drm/i915: rewrite the LCPLL code
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
79e53945
JB
35#include "drmP.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
ab2c0672 40#include "drm_dp_helper.h"
79e53945 41#include "drm_crtc_helper.h"
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 47static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
49
50typedef struct {
0206e353
AJ
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
79e53945
JB
60} intel_clock_t;
61
62typedef struct {
0206e353 63 int min, max;
79e53945
JB
64} intel_range_t;
65
66typedef struct {
0206e353
AJ
67 int dot_limit;
68 int p2_slow, p2_fast;
79e53945
JB
69} intel_p2_t;
70
71#define INTEL_P2_NUM 2
d4906093
ML
72typedef struct intel_limit intel_limit_t;
73struct intel_limit {
0206e353
AJ
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 77 int, int, intel_clock_t *, intel_clock_t *);
d4906093 78};
79e53945 79
2377b741
JB
80/* FDI */
81#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
d4906093
ML
83static bool
84intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
d4906093
ML
87static bool
88intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
79e53945 91
a4fc5ed6
KP
92static bool
93intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
5eb08b69 96static bool
f2b115e6 97intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
a4fc5ed6 100
a0c4da24
JB
101static bool
102intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
105
021357ac
CW
106static inline u32 /* units of 100MHz */
107intel_fdi_link_freq(struct drm_device *dev)
108{
8b99e68c
CW
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
021357ac
CW
114}
115
e4b36699 116static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
d4906093 127 .find_pll = intel_find_best_PLL,
e4b36699
KP
128};
129
130static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
d4906093 141 .find_pll = intel_find_best_PLL,
e4b36699 142};
273e27ca 143
e4b36699 144static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
d4906093 155 .find_pll = intel_find_best_PLL,
e4b36699
KP
156};
157
158static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
d4906093 169 .find_pll = intel_find_best_PLL,
e4b36699
KP
170};
171
273e27ca 172
e4b36699 173static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
044c7c41 185 },
d4906093 186 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
187};
188
189static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
d4906093 200 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
201};
202
203static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
044c7c41 214 },
d4906093 215 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
216};
217
218static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
044c7c41 229 },
d4906093 230 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
273e27ca 243 .p2_slow = 10, .p2_fast = 10 },
0206e353 244 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
245};
246
f2b115e6 247static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 250 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
273e27ca 253 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
6115707b 260 .find_pll = intel_find_best_PLL,
e4b36699
KP
261};
262
f2b115e6 263static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
6115707b 274 .find_pll = intel_find_best_PLL,
e4b36699
KP
275};
276
273e27ca
EA
277/* Ironlake / Sandybridge
278 *
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
281 */
b91ad0ec 282static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
4547668a 293 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
294};
295
b91ad0ec 296static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
307 .find_pll = intel_g4x_find_best_PLL,
308};
309
310static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
321 .find_pll = intel_g4x_find_best_PLL,
322};
323
273e27ca 324/* LVDS 100mhz refclk limits. */
b91ad0ec 325static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
0206e353 333 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
336 .find_pll = intel_g4x_find_best_PLL,
337};
338
339static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
0206e353 347 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
350 .find_pll = intel_g4x_find_best_PLL,
351};
352
353static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
273e27ca 363 .p2_slow = 10, .p2_fast = 10 },
0206e353 364 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
365};
366
a0c4da24
JB
367static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
379};
380
381static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
17dc9257 383 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
393};
394
395static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
396 .dot = { .min = 25000, .max = 270000 },
397 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 398 .n = { .min = 1, .max = 7 },
74a4dd2e 399 .m = { .min = 22, .max = 450 },
a0c4da24
JB
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
407};
408
57f350b6
JB
409u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410{
411 unsigned long flags;
412 u32 val = 0;
413
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
418 }
419
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
426 }
427 val = I915_READ(DPIO_DATA);
428
429out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
432}
433
a0c4da24
JB
434static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
436{
437 unsigned long flags;
438
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
443 }
444
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
451
452out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454}
455
57f350b6
JB
456static void vlv_init_dpio(struct drm_device *dev)
457{
458 struct drm_i915_private *dev_priv = dev->dev_private;
459
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
465}
466
618563e3
DV
467static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468{
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
471}
472
473static const struct dmi_system_id intel_dual_link_lvds[] = {
474 {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480 },
481 },
482 { } /* terminating entry */
483};
484
b0354385
TI
485static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
487{
488 unsigned int val;
489
121d527a
TI
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
493
618563e3
DV
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
496
b0354385
TI
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
504 */
505 val = I915_READ(reg);
14d94a3d 506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
509 }
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511}
512
1b894b59
CW
513static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
2c07245f 515{
b91ad0ec
ZW
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 518 const intel_limit_t *limit;
b91ad0ec
ZW
519
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 522 /* LVDS dual channel */
1b894b59 523 if (refclk == 100000)
b91ad0ec
ZW
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
1b894b59 528 if (refclk == 100000)
b91ad0ec
ZW
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
532 }
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
2c07245f 536 else
b91ad0ec 537 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
538
539 return limit;
540}
541
044c7c41
ML
542static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543{
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
547
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 549 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 550 /* LVDS with dual channel */
e4b36699 551 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
552 else
553 /* LVDS with dual channel */
e4b36699 554 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 557 limit = &intel_limits_g4x_hdmi;
044c7c41 558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 559 limit = &intel_limits_g4x_sdvo;
0206e353 560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 561 limit = &intel_limits_g4x_display_port;
044c7c41 562 } else /* The option is for other outputs */
e4b36699 563 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
564
565 return limit;
566}
567
1b894b59 568static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
569{
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
572
bad720ff 573 if (HAS_PCH_SPLIT(dev))
1b894b59 574 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 575 else if (IS_G4X(dev)) {
044c7c41 576 limit = intel_g4x_limit(crtc);
f2b115e6 577 } else if (IS_PINEVIEW(dev)) {
2177832f 578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 579 limit = &intel_limits_pineview_lvds;
2177832f 580 else
f2b115e6 581 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 596 limit = &intel_limits_i8xx_lvds;
79e53945 597 else
e4b36699 598 limit = &intel_limits_i8xx_dvo;
79e53945
JB
599 }
600 return limit;
601}
602
f2b115e6
AJ
603/* m1 is reserved as 0 in Pineview, n is a ring counter */
604static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 605{
2177832f
SL
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
610}
611
612static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613{
f2b115e6
AJ
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
2177832f
SL
616 return;
617 }
79e53945
JB
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
622}
623
79e53945
JB
624/**
625 * Returns whether any output on the specified pipe is of the specified type
626 */
4ef69c7a 627bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 628{
4ef69c7a 629 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
630 struct intel_encoder *encoder;
631
6c2b7c12
DV
632 for_each_encoder_on_crtc(dev, crtc, encoder)
633 if (encoder->type == type)
4ef69c7a
CW
634 return true;
635
636 return false;
79e53945
JB
637}
638
7c04d1d9 639#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
640/**
641 * Returns whether the given set of divisors are valid for a given refclk with
642 * the given connectors.
643 */
644
1b894b59
CW
645static bool intel_PLL_is_valid(struct drm_device *dev,
646 const intel_limit_t *limit,
647 const intel_clock_t *clock)
79e53945 648{
79e53945 649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 650 INTELPllInvalid("p1 out of range\n");
79e53945 651 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 652 INTELPllInvalid("p out of range\n");
79e53945 653 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 654 INTELPllInvalid("m2 out of range\n");
79e53945 655 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 656 INTELPllInvalid("m1 out of range\n");
f2b115e6 657 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 658 INTELPllInvalid("m1 <= m2\n");
79e53945 659 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 660 INTELPllInvalid("m out of range\n");
79e53945 661 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 662 INTELPllInvalid("n out of range\n");
79e53945 663 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 664 INTELPllInvalid("vco out of range\n");
79e53945
JB
665 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 * connector, etc., rather than just a single range.
667 */
668 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 669 INTELPllInvalid("dot out of range\n");
79e53945
JB
670
671 return true;
672}
673
d4906093
ML
674static bool
675intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
d4906093 678
79e53945
JB
679{
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 intel_clock_t clock;
79e53945
JB
683 int err = target;
684
bc5e5718 685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 686 (I915_READ(LVDS)) != 0) {
79e53945
JB
687 /*
688 * For LVDS, if the panel is on, just rely on its current
689 * settings for dual-channel. We haven't figured out how to
690 * reliably set up different single/dual channel state, if we
691 * even can.
692 */
b0354385 693 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
694 clock.p2 = limit->p2.p2_fast;
695 else
696 clock.p2 = limit->p2.p2_slow;
697 } else {
698 if (target < limit->p2.dot_limit)
699 clock.p2 = limit->p2.p2_slow;
700 else
701 clock.p2 = limit->p2.p2_fast;
702 }
703
0206e353 704 memset(best_clock, 0, sizeof(*best_clock));
79e53945 705
42158660
ZY
706 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707 clock.m1++) {
708 for (clock.m2 = limit->m2.min;
709 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
710 /* m1 is always 0 in Pineview */
711 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
712 break;
713 for (clock.n = limit->n.min;
714 clock.n <= limit->n.max; clock.n++) {
715 for (clock.p1 = limit->p1.min;
716 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
717 int this_err;
718
2177832f 719 intel_clock(dev, refclk, &clock);
1b894b59
CW
720 if (!intel_PLL_is_valid(dev, limit,
721 &clock))
79e53945 722 continue;
cec2f356
SP
723 if (match_clock &&
724 clock.p != match_clock->p)
725 continue;
79e53945
JB
726
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
731 }
732 }
733 }
734 }
735 }
736
737 return (err != target);
738}
739
d4906093
ML
740static bool
741intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
742 int target, int refclk, intel_clock_t *match_clock,
743 intel_clock_t *best_clock)
d4906093
ML
744{
745 struct drm_device *dev = crtc->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 intel_clock_t clock;
748 int max_n;
749 bool found;
6ba770dc
AJ
750 /* approximately equals target * 0.00585 */
751 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
752 found = false;
753
754 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
755 int lvds_reg;
756
c619eed4 757 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
758 lvds_reg = PCH_LVDS;
759 else
760 lvds_reg = LVDS;
761 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
762 LVDS_CLKB_POWER_UP)
763 clock.p2 = limit->p2.p2_fast;
764 else
765 clock.p2 = limit->p2.p2_slow;
766 } else {
767 if (target < limit->p2.dot_limit)
768 clock.p2 = limit->p2.p2_slow;
769 else
770 clock.p2 = limit->p2.p2_fast;
771 }
772
773 memset(best_clock, 0, sizeof(*best_clock));
774 max_n = limit->n.max;
f77f13e2 775 /* based on hardware requirement, prefer smaller n to precision */
d4906093 776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 777 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
778 for (clock.m1 = limit->m1.max;
779 clock.m1 >= limit->m1.min; clock.m1--) {
780 for (clock.m2 = limit->m2.max;
781 clock.m2 >= limit->m2.min; clock.m2--) {
782 for (clock.p1 = limit->p1.max;
783 clock.p1 >= limit->p1.min; clock.p1--) {
784 int this_err;
785
2177832f 786 intel_clock(dev, refclk, &clock);
1b894b59
CW
787 if (!intel_PLL_is_valid(dev, limit,
788 &clock))
d4906093 789 continue;
cec2f356
SP
790 if (match_clock &&
791 clock.p != match_clock->p)
792 continue;
1b894b59
CW
793
794 this_err = abs(clock.dot - target);
d4906093
ML
795 if (this_err < err_most) {
796 *best_clock = clock;
797 err_most = this_err;
798 max_n = clock.n;
799 found = true;
800 }
801 }
802 }
803 }
804 }
2c07245f
ZW
805 return found;
806}
807
5eb08b69 808static bool
f2b115e6 809intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
5eb08b69
ZW
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
4547668a 815
5eb08b69
ZW
816 if (target < 200000) {
817 clock.n = 1;
818 clock.p1 = 2;
819 clock.p2 = 10;
820 clock.m1 = 12;
821 clock.m2 = 9;
822 } else {
823 clock.n = 2;
824 clock.p1 = 1;
825 clock.p2 = 10;
826 clock.m1 = 14;
827 clock.m2 = 8;
828 }
829 intel_clock(dev, refclk, &clock);
830 memcpy(best_clock, &clock, sizeof(intel_clock_t));
831 return true;
832}
833
a4fc5ed6
KP
834/* DisplayPort has only two frequencies, 162MHz and 270MHz */
835static bool
836intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
a4fc5ed6 839{
5eddb70b
CW
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.p1 = 2;
843 clock.p2 = 10;
844 clock.n = 2;
845 clock.m1 = 23;
846 clock.m2 = 8;
847 } else {
848 clock.p1 = 1;
849 clock.p2 = 10;
850 clock.n = 1;
851 clock.m1 = 14;
852 clock.m2 = 2;
853 }
854 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855 clock.p = (clock.p1 * clock.p2);
856 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857 clock.vco = 0;
858 memcpy(best_clock, &clock, sizeof(intel_clock_t));
859 return true;
a4fc5ed6 860}
a0c4da24
JB
861static bool
862intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
865{
866 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867 u32 m, n, fastclk;
868 u32 updrate, minupdate, fracbits, p;
869 unsigned long bestppm, ppm, absppm;
870 int dotclk, flag;
871
af447bd3 872 flag = 0;
a0c4da24
JB
873 dotclk = target * 1000;
874 bestppm = 1000000;
875 ppm = absppm = 0;
876 fastclk = dotclk / (2*100);
877 updrate = 0;
878 minupdate = 19200;
879 fracbits = 1;
880 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881 bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883 /* based on hardware requirement, prefer smaller n to precision */
884 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885 updrate = refclk / n;
886 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888 if (p2 > 10)
889 p2 = p2 - 1;
890 p = p1 * p2;
891 /* based on hardware requirement, prefer bigger m1,m2 values */
892 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893 m2 = (((2*(fastclk * p * n / m1 )) +
894 refclk) / (2*refclk));
895 m = m1 * m2;
896 vco = updrate * m;
897 if (vco >= limit->vco.min && vco < limit->vco.max) {
898 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899 absppm = (ppm > 0) ? ppm : (-ppm);
900 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901 bestppm = 0;
902 flag = 1;
903 }
904 if (absppm < bestppm - 10) {
905 bestppm = absppm;
906 flag = 1;
907 }
908 if (flag) {
909 bestn = n;
910 bestm1 = m1;
911 bestm2 = m2;
912 bestp1 = p1;
913 bestp2 = p2;
914 flag = 0;
915 }
916 }
917 }
918 }
919 }
920 }
921 best_clock->n = bestn;
922 best_clock->m1 = bestm1;
923 best_clock->m2 = bestm2;
924 best_clock->p1 = bestp1;
925 best_clock->p2 = bestp2;
926
927 return true;
928}
a4fc5ed6 929
a928d536
PZ
930static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931{
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 frame, frame_reg = PIPEFRAME(pipe);
934
935 frame = I915_READ(frame_reg);
936
937 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938 DRM_DEBUG_KMS("vblank wait timed out\n");
939}
940
9d0498a2
JB
941/**
942 * intel_wait_for_vblank - wait for vblank on a given pipe
943 * @dev: drm device
944 * @pipe: pipe to wait for
945 *
946 * Wait for vblank to occur on a given pipe. Needed for various bits of
947 * mode setting code.
948 */
949void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 950{
9d0498a2 951 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 952 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 953
a928d536
PZ
954 if (INTEL_INFO(dev)->gen >= 5) {
955 ironlake_wait_for_vblank(dev, pipe);
956 return;
957 }
958
300387c0
CW
959 /* Clear existing vblank status. Note this will clear any other
960 * sticky status fields as well.
961 *
962 * This races with i915_driver_irq_handler() with the result
963 * that either function could miss a vblank event. Here it is not
964 * fatal, as we will either wait upon the next vblank interrupt or
965 * timeout. Generally speaking intel_wait_for_vblank() is only
966 * called during modeset at which time the GPU should be idle and
967 * should *not* be performing page flips and thus not waiting on
968 * vblanks...
969 * Currently, the result of us stealing a vblank from the irq
970 * handler is that a single frame will be skipped during swapbuffers.
971 */
972 I915_WRITE(pipestat_reg,
973 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
9d0498a2 975 /* Wait for vblank interrupt bit to set */
481b6af3
CW
976 if (wait_for(I915_READ(pipestat_reg) &
977 PIPE_VBLANK_INTERRUPT_STATUS,
978 50))
9d0498a2
JB
979 DRM_DEBUG_KMS("vblank wait timed out\n");
980}
981
ab7ad7f6
KP
982/*
983 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
984 * @dev: drm device
985 * @pipe: pipe to wait for
986 *
987 * After disabling a pipe, we can't wait for vblank in the usual way,
988 * spinning on the vblank interrupt status bit, since we won't actually
989 * see an interrupt when the pipe is disabled.
990 *
ab7ad7f6
KP
991 * On Gen4 and above:
992 * wait for the pipe register state bit to turn off
993 *
994 * Otherwise:
995 * wait for the display line value to settle (it usually
996 * ends up stopping at the start of the next frame).
58e10eb9 997 *
9d0498a2 998 */
58e10eb9 999void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1000{
1001 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
1002
1003 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 1004 int reg = PIPECONF(pipe);
ab7ad7f6
KP
1005
1006 /* Wait for the Pipe State to go off */
58e10eb9
CW
1007 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008 100))
284637d9 1009 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1010 } else {
837ba00f 1011 u32 last_line, line_mask;
58e10eb9 1012 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1013 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
837ba00f
PZ
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
ab7ad7f6
KP
1020 /* Wait for the display line to settle */
1021 do {
837ba00f 1022 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1023 mdelay(5);
837ba00f 1024 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1025 time_after(timeout, jiffies));
1026 if (time_after(jiffies, timeout))
284637d9 1027 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1028 }
79e53945
JB
1029}
1030
b24e7179
JB
1031static const char *state_string(bool enabled)
1032{
1033 return enabled ? "on" : "off";
1034}
1035
1036/* Only for pre-ILK configs */
1037static void assert_pll(struct drm_i915_private *dev_priv,
1038 enum pipe pipe, bool state)
1039{
1040 int reg;
1041 u32 val;
1042 bool cur_state;
1043
1044 reg = DPLL(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & DPLL_VCO_ENABLE);
1047 WARN(cur_state != state,
1048 "PLL state assertion failure (expected %s, current %s)\n",
1049 state_string(state), state_string(cur_state));
1050}
1051#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
040484af
JB
1054/* For ILK+ */
1055static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1056 struct intel_pch_pll *pll,
1057 struct intel_crtc *crtc,
1058 bool state)
040484af 1059{
040484af
JB
1060 u32 val;
1061 bool cur_state;
1062
9d82aa17
ED
1063 if (HAS_PCH_LPT(dev_priv->dev)) {
1064 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065 return;
1066 }
1067
92b27b08
CW
1068 if (WARN (!pll,
1069 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1070 return;
ee7b9f93 1071
92b27b08
CW
1072 val = I915_READ(pll->pll_reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 WARN(cur_state != state,
1075 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076 pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078 /* Make sure the selected PLL is correctly attached to the transcoder */
1079 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1080 u32 pch_dpll;
1081
1082 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1083 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085 "PLL[%d] not attached to this transcoder %d: %08x\n",
1086 cur_state, crtc->pipe, pch_dpll)) {
1087 cur_state = !!(val >> (4*crtc->pipe + 3));
1088 WARN(cur_state != state,
1089 "PLL[%d] not %s on this transcoder %d: %08x\n",
1090 pll->pll_reg == _PCH_DPLL_B,
1091 state_string(state),
1092 crtc->pipe,
1093 val);
1094 }
d3ccbe86 1095 }
040484af 1096}
92b27b08
CW
1097#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1099
1100static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101 enum pipe pipe, bool state)
1102{
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1106
bf507ef7
ED
1107 if (IS_HASWELL(dev_priv->dev)) {
1108 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109 reg = DDI_FUNC_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112 } else {
1113 reg = FDI_TX_CTL(pipe);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & FDI_TX_ENABLE);
1116 }
040484af
JB
1117 WARN(cur_state != state,
1118 "FDI TX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120}
1121#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125 enum pipe pipe, bool state)
1126{
1127 int reg;
1128 u32 val;
1129 bool cur_state;
1130
59c859d6
ED
1131 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133 return;
1134 } else {
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1138 }
040484af
JB
1139 WARN(cur_state != state,
1140 "FDI RX state assertion failure (expected %s, current %s)\n",
1141 state_string(state), state_string(cur_state));
1142}
1143#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147 enum pipe pipe)
1148{
1149 int reg;
1150 u32 val;
1151
1152 /* ILK FDI PLL is always enabled */
1153 if (dev_priv->info->gen == 5)
1154 return;
1155
bf507ef7
ED
1156 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157 if (IS_HASWELL(dev_priv->dev))
1158 return;
1159
040484af
JB
1160 reg = FDI_TX_CTL(pipe);
1161 val = I915_READ(reg);
1162 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163}
1164
1165static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1167{
1168 int reg;
1169 u32 val;
1170
59c859d6
ED
1171 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173 return;
1174 }
040484af
JB
1175 reg = FDI_RX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178}
1179
ea0760cf
JB
1180static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1182{
1183 int pp_reg, lvds_reg;
1184 u32 val;
1185 enum pipe panel_pipe = PIPE_A;
0de3b485 1186 bool locked = true;
ea0760cf
JB
1187
1188 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189 pp_reg = PCH_PP_CONTROL;
1190 lvds_reg = PCH_LVDS;
1191 } else {
1192 pp_reg = PP_CONTROL;
1193 lvds_reg = LVDS;
1194 }
1195
1196 val = I915_READ(pp_reg);
1197 if (!(val & PANEL_POWER_ON) ||
1198 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199 locked = false;
1200
1201 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202 panel_pipe = PIPE_B;
1203
1204 WARN(panel_pipe == pipe && locked,
1205 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1206 pipe_name(pipe));
ea0760cf
JB
1207}
1208
b840d907
JB
1209void assert_pipe(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, bool state)
b24e7179
JB
1211{
1212 int reg;
1213 u32 val;
63d7bbe9 1214 bool cur_state;
b24e7179 1215
8e636784
DV
1216 /* if we need the pipe A quirk it must be always on */
1217 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218 state = true;
1219
b24e7179
JB
1220 reg = PIPECONF(pipe);
1221 val = I915_READ(reg);
63d7bbe9
JB
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 WARN(cur_state != state,
1224 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1225 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1226}
1227
931872fc
CW
1228static void assert_plane(struct drm_i915_private *dev_priv,
1229 enum plane plane, bool state)
b24e7179
JB
1230{
1231 int reg;
1232 u32 val;
931872fc 1233 bool cur_state;
b24e7179
JB
1234
1235 reg = DSPCNTR(plane);
1236 val = I915_READ(reg);
931872fc
CW
1237 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238 WARN(cur_state != state,
1239 "plane %c assertion failure (expected %s, current %s)\n",
1240 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1241}
1242
931872fc
CW
1243#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
b24e7179
JB
1246static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1248{
1249 int reg, i;
1250 u32 val;
1251 int cur_pipe;
1252
19ec1358 1253 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1254 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255 reg = DSPCNTR(pipe);
1256 val = I915_READ(reg);
1257 WARN((val & DISPLAY_PLANE_ENABLE),
1258 "plane %c assertion failure, should be disabled but not\n",
1259 plane_name(pipe));
19ec1358 1260 return;
28c05794 1261 }
19ec1358 1262
b24e7179
JB
1263 /* Need to check both planes against the pipe */
1264 for (i = 0; i < 2; i++) {
1265 reg = DSPCNTR(i);
1266 val = I915_READ(reg);
1267 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268 DISPPLANE_SEL_PIPE_SHIFT;
1269 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1270 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271 plane_name(i), pipe_name(pipe));
b24e7179
JB
1272 }
1273}
1274
92f2584a
JB
1275static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276{
1277 u32 val;
1278 bool enabled;
1279
9d82aa17
ED
1280 if (HAS_PCH_LPT(dev_priv->dev)) {
1281 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282 return;
1283 }
1284
92f2584a
JB
1285 val = I915_READ(PCH_DREF_CONTROL);
1286 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287 DREF_SUPERSPREAD_SOURCE_MASK));
1288 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289}
1290
1291static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293{
1294 int reg;
1295 u32 val;
1296 bool enabled;
1297
1298 reg = TRANSCONF(pipe);
1299 val = I915_READ(reg);
1300 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1301 WARN(enabled,
1302 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303 pipe_name(pipe));
92f2584a
JB
1304}
1305
4e634389
KP
1306static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1308{
1309 if ((val & DP_PORT_EN) == 0)
1310 return false;
1311
1312 if (HAS_PCH_CPT(dev_priv->dev)) {
1313 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else {
1318 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319 return false;
1320 }
1321 return true;
1322}
1323
1519b995
KP
1324static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe, u32 val)
1326{
1327 if ((val & PORT_ENABLE) == 0)
1328 return false;
1329
1330 if (HAS_PCH_CPT(dev_priv->dev)) {
1331 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332 return false;
1333 } else {
1334 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335 return false;
1336 }
1337 return true;
1338}
1339
1340static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1342{
1343 if ((val & LVDS_PORT_EN) == 0)
1344 return false;
1345
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351 return false;
1352 }
1353 return true;
1354}
1355
1356static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1358{
1359 if ((val & ADPA_DAC_ENABLE) == 0)
1360 return false;
1361 if (HAS_PCH_CPT(dev_priv->dev)) {
1362 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363 return false;
1364 } else {
1365 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366 return false;
1367 }
1368 return true;
1369}
1370
291906f1 1371static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1372 enum pipe pipe, int reg, u32 port_sel)
291906f1 1373{
47a05eca 1374 u32 val = I915_READ(reg);
4e634389 1375 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1376 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1377 reg, pipe_name(pipe));
de9a35ab 1378
75c5da27
DV
1379 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1380 && (val & DP_PIPEB_SELECT),
de9a35ab 1381 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1382}
1383
1384static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, int reg)
1386{
47a05eca 1387 u32 val = I915_READ(reg);
e9a851ed 1388 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1389 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1390 reg, pipe_name(pipe));
de9a35ab 1391
75c5da27
DV
1392 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1393 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1394 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1395}
1396
1397static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399{
1400 int reg;
1401 u32 val;
291906f1 1402
f0575e92
KP
1403 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1404 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1405 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1406
1407 reg = PCH_ADPA;
1408 val = I915_READ(reg);
e9a851ed 1409 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1410 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1411 pipe_name(pipe));
291906f1
JB
1412
1413 reg = PCH_LVDS;
1414 val = I915_READ(reg);
e9a851ed 1415 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1416 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1417 pipe_name(pipe));
291906f1
JB
1418
1419 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1420 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1421 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1422}
1423
63d7bbe9
JB
1424/**
1425 * intel_enable_pll - enable a PLL
1426 * @dev_priv: i915 private structure
1427 * @pipe: pipe PLL to enable
1428 *
1429 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1430 * make sure the PLL reg is writable first though, since the panel write
1431 * protect mechanism may be enabled.
1432 *
1433 * Note! This is for pre-ILK only.
7434a255
TR
1434 *
1435 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9 1436 */
a37b9b34 1437static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9
JB
1438{
1439 int reg;
1440 u32 val;
1441
1442 /* No really, not for ILK+ */
a0c4da24 1443 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1444
1445 /* PLL is protected by panel, make sure we can write it */
1446 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1447 assert_panel_unlocked(dev_priv, pipe);
1448
1449 reg = DPLL(pipe);
1450 val = I915_READ(reg);
1451 val |= DPLL_VCO_ENABLE;
1452
1453 /* We do this three times for luck */
1454 I915_WRITE(reg, val);
1455 POSTING_READ(reg);
1456 udelay(150); /* wait for warmup */
1457 I915_WRITE(reg, val);
1458 POSTING_READ(reg);
1459 udelay(150); /* wait for warmup */
1460 I915_WRITE(reg, val);
1461 POSTING_READ(reg);
1462 udelay(150); /* wait for warmup */
1463}
1464
1465/**
1466 * intel_disable_pll - disable a PLL
1467 * @dev_priv: i915 private structure
1468 * @pipe: pipe PLL to disable
1469 *
1470 * Disable the PLL for @pipe, making sure the pipe is off first.
1471 *
1472 * Note! This is for pre-ILK only.
1473 */
1474static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1475{
1476 int reg;
1477 u32 val;
1478
1479 /* Don't disable pipe A or pipe A PLLs if needed */
1480 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1481 return;
1482
1483 /* Make sure the pipe isn't still relying on us */
1484 assert_pipe_disabled(dev_priv, pipe);
1485
1486 reg = DPLL(pipe);
1487 val = I915_READ(reg);
1488 val &= ~DPLL_VCO_ENABLE;
1489 I915_WRITE(reg, val);
1490 POSTING_READ(reg);
1491}
1492
a416edef
ED
1493/* SBI access */
1494static void
1495intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1496{
1497 unsigned long flags;
1498
1499 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1500 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1501 100)) {
1502 DRM_ERROR("timeout waiting for SBI to become ready\n");
1503 goto out_unlock;
1504 }
1505
1506 I915_WRITE(SBI_ADDR,
1507 (reg << 16));
1508 I915_WRITE(SBI_DATA,
1509 value);
1510 I915_WRITE(SBI_CTL_STAT,
1511 SBI_BUSY |
1512 SBI_CTL_OP_CRWR);
1513
39fb50f6 1514 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1515 100)) {
1516 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1517 goto out_unlock;
1518 }
1519
1520out_unlock:
1521 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1522}
1523
1524static u32
1525intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1526{
1527 unsigned long flags;
39fb50f6 1528 u32 value = 0;
a416edef
ED
1529
1530 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1531 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1532 100)) {
1533 DRM_ERROR("timeout waiting for SBI to become ready\n");
1534 goto out_unlock;
1535 }
1536
1537 I915_WRITE(SBI_ADDR,
1538 (reg << 16));
1539 I915_WRITE(SBI_CTL_STAT,
1540 SBI_BUSY |
1541 SBI_CTL_OP_CRRD);
1542
39fb50f6 1543 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1544 100)) {
1545 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1546 goto out_unlock;
1547 }
1548
1549 value = I915_READ(SBI_DATA);
1550
1551out_unlock:
1552 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1553 return value;
1554}
1555
92f2584a
JB
1556/**
1557 * intel_enable_pch_pll - enable PCH PLL
1558 * @dev_priv: i915 private structure
1559 * @pipe: pipe PLL to enable
1560 *
1561 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1562 * drives the transcoder clock.
