 * Note this needs changes when we start tracking multiple modes
10903 * and crtcs. At that point we'll need to compute the whole config
10904 * (i.e. one pipe_config for each crtc) rather than just the one
10905 * for this crtc.
10906 */
10907 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10908 if (IS_ERR(pipe_config)) {
10909 goto out;
10910 }
10911 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10912 "[modeset]");
7f27126e
JB
10913
10914out:
10915 return pipe_config;
10916}
10917
f30da187
DV
10918static int __intel_set_mode(struct drm_crtc *crtc,
10919 struct drm_display_mode *mode,
7f27126e 10920 int x, int y, struct drm_framebuffer *fb,
5cec258b 10921 struct intel_crtc_state *pipe_config,
7f27126e
JB
10922 unsigned modeset_pipes,
10923 unsigned prepare_pipes,
10924 unsigned disable_pipes)
a6778b3c
DV
10925{
10926 struct drm_device *dev = crtc->dev;
fbee40df 10927 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10928 struct drm_display_mode *saved_mode;
25c5b266 10929 struct intel_crtc *intel_crtc;
c0c36b94 10930 int ret = 0;
a6778b3c 10931
4b4b9238 10932 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10933 if (!saved_mode)
10934 return -ENOMEM;
a6778b3c 10935
3ac18232 10936 *saved_mode = crtc->mode;
a6778b3c 10937
b9950a13
VS
10938 if (modeset_pipes)
10939 to_intel_crtc(crtc)->new_config = pipe_config;
10940
30a970c6
JB
10941 /*
10942 * See if the config requires any additional preparation, e.g.
10943 * to adjust global state with pipes off. We need to do this
10944 * here so we can get the modeset_pipe updated config for the new
10945 * mode set on this crtc. For other crtcs we need to use the
10946 * adjusted_mode bits in the crtc directly.
10947 */
c164f833 10948 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10949 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10950
c164f833
VS
10951 /* may have added more to prepare_pipes than we should */
10952 prepare_pipes &= ~disable_pipes;
10953 }
10954
8bd31e67
ACO
10955 if (dev_priv->display.crtc_compute_clock) {
10956 unsigned clear_pipes = modeset_pipes | disable_pipes;
10957
10958 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10959 if (ret)
10960 goto done;
10961
10962 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
190f68c5
ACO
10963 struct intel_crtc_state *state = intel_crtc->new_config;
10964 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10965 state);
8bd31e67
ACO
10966 if (ret) {
10967 intel_shared_dpll_abort_config(dev_priv);
10968 goto done;
10969 }
10970 }
10971 }
10972
460da916
DV
10973 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10974 intel_crtc_disable(&intel_crtc->base);
10975
ea9d758d
DV
10976 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10977 if (intel_crtc->base.enabled)
10978 dev_priv->display.crtc_disable(&intel_crtc->base);
10979 }
a6778b3c 10980
6c4c86f5
DV
10981 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10982 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
10983 *
10984 * Note we'll need to fix this up when we start tracking multiple
10985 * pipes; here we assume a single modeset_pipe and only track the
10986 * single crtc and mode.
f6e5b160 10987 */
b8cecdf5 10988 if (modeset_pipes) {
25c5b266 10989 crtc->mode = *mode;
b8cecdf5
DV
10990 /* mode_set/enable/disable functions rely on a correct pipe
10991 * config. */
f5de6e07 10992 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
10993
10994 /*
10995 * Calculate and store various constants which
10996 * are later needed by vblank and swap-completion
10997 * timestamping. They are derived from true hwmode.
10998 */
10999 drm_calc_timestamping_constants(crtc,
2d112de7 11000 &pipe_config->base.adjusted_mode);
b8cecdf5 11001 }
7758a113 11002
ea9d758d
DV
11003 /* Only after disabling all output pipelines that will be changed can we
11004 * update the the output configuration. */
11005 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11006
50f6e502 11007 modeset_update_crtc_power_domains(dev);
47fab737 11008
a6778b3c
DV
11009 /* Set up the DPLL and any encoders state that needs to adjust or depend
11010 * on the DPLL.
f6e5b160 11011 */
25c5b266 11012 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
11013 struct drm_plane *primary = intel_crtc->base.primary;
11014 int vdisplay, hdisplay;
4c10794f 11015
455a6808
GP
11016 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11017 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11018 fb, 0, 0,
11019 hdisplay, vdisplay,
11020 x << 16, y << 16,
11021 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
11022 }
11023
11024 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11025 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11026 update_scanline_offset(intel_crtc);
11027
25c5b266 11028 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11029 }
a6778b3c 11030
a6778b3c
DV
11031 /* FIXME: add subpixel order */
11032done:
4b4b9238 11033 if (ret && crtc->enabled)
3ac18232 11034 crtc->mode = *saved_mode;
a6778b3c 11035
3ac18232 11036 kfree(saved_mode);
a6778b3c 11037 return ret;
f6e5b160
CW
11038}
11039
7f27126e
JB
11040static int intel_set_mode_pipes(struct drm_crtc *crtc,
11041 struct drm_display_mode *mode,
11042 int x, int y, struct drm_framebuffer *fb,
5cec258b 11043 struct intel_crtc_state *pipe_config,
7f27126e
JB
11044 unsigned modeset_pipes,
11045 unsigned prepare_pipes,
11046 unsigned disable_pipes)
f30da187
DV
11047{
11048 int ret;
11049
7f27126e
JB
11050 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11051 prepare_pipes, disable_pipes);
f30da187
DV
11052
11053 if (ret == 0)
11054 intel_modeset_check_state(crtc->dev);
11055
11056 return ret;
11057}
11058
7f27126e
JB
11059static int intel_set_mode(struct drm_crtc *crtc,
11060 struct drm_display_mode *mode,
11061 int x, int y, struct drm_framebuffer *fb)
11062{
5cec258b 11063 struct intel_crtc_state *pipe_config;
7f27126e
JB
11064 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11065
11066 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11067 &modeset_pipes,
11068 &prepare_pipes,
11069 &disable_pipes);
11070
11071 if (IS_ERR(pipe_config))
11072 return PTR_ERR(pipe_config);
11073
11074 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11075 modeset_pipes, prepare_pipes,
11076 disable_pipes);
11077}
11078
c0c36b94
CW
11079void intel_crtc_restore_mode(struct drm_crtc *crtc)
11080{
f4510a27 11081 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11082}
11083
25c5b266
DV
11084#undef for_each_intel_crtc_masked
11085
d9e55608
DV
11086static void intel_set_config_free(struct intel_set_config *config)
11087{
11088 if (!config)
11089 return;
11090
1aa4b628
DV
11091 kfree(config->save_connector_encoders);
11092 kfree(config->save_encoder_crtcs);
7668851f 11093 kfree(config->save_crtc_enabled);
d9e55608
DV
11094 kfree(config);
11095}
11096
85f9eb71
DV
11097static int intel_set_config_save_state(struct drm_device *dev,
11098 struct intel_set_config *config)
11099{
7668851f 11100 struct drm_crtc *crtc;
85f9eb71
DV
11101 struct drm_encoder *encoder;
11102 struct drm_connector *connector;
11103 int count;
11104
7668851f
VS
11105 config->save_crtc_enabled =
11106 kcalloc(dev->mode_config.num_crtc,
11107 sizeof(bool), GFP_KERNEL);
11108 if (!config->save_crtc_enabled)
11109 return -ENOMEM;
11110
1aa4b628
DV
11111 config->save_encoder_crtcs =
11112 kcalloc(dev->mode_config.num_encoder,
11113 sizeof(struct drm_crtc *), GFP_KERNEL);
11114 if (!config->save_encoder_crtcs)
85f9eb71
DV
11115 return -ENOMEM;
11116
1aa4b628
DV
11117 config->save_connector_encoders =
11118 kcalloc(dev->mode_config.num_connector,
11119 sizeof(struct drm_encoder *), GFP_KERNEL);
11120 if (!config->save_connector_encoders)
85f9eb71
DV
11121 return -ENOMEM;
11122
11123 /* Copy data. Note that driver private data is not affected.
11124 * Should anything bad happen only the expected state is
11125 * restored, not the drivers personal bookkeeping.
11126 */
7668851f 11127 count = 0;
70e1e0ec 11128 for_each_crtc(dev, crtc) {
7668851f
VS
11129 config->save_crtc_enabled[count++] = crtc->enabled;
11130 }
11131
85f9eb71
DV
11132 count = 0;
11133 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11134 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11135 }
11136
11137 count = 0;
11138 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11139 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11140 }
11141
11142 return 0;
11143}
11144
11145static void intel_set_config_restore_state(struct drm_device *dev,
11146 struct intel_set_config *config)
11147{
7668851f 11148 struct intel_crtc *crtc;
9a935856
DV
11149 struct intel_encoder *encoder;
11150 struct intel_connector *connector;
85f9eb71
DV
11151 int count;
11152
7668851f 11153 count = 0;
d3fcc808 11154 for_each_intel_crtc(dev, crtc) {
7668851f 11155 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11156
11157 if (crtc->new_enabled)
6e3c9717 11158 crtc->new_config = crtc->config;
7bd0a8e7
VS
11159 else
11160 crtc->new_config = NULL;
7668851f
VS
11161 }
11162
85f9eb71 11163 count = 0;
b2784e15 11164 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11165 encoder->new_crtc =
11166 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11167 }
11168
11169 count = 0;
9a935856
DV
11170 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11171 connector->new_encoder =
11172 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11173 }
11174}
11175
e3de42b6 11176static bool
2e57f47d 11177is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11178{
11179 int i;
11180
2e57f47d
CW
11181 if (set->num_connectors == 0)
11182 return false;
11183
11184 if (WARN_ON(set->connectors == NULL))
11185 return false;
11186
11187 for (i = 0; i < set->num_connectors; i++)
11188 if (set->connectors[i]->encoder &&
11189 set->connectors[i]->encoder->crtc == set->crtc &&
11190 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11191 return true;
11192
11193 return false;
11194}
11195
5e2b584e
DV
11196static void
11197intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11198 struct intel_set_config *config)
11199{
11200
11201 /* We should be able to check here if the fb has the same properties
11202 * and then just flip_or_move it */
2e57f47d
CW
11203 if (is_crtc_connector_off(set)) {
11204 config->mode_changed = true;
f4510a27 11205 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11206 /*
11207 * If we have no fb, we can only flip as long as the crtc is
11208 * active, otherwise we need a full mode set. The crtc may
11209 * be active if we've only disabled the primary plane, or
11210 * in fastboot situations.
