drm/i915: fix hsw_write_dcomp() error message
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
79e53945 104typedef struct {
0206e353 105 int min, max;
79e53945
JB
106} intel_range_t;
107
108typedef struct {
0206e353
AJ
109 int dot_limit;
110 int p2_slow, p2_fast;
79e53945
JB
111} intel_p2_t;
112
d4906093
ML
113typedef struct intel_limit intel_limit_t;
114struct intel_limit {
0206e353
AJ
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
d4906093 117};
79e53945 118
d2acd215
DV
119int
120intel_pch_rawclk(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127}
128
021357ac
CW
129static inline u32 /* units of 100MHz */
130intel_fdi_link_freq(struct drm_device *dev)
131{
8b99e68c
CW
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
021357ac
CW
137}
138
5d536e28 139static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 140 .dot = { .min = 25000, .max = 350000 },
9c333719 141 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 142 .n = { .min = 2, .max = 16 },
0206e353
AJ
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
150};
151
5d536e28
DV
152static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
5d536e28
DV
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163};
164
e4b36699 165static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
0206e353
AJ
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
e4b36699 176};
273e27ca 177
e4b36699 178static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
189};
190
191static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
202};
203
273e27ca 204
e4b36699 205static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
044c7c41 217 },
e4b36699
KP
218};
219
220static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
044c7c41 244 },
e4b36699
KP
245};
246
247static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
044c7c41 258 },
e4b36699
KP
259};
260
f2b115e6 261static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 264 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
273e27ca 267 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
274};
275
f2b115e6 276static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
287};
288
273e27ca
EA
289/* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
b91ad0ec 294static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
305};
306
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331};
332
273e27ca 333/* LVDS 100mhz refclk limits. */
b91ad0ec 334static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
0206e353 342 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358};
359
dc730512 360static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 368 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 369 .n = { .min = 1, .max = 7 },
a0c4da24
JB
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
b99ab663 372 .p1 = { .min = 2, .max = 3 },
5fdc9c49 373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
374};
375
ef9348c8
CML
376static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390};
391
6b4bf1c4
VS
392static void vlv_clock(int refclk, intel_clock_t *clock)
393{
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
fb03ac01
VS
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
400}
401
e0638cdf
PZ
402/**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406{
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415}
416
1b894b59
CW
417static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
2c07245f 419{
b91ad0ec 420 struct drm_device *dev = crtc->dev;
2c07245f 421 const intel_limit_t *limit;
b91ad0ec
ZW
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 424 if (intel_is_dual_link_lvds(dev)) {
1b894b59 425 if (refclk == 100000)
b91ad0ec
ZW
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
1b894b59 430 if (refclk == 100000)
b91ad0ec
ZW
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
c6bb3538 435 } else
b91ad0ec 436 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
437
438 return limit;
439}
440
044c7c41
ML
441static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442{
443 struct drm_device *dev = crtc->dev;
044c7c41
ML
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 447 if (intel_is_dual_link_lvds(dev))
e4b36699 448 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 449 else
e4b36699 450 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 453 limit = &intel_limits_g4x_hdmi;
044c7c41 454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 455 limit = &intel_limits_g4x_sdvo;
044c7c41 456 } else /* The option is for other outputs */
e4b36699 457 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
458
459 return limit;
460}
461
1b894b59 462static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
463{
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
bad720ff 467 if (HAS_PCH_SPLIT(dev))
1b894b59 468 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 469 else if (IS_G4X(dev)) {
044c7c41 470 limit = intel_g4x_limit(crtc);
f2b115e6 471 } else if (IS_PINEVIEW(dev)) {
2177832f 472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 473 limit = &intel_limits_pineview_lvds;
2177832f 474 else
f2b115e6 475 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
a0c4da24 478 } else if (IS_VALLEYVIEW(dev)) {
dc730512 479 limit = &intel_limits_vlv;
a6c45cf0
CW
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 487 limit = &intel_limits_i8xx_lvds;
5d536e28 488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 489 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
490 else
491 limit = &intel_limits_i8xx_dac;
79e53945
JB
492 }
493 return limit;
494}
495
f2b115e6
AJ
496/* m1 is reserved as 0 in Pineview, n is a ring counter */
497static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 498{
2177832f
SL
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
fb03ac01
VS
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
505}
506
7429e9d4
DV
507static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508{
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510}
511
ac58c3f0 512static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 513{
7429e9d4 514 clock->m = i9xx_dpll_compute_m(clock);
79e53945 515 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
fb03ac01
VS
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
520}
521
ef9348c8
CML
522static void chv_clock(int refclk, intel_clock_t *clock)
523{
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531}
532
7c04d1d9 533#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
534/**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
1b894b59
CW
539static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
79e53945 542{
f01b7962
VS
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
79e53945 545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 546 INTELPllInvalid("p1 out of range\n");
79e53945 547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 548 INTELPllInvalid("m2 out of range\n");
79e53945 549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 550 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
79e53945 563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 564 INTELPllInvalid("vco out of range\n");
79e53945
JB
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 569 INTELPllInvalid("dot out of range\n");
79e53945
JB
570
571 return true;
572}
573
d4906093 574static bool
ee9300bb 575i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
79e53945
JB
578{
579 struct drm_device *dev = crtc->dev;
79e53945 580 intel_clock_t clock;
79e53945
JB
581 int err = target;
582
a210b028 583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 584 /*
a210b028
DV
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
79e53945 588 */
1974cad0 589 if (intel_is_dual_link_lvds(dev))
79e53945
JB
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
0206e353 600 memset(best_clock, 0, sizeof(*best_clock));
79e53945 601
42158660
ZY
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 606 if (clock.m2 >= clock.m1)
42158660
ZY
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
612 int this_err;
613
ac58c3f0
DV
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633}
634
635static bool
ee9300bb
DV
636pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
671 int this_err;
672
ac58c3f0 673 pineview_clock(refclk, &clock);
1b894b59
CW
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
79e53945 676 continue;
cec2f356
SP
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
79e53945
JB
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692}
693
d4906093 694static bool
ee9300bb
DV
695g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
d4906093
ML
698{
699 struct drm_device *dev = crtc->dev;
d4906093
ML
700 intel_clock_t clock;
701 int max_n;
702 bool found;
6ba770dc
AJ
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 708 if (intel_is_dual_link_lvds(dev))
d4906093
ML
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
f77f13e2 721 /* based on hardware requirement, prefer smaller n to precision */
d4906093 722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 723 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
ac58c3f0 732 i9xx_clock(refclk, &clock);
1b894b59
CW
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
d4906093 735 continue;
1b894b59
CW
736
737 this_err = abs(clock.dot - target);
d4906093
ML
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
2c07245f
ZW
748 return found;
749}
750
a0c4da24 751static bool
ee9300bb
DV
752vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
a0c4da24 755{
f01b7962 756 struct drm_device *dev = crtc->dev;
6b4bf1c4 757 intel_clock_t clock;
69e4f900 758 unsigned int bestppm = 1000000;
27e639bf
VS
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 761 bool found = false;
a0c4da24 762
6b4bf1c4
VS
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
766
767 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 772 clock.p = clock.p1 * clock.p2;
a0c4da24 773 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
775 unsigned int ppm, diff;
776
6b4bf1c4
VS
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
43b0ac53 781
f01b7962
VS
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
43b0ac53
VS
784 continue;
785
6b4bf1c4
VS
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 790 bestppm = 0;
6b4bf1c4 791 *best_clock = clock;
49e497ef 792 found = true;
43b0ac53 793 }
6b4bf1c4 794
c686122c 795 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 796 bestppm = ppm;
6b4bf1c4 797 *best_clock = clock;
49e497ef 798 found = true;
a0c4da24
JB
799 }
800 }
801 }
802 }
803 }
a0c4da24 804
49e497ef 805 return found;
a0c4da24 806}
a4fc5ed6 807
ef9348c8
CML
808static bool
809chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858}
859
20ddf665
VS
860bool intel_crtc_active(struct drm_crtc *crtc)
861{
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
241bfc38 867 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
868 * as Haswell has gained clock readout/fastboot support.