1563 */
ee7b9f93 1564static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1565{
ee7b9f93 1566 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1567 struct intel_pch_pll *pll;
92f2584a
JB
1568 int reg;
1569 u32 val;
1570
48da64a8 1571 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1572 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1573 pll = intel_crtc->pch_pll;
1574 if (pll == NULL)
1575 return;
1576
1577 if (WARN_ON(pll->refcount == 0))
1578 return;
ee7b9f93
JB
1579
1580 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1581 pll->pll_reg, pll->active, pll->on,
1582 intel_crtc->base.base.id);
92f2584a
JB
1583
1584 /* PCH refclock must be enabled first */
1585 assert_pch_refclk_enabled(dev_priv);
1586
ee7b9f93 1587 if (pll->active++ && pll->on) {
92b27b08 1588 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1589 return;
1590 }
1591
1592 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1593
1594 reg = pll->pll_reg;
92f2584a
JB
1595 val = I915_READ(reg);
1596 val |= DPLL_VCO_ENABLE;
1597 I915_WRITE(reg, val);
1598 POSTING_READ(reg);
1599 udelay(200);
ee7b9f93
JB
1600
1601 pll->on = true;
92f2584a
JB
1602}
1603
ee7b9f93 1604static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1605{
ee7b9f93
JB
1606 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1607 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1608 int reg;
ee7b9f93 1609 u32 val;
4c609cb8 1610
92f2584a
JB
1611 /* PCH only available on ILK+ */
1612 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1613 if (pll == NULL)
1614 return;
92f2584a 1615
48da64a8
CW
1616 if (WARN_ON(pll->refcount == 0))
1617 return;
7a419866 1618
ee7b9f93
JB
1619 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1620 pll->pll_reg, pll->active, pll->on,
1621 intel_crtc->base.base.id);
7a419866 1622
48da64a8 1623 if (WARN_ON(pll->active == 0)) {
92b27b08 1624 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1625 return;
1626 }
1627
ee7b9f93 1628 if (--pll->active) {
92b27b08 1629 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1630 return;
ee7b9f93
JB
1631 }
1632
1633 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1634
1635 /* Make sure transcoder isn't still depending on us */
1636 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1637
ee7b9f93 1638 reg = pll->pll_reg;
92f2584a
JB
1639 val = I915_READ(reg);
1640 val &= ~DPLL_VCO_ENABLE;
1641 I915_WRITE(reg, val);
1642 POSTING_READ(reg);
1643 udelay(200);
ee7b9f93
JB
1644
1645 pll->on = false;
92f2584a
JB
1646}
1647
040484af
JB
1648static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1649 enum pipe pipe)
1650{
1651 int reg;
5f7f726d 1652 u32 val, pipeconf_val;
7c26e5c6 1653 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
040484af
JB
1654
1655 /* PCH only available on ILK+ */
1656 BUG_ON(dev_priv->info->gen < 5);
1657
1658 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1659 assert_pch_pll_enabled(dev_priv,
1660 to_intel_crtc(crtc)->pch_pll,
1661 to_intel_crtc(crtc));
040484af
JB
1662
1663 /* FDI must be feeding us bits for PCH ports */
1664 assert_fdi_tx_enabled(dev_priv, pipe);
1665 assert_fdi_rx_enabled(dev_priv, pipe);
1666
59c859d6
ED
1667 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1668 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1669 return;
1670 }
040484af
JB
1671 reg = TRANSCONF(pipe);
1672 val = I915_READ(reg);
5f7f726d 1673 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1674
1675 if (HAS_PCH_IBX(dev_priv->dev)) {
1676 /*
1677 * make the BPC in transcoder be consistent with
1678 * that in pipeconf reg.
1679 */
1680 val &= ~PIPE_BPC_MASK;
5f7f726d 1681 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1682 }
5f7f726d
PZ
1683
1684 val &= ~TRANS_INTERLACE_MASK;
1685 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1686 if (HAS_PCH_IBX(dev_priv->dev) &&
1687 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1688 val |= TRANS_LEGACY_INTERLACED_ILK;
1689 else
1690 val |= TRANS_INTERLACED;
5f7f726d
PZ
1691 else
1692 val |= TRANS_PROGRESSIVE;
1693
040484af
JB
1694 I915_WRITE(reg, val | TRANS_ENABLE);
1695 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1696 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1697}
1698
1699static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1700 enum pipe pipe)
1701{
1702 int reg;
1703 u32 val;
1704
1705 /* FDI relies on the transcoder */
1706 assert_fdi_tx_disabled(dev_priv, pipe);
1707 assert_fdi_rx_disabled(dev_priv, pipe);
1708
291906f1
JB
1709 /* Ports must be off as well */
1710 assert_pch_ports_disabled(dev_priv, pipe);
1711
040484af
JB
1712 reg = TRANSCONF(pipe);
1713 val = I915_READ(reg);
1714 val &= ~TRANS_ENABLE;
1715 I915_WRITE(reg, val);
1716 /* wait for PCH transcoder off, transcoder state */
1717 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1718 DRM_ERROR("failed to disable transcoder %d\n", pipe);
040484af
JB
1719}
1720
b24e7179 1721/**
309cfea8 1722 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1723 * @dev_priv: i915 private structure
1724 * @pipe: pipe to enable
040484af 1725 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1726 *
1727 * Enable @pipe, making sure that various hardware specific requirements
1728 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1729 *
1730 * @pipe should be %PIPE_A or %PIPE_B.
1731 *
1732 * Will wait until the pipe is actually running (i.e. first vblank) before
1733 * returning.
1734 */
040484af
JB
1735static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1736 bool pch_port)
b24e7179
JB
1737{
1738 int reg;
1739 u32 val;
1740
1741 /*
1742 * A pipe without a PLL won't actually be able to drive bits from
1743 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1744 * need the check.
1745 */
1746 if (!HAS_PCH_SPLIT(dev_priv->dev))
1747 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1748 else {
1749 if (pch_port) {
1750 /* if driving the PCH, we need FDI enabled */
1751 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1752 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1753 }
1754 /* FIXME: assert CPU port conditions for SNB+ */
1755 }
b24e7179
JB
1756
1757 reg = PIPECONF(pipe);
1758 val = I915_READ(reg);
00d70b15
CW
1759 if (val & PIPECONF_ENABLE)
1760 return;
1761
1762 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1763 intel_wait_for_vblank(dev_priv->dev, pipe);
1764}
1765
1766/**
309cfea8 1767 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1768 * @dev_priv: i915 private structure
1769 * @pipe: pipe to disable
1770 *
1771 * Disable @pipe, making sure that various hardware specific requirements
1772 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1773 *
1774 * @pipe should be %PIPE_A or %PIPE_B.
1775 *
1776 * Will wait until the pipe has shut down before returning.
1777 */
1778static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1779 enum pipe pipe)
1780{
1781 int reg;
1782 u32 val;
1783
1784 /*
1785 * Make sure planes won't keep trying to pump pixels to us,
1786 * or we might hang the display.
1787 */
1788 assert_planes_disabled(dev_priv, pipe);
1789
1790 /* Don't disable pipe A or pipe A PLLs if needed */
1791 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1792 return;
1793
1794 reg = PIPECONF(pipe);
1795 val = I915_READ(reg);
00d70b15
CW
1796 if ((val & PIPECONF_ENABLE) == 0)
1797 return;
1798
1799 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1800 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1801}
1802
d74362c9
KP
1803/*
1804 * Plane regs are double buffered, going from enabled->disabled needs a
1805 * trigger in order to latch. The display address reg provides this.
1806 */
6f1d69b0 1807void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1808 enum plane plane)
1809{
1810 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1811 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1812}
1813
b24e7179
JB
1814/**
1815 * intel_enable_plane - enable a display plane on a given pipe
1816 * @dev_priv: i915 private structure
1817 * @plane: plane to enable
1818 * @pipe: pipe being fed
1819 *
1820 * Enable @plane on @pipe, making sure that @pipe is running first.
1821 */
1822static void intel_enable_plane(struct drm_i915_private *dev_priv,
1823 enum plane plane, enum pipe pipe)
1824{
1825 int reg;
1826 u32 val;
1827
1828 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1829 assert_pipe_enabled(dev_priv, pipe);
1830
1831 reg = DSPCNTR(plane);
1832 val = I915_READ(reg);
00d70b15
CW
1833 if (val & DISPLAY_PLANE_ENABLE)
1834 return;
1835
1836 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1837 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1838 intel_wait_for_vblank(dev_priv->dev, pipe);
1839}
1840
b24e7179
JB
1841/**
1842 * intel_disable_plane - disable a display plane
1843 * @dev_priv: i915 private structure
1844 * @plane: plane to disable
1845 * @pipe: pipe consuming the data
1846 *
1847 * Disable @plane; should be an independent operation.
1848 */
1849static void intel_disable_plane(struct drm_i915_private *dev_priv,
1850 enum plane plane, enum pipe pipe)
1851{
1852 int reg;
1853 u32 val;
1854
1855 reg = DSPCNTR(plane);
1856 val = I915_READ(reg);
00d70b15
CW
1857 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1858 return;
1859
1860 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1861 intel_flush_display_plane(dev_priv, plane);
1862 intel_wait_for_vblank(dev_priv->dev, pipe);
1863}
1864
127bd2ac 1865int
48b956c5 1866intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1867 struct drm_i915_gem_object *obj,
919926ae 1868 struct intel_ring_buffer *pipelined)
6b95a207 1869{
ce453d81 1870 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1871 u32 alignment;
1872 int ret;
1873
05394f39 1874 switch (obj->tiling_mode) {
6b95a207 1875 case I915_TILING_NONE:
534843da
CW
1876 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1877 alignment = 128 * 1024;
a6c45cf0 1878 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1879 alignment = 4 * 1024;
1880 else
1881 alignment = 64 * 1024;
6b95a207
KH
1882 break;
1883 case I915_TILING_X:
1884 /* pin() will align the object as required by fence */
1885 alignment = 0;
1886 break;
1887 case I915_TILING_Y:
1888 /* FIXME: Is this true? */
1889 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1890 return -EINVAL;
1891 default:
1892 BUG();
1893 }
1894
ce453d81 1895 dev_priv->mm.interruptible = false;
2da3b9b9 1896 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1897 if (ret)
ce453d81 1898 goto err_interruptible;
6b95a207
KH
1899
1900 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1901 * fence, whereas 965+ only requires a fence if using
1902 * framebuffer compression. For simplicity, we always install
1903 * a fence as the cost is not that onerous.
1904 */
06d98131 1905 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1906 if (ret)
1907 goto err_unpin;
1690e1eb 1908
9a5a53b3 1909 i915_gem_object_pin_fence(obj);
6b95a207 1910
ce453d81 1911 dev_priv->mm.interruptible = true;
6b95a207 1912 return 0;
48b956c5
CW
1913
1914err_unpin:
1915 i915_gem_object_unpin(obj);
ce453d81
CW
1916err_interruptible:
1917 dev_priv->mm.interruptible = true;
48b956c5 1918 return ret;
6b95a207
KH
1919}
1920
1690e1eb
CW
1921void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1922{
1923 i915_gem_object_unpin_fence(obj);
1924 i915_gem_object_unpin(obj);
1925}
1926
c2c75131
DV
1927/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1928 * is assumed to be a power-of-two. */
1929static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1930 unsigned int bpp,
1931 unsigned int pitch)
1932{
1933 int tile_rows, tiles;
1934
1935 tile_rows = *y / 8;
1936 *y %= 8;
1937 tiles = *x / (512/bpp);
1938 *x %= 512/bpp;
1939
1940 return tile_rows * pitch * 8 + tiles * 4096;
1941}
1942
17638cd6
JB
1943static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1944 int x, int y)
81255565
JB
1945{
1946 struct drm_device *dev = crtc->dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949 struct intel_framebuffer *intel_fb;
05394f39 1950 struct drm_i915_gem_object *obj;
81255565 1951 int plane = intel_crtc->plane;
e506a0c6 1952 unsigned long linear_offset;
81255565 1953 u32 dspcntr;
5eddb70b 1954 u32 reg;
81255565
JB
1955
1956 switch (plane) {
1957 case 0:
1958 case 1:
1959 break;
1960 default:
1961 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1962 return -EINVAL;
1963 }
1964
1965 intel_fb = to_intel_framebuffer(fb);
1966 obj = intel_fb->obj;
81255565 1967
5eddb70b
CW
1968 reg = DSPCNTR(plane);
1969 dspcntr = I915_READ(reg);
81255565
JB
1970 /* Mask out pixel format bits in case we change it */
1971 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1972 switch (fb->bits_per_pixel) {
1973 case 8:
1974 dspcntr |= DISPPLANE_8BPP;
1975 break;
1976 case 16:
1977 if (fb->depth == 15)
1978 dspcntr |= DISPPLANE_15_16BPP;
1979 else
1980 dspcntr |= DISPPLANE_16BPP;
1981 break;
1982 case 24:
1983 case 32:
1984 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1985 break;
1986 default:
17638cd6 1987 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
1988 return -EINVAL;
1989 }
a6c45cf0 1990 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 1991 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
1992 dspcntr |= DISPPLANE_TILED;
1993 else
1994 dspcntr &= ~DISPPLANE_TILED;
1995 }
1996
5eddb70b 1997 I915_WRITE(reg, dspcntr);
81255565 1998
e506a0c6 1999 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2000
c2c75131
DV
2001 if (INTEL_INFO(dev)->gen >= 4) {
2002 intel_crtc->dspaddr_offset =
2003 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2004 fb->bits_per_pixel / 8,
2005 fb->pitches[0]);
2006 linear_offset -= intel_crtc->dspaddr_offset;
2007 } else {
e506a0c6 2008 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2009 }
e506a0c6
DV
2010
2011 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2012 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2013 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2014 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2015 I915_MODIFY_DISPBASE(DSPSURF(plane),
2016 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2017 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2018 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2019 } else
e506a0c6 2020 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2021 POSTING_READ(reg);
81255565 2022
17638cd6
JB
2023 return 0;
2024}
2025
2026static int ironlake_update_plane(struct drm_crtc *crtc,
2027 struct drm_framebuffer *fb, int x, int y)
2028{
2029 struct drm_device *dev = crtc->dev;
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2032 struct intel_framebuffer *intel_fb;
2033 struct drm_i915_gem_object *obj;
2034 int plane = intel_crtc->plane;
e506a0c6 2035 unsigned long linear_offset;
17638cd6
JB
2036 u32 dspcntr;
2037 u32 reg;
2038
2039 switch (plane) {
2040 case 0:
2041 case 1:
27f8227b 2042 case 2:
17638cd6
JB
2043 break;
2044 default:
2045 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046 return -EINVAL;
2047 }
2048
2049 intel_fb = to_intel_framebuffer(fb);
2050 obj = intel_fb->obj;
2051
2052 reg = DSPCNTR(plane);
2053 dspcntr = I915_READ(reg);
2054 /* Mask out pixel format bits in case we change it */
2055 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056 switch (fb->bits_per_pixel) {
2057 case 8:
2058 dspcntr |= DISPPLANE_8BPP;
2059 break;
2060 case 16:
2061 if (fb->depth != 16)
2062 return -EINVAL;
2063
2064 dspcntr |= DISPPLANE_16BPP;
2065 break;
2066 case 24:
2067 case 32:
2068 if (fb->depth == 24)
2069 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2070 else if (fb->depth == 30)
2071 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2072 else
2073 return -EINVAL;
2074 break;
2075 default:
2076 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2077 return -EINVAL;
2078 }
2079
2080 if (obj->tiling_mode != I915_TILING_NONE)
2081 dspcntr |= DISPPLANE_TILED;
2082 else
2083 dspcntr &= ~DISPPLANE_TILED;
2084
2085 /* must disable */
2086 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2087
2088 I915_WRITE(reg, dspcntr);
2089
e506a0c6 2090 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131
DV
2091 intel_crtc->dspaddr_offset =
2092 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2093 fb->bits_per_pixel / 8,
2094 fb->pitches[0]);
2095 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2096
e506a0c6
DV
2097 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2098 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2099 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2100 I915_MODIFY_DISPBASE(DSPSURF(plane),
2101 obj->gtt_offset + intel_crtc->dspaddr_offset);
17638cd6 2102 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2103 I915_WRITE(DSPLINOFF(plane), linear_offset);
17638cd6
JB
2104 POSTING_READ(reg);
2105
2106 return 0;
2107}
2108
2109/* Assume fb object is pinned & idle & fenced and just update base pointers */
2110static int
2111intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2112 int x, int y, enum mode_set_atomic state)
2113{
2114 struct drm_device *dev = crtc->dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2116
6b8e6ed0
CW
2117 if (dev_priv->display.disable_fbc)
2118 dev_priv->display.disable_fbc(dev);
3dec0095 2119 intel_increase_pllclock(crtc);
81255565 2120
6b8e6ed0 2121 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2122}
2123
14667a4b
CW
2124static int
2125intel_finish_fb(struct drm_framebuffer *old_fb)
2126{
2127 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2128 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2129 bool was_interruptible = dev_priv->mm.interruptible;
2130 int ret;
2131
2132 wait_event(dev_priv->pending_flip_queue,
2133 atomic_read(&dev_priv->mm.wedged) ||
2134 atomic_read(&obj->pending_flip) == 0);
2135
2136 /* Big Hammer, we also need to ensure that any pending
2137 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2138 * current scanout is retired before unpinning the old
2139 * framebuffer.
2140 *
2141 * This should only fail upon a hung GPU, in which case we
2142 * can safely continue.
2143 */
2144 dev_priv->mm.interruptible = false;
2145 ret = i915_gem_object_finish_gpu(obj);
2146 dev_priv->mm.interruptible = was_interruptible;
2147
2148 return ret;
2149}
2150
5c3b82e2 2151static int
3c4fdcfb 2152intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2153 struct drm_framebuffer *fb)
79e53945
JB
2154{
2155 struct drm_device *dev = crtc->dev;
6b8e6ed0 2156 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
2157 struct drm_i915_master_private *master_priv;
2158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2159 struct drm_framebuffer *old_fb;
5c3b82e2 2160 int ret;
79e53945
JB
2161
2162 /* no fb bound */
94352cf9 2163 if (!fb) {
a5071c2f 2164 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2165 return 0;
2166 }
2167
5826eca5
ED
2168 if(intel_crtc->plane > dev_priv->num_pipe) {
2169 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2170 intel_crtc->plane,
2171 dev_priv->num_pipe);
5c3b82e2 2172 return -EINVAL;
79e53945
JB
2173 }
2174
5c3b82e2 2175 mutex_lock(&dev->struct_mutex);
265db958 2176 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2177 to_intel_framebuffer(fb)->obj,
919926ae 2178 NULL);
5c3b82e2
CW
2179 if (ret != 0) {
2180 mutex_unlock(&dev->struct_mutex);
a5071c2f 2181 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2182 return ret;
2183 }
79e53945 2184
94352cf9
DV
2185 if (crtc->fb)
2186 intel_finish_fb(crtc->fb);
265db958 2187
94352cf9 2188 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2189 if (ret) {
94352cf9 2190 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2191 mutex_unlock(&dev->struct_mutex);
a5071c2f 2192 DRM_ERROR("failed to update base address\n");
4e6cfefc 2193 return ret;
79e53945 2194 }
3c4fdcfb 2195
94352cf9
DV
2196 old_fb = crtc->fb;
2197 crtc->fb = fb;
6c4c86f5
DV
2198 crtc->x = x;
2199 crtc->y = y;
94352cf9 2200
b7f1de28
CW
2201 if (old_fb) {
2202 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2203 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2204 }
652c393a 2205
6b8e6ed0 2206 intel_update_fbc(dev);
5c3b82e2 2207 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2208
2209 if (!dev->primary->master)
5c3b82e2 2210 return 0;
79e53945
JB
2211
2212 master_priv = dev->primary->master->driver_priv;
2213 if (!master_priv->sarea_priv)
5c3b82e2 2214 return 0;
79e53945 2215
265db958 2216 if (intel_crtc->pipe) {
79e53945
JB
2217 master_priv->sarea_priv->pipeB_x = x;
2218 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2219 } else {
2220 master_priv->sarea_priv->pipeA_x = x;
2221 master_priv->sarea_priv->pipeA_y = y;
79e53945 2222 }
5c3b82e2
CW
2223
2224 return 0;
79e53945
JB
2225}
2226
5eddb70b 2227static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2228{
2229 struct drm_device *dev = crtc->dev;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 u32 dpa_ctl;
2232
28c97730 2233 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2234 dpa_ctl = I915_READ(DP_A);
2235 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2236
2237 if (clock < 200000) {
2238 u32 temp;
2239 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2240 /* workaround for 160Mhz:
2241 1) program 0x4600c bits 15:0 = 0x8124
2242 2) program 0x46010 bit 0 = 1
2243 3) program 0x46034 bit 24 = 1
2244 4) program 0x64000 bit 14 = 1
2245 */
2246 temp = I915_READ(0x4600c);
2247 temp &= 0xffff0000;
2248 I915_WRITE(0x4600c, temp | 0x8124);
2249
2250 temp = I915_READ(0x46010);
2251 I915_WRITE(0x46010, temp | 1);
2252
2253 temp = I915_READ(0x46034);
2254 I915_WRITE(0x46034, temp | (1 << 24));
2255 } else {
2256 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2257 }
2258 I915_WRITE(DP_A, dpa_ctl);
2259
5eddb70b 2260 POSTING_READ(DP_A);
32f9d658
ZW
2261 udelay(500);
2262}
2263
5e84e1a4
ZW
2264static void intel_fdi_normal_train(struct drm_crtc *crtc)
2265{
2266 struct drm_device *dev = crtc->dev;
2267 struct drm_i915_private *dev_priv = dev->dev_private;
2268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269 int pipe = intel_crtc->pipe;
2270 u32 reg, temp;
2271
2272 /* enable normal train */
2273 reg = FDI_TX_CTL(pipe);
2274 temp = I915_READ(reg);
61e499bf 2275 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2276 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2277 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2278 } else {
2279 temp &= ~FDI_LINK_TRAIN_NONE;
2280 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2281 }
5e84e1a4
ZW
2282 I915_WRITE(reg, temp);
2283
2284 reg = FDI_RX_CTL(pipe);
2285 temp = I915_READ(reg);
2286 if (HAS_PCH_CPT(dev)) {
2287 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2288 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2289 } else {
2290 temp &= ~FDI_LINK_TRAIN_NONE;
2291 temp |= FDI_LINK_TRAIN_NONE;
2292 }
2293 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2294
2295 /* wait one idle pattern time */
2296 POSTING_READ(reg);
2297 udelay(1000);
357555c0
JB
2298
2299 /* IVB wants error correction enabled */
2300 if (IS_IVYBRIDGE(dev))
2301 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2302 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2303}
2304
291427f5
JB
2305static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2306{
2307 struct drm_i915_private *dev_priv = dev->dev_private;
2308 u32 flags = I915_READ(SOUTH_CHICKEN1);
2309
2310 flags |= FDI_PHASE_SYNC_OVR(pipe);
2311 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2312 flags |= FDI_PHASE_SYNC_EN(pipe);
2313 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2314 POSTING_READ(SOUTH_CHICKEN1);
2315}
2316
8db9d77b
ZW
2317/* The FDI link training functions for ILK/Ibexpeak. */
2318static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2319{
2320 struct drm_device *dev = crtc->dev;
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 int pipe = intel_crtc->pipe;
0fc932b8 2324 int plane = intel_crtc->plane;
5eddb70b 2325 u32 reg, temp, tries;
8db9d77b 2326
0fc932b8
JB
2327 /* FDI needs bits from pipe & plane first */
2328 assert_pipe_enabled(dev_priv, pipe);
2329 assert_plane_enabled(dev_priv, plane);
2330
e1a44743
AJ
2331 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2332 for train result */
5eddb70b
CW
2333 reg = FDI_RX_IMR(pipe);
2334 temp = I915_READ(reg);
e1a44743
AJ
2335 temp &= ~FDI_RX_SYMBOL_LOCK;
2336 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2337 I915_WRITE(reg, temp);
2338 I915_READ(reg);
e1a44743
AJ
2339 udelay(150);
2340
8db9d77b 2341 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2342 reg = FDI_TX_CTL(pipe);
2343 temp = I915_READ(reg);
77ffb597
AJ
2344 temp &= ~(7 << 19);
2345 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2346 temp &= ~FDI_LINK_TRAIN_NONE;
2347 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2348 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2349
5eddb70b
CW
2350 reg = FDI_RX_CTL(pipe);
2351 temp = I915_READ(reg);
8db9d77b
ZW
2352 temp &= ~FDI_LINK_TRAIN_NONE;
2353 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2354 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2355
2356 POSTING_READ(reg);
8db9d77b
ZW
2357 udelay(150);
2358
5b2adf89 2359 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2360 if (HAS_PCH_IBX(dev)) {
2361 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363 FDI_RX_PHASE_SYNC_POINTER_EN);
2364 }
5b2adf89 2365
5eddb70b 2366 reg = FDI_RX_IIR(pipe);
e1a44743 2367 for (tries = 0; tries < 5; tries++) {
5eddb70b 2368 temp = I915_READ(reg);
8db9d77b
ZW
2369 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2370
2371 if ((temp & FDI_RX_BIT_LOCK)) {
2372 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2373 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2374 break;
2375 }
8db9d77b 2376 }
e1a44743 2377 if (tries == 5)
5eddb70b 2378 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2379
2380 /* Train 2 */
5eddb70b
CW
2381 reg = FDI_TX_CTL(pipe);
2382 temp = I915_READ(reg);
8db9d77b
ZW
2383 temp &= ~FDI_LINK_TRAIN_NONE;
2384 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2385 I915_WRITE(reg, temp);
8db9d77b 2386
5eddb70b
CW
2387 reg = FDI_RX_CTL(pipe);
2388 temp = I915_READ(reg);
8db9d77b
ZW
2389 temp &= ~FDI_LINK_TRAIN_NONE;
2390 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2391 I915_WRITE(reg, temp);
8db9d77b 2392
5eddb70b
CW
2393 POSTING_READ(reg);
2394 udelay(150);
8db9d77b 2395
5eddb70b 2396 reg = FDI_RX_IIR(pipe);
e1a44743 2397 for (tries = 0; tries < 5; tries++) {
5eddb70b 2398 temp = I915_READ(reg);
8db9d77b
ZW
2399 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2400
2401 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2402 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2403 DRM_DEBUG_KMS("FDI train 2 done.\n");
2404 break;
2405 }
8db9d77b 2406 }
e1a44743 2407 if (tries == 5)
5eddb70b 2408 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2409
2410 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2411
8db9d77b
ZW
2412}
2413
0206e353 2414static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2415 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2416 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2417 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2418 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2419};
2420
2421/* The FDI link training functions for SNB/Cougarpoint. */
2422static void gen6_fdi_link_train(struct drm_crtc *crtc)
2423{
2424 struct drm_device *dev = crtc->dev;
2425 struct drm_i915_private *dev_priv = dev->dev_private;
2426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2427 int pipe = intel_crtc->pipe;
fa37d39e 2428 u32 reg, temp, i, retry;
8db9d77b 2429
e1a44743
AJ
2430 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2431 for train result */
5eddb70b
CW
2432 reg = FDI_RX_IMR(pipe);
2433 temp = I915_READ(reg);
e1a44743
AJ
2434 temp &= ~FDI_RX_SYMBOL_LOCK;
2435 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2436 I915_WRITE(reg, temp);
2437
2438 POSTING_READ(reg);
e1a44743
AJ
2439 udelay(150);
2440
8db9d77b 2441 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2442 reg = FDI_TX_CTL(pipe);
2443 temp = I915_READ(reg);
77ffb597
AJ
2444 temp &= ~(7 << 19);
2445 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2446 temp &= ~FDI_LINK_TRAIN_NONE;
2447 temp |= FDI_LINK_TRAIN_PATTERN_1;
2448 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2449 /* SNB-B */
2450 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2451 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2452
5eddb70b
CW
2453 reg = FDI_RX_CTL(pipe);
2454 temp = I915_READ(reg);
8db9d77b
ZW
2455 if (HAS_PCH_CPT(dev)) {
2456 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2457 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2458 } else {
2459 temp &= ~FDI_LINK_TRAIN_NONE;
2460 temp |= FDI_LINK_TRAIN_PATTERN_1;
2461 }
5eddb70b
CW
2462 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2463
2464 POSTING_READ(reg);
8db9d77b
ZW
2465 udelay(150);
2466
291427f5
JB
2467 if (HAS_PCH_CPT(dev))
2468 cpt_phase_pointer_enable(dev, pipe);
2469
0206e353 2470 for (i = 0; i < 4; i++) {
5eddb70b
CW
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
8db9d77b
ZW
2473 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2474 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2475 I915_WRITE(reg, temp);
2476
2477 POSTING_READ(reg);
8db9d77b
ZW
2478 udelay(500);
2479
fa37d39e
SP
2480 for (retry = 0; retry < 5; retry++) {
2481 reg = FDI_RX_IIR(pipe);
2482 temp = I915_READ(reg);
2483 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484 if (temp & FDI_RX_BIT_LOCK) {
2485 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2486 DRM_DEBUG_KMS("FDI train 1 done.\n");
2487 break;
2488 }
2489 udelay(50);
8db9d77b 2490 }
fa37d39e
SP
2491 if (retry < 5)
2492 break;
8db9d77b
ZW
2493 }
2494 if (i == 4)
5eddb70b 2495 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2496
2497 /* Train 2 */
5eddb70b
CW
2498 reg = FDI_TX_CTL(pipe);
2499 temp = I915_READ(reg);
8db9d77b
ZW
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_2;
2502 if (IS_GEN6(dev)) {
2503 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2504 /* SNB-B */
2505 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2506 }
5eddb70b 2507 I915_WRITE(reg, temp);
8db9d77b 2508
5eddb70b
CW
2509 reg = FDI_RX_CTL(pipe);
2510 temp = I915_READ(reg);
8db9d77b
ZW
2511 if (HAS_PCH_CPT(dev)) {
2512 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2513 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2514 } else {
2515 temp &= ~FDI_LINK_TRAIN_NONE;
2516 temp |= FDI_LINK_TRAIN_PATTERN_2;
2517 }
5eddb70b
CW
2518 I915_WRITE(reg, temp);
2519
2520 POSTING_READ(reg);
8db9d77b
ZW
2521 udelay(150);
2522
0206e353 2523 for (i = 0; i < 4; i++) {
5eddb70b
CW
2524 reg = FDI_TX_CTL(pipe);
2525 temp = I915_READ(reg);
8db9d77b
ZW
2526 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2527 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2528 I915_WRITE(reg, temp);
2529
2530 POSTING_READ(reg);
8db9d77b
ZW
2531 udelay(500);
2532
fa37d39e
SP
2533 for (retry = 0; retry < 5; retry++) {
2534 reg = FDI_RX_IIR(pipe);
2535 temp = I915_READ(reg);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537 if (temp & FDI_RX_SYMBOL_LOCK) {
2538 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2539 DRM_DEBUG_KMS("FDI train 2 done.\n");
2540 break;
2541 }
2542 udelay(50);
8db9d77b 2543 }
fa37d39e
SP
2544 if (retry < 5)
2545 break;
8db9d77b
ZW
2546 }
2547 if (i == 4)
5eddb70b 2548 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2549
2550 DRM_DEBUG_KMS("FDI train done.\n");
2551}
2552
357555c0
JB
2553/* Manual link training for Ivy Bridge A0 parts */
2554static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2555{
2556 struct drm_device *dev = crtc->dev;
2557 struct drm_i915_private *dev_priv = dev->dev_private;
2558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2559 int pipe = intel_crtc->pipe;
2560 u32 reg, temp, i;
2561
2562 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2563 for train result */
2564 reg = FDI_RX_IMR(pipe);
2565 temp = I915_READ(reg);
2566 temp &= ~FDI_RX_SYMBOL_LOCK;
2567 temp &= ~FDI_RX_BIT_LOCK;
2568 I915_WRITE(reg, temp);
2569
2570 POSTING_READ(reg);
2571 udelay(150);
2572
2573 /* enable CPU FDI TX and PCH FDI RX */
2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg);
2576 temp &= ~(7 << 19);
2577 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2578 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2579 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2580 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2581 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2582 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2583 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2584
2585 reg = FDI_RX_CTL(pipe);
2586 temp = I915_READ(reg);
2587 temp &= ~FDI_LINK_TRAIN_AUTO;
2588 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2589 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2590 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2591 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2592
2593 POSTING_READ(reg);
2594 udelay(150);
2595
291427f5
JB
2596 if (HAS_PCH_CPT(dev))
2597 cpt_phase_pointer_enable(dev, pipe);
2598
0206e353 2599 for (i = 0; i < 4; i++) {
357555c0
JB
2600 reg = FDI_TX_CTL(pipe);
2601 temp = I915_READ(reg);
2602 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603 temp |= snb_b_fdi_train_param[i];
2604 I915_WRITE(reg, temp);
2605
2606 POSTING_READ(reg);
2607 udelay(500);
2608
2609 reg = FDI_RX_IIR(pipe);
2610 temp = I915_READ(reg);
2611 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2612
2613 if (temp & FDI_RX_BIT_LOCK ||
2614 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2615 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2616 DRM_DEBUG_KMS("FDI train 1 done.\n");
2617 break;
2618 }
2619 }
2620 if (i == 4)
2621 DRM_ERROR("FDI train 1 fail!\n");
2622
2623 /* Train 2 */
2624 reg = FDI_TX_CTL(pipe);
2625 temp = I915_READ(reg);
2626 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2627 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2628 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2629 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2630 I915_WRITE(reg, temp);
2631
2632 reg = FDI_RX_CTL(pipe);
2633 temp = I915_READ(reg);
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2636 I915_WRITE(reg, temp);
2637
2638 POSTING_READ(reg);
2639 udelay(150);
2640
0206e353 2641 for (i = 0; i < 4; i++) {
357555c0
JB
2642 reg = FDI_TX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645 temp |= snb_b_fdi_train_param[i];
2646 I915_WRITE(reg, temp);
2647
2648 POSTING_READ(reg);
2649 udelay(500);
2650
2651 reg = FDI_RX_IIR(pipe);
2652 temp = I915_READ(reg);
2653 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655 if (temp & FDI_RX_SYMBOL_LOCK) {
2656 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2657 DRM_DEBUG_KMS("FDI train 2 done.\n");
2658 break;
2659 }
2660 }
2661 if (i == 4)
2662 DRM_ERROR("FDI train 2 fail!\n");
2663
2664 DRM_DEBUG_KMS("FDI train done.\n");
2665}
2666
88cefb6c 2667static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2668{
88cefb6c 2669 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2670 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2671 int pipe = intel_crtc->pipe;
5eddb70b 2672 u32 reg, temp;
79e53945 2673
c64e311e 2674 /* Write the TU size bits so error detection works */
5eddb70b
CW
2675 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2676 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2677
c98e9dcf 2678 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2679 reg = FDI_RX_CTL(pipe);
2680 temp = I915_READ(reg);
2681 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2682 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2683 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2684 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2685
2686 POSTING_READ(reg);
c98e9dcf
JB
2687 udelay(200);
2688
2689 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2690 temp = I915_READ(reg);
2691 I915_WRITE(reg, temp | FDI_PCDCLK);
2692
2693 POSTING_READ(reg);
c98e9dcf
JB
2694 udelay(200);
2695
bf507ef7
ED
2696 /* On Haswell, the PLL configuration for ports and pipes is handled
2697 * separately, as part of DDI setup */
2698 if (!IS_HASWELL(dev)) {
2699 /* Enable CPU FDI TX PLL, always on for Ironlake */
2700 reg = FDI_TX_CTL(pipe);
2701 temp = I915_READ(reg);
2702 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2703 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2704
bf507ef7
ED
2705 POSTING_READ(reg);
2706 udelay(100);
2707 }
6be4a607 2708 }
0e23b99d
JB
2709}
2710
88cefb6c
DV
2711static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2712{
2713 struct drm_device *dev = intel_crtc->base.dev;
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 int pipe = intel_crtc->pipe;
2716 u32 reg, temp;
2717
2718 /* Switch from PCDclk to Rawclk */
2719 reg = FDI_RX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2722
2723 /* Disable CPU FDI TX PLL */
2724 reg = FDI_TX_CTL(pipe);
2725 temp = I915_READ(reg);
2726 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2727
2728 POSTING_READ(reg);
2729 udelay(100);
2730
2731 reg = FDI_RX_CTL(pipe);
2732 temp = I915_READ(reg);
2733 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2734
2735 /* Wait for the clocks to turn off. */
2736 POSTING_READ(reg);
2737 udelay(100);
2738}
2739
291427f5
JB
2740static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2741{
2742 struct drm_i915_private *dev_priv = dev->dev_private;
2743 u32 flags = I915_READ(SOUTH_CHICKEN1);
2744
2745 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2746 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2747 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2748 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2749 POSTING_READ(SOUTH_CHICKEN1);
2750}
0fc932b8
JB
2751static void ironlake_fdi_disable(struct drm_crtc *crtc)
2752{
2753 struct drm_device *dev = crtc->dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2756 int pipe = intel_crtc->pipe;
2757 u32 reg, temp;
2758
2759 /* disable CPU FDI tx and PCH FDI rx */
2760 reg = FDI_TX_CTL(pipe);
2761 temp = I915_READ(reg);
2762 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2763 POSTING_READ(reg);
2764
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~(0x7 << 16);
2768 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2769 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2770
2771 POSTING_READ(reg);
2772 udelay(100);
2773
2774 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2775 if (HAS_PCH_IBX(dev)) {
2776 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2777 I915_WRITE(FDI_RX_CHICKEN(pipe),
2778 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2779 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2780 } else if (HAS_PCH_CPT(dev)) {
2781 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2782 }
0fc932b8
JB
2783
2784 /* still set train pattern 1 */
2785 reg = FDI_TX_CTL(pipe);
2786 temp = I915_READ(reg);
2787 temp &= ~FDI_LINK_TRAIN_NONE;
2788 temp |= FDI_LINK_TRAIN_PATTERN_1;
2789 I915_WRITE(reg, temp);
2790
2791 reg = FDI_RX_CTL(pipe);
2792 temp = I915_READ(reg);
2793 if (HAS_PCH_CPT(dev)) {
2794 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2795 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2796 } else {
2797 temp &= ~FDI_LINK_TRAIN_NONE;
2798 temp |= FDI_LINK_TRAIN_PATTERN_1;
2799 }
2800 /* BPC in FDI rx is consistent with that in PIPECONF */
2801 temp &= ~(0x07 << 16);
2802 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2803 I915_WRITE(reg, temp);
2804
2805 POSTING_READ(reg);
2806 udelay(100);
2807}
2808
e6c3a2a6
CW
2809static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2810{
0f91128d 2811 struct drm_device *dev = crtc->dev;
e6c3a2a6
CW
2812
2813 if (crtc->fb == NULL)
2814 return;
2815
0f91128d
CW
2816 mutex_lock(&dev->struct_mutex);
2817 intel_finish_fb(crtc->fb);
2818 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2819}
2820
040484af
JB
2821static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2822{
2823 struct drm_device *dev = crtc->dev;
228d3e36 2824 struct intel_encoder *intel_encoder;
040484af
JB
2825
2826 /*
2827 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2828 * must be driven by its own crtc; no sharing is possible.