11211 */
f4510a27 11212 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11213 struct intel_crtc *intel_crtc =
11214 to_intel_crtc(set->crtc);
11215
3b150f08 11216 if (intel_crtc->active) {
319d9827
JB
11217 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11218 config->fb_changed = true;
11219 } else {
11220 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11221 config->mode_changed = true;
11222 }
5e2b584e
DV
11223 } else if (set->fb == NULL) {
11224 config->mode_changed = true;
72f4901e 11225 } else if (set->fb->pixel_format !=
f4510a27 11226 set->crtc->primary->fb->pixel_format) {
5e2b584e 11227 config->mode_changed = true;
e3de42b6 11228 } else {
5e2b584e 11229 config->fb_changed = true;
e3de42b6 11230 }
5e2b584e
DV
11231 }
11232
835c5873 11233 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11234 config->fb_changed = true;
11235
11236 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11237 DRM_DEBUG_KMS("modes are different, full mode set\n");
11238 drm_mode_debug_printmodeline(&set->crtc->mode);
11239 drm_mode_debug_printmodeline(set->mode);
11240 config->mode_changed = true;
11241 }
a1d95703
CW
11242
11243 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11244 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11245}
11246
2e431051 11247static int
9a935856
DV
11248intel_modeset_stage_output_state(struct drm_device *dev,
11249 struct drm_mode_set *set,
11250 struct intel_set_config *config)
50f56119 11251{
9a935856
DV
11252 struct intel_connector *connector;
11253 struct intel_encoder *encoder;
7668851f 11254 struct intel_crtc *crtc;
f3f08572 11255 int ro;
50f56119 11256
9abdda74 11257 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11258 * of connectors. For paranoia, double-check this. */
11259 WARN_ON(!set->fb && (set->num_connectors != 0));
11260 WARN_ON(set->fb && (set->num_connectors == 0));
11261
9a935856
DV
11262 list_for_each_entry(connector, &dev->mode_config.connector_list,
11263 base.head) {
11264 /* Otherwise traverse passed in connector list and get encoders
11265 * for them. */
50f56119 11266 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11267 if (set->connectors[ro] == &connector->base) {
0e32b39c 11268 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11269 break;
11270 }
11271 }
11272
9a935856
DV
11273 /* If we disable the crtc, disable all its connectors. Also, if
11274 * the connector is on the changing crtc but not on the new
11275 * connector list, disable it. */
11276 if ((!set->fb || ro == set->num_connectors) &&
11277 connector->base.encoder &&
11278 connector->base.encoder->crtc == set->crtc) {
11279 connector->new_encoder = NULL;
11280
11281 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11282 connector->base.base.id,
c23cc417 11283 connector->base.name);
9a935856
DV
11284 }
11285
11286
11287 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11288 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11289 config->mode_changed = true;
50f56119
DV
11290 }
11291 }
9a935856 11292 /* connector->new_encoder is now updated for all connectors. */
50f56119 11293
9a935856 11294 /* Update crtc of enabled connectors. */
9a935856
DV
11295 list_for_each_entry(connector, &dev->mode_config.connector_list,
11296 base.head) {
7668851f
VS
11297 struct drm_crtc *new_crtc;
11298
9a935856 11299 if (!connector->new_encoder)
50f56119
DV
11300 continue;
11301
9a935856 11302 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11303
11304 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11305 if (set->connectors[ro] == &connector->base)
50f56119
DV
11306 new_crtc = set->crtc;
11307 }
11308
11309 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11310 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11311 new_crtc)) {
5e2b584e 11312 return -EINVAL;
50f56119 11313 }
0e32b39c 11314 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11315
11316 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11317 connector->base.base.id,
c23cc417 11318 connector->base.name,
9a935856
DV
11319 new_crtc->base.id);
11320 }
11321
11322 /* Check for any encoders that needs to be disabled. */
b2784e15 11323 for_each_intel_encoder(dev, encoder) {
5a65f358 11324 int num_connectors = 0;
9a935856
DV
11325 list_for_each_entry(connector,
11326 &dev->mode_config.connector_list,
11327 base.head) {
11328 if (connector->new_encoder == encoder) {
11329 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11330 num_connectors++;
9a935856
DV
11331 }
11332 }
5a65f358
PZ
11333
11334 if (num_connectors == 0)
11335 encoder->new_crtc = NULL;
11336 else if (num_connectors > 1)
11337 return -EINVAL;
11338
9a935856
DV
11339 /* Only now check for crtc changes so we don't miss encoders
11340 * that will be disabled. */
11341 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11342 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11343 config->mode_changed = true;
50f56119
DV
11344 }
11345 }
9a935856 11346 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11347 list_for_each_entry(connector, &dev->mode_config.connector_list,
11348 base.head) {
11349 if (connector->new_encoder)
11350 if (connector->new_encoder != connector->encoder)
11351 connector->encoder = connector->new_encoder;
11352 }
d3fcc808 11353 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11354 crtc->new_enabled = false;
11355
b2784e15 11356 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11357 if (encoder->new_crtc == crtc) {
11358 crtc->new_enabled = true;
11359 break;
11360 }
11361 }
11362
11363 if (crtc->new_enabled != crtc->base.enabled) {
11364 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11365 crtc->new_enabled ? "en" : "dis");
11366 config->mode_changed = true;
11367 }
7bd0a8e7
VS
11368
11369 if (crtc->new_enabled)
6e3c9717 11370 crtc->new_config = crtc->config;
7bd0a8e7
VS
11371 else
11372 crtc->new_config = NULL;
7668851f
VS
11373 }
11374
2e431051
DV
11375 return 0;
11376}
11377
7d00a1f5
VS
11378static void disable_crtc_nofb(struct intel_crtc *crtc)
11379{
11380 struct drm_device *dev = crtc->base.dev;
11381 struct intel_encoder *encoder;
11382 struct intel_connector *connector;
11383
11384 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11385 pipe_name(crtc->pipe));
11386
11387 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11388 if (connector->new_encoder &&
11389 connector->new_encoder->new_crtc == crtc)
11390 connector->new_encoder = NULL;
11391 }
11392
b2784e15 11393 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11394 if (encoder->new_crtc == crtc)
11395 encoder->new_crtc = NULL;
11396 }
11397
11398 crtc->new_enabled = false;
7bd0a8e7 11399 crtc->new_config = NULL;
7d00a1f5
VS
11400}
11401
2e431051
DV
11402static int intel_crtc_set_config(struct drm_mode_set *set)
11403{
11404 struct drm_device *dev;
2e431051
DV
11405 struct drm_mode_set save_set;
11406 struct intel_set_config *config;
5cec258b 11407 struct intel_crtc_state *pipe_config;
50f52756 11408 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 11409 int ret;
2e431051 11410
8d3e375e
DV
11411 BUG_ON(!set);
11412 BUG_ON(!set->crtc);
11413 BUG_ON(!set->crtc->helper_private);
2e431051 11414
7e53f3a4
DV
11415 /* Enforce sane interface api - has been abused by the fb helper. */
11416 BUG_ON(!set->mode && set->fb);
11417 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11418
2e431051
DV
11419 if (set->fb) {
11420 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11421 set->crtc->base.id, set->fb->base.id,
11422 (int)set->num_connectors, set->x, set->y);
11423 } else {
11424 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11425 }
11426
11427 dev = set->crtc->dev;
11428
11429 ret = -ENOMEM;
11430 config = kzalloc(sizeof(*config), GFP_KERNEL);
11431 if (!config)
11432 goto out_config;
11433
11434 ret = intel_set_config_save_state(dev, config);
11435 if (ret)
11436 goto out_config;
11437
11438 save_set.crtc = set->crtc;
11439 save_set.mode = &set->crtc->mode;
11440 save_set.x = set->crtc->x;
11441 save_set.y = set->crtc->y;
f4510a27 11442 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11443
11444 /* Compute whether we need a full modeset, only an fb base update or no
11445 * change at all. In the future we might also check whether only the
11446 * mode changed, e.g. for LVDS where we only change the panel fitter in
11447 * such cases. */
11448 intel_set_config_compute_mode_changes(set, config);
11449
9a935856 11450 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11451 if (ret)
11452 goto fail;
11453
50f52756
JB
11454 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11455 set->fb,
11456 &modeset_pipes,
11457 &prepare_pipes,
11458 &disable_pipes);
20664591 11459 if (IS_ERR(pipe_config)) {
6ac0483b 11460 ret = PTR_ERR(pipe_config);
50f52756 11461 goto fail;
20664591 11462 } else if (pipe_config) {
b9950a13 11463 if (pipe_config->has_audio !=
6e3c9717 11464 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
11465 config->mode_changed = true;
11466
af15d2ce
JB
11467 /*
11468 * Note we have an issue here with infoframes: current code
11469 * only updates them on the full mode set path per hw
11470 * requirements. So here we should be checking for any
11471 * required changes and forcing a mode set.
11472 */
20664591 11473 }
50f52756
JB
11474
11475 /* set_mode will free it in the mode_changed case */
11476 if (!config->mode_changed)
11477 kfree(pipe_config);
11478
1f9954d0
JB
11479 intel_update_pipe_size(to_intel_crtc(set->crtc));
11480
5e2b584e 11481 if (config->mode_changed) {
50f52756
JB
11482 ret = intel_set_mode_pipes(set->crtc, set->mode,
11483 set->x, set->y, set->fb, pipe_config,
11484 modeset_pipes, prepare_pipes,
11485 disable_pipes);
5e2b584e 11486 } else if (config->fb_changed) {
3b150f08 11487 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
11488 struct drm_plane *primary = set->crtc->primary;
11489 int vdisplay, hdisplay;
3b150f08 11490
455a6808
GP
11491 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11492 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11493 0, 0, hdisplay, vdisplay,
11494 set->x << 16, set->y << 16,
11495 hdisplay << 16, vdisplay << 16);
3b150f08
MR
11496
11497 /*
11498 * We need to make sure the primary plane is re-enabled if it
11499 * has previously been turned off.
11500 */
11501 if (!intel_crtc->primary_enabled && ret == 0) {
11502 WARN_ON(!intel_crtc->active);
fdd508a6 11503 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11504 }
11505
7ca51a3a
JB
11506 /*
11507 * In the fastboot case this may be our only check of the
11508 * state after boot. It would be better to only do it on
11509 * the first update, but we don't have a nice way of doing that
11510 * (and really, set_config isn't used much for high freq page
11511 * flipping, so increasing its cost here shouldn't be a big
11512 * deal).
11513 */
d330a953 11514 if (i915.fastboot && ret == 0)
7ca51a3a 11515 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11516 }
11517
2d05eae1 11518 if (ret) {
bf67dfeb
DV
11519 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11520 set->crtc->base.id, ret);
50f56119 11521fail:
2d05eae1 11522 intel_set_config_restore_state(dev, config);
50f56119 11523
7d00a1f5
VS
11524 /*
11525 * HACK: if the pipe was on, but we didn't have a framebuffer,
11526 * force the pipe off to avoid oopsing in the modeset code
11527 * due to fb==NULL. This should only happen during boot since
11528 * we don't yet reconstruct the FB from the hardware state.
11529 */
11530 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11531 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11532
2d05eae1
CW
11533 /* Try to restore the config */
11534 if (config->mode_changed &&
11535 intel_set_mode(save_set.crtc, save_set.mode,
11536 save_set.x, save_set.y, save_set.fb))
11537 DRM_ERROR("failed to restore config after modeset failure\n");
11538 }
50f56119 11539
d9e55608
DV
11540out_config:
11541 intel_set_config_free(config);
50f56119
DV
11542 return ret;
11543}
f6e5b160
CW
11544
11545static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11546 .gamma_set = intel_crtc_gamma_set,
50f56119 11547 .set_config = intel_crtc_set_config,
f6e5b160
CW
11548 .destroy = intel_crtc_destroy,
11549 .page_flip = intel_crtc_page_flip,
11550};
11551
5358901f
DV
11552static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11553 struct intel_shared_dpll *pll,
11554 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11555{
5358901f 11556 uint32_t val;
ee7b9f93 11557
f458ebbc 11558 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11559 return false;
11560
5358901f 11561 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11562 hw_state->dpll = val;
11563 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11564 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11565
11566 return val & DPLL_VCO_ENABLE;
11567}
11568
15bdd4cf
DV
11569static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11570 struct intel_shared_dpll *pll)
11571{
3e369b76
ACO
11572 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11573 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
11574}
11575
e7b903d2
DV
11576static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11577 struct intel_shared_dpll *pll)
11578{
e7b903d2 11579 /* PCH refclock must be enabled first */
89eff4be 11580 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11581
3e369b76 11582 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
11583
11584 /* Wait for the clocks to stabilize. */
11585 POSTING_READ(PCH_DPLL(pll->id));
11586 udelay(150);
11587
11588 /* The pixel multiplier can only be updated once the
11589 * DPLL is enabled and the clocks are stable.
11590 *
11591 * So write it again.