869 *
66e514c1 870 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
871 * properly reconstruct framebuffers.
872 */
f4510a27 873 return intel_crtc->active && crtc->primary->fb &&
241bfc38 874 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
875}
876
a5c961d1
PZ
877enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
3b117c8f 883 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
884}
885
57e22f4a 886static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
887{
888 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 894 WARN(1, "vblank wait timed out\n");
a928d536
PZ
895}
896
9d0498a2
JB
897/**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 906{
9d0498a2 907 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 908 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 909
57e22f4a
VS
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
912 return;
913 }
914
300387c0
CW
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
9d0498a2 931 /* Wait for vblank interrupt bit to set */
481b6af3
CW
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
9d0498a2
JB
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936}
937
fbf49ea2
VS
938static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939{
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955}
956
ab7ad7f6
KP
957/*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
ab7ad7f6
KP
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
58e10eb9 972 *
9d0498a2 973 */
58e10eb9 974void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
975{
976 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
ab7ad7f6
KP
979
980 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 981 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
982
983 /* Wait for the Pipe State to go off */
58e10eb9
CW
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
284637d9 986 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 987 } else {
ab7ad7f6 988 /* Wait for the display line to settle */
fbf49ea2 989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 990 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 991 }
79e53945
JB
992}
993
b0ea7d37
DL
994/*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003{
1004 u32 bit;
1005
c36346e3 1006 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1007 switch (port->port) {
c36346e3
DL
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
eba905b2 1021 switch (port->port) {
c36346e3
DL
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
b0ea7d37
DL
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037}
1038
b24e7179
JB
1039static const char *state_string(bool enabled)
1040{
1041 return enabled ? "on" : "off";
1042}
1043
1044/* Only for pre-ILK configs */
55607e8a
DV
1045void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
b24e7179
JB
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
b24e7179 1059
23538ef1
JN
1060/* XXX: the dsi pll is shared between MIPI DSI ports */
1061static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062{
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074}
1075#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
55607e8a 1078struct intel_shared_dpll *
e2b78267
DV
1079intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080{
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
a43f6e0f 1083 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1084 return NULL;
1085
a43f6e0f 1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1087}
1088
040484af 1089/* For ILK+ */
55607e8a
DV
1090void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
040484af 1093{
040484af 1094 bool cur_state;
5358901f 1095 struct intel_dpll_hw_state hw_state;
040484af 1096
9d82aa17
ED
1097 if (HAS_PCH_LPT(dev_priv->dev)) {
1098 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1099 return;
1100 }
1101
92b27b08 1102 if (WARN (!pll,
46edb027 1103 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1104 return;
ee7b9f93 1105
5358901f 1106 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1107 WARN(cur_state != state,
5358901f
DV
1108 "%s assertion failure (expected %s, current %s)\n",
1109 pll->name, state_string(state), state_string(cur_state));
040484af 1110}
040484af
JB
1111
1112static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114{
1115 int reg;
1116 u32 val;
1117 bool cur_state;
ad80a810
PZ
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
040484af 1120
affa9354
PZ
1121 if (HAS_DDI(dev_priv->dev)) {
1122 /* DDI does not have a specific FDI_TX register */
ad80a810 1123 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1124 val = I915_READ(reg);
ad80a810 1125 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1126 } else {
1127 reg = FDI_TX_CTL(pipe);
1128 val = I915_READ(reg);
1129 cur_state = !!(val & FDI_TX_ENABLE);
1130 }
040484af
JB
1131 WARN(cur_state != state,
1132 "FDI TX state assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
1134}
1135#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1136#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1137
1138static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1139 enum pipe pipe, bool state)
1140{
1141 int reg;
1142 u32 val;
1143 bool cur_state;
1144
d63fa0dc
PZ
1145 reg = FDI_RX_CTL(pipe);
1146 val = I915_READ(reg);
1147 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1148 WARN(cur_state != state,
1149 "FDI RX state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151}
1152#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1153#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1154
1155static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1156 enum pipe pipe)
1157{
1158 int reg;
1159 u32 val;
1160
1161 /* ILK FDI PLL is always enabled */
3d13ef2e 1162 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1163 return;
1164
bf507ef7 1165 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1166 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1167 return;
1168
040484af
JB
1169 reg = FDI_TX_CTL(pipe);
1170 val = I915_READ(reg);
1171 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1172}
1173
55607e8a
DV
1174void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1175 enum pipe pipe, bool state)
040484af
JB
1176{
1177 int reg;
1178 u32 val;
55607e8a 1179 bool cur_state;
040484af
JB
1180
1181 reg = FDI_RX_CTL(pipe);
1182 val = I915_READ(reg);
55607e8a
DV
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 state_string(state), state_string(cur_state));
040484af
JB
1187}
1188
ea0760cf
JB
1189static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191{
1192 int pp_reg, lvds_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
0de3b485 1195 bool locked = true;
ea0760cf
JB
1196
1197 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1198 pp_reg = PCH_PP_CONTROL;
1199 lvds_reg = PCH_LVDS;
1200 } else {
1201 pp_reg = PP_CONTROL;
1202 lvds_reg = LVDS;
1203 }
1204
1205 val = I915_READ(pp_reg);
1206 if (!(val & PANEL_POWER_ON) ||
1207 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1208 locked = false;
1209
1210 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1211 panel_pipe = PIPE_B;
1212
1213 WARN(panel_pipe == pipe && locked,
1214 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1215 pipe_name(pipe));
ea0760cf
JB
1216}
1217
93ce0ba6
JN
1218static void assert_cursor(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220{
1221 struct drm_device *dev = dev_priv->dev;
1222 bool cur_state;
1223
d9d82081 1224 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1225 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1226 else
5efb3e28 1227 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1228
1229 WARN(cur_state != state,
1230 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1231 pipe_name(pipe), state_string(state), state_string(cur_state));
1232}
1233#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1234#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1235
b840d907
JB
1236void assert_pipe(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, bool state)
b24e7179
JB
1238{
1239 int reg;
1240 u32 val;
63d7bbe9 1241 bool cur_state;
702e7a56
PZ
1242 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1243 pipe);
b24e7179 1244
8e636784
DV
1245 /* if we need the pipe A quirk it must be always on */
1246 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1247 state = true;
1248
da7e29bd 1249 if (!intel_display_power_enabled(dev_priv,