2829 */
228d3e36 2830 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
040484af 2831
6ee8bab0
ED
2832 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2833 * CPU handles all others */
2834 if (IS_HASWELL(dev)) {
2835 /* It is still unclear how this will work on PPT, so throw up a warning */
2836 WARN_ON(!HAS_PCH_LPT(dev));
2837
228d3e36 2838 if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
6ee8bab0
ED
2839 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2840 return true;
2841 } else {
2842 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
228d3e36 2843 intel_encoder->type);
6ee8bab0
ED
2844 return false;
2845 }
2846 }
2847
228d3e36 2848 switch (intel_encoder->type) {
040484af 2849 case INTEL_OUTPUT_EDP:
228d3e36 2850 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2851 return false;
2852 continue;
2853 }
2854 }
2855
2856 return true;
2857}
2858
e615efe4
ED
2859/* Program iCLKIP clock to the desired frequency */
2860static void lpt_program_iclkip(struct drm_crtc *crtc)
2861{
2862 struct drm_device *dev = crtc->dev;
2863 struct drm_i915_private *dev_priv = dev->dev_private;
2864 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2865 u32 temp;
2866
2867 /* It is necessary to ungate the pixclk gate prior to programming
2868 * the divisors, and gate it back when it is done.
2869 */
2870 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2871
2872 /* Disable SSCCTL */
2873 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2874 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2875 SBI_SSCCTL_DISABLE);
2876
2877 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2878 if (crtc->mode.clock == 20000) {
2879 auxdiv = 1;
2880 divsel = 0x41;
2881 phaseinc = 0x20;
2882 } else {
2883 /* The iCLK virtual clock root frequency is in MHz,
2884 * but the crtc->mode.clock in in KHz. To get the divisors,
2885 * it is necessary to divide one by another, so we
2886 * convert the virtual clock precision to KHz here for higher
2887 * precision.
2888 */
2889 u32 iclk_virtual_root_freq = 172800 * 1000;
2890 u32 iclk_pi_range = 64;
2891 u32 desired_divisor, msb_divisor_value, pi_value;
2892
2893 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2894 msb_divisor_value = desired_divisor / iclk_pi_range;
2895 pi_value = desired_divisor % iclk_pi_range;
2896
2897 auxdiv = 0;
2898 divsel = msb_divisor_value - 2;
2899 phaseinc = pi_value;
2900 }
2901
2902 /* This should not happen with any sane values */
2903 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2904 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2905 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2906 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2907
2908 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2909 crtc->mode.clock,
2910 auxdiv,
2911 divsel,
2912 phasedir,
2913 phaseinc);
2914
2915 /* Program SSCDIVINTPHASE6 */
2916 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2917 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2918 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2919 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2920 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2921 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2922 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2923
2924 intel_sbi_write(dev_priv,
2925 SBI_SSCDIVINTPHASE6,
2926 temp);
2927
2928 /* Program SSCAUXDIV */
2929 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2930 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2931 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2932 intel_sbi_write(dev_priv,
2933 SBI_SSCAUXDIV6,
2934 temp);
2935
2936
2937 /* Enable modulator and associated divider */
2938 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2939 temp &= ~SBI_SSCCTL_DISABLE;
2940 intel_sbi_write(dev_priv,
2941 SBI_SSCCTL6,
2942 temp);
2943
2944 /* Wait for initialization time */
2945 udelay(24);
2946
2947 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2948}
2949
f67a559d
JB
2950/*
2951 * Enable PCH resources required for PCH ports:
2952 * - PCH PLLs
2953 * - FDI training & RX/TX
2954 * - update transcoder timings
2955 * - DP transcoding bits
2956 * - transcoder
2957 */
2958static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2959{
2960 struct drm_device *dev = crtc->dev;
2961 struct drm_i915_private *dev_priv = dev->dev_private;
2962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2963 int pipe = intel_crtc->pipe;
ee7b9f93 2964 u32 reg, temp;
2c07245f 2965
e7e164db
CW
2966 assert_transcoder_disabled(dev_priv, pipe);
2967
c98e9dcf 2968 /* For PCH output, training FDI link */
674cf967 2969 dev_priv->display.fdi_link_train(crtc);
2c07245f 2970
6f13b7b5
CW
2971 intel_enable_pch_pll(intel_crtc);
2972
e615efe4
ED
2973 if (HAS_PCH_LPT(dev)) {
2974 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2975 lpt_program_iclkip(crtc);
2976 } else if (HAS_PCH_CPT(dev)) {
ee7b9f93 2977 u32 sel;
4b645f14 2978
c98e9dcf 2979 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
2980 switch (pipe) {
2981 default:
2982 case 0:
2983 temp |= TRANSA_DPLL_ENABLE;
2984 sel = TRANSA_DPLLB_SEL;
2985 break;
2986 case 1:
2987 temp |= TRANSB_DPLL_ENABLE;
2988 sel = TRANSB_DPLLB_SEL;
2989 break;
2990 case 2:
2991 temp |= TRANSC_DPLL_ENABLE;
2992 sel = TRANSC_DPLLB_SEL;
2993 break;
d64311ab 2994 }
ee7b9f93
JB
2995 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2996 temp |= sel;
2997 else
2998 temp &= ~sel;
c98e9dcf 2999 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3000 }
5eddb70b 3001
d9b6cb56
JB
3002 /* set transcoder timing, panel must allow it */
3003 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3004 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3005 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3006 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3007
5eddb70b
CW
3008 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3009 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3010 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3011 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3012
f57e1e3a
ED
3013 if (!IS_HASWELL(dev))
3014 intel_fdi_normal_train(crtc);
5e84e1a4 3015
c98e9dcf
JB
3016 /* For PCH DP, enable TRANS_DP_CTL */
3017 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3018 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3019 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3020 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3021 reg = TRANS_DP_CTL(pipe);
3022 temp = I915_READ(reg);
3023 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3024 TRANS_DP_SYNC_MASK |
3025 TRANS_DP_BPC_MASK);
5eddb70b
CW
3026 temp |= (TRANS_DP_OUTPUT_ENABLE |
3027 TRANS_DP_ENH_FRAMING);
9325c9f0 3028 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3029
3030 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3031 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3032 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3033 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3034
3035 switch (intel_trans_dp_port_sel(crtc)) {
3036 case PCH_DP_B:
5eddb70b 3037 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3038 break;
3039 case PCH_DP_C:
5eddb70b 3040 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3041 break;
3042 case PCH_DP_D:
5eddb70b 3043 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3044 break;
3045 default:
3046 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 3047 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 3048 break;
32f9d658 3049 }
2c07245f 3050
5eddb70b 3051 I915_WRITE(reg, temp);
6be4a607 3052 }
b52eb4dc 3053
040484af 3054 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
3055}
3056
ee7b9f93
JB
3057static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3058{
3059 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3060
3061 if (pll == NULL)
3062 return;
3063
3064 if (pll->refcount == 0) {
3065 WARN(1, "bad PCH PLL refcount\n");
3066 return;
3067 }
3068
3069 --pll->refcount;
3070 intel_crtc->pch_pll = NULL;
3071}
3072
3073static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3074{
3075 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3076 struct intel_pch_pll *pll;
3077 int i;
3078
3079 pll = intel_crtc->pch_pll;
3080 if (pll) {
3081 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3082 intel_crtc->base.base.id, pll->pll_reg);
3083 goto prepare;
3084 }
3085
98b6bd99
DV
3086 if (HAS_PCH_IBX(dev_priv->dev)) {
3087 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3088 i = intel_crtc->pipe;
3089 pll = &dev_priv->pch_plls[i];
3090
3091 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3092 intel_crtc->base.base.id, pll->pll_reg);
3093
3094 goto found;
3095 }
3096
ee7b9f93
JB
3097 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3098 pll = &dev_priv->pch_plls[i];
3099
3100 /* Only want to check enabled timings first */
3101 if (pll->refcount == 0)
3102 continue;
3103
3104 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3105 fp == I915_READ(pll->fp0_reg)) {
3106 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3107 intel_crtc->base.base.id,
3108 pll->pll_reg, pll->refcount, pll->active);
3109
3110 goto found;
3111 }
3112 }
3113
3114 /* Ok no matching timings, maybe there's a free one? */
3115 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3116 pll = &dev_priv->pch_plls[i];
3117 if (pll->refcount == 0) {
3118 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3119 intel_crtc->base.base.id, pll->pll_reg);
3120 goto found;
3121 }
3122 }
3123
3124 return NULL;
3125
3126found:
3127 intel_crtc->pch_pll = pll;
3128 pll->refcount++;
3129 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3130prepare: /* separate function? */
3131 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3132
e04c7350
CW
3133 /* Wait for the clocks to stabilize before rewriting the regs */
3134 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3135 POSTING_READ(pll->pll_reg);
3136 udelay(150);
e04c7350
CW
3137
3138 I915_WRITE(pll->fp0_reg, fp);
3139 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3140 pll->on = false;
3141 return pll;
3142}
3143
d4270e57
JB
3144void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3145{
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3148 u32 temp;
3149
3150 temp = I915_READ(dslreg);
3151 udelay(500);
3152 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3153 /* Without this, mode sets may fail silently on FDI */
3154 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3155 udelay(250);
3156 I915_WRITE(tc2reg, 0);
3157 if (wait_for(I915_READ(dslreg) != temp, 5))
3158 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3159 }
3160}
3161
f67a559d
JB
3162static void ironlake_crtc_enable(struct drm_crtc *crtc)
3163{
3164 struct drm_device *dev = crtc->dev;
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3167 struct intel_encoder *encoder;
f67a559d
JB
3168 int pipe = intel_crtc->pipe;
3169 int plane = intel_crtc->plane;
3170 u32 temp;
3171 bool is_pch_port;
3172
08a48469
DV
3173 WARN_ON(!crtc->enabled);
3174
f67a559d
JB
3175 if (intel_crtc->active)
3176 return;
3177
3178 intel_crtc->active = true;
3179 intel_update_watermarks(dev);
3180
3181 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3182 temp = I915_READ(PCH_LVDS);
3183 if ((temp & LVDS_PORT_EN) == 0)
3184 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3185 }
3186
3187 is_pch_port = intel_crtc_driving_pch(crtc);
3188
46b6f814 3189 if (is_pch_port) {
88cefb6c 3190 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3191 } else {
3192 assert_fdi_tx_disabled(dev_priv, pipe);
3193 assert_fdi_rx_disabled(dev_priv, pipe);
3194 }
f67a559d 3195
bf49ec8c
DV
3196 for_each_encoder_on_crtc(dev, crtc, encoder)
3197 if (encoder->pre_enable)
3198 encoder->pre_enable(encoder);
3199
f67a559d
JB
3200 /* Enable panel fitting for LVDS */
3201 if (dev_priv->pch_pf_size &&
3202 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3203 /* Force use of hard-coded filter coefficients
3204 * as some pre-programmed values are broken,
3205 * e.g. x201.
3206 */
9db4a9c7
JB
3207 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3208 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3209 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3210 }
3211
9c54c0dd
JB
3212 /*
3213 * On ILK+ LUT must be loaded before the pipe is running but with
3214 * clocks enabled
3215 */
3216 intel_crtc_load_lut(crtc);
3217
f67a559d
JB
3218 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3219 intel_enable_plane(dev_priv, plane, pipe);
3220
3221 if (is_pch_port)
3222 ironlake_pch_enable(crtc);
c98e9dcf 3223
d1ebd816 3224 mutex_lock(&dev->struct_mutex);
bed4a673 3225 intel_update_fbc(dev);
d1ebd816
BW
3226 mutex_unlock(&dev->struct_mutex);
3227
6b383a7f 3228 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3229
fa5c73b1
DV
3230 for_each_encoder_on_crtc(dev, crtc, encoder)
3231 encoder->enable(encoder);
61b77ddd
DV
3232
3233 if (HAS_PCH_CPT(dev))
3234 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6be4a607
JB
3235}
3236
3237static void ironlake_crtc_disable(struct drm_crtc *crtc)
3238{
3239 struct drm_device *dev = crtc->dev;
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3242 struct intel_encoder *encoder;
6be4a607
JB
3243 int pipe = intel_crtc->pipe;
3244 int plane = intel_crtc->plane;
5eddb70b 3245 u32 reg, temp;
b52eb4dc 3246
ef9c3aee 3247
f7abfe8b
CW
3248 if (!intel_crtc->active)
3249 return;
3250
ea9d758d
DV
3251 for_each_encoder_on_crtc(dev, crtc, encoder)
3252 encoder->disable(encoder);
3253
e6c3a2a6 3254 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3255 drm_vblank_off(dev, pipe);
6b383a7f 3256 intel_crtc_update_cursor(crtc, false);
5eddb70b 3257
b24e7179 3258 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3259
973d04f9
CW
3260 if (dev_priv->cfb_plane == plane)
3261 intel_disable_fbc(dev);
2c07245f 3262
b24e7179 3263 intel_disable_pipe(dev_priv, pipe);
32f9d658 3264
6be4a607 3265 /* Disable PF */
9db4a9c7
JB
3266 I915_WRITE(PF_CTL(pipe), 0);
3267 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3268
bf49ec8c
DV
3269 for_each_encoder_on_crtc(dev, crtc, encoder)
3270 if (encoder->post_disable)
3271 encoder->post_disable(encoder);
3272
0fc932b8 3273 ironlake_fdi_disable(crtc);
2c07245f 3274
040484af 3275 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3276
6be4a607
JB
3277 if (HAS_PCH_CPT(dev)) {
3278 /* disable TRANS_DP_CTL */
5eddb70b
CW
3279 reg = TRANS_DP_CTL(pipe);
3280 temp = I915_READ(reg);
3281 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3282 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3283 I915_WRITE(reg, temp);
6be4a607
JB
3284
3285 /* disable DPLL_SEL */
3286 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3287 switch (pipe) {
3288 case 0:
d64311ab 3289 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3290 break;
3291 case 1:
6be4a607 3292 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3293 break;
3294 case 2:
4b645f14 3295 /* C shares PLL A or B */
d64311ab 3296 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3297 break;
3298 default:
3299 BUG(); /* wtf */
3300 }
6be4a607 3301 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3302 }
e3421a18 3303
6be4a607 3304 /* disable PCH DPLL */
ee7b9f93 3305 intel_disable_pch_pll(intel_crtc);
8db9d77b 3306
88cefb6c 3307 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3308
f7abfe8b 3309 intel_crtc->active = false;
6b383a7f 3310 intel_update_watermarks(dev);
d1ebd816
BW
3311
3312 mutex_lock(&dev->struct_mutex);
6b383a7f 3313 intel_update_fbc(dev);
d1ebd816 3314 mutex_unlock(&dev->struct_mutex);
6be4a607 3315}
1b3c7a47 3316
ee7b9f93
JB
3317static void ironlake_crtc_off(struct drm_crtc *crtc)
3318{
3319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3320 intel_put_pch_pll(intel_crtc);
3321}
3322
02e792fb
DV
3323static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3324{
02e792fb 3325 if (!enable && intel_crtc->overlay) {
23f09ce3 3326 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3327 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3328
23f09ce3 3329 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3330 dev_priv->mm.interruptible = false;
3331 (void) intel_overlay_switch_off(intel_crtc->overlay);
3332 dev_priv->mm.interruptible = true;
23f09ce3 3333 mutex_unlock(&dev->struct_mutex);
02e792fb 3334 }
02e792fb 3335
5dcdbcb0
CW
3336 /* Let userspace switch the overlay on again. In most cases userspace
3337 * has to recompute where to put it anyway.
3338 */
02e792fb
DV
3339}
3340
0b8765c6 3341static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3342{
3343 struct drm_device *dev = crtc->dev;
79e53945
JB
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3346 struct intel_encoder *encoder;
79e53945 3347 int pipe = intel_crtc->pipe;
80824003 3348 int plane = intel_crtc->plane;
79e53945 3349
08a48469
DV
3350 WARN_ON(!crtc->enabled);
3351
f7abfe8b
CW
3352 if (intel_crtc->active)
3353 return;
3354
3355 intel_crtc->active = true;
6b383a7f
CW
3356 intel_update_watermarks(dev);
3357
63d7bbe9 3358 intel_enable_pll(dev_priv, pipe);
040484af 3359 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3360 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3361
0b8765c6 3362 intel_crtc_load_lut(crtc);
bed4a673 3363 intel_update_fbc(dev);
79e53945 3364
0b8765c6
JB
3365 /* Give the overlay scaler a chance to enable if it's on this pipe */
3366 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3367 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3368
fa5c73b1
DV
3369 for_each_encoder_on_crtc(dev, crtc, encoder)
3370 encoder->enable(encoder);
0b8765c6 3371}
79e53945 3372
0b8765c6
JB
3373static void i9xx_crtc_disable(struct drm_crtc *crtc)
3374{
3375 struct drm_device *dev = crtc->dev;
3376 struct drm_i915_private *dev_priv = dev->dev_private;
3377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3378 struct intel_encoder *encoder;
0b8765c6
JB
3379 int pipe = intel_crtc->pipe;
3380 int plane = intel_crtc->plane;
b690e96c 3381
ef9c3aee 3382
f7abfe8b
CW
3383 if (!intel_crtc->active)
3384 return;
3385
ea9d758d
DV
3386 for_each_encoder_on_crtc(dev, crtc, encoder)
3387 encoder->disable(encoder);
3388
0b8765c6 3389 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3390 intel_crtc_wait_for_pending_flips(crtc);
3391 drm_vblank_off(dev, pipe);
0b8765c6 3392 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3393 intel_crtc_update_cursor(crtc, false);
0b8765c6 3394
973d04f9
CW
3395 if (dev_priv->cfb_plane == plane)
3396 intel_disable_fbc(dev);
79e53945 3397
b24e7179 3398 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3399 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3400 intel_disable_pll(dev_priv, pipe);
0b8765c6 3401
f7abfe8b 3402 intel_crtc->active = false;
6b383a7f
CW
3403 intel_update_fbc(dev);
3404 intel_update_watermarks(dev);
0b8765c6
JB
3405}
3406
ee7b9f93
JB
3407static void i9xx_crtc_off(struct drm_crtc *crtc)
3408{
3409}
3410
976f8a20
DV
3411static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3412 bool enabled)
2c07245f
ZW
3413{
3414 struct drm_device *dev = crtc->dev;
3415 struct drm_i915_master_private *master_priv;
3416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3417 int pipe = intel_crtc->pipe;
79e53945
JB
3418
3419 if (!dev->primary->master)
3420 return;
3421
3422 master_priv = dev->primary->master->driver_priv;
3423 if (!master_priv->sarea_priv)
3424 return;
3425
79e53945
JB
3426 switch (pipe) {
3427 case 0:
3428 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3429 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3430 break;
3431 case 1:
3432 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3433 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3434 break;
3435 default:
9db4a9c7 3436 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3437 break;
3438 }
79e53945
JB
3439}
3440
976f8a20
DV
3441/**
3442 * Sets the power management mode of the pipe and plane.
3443 */
3444void intel_crtc_update_dpms(struct drm_crtc *crtc)
3445{
3446 struct drm_device *dev = crtc->dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 struct intel_encoder *intel_encoder;
3449 bool enable = false;
3450
3451 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3452 enable |= intel_encoder->connectors_active;
3453
3454 if (enable)
3455 dev_priv->display.crtc_enable(crtc);
3456 else
3457 dev_priv->display.crtc_disable(crtc);
3458
3459 intel_crtc_update_sarea(crtc, enable);
3460}
3461
3462static void intel_crtc_noop(struct drm_crtc *crtc)
3463{
3464}
3465
cdd59983
CW
3466static void intel_crtc_disable(struct drm_crtc *crtc)
3467{
cdd59983 3468 struct drm_device *dev = crtc->dev;
976f8a20 3469 struct drm_connector *connector;
ee7b9f93 3470 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3471
976f8a20
DV
3472 /* crtc should still be enabled when we disable it. */
3473 WARN_ON(!crtc->enabled);
3474
3475 dev_priv->display.crtc_disable(crtc);
3476 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3477 dev_priv->display.off(crtc);
3478
931872fc
CW
3479 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3480 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3481
3482 if (crtc->fb) {
3483 mutex_lock(&dev->struct_mutex);
1690e1eb 3484 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3485 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3486 crtc->fb = NULL;
3487 }
3488
3489 /* Update computed state. */
3490 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3491 if (!connector->encoder || !connector->encoder->crtc)
3492 continue;
3493
3494 if (connector->encoder->crtc != crtc)
3495 continue;
3496
3497 connector->dpms = DRM_MODE_DPMS_OFF;
3498 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3499 }
3500}
3501
a261b246 3502void intel_modeset_disable(struct drm_device *dev)
79e53945 3503{
a261b246
DV
3504 struct drm_crtc *crtc;
3505
3506 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3507 if (crtc->enabled)
3508 intel_crtc_disable(crtc);
3509 }
79e53945
JB
3510}
3511
1f703855 3512void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3513{
7e7d76c3
JB
3514}
3515
ea5b213a 3516void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3517{
4ef69c7a 3518 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3519
ea5b213a
CW
3520 drm_encoder_cleanup(encoder);
3521 kfree(intel_encoder);
7e7d76c3
JB
3522}
3523
5ab432ef
DV
3524/* Simple dpms helper for encodres with just one connector, no cloning and only
3525 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3526 * state of the entire output pipe. */
3527void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3528{
5ab432ef
DV
3529 if (mode == DRM_MODE_DPMS_ON) {
3530 encoder->connectors_active = true;
3531
b2cabb0e 3532 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3533 } else {
3534 encoder->connectors_active = false;
3535
b2cabb0e 3536 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3537 }
79e53945
JB
3538}
3539
0a91ca29
DV
3540/* Cross check the actual hw state with our own modeset state tracking (and it's
3541 * internal consistency). */
b980514c 3542static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3543{
0a91ca29
DV
3544 if (connector->get_hw_state(connector)) {
3545 struct intel_encoder *encoder = connector->encoder;
3546 struct drm_crtc *crtc;
3547 bool encoder_enabled;
3548 enum pipe pipe;
3549
3550 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3551 connector->base.base.id,
3552 drm_get_connector_name(&connector->base));
3553
3554 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3555 "wrong connector dpms state\n");
3556 WARN(connector->base.encoder != &encoder->base,
3557 "active connector not linked to encoder\n");
3558 WARN(!encoder->connectors_active,
3559 "encoder->connectors_active not set\n");
3560
3561 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3562 WARN(!encoder_enabled, "encoder not enabled\n");
3563 if (WARN_ON(!encoder->base.crtc))
3564 return;
3565
3566 crtc = encoder->base.crtc;
3567
3568 WARN(!crtc->enabled, "crtc not enabled\n");
3569 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3570 WARN(pipe != to_intel_crtc(crtc)->pipe,
3571 "encoder active on the wrong pipe\n");
3572 }
79e53945
JB
3573}
3574
5ab432ef
DV
3575/* Even simpler default implementation, if there's really no special case to
3576 * consider. */
3577void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3578{
5ab432ef 3579 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3580
5ab432ef
DV
3581 /* All the simple cases only support two dpms states. */
3582 if (mode != DRM_MODE_DPMS_ON)
3583 mode = DRM_MODE_DPMS_OFF;
d4270e57 3584
5ab432ef
DV
3585 if (mode == connector->dpms)
3586 return;
3587
3588 connector->dpms = mode;
3589
3590 /* Only need to change hw state when actually enabled */
3591 if (encoder->base.crtc)
3592 intel_encoder_dpms(encoder, mode);
3593 else
8af6cf88 3594 WARN_ON(encoder->connectors_active != false);
0a91ca29 3595
b980514c 3596 intel_modeset_check_state(connector->dev);
79e53945
JB
3597}
3598
f0947c37
DV
3599/* Simple connector->get_hw_state implementation for encoders that support only
3600 * one connector and no cloning and hence the encoder state determines the state
3601 * of the connector. */
3602bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3603{
24929352 3604 enum pipe pipe = 0;
f0947c37 3605 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3606
f0947c37 3607 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3608}
3609
79e53945 3610static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3611 const struct drm_display_mode *mode,
79e53945
JB
3612 struct drm_display_mode *adjusted_mode)
3613{
2c07245f 3614 struct drm_device *dev = crtc->dev;
89749350 3615
bad720ff 3616 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3617 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3618 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3619 return false;
2c07245f 3620 }
89749350 3621
f9bef081
DV
3622 /* All interlaced capable intel hw wants timings in frames. Note though
3623 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3624 * timings, so we need to be careful not to clobber these.*/
3625 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3626 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3627
44f46b42
CW
3628 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3629 * with a hsync front porch of 0.