11592 */
3e369b76 11593 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 11594 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11595 udelay(200);
11596}
11597
11598static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11599 struct intel_shared_dpll *pll)
11600{
11601 struct drm_device *dev = dev_priv->dev;
11602 struct intel_crtc *crtc;
e7b903d2
DV
11603
11604 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11605 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11606 if (intel_crtc_to_shared_dpll(crtc) == pll)
11607 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11608 }
11609
15bdd4cf
DV
11610 I915_WRITE(PCH_DPLL(pll->id), 0);
11611 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11612 udelay(200);
11613}
11614
46edb027
DV
11615static char *ibx_pch_dpll_names[] = {
11616 "PCH DPLL A",
11617 "PCH DPLL B",
11618};
11619
7c74ade1 11620static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11621{
e7b903d2 11622 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11623 int i;
11624
7c74ade1 11625 dev_priv->num_shared_dpll = 2;
ee7b9f93 11626
e72f9fbf 11627 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11628 dev_priv->shared_dplls[i].id = i;
11629 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11630 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11631 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11632 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11633 dev_priv->shared_dplls[i].get_hw_state =
11634 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11635 }
11636}
11637
7c74ade1
DV
11638static void intel_shared_dpll_init(struct drm_device *dev)
11639{
e7b903d2 11640 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11641
9cd86933
DV
11642 if (HAS_DDI(dev))
11643 intel_ddi_pll_init(dev);
11644 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11645 ibx_pch_dpll_init(dev);
11646 else
11647 dev_priv->num_shared_dpll = 0;
11648
11649 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11650}
11651
6beb8c23
MR
11652/**
11653 * intel_prepare_plane_fb - Prepare fb for usage on plane
11654 * @plane: drm plane to prepare for
11655 * @fb: framebuffer to prepare for presentation
11656 *
11657 * Prepares a framebuffer for usage on a display plane. Generally this
11658 * involves pinning the underlying object and updating the frontbuffer tracking
11659 * bits. Some older platforms need special physical address handling for
11660 * cursor planes.
11661 *
11662 * Returns 0 on success, negative error code on failure.
11663 */
11664int
11665intel_prepare_plane_fb(struct drm_plane *plane,
11666 struct drm_framebuffer *fb)
465c120c
MR
11667{
11668 struct drm_device *dev = plane->dev;
6beb8c23
MR
11669 struct intel_plane *intel_plane = to_intel_plane(plane);
11670 enum pipe pipe = intel_plane->pipe;
11671 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11672 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11673 unsigned frontbuffer_bits = 0;
11674 int ret = 0;
465c120c 11675
ea2c67bb 11676 if (!obj)
465c120c
MR
11677 return 0;
11678
6beb8c23
MR
11679 switch (plane->type) {
11680 case DRM_PLANE_TYPE_PRIMARY:
11681 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11682 break;
11683 case DRM_PLANE_TYPE_CURSOR:
11684 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11685 break;
11686 case DRM_PLANE_TYPE_OVERLAY:
11687 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11688 break;
11689 }
465c120c 11690
6beb8c23 11691 mutex_lock(&dev->struct_mutex);
465c120c 11692
6beb8c23
MR
11693 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11694 INTEL_INFO(dev)->cursor_needs_physical) {
11695 int align = IS_I830(dev) ? 16 * 1024 : 256;
11696 ret = i915_gem_object_attach_phys(obj, align);
11697 if (ret)
11698 DRM_DEBUG_KMS("failed to attach phys object\n");
11699 } else {
11700 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11701 }
465c120c 11702
6beb8c23
MR
11703 if (ret == 0)
11704 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 11705
4c34574f 11706 mutex_unlock(&dev->struct_mutex);
465c120c 11707
6beb8c23
MR
11708 return ret;
11709}
11710
38f3ce3a
MR
11711/**
11712 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11713 * @plane: drm plane to clean up for
11714 * @fb: old framebuffer that was on plane
11715 *
11716 * Cleans up a framebuffer that has just been removed from a plane.
11717 */
11718void
11719intel_cleanup_plane_fb(struct drm_plane *plane,
11720 struct drm_framebuffer *fb)
11721{
11722 struct drm_device *dev = plane->dev;
11723 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11724
11725 if (WARN_ON(!obj))
11726 return;
11727
11728 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11729 !INTEL_INFO(dev)->cursor_needs_physical) {
11730 mutex_lock(&dev->struct_mutex);
11731 intel_unpin_fb_obj(obj);
11732 mutex_unlock(&dev->struct_mutex);
11733 }
465c120c
MR
11734}
11735
11736static int
3c692a41
GP
11737intel_check_primary_plane(struct drm_plane *plane,
11738 struct intel_plane_state *state)
11739{
32b7eeec
MR
11740 struct drm_device *dev = plane->dev;
11741 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 11742 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 11743 struct intel_crtc *intel_crtc;
32b7eeec 11744 struct intel_plane *intel_plane = to_intel_plane(plane);
2b875c22 11745 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
11746 struct drm_rect *dest = &state->dst;
11747 struct drm_rect *src = &state->src;
11748 const struct drm_rect *clip = &state->clip;
465c120c
MR
11749 int ret;
11750
ea2c67bb
MR
11751 crtc = crtc ? crtc : plane->crtc;
11752 intel_crtc = to_intel_crtc(crtc);
11753
c59cb179
MR
11754 ret = drm_plane_helper_check_update(plane, crtc, fb,
11755 src, dest, clip,
11756 DRM_PLANE_HELPER_NO_SCALING,
11757 DRM_PLANE_HELPER_NO_SCALING,
11758 false, true, &state->visible);
11759 if (ret)
11760 return ret;
465c120c 11761
32b7eeec
MR
11762 if (intel_crtc->active) {
11763 intel_crtc->atomic.wait_for_flips = true;
11764
11765 /*
11766 * FBC does not work on some platforms for rotated
11767 * planes, so disable it when rotation is not 0 and
11768 * update it when rotation is set back to 0.
11769 *
11770 * FIXME: This is redundant with the fbc update done in
11771 * the primary plane enable function except that that
11772 * one is done too late. We eventually need to unify
11773 * this.
11774 */
11775 if (intel_crtc->primary_enabled &&
11776 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11777 dev_priv->fbc.plane == intel_crtc->plane &&
11778 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11779 intel_crtc->atomic.disable_fbc = true;
11780 }
11781
11782 if (state->visible) {
11783 /*
11784 * BDW signals flip done immediately if the plane
11785 * is disabled, even if the plane enable is already
11786 * armed to occur at the next vblank :(
11787 */
11788 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11789 intel_crtc->atomic.wait_vblank = true;
11790 }
11791
11792 intel_crtc->atomic.fb_bits |=
11793 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11794
11795 intel_crtc->atomic.update_fbc = true;
ccc759dc
GP
11796 }
11797
14af293f
GP
11798 return 0;
11799}
11800
11801static void
11802intel_commit_primary_plane(struct drm_plane *plane,
11803 struct intel_plane_state *state)
11804{
2b875c22
MR
11805 struct drm_crtc *crtc = state->base.crtc;
11806 struct drm_framebuffer *fb = state->base.fb;
11807 struct drm_device *dev = plane->dev;
14af293f 11808 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 11809 struct intel_crtc *intel_crtc;
14af293f 11810 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14af293f
GP
11811 struct intel_plane *intel_plane = to_intel_plane(plane);
11812 struct drm_rect *src = &state->src;
11813
ea2c67bb
MR
11814 crtc = crtc ? crtc : plane->crtc;
11815 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
11816
11817 plane->fb = fb;
9dc806fc
MR
11818 crtc->x = src->x1 >> 16;
11819 crtc->y = src->y1 >> 16;
ccc759dc 11820
ccc759dc 11821 intel_plane->obj = obj;
4c34574f 11822
ccc759dc 11823 if (intel_crtc->active) {
ccc759dc 11824 if (state->visible) {
ccc759dc
GP
11825 /* FIXME: kill this fastboot hack */
11826 intel_update_pipe_size(intel_crtc);
465c120c 11827
ccc759dc 11828 intel_crtc->primary_enabled = true;
465c120c 11829
ccc759dc
GP
11830 dev_priv->display.update_primary_plane(crtc, plane->fb,
11831 crtc->x, crtc->y);
ccc759dc
GP
11832 } else {
11833 /*
11834 * If clipping results in a non-visible primary plane,
11835 * we'll disable the primary plane. Note that this is
11836 * a bit different than what happens if userspace
11837 * explicitly disables the plane by passing fb=0
11838 * because plane->fb still gets set and pinned.
11839 */
11840 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11841 }
ccc759dc 11842 }
465c120c
MR
11843}
11844
32b7eeec 11845static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 11846{
32b7eeec 11847 struct drm_device *dev = crtc->dev;
140fd38d 11848 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 11849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
11850 struct intel_plane *intel_plane;
11851 struct drm_plane *p;
11852 unsigned fb_bits = 0;
11853
11854 /* Track fb's for any planes being disabled */
11855 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
11856 intel_plane = to_intel_plane(p);
11857
11858 if (intel_crtc->atomic.disabled_planes &
11859 (1 << drm_plane_index(p))) {
11860 switch (p->type) {
11861 case DRM_PLANE_TYPE_PRIMARY:
11862 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
11863 break;
11864 case DRM_PLANE_TYPE_CURSOR:
11865 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
11866 break;
11867 case DRM_PLANE_TYPE_OVERLAY:
11868 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
11869 break;
11870 }
3c692a41 11871
ea2c67bb
MR
11872 mutex_lock(&dev->struct_mutex);
11873 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
11874 mutex_unlock(&dev->struct_mutex);
11875 }
11876 }
3c692a41 11877
32b7eeec
MR
11878 if (intel_crtc->atomic.wait_for_flips)
11879 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 11880
32b7eeec
MR
11881 if (intel_crtc->atomic.disable_fbc)
11882 intel_fbc_disable(dev);
3c692a41 11883
32b7eeec
MR
11884 if (intel_crtc->atomic.pre_disable_primary)
11885 intel_pre_disable_primary(crtc);
3c692a41 11886
32b7eeec
MR
11887 if (intel_crtc->atomic.update_wm)
11888 intel_update_watermarks(crtc);
3c692a41 11889
32b7eeec 11890 intel_runtime_pm_get(dev_priv);
3c692a41 11891
c34c9ee4
MR
11892 /* Perform vblank evasion around commit operation */
11893 if (intel_crtc->active)
11894 intel_crtc->atomic.evade =
11895 intel_pipe_update_start(intel_crtc,
11896 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
11897}
11898
11899static void intel_finish_crtc_commit(struct drm_crtc *crtc)
11900{
11901 struct drm_device *dev = crtc->dev;
11902 struct drm_i915_private *dev_priv = dev->dev_private;
11903 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11904 struct drm_plane *p;
11905
c34c9ee4
MR
11906 if (intel_crtc->atomic.evade)
11907 intel_pipe_update_end(intel_crtc,
11908 intel_crtc->atomic.start_vbl_count);
3c692a41 11909
140fd38d 11910 intel_runtime_pm_put(dev_priv);
3c692a41 11911
32b7eeec
MR
11912 if (intel_crtc->atomic.wait_vblank)
11913 intel_wait_for_vblank(dev, intel_crtc->pipe);
11914
11915 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
11916
11917 if (intel_crtc->atomic.update_fbc) {
ccc759dc 11918 mutex_lock(&dev->struct_mutex);
7ff0ebcc 11919 intel_fbc_update(dev);
ccc759dc 11920 mutex_unlock(&dev->struct_mutex);
38f3ce3a 11921 }
3c692a41 11922
32b7eeec
MR
11923 if (intel_crtc->atomic.post_enable_primary)
11924 intel_post_enable_primary(crtc);
3c692a41 11925
32b7eeec
MR
11926 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
11927 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
11928 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
11929 false, false);
11930
11931 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
11932}
11933
cf4c7c12 11934/**
4a3b8769
MR
11935 * intel_plane_destroy - destroy a plane
11936 * @plane: plane to destroy
cf4c7c12 11937 *
4a3b8769
MR
11938 * Common destruction function for all types of planes (primary, cursor,
11939 * sprite).