b97186f0 1250 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1251 cur_state = false;
1252 } else {
1253 reg = PIPECONF(cpu_transcoder);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & PIPECONF_ENABLE);
1256 }
1257
63d7bbe9
JB
1258 WARN(cur_state != state,
1259 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1260 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1261}
1262
931872fc
CW
1263static void assert_plane(struct drm_i915_private *dev_priv,
1264 enum plane plane, bool state)
b24e7179
JB
1265{
1266 int reg;
1267 u32 val;
931872fc 1268 bool cur_state;
b24e7179
JB
1269
1270 reg = DSPCNTR(plane);
1271 val = I915_READ(reg);
931872fc
CW
1272 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1273 WARN(cur_state != state,
1274 "plane %c assertion failure (expected %s, current %s)\n",
1275 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1276}
1277
931872fc
CW
1278#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1279#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1280
b24e7179
JB
1281static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe)
1283{
653e1026 1284 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1285 int reg, i;
1286 u32 val;
1287 int cur_pipe;
1288
653e1026
VS
1289 /* Primary planes are fixed to pipes on gen4+ */
1290 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1291 reg = DSPCNTR(pipe);
1292 val = I915_READ(reg);
83f26f16 1293 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1294 "plane %c assertion failure, should be disabled but not\n",
1295 plane_name(pipe));
19ec1358 1296 return;
28c05794 1297 }
19ec1358 1298
b24e7179 1299 /* Need to check both planes against the pipe */
08e2a7de 1300 for_each_pipe(i) {
b24e7179
JB
1301 reg = DSPCNTR(i);
1302 val = I915_READ(reg);
1303 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1304 DISPPLANE_SEL_PIPE_SHIFT;
1305 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1306 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1307 plane_name(i), pipe_name(pipe));
b24e7179
JB
1308 }
1309}
1310
19332d7a
JB
1311static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1312 enum pipe pipe)
1313{
20674eef 1314 struct drm_device *dev = dev_priv->dev;
1fe47785 1315 int reg, sprite;
19332d7a
JB
1316 u32 val;
1317
20674eef 1318 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1319 for_each_sprite(pipe, sprite) {
1320 reg = SPCNTR(pipe, sprite);
20674eef 1321 val = I915_READ(reg);
83f26f16 1322 WARN(val & SP_ENABLE,
20674eef 1323 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1324 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1325 }
1326 } else if (INTEL_INFO(dev)->gen >= 7) {
1327 reg = SPRCTL(pipe);
19332d7a 1328 val = I915_READ(reg);
83f26f16 1329 WARN(val & SPRITE_ENABLE,
06da8da2 1330 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1331 plane_name(pipe), pipe_name(pipe));
1332 } else if (INTEL_INFO(dev)->gen >= 5) {
1333 reg = DVSCNTR(pipe);
19332d7a 1334 val = I915_READ(reg);
83f26f16 1335 WARN(val & DVS_ENABLE,
06da8da2 1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1337 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1338 }
1339}
1340
89eff4be 1341static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1342{
1343 u32 val;
1344 bool enabled;
1345
89eff4be 1346 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1347
92f2584a
JB
1348 val = I915_READ(PCH_DREF_CONTROL);
1349 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1350 DREF_SUPERSPREAD_SOURCE_MASK));
1351 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1352}
1353
ab9412ba
DV
1354static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
92f2584a
JB
1356{
1357 int reg;
1358 u32 val;
1359 bool enabled;
1360
ab9412ba 1361 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1362 val = I915_READ(reg);
1363 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1364 WARN(enabled,
1365 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1366 pipe_name(pipe));
92f2584a
JB
1367}
1368
4e634389
KP
1369static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1371{
1372 if ((val & DP_PORT_EN) == 0)
1373 return false;
1374
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1377 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1378 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1379 return false;
44f37d1f
CML
1380 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1381 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1382 return false;
f0575e92
KP
1383 } else {
1384 if ((val & DP_PIPE_MASK) != (pipe << 30))
1385 return false;
1386 }
1387 return true;
1388}
1389
1519b995
KP
1390static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, u32 val)
1392{
dc0fa718 1393 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1394 return false;
1395
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1398 return false;
44f37d1f
CML
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1401 return false;
1519b995 1402 } else {
dc0fa718 1403 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1404 return false;
1405 }
1406 return true;
1407}
1408
1409static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411{
1412 if ((val & LVDS_PORT_EN) == 0)
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
1416 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1417 return false;
1418 } else {
1419 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1420 return false;
1421 }
1422 return true;
1423}
1424
1425static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1426 enum pipe pipe, u32 val)
1427{
1428 if ((val & ADPA_DAC_ENABLE) == 0)
1429 return false;
1430 if (HAS_PCH_CPT(dev_priv->dev)) {
1431 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1432 return false;
1433 } else {
1434 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1435 return false;
1436 }
1437 return true;
1438}
1439
291906f1 1440static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1441 enum pipe pipe, int reg, u32 port_sel)
291906f1 1442{
47a05eca 1443 u32 val = I915_READ(reg);
4e634389 1444 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1445 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1446 reg, pipe_name(pipe));
de9a35ab 1447
75c5da27
DV
1448 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1449 && (val & DP_PIPEB_SELECT),
de9a35ab 1450 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1451}
1452
1453static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe, int reg)
1455{
47a05eca 1456 u32 val = I915_READ(reg);
b70ad586 1457 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1458 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1459 reg, pipe_name(pipe));
de9a35ab 1460
dc0fa718 1461 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1462 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1463 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1464}
1465
1466static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe)
1468{
1469 int reg;
1470 u32 val;
291906f1 1471
f0575e92
KP
1472 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1475
1476 reg = PCH_ADPA;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1
JB
1481
1482 reg = PCH_LVDS;
1483 val = I915_READ(reg);
b70ad586 1484 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1486 pipe_name(pipe));
291906f1 1487
e2debe91
PZ
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1491}
1492
40e9cf64
JB
1493static void intel_init_dpio(struct drm_device *dev)
1494{
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496
1497 if (!IS_VALLEYVIEW(dev))
1498 return;
1499
a09caddd
CML
1500 /*
1501 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1502 * CHV x1 PHY (DP/HDMI D)
1503 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1504 */
1505 if (IS_CHERRYVIEW(dev)) {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1507 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1508 } else {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1510 }
5382f5f3
JB
1511}
1512
1513static void intel_reset_dpio(struct drm_device *dev)
1514{
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516
076ed3b2
CML
1517 if (IS_CHERRYVIEW(dev)) {
1518 enum dpio_phy phy;
1519 u32 val;
1520
1521 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1522 /* Poll for phypwrgood signal */
1523 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1524 PHY_POWERGOOD(phy), 1))
1525 DRM_ERROR("Display PHY %d is not power up\n", phy);
1526
1527 /*
1528 * Deassert common lane reset for PHY.