3630 */
3631 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3632 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3633 return false;
3634
79e53945
JB
3635 return true;
3636}
3637
25eb05fc
JB
3638static int valleyview_get_display_clock_speed(struct drm_device *dev)
3639{
3640 return 400000; /* FIXME */
3641}
3642
e70236a8
JB
3643static int i945_get_display_clock_speed(struct drm_device *dev)
3644{
3645 return 400000;
3646}
79e53945 3647
e70236a8 3648static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3649{
e70236a8
JB
3650 return 333000;
3651}
79e53945 3652
e70236a8
JB
3653static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3654{
3655 return 200000;
3656}
79e53945 3657
e70236a8
JB
3658static int i915gm_get_display_clock_speed(struct drm_device *dev)
3659{
3660 u16 gcfgc = 0;
79e53945 3661
e70236a8
JB
3662 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3663
3664 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3665 return 133000;
3666 else {
3667 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3668 case GC_DISPLAY_CLOCK_333_MHZ:
3669 return 333000;
3670 default:
3671 case GC_DISPLAY_CLOCK_190_200_MHZ:
3672 return 190000;
79e53945 3673 }
e70236a8
JB
3674 }
3675}
3676
3677static int i865_get_display_clock_speed(struct drm_device *dev)
3678{
3679 return 266000;
3680}
3681
3682static int i855_get_display_clock_speed(struct drm_device *dev)
3683{
3684 u16 hpllcc = 0;
3685 /* Assume that the hardware is in the high speed state. This
3686 * should be the default.
3687 */
3688 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3689 case GC_CLOCK_133_200:
3690 case GC_CLOCK_100_200:
3691 return 200000;
3692 case GC_CLOCK_166_250:
3693 return 250000;
3694 case GC_CLOCK_100_133:
79e53945 3695 return 133000;
e70236a8 3696 }
79e53945 3697
e70236a8
JB
3698 /* Shouldn't happen */
3699 return 0;
3700}
79e53945 3701
e70236a8
JB
3702static int i830_get_display_clock_speed(struct drm_device *dev)
3703{
3704 return 133000;
79e53945
JB
3705}
3706
2c07245f
ZW
3707struct fdi_m_n {
3708 u32 tu;
3709 u32 gmch_m;
3710 u32 gmch_n;
3711 u32 link_m;
3712 u32 link_n;
3713};
3714
3715static void
3716fdi_reduce_ratio(u32 *num, u32 *den)
3717{
3718 while (*num > 0xffffff || *den > 0xffffff) {
3719 *num >>= 1;
3720 *den >>= 1;
3721 }
3722}
3723
2c07245f 3724static void
f2b115e6
AJ
3725ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3726 int link_clock, struct fdi_m_n *m_n)
2c07245f 3727{
2c07245f
ZW
3728 m_n->tu = 64; /* default size */
3729
22ed1113
CW
3730 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3731 m_n->gmch_m = bits_per_pixel * pixel_clock;
3732 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3733 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3734
22ed1113
CW
3735 m_n->link_m = pixel_clock;
3736 m_n->link_n = link_clock;
2c07245f
ZW
3737 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3738}
3739
a7615030
CW
3740static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3741{
72bbe58c
KP
3742 if (i915_panel_use_ssc >= 0)
3743 return i915_panel_use_ssc != 0;
3744 return dev_priv->lvds_use_ssc
435793df 3745 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
3746}
3747
5a354204
JB
3748/**
3749 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3750 * @crtc: CRTC structure
3b5c78a3 3751 * @mode: requested mode
5a354204
JB
3752 *
3753 * A pipe may be connected to one or more outputs. Based on the depth of the
3754 * attached framebuffer, choose a good color depth to use on the pipe.
3755 *
3756 * If possible, match the pipe depth to the fb depth. In some cases, this
3757 * isn't ideal, because the connected output supports a lesser or restricted
3758 * set of depths. Resolve that here:
3759 * LVDS typically supports only 6bpc, so clamp down in that case
3760 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3761 * Displays may support a restricted set as well, check EDID and clamp as
3762 * appropriate.
3b5c78a3 3763 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
3764 *
3765 * RETURNS:
3766 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3767 * true if they don't match).
3768 */
3769static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 3770 struct drm_framebuffer *fb,
3b5c78a3
AJ
3771 unsigned int *pipe_bpp,
3772 struct drm_display_mode *mode)
5a354204
JB
3773{
3774 struct drm_device *dev = crtc->dev;
3775 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 3776 struct drm_connector *connector;
6c2b7c12 3777 struct intel_encoder *intel_encoder;
5a354204
JB
3778 unsigned int display_bpc = UINT_MAX, bpc;
3779
3780 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 3781 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
3782
3783 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3784 unsigned int lvds_bpc;
3785
3786 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3787 LVDS_A3_POWER_UP)
3788 lvds_bpc = 8;
3789 else
3790 lvds_bpc = 6;
3791
3792 if (lvds_bpc < display_bpc) {
82820490 3793 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
3794 display_bpc = lvds_bpc;
3795 }
3796 continue;
3797 }
3798
5a354204
JB
3799 /* Not one of the known troublemakers, check the EDID */
3800 list_for_each_entry(connector, &dev->mode_config.connector_list,
3801 head) {
6c2b7c12 3802 if (connector->encoder != &intel_encoder->base)
5a354204
JB
3803 continue;
3804
62ac41a6
JB
3805 /* Don't use an invalid EDID bpc value */
3806 if (connector->display_info.bpc &&
3807 connector->display_info.bpc < display_bpc) {
82820490 3808 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
3809 display_bpc = connector->display_info.bpc;
3810 }
3811 }
3812
3813 /*
3814 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3815 * through, clamp it down. (Note: >12bpc will be caught below.)
3816 */
3817 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3818 if (display_bpc > 8 && display_bpc < 12) {
82820490 3819 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
3820 display_bpc = 12;
3821 } else {
82820490 3822 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
3823 display_bpc = 8;
3824 }
3825 }
3826 }
3827
3b5c78a3
AJ
3828 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3829 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3830 display_bpc = 6;
3831 }
3832
5a354204
JB
3833 /*
3834 * We could just drive the pipe at the highest bpc all the time and
3835 * enable dithering as needed, but that costs bandwidth. So choose
3836 * the minimum value that expresses the full color range of the fb but
3837 * also stays within the max display bpc discovered above.
3838 */
3839
94352cf9 3840 switch (fb->depth) {
5a354204
JB
3841 case 8:
3842 bpc = 8; /* since we go through a colormap */
3843 break;
3844 case 15:
3845 case 16:
3846 bpc = 6; /* min is 18bpp */
3847 break;
3848 case 24:
578393cd 3849 bpc = 8;
5a354204
JB
3850 break;
3851 case 30:
578393cd 3852 bpc = 10;
5a354204
JB
3853 break;
3854 case 48:
578393cd 3855 bpc = 12;
5a354204
JB
3856 break;
3857 default:
3858 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3859 bpc = min((unsigned int)8, display_bpc);
3860 break;
3861 }
3862
578393cd
KP
3863 display_bpc = min(display_bpc, bpc);
3864
82820490
AJ
3865 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3866 bpc, display_bpc);
5a354204 3867
578393cd 3868 *pipe_bpp = display_bpc * 3;
5a354204
JB
3869
3870 return display_bpc != bpc;
3871}
3872
a0c4da24
JB
3873static int vlv_get_refclk(struct drm_crtc *crtc)
3874{
3875 struct drm_device *dev = crtc->dev;
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3877 int refclk = 27000; /* for DP & HDMI */
3878
3879 return 100000; /* only one validated so far */
3880
3881 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3882 refclk = 96000;
3883 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3884 if (intel_panel_use_ssc(dev_priv))
3885 refclk = 100000;
3886 else
3887 refclk = 96000;
3888 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3889 refclk = 100000;
3890 }
3891
3892 return refclk;
3893}
3894
c65d77d8
JB
3895static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3896{
3897 struct drm_device *dev = crtc->dev;
3898 struct drm_i915_private *dev_priv = dev->dev_private;
3899 int refclk;
3900
a0c4da24
JB
3901 if (IS_VALLEYVIEW(dev)) {
3902 refclk = vlv_get_refclk(crtc);
3903 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
3904 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3905 refclk = dev_priv->lvds_ssc_freq * 1000;
3906 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3907 refclk / 1000);
3908 } else if (!IS_GEN2(dev)) {
3909 refclk = 96000;
3910 } else {
3911 refclk = 48000;
3912 }
3913
3914 return refclk;
3915}
3916
3917static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3918 intel_clock_t *clock)
3919{
3920 /* SDVO TV has fixed PLL values depend on its clock range,
3921 this mirrors vbios setting. */
3922 if (adjusted_mode->clock >= 100000
3923 && adjusted_mode->clock < 140500) {
3924 clock->p1 = 2;
3925 clock->p2 = 10;
3926 clock->n = 3;
3927 clock->m1 = 16;
3928 clock->m2 = 8;
3929 } else if (adjusted_mode->clock >= 140500
3930 && adjusted_mode->clock <= 200000) {
3931 clock->p1 = 1;
3932 clock->p2 = 10;
3933 clock->n = 6;
3934 clock->m1 = 12;
3935 clock->m2 = 8;
3936 }
3937}
3938
a7516a05
JB
3939static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3940 intel_clock_t *clock,
3941 intel_clock_t *reduced_clock)
3942{
3943 struct drm_device *dev = crtc->dev;
3944 struct drm_i915_private *dev_priv = dev->dev_private;
3945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3946 int pipe = intel_crtc->pipe;
3947 u32 fp, fp2 = 0;
3948
3949 if (IS_PINEVIEW(dev)) {
3950 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3951 if (reduced_clock)
3952 fp2 = (1 << reduced_clock->n) << 16 |
3953 reduced_clock->m1 << 8 | reduced_clock->m2;
3954 } else {
3955 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3956 if (reduced_clock)
3957 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3958 reduced_clock->m2;
3959 }
3960
3961 I915_WRITE(FP0(pipe), fp);
3962
3963 intel_crtc->lowfreq_avail = false;
3964 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3965 reduced_clock && i915_powersave) {
3966 I915_WRITE(FP1(pipe), fp2);
3967 intel_crtc->lowfreq_avail = true;
3968 } else {
3969 I915_WRITE(FP1(pipe), fp);
3970 }
3971}
3972
93e537a1
DV
3973static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3974 struct drm_display_mode *adjusted_mode)
3975{
3976 struct drm_device *dev = crtc->dev;
3977 struct drm_i915_private *dev_priv = dev->dev_private;
3978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3979 int pipe = intel_crtc->pipe;
284d5df5 3980 u32 temp;
93e537a1
DV
3981
3982 temp = I915_READ(LVDS);
3983 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3984 if (pipe == 1) {
3985 temp |= LVDS_PIPEB_SELECT;
3986 } else {
3987 temp &= ~LVDS_PIPEB_SELECT;
3988 }
3989 /* set the corresponsding LVDS_BORDER bit */
3990 temp |= dev_priv->lvds_border_bits;
3991 /* Set the B0-B3 data pairs corresponding to whether we're going to
3992 * set the DPLLs for dual-channel mode or not.
3993 */
3994 if (clock->p2 == 7)
3995 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3996 else
3997 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3998
3999 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4000 * appropriately here, but we need to look more thoroughly into how
4001 * panels behave in the two modes.
4002 */
4003 /* set the dithering flag on LVDS as needed */
4004 if (INTEL_INFO(dev)->gen >= 4) {
4005 if (dev_priv->lvds_dither)
4006 temp |= LVDS_ENABLE_DITHER;
4007 else
4008 temp &= ~LVDS_ENABLE_DITHER;
4009 }
284d5df5 4010 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4011 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4012 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4013 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4014 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4015 I915_WRITE(LVDS, temp);
4016}
4017
a0c4da24
JB
4018static void vlv_update_pll(struct drm_crtc *crtc,
4019 struct drm_display_mode *mode,
4020 struct drm_display_mode *adjusted_mode,
4021 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4022 int num_connectors)
a0c4da24
JB
4023{
4024 struct drm_device *dev = crtc->dev;
4025 struct drm_i915_private *dev_priv = dev->dev_private;
4026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4027 int pipe = intel_crtc->pipe;
4028 u32 dpll, mdiv, pdiv;
4029 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4030 bool is_sdvo;
4031 u32 temp;
4032
4033 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4034 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4035
2a8f64ca
VP
4036 dpll = DPLL_VGA_MODE_DIS;
4037 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4038 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4039 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4040
4041 I915_WRITE(DPLL(pipe), dpll);
4042 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4043
4044 bestn = clock->n;
4045 bestm1 = clock->m1;
4046 bestm2 = clock->m2;
4047 bestp1 = clock->p1;
4048 bestp2 = clock->p2;
4049
2a8f64ca
VP
4050 /*
4051 * In Valleyview PLL and program lane counter registers are exposed
4052 * through DPIO interface
4053 */
a0c4da24
JB
4054 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4055 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4056 mdiv |= ((bestn << DPIO_N_SHIFT));
4057 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4058 mdiv |= (1 << DPIO_K_SHIFT);
4059 mdiv |= DPIO_ENABLE_CALIBRATION;
4060 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4061
4062 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4063
2a8f64ca 4064 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4065 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4066 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4067 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4068 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4069
2a8f64ca 4070 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4071
4072 dpll |= DPLL_VCO_ENABLE;
4073 I915_WRITE(DPLL(pipe), dpll);
4074 POSTING_READ(DPLL(pipe));
4075 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4076 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4077
2a8f64ca
VP
4078 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4079
4080 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4081 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4082
4083 I915_WRITE(DPLL(pipe), dpll);
4084
4085 /* Wait for the clocks to stabilize. */
4086 POSTING_READ(DPLL(pipe));
4087 udelay(150);
a0c4da24 4088
2a8f64ca
VP
4089 temp = 0;
4090 if (is_sdvo) {
4091 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4092 if (temp > 1)
4093 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4094 else
4095 temp = 0;
a0c4da24 4096 }
2a8f64ca
VP
4097 I915_WRITE(DPLL_MD(pipe), temp);
4098 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4099
2a8f64ca
VP
4100 /* Now program lane control registers */
4101 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4102 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4103 {
4104 temp = 0x1000C4;
4105 if(pipe == 1)
4106 temp |= (1 << 21);
4107 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4108 }
4109 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4110 {
4111 temp = 0x1000C4;
4112 if(pipe == 1)
4113 temp |= (1 << 21);
4114 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4115 }
a0c4da24
JB
4116}
4117
eb1cbe48
DV
4118static void i9xx_update_pll(struct drm_crtc *crtc,
4119 struct drm_display_mode *mode,
4120 struct drm_display_mode *adjusted_mode,
4121 intel_clock_t *clock, intel_clock_t *reduced_clock,
4122 int num_connectors)
4123{
4124 struct drm_device *dev = crtc->dev;
4125 struct drm_i915_private *dev_priv = dev->dev_private;
4126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4127 int pipe = intel_crtc->pipe;
4128 u32 dpll;
4129 bool is_sdvo;
4130
2a8f64ca
VP
4131 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4132
eb1cbe48
DV
4133 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4134 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4135
4136 dpll = DPLL_VGA_MODE_DIS;
4137
4138 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4139 dpll |= DPLLB_MODE_LVDS;
4140 else
4141 dpll |= DPLLB_MODE_DAC_SERIAL;
4142 if (is_sdvo) {
4143 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4144 if (pixel_multiplier > 1) {
4145 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4146 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4147 }
4148 dpll |= DPLL_DVO_HIGH_SPEED;
4149 }
4150 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4151 dpll |= DPLL_DVO_HIGH_SPEED;
4152
4153 /* compute bitmask from p1 value */
4154 if (IS_PINEVIEW(dev))
4155 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4156 else {
4157 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4158 if (IS_G4X(dev) && reduced_clock)
4159 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4160 }
4161 switch (clock->p2) {
4162 case 5:
4163 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4164 break;
4165 case 7:
4166 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4167 break;
4168 case 10:
4169 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4170 break;
4171 case 14:
4172 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4173 break;
4174 }
4175 if (INTEL_INFO(dev)->gen >= 4)
4176 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4177
4178 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4179 dpll |= PLL_REF_INPUT_TVCLKINBC;
4180 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4181 /* XXX: just matching BIOS for now */
4182 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4183 dpll |= 3;
4184 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4185 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4186 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4187 else
4188 dpll |= PLL_REF_INPUT_DREFCLK;
4189
4190 dpll |= DPLL_VCO_ENABLE;
4191 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4192 POSTING_READ(DPLL(pipe));
4193 udelay(150);
4194
4195 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4196 * This is an exception to the general rule that mode_set doesn't turn
4197 * things on.
4198 */
4199 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4200 intel_update_lvds(crtc, clock, adjusted_mode);
4201
4202 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4203 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4204
4205 I915_WRITE(DPLL(pipe), dpll);
4206
4207 /* Wait for the clocks to stabilize. */
4208 POSTING_READ(DPLL(pipe));
4209 udelay(150);
4210
4211 if (INTEL_INFO(dev)->gen >= 4) {
4212 u32 temp = 0;
4213 if (is_sdvo) {
4214 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4215 if (temp > 1)
4216 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4217 else
4218 temp = 0;
4219 }
4220 I915_WRITE(DPLL_MD(pipe), temp);
4221 } else {
4222 /* The pixel multiplier can only be updated once the
4223 * DPLL is enabled and the clocks are stable.
4224 *
4225 * So write it again.
4226 */
4227 I915_WRITE(DPLL(pipe), dpll);
4228 }
4229}
4230
4231static void i8xx_update_pll(struct drm_crtc *crtc,
4232 struct drm_display_mode *adjusted_mode,
2a8f64ca 4233 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4234 int num_connectors)
4235{
4236 struct drm_device *dev = crtc->dev;
4237 struct drm_i915_private *dev_priv = dev->dev_private;
4238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4239 int pipe = intel_crtc->pipe;
4240 u32 dpll;
4241
2a8f64ca
VP
4242 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4243
eb1cbe48
DV
4244 dpll = DPLL_VGA_MODE_DIS;
4245
4246 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4247 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4248 } else {
4249 if (clock->p1 == 2)
4250 dpll |= PLL_P1_DIVIDE_BY_TWO;
4251 else
4252 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4253 if (clock->p2 == 4)
4254 dpll |= PLL_P2_DIVIDE_BY_4;
4255 }
4256
4257 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4258 /* XXX: just matching BIOS for now */
4259 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4260 dpll |= 3;
4261 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4262 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4263 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4264 else
4265 dpll |= PLL_REF_INPUT_DREFCLK;
4266
4267 dpll |= DPLL_VCO_ENABLE;
4268 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4269 POSTING_READ(DPLL(pipe));
4270 udelay(150);
4271
eb1cbe48
DV
4272 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4273 * This is an exception to the general rule that mode_set doesn't turn
4274 * things on.
4275 */
4276 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4277 intel_update_lvds(crtc, clock, adjusted_mode);
4278
5b5896e4
DV
4279 I915_WRITE(DPLL(pipe), dpll);
4280
4281 /* Wait for the clocks to stabilize. */
4282 POSTING_READ(DPLL(pipe));
4283 udelay(150);
4284
eb1cbe48
DV
4285 /* The pixel multiplier can only be updated once the
4286 * DPLL is enabled and the clocks are stable.
4287 *
4288 * So write it again.
4289 */
4290 I915_WRITE(DPLL(pipe), dpll);
4291}
4292
b0e77b9c
PZ
4293static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4294 struct drm_display_mode *mode,
4295 struct drm_display_mode *adjusted_mode)
4296{
4297 struct drm_device *dev = intel_crtc->base.dev;
4298 struct drm_i915_private *dev_priv = dev->dev_private;
4299 enum pipe pipe = intel_crtc->pipe;
4300 uint32_t vsyncshift;
4301
4302 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4303 /* the chip adds 2 halflines automatically */
4304 adjusted_mode->crtc_vtotal -= 1;
4305 adjusted_mode->crtc_vblank_end -= 1;
4306 vsyncshift = adjusted_mode->crtc_hsync_start
4307 - adjusted_mode->crtc_htotal / 2;
4308 } else {
4309 vsyncshift = 0;
4310 }
4311
4312 if (INTEL_INFO(dev)->gen > 3)
4313 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4314
4315 I915_WRITE(HTOTAL(pipe),
4316 (adjusted_mode->crtc_hdisplay - 1) |
4317 ((adjusted_mode->crtc_htotal - 1) << 16));
4318 I915_WRITE(HBLANK(pipe),
4319 (adjusted_mode->crtc_hblank_start - 1) |
4320 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4321 I915_WRITE(HSYNC(pipe),
4322 (adjusted_mode->crtc_hsync_start - 1) |
4323 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4324
4325 I915_WRITE(VTOTAL(pipe),
4326 (adjusted_mode->crtc_vdisplay - 1) |
4327 ((adjusted_mode->crtc_vtotal - 1) << 16));
4328 I915_WRITE(VBLANK(pipe),
4329 (adjusted_mode->crtc_vblank_start - 1) |
4330 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4331 I915_WRITE(VSYNC(pipe),
4332 (adjusted_mode->crtc_vsync_start - 1) |
4333 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4334
4335 /* pipesrc controls the size that is scaled from, which should
4336 * always be the user's requested size.
4337 */
4338 I915_WRITE(PIPESRC(pipe),
4339 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4340}
4341
f564048e
EA
4342static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4343 struct drm_display_mode *mode,
4344 struct drm_display_mode *adjusted_mode,
4345 int x, int y,
94352cf9 4346 struct drm_framebuffer *fb)
79e53945
JB
4347{
4348 struct drm_device *dev = crtc->dev;
4349 struct drm_i915_private *dev_priv = dev->dev_private;
4350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4351 int pipe = intel_crtc->pipe;
80824003 4352 int plane = intel_crtc->plane;
c751ce4f 4353 int refclk, num_connectors = 0;
652c393a 4354 intel_clock_t clock, reduced_clock;
b0e77b9c 4355 u32 dspcntr, pipeconf;
eb1cbe48
DV
4356 bool ok, has_reduced_clock = false, is_sdvo = false;
4357 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4358 struct intel_encoder *encoder;
d4906093 4359 const intel_limit_t *limit;
5c3b82e2 4360 int ret;
79e53945 4361
6c2b7c12 4362 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4363 switch (encoder->type) {
79e53945
JB
4364 case INTEL_OUTPUT_LVDS:
4365 is_lvds = true;
4366 break;
4367 case INTEL_OUTPUT_SDVO:
7d57382e 4368 case INTEL_OUTPUT_HDMI:
79e53945 4369 is_sdvo = true;
5eddb70b 4370 if (encoder->needs_tv_clock)
e2f0ba97 4371 is_tv = true;
79e53945 4372 break;
79e53945
JB
4373 case INTEL_OUTPUT_TVOUT:
4374 is_tv = true;
4375 break;
a4fc5ed6
KP
4376 case INTEL_OUTPUT_DISPLAYPORT:
4377 is_dp = true;
4378 break;
79e53945 4379 }
43565a06 4380
c751ce4f 4381 num_connectors++;
79e53945
JB
4382 }
4383
c65d77d8 4384 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4385
d4906093
ML
4386 /*
4387 * Returns a set of divisors for the desired target clock with the given
4388 * refclk, or FALSE. The returned values represent the clock equation:
4389 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4390 */
1b894b59 4391 limit = intel_limit(crtc, refclk);
cec2f356
SP
4392 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4393 &clock);
79e53945
JB
4394 if (!ok) {
4395 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4396 return -EINVAL;
79e53945
JB
4397 }
4398
cda4b7d3 4399 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4400 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4401
ddc9003c 4402 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4403 /*
4404 * Ensure we match the reduced clock's P to the target clock.
4405 * If the clocks don't match, we can't switch the display clock
4406 * by using the FP0/FP1. In such case we will disable the LVDS
4407 * downclock feature.
4408 */
ddc9003c 4409 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4410 dev_priv->lvds_downclock,
4411 refclk,
cec2f356 4412 &clock,
5eddb70b 4413 &reduced_clock);
7026d4ac
ZW
4414 }
4415
c65d77d8
JB
4416 if (is_sdvo && is_tv)
4417 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4418
eb1cbe48 4419 if (IS_GEN2(dev))
2a8f64ca
VP
4420 i8xx_update_pll(crtc, adjusted_mode, &clock,
4421 has_reduced_clock ? &reduced_clock : NULL,
4422 num_connectors);
a0c4da24 4423 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4424 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4425 has_reduced_clock ? &reduced_clock : NULL,
4426 num_connectors);
79e53945 4427 else
eb1cbe48
DV
4428 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4429 has_reduced_clock ? &reduced_clock : NULL,
4430 num_connectors);
79e53945
JB
4431
4432 /* setup pipeconf */
5eddb70b 4433 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4434
4435 /* Set up the display plane register */
4436 dspcntr = DISPPLANE_GAMMA_ENABLE;
4437
929c77fb
EA
4438 if (pipe == 0)
4439 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4440 else
4441 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4442
a6c45cf0 4443 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4444 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4445 * core speed.
4446 *
4447 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4448 * pipe == 0 check?
4449 */
e70236a8
JB
4450 if (mode->clock >
4451 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4452 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4453 else
5eddb70b 4454 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4455 }
4456
3b5c78a3
AJ
4457 /* default to 8bpc */
4458 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4459 if (is_dp) {
4460 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4461 pipeconf |= PIPECONF_BPP_6 |
4462 PIPECONF_DITHER_EN |
4463 PIPECONF_DITHER_TYPE_SP;
4464 }
4465 }
4466
19c03924
GB
4467 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4468 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4469 pipeconf |= PIPECONF_BPP_6 |
4470 PIPECONF_ENABLE |
4471 I965_PIPECONF_ACTIVE;
4472 }
4473 }
4474
28c97730 4475 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4476 drm_mode_debug_printmodeline(mode);
4477
a7516a05
JB
4478 if (HAS_PIPE_CXSR(dev)) {
4479 if (intel_crtc->lowfreq_avail) {
28c97730 4480 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4481 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4482 } else {
28c97730 4483 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4484 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4485 }
4486 }
4487
617cf884 4488 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575 4489 if (!IS_GEN2(dev) &&
b0e77b9c 4490 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
734b4157 4491 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
b0e77b9c 4492 else
617cf884 4493 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 4494
b0e77b9c 4495 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b
CW
4496
4497 /* pipesrc and dspsize control the size that is scaled from,
4498 * which should always be the user's requested size.
79e53945 4499 */
929c77fb
EA
4500 I915_WRITE(DSPSIZE(plane),
4501 ((mode->vdisplay - 1) << 16) |
4502 (mode->hdisplay - 1));
4503 I915_WRITE(DSPPOS(plane), 0);
2c07245f 4504
f564048e
EA
4505 I915_WRITE(PIPECONF(pipe), pipeconf);
4506 POSTING_READ(PIPECONF(pipe));
929c77fb 4507 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4508
4509 intel_wait_for_vblank(dev, pipe);
4510
f564048e
EA
4511 I915_WRITE(DSPCNTR(plane), dspcntr);
4512 POSTING_READ(DSPCNTR(plane));
4513
94352cf9 4514 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4515
4516 intel_update_watermarks(dev);
4517
f564048e
EA
4518 return ret;
4519}
4520
9fb526db
KP
4521/*
4522 * Initialize reference clocks when the driver loads
4523 */
4524void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4525{
4526 struct drm_i915_private *dev_priv = dev->dev_private;
4527 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4528 struct intel_encoder *encoder;
13d83a67
JB
4529 u32 temp;
4530 bool has_lvds = false;
199e5d79
KP
4531 bool has_cpu_edp = false;
4532 bool has_pch_edp = false;
4533 bool has_panel = false;
99eb6a01
KP
4534 bool has_ck505 = false;
4535 bool can_ssc = false;
13d83a67
JB
4536
4537 /* We need to take the global config into account */
199e5d79
KP
4538 list_for_each_entry(encoder, &mode_config->encoder_list,
4539 base.head) {
4540 switch (encoder->type) {
4541 case INTEL_OUTPUT_LVDS:
4542 has_panel = true;
4543 has_lvds = true;
4544 break;
4545 case INTEL_OUTPUT_EDP:
4546 has_panel = true;
4547 if (intel_encoder_is_pch_edp(&encoder->base))
4548 has_pch_edp = true;
4549 else
4550 has_cpu_edp = true;
4551 break;
13d83a67
JB
4552 }
4553 }
4554
99eb6a01
KP
4555 if (HAS_PCH_IBX(dev)) {
4556 has_ck505 = dev_priv->display_clock_mode;
4557 can_ssc = has_ck505;
4558 } else {
4559 has_ck505 = false;
4560 can_ssc = true;
4561 }
4562
4563 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4564 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4565 has_ck505);
13d83a67
JB
4566
4567 /* Ironlake: try to setup display ref clock before DPLL
4568 * enabling. This is only under driver's control after
4569 * PCH B stepping, previous chipset stepping should be
4570 * ignoring this setting.