cf4c7c12 11940 */
4a3b8769 11941void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11942{
11943 struct intel_plane *intel_plane = to_intel_plane(plane);
11944 drm_plane_cleanup(plane);
11945 kfree(intel_plane);
11946}
11947
11948static const struct drm_plane_funcs intel_primary_plane_funcs = {
ea2c67bb
MR
11949 .update_plane = drm_plane_helper_update,
11950 .disable_plane = drm_plane_helper_disable,
3d7d6510 11951 .destroy = intel_plane_destroy,
ea2c67bb
MR
11952 .set_property = intel_plane_set_property,
11953 .atomic_duplicate_state = intel_plane_duplicate_state,
11954 .atomic_destroy_state = intel_plane_destroy_state,
11955
465c120c
MR
11956};
11957
11958static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11959 int pipe)
11960{
11961 struct intel_plane *primary;
11962 const uint32_t *intel_primary_formats;
11963 int num_formats;
11964
11965 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11966 if (primary == NULL)
11967 return NULL;
11968
ea2c67bb
MR
11969 primary->base.state = intel_plane_duplicate_state(&primary->base);
11970 if (primary->base.state == NULL) {
11971 kfree(primary);
11972 return NULL;
11973 }
11974
465c120c
MR
11975 primary->can_scale = false;
11976 primary->max_downscale = 1;
11977 primary->pipe = pipe;
11978 primary->plane = pipe;
48404c1e 11979 primary->rotation = BIT(DRM_ROTATE_0);
c59cb179
MR
11980 primary->check_plane = intel_check_primary_plane;
11981 primary->commit_plane = intel_commit_primary_plane;
465c120c
MR
11982 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11983 primary->plane = !pipe;
11984
11985 if (INTEL_INFO(dev)->gen <= 3) {
11986 intel_primary_formats = intel_primary_formats_gen2;
11987 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11988 } else {
11989 intel_primary_formats = intel_primary_formats_gen4;
11990 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11991 }
11992
11993 drm_universal_plane_init(dev, &primary->base, 0,
11994 &intel_primary_plane_funcs,
11995 intel_primary_formats, num_formats,
11996 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
11997
11998 if (INTEL_INFO(dev)->gen >= 4) {
11999 if (!dev->mode_config.rotation_property)
12000 dev->mode_config.rotation_property =
12001 drm_mode_create_rotation_property(dev,
12002 BIT(DRM_ROTATE_0) |
12003 BIT(DRM_ROTATE_180));
12004 if (dev->mode_config.rotation_property)
12005 drm_object_attach_property(&primary->base.base,
12006 dev->mode_config.rotation_property,
12007 primary->rotation);
12008 }
12009
ea2c67bb
MR
12010 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12011
465c120c
MR
12012 return &primary->base;
12013}
12014
3d7d6510 12015static int
852e787c
GP
12016intel_check_cursor_plane(struct drm_plane *plane,
12017 struct intel_plane_state *state)
3d7d6510 12018{
2b875c22 12019 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12020 struct drm_device *dev = plane->dev;
2b875c22 12021 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
12022 struct drm_rect *dest = &state->dst;
12023 struct drm_rect *src = &state->src;
12024 const struct drm_rect *clip = &state->clip;
757f9a3e 12025 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 12026 struct intel_crtc *intel_crtc;
757f9a3e
GP
12027 unsigned stride;
12028 int ret;
3d7d6510 12029
ea2c67bb
MR
12030 crtc = crtc ? crtc : plane->crtc;
12031 intel_crtc = to_intel_crtc(crtc);
12032
757f9a3e 12033 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12034 src, dest, clip,
3d7d6510
MR
12035 DRM_PLANE_HELPER_NO_SCALING,
12036 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12037 true, true, &state->visible);
757f9a3e
GP
12038 if (ret)
12039 return ret;
12040
12041
12042 /* if we want to turn off the cursor ignore width and height */
12043 if (!obj)
32b7eeec 12044 goto finish;
757f9a3e 12045
757f9a3e 12046 /* Check for which cursor types we support */
ea2c67bb
MR
12047 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12048 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12049 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
12050 return -EINVAL;
12051 }
12052
ea2c67bb
MR
12053 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12054 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
12055 DRM_DEBUG_KMS("buffer is too small\n");
12056 return -ENOMEM;
12057 }
12058
e391ea88
GP
12059 if (fb == crtc->cursor->fb)
12060 return 0;
12061
757f9a3e
GP
12062 /* we only need to pin inside GTT if cursor is non-phy */
12063 mutex_lock(&dev->struct_mutex);
12064 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12065 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12066 ret = -EINVAL;
12067 }
12068 mutex_unlock(&dev->struct_mutex);
12069
32b7eeec
MR
12070finish:
12071 if (intel_crtc->active) {
ea2c67bb 12072 if (intel_crtc->cursor_width != state->base.crtc_w)
32b7eeec
MR
12073 intel_crtc->atomic.update_wm = true;
12074
12075 intel_crtc->atomic.fb_bits |=
12076 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12077 }
12078
757f9a3e 12079 return ret;
852e787c 12080}
3d7d6510 12081
f4a2cf29 12082static void
852e787c
GP
12083intel_commit_cursor_plane(struct drm_plane *plane,
12084 struct intel_plane_state *state)
12085{
2b875c22 12086 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
12087 struct drm_device *dev = plane->dev;
12088 struct intel_crtc *intel_crtc;
a919db90 12089 struct intel_plane *intel_plane = to_intel_plane(plane);
2b875c22 12090 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 12091 uint32_t addr;
852e787c 12092
ea2c67bb
MR
12093 crtc = crtc ? crtc : plane->crtc;
12094 intel_crtc = to_intel_crtc(crtc);
12095
2b875c22 12096 plane->fb = state->base.fb;
ea2c67bb
MR
12097 crtc->cursor_x = state->base.crtc_x;
12098 crtc->cursor_y = state->base.crtc_y;
12099
a919db90
SJ
12100 intel_plane->obj = obj;
12101
a912f12f
GP
12102 if (intel_crtc->cursor_bo == obj)
12103 goto update;
4ed91096 12104
f4a2cf29 12105 if (!obj)
a912f12f 12106 addr = 0;
f4a2cf29 12107 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 12108 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 12109 else
a912f12f 12110 addr = obj->phys_handle->busaddr;
852e787c 12111
a912f12f
GP
12112 intel_crtc->cursor_addr = addr;
12113 intel_crtc->cursor_bo = obj;
12114update:
ea2c67bb
MR
12115 intel_crtc->cursor_width = state->base.crtc_w;
12116 intel_crtc->cursor_height = state->base.crtc_h;
852e787c 12117
32b7eeec 12118 if (intel_crtc->active)
a912f12f 12119 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
12120}
12121
3d7d6510 12122static const struct drm_plane_funcs intel_cursor_plane_funcs = {
ea2c67bb
MR
12123 .update_plane = drm_plane_helper_update,
12124 .disable_plane = drm_plane_helper_disable,
3d7d6510 12125 .destroy = intel_plane_destroy,
4398ad45 12126 .set_property = intel_plane_set_property,
ea2c67bb
MR
12127 .atomic_duplicate_state = intel_plane_duplicate_state,
12128 .atomic_destroy_state = intel_plane_destroy_state,
3d7d6510
MR
12129};
12130
12131static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12132 int pipe)
12133{
12134 struct intel_plane *cursor;
12135
12136 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12137 if (cursor == NULL)
12138 return NULL;
12139
ea2c67bb
MR
12140 cursor->base.state = intel_plane_duplicate_state(&cursor->base);
12141 if (cursor->base.state == NULL) {
12142 kfree(cursor);
12143 return NULL;
12144 }
12145
3d7d6510
MR
12146 cursor->can_scale = false;
12147 cursor->max_downscale = 1;
12148 cursor->pipe = pipe;
12149 cursor->plane = pipe;
4398ad45 12150 cursor->rotation = BIT(DRM_ROTATE_0);
c59cb179
MR
12151 cursor->check_plane = intel_check_cursor_plane;
12152 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
12153
12154 drm_universal_plane_init(dev, &cursor->base, 0,
12155 &intel_cursor_plane_funcs,
12156 intel_cursor_formats,
12157 ARRAY_SIZE(intel_cursor_formats),
12158 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12159
12160 if (INTEL_INFO(dev)->gen >= 4) {
12161 if (!dev->mode_config.rotation_property)
12162 dev->mode_config.rotation_property =
12163 drm_mode_create_rotation_property(dev,
12164 BIT(DRM_ROTATE_0) |
12165 BIT(DRM_ROTATE_180));
12166 if (dev->mode_config.rotation_property)
12167 drm_object_attach_property(&cursor->base.base,
12168 dev->mode_config.rotation_property,
12169 cursor->rotation);
12170 }
12171
ea2c67bb
MR
12172 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12173
3d7d6510
MR
12174 return &cursor->base;
12175}
12176
b358d0a6 12177static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12178{
fbee40df 12179 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12180 struct intel_crtc *intel_crtc;
f5de6e07 12181 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
12182 struct drm_plane *primary = NULL;
12183 struct drm_plane *cursor = NULL;
465c120c 12184 int i, ret;
79e53945 12185
955382f3 12186 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12187 if (intel_crtc == NULL)
12188 return;
12189
f5de6e07
ACO
12190 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12191 if (!crtc_state)
12192 goto fail;
12193 intel_crtc_set_state(intel_crtc, crtc_state);
12194
465c120c 12195 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12196 if (!primary)
12197 goto fail;
12198
12199 cursor = intel_cursor_plane_create(dev, pipe);
12200 if (!cursor)
12201 goto fail;
12202
465c120c 12203 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12204 cursor, &intel_crtc_funcs);
12205 if (ret)
12206 goto fail;
79e53945
JB
12207
12208 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12209 for (i = 0; i < 256; i++) {
12210 intel_crtc->lut_r[i] = i;
12211 intel_crtc->lut_g[i] = i;
12212 intel_crtc->lut_b[i] = i;
12213 }
12214
1f1c2e24
VS
12215 /*
12216 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12217 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12218 */
80824003
JB
12219 intel_crtc->pipe = pipe;
12220 intel_crtc->plane = pipe;
3a77c4c4 12221 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12222 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12223 intel_crtc->plane = !pipe;
80824003
JB
12224 }
12225
4b0e333e
CW
12226 intel_crtc->cursor_base = ~0;
12227 intel_crtc->cursor_cntl = ~0;
dc41c154 12228 intel_crtc->cursor_size = ~0;
8d7849db 12229
22fd0fab
JB
12230 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12231 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12232 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12233 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12234
9362c7c5
ACO
12235 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12236
79e53945 12237 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12238
12239 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12240 return;
12241
12242fail:
12243 if (primary)
12244 drm_plane_cleanup(primary);
12245 if (cursor)
12246 drm_plane_cleanup(cursor);
f5de6e07 12247 kfree(crtc_state);
3d7d6510 12248 kfree(intel_crtc);
79e53945
JB
12249}
12250
752aa88a
JB
12251enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12252{
12253 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12254 struct drm_device *dev = connector->base.dev;
752aa88a 12255
51fd371b 12256 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12257
d3babd3f 12258 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12259 return INVALID_PIPE;
12260
12261 return to_intel_crtc(encoder->crtc)->pipe;
12262}
12263
08d7b3d1 12264int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12265 struct drm_file *file)
08d7b3d1 12266{
08d7b3d1 12267 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12268 struct drm_crtc *drmmode_crtc;
c05422d5 12269 struct intel_crtc *crtc;
08d7b3d1 12270
1cff8f6b
DV
12271 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12272 return -ENODEV;
08d7b3d1 12273
7707e653 12274 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12275
7707e653 12276 if (!drmmode_crtc) {
08d7b3d1 12277 DRM_ERROR("no such CRTC id\n");
3f2c2057 12278 return -ENOENT;
08d7b3d1
CW
12279 }
12280
7707e653 12281 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12282 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12283
c05422d5 12284 return 0;
08d7b3d1
CW
12285}
12286
66a9278e 12287static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12288{
66a9278e
DV
12289 struct drm_device *dev = encoder->base.dev;
12290 struct intel_encoder *source_encoder;
79e53945 12291 int index_mask = 0;
79e53945
JB
12292 int entry = 0;
12293
b2784e15 12294 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12295 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12296 index_mask |= (1 << entry);
12297
79e53945
JB
12298 entry++;
12299 }
4ef69c7a 12300
79e53945
JB
12301 return index_mask;
12302}
12303
4d302442
CW
12304static bool has_edp_a(struct drm_device *dev)
12305{
12306 struct drm_i915_private *dev_priv = dev->dev_private;
12307
12308 if (!IS_MOBILE(dev))
12309 return false;
12310
12311 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12312 return false;
12313
e3589908 12314 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12315 return false;
12316
12317 return true;
12318}
12319
84b4e042
JB
12320static bool intel_crt_present(struct drm_device *dev)
12321{
12322 struct drm_i915_private *dev_priv = dev->dev_private;
12323
884497ed
DL
12324 if (INTEL_INFO(dev)->gen >= 9)
12325 return false;
12326
cf404ce4 12327 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12328 return false;
12329
12330 if (IS_CHERRYVIEW(dev))
12331 return false;
12332
12333 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12334 return false;
12335
12336 return true;
12337}
12338
79e53945
JB
12339static void intel_setup_outputs(struct drm_device *dev)
12340{
725e30ad 12341 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12342 struct intel_encoder *encoder;
cb0953d7 12343 bool dpd_is_edp = false;
79e53945 12344
c9093354 12345 intel_lvds_init(dev);
79e53945 12346
84b4e042 12347 if (intel_crt_present(dev))
79935fca 12348 intel_crt_init(dev);
cb0953d7 12349
affa9354 12350 if (HAS_DDI(dev)) {
0e72a5b5
ED
12351 int found;
12352
12353 /* Haswell uses DDI functions to detect digital outputs */
12354 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12355 /* DDI A only supports eDP */
12356 if (found)
12357 intel_ddi_init(dev, PORT_A);
12358
12359 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12360 * register */
12361 found = I915_READ(SFUSE_STRAP);
12362
12363 if (found & SFUSE_STRAP_DDIB_DETECTED)
12364 intel_ddi_init(dev, PORT_B);
12365 if (found & SFUSE_STRAP_DDIC_DETECTED)
12366 intel_ddi_init(dev, PORT_C);
12367 if (found & SFUSE_STRAP_DDID_DETECTED)
12368 intel_ddi_init(dev, PORT_D);
12369 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12370 int found;
5d8a7752 12371 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12372
12373 if (has_edp_a(dev))
12374 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12375
dc0fa718 12376 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12377 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12378 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12379 if (!found)
e2debe91 12380 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12381 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12382 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12383 }
12384
dc0fa718 12385 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12386 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12387
dc0fa718 12388 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12389 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12390
5eb08b69 12391 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12392 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12393
270b3042 12394 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12395 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12396 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12397 /*
12398 * The DP_DETECTED bit is the latched state of the DDC
12399 * SDA pin at boot. However since eDP doesn't require DDC
12400 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12401 * eDP ports may have been muxed to an alternate function.