1529 *
1530 * This should only be done on init and resume from S3
1531 * with both PLLs disabled, or we risk losing DPIO and
1532 * PLL synchronization.
1533 */
1534 val = I915_READ(DISPLAY_PHY_CONTROL);
1535 I915_WRITE(DISPLAY_PHY_CONTROL,
1536 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1537 }
076ed3b2 1538 }
40e9cf64
JB
1539}
1540
426115cf 1541static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1542{
426115cf
DV
1543 struct drm_device *dev = crtc->base.dev;
1544 struct drm_i915_private *dev_priv = dev->dev_private;
1545 int reg = DPLL(crtc->pipe);
1546 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1547
426115cf 1548 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1549
1550 /* No really, not for ILK+ */
1551 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1552
1553 /* PLL is protected by panel, make sure we can write it */
1554 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1555 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1556
426115cf
DV
1557 I915_WRITE(reg, dpll);
1558 POSTING_READ(reg);
1559 udelay(150);
1560
1561 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1562 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1563
1564 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1565 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1566
1567 /* We do this three times for luck */
426115cf 1568 I915_WRITE(reg, dpll);
87442f73
DV
1569 POSTING_READ(reg);
1570 udelay(150); /* wait for warmup */
426115cf 1571 I915_WRITE(reg, dpll);
87442f73
DV
1572 POSTING_READ(reg);
1573 udelay(150); /* wait for warmup */
426115cf 1574 I915_WRITE(reg, dpll);
87442f73
DV
1575 POSTING_READ(reg);
1576 udelay(150); /* wait for warmup */
1577}
1578
9d556c99
CML
1579static void chv_enable_pll(struct intel_crtc *crtc)
1580{
1581 struct drm_device *dev = crtc->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 int pipe = crtc->pipe;
1584 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1585 u32 tmp;
1586
1587 assert_pipe_disabled(dev_priv, crtc->pipe);
1588
1589 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1590
1591 mutex_lock(&dev_priv->dpio_lock);
1592
1593 /* Enable back the 10bit clock to display controller */
1594 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1595 tmp |= DPIO_DCLKP_EN;
1596 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1597
1598 /*
1599 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1600 */
1601 udelay(1);
1602
1603 /* Enable PLL */
a11b0703 1604 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1605
1606 /* Check PLL is locked */
a11b0703 1607 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1608 DRM_ERROR("PLL %d failed to lock\n", pipe);
1609
a11b0703
VS
1610 /* not sure when this should be written */
1611 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1612 POSTING_READ(DPLL_MD(pipe));
1613
9d556c99
CML
1614 mutex_unlock(&dev_priv->dpio_lock);
1615}
1616
66e3d5c0 1617static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1618{
66e3d5c0
DV
1619 struct drm_device *dev = crtc->base.dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621 int reg = DPLL(crtc->pipe);
1622 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1623
66e3d5c0 1624 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1625
63d7bbe9 1626 /* No really, not for ILK+ */
3d13ef2e 1627 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1628
1629 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1630 if (IS_MOBILE(dev) && !IS_I830(dev))
1631 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1632
66e3d5c0
DV
1633 I915_WRITE(reg, dpll);
1634
1635 /* Wait for the clocks to stabilize. */
1636 POSTING_READ(reg);
1637 udelay(150);
1638
1639 if (INTEL_INFO(dev)->gen >= 4) {
1640 I915_WRITE(DPLL_MD(crtc->pipe),
1641 crtc->config.dpll_hw_state.dpll_md);
1642 } else {
1643 /* The pixel multiplier can only be updated once the
1644 * DPLL is enabled and the clocks are stable.
1645 *
1646 * So write it again.
1647 */
1648 I915_WRITE(reg, dpll);
1649 }
63d7bbe9
JB
1650
1651 /* We do this three times for luck */
66e3d5c0 1652 I915_WRITE(reg, dpll);
63d7bbe9
JB
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
66e3d5c0 1655 I915_WRITE(reg, dpll);
63d7bbe9
JB
1656 POSTING_READ(reg);
1657 udelay(150); /* wait for warmup */
66e3d5c0 1658 I915_WRITE(reg, dpll);
63d7bbe9
JB
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661}
1662
1663/**
50b44a44 1664 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1665 * @dev_priv: i915 private structure
1666 * @pipe: pipe PLL to disable
1667 *
1668 * Disable the PLL for @pipe, making sure the pipe is off first.
1669 *
1670 * Note! This is for pre-ILK only.
1671 */
50b44a44 1672static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1673{
63d7bbe9
JB
1674 /* Don't disable pipe A or pipe A PLLs if needed */
1675 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1676 return;
1677
1678 /* Make sure the pipe isn't still relying on us */
1679 assert_pipe_disabled(dev_priv, pipe);
1680
50b44a44
DV
1681 I915_WRITE(DPLL(pipe), 0);
1682 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1683}
1684
f6071166
JB
1685static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1686{
1687 u32 val = 0;
1688
1689 /* Make sure the pipe isn't still relying on us */
1690 assert_pipe_disabled(dev_priv, pipe);
1691
e5cbfbfb
ID
1692 /*
1693 * Leave integrated clock source and reference clock enabled for pipe B.
1694 * The latter is needed for VGA hotplug / manual detection.
1695 */
f6071166 1696 if (pipe == PIPE_B)
e5cbfbfb 1697 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1698 I915_WRITE(DPLL(pipe), val);
1699 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1700
1701}
1702
1703static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1704{
d752048d 1705 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1706 u32 val;
1707
a11b0703
VS
1708 /* Make sure the pipe isn't still relying on us */
1709 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1710
a11b0703
VS
1711 /* Set PLL en = 0 */
1712 val = DPLL_SSC_REF_CLOCK_CHV;
1713 if (pipe != PIPE_A)
1714 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1715 I915_WRITE(DPLL(pipe), val);
1716 POSTING_READ(DPLL(pipe));
d752048d
VS
1717
1718 mutex_lock(&dev_priv->dpio_lock);
1719
1720 /* Disable 10bit clock to display controller */
1721 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1722 val &= ~DPIO_DCLKP_EN;
1723 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1724
61407f6d
VS
1725 /* disable left/right clock distribution */
1726 if (pipe != PIPE_B) {
1727 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1728 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1729 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1730 } else {
1731 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1732 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1733 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1734 }
1735
d752048d 1736 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1737}
1738
e4607fcf
CML
1739void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1740 struct intel_digital_port *dport)
89b667f8
JB
1741{
1742 u32 port_mask;
00fc31b7 1743 int dpll_reg;
89b667f8 1744
e4607fcf
CML
1745 switch (dport->port) {
1746 case PORT_B:
89b667f8 1747 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1748 dpll_reg = DPLL(0);
e4607fcf
CML
1749 break;
1750 case PORT_C:
89b667f8 1751 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1752 dpll_reg = DPLL(0);
1753 break;
1754 case PORT_D:
1755 port_mask = DPLL_PORTD_READY_MASK;
1756 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1757 break;
1758 default:
1759 BUG();
1760 }
89b667f8 1761
00fc31b7 1762 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1763 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1764 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1765}
1766
b14b1055
DV
1767static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1768{
1769 struct drm_device *dev = crtc->base.dev;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1772
be19f0ff
CW
1773 if (WARN_ON(pll == NULL))
1774 return;
1775
b14b1055
DV
1776 WARN_ON(!pll->refcount);
1777 if (pll->active == 0) {
1778 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1779 WARN_ON(pll->on);
1780 assert_shared_dpll_disabled(dev_priv, pll);
1781
1782 pll->mode_set(dev_priv, pll);
1783 }
1784}
1785
92f2584a 1786/**
85b3894f 1787 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1788 * @dev_priv: i915 private structure
1789 * @pipe: pipe PLL to enable
1790 *
1791 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1792 * drives the transcoder clock.