4571 */
4572 temp = I915_READ(PCH_DREF_CONTROL);
4573 /* Always enable nonspread source */
4574 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4575
99eb6a01
KP
4576 if (has_ck505)
4577 temp |= DREF_NONSPREAD_CK505_ENABLE;
4578 else
4579 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4580
199e5d79
KP
4581 if (has_panel) {
4582 temp &= ~DREF_SSC_SOURCE_MASK;
4583 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4584
199e5d79 4585 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4586 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4587 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4588 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4589 } else
4590 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4591
4592 /* Get SSC going before enabling the outputs */
4593 I915_WRITE(PCH_DREF_CONTROL, temp);
4594 POSTING_READ(PCH_DREF_CONTROL);
4595 udelay(200);
4596
13d83a67
JB
4597 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4598
4599 /* Enable CPU source on CPU attached eDP */
199e5d79 4600 if (has_cpu_edp) {
99eb6a01 4601 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4602 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4603 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4604 }
13d83a67
JB
4605 else
4606 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4607 } else
4608 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4609
4610 I915_WRITE(PCH_DREF_CONTROL, temp);
4611 POSTING_READ(PCH_DREF_CONTROL);
4612 udelay(200);
4613 } else {
4614 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4615
4616 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4617
4618 /* Turn off CPU output */
4619 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4620
4621 I915_WRITE(PCH_DREF_CONTROL, temp);
4622 POSTING_READ(PCH_DREF_CONTROL);
4623 udelay(200);
4624
4625 /* Turn off the SSC source */
4626 temp &= ~DREF_SSC_SOURCE_MASK;
4627 temp |= DREF_SSC_SOURCE_DISABLE;
4628
4629 /* Turn off SSC1 */
4630 temp &= ~ DREF_SSC1_ENABLE;
4631
13d83a67
JB
4632 I915_WRITE(PCH_DREF_CONTROL, temp);
4633 POSTING_READ(PCH_DREF_CONTROL);
4634 udelay(200);
4635 }
4636}
4637
d9d444cb
JB
4638static int ironlake_get_refclk(struct drm_crtc *crtc)
4639{
4640 struct drm_device *dev = crtc->dev;
4641 struct drm_i915_private *dev_priv = dev->dev_private;
4642 struct intel_encoder *encoder;
d9d444cb
JB
4643 struct intel_encoder *edp_encoder = NULL;
4644 int num_connectors = 0;
4645 bool is_lvds = false;
4646
6c2b7c12 4647 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
4648 switch (encoder->type) {
4649 case INTEL_OUTPUT_LVDS:
4650 is_lvds = true;
4651 break;
4652 case INTEL_OUTPUT_EDP:
4653 edp_encoder = encoder;
4654 break;
4655 }
4656 num_connectors++;
4657 }
4658
4659 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4660 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4661 dev_priv->lvds_ssc_freq);
4662 return dev_priv->lvds_ssc_freq * 1000;
4663 }
4664
4665 return 120000;
4666}
4667
c8203565
PZ
4668static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4669 struct drm_display_mode *adjusted_mode,
4670 bool dither)
4671{
4672 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4674 int pipe = intel_crtc->pipe;
4675 uint32_t val;
4676
4677 val = I915_READ(PIPECONF(pipe));
4678
4679 val &= ~PIPE_BPC_MASK;
4680 switch (intel_crtc->bpp) {
4681 case 18:
4682 val |= PIPE_6BPC;
4683 break;
4684 case 24:
4685 val |= PIPE_8BPC;
4686 break;
4687 case 30:
4688 val |= PIPE_10BPC;
4689 break;
4690 case 36:
4691 val |= PIPE_12BPC;
4692 break;
4693 default:
cc769b62
PZ
4694 /* Case prevented by intel_choose_pipe_bpp_dither. */
4695 BUG();
c8203565
PZ
4696 }
4697
4698 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4699 if (dither)
4700 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4701
4702 val &= ~PIPECONF_INTERLACE_MASK;
4703 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4704 val |= PIPECONF_INTERLACED_ILK;
4705 else
4706 val |= PIPECONF_PROGRESSIVE;
4707
4708 I915_WRITE(PIPECONF(pipe), val);
4709 POSTING_READ(PIPECONF(pipe));
4710}
4711
6591c6e4
PZ
4712static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4713 struct drm_display_mode *adjusted_mode,
4714 intel_clock_t *clock,
4715 bool *has_reduced_clock,
4716 intel_clock_t *reduced_clock)
4717{
4718 struct drm_device *dev = crtc->dev;
4719 struct drm_i915_private *dev_priv = dev->dev_private;
4720 struct intel_encoder *intel_encoder;
4721 int refclk;
4722 const intel_limit_t *limit;
4723 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4724
4725 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4726 switch (intel_encoder->type) {
4727 case INTEL_OUTPUT_LVDS:
4728 is_lvds = true;
4729 break;
4730 case INTEL_OUTPUT_SDVO:
4731 case INTEL_OUTPUT_HDMI:
4732 is_sdvo = true;
4733 if (intel_encoder->needs_tv_clock)
4734 is_tv = true;
4735 break;
4736 case INTEL_OUTPUT_TVOUT:
4737 is_tv = true;
4738 break;
4739 }
4740 }
4741
4742 refclk = ironlake_get_refclk(crtc);
4743
4744 /*
4745 * Returns a set of divisors for the desired target clock with the given
4746 * refclk, or FALSE. The returned values represent the clock equation:
4747 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4748 */
4749 limit = intel_limit(crtc, refclk);
4750 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4751 clock);
4752 if (!ret)
4753 return false;
4754
4755 if (is_lvds && dev_priv->lvds_downclock_avail) {
4756 /*
4757 * Ensure we match the reduced clock's P to the target clock.
4758 * If the clocks don't match, we can't switch the display clock
4759 * by using the FP0/FP1. In such case we will disable the LVDS
4760 * downclock feature.
4761 */
4762 *has_reduced_clock = limit->find_pll(limit, crtc,
4763 dev_priv->lvds_downclock,
4764 refclk,
4765 clock,
4766 reduced_clock);
4767 }
4768
4769 if (is_sdvo && is_tv)
4770 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4771
4772 return true;
4773}
4774
f48d8f23
PZ
4775static void ironlake_set_m_n(struct drm_crtc *crtc,
4776 struct drm_display_mode *mode,
4777 struct drm_display_mode *adjusted_mode)
4778{
4779 struct drm_device *dev = crtc->dev;
4780 struct drm_i915_private *dev_priv = dev->dev_private;
4781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4782 enum pipe pipe = intel_crtc->pipe;
4783 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
4784 struct fdi_m_n m_n = {0};
4785 int target_clock, pixel_multiplier, lane, link_bw;
4786 bool is_dp = false, is_cpu_edp = false;
4787
4788 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4789 switch (intel_encoder->type) {
4790 case INTEL_OUTPUT_DISPLAYPORT:
4791 is_dp = true;
4792 break;
4793 case INTEL_OUTPUT_EDP:
4794 is_dp = true;
4795 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
4796 is_cpu_edp = true;
4797 edp_encoder = intel_encoder;
4798 break;
4799 }
4800 }
4801
4802 /* FDI link */
4803 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4804 lane = 0;
4805 /* CPU eDP doesn't require FDI link, so just set DP M/N
4806 according to current link config */
4807 if (is_cpu_edp) {
4808 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4809 } else {
4810 /* FDI is a binary signal running at ~2.7GHz, encoding
4811 * each output octet as 10 bits. The actual frequency
4812 * is stored as a divider into a 100MHz clock, and the
4813 * mode pixel clock is stored in units of 1KHz.
4814 * Hence the bw of each lane in terms of the mode signal
4815 * is:
4816 */
4817 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4818 }
4819
4820 /* [e]DP over FDI requires target mode clock instead of link clock. */
4821 if (edp_encoder)
4822 target_clock = intel_edp_target_clock(edp_encoder, mode);
4823 else if (is_dp)
4824 target_clock = mode->clock;
4825 else
4826 target_clock = adjusted_mode->clock;
4827
4828 if (!lane) {
4829 /*
4830 * Account for spread spectrum to avoid
4831 * oversubscribing the link. Max center spread
4832 * is 2.5%; use 5% for safety's sake.
4833 */
4834 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4835 lane = bps / (link_bw * 8) + 1;
4836 }
4837
4838 intel_crtc->fdi_lanes = lane;
4839
4840 if (pixel_multiplier > 1)
4841 link_bw *= pixel_multiplier;
4842 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4843 &m_n);
4844
4845 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4846 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4847 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4848 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4849}
4850
de13a2e3
PZ
4851static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
4852 struct drm_display_mode *adjusted_mode,
4853 intel_clock_t *clock, u32 fp)
79e53945 4854{
de13a2e3 4855 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
4856 struct drm_device *dev = crtc->dev;
4857 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
4858 struct intel_encoder *intel_encoder;
4859 uint32_t dpll;
4860 int factor, pixel_multiplier, num_connectors = 0;
4861 bool is_lvds = false, is_sdvo = false, is_tv = false;
4862 bool is_dp = false, is_cpu_edp = false;
79e53945 4863
de13a2e3
PZ
4864 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4865 switch (intel_encoder->type) {
79e53945
JB
4866 case INTEL_OUTPUT_LVDS:
4867 is_lvds = true;
4868 break;
4869 case INTEL_OUTPUT_SDVO:
7d57382e 4870 case INTEL_OUTPUT_HDMI:
79e53945 4871 is_sdvo = true;
de13a2e3 4872 if (intel_encoder->needs_tv_clock)
e2f0ba97 4873 is_tv = true;
79e53945 4874 break;
79e53945
JB
4875 case INTEL_OUTPUT_TVOUT:
4876 is_tv = true;
4877 break;
a4fc5ed6
KP
4878 case INTEL_OUTPUT_DISPLAYPORT:
4879 is_dp = true;
4880 break;
32f9d658 4881 case INTEL_OUTPUT_EDP:
e3aef172 4882 is_dp = true;
de13a2e3 4883 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 4884 is_cpu_edp = true;
32f9d658 4885 break;
79e53945 4886 }
43565a06 4887
c751ce4f 4888 num_connectors++;
79e53945
JB
4889 }
4890
c1858123 4891 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
4892 factor = 21;
4893 if (is_lvds) {
4894 if ((intel_panel_use_ssc(dev_priv) &&
4895 dev_priv->lvds_ssc_freq == 100) ||
4896 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4897 factor = 25;
4898 } else if (is_sdvo && is_tv)
4899 factor = 20;
c1858123 4900
de13a2e3 4901 if (clock->m < factor * clock->n)
8febb297 4902 fp |= FP_CB_TUNE;
2c07245f 4903
5eddb70b 4904 dpll = 0;
2c07245f 4905
a07d6787
EA
4906 if (is_lvds)
4907 dpll |= DPLLB_MODE_LVDS;
4908 else
4909 dpll |= DPLLB_MODE_DAC_SERIAL;
4910 if (is_sdvo) {
de13a2e3 4911 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
4912 if (pixel_multiplier > 1) {
4913 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 4914 }
a07d6787
EA
4915 dpll |= DPLL_DVO_HIGH_SPEED;
4916 }
e3aef172 4917 if (is_dp && !is_cpu_edp)
a07d6787 4918 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 4919
a07d6787 4920 /* compute bitmask from p1 value */
de13a2e3 4921 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 4922 /* also FPA1 */
de13a2e3 4923 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 4924
de13a2e3 4925 switch (clock->p2) {
a07d6787
EA
4926 case 5:
4927 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4928 break;
4929 case 7:
4930 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4931 break;
4932 case 10:
4933 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4934 break;
4935 case 14:
4936 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4937 break;
79e53945
JB
4938 }
4939
43565a06
KH
4940 if (is_sdvo && is_tv)
4941 dpll |= PLL_REF_INPUT_TVCLKINBC;
4942 else if (is_tv)
79e53945 4943 /* XXX: just matching BIOS for now */
43565a06 4944 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 4945 dpll |= 3;
a7615030 4946 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 4947 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
4948 else
4949 dpll |= PLL_REF_INPUT_DREFCLK;
4950
de13a2e3
PZ
4951 return dpll;
4952}
4953
4954static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4955 struct drm_display_mode *mode,
4956 struct drm_display_mode *adjusted_mode,
4957 int x, int y,
4958 struct drm_framebuffer *fb)
4959{
4960 struct drm_device *dev = crtc->dev;
4961 struct drm_i915_private *dev_priv = dev->dev_private;
4962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4963 int pipe = intel_crtc->pipe;
4964 int plane = intel_crtc->plane;
4965 int num_connectors = 0;
4966 intel_clock_t clock, reduced_clock;
4967 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
4968 bool ok, has_reduced_clock = false;
4969 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
4970 struct intel_encoder *encoder;
4971 u32 temp;
4972 int ret;
4973 bool dither;
de13a2e3
PZ
4974
4975 for_each_encoder_on_crtc(dev, crtc, encoder) {
4976 switch (encoder->type) {
4977 case INTEL_OUTPUT_LVDS:
4978 is_lvds = true;
4979 break;
de13a2e3
PZ
4980 case INTEL_OUTPUT_DISPLAYPORT:
4981 is_dp = true;
4982 break;
4983 case INTEL_OUTPUT_EDP:
4984 is_dp = true;
e2f12b07 4985 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
4986 is_cpu_edp = true;
4987 break;
4988 }
4989
4990 num_connectors++;
4991 }
4992
4993 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
4994 &has_reduced_clock, &reduced_clock);
4995 if (!ok) {
4996 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4997 return -EINVAL;
4998 }
4999
5000 /* Ensure that the cursor is valid for the new mode before changing... */
5001 intel_crtc_update_cursor(crtc, true);
5002
5003 /* determine panel color depth */
5004 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5005 if (is_lvds && dev_priv->lvds_dither)
5006 dither = true;
5007
5008 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5009 if (has_reduced_clock)
5010 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5011 reduced_clock.m2;
5012
5013 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5014
f7cb34d4 5015 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5016 drm_mode_debug_printmodeline(mode);
5017
9d82aa17
ED
5018 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
5019 * pre-Haswell/LPT generation */
5020 if (HAS_PCH_LPT(dev)) {
5021 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
5022 pipe);
5023 } else if (!is_cpu_edp) {
ee7b9f93 5024 struct intel_pch_pll *pll;
4b645f14 5025
ee7b9f93
JB
5026 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5027 if (pll == NULL) {
5028 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5029 pipe);
4b645f14
JB
5030 return -EINVAL;
5031 }
ee7b9f93
JB
5032 } else
5033 intel_put_pch_pll(intel_crtc);
79e53945
JB
5034
5035 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5036 * This is an exception to the general rule that mode_set doesn't turn
5037 * things on.
5038 */
5039 if (is_lvds) {
fae14981 5040 temp = I915_READ(PCH_LVDS);
5eddb70b 5041 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5042 if (HAS_PCH_CPT(dev)) {
5043 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5044 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5045 } else {
5046 if (pipe == 1)
5047 temp |= LVDS_PIPEB_SELECT;
5048 else
5049 temp &= ~LVDS_PIPEB_SELECT;
5050 }
4b645f14 5051
a3e17eb8 5052 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5053 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5054 /* Set the B0-B3 data pairs corresponding to whether we're going to
5055 * set the DPLLs for dual-channel mode or not.
5056 */
5057 if (clock.p2 == 7)
5eddb70b 5058 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5059 else
5eddb70b 5060 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5061
5062 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5063 * appropriately here, but we need to look more thoroughly into how
5064 * panels behave in the two modes.
5065 */
284d5df5 5066 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5067 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5068 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5069 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5070 temp |= LVDS_VSYNC_POLARITY;
fae14981 5071 I915_WRITE(PCH_LVDS, temp);
79e53945 5072 }
434ed097 5073
e3aef172 5074 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5075 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5076 } else {
8db9d77b 5077 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5078 I915_WRITE(TRANSDATA_M1(pipe), 0);
5079 I915_WRITE(TRANSDATA_N1(pipe), 0);
5080 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5081 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5082 }
79e53945 5083
ee7b9f93
JB
5084 if (intel_crtc->pch_pll) {
5085 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5086
32f9d658 5087 /* Wait for the clocks to stabilize. */
ee7b9f93 5088 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5089 udelay(150);
5090
8febb297
EA
5091 /* The pixel multiplier can only be updated once the
5092 * DPLL is enabled and the clocks are stable.
5093 *
5094 * So write it again.
5095 */
ee7b9f93 5096 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5097 }
79e53945 5098
5eddb70b 5099 intel_crtc->lowfreq_avail = false;
ee7b9f93 5100 if (intel_crtc->pch_pll) {
4b645f14 5101 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5102 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5103 intel_crtc->lowfreq_avail = true;
4b645f14 5104 } else {
ee7b9f93 5105 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5106 }
5107 }
5108
b0e77b9c 5109 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
2c07245f 5110
f48d8f23 5111 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5112
e3aef172 5113 if (is_cpu_edp)
8febb297 5114 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5115
c8203565 5116 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5117
9d0498a2 5118 intel_wait_for_vblank(dev, pipe);
79e53945 5119
a1f9e77e
PZ
5120 /* Set up the display plane register */
5121 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5122 POSTING_READ(DSPCNTR(plane));
79e53945 5123
94352cf9 5124 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5125
5126 intel_update_watermarks(dev);
5127
1f8eeabf
ED
5128 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5129
1f803ee5 5130 return ret;
79e53945
JB
5131}
5132
f564048e
EA
5133static int intel_crtc_mode_set(struct drm_crtc *crtc,
5134 struct drm_display_mode *mode,
5135 struct drm_display_mode *adjusted_mode,
5136 int x, int y,
94352cf9 5137 struct drm_framebuffer *fb)
f564048e
EA
5138{
5139 struct drm_device *dev = crtc->dev;
5140 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5142 int pipe = intel_crtc->pipe;
f564048e
EA
5143 int ret;
5144
0b701d27 5145 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5146
f564048e 5147 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5148 x, y, fb);
79e53945 5149 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5150
1f803ee5 5151 return ret;
79e53945
JB
5152}
5153
3a9627f4
WF
5154static bool intel_eld_uptodate(struct drm_connector *connector,
5155 int reg_eldv, uint32_t bits_eldv,
5156 int reg_elda, uint32_t bits_elda,
5157 int reg_edid)
5158{
5159 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5160 uint8_t *eld = connector->eld;
5161 uint32_t i;
5162
5163 i = I915_READ(reg_eldv);
5164 i &= bits_eldv;
5165
5166 if (!eld[0])
5167 return !i;
5168
5169 if (!i)
5170 return false;
5171
5172 i = I915_READ(reg_elda);
5173 i &= ~bits_elda;
5174 I915_WRITE(reg_elda, i);
5175
5176 for (i = 0; i < eld[2]; i++)
5177 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5178 return false;
5179
5180 return true;
5181}
5182
e0dac65e
WF
5183static void g4x_write_eld(struct drm_connector *connector,
5184 struct drm_crtc *crtc)
5185{
5186 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5187 uint8_t *eld = connector->eld;
5188 uint32_t eldv;
5189 uint32_t len;
5190 uint32_t i;
5191
5192 i = I915_READ(G4X_AUD_VID_DID);
5193
5194 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5195 eldv = G4X_ELDV_DEVCL_DEVBLC;
5196 else
5197 eldv = G4X_ELDV_DEVCTG;
5198
3a9627f4
WF
5199 if (intel_eld_uptodate(connector,
5200 G4X_AUD_CNTL_ST, eldv,
5201 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5202 G4X_HDMIW_HDMIEDID))
5203 return;
5204
e0dac65e
WF
5205 i = I915_READ(G4X_AUD_CNTL_ST);
5206 i &= ~(eldv | G4X_ELD_ADDR);
5207 len = (i >> 9) & 0x1f; /* ELD buffer size */
5208 I915_WRITE(G4X_AUD_CNTL_ST, i);
5209
5210 if (!eld[0])
5211 return;
5212
5213 len = min_t(uint8_t, eld[2], len);
5214 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5215 for (i = 0; i < len; i++)
5216 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5217
5218 i = I915_READ(G4X_AUD_CNTL_ST);
5219 i |= eldv;
5220 I915_WRITE(G4X_AUD_CNTL_ST, i);
5221}
5222
83358c85
WX
5223static void haswell_write_eld(struct drm_connector *connector,
5224 struct drm_crtc *crtc)
5225{
5226 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5227 uint8_t *eld = connector->eld;
5228 struct drm_device *dev = crtc->dev;
5229 uint32_t eldv;
5230 uint32_t i;
5231 int len;
5232 int pipe = to_intel_crtc(crtc)->pipe;
5233 int tmp;
5234
5235 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5236 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5237 int aud_config = HSW_AUD_CFG(pipe);
5238 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5239
5240
5241 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5242
5243 /* Audio output enable */
5244 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5245 tmp = I915_READ(aud_cntrl_st2);
5246 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5247 I915_WRITE(aud_cntrl_st2, tmp);
5248
5249 /* Wait for 1 vertical blank */
5250 intel_wait_for_vblank(dev, pipe);
5251
5252 /* Set ELD valid state */
5253 tmp = I915_READ(aud_cntrl_st2);
5254 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5255 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5256 I915_WRITE(aud_cntrl_st2, tmp);
5257 tmp = I915_READ(aud_cntrl_st2);
5258 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5259
5260 /* Enable HDMI mode */
5261 tmp = I915_READ(aud_config);
5262 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5263 /* clear N_programing_enable and N_value_index */
5264 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5265 I915_WRITE(aud_config, tmp);
5266
5267 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5268
5269 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5270
5271 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5272 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5273 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5274 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5275 } else
5276 I915_WRITE(aud_config, 0);
5277
5278 if (intel_eld_uptodate(connector,
5279 aud_cntrl_st2, eldv,
5280 aud_cntl_st, IBX_ELD_ADDRESS,
5281 hdmiw_hdmiedid))
5282 return;
5283
5284 i = I915_READ(aud_cntrl_st2);
5285 i &= ~eldv;
5286 I915_WRITE(aud_cntrl_st2, i);
5287
5288 if (!eld[0])
5289 return;
5290
5291 i = I915_READ(aud_cntl_st);
5292 i &= ~IBX_ELD_ADDRESS;
5293 I915_WRITE(aud_cntl_st, i);
5294 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5295 DRM_DEBUG_DRIVER("port num:%d\n", i);
5296
5297 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5298 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5299 for (i = 0; i < len; i++)
5300 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5301
5302 i = I915_READ(aud_cntrl_st2);
5303 i |= eldv;
5304 I915_WRITE(aud_cntrl_st2, i);
5305
5306}
5307
e0dac65e
WF
5308static void ironlake_write_eld(struct drm_connector *connector,
5309 struct drm_crtc *crtc)
5310{
5311 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5312 uint8_t *eld = connector->eld;
5313 uint32_t eldv;
5314 uint32_t i;
5315 int len;
5316 int hdmiw_hdmiedid;
b6daa025 5317 int aud_config;
e0dac65e
WF
5318 int aud_cntl_st;
5319 int aud_cntrl_st2;
9b138a83 5320 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 5321
b3f33cbf 5322 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
5323 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5324 aud_config = IBX_AUD_CFG(pipe);
5325 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 5326 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 5327 } else {
9b138a83
WX
5328 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5329 aud_config = CPT_AUD_CFG(pipe);
5330 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 5331 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
5332 }
5333
9b138a83 5334 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
5335
5336 i = I915_READ(aud_cntl_st);
9b138a83 5337 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
5338 if (!i) {
5339 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5340 /* operate blindly on all ports */
1202b4c6
WF
5341 eldv = IBX_ELD_VALIDB;
5342 eldv |= IBX_ELD_VALIDB << 4;
5343 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
5344 } else {
5345 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 5346 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
5347 }
5348
3a9627f4
WF
5349 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5350 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5351 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
5352 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5353 } else
5354 I915_WRITE(aud_config, 0);
e0dac65e 5355
3a9627f4
WF
5356 if (intel_eld_uptodate(connector,
5357 aud_cntrl_st2, eldv,
5358 aud_cntl_st, IBX_ELD_ADDRESS,
5359 hdmiw_hdmiedid))
5360 return;
5361
e0dac65e
WF
5362 i = I915_READ(aud_cntrl_st2);
5363 i &= ~eldv;
5364 I915_WRITE(aud_cntrl_st2, i);
5365
5366 if (!eld[0])
5367 return;
5368
e0dac65e 5369 i = I915_READ(aud_cntl_st);
1202b4c6 5370 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
5371 I915_WRITE(aud_cntl_st, i);
5372
5373 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5374 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5375 for (i = 0; i < len; i++)
5376 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5377
5378 i = I915_READ(aud_cntrl_st2);
5379 i |= eldv;
5380 I915_WRITE(aud_cntrl_st2, i);
5381}
5382
5383void intel_write_eld(struct drm_encoder *encoder,
5384 struct drm_display_mode *mode)
5385{
5386 struct drm_crtc *crtc = encoder->crtc;
5387 struct drm_connector *connector;
5388 struct drm_device *dev = encoder->dev;
5389 struct drm_i915_private *dev_priv = dev->dev_private;
5390
5391 connector = drm_select_eld(encoder, mode);
5392 if (!connector)
5393 return;
5394
5395 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5396 connector->base.id,
5397 drm_get_connector_name(connector),
5398 connector->encoder->base.id,
5399 drm_get_encoder_name(connector->encoder));
5400
5401 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5402
5403 if (dev_priv->display.write_eld)
5404 dev_priv->display.write_eld(connector, crtc);
5405}
5406
79e53945
JB
5407/** Loads the palette/gamma unit for the CRTC with the prepared values */
5408void intel_crtc_load_lut(struct drm_crtc *crtc)
5409{
5410 struct drm_device *dev = crtc->dev;
5411 struct drm_i915_private *dev_priv = dev->dev_private;
5412 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 5413 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
5414 int i;
5415
5416 /* The clocks have to be on to load the palette. */
aed3f09d 5417 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
5418 return;
5419
f2b115e6 5420 /* use legacy palette for Ironlake */
bad720ff 5421 if (HAS_PCH_SPLIT(dev))
9db4a9c7 5422 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 5423
79e53945
JB
5424 for (i = 0; i < 256; i++) {
5425 I915_WRITE(palreg + 4 * i,
5426 (intel_crtc->lut_r[i] << 16) |
5427 (intel_crtc->lut_g[i] << 8) |
5428 intel_crtc->lut_b[i]);
5429 }
5430}
5431
560b85bb
CW
5432static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5433{
5434 struct drm_device *dev = crtc->dev;
5435 struct drm_i915_private *dev_priv = dev->dev_private;
5436 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5437 bool visible = base != 0;
5438 u32 cntl;
5439
5440 if (intel_crtc->cursor_visible == visible)
5441 return;
5442
9db4a9c7 5443 cntl = I915_READ(_CURACNTR);
560b85bb
CW
5444 if (visible) {
5445 /* On these chipsets we can only modify the base whilst
5446 * the cursor is disabled.
5447 */
9db4a9c7 5448 I915_WRITE(_CURABASE, base);
560b85bb
CW
5449
5450 cntl &= ~(CURSOR_FORMAT_MASK);
5451 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5452 cntl |= CURSOR_ENABLE |
5453 CURSOR_GAMMA_ENABLE |
5454 CURSOR_FORMAT_ARGB;
5455 } else
5456 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 5457 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
5458
5459 intel_crtc->cursor_visible = visible;
5460}
5461
5462static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5463{
5464 struct drm_device *dev = crtc->dev;
5465 struct drm_i915_private *dev_priv = dev->dev_private;
5466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5467 int pipe = intel_crtc->pipe;
5468 bool visible = base != 0;
5469
5470 if (intel_crtc->cursor_visible != visible) {
548f245b 5471 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
5472 if (base) {
5473 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5474 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5475 cntl |= pipe << 28; /* Connect to correct pipe */
5476 } else {
5477 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5478 cntl |= CURSOR_MODE_DISABLE;
5479 }
9db4a9c7 5480 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
5481
5482 intel_crtc->cursor_visible = visible;
5483 }
5484 /* and commit changes on next vblank */
9db4a9c7 5485 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
5486}
5487
65a21cd6
JB
5488static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5489{
5490 struct drm_device *dev = crtc->dev;
5491 struct drm_i915_private *dev_priv = dev->dev_private;
5492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5493 int pipe = intel_crtc->pipe;
5494 bool visible = base != 0;
5495
5496 if (intel_crtc->cursor_visible != visible) {
5497 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5498 if (base) {
5499 cntl &= ~CURSOR_MODE;
5500 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5501 } else {
5502 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5503 cntl |= CURSOR_MODE_DISABLE;
5504 }
5505 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5506
5507 intel_crtc->cursor_visible = visible;
5508 }
5509 /* and commit changes on next vblank */
5510 I915_WRITE(CURBASE_IVB(pipe), base);
5511}
5512
cda4b7d3 5513/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
5514static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5515 bool on)
cda4b7d3
CW
5516{
5517 struct drm_device *dev = crtc->dev;
5518 struct drm_i915_private *dev_priv = dev->dev_private;
5519 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5520 int pipe = intel_crtc->pipe;
5521 int x = intel_crtc->cursor_x;
5522 int y = intel_crtc->cursor_y;
560b85bb 5523 u32 base, pos;
cda4b7d3
CW
5524 bool visible;
5525
5526 pos = 0;
5527
6b383a7f 5528 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
5529 base = intel_crtc->cursor_addr;
5530 if (x > (int) crtc->fb->width)
5531 base = 0;
5532
5533 if (y > (int) crtc->fb->height)
5534 base = 0;
5535 } else
5536 base = 0;
5537
5538 if (x < 0) {
5539 if (x + intel_crtc->cursor_width < 0)
5540 base = 0;
5541
5542 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5543 x = -x;
5544 }
5545 pos |= x << CURSOR_X_SHIFT;
5546
5547 if (y < 0) {
5548 if (y + intel_crtc->cursor_height < 0)
5549 base = 0;
5550
5551 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5552 y = -y;
5553 }
5554 pos |= y << CURSOR_Y_SHIFT;
5555
5556 visible = base != 0;
560b85bb 5557 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
5558 return;
5559
0cd83aa9 5560 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
5561 I915_WRITE(CURPOS_IVB(pipe), pos);
5562 ivb_update_cursor(crtc, base);
5563 } else {
5564 I915_WRITE(CURPOS(pipe), pos);
5565 if (IS_845G(dev) || IS_I865G(dev))
5566 i845_update_cursor(crtc, base);
5567 else
5568 i9xx_update_cursor(crtc, base);
5569 }
cda4b7d3
CW
5570}
5571
79e53945 5572static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 5573 struct drm_file *file,
79e53945
JB
5574 uint32_t handle,
5575 uint32_t width, uint32_t height)
5576{
5577 struct drm_device *dev = crtc->dev;
5578 struct drm_i915_private *dev_priv = dev->dev_private;
5579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 5580 struct drm_i915_gem_object *obj;
cda4b7d3 5581 uint32_t addr;
3f8bc370 5582 int ret;
79e53945 5583
79e53945
JB
5584 /* if we want to turn off the cursor ignore width and height */
5585 if (!handle) {
28c97730 5586 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 5587 addr = 0;
05394f39 5588 obj = NULL;
5004417d 5589 mutex_lock(&dev->struct_mutex);
3f8bc370 5590 goto finish;
79e53945
JB
5591 }
5592
5593 /* Currently we only support 64x64 cursors */
5594 if (width != 64 || height != 64) {
5595 DRM_ERROR("we currently only support 64x64 cursors\n");
5596 return -EINVAL;
5597 }
5598
05394f39 5599 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 5600 if (&obj->base == NULL)
79e53945
JB
5601 return -ENOENT;
5602
05394f39 5603 if (obj->base.size < width * height * 4) {
79e53945 5604 DRM_ERROR("buffer is to small\n");
34b8686e
DA
5605 ret = -ENOMEM;
5606 goto fail;
79e53945
JB
5607 }
5608
71acb5eb 5609 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 5610 mutex_lock(&dev->struct_mutex);
b295d1b6 5611 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
5612 if (obj->tiling_mode) {
5613 DRM_ERROR("cursor cannot be tiled\n");
5614 ret = -EINVAL;
5615 goto fail_locked;
5616 }
5617
2da3b9b9 5618 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
5619 if (ret) {
5620 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 5621 goto fail_locked;
e7b526bb
CW
5622 }
5623
d9e86c0e
CW
5624 ret = i915_gem_object_put_fence(obj);
5625 if (ret) {
2da3b9b9 5626 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
5627 goto fail_unpin;
5628 }
5629
05394f39 5630 addr = obj->gtt_offset;
71acb5eb 5631 } else {
6eeefaf3 5632 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 5633 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
5634 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5635 align);
71acb5eb
DA
5636 if (ret) {
5637 DRM_ERROR("failed to attach phys object\n");
7f9872e0 5638 goto fail_locked;
71acb5eb 5639 }
05394f39 5640 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
5641 }
5642
a6c45cf0 5643 if (IS_GEN2(dev))
14b60391
JB
5644 I915_WRITE(CURSIZE, (height << 12) | width);
5645
3f8bc370 5646 finish:
3f8bc370 5647 if (intel_crtc->cursor_bo) {
b295d1b6 5648 if (dev_priv->info->cursor_needs_physical) {
05394f39 5649 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
5650 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5651 } else
5652 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 5653 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 5654 }
80824003 5655
7f9872e0 5656 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
5657
5658 intel_crtc->cursor_addr = addr;
05394f39 5659 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
5660 intel_crtc->cursor_width = width;
5661 intel_crtc->cursor_height = height;
5662
6b383a7f 5663 intel_crtc_update_cursor(crtc, true);
3f8bc370 5664
79e53945 5665 return 0;
e7b526bb 5666fail_unpin:
05394f39 5667 i915_gem_object_unpin(obj);
7f9872e0 5668fail_locked:
34b8686e 5669 mutex_unlock(&dev->struct_mutex);
bc9025bd 5670fail:
05394f39 5671 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 5672 return ret;
79e53945
JB
5673}
5674
5675static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5676{
79e53945 5677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5678
cda4b7d3
CW
5679 intel_crtc->cursor_x = x;
5680 intel_crtc->cursor_y = y;
652c393a 5681
6b383a7f 5682 intel_crtc_update_cursor(crtc, true);
79e53945
JB
5683
5684 return 0;
5685}
5686
5687/** Sets the color ramps on behalf of RandR */
5688void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5689 u16 blue, int regno)
5690{
5691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5692
5693 intel_crtc->lut_r[regno] = red >> 8;
5694 intel_crtc->lut_g[regno] = green >> 8;
5695 intel_crtc->lut_b[regno] = blue >> 8;
5696}
5697
b8c00ac5
DA
5698void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5699 u16 *blue, int regno)
5700{
5701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5702
5703 *red = intel_crtc->lut_r[regno] << 8;
5704 *green = intel_crtc->lut_g[regno] << 8;
5705 *blue = intel_crtc->lut_b[regno] << 8;
5706}
5707
79e53945 5708static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 5709 u16 *blue, uint32_t start, uint32_t size)
79e53945 5710{
7203425a 5711 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 5712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5713
7203425a 5714 for (i = start; i < end; i++) {
79e53945
JB
5715 intel_crtc->lut_r[i] = red[i] >> 8;
5716 intel_crtc->lut_g[i] = green[i] >> 8;
5717 intel_crtc->lut_b[i] = blue[i] >> 8;
5718 }
5719
5720 intel_crtc_load_lut(crtc);
5721}
5722
5723/**
5724 * Get a pipe with a simple mode set on it for doing load-based monitor
5725 * detection.