12402 * Thus we can't rely on the DP_DETECTED bit alone to detect
12403 * eDP ports. Consult the VBT as well as DP_DETECTED to
12404 * detect eDP ports.
12405 */
d2182a66
VS
12406 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12407 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
12408 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12409 PORT_B);
e17ac6db
VS
12410 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12411 intel_dp_is_edp(dev, PORT_B))
12412 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12413
d2182a66
VS
12414 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12415 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
12416 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12417 PORT_C);
e17ac6db
VS
12418 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12419 intel_dp_is_edp(dev, PORT_C))
12420 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12421
9418c1f1 12422 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12423 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12424 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12425 PORT_D);
e17ac6db
VS
12426 /* eDP not supported on port D, so don't check VBT */
12427 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12428 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12429 }
12430
3cfca973 12431 intel_dsi_init(dev);
103a196f 12432 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12433 bool found = false;
7d57382e 12434
e2debe91 12435 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12436 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12437 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12438 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12439 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12440 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12441 }
27185ae1 12442
e7281eab 12443 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12444 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12445 }
13520b05
KH
12446
12447 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12448
e2debe91 12449 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12450 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12451 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12452 }
27185ae1 12453
e2debe91 12454 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12455
b01f2c3a
JB
12456 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12457 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12458 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12459 }
e7281eab 12460 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12461 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12462 }
27185ae1 12463
b01f2c3a 12464 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12465 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12466 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12467 } else if (IS_GEN2(dev))
79e53945
JB
12468 intel_dvo_init(dev);
12469
103a196f 12470 if (SUPPORTS_TV(dev))
79e53945
JB
12471 intel_tv_init(dev);
12472
0bc12bcb 12473 intel_psr_init(dev);
7c8f8a70 12474
b2784e15 12475 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12476 encoder->base.possible_crtcs = encoder->crtc_mask;
12477 encoder->base.possible_clones =
66a9278e 12478 intel_encoder_clones(encoder);
79e53945 12479 }
47356eb6 12480
dde86e2d 12481 intel_init_pch_refclk(dev);
270b3042
DV
12482
12483 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12484}
12485
12486static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12487{
60a5ca01 12488 struct drm_device *dev = fb->dev;
79e53945 12489 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12490
ef2d633e 12491 drm_framebuffer_cleanup(fb);
60a5ca01 12492 mutex_lock(&dev->struct_mutex);
ef2d633e 12493 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12494 drm_gem_object_unreference(&intel_fb->obj->base);
12495 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12496 kfree(intel_fb);
12497}
12498
12499static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12500 struct drm_file *file,
79e53945
JB
12501 unsigned int *handle)
12502{
12503 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12504 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12505
05394f39 12506 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12507}
12508
12509static const struct drm_framebuffer_funcs intel_fb_funcs = {
12510 .destroy = intel_user_framebuffer_destroy,
12511 .create_handle = intel_user_framebuffer_create_handle,
12512};
12513
b5ea642a
DV
12514static int intel_framebuffer_init(struct drm_device *dev,
12515 struct intel_framebuffer *intel_fb,
12516 struct drm_mode_fb_cmd2 *mode_cmd,
12517 struct drm_i915_gem_object *obj)
79e53945 12518{
a57ce0b2 12519 int aligned_height;
a35cdaa0 12520 int pitch_limit;
79e53945
JB
12521 int ret;
12522
dd4916c5
DV
12523 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12524
c16ed4be
CW
12525 if (obj->tiling_mode == I915_TILING_Y) {
12526 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12527 return -EINVAL;
c16ed4be 12528 }
57cd6508 12529
c16ed4be
CW
12530 if (mode_cmd->pitches[0] & 63) {
12531 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12532 mode_cmd->pitches[0]);
57cd6508 12533 return -EINVAL;
c16ed4be 12534 }
57cd6508 12535
a35cdaa0
CW
12536 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12537 pitch_limit = 32*1024;
12538 } else if (INTEL_INFO(dev)->gen >= 4) {
12539 if (obj->tiling_mode)
12540 pitch_limit = 16*1024;
12541 else
12542 pitch_limit = 32*1024;
12543 } else if (INTEL_INFO(dev)->gen >= 3) {
12544 if (obj->tiling_mode)
12545 pitch_limit = 8*1024;
12546 else
12547 pitch_limit = 16*1024;
12548 } else
12549 /* XXX DSPC is limited to 4k tiled */
12550 pitch_limit = 8*1024;
12551
12552 if (mode_cmd->pitches[0] > pitch_limit) {
12553 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12554 obj->tiling_mode ? "tiled" : "linear",
12555 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12556 return -EINVAL;
c16ed4be 12557 }
5d7bd705
VS
12558
12559 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12560 mode_cmd->pitches[0] != obj->stride) {
12561 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12562 mode_cmd->pitches[0], obj->stride);
5d7bd705 12563 return -EINVAL;
c16ed4be 12564 }
5d7bd705 12565
57779d06 12566 /* Reject formats not supported by any plane early. */
308e5bcb 12567 switch (mode_cmd->pixel_format) {
57779d06 12568 case DRM_FORMAT_C8:
04b3924d
VS
12569 case DRM_FORMAT_RGB565:
12570 case DRM_FORMAT_XRGB8888:
12571 case DRM_FORMAT_ARGB8888:
57779d06
VS
12572 break;
12573 case DRM_FORMAT_XRGB1555:
12574 case DRM_FORMAT_ARGB1555:
c16ed4be 12575 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12576 DRM_DEBUG("unsupported pixel format: %s\n",
12577 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12578 return -EINVAL;
c16ed4be 12579 }
57779d06
VS
12580 break;
12581 case DRM_FORMAT_XBGR8888:
12582 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12583 case DRM_FORMAT_XRGB2101010:
12584 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12585 case DRM_FORMAT_XBGR2101010:
12586 case DRM_FORMAT_ABGR2101010:
c16ed4be 12587 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12588 DRM_DEBUG("unsupported pixel format: %s\n",
12589 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12590 return -EINVAL;
c16ed4be 12591 }
b5626747 12592 break;
04b3924d
VS
12593 case DRM_FORMAT_YUYV:
12594 case DRM_FORMAT_UYVY:
12595 case DRM_FORMAT_YVYU:
12596 case DRM_FORMAT_VYUY:
c16ed4be 12597 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12598 DRM_DEBUG("unsupported pixel format: %s\n",
12599 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12600 return -EINVAL;
c16ed4be 12601 }
57cd6508
CW
12602 break;
12603 default:
4ee62c76
VS
12604 DRM_DEBUG("unsupported pixel format: %s\n",
12605 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12606 return -EINVAL;
12607 }
12608
90f9a336
VS
12609 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12610 if (mode_cmd->offsets[0] != 0)
12611 return -EINVAL;
12612
a57ce0b2
JB
12613 aligned_height = intel_align_height(dev, mode_cmd->height,
12614 obj->tiling_mode);
53155c0a
DV
12615 /* FIXME drm helper for size checks (especially planar formats)? */
12616 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12617 return -EINVAL;
12618
c7d73f6a
DV
12619 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12620 intel_fb->obj = obj;
80075d49 12621 intel_fb->obj->framebuffer_references++;
c7d73f6a 12622
79e53945
JB
12623 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12624 if (ret) {
12625 DRM_ERROR("framebuffer init failed %d\n", ret);
12626 return ret;
12627 }
12628
79e53945
JB
12629 return 0;
12630}
12631
79e53945
JB
12632static struct drm_framebuffer *
12633intel_user_framebuffer_create(struct drm_device *dev,
12634 struct drm_file *filp,
308e5bcb 12635 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12636{
05394f39 12637 struct drm_i915_gem_object *obj;
79e53945 12638
308e5bcb
JB
12639 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12640 mode_cmd->handles[0]));
c8725226 12641 if (&obj->base == NULL)
cce13ff7 12642 return ERR_PTR(-ENOENT);
79e53945 12643
d2dff872 12644 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12645}
12646
4520f53a 12647#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12648static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12649{
12650}
12651#endif
12652
79e53945 12653static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12654 .fb_create = intel_user_framebuffer_create,
0632fef6 12655 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12656};
12657
e70236a8
JB
12658/* Set up chip specific display functions */
12659static void intel_init_display(struct drm_device *dev)
12660{
12661 struct drm_i915_private *dev_priv = dev->dev_private;
12662
ee9300bb
DV
12663 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12664 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12665 else if (IS_CHERRYVIEW(dev))
12666 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12667 else if (IS_VALLEYVIEW(dev))
12668 dev_priv->display.find_dpll = vlv_find_best_dpll;
12669 else if (IS_PINEVIEW(dev))
12670 dev_priv->display.find_dpll = pnv_find_best_dpll;
12671 else
12672 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12673
affa9354 12674 if (HAS_DDI(dev)) {
0e8ffe1b 12675 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12676 dev_priv->display.get_plane_config = ironlake_get_plane_config;
797d0259
ACO
12677 dev_priv->display.crtc_compute_clock =
12678 haswell_crtc_compute_clock;
4f771f10
PZ
12679 dev_priv->display.crtc_enable = haswell_crtc_enable;
12680 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12681 dev_priv->display.off = ironlake_crtc_off;
70d21f0e
DL
12682 if (INTEL_INFO(dev)->gen >= 9)
12683 dev_priv->display.update_primary_plane =
12684 skylake_update_primary_plane;
12685 else
12686 dev_priv->display.update_primary_plane =
12687 ironlake_update_primary_plane;
09b4ddf9 12688 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12689 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12690 dev_priv->display.get_plane_config = ironlake_get_plane_config;
3fb37703
ACO
12691 dev_priv->display.crtc_compute_clock =
12692 ironlake_crtc_compute_clock;
76e5a89c
DV
12693 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12694 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12695 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12696 dev_priv->display.update_primary_plane =
12697 ironlake_update_primary_plane;
89b667f8
JB
12698 } else if (IS_VALLEYVIEW(dev)) {
12699 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12700 dev_priv->display.get_plane_config = i9xx_get_plane_config;
d6dfee7a 12701 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
12702 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12703 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12704 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12705 dev_priv->display.update_primary_plane =
12706 i9xx_update_primary_plane;
f564048e 12707 } else {
0e8ffe1b 12708 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12709 dev_priv->display.get_plane_config = i9xx_get_plane_config;
d6dfee7a 12710 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
12711 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12712 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12713 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12714 dev_priv->display.update_primary_plane =
12715 i9xx_update_primary_plane;
f564048e 12716 }
e70236a8 12717
e70236a8 12718 /* Returns the core display clock speed */
25eb05fc
JB
12719 if (IS_VALLEYVIEW(dev))
12720 dev_priv->display.get_display_clock_speed =
12721 valleyview_get_display_clock_speed;
12722 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12723 dev_priv->display.get_display_clock_speed =
12724 i945_get_display_clock_speed;
12725 else if (IS_I915G(dev))
12726 dev_priv->display.get_display_clock_speed =
12727 i915_get_display_clock_speed;
257a7ffc 12728 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12729 dev_priv->display.get_display_clock_speed =
12730 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12731 else if (IS_PINEVIEW(dev))
12732 dev_priv->display.get_display_clock_speed =
12733 pnv_get_display_clock_speed;
e70236a8
JB
12734 else if (IS_I915GM(dev))
12735 dev_priv->display.get_display_clock_speed =
12736 i915gm_get_display_clock_speed;
12737 else if (IS_I865G(dev))
12738 dev_priv->display.get_display_clock_speed =
12739 i865_get_display_clock_speed;
f0f8a9ce 12740 else if (IS_I85X(dev))
e70236a8
JB
12741 dev_priv->display.get_display_clock_speed =
12742 i855_get_display_clock_speed;
12743 else /* 852, 830 */
12744 dev_priv->display.get_display_clock_speed =
12745 i830_get_display_clock_speed;
12746
7c10a2b5 12747 if (IS_GEN5(dev)) {
3bb11b53 12748 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
12749 } else if (IS_GEN6(dev)) {
12750 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
12751 } else if (IS_IVYBRIDGE(dev)) {
12752 /* FIXME: detect B0+ stepping and use auto training */
12753 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
3bb11b53
SJ
12754 dev_priv->display.modeset_global_resources =
12755 ivb_modeset_global_resources;
059b2fe9 12756 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 12757 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
12758 } else if (IS_VALLEYVIEW(dev)) {
12759 dev_priv->display.modeset_global_resources =
12760 valleyview_modeset_global_resources;
e70236a8 12761 }
8c9f3aaf
JB
12762
12763 /* Default just returns -ENODEV to indicate unsupported */
12764 dev_priv->display.queue_flip = intel_default_queue_flip;
12765
12766 switch (INTEL_INFO(dev)->gen) {
12767 case 2:
12768 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12769 break;
12770
12771 case 3:
12772 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12773 break;
12774
12775 case 4:
12776 case 5:
12777 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12778 break;
12779
12780 case 6:
12781 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12782 break;
7c9017e5 12783 case 7:
4e0bbc31 12784 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12785 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12786 break;
830c81db
DL
12787 case 9:
12788 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12789 break;
8c9f3aaf 12790 }
7bd688cd
JN
12791
12792 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12793
12794 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12795}
12796
b690e96c
JB
12797/*
12798 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12799 * resume, or other times. This quirk makes sure that's the case for
12800 * affected systems.