1793 */
85b3894f 1794static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1795{
3d13ef2e
DL
1796 struct drm_device *dev = crtc->base.dev;
1797 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1798 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1799
87a875bb 1800 if (WARN_ON(pll == NULL))
48da64a8
CW
1801 return;
1802
1803 if (WARN_ON(pll->refcount == 0))
1804 return;
ee7b9f93 1805
46edb027
DV
1806 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1807 pll->name, pll->active, pll->on,
e2b78267 1808 crtc->base.base.id);
92f2584a 1809
cdbd2316
DV
1810 if (pll->active++) {
1811 WARN_ON(!pll->on);
e9d6944e 1812 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1813 return;
1814 }
f4a091c7 1815 WARN_ON(pll->on);
ee7b9f93 1816
46edb027 1817 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1818 pll->enable(dev_priv, pll);
ee7b9f93 1819 pll->on = true;
92f2584a
JB
1820}
1821
e2b78267 1822static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1823{
3d13ef2e
DL
1824 struct drm_device *dev = crtc->base.dev;
1825 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1826 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1827
92f2584a 1828 /* PCH only available on ILK+ */
3d13ef2e 1829 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1830 if (WARN_ON(pll == NULL))
ee7b9f93 1831 return;
92f2584a 1832
48da64a8
CW
1833 if (WARN_ON(pll->refcount == 0))
1834 return;
7a419866 1835
46edb027
DV
1836 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1837 pll->name, pll->active, pll->on,
e2b78267 1838 crtc->base.base.id);
7a419866 1839
48da64a8 1840 if (WARN_ON(pll->active == 0)) {
e9d6944e 1841 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1842 return;
1843 }
1844
e9d6944e 1845 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1846 WARN_ON(!pll->on);
cdbd2316 1847 if (--pll->active)
7a419866 1848 return;
ee7b9f93 1849
46edb027 1850 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1851 pll->disable(dev_priv, pll);
ee7b9f93 1852 pll->on = false;
92f2584a
JB
1853}
1854
b8a4f404
PZ
1855static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1856 enum pipe pipe)
040484af 1857{
23670b32 1858 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1859 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1861 uint32_t reg, val, pipeconf_val;
040484af
JB
1862
1863 /* PCH only available on ILK+ */
3d13ef2e 1864 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1865
1866 /* Make sure PCH DPLL is enabled */
e72f9fbf 1867 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1868 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1869
1870 /* FDI must be feeding us bits for PCH ports */
1871 assert_fdi_tx_enabled(dev_priv, pipe);
1872 assert_fdi_rx_enabled(dev_priv, pipe);
1873
23670b32
DV
1874 if (HAS_PCH_CPT(dev)) {
1875 /* Workaround: Set the timing override bit before enabling the
1876 * pch transcoder. */
1877 reg = TRANS_CHICKEN2(pipe);
1878 val = I915_READ(reg);
1879 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1880 I915_WRITE(reg, val);
59c859d6 1881 }
23670b32 1882
ab9412ba 1883 reg = PCH_TRANSCONF(pipe);
040484af 1884 val = I915_READ(reg);
5f7f726d 1885 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1886
1887 if (HAS_PCH_IBX(dev_priv->dev)) {
1888 /*
1889 * make the BPC in transcoder be consistent with
1890 * that in pipeconf reg.
1891 */
dfd07d72
DV
1892 val &= ~PIPECONF_BPC_MASK;
1893 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1894 }
5f7f726d
PZ
1895
1896 val &= ~TRANS_INTERLACE_MASK;
1897 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1898 if (HAS_PCH_IBX(dev_priv->dev) &&
1899 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1900 val |= TRANS_LEGACY_INTERLACED_ILK;
1901 else
1902 val |= TRANS_INTERLACED;
5f7f726d
PZ
1903 else
1904 val |= TRANS_PROGRESSIVE;
1905
040484af
JB
1906 I915_WRITE(reg, val | TRANS_ENABLE);
1907 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1908 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1909}
1910
8fb033d7 1911static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1912 enum transcoder cpu_transcoder)
040484af 1913{
8fb033d7 1914 u32 val, pipeconf_val;
8fb033d7
PZ
1915
1916 /* PCH only available on ILK+ */
3d13ef2e 1917 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1918
8fb033d7 1919 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1920 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1921 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1922
223a6fdf
PZ
1923 /* Workaround: set timing override bit. */
1924 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1925 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1926 I915_WRITE(_TRANSA_CHICKEN2, val);
1927
25f3ef11 1928 val = TRANS_ENABLE;
937bb610 1929 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1930
9a76b1c6
PZ
1931 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1932 PIPECONF_INTERLACED_ILK)
a35f2679 1933 val |= TRANS_INTERLACED;
8fb033d7
PZ
1934 else
1935 val |= TRANS_PROGRESSIVE;
1936
ab9412ba
DV
1937 I915_WRITE(LPT_TRANSCONF, val);
1938 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1939 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1940}
1941
b8a4f404
PZ
1942static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1943 enum pipe pipe)
040484af 1944{
23670b32
DV
1945 struct drm_device *dev = dev_priv->dev;
1946 uint32_t reg, val;
040484af
JB
1947
1948 /* FDI relies on the transcoder */
1949 assert_fdi_tx_disabled(dev_priv, pipe);
1950 assert_fdi_rx_disabled(dev_priv, pipe);
1951
291906f1
JB
1952 /* Ports must be off as well */
1953 assert_pch_ports_disabled(dev_priv, pipe);
1954
ab9412ba 1955 reg = PCH_TRANSCONF(pipe);
040484af
JB
1956 val = I915_READ(reg);
1957 val &= ~TRANS_ENABLE;
1958 I915_WRITE(reg, val);
1959 /* wait for PCH transcoder off, transcoder state */
1960 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1961 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1962
1963 if (!HAS_PCH_IBX(dev)) {
1964 /* Workaround: Clear the timing override chicken bit again. */
1965 reg = TRANS_CHICKEN2(pipe);
1966 val = I915_READ(reg);
1967 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1968 I915_WRITE(reg, val);
1969 }
040484af
JB
1970}
1971
ab4d966c 1972static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1973{
8fb033d7
PZ
1974 u32 val;
1975
ab9412ba 1976 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1977 val &= ~TRANS_ENABLE;
ab9412ba 1978 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1979 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1980 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1981 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1982
1983 /* Workaround: clear timing override bit. */
1984 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1985 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1986 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1987}
1988
b24e7179 1989/**
309cfea8 1990 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1991 * @crtc: crtc responsible for the pipe
b24e7179 1992 *
0372264a 1993 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1994 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1995 */
e1fdc473 1996static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1997{
0372264a
PZ
1998 struct drm_device *dev = crtc->base.dev;
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2001 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2002 pipe);
1a240d4d 2003 enum pipe pch_transcoder;
b24e7179
JB
2004 int reg;
2005 u32 val;
2006
58c6eaa2 2007 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2008 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2009 assert_sprites_disabled(dev_priv, pipe);
2010
681e5811 2011 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2012 pch_transcoder = TRANSCODER_A;
2013 else
2014 pch_transcoder = pipe;
2015
b24e7179
JB
2016 /*
2017 * A pipe without a PLL won't actually be able to drive bits from
2018 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2019 * need the check.