5726 *
5727 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 5728 * its requirements. The pipe will be connected to no other encoders.
79e53945 5729 *
c751ce4f 5730 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
5731 * configured for it. In the future, it could choose to temporarily disable
5732 * some outputs to free up a pipe for its use.
5733 *
5734 * \return crtc, or NULL if no pipes are available.
5735 */
5736
5737/* VESA 640x480x72Hz mode to set on the pipe */
5738static struct drm_display_mode load_detect_mode = {
5739 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5740 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5741};
5742
d2dff872
CW
5743static struct drm_framebuffer *
5744intel_framebuffer_create(struct drm_device *dev,
308e5bcb 5745 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
5746 struct drm_i915_gem_object *obj)
5747{
5748 struct intel_framebuffer *intel_fb;
5749 int ret;
5750
5751 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5752 if (!intel_fb) {
5753 drm_gem_object_unreference_unlocked(&obj->base);
5754 return ERR_PTR(-ENOMEM);
5755 }
5756
5757 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5758 if (ret) {
5759 drm_gem_object_unreference_unlocked(&obj->base);
5760 kfree(intel_fb);
5761 return ERR_PTR(ret);
5762 }
5763
5764 return &intel_fb->base;
5765}
5766
5767static u32
5768intel_framebuffer_pitch_for_width(int width, int bpp)
5769{
5770 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5771 return ALIGN(pitch, 64);
5772}
5773
5774static u32
5775intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5776{
5777 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5778 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5779}
5780
5781static struct drm_framebuffer *
5782intel_framebuffer_create_for_mode(struct drm_device *dev,
5783 struct drm_display_mode *mode,
5784 int depth, int bpp)
5785{
5786 struct drm_i915_gem_object *obj;
308e5bcb 5787 struct drm_mode_fb_cmd2 mode_cmd;
d2dff872
CW
5788
5789 obj = i915_gem_alloc_object(dev,
5790 intel_framebuffer_size_for_mode(mode, bpp));
5791 if (obj == NULL)
5792 return ERR_PTR(-ENOMEM);
5793
5794 mode_cmd.width = mode->hdisplay;
5795 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
5796 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5797 bpp);
5ca0c34a 5798 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
5799
5800 return intel_framebuffer_create(dev, &mode_cmd, obj);
5801}
5802
5803static struct drm_framebuffer *
5804mode_fits_in_fbdev(struct drm_device *dev,
5805 struct drm_display_mode *mode)
5806{
5807 struct drm_i915_private *dev_priv = dev->dev_private;
5808 struct drm_i915_gem_object *obj;
5809 struct drm_framebuffer *fb;
5810
5811 if (dev_priv->fbdev == NULL)
5812 return NULL;
5813
5814 obj = dev_priv->fbdev->ifb.obj;
5815 if (obj == NULL)
5816 return NULL;
5817
5818 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
5819 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5820 fb->bits_per_pixel))
d2dff872
CW
5821 return NULL;
5822
01f2c773 5823 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
5824 return NULL;
5825
5826 return fb;
5827}
5828
d2434ab7 5829bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 5830 struct drm_display_mode *mode,
8261b191 5831 struct intel_load_detect_pipe *old)
79e53945
JB
5832{
5833 struct intel_crtc *intel_crtc;
d2434ab7
DV
5834 struct intel_encoder *intel_encoder =
5835 intel_attached_encoder(connector);
79e53945 5836 struct drm_crtc *possible_crtc;
4ef69c7a 5837 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
5838 struct drm_crtc *crtc = NULL;
5839 struct drm_device *dev = encoder->dev;
94352cf9 5840 struct drm_framebuffer *fb;
79e53945
JB
5841 int i = -1;
5842
d2dff872
CW
5843 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5844 connector->base.id, drm_get_connector_name(connector),
5845 encoder->base.id, drm_get_encoder_name(encoder));
5846
79e53945
JB
5847 /*
5848 * Algorithm gets a little messy:
7a5e4805 5849 *
79e53945
JB
5850 * - if the connector already has an assigned crtc, use it (but make
5851 * sure it's on first)
7a5e4805 5852 *
79e53945
JB
5853 * - try to find the first unused crtc that can drive this connector,
5854 * and use that if we find one
79e53945
JB
5855 */
5856
5857 /* See if we already have a CRTC for this connector */
5858 if (encoder->crtc) {
5859 crtc = encoder->crtc;
8261b191 5860
24218aac 5861 old->dpms_mode = connector->dpms;
8261b191
CW
5862 old->load_detect_temp = false;
5863
5864 /* Make sure the crtc and connector are running */
24218aac
DV
5865 if (connector->dpms != DRM_MODE_DPMS_ON)
5866 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 5867
7173188d 5868 return true;
79e53945
JB
5869 }
5870
5871 /* Find an unused one (if possible) */
5872 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5873 i++;
5874 if (!(encoder->possible_crtcs & (1 << i)))
5875 continue;
5876 if (!possible_crtc->enabled) {
5877 crtc = possible_crtc;
5878 break;
5879 }
79e53945
JB
5880 }
5881
5882 /*
5883 * If we didn't find an unused CRTC, don't use any.
5884 */
5885 if (!crtc) {
7173188d
CW
5886 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5887 return false;
79e53945
JB
5888 }
5889
fc303101
DV
5890 intel_encoder->new_crtc = to_intel_crtc(crtc);
5891 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
5892
5893 intel_crtc = to_intel_crtc(crtc);
24218aac 5894 old->dpms_mode = connector->dpms;
8261b191 5895 old->load_detect_temp = true;
d2dff872 5896 old->release_fb = NULL;
79e53945 5897
6492711d
CW
5898 if (!mode)
5899 mode = &load_detect_mode;
79e53945 5900
d2dff872
CW
5901 /* We need a framebuffer large enough to accommodate all accesses
5902 * that the plane may generate whilst we perform load detection.
5903 * We can not rely on the fbcon either being present (we get called
5904 * during its initialisation to detect all boot displays, or it may
5905 * not even exist) or that it is large enough to satisfy the
5906 * requested mode.
5907 */
94352cf9
DV
5908 fb = mode_fits_in_fbdev(dev, mode);
5909 if (fb == NULL) {
d2dff872 5910 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
5911 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5912 old->release_fb = fb;
d2dff872
CW
5913 } else
5914 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 5915 if (IS_ERR(fb)) {
d2dff872 5916 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
24218aac 5917 goto fail;
79e53945 5918 }
79e53945 5919
94352cf9 5920 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 5921 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
5922 if (old->release_fb)
5923 old->release_fb->funcs->destroy(old->release_fb);
24218aac 5924 goto fail;
79e53945 5925 }
7173188d 5926
79e53945 5927 /* let the connector get through one full cycle before testing */
9d0498a2 5928 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 5929
7173188d 5930 return true;
24218aac
DV
5931fail:
5932 connector->encoder = NULL;
5933 encoder->crtc = NULL;
24218aac 5934 return false;
79e53945
JB
5935}
5936
d2434ab7 5937void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 5938 struct intel_load_detect_pipe *old)
79e53945 5939{
d2434ab7
DV
5940 struct intel_encoder *intel_encoder =
5941 intel_attached_encoder(connector);
4ef69c7a 5942 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 5943
d2dff872
CW
5944 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5945 connector->base.id, drm_get_connector_name(connector),
5946 encoder->base.id, drm_get_encoder_name(encoder));
5947
8261b191 5948 if (old->load_detect_temp) {
fc303101
DV
5949 struct drm_crtc *crtc = encoder->crtc;
5950
5951 to_intel_connector(connector)->new_encoder = NULL;
5952 intel_encoder->new_crtc = NULL;
5953 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
5954
5955 if (old->release_fb)
5956 old->release_fb->funcs->destroy(old->release_fb);
5957
0622a53c 5958 return;
79e53945
JB
5959 }
5960
c751ce4f 5961 /* Switch crtc and encoder back off if necessary */
24218aac
DV
5962 if (old->dpms_mode != DRM_MODE_DPMS_ON)
5963 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
5964}
5965
5966/* Returns the clock of the currently programmed mode of the given pipe. */
5967static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5968{
5969 struct drm_i915_private *dev_priv = dev->dev_private;
5970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5971 int pipe = intel_crtc->pipe;
548f245b 5972 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
5973 u32 fp;
5974 intel_clock_t clock;
5975
5976 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 5977 fp = I915_READ(FP0(pipe));
79e53945 5978 else
39adb7a5 5979 fp = I915_READ(FP1(pipe));
79e53945
JB
5980
5981 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
5982 if (IS_PINEVIEW(dev)) {
5983 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5984 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
5985 } else {
5986 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5987 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5988 }
5989
a6c45cf0 5990 if (!IS_GEN2(dev)) {
f2b115e6
AJ
5991 if (IS_PINEVIEW(dev))
5992 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5993 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
5994 else
5995 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
5996 DPLL_FPA01_P1_POST_DIV_SHIFT);
5997
5998 switch (dpll & DPLL_MODE_MASK) {
5999 case DPLLB_MODE_DAC_SERIAL:
6000 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6001 5 : 10;
6002 break;
6003 case DPLLB_MODE_LVDS:
6004 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6005 7 : 14;
6006 break;
6007 default:
28c97730 6008 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6009 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6010 return 0;
6011 }
6012
6013 /* XXX: Handle the 100Mhz refclk */
2177832f 6014 intel_clock(dev, 96000, &clock);
79e53945
JB
6015 } else {
6016 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6017
6018 if (is_lvds) {
6019 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6020 DPLL_FPA01_P1_POST_DIV_SHIFT);
6021 clock.p2 = 14;
6022
6023 if ((dpll & PLL_REF_INPUT_MASK) ==
6024 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6025 /* XXX: might not be 66MHz */
2177832f 6026 intel_clock(dev, 66000, &clock);
79e53945 6027 } else
2177832f 6028 intel_clock(dev, 48000, &clock);
79e53945
JB
6029 } else {
6030 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6031 clock.p1 = 2;
6032 else {
6033 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6034 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6035 }
6036 if (dpll & PLL_P2_DIVIDE_BY_4)
6037 clock.p2 = 4;
6038 else
6039 clock.p2 = 2;
6040
2177832f 6041 intel_clock(dev, 48000, &clock);
79e53945
JB
6042 }
6043 }
6044
6045 /* XXX: It would be nice to validate the clocks, but we can't reuse
6046 * i830PllIsValid() because it relies on the xf86_config connector
6047 * configuration being accurate, which it isn't necessarily.
6048 */
6049
6050 return clock.dot;
6051}
6052
6053/** Returns the currently programmed mode of the given pipe. */
6054struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6055 struct drm_crtc *crtc)
6056{
548f245b 6057 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
6058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6059 int pipe = intel_crtc->pipe;
6060 struct drm_display_mode *mode;
548f245b
JB
6061 int htot = I915_READ(HTOTAL(pipe));
6062 int hsync = I915_READ(HSYNC(pipe));
6063 int vtot = I915_READ(VTOTAL(pipe));
6064 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
6065
6066 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6067 if (!mode)
6068 return NULL;
6069
6070 mode->clock = intel_crtc_clock_get(dev, crtc);
6071 mode->hdisplay = (htot & 0xffff) + 1;
6072 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6073 mode->hsync_start = (hsync & 0xffff) + 1;
6074 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6075 mode->vdisplay = (vtot & 0xffff) + 1;
6076 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6077 mode->vsync_start = (vsync & 0xffff) + 1;
6078 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6079
6080 drm_mode_set_name(mode);
79e53945
JB
6081
6082 return mode;
6083}
6084
3dec0095 6085static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6086{
6087 struct drm_device *dev = crtc->dev;
6088 drm_i915_private_t *dev_priv = dev->dev_private;
6089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6090 int pipe = intel_crtc->pipe;
dbdc6479
JB
6091 int dpll_reg = DPLL(pipe);
6092 int dpll;
652c393a 6093
bad720ff 6094 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6095 return;
6096
6097 if (!dev_priv->lvds_downclock_avail)
6098 return;
6099
dbdc6479 6100 dpll = I915_READ(dpll_reg);
652c393a 6101 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6102 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6103
8ac5a6d5 6104 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6105
6106 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6107 I915_WRITE(dpll_reg, dpll);
9d0498a2 6108 intel_wait_for_vblank(dev, pipe);
dbdc6479 6109
652c393a
JB
6110 dpll = I915_READ(dpll_reg);
6111 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6112 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6113 }
652c393a
JB
6114}
6115
6116static void intel_decrease_pllclock(struct drm_crtc *crtc)
6117{
6118 struct drm_device *dev = crtc->dev;
6119 drm_i915_private_t *dev_priv = dev->dev_private;
6120 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6121
bad720ff 6122 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6123 return;
6124
6125 if (!dev_priv->lvds_downclock_avail)
6126 return;
6127
6128 /*
6129 * Since this is called by a timer, we should never get here in
6130 * the manual case.
6131 */
6132 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6133 int pipe = intel_crtc->pipe;
6134 int dpll_reg = DPLL(pipe);
6135 int dpll;
f6e5b160 6136
44d98a61 6137 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6138
8ac5a6d5 6139 assert_panel_unlocked(dev_priv, pipe);
652c393a 6140
dc257cf1 6141 dpll = I915_READ(dpll_reg);
652c393a
JB
6142 dpll |= DISPLAY_RATE_SELECT_FPA1;
6143 I915_WRITE(dpll_reg, dpll);
9d0498a2 6144 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6145 dpll = I915_READ(dpll_reg);
6146 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6147 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6148 }
6149
6150}
6151
f047e395
CW
6152void intel_mark_busy(struct drm_device *dev)
6153{
f047e395
CW
6154 i915_update_gfx_val(dev->dev_private);
6155}
6156
6157void intel_mark_idle(struct drm_device *dev)
652c393a 6158{
f047e395
CW
6159}
6160
6161void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6162{
6163 struct drm_device *dev = obj->base.dev;
652c393a 6164 struct drm_crtc *crtc;
652c393a
JB
6165
6166 if (!i915_powersave)
6167 return;
6168
652c393a 6169 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6170 if (!crtc->fb)
6171 continue;
6172
f047e395
CW
6173 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6174 intel_increase_pllclock(crtc);
652c393a 6175 }
652c393a
JB
6176}
6177
f047e395 6178void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6179{
f047e395
CW
6180 struct drm_device *dev = obj->base.dev;
6181 struct drm_crtc *crtc;
652c393a 6182
f047e395 6183 if (!i915_powersave)
acb87dfb
CW
6184 return;
6185
652c393a
JB
6186 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6187 if (!crtc->fb)
6188 continue;
6189
f047e395
CW
6190 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6191 intel_decrease_pllclock(crtc);
652c393a
JB
6192 }
6193}
6194
79e53945
JB
6195static void intel_crtc_destroy(struct drm_crtc *crtc)
6196{
6197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6198 struct drm_device *dev = crtc->dev;
6199 struct intel_unpin_work *work;
6200 unsigned long flags;
6201
6202 spin_lock_irqsave(&dev->event_lock, flags);
6203 work = intel_crtc->unpin_work;
6204 intel_crtc->unpin_work = NULL;
6205 spin_unlock_irqrestore(&dev->event_lock, flags);
6206
6207 if (work) {
6208 cancel_work_sync(&work->work);
6209 kfree(work);
6210 }
79e53945
JB
6211
6212 drm_crtc_cleanup(crtc);
67e77c5a 6213
79e53945
JB
6214 kfree(intel_crtc);
6215}
6216
6b95a207
KH
6217static void intel_unpin_work_fn(struct work_struct *__work)
6218{
6219 struct intel_unpin_work *work =
6220 container_of(__work, struct intel_unpin_work, work);
6221
6222 mutex_lock(&work->dev->struct_mutex);
1690e1eb 6223 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6224 drm_gem_object_unreference(&work->pending_flip_obj->base);
6225 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6226
7782de3b 6227 intel_update_fbc(work->dev);
6b95a207
KH
6228 mutex_unlock(&work->dev->struct_mutex);
6229 kfree(work);
6230}
6231
1afe3e9d 6232static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6233 struct drm_crtc *crtc)
6b95a207
KH
6234{
6235 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6236 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6237 struct intel_unpin_work *work;
05394f39 6238 struct drm_i915_gem_object *obj;
6b95a207 6239 struct drm_pending_vblank_event *e;
49b14a5c 6240 struct timeval tnow, tvbl;
6b95a207
KH
6241 unsigned long flags;
6242
6243 /* Ignore early vblank irqs */
6244 if (intel_crtc == NULL)
6245 return;
6246
49b14a5c
MK
6247 do_gettimeofday(&tnow);
6248
6b95a207
KH
6249 spin_lock_irqsave(&dev->event_lock, flags);
6250 work = intel_crtc->unpin_work;
6251 if (work == NULL || !work->pending) {
6252 spin_unlock_irqrestore(&dev->event_lock, flags);
6253 return;
6254 }
6255
6256 intel_crtc->unpin_work = NULL;
6b95a207
KH
6257
6258 if (work->event) {
6259 e = work->event;
49b14a5c 6260 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df
MK
6261
6262 /* Called before vblank count and timestamps have
6263 * been updated for the vblank interval of flip
6264 * completion? Need to increment vblank count and
6265 * add one videorefresh duration to returned timestamp
49b14a5c
MK
6266 * to account for this. We assume this happened if we
6267 * get called over 0.9 frame durations after the last
6268 * timestamped vblank.
6269 *
6270 * This calculation can not be used with vrefresh rates
6271 * below 5Hz (10Hz to be on the safe side) without
6272 * promoting to 64 integers.
0af7e4df 6273 */
49b14a5c
MK
6274 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6275 9 * crtc->framedur_ns) {
0af7e4df 6276 e->event.sequence++;
49b14a5c
MK
6277 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6278 crtc->framedur_ns);
0af7e4df
MK
6279 }
6280
49b14a5c
MK
6281 e->event.tv_sec = tvbl.tv_sec;
6282 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6283
6b95a207
KH
6284 list_add_tail(&e->base.link,
6285 &e->base.file_priv->event_list);
6286 wake_up_interruptible(&e->base.file_priv->event_wait);
6287 }
6288
0af7e4df
MK
6289 drm_vblank_put(dev, intel_crtc->pipe);
6290
6b95a207
KH
6291 spin_unlock_irqrestore(&dev->event_lock, flags);
6292
05394f39 6293 obj = work->old_fb_obj;
d9e86c0e 6294
e59f2bac 6295 atomic_clear_mask(1 << intel_crtc->plane,
05394f39
CW
6296 &obj->pending_flip.counter);
6297 if (atomic_read(&obj->pending_flip) == 0)
f787a5f5 6298 wake_up(&dev_priv->pending_flip_queue);
d9e86c0e 6299
6b95a207 6300 schedule_work(&work->work);
e5510fac
JB
6301
6302 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6303}
6304
1afe3e9d
JB
6305void intel_finish_page_flip(struct drm_device *dev, int pipe)
6306{
6307 drm_i915_private_t *dev_priv = dev->dev_private;
6308 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6309
49b14a5c 6310 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6311}
6312
6313void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6314{
6315 drm_i915_private_t *dev_priv = dev->dev_private;
6316 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6317
49b14a5c 6318 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6319}
6320
6b95a207
KH
6321void intel_prepare_page_flip(struct drm_device *dev, int plane)
6322{
6323 drm_i915_private_t *dev_priv = dev->dev_private;
6324 struct intel_crtc *intel_crtc =
6325 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6326 unsigned long flags;
6327
6328 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6329 if (intel_crtc->unpin_work) {
4e5359cd
SF
6330 if ((++intel_crtc->unpin_work->pending) > 1)
6331 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6332 } else {
6333 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6334 }
6b95a207
KH
6335 spin_unlock_irqrestore(&dev->event_lock, flags);
6336}
6337
8c9f3aaf
JB
6338static int intel_gen2_queue_flip(struct drm_device *dev,
6339 struct drm_crtc *crtc,
6340 struct drm_framebuffer *fb,
6341 struct drm_i915_gem_object *obj)
6342{
6343 struct drm_i915_private *dev_priv = dev->dev_private;
6344 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6345 u32 flip_mask;
6d90c952 6346 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6347 int ret;
6348
6d90c952 6349 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6350 if (ret)
83d4092b 6351 goto err;
8c9f3aaf 6352
6d90c952 6353 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6354 if (ret)
83d4092b 6355 goto err_unpin;
8c9f3aaf
JB
6356
6357 /* Can't queue multiple flips, so wait for the previous
6358 * one to finish before executing the next.
6359 */
6360 if (intel_crtc->plane)
6361 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6362 else
6363 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6364 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6365 intel_ring_emit(ring, MI_NOOP);
6366 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6367 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6368 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6369 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6370 intel_ring_emit(ring, 0); /* aux display base address, unused */
6371 intel_ring_advance(ring);
83d4092b
CW
6372 return 0;
6373
6374err_unpin:
6375 intel_unpin_fb_obj(obj);
6376err:
8c9f3aaf
JB
6377 return ret;
6378}
6379
6380static int intel_gen3_queue_flip(struct drm_device *dev,
6381 struct drm_crtc *crtc,
6382 struct drm_framebuffer *fb,
6383 struct drm_i915_gem_object *obj)
6384{
6385 struct drm_i915_private *dev_priv = dev->dev_private;
6386 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6387 u32 flip_mask;
6d90c952 6388 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6389 int ret;
6390
6d90c952 6391 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6392 if (ret)
83d4092b 6393 goto err;
8c9f3aaf 6394
6d90c952 6395 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6396 if (ret)
83d4092b 6397 goto err_unpin;
8c9f3aaf
JB
6398
6399 if (intel_crtc->plane)
6400 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6401 else
6402 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6403 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6404 intel_ring_emit(ring, MI_NOOP);
6405 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6406 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6407 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6408 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6409 intel_ring_emit(ring, MI_NOOP);
6410
6411 intel_ring_advance(ring);
83d4092b
CW
6412 return 0;
6413
6414err_unpin:
6415 intel_unpin_fb_obj(obj);
6416err:
8c9f3aaf
JB
6417 return ret;
6418}
6419
6420static int intel_gen4_queue_flip(struct drm_device *dev,
6421 struct drm_crtc *crtc,
6422 struct drm_framebuffer *fb,
6423 struct drm_i915_gem_object *obj)
6424{
6425 struct drm_i915_private *dev_priv = dev->dev_private;
6426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6427 uint32_t pf, pipesrc;
6d90c952 6428 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6429 int ret;
6430
6d90c952 6431 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6432 if (ret)
83d4092b 6433 goto err;
8c9f3aaf 6434
6d90c952 6435 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6436 if (ret)
83d4092b 6437 goto err_unpin;
8c9f3aaf
JB
6438
6439 /* i965+ uses the linear or tiled offsets from the
6440 * Display Registers (which do not change across a page-flip)
6441 * so we need only reprogram the base address.
6442 */
6d90c952
DV
6443 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6444 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6445 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
6446 intel_ring_emit(ring,
6447 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6448 obj->tiling_mode);
8c9f3aaf
JB
6449
6450 /* XXX Enabling the panel-fitter across page-flip is so far
6451 * untested on non-native modes, so ignore it for now.
6452 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6453 */
6454 pf = 0;
6455 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6456 intel_ring_emit(ring, pf | pipesrc);
6457 intel_ring_advance(ring);
83d4092b
CW
6458 return 0;
6459
6460err_unpin:
6461 intel_unpin_fb_obj(obj);
6462err:
8c9f3aaf
JB
6463 return ret;
6464}
6465
6466static int intel_gen6_queue_flip(struct drm_device *dev,
6467 struct drm_crtc *crtc,
6468 struct drm_framebuffer *fb,
6469 struct drm_i915_gem_object *obj)
6470{
6471 struct drm_i915_private *dev_priv = dev->dev_private;
6472 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 6473 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6474 uint32_t pf, pipesrc;
6475 int ret;
6476
6d90c952 6477 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6478 if (ret)
83d4092b 6479 goto err;
8c9f3aaf 6480
6d90c952 6481 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6482 if (ret)
83d4092b 6483 goto err_unpin;
8c9f3aaf 6484
6d90c952
DV
6485 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6486 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6487 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 6488 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 6489
dc257cf1
DV
6490 /* Contrary to the suggestions in the documentation,
6491 * "Enable Panel Fitter" does not seem to be required when page
6492 * flipping with a non-native mode, and worse causes a normal
6493 * modeset to fail.
6494 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6495 */
6496 pf = 0;
8c9f3aaf 6497 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6498 intel_ring_emit(ring, pf | pipesrc);
6499 intel_ring_advance(ring);
83d4092b
CW
6500 return 0;
6501
6502err_unpin:
6503 intel_unpin_fb_obj(obj);
6504err:
8c9f3aaf
JB
6505 return ret;
6506}
6507
7c9017e5
JB
6508/*
6509 * On gen7 we currently use the blit ring because (in early silicon at least)
6510 * the render ring doesn't give us interrpts for page flip completion, which
6511 * means clients will hang after the first flip is queued. Fortunately the
6512 * blit ring generates interrupts properly, so use it instead.
6513 */
6514static int intel_gen7_queue_flip(struct drm_device *dev,
6515 struct drm_crtc *crtc,
6516 struct drm_framebuffer *fb,
6517 struct drm_i915_gem_object *obj)
6518{
6519 struct drm_i915_private *dev_priv = dev->dev_private;
6520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6521 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 6522 uint32_t plane_bit = 0;
7c9017e5
JB
6523 int ret;
6524
6525 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6526 if (ret)
83d4092b 6527 goto err;
7c9017e5 6528
cb05d8de
DV
6529 switch(intel_crtc->plane) {
6530 case PLANE_A:
6531 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6532 break;
6533 case PLANE_B:
6534 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6535 break;
6536 case PLANE_C:
6537 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6538 break;
6539 default:
6540 WARN_ONCE(1, "unknown plane in flip command\n");
6541 ret = -ENODEV;
ab3951eb 6542 goto err_unpin;
cb05d8de
DV
6543 }
6544
7c9017e5
JB
6545 ret = intel_ring_begin(ring, 4);
6546 if (ret)
83d4092b 6547 goto err_unpin;
7c9017e5 6548
cb05d8de 6549 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 6550 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 6551 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5
JB
6552 intel_ring_emit(ring, (MI_NOOP));
6553 intel_ring_advance(ring);
83d4092b
CW
6554 return 0;
6555
6556err_unpin:
6557 intel_unpin_fb_obj(obj);
6558err:
7c9017e5
JB
6559 return ret;
6560}
6561
8c9f3aaf
JB
6562static int intel_default_queue_flip(struct drm_device *dev,
6563 struct drm_crtc *crtc,
6564 struct drm_framebuffer *fb,
6565 struct drm_i915_gem_object *obj)
6566{
6567 return -ENODEV;
6568}
6569
6b95a207
KH
6570static int intel_crtc_page_flip(struct drm_crtc *crtc,
6571 struct drm_framebuffer *fb,
6572 struct drm_pending_vblank_event *event)
6573{
6574 struct drm_device *dev = crtc->dev;
6575 struct drm_i915_private *dev_priv = dev->dev_private;
6576 struct intel_framebuffer *intel_fb;
05394f39 6577 struct drm_i915_gem_object *obj;
6b95a207
KH
6578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6579 struct intel_unpin_work *work;
8c9f3aaf 6580 unsigned long flags;
52e68630 6581 int ret;
6b95a207 6582
e6a595d2
VS
6583 /* Can't change pixel format via MI display flips. */
6584 if (fb->pixel_format != crtc->fb->pixel_format)
6585 return -EINVAL;
6586
6587 /*
6588 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6589 * Note that pitch changes could also affect these register.