12801 */
0206e353 12802static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12803{
12804 struct drm_i915_private *dev_priv = dev->dev_private;
12805
12806 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12807 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12808}
12809
b6b5d049
VS
12810static void quirk_pipeb_force(struct drm_device *dev)
12811{
12812 struct drm_i915_private *dev_priv = dev->dev_private;
12813
12814 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12815 DRM_INFO("applying pipe b force quirk\n");
12816}
12817
435793df
KP
12818/*
12819 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12820 */
12821static void quirk_ssc_force_disable(struct drm_device *dev)
12822{
12823 struct drm_i915_private *dev_priv = dev->dev_private;
12824 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12825 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12826}
12827
4dca20ef 12828/*
5a15ab5b
CE
12829 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12830 * brightness value
4dca20ef
CE
12831 */
12832static void quirk_invert_brightness(struct drm_device *dev)
12833{
12834 struct drm_i915_private *dev_priv = dev->dev_private;
12835 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12836 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12837}
12838
9c72cc6f
SD
12839/* Some VBT's incorrectly indicate no backlight is present */
12840static void quirk_backlight_present(struct drm_device *dev)
12841{
12842 struct drm_i915_private *dev_priv = dev->dev_private;
12843 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12844 DRM_INFO("applying backlight present quirk\n");
12845}
12846
b690e96c
JB
12847struct intel_quirk {
12848 int device;
12849 int subsystem_vendor;
12850 int subsystem_device;
12851 void (*hook)(struct drm_device *dev);
12852};
12853
5f85f176
EE
12854/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12855struct intel_dmi_quirk {
12856 void (*hook)(struct drm_device *dev);
12857 const struct dmi_system_id (*dmi_id_list)[];
12858};
12859
12860static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12861{
12862 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12863 return 1;
12864}
12865
12866static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12867 {
12868 .dmi_id_list = &(const struct dmi_system_id[]) {
12869 {
12870 .callback = intel_dmi_reverse_brightness,
12871 .ident = "NCR Corporation",
12872 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12873 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12874 },
12875 },
12876 { } /* terminating entry */
12877 },
12878 .hook = quirk_invert_brightness,
12879 },
12880};
12881
c43b5634 12882static struct intel_quirk intel_quirks[] = {
b690e96c 12883 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12884 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12885
b690e96c
JB
12886 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12887 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12888
b690e96c
JB
12889 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12890 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12891
5f080c0f
VS
12892 /* 830 needs to leave pipe A & dpll A up */
12893 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12894
b6b5d049
VS
12895 /* 830 needs to leave pipe B & dpll B up */
12896 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12897
435793df
KP
12898 /* Lenovo U160 cannot use SSC on LVDS */
12899 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12900
12901 /* Sony Vaio Y cannot use SSC on LVDS */
12902 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12903
be505f64
AH
12904 /* Acer Aspire 5734Z must invert backlight brightness */
12905 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12906
12907 /* Acer/eMachines G725 */
12908 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12909
12910 /* Acer/eMachines e725 */
12911 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12912
12913 /* Acer/Packard Bell NCL20 */
12914 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12915
12916 /* Acer Aspire 4736Z */
12917 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12918
12919 /* Acer Aspire 5336 */
12920 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12921
12922 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12923 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 12924
dfb3d47b
SD
12925 /* Acer C720 Chromebook (Core i3 4005U) */
12926 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12927
b2a9601c 12928 /* Apple Macbook 2,1 (Core 2 T7400) */
12929 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
12930
d4967d8c
SD
12931 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12932 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12933
12934 /* HP Chromebook 14 (Celeron 2955U) */
12935 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12936};
12937
12938static void intel_init_quirks(struct drm_device *dev)
12939{
12940 struct pci_dev *d = dev->pdev;
12941 int i;
12942
12943 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12944 struct intel_quirk *q = &intel_quirks[i];
12945
12946 if (d->device == q->device &&
12947 (d->subsystem_vendor == q->subsystem_vendor ||
12948 q->subsystem_vendor == PCI_ANY_ID) &&
12949 (d->subsystem_device == q->subsystem_device ||
12950 q->subsystem_device == PCI_ANY_ID))
12951 q->hook(dev);
12952 }
5f85f176
EE
12953 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12954 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12955 intel_dmi_quirks[i].hook(dev);
12956 }
b690e96c
JB
12957}
12958
9cce37f4
JB
12959/* Disable the VGA plane that we never use */
12960static void i915_disable_vga(struct drm_device *dev)
12961{
12962 struct drm_i915_private *dev_priv = dev->dev_private;
12963 u8 sr1;
766aa1c4 12964 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12965
2b37c616 12966 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12967 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12968 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12969 sr1 = inb(VGA_SR_DATA);
12970 outb(sr1 | 1<<5, VGA_SR_DATA);
12971 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12972 udelay(300);
12973
01f5a626 12974 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
12975 POSTING_READ(vga_reg);
12976}
12977
f817586c
DV
12978void intel_modeset_init_hw(struct drm_device *dev)
12979{
a8f78b58
ED
12980 intel_prepare_ddi(dev);
12981
f8bf63fd
VS
12982 if (IS_VALLEYVIEW(dev))
12983 vlv_update_cdclk(dev);
12984
f817586c
DV
12985 intel_init_clock_gating(dev);
12986
8090c6b9 12987 intel_enable_gt_powersave(dev);
f817586c
DV
12988}
12989
79e53945
JB
12990void intel_modeset_init(struct drm_device *dev)
12991{
652c393a 12992 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12993 int sprite, ret;
8cc87b75 12994 enum pipe pipe;
46f297fb 12995 struct intel_crtc *crtc;
79e53945
JB
12996
12997 drm_mode_config_init(dev);
12998
12999 dev->mode_config.min_width = 0;
13000 dev->mode_config.min_height = 0;
13001
019d96cb
DA
13002 dev->mode_config.preferred_depth = 24;
13003 dev->mode_config.prefer_shadow = 1;
13004
e6ecefaa 13005 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13006
b690e96c
JB
13007 intel_init_quirks(dev);
13008
1fa61106
ED
13009 intel_init_pm(dev);
13010
e3c74757
BW
13011 if (INTEL_INFO(dev)->num_pipes == 0)
13012 return;
13013
e70236a8 13014 intel_init_display(dev);
7c10a2b5 13015 intel_init_audio(dev);
e70236a8 13016
a6c45cf0
CW
13017 if (IS_GEN2(dev)) {
13018 dev->mode_config.max_width = 2048;
13019 dev->mode_config.max_height = 2048;
13020 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13021 dev->mode_config.max_width = 4096;
13022 dev->mode_config.max_height = 4096;
79e53945 13023 } else {
a6c45cf0
CW
13024 dev->mode_config.max_width = 8192;
13025 dev->mode_config.max_height = 8192;
79e53945 13026 }
068be561 13027
dc41c154
VS
13028 if (IS_845G(dev) || IS_I865G(dev)) {
13029 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13030 dev->mode_config.cursor_height = 1023;
13031 } else if (IS_GEN2(dev)) {
068be561
DL
13032 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13033 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13034 } else {
13035 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13036 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13037 }
13038
5d4545ae 13039 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13040
28c97730 13041 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13042 INTEL_INFO(dev)->num_pipes,
13043 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13044
055e393f 13045 for_each_pipe(dev_priv, pipe) {
8cc87b75 13046 intel_crtc_init(dev, pipe);
1fe47785
DL
13047 for_each_sprite(pipe, sprite) {
13048 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13049 if (ret)
06da8da2 13050 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13051 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13052 }
79e53945
JB
13053 }
13054
f42bb70d
JB
13055 intel_init_dpio(dev);
13056
e72f9fbf 13057 intel_shared_dpll_init(dev);
ee7b9f93 13058
9cce37f4
JB
13059 /* Just disable it once at startup */
13060 i915_disable_vga(dev);
79e53945 13061 intel_setup_outputs(dev);
11be49eb
CW
13062
13063 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 13064 intel_fbc_disable(dev);
fa9fa083 13065
6e9f798d 13066 drm_modeset_lock_all(dev);
fa9fa083 13067 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13068 drm_modeset_unlock_all(dev);
46f297fb 13069
d3fcc808 13070 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13071 if (!crtc->active)
13072 continue;
13073
46f297fb 13074 /*
46f297fb
JB
13075 * Note that reserving the BIOS fb up front prevents us
13076 * from stuffing other stolen allocations like the ring
13077 * on top. This prevents some ugliness at boot time, and
13078 * can even allow for smooth boot transitions if the BIOS
13079 * fb is large enough for the active pipe configuration.
13080 */
13081 if (dev_priv->display.get_plane_config) {
13082 dev_priv->display.get_plane_config(crtc,
13083 &crtc->plane_config);
13084 /*
13085 * If the fb is shared between multiple heads, we'll
13086 * just get the first one.