2020 */
2021 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2022 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2023 assert_dsi_pll_enabled(dev_priv);
2024 else
2025 assert_pll_enabled(dev_priv, pipe);
040484af 2026 else {
30421c4f 2027 if (crtc->config.has_pch_encoder) {
040484af 2028 /* if driving the PCH, we need FDI enabled */
cc391bbb 2029 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2030 assert_fdi_tx_pll_enabled(dev_priv,
2031 (enum pipe) cpu_transcoder);
040484af
JB
2032 }
2033 /* FIXME: assert CPU port conditions for SNB+ */
2034 }
b24e7179 2035
702e7a56 2036 reg = PIPECONF(cpu_transcoder);
b24e7179 2037 val = I915_READ(reg);
7ad25d48
PZ
2038 if (val & PIPECONF_ENABLE) {
2039 WARN_ON(!(pipe == PIPE_A &&
2040 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2041 return;
7ad25d48 2042 }
00d70b15
CW
2043
2044 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2045 POSTING_READ(reg);
b24e7179
JB
2046}
2047
2048/**
309cfea8 2049 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2050 * @dev_priv: i915 private structure
2051 * @pipe: pipe to disable
2052 *
2053 * Disable @pipe, making sure that various hardware specific requirements
2054 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2055 *
2056 * @pipe should be %PIPE_A or %PIPE_B.
2057 *
2058 * Will wait until the pipe has shut down before returning.
2059 */
2060static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2061 enum pipe pipe)
2062{
702e7a56
PZ
2063 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2064 pipe);
b24e7179
JB
2065 int reg;
2066 u32 val;
2067
2068 /*
2069 * Make sure planes won't keep trying to pump pixels to us,
2070 * or we might hang the display.
2071 */
2072 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2073 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2074 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2075
2076 /* Don't disable pipe A or pipe A PLLs if needed */
2077 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2078 return;
2079
702e7a56 2080 reg = PIPECONF(cpu_transcoder);
b24e7179 2081 val = I915_READ(reg);
00d70b15
CW
2082 if ((val & PIPECONF_ENABLE) == 0)
2083 return;
2084
2085 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2086 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2087}
2088
d74362c9
KP
2089/*
2090 * Plane regs are double buffered, going from enabled->disabled needs a
2091 * trigger in order to latch. The display address reg provides this.
2092 */
1dba99f4
VS
2093void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2094 enum plane plane)
d74362c9 2095{
3d13ef2e
DL
2096 struct drm_device *dev = dev_priv->dev;
2097 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2098
2099 I915_WRITE(reg, I915_READ(reg));
2100 POSTING_READ(reg);
d74362c9
KP
2101}
2102
b24e7179 2103/**
262ca2b0 2104 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2105 * @dev_priv: i915 private structure
2106 * @plane: plane to enable
2107 * @pipe: pipe being fed
2108 *
2109 * Enable @plane on @pipe, making sure that @pipe is running first.
2110 */
262ca2b0
MR
2111static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2112 enum plane plane, enum pipe pipe)
b24e7179 2113{
33c3b0d1 2114 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2115 struct intel_crtc *intel_crtc =
2116 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2117 int reg;
2118 u32 val;
2119
2120 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2121 assert_pipe_enabled(dev_priv, pipe);
2122
98ec7739
VS
2123 if (intel_crtc->primary_enabled)
2124 return;
0037f71c 2125
4c445e0e 2126 intel_crtc->primary_enabled = true;
939c2fe8 2127
b24e7179
JB
2128 reg = DSPCNTR(plane);
2129 val = I915_READ(reg);
10efa932 2130 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2131
2132 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2133 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2134
2135 /*
2136 * BDW signals flip done immediately if the plane
2137 * is disabled, even if the plane enable is already
2138 * armed to occur at the next vblank :(
2139 */
2140 if (IS_BROADWELL(dev))
2141 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2142}
2143
b24e7179 2144/**
262ca2b0 2145 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2146 * @dev_priv: i915 private structure
2147 * @plane: plane to disable
2148 * @pipe: pipe consuming the data
2149 *
2150 * Disable @plane; should be an independent operation.
2151 */
262ca2b0
MR
2152static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2153 enum plane plane, enum pipe pipe)
b24e7179 2154{
939c2fe8
VS
2155 struct intel_crtc *intel_crtc =
2156 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2157 int reg;
2158 u32 val;
2159
98ec7739
VS
2160 if (!intel_crtc->primary_enabled)
2161 return;
0037f71c 2162
4c445e0e 2163 intel_crtc->primary_enabled = false;
939c2fe8 2164
b24e7179
JB
2165 reg = DSPCNTR(plane);
2166 val = I915_READ(reg);
10efa932 2167 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2168
2169 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2170 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2171}
2172
693db184
CW
2173static bool need_vtd_wa(struct drm_device *dev)
2174{
2175#ifdef CONFIG_INTEL_IOMMU
2176 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2177 return true;
2178#endif
2179 return false;
2180}
2181
a57ce0b2
JB
2182static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2183{
2184 int tile_height;
2185
2186 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2187 return ALIGN(height, tile_height);
2188}
2189
127bd2ac 2190int
48b956c5 2191intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2192 struct drm_i915_gem_object *obj,
a4872ba6 2193 struct intel_engine_cs *pipelined)
6b95a207 2194{
ce453d81 2195 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2196 u32 alignment;
2197 int ret;
2198
05394f39 2199 switch (obj->tiling_mode) {
6b95a207 2200 case I915_TILING_NONE:
534843da
CW
2201 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2202 alignment = 128 * 1024;
a6c45cf0 2203 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2204 alignment = 4 * 1024;
2205 else
2206 alignment = 64 * 1024;
6b95a207
KH
2207 break;
2208 case I915_TILING_X:
2209 /* pin() will align the object as required by fence */
2210 alignment = 0;
2211 break;
2212 case I915_TILING_Y:
80075d49 2213 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2214 return -EINVAL;
2215 default:
2216 BUG();
2217 }
2218
693db184
CW
2219 /* Note that the w/a also requires 64 PTE of padding following the
2220 * bo. We currently fill all unused PTE with the shadow page and so
2221 * we should always have valid PTE following the scanout preventing
2222 * the VT-d warning.