6590 */
6591 if (INTEL_INFO(dev)->gen > 3 &&
6592 (fb->offsets[0] != crtc->fb->offsets[0] ||
6593 fb->pitches[0] != crtc->fb->pitches[0]))
6594 return -EINVAL;
6595
6b95a207
KH
6596 work = kzalloc(sizeof *work, GFP_KERNEL);
6597 if (work == NULL)
6598 return -ENOMEM;
6599
6b95a207
KH
6600 work->event = event;
6601 work->dev = crtc->dev;
6602 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 6603 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
6604 INIT_WORK(&work->work, intel_unpin_work_fn);
6605
7317c75e
JB
6606 ret = drm_vblank_get(dev, intel_crtc->pipe);
6607 if (ret)
6608 goto free_work;
6609
6b95a207
KH
6610 /* We borrow the event spin lock for protecting unpin_work */
6611 spin_lock_irqsave(&dev->event_lock, flags);
6612 if (intel_crtc->unpin_work) {
6613 spin_unlock_irqrestore(&dev->event_lock, flags);
6614 kfree(work);
7317c75e 6615 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
6616
6617 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
6618 return -EBUSY;
6619 }
6620 intel_crtc->unpin_work = work;
6621 spin_unlock_irqrestore(&dev->event_lock, flags);
6622
6623 intel_fb = to_intel_framebuffer(fb);
6624 obj = intel_fb->obj;
6625
79158103
CW
6626 ret = i915_mutex_lock_interruptible(dev);
6627 if (ret)
6628 goto cleanup;
6b95a207 6629
75dfca80 6630 /* Reference the objects for the scheduled work. */
05394f39
CW
6631 drm_gem_object_reference(&work->old_fb_obj->base);
6632 drm_gem_object_reference(&obj->base);
6b95a207
KH
6633
6634 crtc->fb = fb;
96b099fd 6635
e1f99ce6 6636 work->pending_flip_obj = obj;
e1f99ce6 6637
4e5359cd
SF
6638 work->enable_stall_check = true;
6639
e1f99ce6
CW
6640 /* Block clients from rendering to the new back buffer until
6641 * the flip occurs and the object is no longer visible.
6642 */
05394f39 6643 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 6644
8c9f3aaf
JB
6645 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6646 if (ret)
6647 goto cleanup_pending;
6b95a207 6648
7782de3b 6649 intel_disable_fbc(dev);
f047e395 6650 intel_mark_fb_busy(obj);
6b95a207
KH
6651 mutex_unlock(&dev->struct_mutex);
6652
e5510fac
JB
6653 trace_i915_flip_request(intel_crtc->plane, obj);
6654
6b95a207 6655 return 0;
96b099fd 6656
8c9f3aaf
JB
6657cleanup_pending:
6658 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
6659 drm_gem_object_unreference(&work->old_fb_obj->base);
6660 drm_gem_object_unreference(&obj->base);
96b099fd
CW
6661 mutex_unlock(&dev->struct_mutex);
6662
79158103 6663cleanup:
96b099fd
CW
6664 spin_lock_irqsave(&dev->event_lock, flags);
6665 intel_crtc->unpin_work = NULL;
6666 spin_unlock_irqrestore(&dev->event_lock, flags);
6667
7317c75e
JB
6668 drm_vblank_put(dev, intel_crtc->pipe);
6669free_work:
96b099fd
CW
6670 kfree(work);
6671
6672 return ret;
6b95a207
KH
6673}
6674
f6e5b160 6675static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
6676 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6677 .load_lut = intel_crtc_load_lut,
976f8a20 6678 .disable = intel_crtc_noop,
f6e5b160
CW
6679};
6680
6ed0f796 6681bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 6682{
6ed0f796
DV
6683 struct intel_encoder *other_encoder;
6684 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 6685
6ed0f796
DV
6686 if (WARN_ON(!crtc))
6687 return false;
6688
6689 list_for_each_entry(other_encoder,
6690 &crtc->dev->mode_config.encoder_list,
6691 base.head) {
6692
6693 if (&other_encoder->new_crtc->base != crtc ||
6694 encoder == other_encoder)
6695 continue;
6696 else
6697 return true;
f47166d2
CW
6698 }
6699
6ed0f796
DV
6700 return false;
6701}
47f1c6c9 6702
50f56119
DV
6703static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6704 struct drm_crtc *crtc)
6705{
6706 struct drm_device *dev;
6707 struct drm_crtc *tmp;
6708 int crtc_mask = 1;
47f1c6c9 6709
50f56119 6710 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 6711
50f56119 6712 dev = crtc->dev;
47f1c6c9 6713
50f56119
DV
6714 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6715 if (tmp == crtc)
6716 break;
6717 crtc_mask <<= 1;
6718 }
47f1c6c9 6719
50f56119
DV
6720 if (encoder->possible_crtcs & crtc_mask)
6721 return true;
6722 return false;
47f1c6c9 6723}
79e53945 6724
9a935856
DV
6725/**
6726 * intel_modeset_update_staged_output_state
6727 *
6728 * Updates the staged output configuration state, e.g. after we've read out the
6729 * current hw state.
6730 */
6731static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 6732{
9a935856
DV
6733 struct intel_encoder *encoder;
6734 struct intel_connector *connector;
f6e5b160 6735
9a935856
DV
6736 list_for_each_entry(connector, &dev->mode_config.connector_list,
6737 base.head) {
6738 connector->new_encoder =
6739 to_intel_encoder(connector->base.encoder);
6740 }
f6e5b160 6741
9a935856
DV
6742 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6743 base.head) {
6744 encoder->new_crtc =
6745 to_intel_crtc(encoder->base.crtc);
6746 }
f6e5b160
CW
6747}
6748
9a935856
DV
6749/**
6750 * intel_modeset_commit_output_state
6751 *
6752 * This function copies the stage display pipe configuration to the real one.
6753 */
6754static void intel_modeset_commit_output_state(struct drm_device *dev)
6755{
6756 struct intel_encoder *encoder;
6757 struct intel_connector *connector;
f6e5b160 6758
9a935856
DV
6759 list_for_each_entry(connector, &dev->mode_config.connector_list,
6760 base.head) {
6761 connector->base.encoder = &connector->new_encoder->base;
6762 }
f6e5b160 6763
9a935856
DV
6764 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6765 base.head) {
6766 encoder->base.crtc = &encoder->new_crtc->base;
6767 }
6768}
6769
7758a113
DV
6770static struct drm_display_mode *
6771intel_modeset_adjusted_mode(struct drm_crtc *crtc,
6772 struct drm_display_mode *mode)
ee7b9f93 6773{
7758a113
DV
6774 struct drm_device *dev = crtc->dev;
6775 struct drm_display_mode *adjusted_mode;
6776 struct drm_encoder_helper_funcs *encoder_funcs;
6777 struct intel_encoder *encoder;
ee7b9f93 6778
7758a113
DV
6779 adjusted_mode = drm_mode_duplicate(dev, mode);
6780 if (!adjusted_mode)
6781 return ERR_PTR(-ENOMEM);
6782
6783 /* Pass our mode to the connectors and the CRTC to give them a chance to
6784 * adjust it according to limitations or connector properties, and also
6785 * a chance to reject the mode entirely.
6786 */
6787 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6788 base.head) {
6789
6790 if (&encoder->new_crtc->base != crtc)
6791 continue;
6792 encoder_funcs = encoder->base.helper_private;
6793 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
6794 adjusted_mode))) {
6795 DRM_DEBUG_KMS("Encoder fixup failed\n");
6796 goto fail;
6797 }
ee7b9f93
JB
6798 }
6799
7758a113
DV
6800 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6801 DRM_DEBUG_KMS("CRTC fixup failed\n");
6802 goto fail;
ee7b9f93 6803 }
7758a113
DV
6804 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6805
6806 return adjusted_mode;
6807fail:
6808 drm_mode_destroy(dev, adjusted_mode);
6809 return ERR_PTR(-EINVAL);
ee7b9f93
JB
6810}
6811
e2e1ed41
DV
6812/* Computes which crtcs are affected and sets the relevant bits in the mask. For
6813 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
6814static void
6815intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
6816 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
6817{
6818 struct intel_crtc *intel_crtc;
e2e1ed41
DV
6819 struct drm_device *dev = crtc->dev;
6820 struct intel_encoder *encoder;
6821 struct intel_connector *connector;
6822 struct drm_crtc *tmp_crtc;
79e53945 6823
e2e1ed41 6824 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 6825
e2e1ed41
DV
6826 /* Check which crtcs have changed outputs connected to them, these need
6827 * to be part of the prepare_pipes mask. We don't (yet) support global
6828 * modeset across multiple crtcs, so modeset_pipes will only have one
6829 * bit set at most. */
6830 list_for_each_entry(connector, &dev->mode_config.connector_list,
6831 base.head) {
6832 if (connector->base.encoder == &connector->new_encoder->base)
6833 continue;
79e53945 6834
e2e1ed41
DV
6835 if (connector->base.encoder) {
6836 tmp_crtc = connector->base.encoder->crtc;
6837
6838 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6839 }
6840
6841 if (connector->new_encoder)
6842 *prepare_pipes |=
6843 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
6844 }
6845
e2e1ed41
DV
6846 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6847 base.head) {
6848 if (encoder->base.crtc == &encoder->new_crtc->base)
6849 continue;
6850
6851 if (encoder->base.crtc) {
6852 tmp_crtc = encoder->base.crtc;
6853
6854 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6855 }
6856
6857 if (encoder->new_crtc)
6858 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
6859 }
6860
e2e1ed41
DV
6861 /* Check for any pipes that will be fully disabled ... */
6862 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6863 base.head) {
6864 bool used = false;
22fd0fab 6865
e2e1ed41
DV
6866 /* Don't try to disable disabled crtcs. */
6867 if (!intel_crtc->base.enabled)
6868 continue;
7e7d76c3 6869
e2e1ed41
DV
6870 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6871 base.head) {
6872 if (encoder->new_crtc == intel_crtc)
6873 used = true;
6874 }
6875
6876 if (!used)
6877 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
6878 }
6879
e2e1ed41
DV
6880
6881 /* set_mode is also used to update properties on life display pipes. */
6882 intel_crtc = to_intel_crtc(crtc);
6883 if (crtc->enabled)
6884 *prepare_pipes |= 1 << intel_crtc->pipe;
6885
6886 /* We only support modeset on one single crtc, hence we need to do that
6887 * only for the passed in crtc iff we change anything else than just
6888 * disable crtcs.
6889 *
6890 * This is actually not true, to be fully compatible with the old crtc
6891 * helper we automatically disable _any_ output (i.e. doesn't need to be
6892 * connected to the crtc we're modesetting on) if it's disconnected.
6893 * Which is a rather nutty api (since changed the output configuration
6894 * without userspace's explicit request can lead to confusion), but
6895 * alas. Hence we currently need to modeset on all pipes we prepare. */
6896 if (*prepare_pipes)
6897 *modeset_pipes = *prepare_pipes;
6898
6899 /* ... and mask these out. */
6900 *modeset_pipes &= ~(*disable_pipes);
6901 *prepare_pipes &= ~(*disable_pipes);
6902}
6903
ea9d758d
DV
6904static bool intel_crtc_in_use(struct drm_crtc *crtc)
6905{
6906 struct drm_encoder *encoder;
6907 struct drm_device *dev = crtc->dev;
6908
6909 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
6910 if (encoder->crtc == crtc)
6911 return true;
6912
6913 return false;
6914}
6915
6916static void
6917intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
6918{
6919 struct intel_encoder *intel_encoder;
6920 struct intel_crtc *intel_crtc;
6921 struct drm_connector *connector;
6922
6923 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
6924 base.head) {
6925 if (!intel_encoder->base.crtc)
6926 continue;
6927
6928 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
6929
6930 if (prepare_pipes & (1 << intel_crtc->pipe))
6931 intel_encoder->connectors_active = false;
6932 }
6933
6934 intel_modeset_commit_output_state(dev);
6935
6936 /* Update computed state. */
6937 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6938 base.head) {
6939 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
6940 }
6941
6942 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6943 if (!connector->encoder || !connector->encoder->crtc)
6944 continue;
6945
6946 intel_crtc = to_intel_crtc(connector->encoder->crtc);
6947
6948 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
6949 struct drm_property *dpms_property =
6950 dev->mode_config.dpms_property;
6951
ea9d758d 6952 connector->dpms = DRM_MODE_DPMS_ON;
68d34720
DV
6953 drm_connector_property_set_value(connector,
6954 dpms_property,
6955 DRM_MODE_DPMS_ON);
ea9d758d
DV
6956
6957 intel_encoder = to_intel_encoder(connector->encoder);
6958 intel_encoder->connectors_active = true;
6959 }
6960 }
6961
6962}
6963
25c5b266
DV
6964#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
6965 list_for_each_entry((intel_crtc), \
6966 &(dev)->mode_config.crtc_list, \
6967 base.head) \
6968 if (mask & (1 <<(intel_crtc)->pipe)) \
6969
b980514c 6970void
8af6cf88
DV
6971intel_modeset_check_state(struct drm_device *dev)
6972{
6973 struct intel_crtc *crtc;
6974 struct intel_encoder *encoder;
6975 struct intel_connector *connector;
6976
6977 list_for_each_entry(connector, &dev->mode_config.connector_list,
6978 base.head) {
6979 /* This also checks the encoder/connector hw state with the
6980 * ->get_hw_state callbacks. */
6981 intel_connector_check_state(connector);
6982
6983 WARN(&connector->new_encoder->base != connector->base.encoder,
6984 "connector's staged encoder doesn't match current encoder\n");
6985 }
6986
6987 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6988 base.head) {
6989 bool enabled = false;
6990 bool active = false;
6991 enum pipe pipe, tracked_pipe;
6992
6993 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
6994 encoder->base.base.id,
6995 drm_get_encoder_name(&encoder->base));
6996
6997 WARN(&encoder->new_crtc->base != encoder->base.crtc,
6998 "encoder's stage crtc doesn't match current crtc\n");
6999 WARN(encoder->connectors_active && !encoder->base.crtc,
7000 "encoder's active_connectors set, but no crtc\n");
7001
7002 list_for_each_entry(connector, &dev->mode_config.connector_list,
7003 base.head) {
7004 if (connector->base.encoder != &encoder->base)
7005 continue;
7006 enabled = true;
7007 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7008 active = true;
7009 }
7010 WARN(!!encoder->base.crtc != enabled,
7011 "encoder's enabled state mismatch "
7012 "(expected %i, found %i)\n",
7013 !!encoder->base.crtc, enabled);
7014 WARN(active && !encoder->base.crtc,
7015 "active encoder with no crtc\n");
7016
7017 WARN(encoder->connectors_active != active,
7018 "encoder's computed active state doesn't match tracked active state "
7019 "(expected %i, found %i)\n", active, encoder->connectors_active);
7020
7021 active = encoder->get_hw_state(encoder, &pipe);
7022 WARN(active != encoder->connectors_active,
7023 "encoder's hw state doesn't match sw tracking "
7024 "(expected %i, found %i)\n",
7025 encoder->connectors_active, active);
7026
7027 if (!encoder->base.crtc)
7028 continue;
7029
7030 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7031 WARN(active && pipe != tracked_pipe,
7032 "active encoder's pipe doesn't match"
7033 "(expected %i, found %i)\n",
7034 tracked_pipe, pipe);
7035
7036 }
7037
7038 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7039 base.head) {
7040 bool enabled = false;
7041 bool active = false;
7042
7043 DRM_DEBUG_KMS("[CRTC:%d]\n",
7044 crtc->base.base.id);
7045
7046 WARN(crtc->active && !crtc->base.enabled,
7047 "active crtc, but not enabled in sw tracking\n");
7048
7049 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7050 base.head) {
7051 if (encoder->base.crtc != &crtc->base)
7052 continue;
7053 enabled = true;
7054 if (encoder->connectors_active)
7055 active = true;
7056 }
7057 WARN(active != crtc->active,
7058 "crtc's computed active state doesn't match tracked active state "
7059 "(expected %i, found %i)\n", active, crtc->active);
7060 WARN(enabled != crtc->base.enabled,
7061 "crtc's computed enabled state doesn't match tracked enabled state "
7062 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7063
7064 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7065 }
7066}
7067
a6778b3c
DV
7068bool intel_set_mode(struct drm_crtc *crtc,
7069 struct drm_display_mode *mode,
94352cf9 7070 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7071{
7072 struct drm_device *dev = crtc->dev;
dbf2b54e 7073 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7074 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
a6778b3c 7075 struct drm_encoder_helper_funcs *encoder_funcs;
a6778b3c 7076 struct drm_encoder *encoder;
25c5b266
DV
7077 struct intel_crtc *intel_crtc;
7078 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7079 bool ret = true;
7080
e2e1ed41 7081 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7082 &prepare_pipes, &disable_pipes);
7083
7084 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7085 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7086
976f8a20
DV
7087 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7088 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7089
a6778b3c
DV
7090 saved_hwmode = crtc->hwmode;
7091 saved_mode = crtc->mode;
a6778b3c 7092
25c5b266
DV
7093 /* Hack: Because we don't (yet) support global modeset on multiple
7094 * crtcs, we don't keep track of the new mode for more than one crtc.
7095 * Hence simply check whether any bit is set in modeset_pipes in all the
7096 * pieces of code that are not yet converted to deal with mutliple crtcs
7097 * changing their mode at the same time. */
7098 adjusted_mode = NULL;
7099 if (modeset_pipes) {
7100 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7101 if (IS_ERR(adjusted_mode)) {
7102 return false;
7103 }
25c5b266 7104 }
a6778b3c 7105
ea9d758d
DV
7106 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7107 if (intel_crtc->base.enabled)
7108 dev_priv->display.crtc_disable(&intel_crtc->base);
7109 }
a6778b3c 7110
6c4c86f5
DV
7111 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7112 * to set it here already despite that we pass it down the callchain.
7113 */
7114 if (modeset_pipes)
25c5b266 7115 crtc->mode = *mode;
7758a113 7116
ea9d758d
DV
7117 /* Only after disabling all output pipelines that will be changed can we
7118 * update the the output configuration. */
7119 intel_modeset_update_state(dev, prepare_pipes);
7120
a6778b3c
DV
7121 /* Set up the DPLL and any encoders state that needs to adjust or depend
7122 * on the DPLL.
7123 */
25c5b266
DV
7124 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7125 ret = !intel_crtc_mode_set(&intel_crtc->base,
7126 mode, adjusted_mode,
7127 x, y, fb);
7128 if (!ret)
7129 goto done;
a6778b3c 7130
25c5b266 7131 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
a6778b3c 7132
25c5b266
DV
7133 if (encoder->crtc != &intel_crtc->base)
7134 continue;
a6778b3c 7135
25c5b266
DV
7136 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7137 encoder->base.id, drm_get_encoder_name(encoder),
7138 mode->base.id, mode->name);
7139 encoder_funcs = encoder->helper_private;
7140 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7141 }
a6778b3c
DV
7142 }
7143
7144 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7145 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7146 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7147
25c5b266
DV
7148 if (modeset_pipes) {
7149 /* Store real post-adjustment hardware mode. */
7150 crtc->hwmode = *adjusted_mode;
a6778b3c 7151
25c5b266
DV
7152 /* Calculate and store various constants which
7153 * are later needed by vblank and swap-completion
7154 * timestamping. They are derived from true hwmode.
7155 */
7156 drm_calc_timestamping_constants(crtc);
7157 }
a6778b3c
DV
7158
7159 /* FIXME: add subpixel order */
7160done:
7161 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7162 if (!ret && crtc->enabled) {
a6778b3c
DV
7163 crtc->hwmode = saved_hwmode;
7164 crtc->mode = saved_mode;
8af6cf88
DV
7165 } else {
7166 intel_modeset_check_state(dev);
a6778b3c
DV
7167 }
7168
7169 return ret;
7170}
7171
25c5b266
DV
7172#undef for_each_intel_crtc_masked
7173
d9e55608
DV
7174static void intel_set_config_free(struct intel_set_config *config)
7175{
7176 if (!config)
7177 return;
7178
1aa4b628
DV
7179 kfree(config->save_connector_encoders);
7180 kfree(config->save_encoder_crtcs);
d9e55608
DV
7181 kfree(config);
7182}
7183
85f9eb71
DV
7184static int intel_set_config_save_state(struct drm_device *dev,
7185 struct intel_set_config *config)
7186{
85f9eb71
DV
7187 struct drm_encoder *encoder;
7188 struct drm_connector *connector;
7189 int count;
7190
1aa4b628
DV
7191 config->save_encoder_crtcs =
7192 kcalloc(dev->mode_config.num_encoder,
7193 sizeof(struct drm_crtc *), GFP_KERNEL);
7194 if (!config->save_encoder_crtcs)
85f9eb71
DV
7195 return -ENOMEM;
7196
1aa4b628
DV
7197 config->save_connector_encoders =
7198 kcalloc(dev->mode_config.num_connector,
7199 sizeof(struct drm_encoder *), GFP_KERNEL);
7200 if (!config->save_connector_encoders)
85f9eb71
DV
7201 return -ENOMEM;
7202
7203 /* Copy data. Note that driver private data is not affected.
7204 * Should anything bad happen only the expected state is
7205 * restored, not the drivers personal bookkeeping.
7206 */
85f9eb71
DV
7207 count = 0;
7208 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7209 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7210 }
7211
7212 count = 0;
7213 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7214 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7215 }
7216
7217 return 0;
7218}
7219
7220static void intel_set_config_restore_state(struct drm_device *dev,
7221 struct intel_set_config *config)
7222{
9a935856
DV
7223 struct intel_encoder *encoder;
7224 struct intel_connector *connector;
85f9eb71
DV
7225 int count;
7226
85f9eb71 7227 count = 0;
9a935856
DV
7228 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7229 encoder->new_crtc =
7230 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7231 }
7232
7233 count = 0;
9a935856
DV
7234 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7235 connector->new_encoder =
7236 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7237 }
7238}
7239
5e2b584e
DV
7240static void
7241intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7242 struct intel_set_config *config)
7243{
7244
7245 /* We should be able to check here if the fb has the same properties
7246 * and then just flip_or_move it */
7247 if (set->crtc->fb != set->fb) {
7248 /* If we have no fb then treat it as a full mode set */
7249 if (set->crtc->fb == NULL) {
7250 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7251 config->mode_changed = true;
7252 } else if (set->fb == NULL) {
7253 config->mode_changed = true;
7254 } else if (set->fb->depth != set->crtc->fb->depth) {
7255 config->mode_changed = true;
7256 } else if (set->fb->bits_per_pixel !=
7257 set->crtc->fb->bits_per_pixel) {
7258 config->mode_changed = true;
7259 } else
7260 config->fb_changed = true;
7261 }
7262
835c5873 7263 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7264 config->fb_changed = true;
7265
7266 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7267 DRM_DEBUG_KMS("modes are different, full mode set\n");
7268 drm_mode_debug_printmodeline(&set->crtc->mode);
7269 drm_mode_debug_printmodeline(set->mode);
7270 config->mode_changed = true;
7271 }
7272}
7273
2e431051 7274static int
9a935856
DV
7275intel_modeset_stage_output_state(struct drm_device *dev,
7276 struct drm_mode_set *set,
7277 struct intel_set_config *config)
50f56119 7278{
85f9eb71 7279 struct drm_crtc *new_crtc;
9a935856
DV
7280 struct intel_connector *connector;
7281 struct intel_encoder *encoder;
2e431051 7282 int count, ro;
50f56119 7283
9a935856
DV
7284 /* The upper layers ensure that we either disabl a crtc or have a list
7285 * of connectors. For paranoia, double-check this. */
7286 WARN_ON(!set->fb && (set->num_connectors != 0));
7287 WARN_ON(set->fb && (set->num_connectors == 0));
7288
50f56119 7289 count = 0;
9a935856
DV
7290 list_for_each_entry(connector, &dev->mode_config.connector_list,
7291 base.head) {
7292 /* Otherwise traverse passed in connector list and get encoders
7293 * for them. */
50f56119 7294 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7295 if (set->connectors[ro] == &connector->base) {
7296 connector->new_encoder = connector->encoder;
50f56119
DV
7297 break;
7298 }
7299 }
7300
9a935856
DV
7301 /* If we disable the crtc, disable all its connectors. Also, if
7302 * the connector is on the changing crtc but not on the new
7303 * connector list, disable it. */
7304 if ((!set->fb || ro == set->num_connectors) &&
7305 connector->base.encoder &&
7306 connector->base.encoder->crtc == set->crtc) {
7307 connector->new_encoder = NULL;
7308
7309 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7310 connector->base.base.id,
7311 drm_get_connector_name(&connector->base));
7312 }
7313
7314
7315 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 7316 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 7317 config->mode_changed = true;
50f56119 7318 }
9a935856
DV
7319
7320 /* Disable all disconnected encoders. */
7321 if (connector->base.status == connector_status_disconnected)
7322 connector->new_encoder = NULL;
50f56119 7323 }
9a935856 7324 /* connector->new_encoder is now updated for all connectors. */
50f56119 7325
9a935856 7326 /* Update crtc of enabled connectors. */
50f56119 7327 count = 0;
9a935856
DV
7328 list_for_each_entry(connector, &dev->mode_config.connector_list,
7329 base.head) {
7330 if (!connector->new_encoder)
50f56119
DV
7331 continue;
7332
9a935856 7333 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
7334
7335 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 7336 if (set->connectors[ro] == &connector->base)
50f56119
DV
7337 new_crtc = set->crtc;
7338 }
7339
7340 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
7341 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7342 new_crtc)) {
5e2b584e 7343 return -EINVAL;
50f56119 7344 }
9a935856
DV
7345 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7346
7347 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7348 connector->base.base.id,
7349 drm_get_connector_name(&connector->base),
7350 new_crtc->base.id);
7351 }
7352
7353 /* Check for any encoders that needs to be disabled. */
7354 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7355 base.head) {
7356 list_for_each_entry(connector,
7357 &dev->mode_config.connector_list,
7358 base.head) {
7359 if (connector->new_encoder == encoder) {
7360 WARN_ON(!connector->new_encoder->new_crtc);
7361
7362 goto next_encoder;
7363 }
7364 }
7365 encoder->new_crtc = NULL;
7366next_encoder:
7367 /* Only now check for crtc changes so we don't miss encoders
7368 * that will be disabled. */
7369 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 7370 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 7371 config->mode_changed = true;
50f56119
DV
7372 }
7373 }
9a935856 7374 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 7375
2e431051
DV
7376 return 0;
7377}
7378
7379static int intel_crtc_set_config(struct drm_mode_set *set)
7380{
7381 struct drm_device *dev;
2e431051
DV
7382 struct drm_mode_set save_set;
7383 struct intel_set_config *config;
7384 int ret;
2e431051 7385
8d3e375e
DV
7386 BUG_ON(!set);
7387 BUG_ON(!set->crtc);
7388 BUG_ON(!set->crtc->helper_private);
2e431051
DV
7389
7390 if (!set->mode)
7391 set->fb = NULL;
7392
431e50f7
DV
7393 /* The fb helper likes to play gross jokes with ->mode_set_config.