13087 */
484b41dd 13088 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13089 }
46f297fb 13090 }
2c7111db
CW
13091}
13092
7fad798e
DV
13093static void intel_enable_pipe_a(struct drm_device *dev)
13094{
13095 struct intel_connector *connector;
13096 struct drm_connector *crt = NULL;
13097 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13098 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13099
13100 /* We can't just switch on the pipe A, we need to set things up with a
13101 * proper mode and output configuration. As a gross hack, enable pipe A
13102 * by enabling the load detect pipe once. */
13103 list_for_each_entry(connector,
13104 &dev->mode_config.connector_list,
13105 base.head) {
13106 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13107 crt = &connector->base;
13108 break;
13109 }
13110 }
13111
13112 if (!crt)
13113 return;
13114
208bf9fd
VS
13115 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13116 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13117}
13118
fa555837
DV
13119static bool
13120intel_check_plane_mapping(struct intel_crtc *crtc)
13121{
7eb552ae
BW
13122 struct drm_device *dev = crtc->base.dev;
13123 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13124 u32 reg, val;
13125
7eb552ae 13126 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13127 return true;
13128
13129 reg = DSPCNTR(!crtc->plane);
13130 val = I915_READ(reg);
13131
13132 if ((val & DISPLAY_PLANE_ENABLE) &&
13133 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13134 return false;
13135
13136 return true;
13137}
13138
24929352
DV
13139static void intel_sanitize_crtc(struct intel_crtc *crtc)
13140{
13141 struct drm_device *dev = crtc->base.dev;
13142 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13143 u32 reg;
24929352 13144
24929352 13145 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 13146 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
13147 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13148
d3eaf884 13149 /* restore vblank interrupts to correct state */
d297e103
VS
13150 if (crtc->active) {
13151 update_scanline_offset(crtc);
d3eaf884 13152 drm_vblank_on(dev, crtc->pipe);
d297e103 13153 } else
d3eaf884
VS
13154 drm_vblank_off(dev, crtc->pipe);
13155
24929352 13156 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13157 * disable the crtc (and hence change the state) if it is wrong. Note
13158 * that gen4+ has a fixed plane -> pipe mapping. */
13159 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13160 struct intel_connector *connector;
13161 bool plane;
13162
24929352
DV
13163 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13164 crtc->base.base.id);
13165
13166 /* Pipe has the wrong plane attached and the plane is active.
13167 * Temporarily change the plane mapping and disable everything
13168 * ... */
13169 plane = crtc->plane;
13170 crtc->plane = !plane;
9c8958bc 13171 crtc->primary_enabled = true;
24929352
DV
13172 dev_priv->display.crtc_disable(&crtc->base);
13173 crtc->plane = plane;
13174
13175 /* ... and break all links. */
13176 list_for_each_entry(connector, &dev->mode_config.connector_list,
13177 base.head) {
13178 if (connector->encoder->base.crtc != &crtc->base)
13179 continue;
13180
7f1950fb
EE
13181 connector->base.dpms = DRM_MODE_DPMS_OFF;
13182 connector->base.encoder = NULL;
24929352 13183 }
7f1950fb
EE
13184 /* multiple connectors may have the same encoder:
13185 * handle them and break crtc link separately */
13186 list_for_each_entry(connector, &dev->mode_config.connector_list,
13187 base.head)
13188 if (connector->encoder->base.crtc == &crtc->base) {
13189 connector->encoder->base.crtc = NULL;
13190 connector->encoder->connectors_active = false;
13191 }
24929352
DV
13192
13193 WARN_ON(crtc->active);
13194 crtc->base.enabled = false;
13195 }
24929352 13196
7fad798e
DV
13197 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13198 crtc->pipe == PIPE_A && !crtc->active) {
13199 /* BIOS forgot to enable pipe A, this mostly happens after
13200 * resume. Force-enable the pipe to fix this, the update_dpms
13201 * call below we restore the pipe to the right state, but leave
13202 * the required bits on. */
13203 intel_enable_pipe_a(dev);
13204 }
13205
24929352
DV
13206 /* Adjust the state of the output pipe according to whether we
13207 * have active connectors/encoders. */
13208 intel_crtc_update_dpms(&crtc->base);
13209
13210 if (crtc->active != crtc->base.enabled) {
13211 struct intel_encoder *encoder;
13212
13213 /* This can happen either due to bugs in the get_hw_state
13214 * functions or because the pipe is force-enabled due to the
13215 * pipe A quirk. */
13216 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13217 crtc->base.base.id,
13218 crtc->base.enabled ? "enabled" : "disabled",
13219 crtc->active ? "enabled" : "disabled");
13220
13221 crtc->base.enabled = crtc->active;
13222
13223 /* Because we only establish the connector -> encoder ->
13224 * crtc links if something is active, this means the
13225 * crtc is now deactivated. Break the links. connector
13226 * -> encoder links are only establish when things are
13227 * actually up, hence no need to break them. */
13228 WARN_ON(crtc->active);
13229
13230 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13231 WARN_ON(encoder->connectors_active);
13232 encoder->base.crtc = NULL;
13233 }
13234 }
c5ab3bc0 13235
a3ed6aad 13236 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13237 /*
13238 * We start out with underrun reporting disabled to avoid races.
13239 * For correct bookkeeping mark this on active crtcs.
13240 *
c5ab3bc0
DV
13241 * Also on gmch platforms we dont have any hardware bits to
13242 * disable the underrun reporting. Which means we need to start
13243 * out with underrun reporting disabled also on inactive pipes,
13244 * since otherwise we'll complain about the garbage we read when
13245 * e.g. coming up after runtime pm.
13246 *
4cc31489
DV
13247 * No protection against concurrent access is required - at
13248 * worst a fifo underrun happens which also sets this to false.
13249 */
13250 crtc->cpu_fifo_underrun_disabled = true;
13251 crtc->pch_fifo_underrun_disabled = true;
13252 }
24929352
DV
13253}
13254
13255static void intel_sanitize_encoder(struct intel_encoder *encoder)
13256{
13257 struct intel_connector *connector;
13258 struct drm_device *dev = encoder->base.dev;
13259
13260 /* We need to check both for a crtc link (meaning that the
13261 * encoder is active and trying to read from a pipe) and the
13262 * pipe itself being active. */
13263 bool has_active_crtc = encoder->base.crtc &&
13264 to_intel_crtc(encoder->base.crtc)->active;
13265
13266 if (encoder->connectors_active && !has_active_crtc) {
13267 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13268 encoder->base.base.id,
8e329a03 13269 encoder->base.name);
24929352
DV
13270
13271 /* Connector is active, but has no active pipe. This is
13272 * fallout from our resume register restoring. Disable
13273 * the encoder manually again. */
13274 if (encoder->base.crtc) {
13275 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13276 encoder->base.base.id,
8e329a03 13277 encoder->base.name);
24929352 13278 encoder->disable(encoder);
a62d1497
VS
13279 if (encoder->post_disable)
13280 encoder->post_disable(encoder);
24929352 13281 }
7f1950fb
EE
13282 encoder->base.crtc = NULL;
13283 encoder->connectors_active = false;
24929352
DV
13284
13285 /* Inconsistent output/port/pipe state happens presumably due to
13286 * a bug in one of the get_hw_state functions. Or someplace else
13287 * in our code, like the register restore mess on resume. Clamp
13288 * things to off as a safer default. */
13289 list_for_each_entry(connector,
13290 &dev->mode_config.connector_list,
13291 base.head) {
13292 if (connector->encoder != encoder)
13293 continue;
7f1950fb
EE
13294 connector->base.dpms = DRM_MODE_DPMS_OFF;
13295 connector->base.encoder = NULL;
24929352
DV
13296 }
13297 }
13298 /* Enabled encoders without active connectors will be fixed in
13299 * the crtc fixup. */
13300}
13301
04098753 13302void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13303{
13304 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13305 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13306
04098753
ID
13307 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13308 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13309 i915_disable_vga(dev);
13310 }
13311}
13312
13313void i915_redisable_vga(struct drm_device *dev)
13314{
13315 struct drm_i915_private *dev_priv = dev->dev_private;
13316
8dc8a27c
PZ
13317 /* This function can be called both from intel_modeset_setup_hw_state or
13318 * at a very early point in our resume sequence, where the power well
13319 * structures are not yet restored. Since this function is at a very
13320 * paranoid "someone might have enabled VGA while we were not looking"
13321 * level, just check if the power well is enabled instead of trying to
13322 * follow the "don't touch the power well if we don't need it" policy
13323 * the rest of the driver uses. */
f458ebbc 13324 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13325 return;
13326
04098753 13327 i915_redisable_vga_power_on(dev);
0fde901f
KM
13328}
13329
98ec7739
VS
13330static bool primary_get_hw_state(struct intel_crtc *crtc)
13331{
13332 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13333
13334 if (!crtc->active)
13335 return false;
13336
13337 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13338}
13339
30e984df 13340static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13341{
13342 struct drm_i915_private *dev_priv = dev->dev_private;
13343 enum pipe pipe;
24929352
DV
13344 struct intel_crtc *crtc;
13345 struct intel_encoder *encoder;
13346 struct intel_connector *connector;
5358901f 13347 int i;
24929352 13348
d3fcc808 13349 for_each_intel_crtc(dev, crtc) {
6e3c9717 13350 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 13351
6e3c9717 13352 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 13353
0e8ffe1b 13354 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 13355 crtc->config);
24929352
DV
13356
13357 crtc->base.enabled = crtc->active;
98ec7739 13358 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13359
13360 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13361 crtc->base.base.id,
13362 crtc->active ? "enabled" : "disabled");
13363 }
13364
5358901f
DV
13365 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13366 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13367
3e369b76
ACO
13368 pll->on = pll->get_hw_state(dev_priv, pll,
13369 &pll->config.hw_state);
5358901f 13370 pll->active = 0;
3e369b76 13371 pll->config.crtc_mask = 0;
d3fcc808 13372 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 13373 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 13374 pll->active++;
3e369b76 13375 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 13376 }
5358901f 13377 }
5358901f 13378
1e6f2ddc 13379 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 13380 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 13381
3e369b76 13382 if (pll->config.crtc_mask)
bd2bb1b9 13383 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13384 }
13385
b2784e15 13386 for_each_intel_encoder(dev, encoder) {
24929352
DV
13387 pipe = 0;
13388
13389 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13390 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13391 encoder->base.crtc = &crtc->base;
6e3c9717 13392 encoder->get_config(encoder, crtc->config);
24929352
DV
13393 } else {
13394 encoder->base.crtc = NULL;
13395 }
13396
13397 encoder->connectors_active = false;
6f2bcceb 13398 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13399 encoder->base.base.id,
8e329a03 13400 encoder->base.name,
24929352 13401 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13402 pipe_name(pipe));
24929352
DV
13403 }
13404
13405 list_for_each_entry(connector, &dev->mode_config.connector_list,
13406 base.head) {
13407 if (connector->get_hw_state(connector)) {
13408 connector->base.dpms = DRM_MODE_DPMS_ON;
13409 connector->encoder->connectors_active = true;
13410 connector->base.encoder = &connector->encoder->base;
13411 } else {
13412 connector->base.dpms = DRM_MODE_DPMS_OFF;
13413 connector->base.encoder = NULL;
13414 }
13415 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13416 connector->base.base.id,
c23cc417 13417 connector->base.name,
24929352
DV
13418 connector->base.encoder ? "enabled" : "disabled");
13419 }
30e984df
DV
13420}
13421
13422/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13423 * and i915 state tracking structures. */
13424void intel_modeset_setup_hw_state(struct drm_device *dev,
13425 bool force_restore)
13426{
13427 struct drm_i915_private *dev_priv = dev->dev_private;
13428 enum pipe pipe;
30e984df
DV
13429 struct intel_crtc *crtc;
13430 struct intel_encoder *encoder;
35c95375 13431 int i;
30e984df
DV
13432
13433 intel_modeset_readout_hw_state(dev);
24929352 13434
babea61d
JB
13435 /*
13436 * Now that we have the config, copy it to each CRTC struct
13437 * Note that this could go away if we move to using crtc_config
13438 * checking everywhere.