2223 */
2224 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2225 alignment = 256 * 1024;
2226
ce453d81 2227 dev_priv->mm.interruptible = false;
2da3b9b9 2228 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2229 if (ret)
ce453d81 2230 goto err_interruptible;
6b95a207
KH
2231
2232 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2233 * fence, whereas 965+ only requires a fence if using
2234 * framebuffer compression. For simplicity, we always install
2235 * a fence as the cost is not that onerous.
2236 */
06d98131 2237 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2238 if (ret)
2239 goto err_unpin;
1690e1eb 2240
9a5a53b3 2241 i915_gem_object_pin_fence(obj);
6b95a207 2242
ce453d81 2243 dev_priv->mm.interruptible = true;
6b95a207 2244 return 0;
48b956c5
CW
2245
2246err_unpin:
cc98b413 2247 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2248err_interruptible:
2249 dev_priv->mm.interruptible = true;
48b956c5 2250 return ret;
6b95a207
KH
2251}
2252
1690e1eb
CW
2253void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2254{
2255 i915_gem_object_unpin_fence(obj);
cc98b413 2256 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2257}
2258
c2c75131
DV
2259/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2260 * is assumed to be a power-of-two. */
bc752862
CW
2261unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2262 unsigned int tiling_mode,
2263 unsigned int cpp,
2264 unsigned int pitch)
c2c75131 2265{
bc752862
CW
2266 if (tiling_mode != I915_TILING_NONE) {
2267 unsigned int tile_rows, tiles;
c2c75131 2268
bc752862
CW
2269 tile_rows = *y / 8;
2270 *y %= 8;
c2c75131 2271
bc752862
CW
2272 tiles = *x / (512/cpp);
2273 *x %= 512/cpp;
2274
2275 return tile_rows * pitch * 8 + tiles * 4096;
2276 } else {
2277 unsigned int offset;
2278
2279 offset = *y * pitch + *x * cpp;
2280 *y = 0;
2281 *x = (offset & 4095) / cpp;
2282 return offset & -4096;
2283 }
c2c75131
DV
2284}
2285
46f297fb
JB
2286int intel_format_to_fourcc(int format)
2287{
2288 switch (format) {
2289 case DISPPLANE_8BPP:
2290 return DRM_FORMAT_C8;
2291 case DISPPLANE_BGRX555:
2292 return DRM_FORMAT_XRGB1555;
2293 case DISPPLANE_BGRX565:
2294 return DRM_FORMAT_RGB565;
2295 default:
2296 case DISPPLANE_BGRX888:
2297 return DRM_FORMAT_XRGB8888;
2298 case DISPPLANE_RGBX888:
2299 return DRM_FORMAT_XBGR8888;
2300 case DISPPLANE_BGRX101010:
2301 return DRM_FORMAT_XRGB2101010;
2302 case DISPPLANE_RGBX101010:
2303 return DRM_FORMAT_XBGR2101010;
2304 }
2305}
2306
484b41dd 2307static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2308 struct intel_plane_config *plane_config)
2309{
2310 struct drm_device *dev = crtc->base.dev;
2311 struct drm_i915_gem_object *obj = NULL;
2312 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2313 u32 base = plane_config->base;
2314
ff2652ea
CW
2315 if (plane_config->size == 0)
2316 return false;
2317
46f297fb
JB
2318 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2319 plane_config->size);
2320 if (!obj)
484b41dd 2321 return false;
46f297fb
JB
2322
2323 if (plane_config->tiled) {
2324 obj->tiling_mode = I915_TILING_X;
66e514c1 2325 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2326 }
2327
66e514c1
DA
2328 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2329 mode_cmd.width = crtc->base.primary->fb->width;
2330 mode_cmd.height = crtc->base.primary->fb->height;
2331 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2332
2333 mutex_lock(&dev->struct_mutex);
2334
66e514c1 2335 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2336 &mode_cmd, obj)) {
46f297fb
JB
2337 DRM_DEBUG_KMS("intel fb init failed\n");
2338 goto out_unref_obj;
2339 }
2340
a071fa00 2341 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2342 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2343
2344 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2345 return true;
46f297fb
JB
2346
2347out_unref_obj:
2348 drm_gem_object_unreference(&obj->base);
2349 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2350 return false;
2351}
2352
2353static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2354 struct intel_plane_config *plane_config)
2355{
2356 struct drm_device *dev = intel_crtc->base.dev;
2357 struct drm_crtc *c;
2358 struct intel_crtc *i;
2ff8fde1 2359 struct drm_i915_gem_object *obj;
484b41dd 2360
66e514c1 2361 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2362 return;
2363
2364 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2365 return;
2366
66e514c1
DA
2367 kfree(intel_crtc->base.primary->fb);
2368 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2369
2370 /*
2371 * Failed to alloc the obj, check to see if we should share
2372 * an fb with another CRTC instead
2373 */
70e1e0ec 2374 for_each_crtc(dev, c) {
484b41dd
JB
2375 i = to_intel_crtc(c);
2376
2377 if (c == &intel_crtc->base)
2378 continue;
2379
2ff8fde1
MR
2380 if (!i->active)
2381 continue;
2382
2383 obj = intel_fb_obj(c->primary->fb);
2384 if (obj == NULL)
484b41dd
JB
2385 continue;
2386
2ff8fde1 2387 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2388 drm_framebuffer_reference(c->primary->fb);
2389 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2390 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2391 break;
2392 }
2393 }
46f297fb
JB
2394}
2395
29b9bde6
DV
2396static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2397 struct drm_framebuffer *fb,
2398 int x, int y)
81255565
JB
2399{
2400 struct drm_device *dev = crtc->dev;
2401 struct drm_i915_private *dev_priv = dev->dev_private;
2402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2403 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2404 int plane = intel_crtc->plane;
e506a0c6 2405 unsigned long linear_offset;
81255565 2406 u32 dspcntr;
5eddb70b 2407 u32 reg;
81255565 2408
5eddb70b
CW
2409 reg = DSPCNTR(plane);
2410 dspcntr = I915_READ(reg);
81255565
JB
2411 /* Mask out pixel format bits in case we change it */
2412 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2413 switch (fb->pixel_format) {
2414 case DRM_FORMAT_C8:
81255565
JB
2415 dspcntr |= DISPPLANE_8BPP;
2416 break;
57779d06
VS
2417 case DRM_FORMAT_XRGB1555:
2418 case DRM_FORMAT_ARGB1555:
2419 dspcntr |= DISPPLANE_BGRX555;
81255565 2420 break;
57779d06
VS
2421 case DRM_FORMAT_RGB565:
2422 dspcntr |= DISPPLANE_BGRX565;
2423 break;
2424 case DRM_FORMAT_XRGB8888:
2425 case DRM_FORMAT_ARGB8888:
2426 dspcntr |= DISPPLANE_BGRX888;
2427 break;
2428 case DRM_FORMAT_XBGR8888:
2429 case DRM_FORMAT_ABGR8888:
2430 dspcntr |= DISPPLANE_RGBX888;
2431 break;
2432 case DRM_FORMAT_XRGB2101010:
2433 case DRM_FORMAT_ARGB2101010:
2434 dspcntr |= DISPPLANE_BGRX101010;
2435 break;
2436 case DRM_FORMAT_XBGR2101010:
2437 case DRM_FORMAT_ABGR2101010:
2438 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2439 break;
2440 default:
baba133a 2441 BUG();
81255565 2442 }
57779d06 2443