7394 * Unfortunately the crtc helper doesn't do much at all for this case,
7395 * so we have to cope with this madness until the fb helper is fixed up. */
7396 if (set->fb && set->num_connectors == 0)
7397 return 0;
7398
2e431051
DV
7399 if (set->fb) {
7400 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7401 set->crtc->base.id, set->fb->base.id,
7402 (int)set->num_connectors, set->x, set->y);
7403 } else {
7404 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
7405 }
7406
7407 dev = set->crtc->dev;
7408
7409 ret = -ENOMEM;
7410 config = kzalloc(sizeof(*config), GFP_KERNEL);
7411 if (!config)
7412 goto out_config;
7413
7414 ret = intel_set_config_save_state(dev, config);
7415 if (ret)
7416 goto out_config;
7417
7418 save_set.crtc = set->crtc;
7419 save_set.mode = &set->crtc->mode;
7420 save_set.x = set->crtc->x;
7421 save_set.y = set->crtc->y;
7422 save_set.fb = set->crtc->fb;
7423
7424 /* Compute whether we need a full modeset, only an fb base update or no
7425 * change at all. In the future we might also check whether only the
7426 * mode changed, e.g. for LVDS where we only change the panel fitter in
7427 * such cases. */
7428 intel_set_config_compute_mode_changes(set, config);
7429
9a935856 7430 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
7431 if (ret)
7432 goto fail;
7433
5e2b584e 7434 if (config->mode_changed) {
87f1faa6 7435 if (set->mode) {
50f56119
DV
7436 DRM_DEBUG_KMS("attempting to set mode from"
7437 " userspace\n");
7438 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
7439 }
7440
7441 if (!intel_set_mode(set->crtc, set->mode,
7442 set->x, set->y, set->fb)) {
7443 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7444 set->crtc->base.id);
7445 ret = -EINVAL;
7446 goto fail;
7447 }
5e2b584e 7448 } else if (config->fb_changed) {
4f660f49 7449 ret = intel_pipe_set_base(set->crtc,
94352cf9 7450 set->x, set->y, set->fb);
50f56119
DV
7451 }
7452
d9e55608
DV
7453 intel_set_config_free(config);
7454
50f56119
DV
7455 return 0;
7456
7457fail:
85f9eb71 7458 intel_set_config_restore_state(dev, config);
50f56119
DV
7459
7460 /* Try to restore the config */
5e2b584e 7461 if (config->mode_changed &&
a6778b3c
DV
7462 !intel_set_mode(save_set.crtc, save_set.mode,
7463 save_set.x, save_set.y, save_set.fb))
50f56119
DV
7464 DRM_ERROR("failed to restore config after modeset failure\n");
7465
d9e55608
DV
7466out_config:
7467 intel_set_config_free(config);
50f56119
DV
7468 return ret;
7469}
7470
f6e5b160 7471static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
7472 .cursor_set = intel_crtc_cursor_set,
7473 .cursor_move = intel_crtc_cursor_move,
7474 .gamma_set = intel_crtc_gamma_set,
50f56119 7475 .set_config = intel_crtc_set_config,
f6e5b160
CW
7476 .destroy = intel_crtc_destroy,
7477 .page_flip = intel_crtc_page_flip,
7478};
7479
79f689aa
PZ
7480static void intel_cpu_pll_init(struct drm_device *dev)
7481{
7482 if (IS_HASWELL(dev))
7483 intel_ddi_pll_init(dev);
7484}
7485
ee7b9f93
JB
7486static void intel_pch_pll_init(struct drm_device *dev)
7487{
7488 drm_i915_private_t *dev_priv = dev->dev_private;
7489 int i;
7490
7491 if (dev_priv->num_pch_pll == 0) {
7492 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7493 return;
7494 }
7495
7496 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7497 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7498 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7499 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7500 }
7501}
7502
b358d0a6 7503static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 7504{
22fd0fab 7505 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
7506 struct intel_crtc *intel_crtc;
7507 int i;
7508
7509 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7510 if (intel_crtc == NULL)
7511 return;
7512
7513 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7514
7515 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
7516 for (i = 0; i < 256; i++) {
7517 intel_crtc->lut_r[i] = i;
7518 intel_crtc->lut_g[i] = i;
7519 intel_crtc->lut_b[i] = i;
7520 }
7521
80824003
JB
7522 /* Swap pipes & planes for FBC on pre-965 */
7523 intel_crtc->pipe = pipe;
7524 intel_crtc->plane = pipe;
e2e767ab 7525 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 7526 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 7527 intel_crtc->plane = !pipe;
80824003
JB
7528 }
7529
22fd0fab
JB
7530 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7531 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7532 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7533 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7534
5a354204 7535 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 7536
79e53945 7537 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
7538}
7539
08d7b3d1 7540int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 7541 struct drm_file *file)
08d7b3d1 7542{
08d7b3d1 7543 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7544 struct drm_mode_object *drmmode_obj;
7545 struct intel_crtc *crtc;
08d7b3d1 7546
1cff8f6b
DV
7547 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7548 return -ENODEV;
08d7b3d1 7549
c05422d5
DV
7550 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7551 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7552
c05422d5 7553 if (!drmmode_obj) {
08d7b3d1
CW
7554 DRM_ERROR("no such CRTC id\n");
7555 return -EINVAL;
7556 }
7557
c05422d5
DV
7558 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7559 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7560
c05422d5 7561 return 0;
08d7b3d1
CW
7562}
7563
66a9278e 7564static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 7565{
66a9278e
DV
7566 struct drm_device *dev = encoder->base.dev;
7567 struct intel_encoder *source_encoder;
79e53945 7568 int index_mask = 0;
79e53945
JB
7569 int entry = 0;
7570
66a9278e
DV
7571 list_for_each_entry(source_encoder,
7572 &dev->mode_config.encoder_list, base.head) {
7573
7574 if (encoder == source_encoder)
79e53945 7575 index_mask |= (1 << entry);
66a9278e
DV
7576
7577 /* Intel hw has only one MUX where enocoders could be cloned. */
7578 if (encoder->cloneable && source_encoder->cloneable)
7579 index_mask |= (1 << entry);
7580
79e53945
JB
7581 entry++;
7582 }
4ef69c7a 7583
79e53945
JB
7584 return index_mask;
7585}
7586
4d302442
CW
7587static bool has_edp_a(struct drm_device *dev)
7588{
7589 struct drm_i915_private *dev_priv = dev->dev_private;
7590
7591 if (!IS_MOBILE(dev))
7592 return false;
7593
7594 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7595 return false;
7596
7597 if (IS_GEN5(dev) &&
7598 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7599 return false;
7600
7601 return true;
7602}
7603
79e53945
JB
7604static void intel_setup_outputs(struct drm_device *dev)
7605{
725e30ad 7606 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7607 struct intel_encoder *encoder;
cb0953d7 7608 bool dpd_is_edp = false;
f3cfcba6 7609 bool has_lvds;
79e53945 7610
f3cfcba6 7611 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
7612 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7613 /* disable the panel fitter on everything but LVDS */
7614 I915_WRITE(PFIT_CONTROL, 0);
7615 }
79e53945 7616
bad720ff 7617 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 7618 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 7619
4d302442 7620 if (has_edp_a(dev))
ab9d7c30 7621 intel_dp_init(dev, DP_A, PORT_A);
32f9d658 7622
cb0953d7 7623 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 7624 intel_dp_init(dev, PCH_DP_D, PORT_D);
cb0953d7
AJ
7625 }
7626
7627 intel_crt_init(dev);
7628
0e72a5b5
ED
7629 if (IS_HASWELL(dev)) {
7630 int found;
7631
7632 /* Haswell uses DDI functions to detect digital outputs */
7633 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7634 /* DDI A only supports eDP */
7635 if (found)
7636 intel_ddi_init(dev, PORT_A);
7637
7638 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7639 * register */
7640 found = I915_READ(SFUSE_STRAP);
7641
7642 if (found & SFUSE_STRAP_DDIB_DETECTED)
7643 intel_ddi_init(dev, PORT_B);
7644 if (found & SFUSE_STRAP_DDIC_DETECTED)
7645 intel_ddi_init(dev, PORT_C);
7646 if (found & SFUSE_STRAP_DDID_DETECTED)
7647 intel_ddi_init(dev, PORT_D);
7648 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7
AJ
7649 int found;
7650
30ad48b7 7651 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 7652 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 7653 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 7654 if (!found)
08d644ad 7655 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 7656 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 7657 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
7658 }
7659
7660 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 7661 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 7662
b708a1d5 7663 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 7664 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 7665
5eb08b69 7666 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 7667 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 7668
cb0953d7 7669 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 7670 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
7671 } else if (IS_VALLEYVIEW(dev)) {
7672 int found;
7673
19c03924
GB
7674 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
7675 if (I915_READ(DP_C) & DP_DETECTED)
7676 intel_dp_init(dev, DP_C, PORT_C);
7677
4a87d65d
JB
7678 if (I915_READ(SDVOB) & PORT_DETECTED) {
7679 /* SDVOB multiplex with HDMIB */
7680 found = intel_sdvo_init(dev, SDVOB, true);
7681 if (!found)
08d644ad 7682 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 7683 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 7684 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
7685 }
7686
7687 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 7688 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 7689
103a196f 7690 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 7691 bool found = false;
7d57382e 7692
725e30ad 7693 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 7694 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 7695 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
7696 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7697 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 7698 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 7699 }
27185ae1 7700
b01f2c3a
JB
7701 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7702 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 7703 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 7704 }
725e30ad 7705 }
13520b05
KH
7706
7707 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 7708
b01f2c3a
JB
7709 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7710 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 7711 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 7712 }
27185ae1
ML
7713
7714 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7715
b01f2c3a
JB
7716 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7717 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 7718 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
7719 }
7720 if (SUPPORTS_INTEGRATED_DP(dev)) {
7721 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 7722 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 7723 }
725e30ad 7724 }
27185ae1 7725
b01f2c3a
JB
7726 if (SUPPORTS_INTEGRATED_DP(dev) &&
7727 (I915_READ(DP_D) & DP_DETECTED)) {
7728 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 7729 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 7730 }
bad720ff 7731 } else if (IS_GEN2(dev))
79e53945
JB
7732 intel_dvo_init(dev);
7733
103a196f 7734 if (SUPPORTS_TV(dev))
79e53945
JB
7735 intel_tv_init(dev);
7736
4ef69c7a
CW
7737 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7738 encoder->base.possible_crtcs = encoder->crtc_mask;
7739 encoder->base.possible_clones =
66a9278e 7740 intel_encoder_clones(encoder);
79e53945 7741 }
47356eb6 7742
40579abe 7743 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 7744 ironlake_init_pch_refclk(dev);
79e53945
JB
7745}
7746
7747static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7748{
7749 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
7750
7751 drm_framebuffer_cleanup(fb);
05394f39 7752 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
7753
7754 kfree(intel_fb);
7755}
7756
7757static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 7758 struct drm_file *file,
79e53945
JB
7759 unsigned int *handle)
7760{
7761 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 7762 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 7763
05394f39 7764 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
7765}
7766
7767static const struct drm_framebuffer_funcs intel_fb_funcs = {
7768 .destroy = intel_user_framebuffer_destroy,
7769 .create_handle = intel_user_framebuffer_create_handle,
7770};
7771
38651674
DA
7772int intel_framebuffer_init(struct drm_device *dev,
7773 struct intel_framebuffer *intel_fb,
308e5bcb 7774 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 7775 struct drm_i915_gem_object *obj)
79e53945 7776{
79e53945
JB
7777 int ret;
7778
05394f39 7779 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
7780 return -EINVAL;
7781
308e5bcb 7782 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
7783 return -EINVAL;
7784
308e5bcb 7785 switch (mode_cmd->pixel_format) {
04b3924d
VS
7786 case DRM_FORMAT_RGB332:
7787 case DRM_FORMAT_RGB565:
7788 case DRM_FORMAT_XRGB8888:
b250da79 7789 case DRM_FORMAT_XBGR8888:
04b3924d
VS
7790 case DRM_FORMAT_ARGB8888:
7791 case DRM_FORMAT_XRGB2101010:
7792 case DRM_FORMAT_ARGB2101010:
308e5bcb 7793 /* RGB formats are common across chipsets */
b5626747 7794 break;
04b3924d
VS
7795 case DRM_FORMAT_YUYV:
7796 case DRM_FORMAT_UYVY:
7797 case DRM_FORMAT_YVYU:
7798 case DRM_FORMAT_VYUY:
57cd6508
CW
7799 break;
7800 default:
aca25848
ED
7801 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7802 mode_cmd->pixel_format);
57cd6508
CW
7803 return -EINVAL;
7804 }
7805
79e53945
JB
7806 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7807 if (ret) {
7808 DRM_ERROR("framebuffer init failed %d\n", ret);
7809 return ret;
7810 }
7811
7812 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 7813 intel_fb->obj = obj;
79e53945
JB
7814 return 0;
7815}
7816
79e53945
JB
7817static struct drm_framebuffer *
7818intel_user_framebuffer_create(struct drm_device *dev,
7819 struct drm_file *filp,
308e5bcb 7820 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 7821{
05394f39 7822 struct drm_i915_gem_object *obj;
79e53945 7823
308e5bcb
JB
7824 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7825 mode_cmd->handles[0]));
c8725226 7826 if (&obj->base == NULL)
cce13ff7 7827 return ERR_PTR(-ENOENT);
79e53945 7828
d2dff872 7829 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
7830}
7831
79e53945 7832static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 7833 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 7834 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
7835};
7836
e70236a8
JB
7837/* Set up chip specific display functions */
7838static void intel_init_display(struct drm_device *dev)
7839{
7840 struct drm_i915_private *dev_priv = dev->dev_private;
7841
7842 /* We always want a DPMS function */
f564048e 7843 if (HAS_PCH_SPLIT(dev)) {
f564048e 7844 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
7845 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7846 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 7847 dev_priv->display.off = ironlake_crtc_off;
17638cd6 7848 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 7849 } else {
f564048e 7850 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
7851 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7852 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 7853 dev_priv->display.off = i9xx_crtc_off;
17638cd6 7854 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 7855 }
e70236a8 7856
e70236a8 7857 /* Returns the core display clock speed */
25eb05fc
JB
7858 if (IS_VALLEYVIEW(dev))
7859 dev_priv->display.get_display_clock_speed =
7860 valleyview_get_display_clock_speed;
7861 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
7862 dev_priv->display.get_display_clock_speed =
7863 i945_get_display_clock_speed;
7864 else if (IS_I915G(dev))
7865 dev_priv->display.get_display_clock_speed =
7866 i915_get_display_clock_speed;
f2b115e6 7867 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
7868 dev_priv->display.get_display_clock_speed =
7869 i9xx_misc_get_display_clock_speed;
7870 else if (IS_I915GM(dev))
7871 dev_priv->display.get_display_clock_speed =
7872 i915gm_get_display_clock_speed;
7873 else if (IS_I865G(dev))
7874 dev_priv->display.get_display_clock_speed =
7875 i865_get_display_clock_speed;
f0f8a9ce 7876 else if (IS_I85X(dev))
e70236a8
JB
7877 dev_priv->display.get_display_clock_speed =
7878 i855_get_display_clock_speed;
7879 else /* 852, 830 */
7880 dev_priv->display.get_display_clock_speed =
7881 i830_get_display_clock_speed;
7882
7f8a8569 7883 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 7884 if (IS_GEN5(dev)) {
674cf967 7885 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 7886 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 7887 } else if (IS_GEN6(dev)) {
674cf967 7888 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 7889 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
7890 } else if (IS_IVYBRIDGE(dev)) {
7891 /* FIXME: detect B0+ stepping and use auto training */
7892 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 7893 dev_priv->display.write_eld = ironlake_write_eld;
c82e4d26
ED
7894 } else if (IS_HASWELL(dev)) {
7895 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 7896 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
7897 } else
7898 dev_priv->display.update_wm = NULL;
6067aaea 7899 } else if (IS_G4X(dev)) {
e0dac65e 7900 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 7901 }
8c9f3aaf
JB
7902
7903 /* Default just returns -ENODEV to indicate unsupported */
7904 dev_priv->display.queue_flip = intel_default_queue_flip;
7905
7906 switch (INTEL_INFO(dev)->gen) {
7907 case 2:
7908 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7909 break;
7910
7911 case 3:
7912 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7913 break;
7914
7915 case 4:
7916 case 5:
7917 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7918 break;
7919
7920 case 6:
7921 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7922 break;
7c9017e5
JB
7923 case 7:
7924 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7925 break;
8c9f3aaf 7926 }
e70236a8
JB
7927}
7928
b690e96c
JB
7929/*
7930 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7931 * resume, or other times. This quirk makes sure that's the case for
7932 * affected systems.
7933 */
0206e353 7934static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
7935{
7936 struct drm_i915_private *dev_priv = dev->dev_private;
7937
7938 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 7939 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
7940}
7941
435793df
KP
7942/*
7943 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7944 */
7945static void quirk_ssc_force_disable(struct drm_device *dev)
7946{
7947 struct drm_i915_private *dev_priv = dev->dev_private;
7948 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 7949 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
7950}
7951
4dca20ef 7952/*
5a15ab5b
CE
7953 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7954 * brightness value
4dca20ef
CE
7955 */
7956static void quirk_invert_brightness(struct drm_device *dev)
7957{
7958 struct drm_i915_private *dev_priv = dev->dev_private;
7959 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 7960 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
7961}
7962
b690e96c
JB
7963struct intel_quirk {
7964 int device;
7965 int subsystem_vendor;
7966 int subsystem_device;
7967 void (*hook)(struct drm_device *dev);
7968};
7969
c43b5634 7970static struct intel_quirk intel_quirks[] = {
b690e96c 7971 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 7972 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 7973
b690e96c
JB
7974 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7975 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7976
b690e96c
JB
7977 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7978 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7979
7980 /* 855 & before need to leave pipe A & dpll A up */
7981 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7982 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 7983 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
7984
7985 /* Lenovo U160 cannot use SSC on LVDS */
7986 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
7987
7988 /* Sony Vaio Y cannot use SSC on LVDS */
7989 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
7990
7991 /* Acer Aspire 5734Z must invert backlight brightness */
7992 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
7993};
7994
7995static void intel_init_quirks(struct drm_device *dev)
7996{
7997 struct pci_dev *d = dev->pdev;
7998 int i;
7999
8000 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8001 struct intel_quirk *q = &intel_quirks[i];
8002
8003 if (d->device == q->device &&
8004 (d->subsystem_vendor == q->subsystem_vendor ||
8005 q->subsystem_vendor == PCI_ANY_ID) &&
8006 (d->subsystem_device == q->subsystem_device ||
8007 q->subsystem_device == PCI_ANY_ID))
8008 q->hook(dev);
8009 }
8010}
8011
9cce37f4
JB
8012/* Disable the VGA plane that we never use */
8013static void i915_disable_vga(struct drm_device *dev)
8014{
8015 struct drm_i915_private *dev_priv = dev->dev_private;
8016 u8 sr1;
8017 u32 vga_reg;
8018
8019 if (HAS_PCH_SPLIT(dev))
8020 vga_reg = CPU_VGACNTRL;
8021 else
8022 vga_reg = VGACNTRL;
8023
8024 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8025 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8026 sr1 = inb(VGA_SR_DATA);
8027 outb(sr1 | 1<<5, VGA_SR_DATA);
8028 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8029 udelay(300);
8030
8031 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8032 POSTING_READ(vga_reg);
8033}
8034
f817586c
DV
8035void intel_modeset_init_hw(struct drm_device *dev)
8036{
0232e927
ED
8037 /* We attempt to init the necessary power wells early in the initialization
8038 * time, so the subsystems that expect power to be enabled can work.
8039 */
8040 intel_init_power_wells(dev);
8041
a8f78b58
ED
8042 intel_prepare_ddi(dev);
8043
f817586c
DV
8044 intel_init_clock_gating(dev);
8045
79f5b2c7 8046 mutex_lock(&dev->struct_mutex);
8090c6b9 8047 intel_enable_gt_powersave(dev);
79f5b2c7 8048 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8049}
8050
79e53945
JB
8051void intel_modeset_init(struct drm_device *dev)
8052{
652c393a 8053 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8054 int i, ret;
79e53945
JB
8055
8056 drm_mode_config_init(dev);
8057
8058 dev->mode_config.min_width = 0;
8059 dev->mode_config.min_height = 0;
8060
019d96cb
DA
8061 dev->mode_config.preferred_depth = 24;
8062 dev->mode_config.prefer_shadow = 1;
8063
e6ecefaa 8064 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8065
b690e96c
JB
8066 intel_init_quirks(dev);
8067
1fa61106
ED
8068 intel_init_pm(dev);
8069
e70236a8
JB
8070 intel_init_display(dev);
8071
a6c45cf0
CW
8072 if (IS_GEN2(dev)) {
8073 dev->mode_config.max_width = 2048;
8074 dev->mode_config.max_height = 2048;
8075 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8076 dev->mode_config.max_width = 4096;
8077 dev->mode_config.max_height = 4096;
79e53945 8078 } else {
a6c45cf0
CW
8079 dev->mode_config.max_width = 8192;
8080 dev->mode_config.max_height = 8192;
79e53945 8081 }
dd2757f8 8082 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8083
28c97730 8084 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8085 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8086
a3524f1b 8087 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8088 intel_crtc_init(dev, i);
00c2064b
JB
8089 ret = intel_plane_init(dev, i);
8090 if (ret)
8091 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8092 }
8093
79f689aa 8094 intel_cpu_pll_init(dev);
ee7b9f93
JB
8095 intel_pch_pll_init(dev);
8096
9cce37f4
JB
8097 /* Just disable it once at startup */
8098 i915_disable_vga(dev);
79e53945 8099 intel_setup_outputs(dev);
2c7111db
CW
8100}
8101
24929352
DV
8102static void
8103intel_connector_break_all_links(struct intel_connector *connector)
8104{
8105 connector->base.dpms = DRM_MODE_DPMS_OFF;
8106 connector->base.encoder = NULL;
8107 connector->encoder->connectors_active = false;
8108 connector->encoder->base.crtc = NULL;
8109}
8110
7fad798e
DV
8111static void intel_enable_pipe_a(struct drm_device *dev)
8112{
8113 struct intel_connector *connector;
8114 struct drm_connector *crt = NULL;
8115 struct intel_load_detect_pipe load_detect_temp;
8116
8117 /* We can't just switch on the pipe A, we need to set things up with a
8118 * proper mode and output configuration. As a gross hack, enable pipe A
8119 * by enabling the load detect pipe once. */
8120 list_for_each_entry(connector,
8121 &dev->mode_config.connector_list,
8122 base.head) {
8123 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8124 crt = &connector->base;
8125 break;
8126 }
8127 }
8128
8129 if (!crt)
8130 return;
8131
8132 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8133 intel_release_load_detect_pipe(crt, &load_detect_temp);
8134
8135
8136}
8137
24929352
DV
8138static void intel_sanitize_crtc(struct intel_crtc *crtc)
8139{
8140 struct drm_device *dev = crtc->base.dev;
8141 struct drm_i915_private *dev_priv = dev->dev_private;
8142 u32 reg, val;
8143
24929352
DV
8144 /* Clear any frame start delays used for debugging left by the BIOS */
8145 reg = PIPECONF(crtc->pipe);
8146 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8147
8148 /* We need to sanitize the plane -> pipe mapping first because this will
8149 * disable the crtc (and hence change the state) if it is wrong. */
8150 if (!HAS_PCH_SPLIT(dev)) {
8151 struct intel_connector *connector;
8152 bool plane;
8153
8154 reg = DSPCNTR(crtc->plane);
8155 val = I915_READ(reg);
8156
8157 if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
8158 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8159 goto ok;
8160
8161 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8162 crtc->base.base.id);
8163
8164 /* Pipe has the wrong plane attached and the plane is active.
8165 * Temporarily change the plane mapping and disable everything
8166 * ... */
8167 plane = crtc->plane;
8168 crtc->plane = !plane;
8169 dev_priv->display.crtc_disable(&crtc->base);
8170 crtc->plane = plane;
8171
8172 /* ... and break all links. */
8173 list_for_each_entry(connector, &dev->mode_config.connector_list,
8174 base.head) {
8175 if (connector->encoder->base.crtc != &crtc->base)
8176 continue;
8177
8178 intel_connector_break_all_links(connector);
8179 }
8180
8181 WARN_ON(crtc->active);
8182 crtc->base.enabled = false;
8183 }
8184ok:
8185
7fad798e
DV
8186 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8187 crtc->pipe == PIPE_A && !crtc->active) {
8188 /* BIOS forgot to enable pipe A, this mostly happens after
8189 * resume. Force-enable the pipe to fix this, the update_dpms
8190 * call below we restore the pipe to the right state, but leave
8191 * the required bits on. */
8192 intel_enable_pipe_a(dev);
8193 }
8194
24929352
DV
8195 /* Adjust the state of the output pipe according to whether we
8196 * have active connectors/encoders. */
8197 intel_crtc_update_dpms(&crtc->base);
8198
8199 if (crtc->active != crtc->base.enabled) {
8200 struct intel_encoder *encoder;
8201
8202 /* This can happen either due to bugs in the get_hw_state
8203 * functions or because the pipe is force-enabled due to the
8204 * pipe A quirk. */
8205 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8206 crtc->base.base.id,
8207 crtc->base.enabled ? "enabled" : "disabled",
8208 crtc->active ? "enabled" : "disabled");
8209
8210 crtc->base.enabled = crtc->active;
8211
8212 /* Because we only establish the connector -> encoder ->
8213 * crtc links if something is active, this means the
8214 * crtc is now deactivated. Break the links. connector
8215 * -> encoder links are only establish when things are
8216 * actually up, hence no need to break them. */
8217 WARN_ON(crtc->active);
8218
8219 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8220 WARN_ON(encoder->connectors_active);
8221 encoder->base.crtc = NULL;
8222 }
8223 }
8224}
8225
8226static void intel_sanitize_encoder(struct intel_encoder *encoder)
8227{
8228 struct intel_connector *connector;
8229 struct drm_device *dev = encoder->base.dev;
8230
8231 /* We need to check both for a crtc link (meaning that the
8232 * encoder is active and trying to read from a pipe) and the
8233 * pipe itself being active. */
8234 bool has_active_crtc = encoder->base.crtc &&
8235 to_intel_crtc(encoder->base.crtc)->active;
8236
8237 if (encoder->connectors_active && !has_active_crtc) {
8238 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8239 encoder->base.base.id,
8240 drm_get_encoder_name(&encoder->base));
8241
8242 /* Connector is active, but has no active pipe. This is
8243 * fallout from our resume register restoring. Disable
8244 * the encoder manually again. */
8245 if (encoder->base.crtc) {
8246 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8247 encoder->base.base.id,
8248 drm_get_encoder_name(&encoder->base));
8249 encoder->disable(encoder);
8250 }
8251
8252 /* Inconsistent output/port/pipe state happens presumably due to
8253 * a bug in one of the get_hw_state functions. Or someplace else
8254 * in our code, like the register restore mess on resume. Clamp
8255 * things to off as a safer default. */
8256 list_for_each_entry(connector,
8257 &dev->mode_config.connector_list,
8258 base.head) {
8259 if (connector->encoder != encoder)
8260 continue;
8261
8262 intel_connector_break_all_links(connector);
8263 }
8264 }
8265 /* Enabled encoders without active connectors will be fixed in
8266 * the crtc fixup. */
8267}
8268
8269/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8270 * and i915 state tracking structures. */
8271void intel_modeset_setup_hw_state(struct drm_device *dev)
8272{
8273 struct drm_i915_private *dev_priv = dev->dev_private;
8274 enum pipe pipe;
8275 u32 tmp;
8276 struct intel_crtc *crtc;
8277 struct intel_encoder *encoder;
8278 struct intel_connector *connector;
8279
8280 for_each_pipe(pipe) {
8281 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8282
8283 tmp = I915_READ(PIPECONF(pipe));
8284 if (tmp & PIPECONF_ENABLE)
8285 crtc->active = true;
8286 else
8287 crtc->active = false;
8288
8289 crtc->base.enabled = crtc->active;
8290
8291 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8292 crtc->base.base.id,
8293 crtc->active ? "enabled" : "disabled");
8294 }
8295
8296 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8297 base.head) {
8298 pipe = 0;
8299
8300 if (encoder->get_hw_state(encoder, &pipe)) {
8301 encoder->base.crtc =
8302 dev_priv->pipe_to_crtc_mapping[pipe];
8303 } else {
8304 encoder->base.crtc = NULL;
8305 }
8306
8307 encoder->connectors_active = false;
8308 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8309 encoder->base.base.id,
8310 drm_get_encoder_name(&encoder->base),
8311 encoder->base.crtc ? "enabled" : "disabled",
8312 pipe);
8313 }
8314
8315 list_for_each_entry(connector, &dev->mode_config.connector_list,
8316 base.head) {
8317 if (connector->get_hw_state(connector)) {
8318 connector->base.dpms = DRM_MODE_DPMS_ON;
8319 connector->encoder->connectors_active = true;
8320 connector->base.encoder = &connector->encoder->base;
8321 } else {
8322 connector->base.dpms = DRM_MODE_DPMS_OFF;
8323 connector->base.encoder = NULL;
8324 }
8325 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8326 connector->base.base.id,
8327 drm_get_connector_name(&connector->base),
8328 connector->base.encoder ? "enabled" : "disabled");
8329 }
8330
8331 /* HW state is read out, now we need to sanitize this mess. */
8332 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8333 base.head) {
8334 intel_sanitize_encoder(encoder);
8335 }
8336
8337 for_each_pipe(pipe) {
8338 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8339 intel_sanitize_crtc(crtc);
8340 }
9a935856
DV
8341
8342 intel_modeset_update_staged_output_state(dev);
8af6cf88
DV
8343
8344 intel_modeset_check_state(dev);
24929352
DV
8345}
8346
2c7111db
CW
8347void intel_modeset_gem_init(struct drm_device *dev)
8348{
1833b134 8349 intel_modeset_init_hw(dev);
02e792fb
DV
8350
8351 intel_setup_overlay(dev);
24929352
DV
8352
8353 intel_modeset_setup_hw_state(dev);
79e53945
JB
8354}
8355
8356void intel_modeset_cleanup(struct drm_device *dev)
8357{
652c393a
JB
8358 struct drm_i915_private *dev_priv = dev->dev_private;
8359 struct drm_crtc *crtc;
8360 struct intel_crtc *intel_crtc;
8361
f87ea761 8362 drm_kms_helper_poll_fini(dev);
652c393a
JB
8363 mutex_lock(&dev->struct_mutex);
8364
723bfd70
JB
8365 intel_unregister_dsm_handler();
8366
8367
652c393a
JB
8368 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8369 /* Skip inactive CRTCs */
8370 if (!crtc->fb)
8371 continue;
8372
8373 intel_crtc = to_intel_crtc(crtc);
3dec0095 8374 intel_increase_pllclock(crtc);
652c393a
JB
8375 }
8376
973d04f9 8377 intel_disable_fbc(dev);
e70236a8 8378
8090c6b9 8379 intel_disable_gt_powersave(dev);
0cdab21f 8380
930ebb46
DV
8381 ironlake_teardown_rc6(dev);
8382
57f350b6
JB
8383 if (IS_VALLEYVIEW(dev))
8384 vlv_init_dpio(dev);
8385
69341a5e
KH
8386 mutex_unlock(&dev->struct_mutex);
8387
6c0d9350
DV
8388 /* Disable the irq before mode object teardown, for the irq might
8389 * enqueue unpin/hotplug work. */
8390 drm_irq_uninstall(dev);
8391 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 8392 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 8393
1630fe75
CW
8394 /* flush any delayed tasks or pending work */
8395 flush_scheduled_work();
8396
79e53945
JB
8397 drm_mode_config_cleanup(dev);
8398}
8399
f1c79df3
ZW
8400/*
8401 * Return which encoder is currently attached for connector.
8402 */
df0e9248 8403struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 8404{
df0e9248
CW
8405 return &intel_attached_encoder(connector)->base;
8406}
f1c79df3 8407
df0e9248
CW
8408void intel_connector_attach_encoder(struct intel_connector *connector,
8409 struct intel_encoder *encoder)
8410{
8411 connector->encoder = encoder;
8412 drm_mode_connector_attach_encoder(&connector->base,
8413 &encoder->base);
79e53945 8414}
28d52043
DA
8415
8416/*
8417 * set vga decode state - true == enable VGA decode
8418 */
8419int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8420{
8421 struct drm_i915_private *dev_priv = dev->dev_private;
8422 u16 gmch_ctrl;
8423
8424 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8425 if (state)
8426 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8427 else
8428 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8429 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8430 return 0;
8431}
c4a1d9e4
CW
8432
8433#ifdef CONFIG_DEBUG_FS
8434#include <linux/seq_file.h>
8435
8436struct intel_display_error_state {
8437 struct intel_cursor_error_state {
8438 u32 control;
8439 u32 position;
8440 u32 base;
8441 u32 size;
52331309 8442 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
8443
8444 struct intel_pipe_error_state {
8445 u32 conf;
8446 u32 source;
8447
8448 u32 htotal;
8449 u32 hblank;
8450 u32 hsync;
8451 u32 vtotal;
8452 u32 vblank;
8453 u32 vsync;
52331309 8454 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
8455
8456 struct intel_plane_error_state {
8457 u32 control;
8458 u32 stride;
8459 u32 size;
8460 u32 pos;
8461 u32 addr;
8462 u32 surface;
8463 u32 tile_offset;
52331309 8464 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
8465};
8466
8467struct intel_display_error_state *
8468intel_display_capture_error_state(struct drm_device *dev)
8469{
0206e353 8470 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8471 struct intel_display_error_state *error;
8472 int i;
8473
8474 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8475 if (error == NULL)
8476 return NULL;
8477
52331309 8478 for_each_pipe(i) {
c4a1d9e4
CW
8479 error->cursor[i].control = I915_READ(CURCNTR(i));
8480 error->cursor[i].position = I915_READ(CURPOS(i));
8481 error->cursor[i].base = I915_READ(CURBASE(i));
8482
8483 error->plane[i].control = I915_READ(DSPCNTR(i));
8484 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8485 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 8486 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
8487 error->plane[i].addr = I915_READ(DSPADDR(i));
8488 if (INTEL_INFO(dev)->gen >= 4) {
8489 error->plane[i].surface = I915_READ(DSPSURF(i));
8490 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8491 }
8492
8493 error->pipe[i].conf = I915_READ(PIPECONF(i));
8494 error->pipe[i].source = I915_READ(PIPESRC(i));
8495 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8496 error->pipe[i].hblank = I915_READ(HBLANK(i));
8497 error->pipe[i].hsync = I915_READ(HSYNC(i));
8498 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8499 error->pipe[i].vblank = I915_READ(VBLANK(i));
8500 error->pipe[i].vsync = I915_READ(VSYNC(i));
8501 }
8502
8503 return error;
8504}
8505
8506void
8507intel_display_print_error_state(struct seq_file *m,
8508 struct drm_device *dev,
8509 struct intel_display_error_state *error)
8510{
52331309 8511 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8512 int i;
8513
52331309
DL
8514 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8515 for_each_pipe(i) {
c4a1d9e4
CW
8516 seq_printf(m, "Pipe [%d]:\n", i);
8517 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8518 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8519 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8520 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8521 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8522 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8523 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8524 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8525
8526 seq_printf(m, "Plane [%d]:\n", i);
8527 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8528 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8529 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8530 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8531 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8532 if (INTEL_INFO(dev)->gen >= 4) {
8533 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8534 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8535 }
8536
8537 seq_printf(m, "Cursor [%d]:\n", i);
8538 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8539 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8540 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8541 }
8542}
8543#endif
This page took 1.341767 seconds and 5 git commands to generate.