13439 */
d3fcc808 13440 for_each_intel_crtc(dev, crtc) {
d330a953 13441 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
13442 intel_mode_from_pipe_config(&crtc->base.mode,
13443 crtc->config);
babea61d
JB
13444 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13445 crtc->base.base.id);
13446 drm_mode_debug_printmodeline(&crtc->base.mode);
13447 }
13448 }
13449
24929352 13450 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13451 for_each_intel_encoder(dev, encoder) {
24929352
DV
13452 intel_sanitize_encoder(encoder);
13453 }
13454
055e393f 13455 for_each_pipe(dev_priv, pipe) {
24929352
DV
13456 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13457 intel_sanitize_crtc(crtc);
6e3c9717
ACO
13458 intel_dump_pipe_config(crtc, crtc->config,
13459 "[setup_hw_state]");
24929352 13460 }
9a935856 13461
35c95375
DV
13462 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13463 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13464
13465 if (!pll->on || pll->active)
13466 continue;
13467
13468 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13469
13470 pll->disable(dev_priv, pll);
13471 pll->on = false;
13472 }
13473
3078999f
PB
13474 if (IS_GEN9(dev))
13475 skl_wm_get_hw_state(dev);
13476 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13477 ilk_wm_get_hw_state(dev);
13478
45e2b5f6 13479 if (force_restore) {
7d0bc1ea
VS
13480 i915_redisable_vga(dev);
13481
f30da187
DV
13482 /*
13483 * We need to use raw interfaces for restoring state to avoid
13484 * checking (bogus) intermediate states.
13485 */
055e393f 13486 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13487 struct drm_crtc *crtc =
13488 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 13489
7f27126e
JB
13490 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13491 crtc->primary->fb);
45e2b5f6
DV
13492 }
13493 } else {
13494 intel_modeset_update_staged_output_state(dev);
13495 }
8af6cf88
DV
13496
13497 intel_modeset_check_state(dev);
2c7111db
CW
13498}
13499
13500void intel_modeset_gem_init(struct drm_device *dev)
13501{
92122789 13502 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 13503 struct drm_crtc *c;
2ff8fde1 13504 struct drm_i915_gem_object *obj;
484b41dd 13505
ae48434c
ID
13506 mutex_lock(&dev->struct_mutex);
13507 intel_init_gt_powersave(dev);
13508 mutex_unlock(&dev->struct_mutex);
13509
92122789
JB
13510 /*
13511 * There may be no VBT; and if the BIOS enabled SSC we can
13512 * just keep using it to avoid unnecessary flicker. Whereas if the
13513 * BIOS isn't using it, don't assume it will work even if the VBT
13514 * indicates as much.
13515 */
13516 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13517 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13518 DREF_SSC1_ENABLE);
13519
1833b134 13520 intel_modeset_init_hw(dev);
02e792fb
DV
13521
13522 intel_setup_overlay(dev);
484b41dd
JB
13523
13524 /*
13525 * Make sure any fbs we allocated at startup are properly
13526 * pinned & fenced. When we do the allocation it's too early
13527 * for this.
13528 */
13529 mutex_lock(&dev->struct_mutex);
70e1e0ec 13530 for_each_crtc(dev, c) {
2ff8fde1
MR
13531 obj = intel_fb_obj(c->primary->fb);
13532 if (obj == NULL)
484b41dd
JB
13533 continue;
13534
850c4cdc
TU
13535 if (intel_pin_and_fence_fb_obj(c->primary,
13536 c->primary->fb,
13537 NULL)) {
484b41dd
JB
13538 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13539 to_intel_crtc(c)->pipe);
66e514c1
DA
13540 drm_framebuffer_unreference(c->primary->fb);
13541 c->primary->fb = NULL;
484b41dd
JB
13542 }
13543 }
13544 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
13545
13546 intel_backlight_register(dev);
79e53945
JB
13547}
13548
4932e2c3
ID
13549void intel_connector_unregister(struct intel_connector *intel_connector)
13550{
13551 struct drm_connector *connector = &intel_connector->base;
13552
13553 intel_panel_destroy_backlight(connector);
34ea3d38 13554 drm_connector_unregister(connector);
4932e2c3
ID
13555}
13556
79e53945
JB
13557void intel_modeset_cleanup(struct drm_device *dev)
13558{
652c393a 13559 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13560 struct drm_connector *connector;
652c393a 13561
2eb5252e
ID
13562 intel_disable_gt_powersave(dev);
13563
0962c3c9
VS
13564 intel_backlight_unregister(dev);
13565
fd0c0642
DV
13566 /*
13567 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 13568 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
13569 * experience fancy races otherwise.
13570 */
2aeb7d3a 13571 intel_irq_uninstall(dev_priv);
eb21b92b 13572
fd0c0642
DV
13573 /*
13574 * Due to the hpd irq storm handling the hotplug work can re-arm the
13575 * poll handlers. Hence disable polling after hpd handling is shut down.
13576 */
f87ea761 13577 drm_kms_helper_poll_fini(dev);
fd0c0642 13578
652c393a
JB
13579 mutex_lock(&dev->struct_mutex);
13580
723bfd70
JB
13581 intel_unregister_dsm_handler();
13582
7ff0ebcc 13583 intel_fbc_disable(dev);
e70236a8 13584
930ebb46
DV
13585 ironlake_teardown_rc6(dev);
13586
69341a5e
KH
13587 mutex_unlock(&dev->struct_mutex);
13588
1630fe75
CW
13589 /* flush any delayed tasks or pending work */
13590 flush_scheduled_work();
13591
db31af1d
JN
13592 /* destroy the backlight and sysfs files before encoders/connectors */
13593 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13594 struct intel_connector *intel_connector;
13595
13596 intel_connector = to_intel_connector(connector);
13597 intel_connector->unregister(intel_connector);
db31af1d 13598 }
d9255d57 13599
79e53945 13600 drm_mode_config_cleanup(dev);
4d7bb011
DV
13601
13602 intel_cleanup_overlay(dev);
ae48434c
ID
13603
13604 mutex_lock(&dev->struct_mutex);
13605 intel_cleanup_gt_powersave(dev);
13606 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13607}
13608
f1c79df3
ZW
13609/*
13610 * Return which encoder is currently attached for connector.
13611 */
df0e9248 13612struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13613{
df0e9248
CW
13614 return &intel_attached_encoder(connector)->base;
13615}
f1c79df3 13616
df0e9248
CW
13617void intel_connector_attach_encoder(struct intel_connector *connector,
13618 struct intel_encoder *encoder)
13619{
13620 connector->encoder = encoder;
13621 drm_mode_connector_attach_encoder(&connector->base,
13622 &encoder->base);
79e53945 13623}
28d52043
DA
13624
13625/*
13626 * set vga decode state - true == enable VGA decode
13627 */
13628int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13629{
13630 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13631 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13632 u16 gmch_ctrl;
13633
75fa041d
CW
13634 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13635 DRM_ERROR("failed to read control word\n");
13636 return -EIO;
13637 }
13638
c0cc8a55
CW
13639 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13640 return 0;
13641
28d52043
DA
13642 if (state)
13643 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13644 else
13645 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13646
13647 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13648 DRM_ERROR("failed to write control word\n");
13649 return -EIO;
13650 }
13651
28d52043
DA
13652 return 0;
13653}
c4a1d9e4 13654
c4a1d9e4 13655struct intel_display_error_state {
ff57f1b0
PZ
13656
13657 u32 power_well_driver;
13658
63b66e5b
CW
13659 int num_transcoders;
13660
c4a1d9e4
CW
13661 struct intel_cursor_error_state {
13662 u32 control;
13663 u32 position;
13664 u32 base;
13665 u32 size;
52331309 13666 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13667
13668 struct intel_pipe_error_state {
ddf9c536 13669 bool power_domain_on;
c4a1d9e4 13670 u32 source;
f301b1e1 13671 u32 stat;
52331309 13672 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13673
13674 struct intel_plane_error_state {
13675 u32 control;
13676 u32 stride;
13677 u32 size;
13678 u32 pos;
13679 u32 addr;
13680 u32 surface;
13681 u32 tile_offset;
52331309 13682 } plane[I915_MAX_PIPES];
63b66e5b
CW
13683
13684 struct intel_transcoder_error_state {
ddf9c536 13685 bool power_domain_on;
63b66e5b
CW
13686 enum transcoder cpu_transcoder;
13687
13688 u32 conf;
13689
13690 u32 htotal;
13691 u32 hblank;
13692 u32 hsync;
13693 u32 vtotal;
13694 u32 vblank;
13695 u32 vsync;
13696 } transcoder[4];
c4a1d9e4
CW
13697};
13698
13699struct intel_display_error_state *
13700intel_display_capture_error_state(struct drm_device *dev)
13701{
fbee40df 13702 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13703 struct intel_display_error_state *error;
63b66e5b
CW
13704 int transcoders[] = {
13705 TRANSCODER_A,
13706 TRANSCODER_B,
13707 TRANSCODER_C,
13708 TRANSCODER_EDP,
13709 };
c4a1d9e4
CW
13710 int i;
13711
63b66e5b
CW
13712 if (INTEL_INFO(dev)->num_pipes == 0)
13713 return NULL;
13714
9d1cb914 13715 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13716 if (error == NULL)
13717 return NULL;
13718
190be112 13719 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13720 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13721
055e393f 13722 for_each_pipe(dev_priv, i) {
ddf9c536 13723 error->pipe[i].power_domain_on =
f458ebbc
DV
13724 __intel_display_power_is_enabled(dev_priv,
13725 POWER_DOMAIN_PIPE(i));
ddf9c536 13726 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13727 continue;
13728
5efb3e28
VS
13729 error->cursor[i].control = I915_READ(CURCNTR(i));
13730 error->cursor[i].position = I915_READ(CURPOS(i));
13731 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13732
13733 error->plane[i].control = I915_READ(DSPCNTR(i));
13734 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13735 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13736 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13737 error->plane[i].pos = I915_READ(DSPPOS(i));
13738 }
ca291363
PZ
13739 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13740 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13741 if (INTEL_INFO(dev)->gen >= 4) {
13742 error->plane[i].surface = I915_READ(DSPSURF(i));
13743 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13744 }
13745
c4a1d9e4 13746 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13747
3abfce77 13748 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13749 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13750 }
13751
13752 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13753 if (HAS_DDI(dev_priv->dev))
13754 error->num_transcoders++; /* Account for eDP. */
13755
13756 for (i = 0; i < error->num_transcoders; i++) {
13757 enum transcoder cpu_transcoder = transcoders[i];
13758
ddf9c536 13759 error->transcoder[i].power_domain_on =
f458ebbc 13760 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13761 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13762 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13763 continue;
13764
63b66e5b
CW
13765 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13766
13767 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13768 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13769 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13770 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13771 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13772 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13773 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13774 }
13775
13776 return error;
13777}
13778
edc3d884
MK
13779#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13780
c4a1d9e4 13781void
edc3d884 13782intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13783 struct drm_device *dev,
13784 struct intel_display_error_state *error)
13785{
055e393f 13786 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13787 int i;
13788
63b66e5b
CW
13789 if (!error)
13790 return;
13791
edc3d884 13792 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13793 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13794 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13795 error->power_well_driver);
055e393f 13796 for_each_pipe(dev_priv, i) {
edc3d884 13797 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13798 err_printf(m, " Power: %s\n",
13799 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13800 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13801 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13802
13803 err_printf(m, "Plane [%d]:\n", i);
13804 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13805 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13806 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13807 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13808 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13809 }
4b71a570 13810 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13811 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13812 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13813 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13814 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13815 }
13816
edc3d884
MK
13817 err_printf(m, "Cursor [%d]:\n", i);
13818 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13819 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13820 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13821 }
63b66e5b
CW
13822
13823 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13824 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13825 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13826 err_printf(m, " Power: %s\n",
13827 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13828 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13829 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13830 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13831 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13832 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13833 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13834 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13835 }
c4a1d9e4 13836}
e2fcdaa9
VS
13837
13838void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13839{
13840 struct intel_crtc *crtc;
13841
13842 for_each_intel_crtc(dev, crtc) {
13843 struct intel_unpin_work *work;
e2fcdaa9 13844
5e2d7afc 13845 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
13846
13847 work = crtc->unpin_work;
13848
13849 if (work && work->event &&
13850 work->event->base.file_priv == file) {
13851 kfree(work->event);
13852 work->event = NULL;
13853 }
13854
5e2d7afc 13855 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
13856 }
13857}
This page took 2.85849 seconds and 5 git commands to generate.