a6c45cf0 2444 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2445 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2446 dspcntr |= DISPPLANE_TILED;
2447 else
2448 dspcntr &= ~DISPPLANE_TILED;
2449 }
2450
de1aa629
VS
2451 if (IS_G4X(dev))
2452 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2453
5eddb70b 2454 I915_WRITE(reg, dspcntr);
81255565 2455
e506a0c6 2456 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2457
c2c75131
DV
2458 if (INTEL_INFO(dev)->gen >= 4) {
2459 intel_crtc->dspaddr_offset =
bc752862
CW
2460 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2461 fb->bits_per_pixel / 8,
2462 fb->pitches[0]);
c2c75131
DV
2463 linear_offset -= intel_crtc->dspaddr_offset;
2464 } else {
e506a0c6 2465 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2466 }
e506a0c6 2467
f343c5f6
BW
2468 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2469 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2470 fb->pitches[0]);
01f2c773 2471 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2472 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2473 I915_WRITE(DSPSURF(plane),
2474 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2475 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2476 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2477 } else
f343c5f6 2478 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2479 POSTING_READ(reg);
17638cd6
JB
2480}
2481
29b9bde6
DV
2482static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2483 struct drm_framebuffer *fb,
2484 int x, int y)
17638cd6
JB
2485{
2486 struct drm_device *dev = crtc->dev;
2487 struct drm_i915_private *dev_priv = dev->dev_private;
2488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2489 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2490 int plane = intel_crtc->plane;
e506a0c6 2491 unsigned long linear_offset;
17638cd6
JB
2492 u32 dspcntr;
2493 u32 reg;
2494
17638cd6
JB
2495 reg = DSPCNTR(plane);
2496 dspcntr = I915_READ(reg);
2497 /* Mask out pixel format bits in case we change it */
2498 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2499 switch (fb->pixel_format) {
2500 case DRM_FORMAT_C8:
17638cd6
JB
2501 dspcntr |= DISPPLANE_8BPP;
2502 break;
57779d06
VS
2503 case DRM_FORMAT_RGB565:
2504 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2505 break;
57779d06
VS
2506 case DRM_FORMAT_XRGB8888:
2507 case DRM_FORMAT_ARGB8888:
2508 dspcntr |= DISPPLANE_BGRX888;
2509 break;
2510 case DRM_FORMAT_XBGR8888:
2511 case DRM_FORMAT_ABGR8888:
2512 dspcntr |= DISPPLANE_RGBX888;
2513 break;
2514 case DRM_FORMAT_XRGB2101010:
2515 case DRM_FORMAT_ARGB2101010:
2516 dspcntr |= DISPPLANE_BGRX101010;
2517 break;
2518 case DRM_FORMAT_XBGR2101010:
2519 case DRM_FORMAT_ABGR2101010:
2520 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2521 break;
2522 default:
baba133a 2523 BUG();
17638cd6
JB
2524 }
2525
2526 if (obj->tiling_mode != I915_TILING_NONE)
2527 dspcntr |= DISPPLANE_TILED;
2528 else
2529 dspcntr &= ~DISPPLANE_TILED;
2530
b42c6009 2531 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2532 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2533 else
2534 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2535
2536 I915_WRITE(reg, dspcntr);
2537
e506a0c6 2538 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2539 intel_crtc->dspaddr_offset =
bc752862
CW
2540 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2541 fb->bits_per_pixel / 8,
2542 fb->pitches[0]);
c2c75131 2543 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2544
f343c5f6
BW
2545 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2546 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2547 fb->pitches[0]);
01f2c773 2548 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2549 I915_WRITE(DSPSURF(plane),
2550 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2551 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2552 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2553 } else {
2554 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555 I915_WRITE(DSPLINOFF(plane), linear_offset);
2556 }
17638cd6 2557 POSTING_READ(reg);
17638cd6
JB
2558}
2559
2560/* Assume fb object is pinned & idle & fenced and just update base pointers */
2561static int
2562intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2563 int x, int y, enum mode_set_atomic state)
2564{
2565 struct drm_device *dev = crtc->dev;
2566 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2567
6b8e6ed0
CW
2568 if (dev_priv->display.disable_fbc)
2569 dev_priv->display.disable_fbc(dev);
cc36513c 2570 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2571
29b9bde6
DV
2572 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2573
2574 return 0;
81255565
JB
2575}
2576
96a02917
VS
2577void intel_display_handle_reset(struct drm_device *dev)
2578{
2579 struct drm_i915_private *dev_priv = dev->dev_private;
2580 struct drm_crtc *crtc;
2581
2582 /*
2583 * Flips in the rings have been nuked by the reset,
2584 * so complete all pending flips so that user space
2585 * will get its events and not get stuck.
2586 *
2587 * Also update the base address of all primary
2588 * planes to the the last fb to make sure we're
2589 * showing the correct fb after a reset.
2590 *
2591 * Need to make two loops over the crtcs so that we
2592 * don't try to grab a crtc mutex before the
2593 * pending_flip_queue really got woken up.
2594 */
2595
70e1e0ec 2596 for_each_crtc(dev, crtc) {
96a02917
VS
2597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2598 enum plane plane = intel_crtc->plane;
2599
2600 intel_prepare_page_flip(dev, plane);
2601 intel_finish_page_flip_plane(dev, plane);
2602 }
2603
70e1e0ec 2604 for_each_crtc(dev, crtc) {
96a02917
VS
2605 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2606
51fd371b 2607 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2608 /*
2609 * FIXME: Once we have proper support for primary planes (and
2610 * disabling them without disabling the entire crtc) allow again
66e514c1 2611 * a NULL crtc->primary->fb.
947fdaad 2612 */
f4510a27 2613 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2614 dev_priv->display.update_primary_plane(crtc,
66e514c1 2615 crtc->primary->fb,
262ca2b0
MR
2616 crtc->x,
2617 crtc->y);
51fd371b 2618 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2619 }
2620}
2621
14667a4b
CW
2622static int
2623intel_finish_fb(struct drm_framebuffer *old_fb)
2624{
2ff8fde1 2625 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2626 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2627 bool was_interruptible = dev_priv->mm.interruptible;
2628 int ret;
2629
14667a4b
CW
2630 /* Big Hammer, we also need to ensure that any pending
2631 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2632 * current scanout is retired before unpinning the old
2633 * framebuffer.
2634 *
2635 * This should only fail upon a hung GPU, in which case we
2636 * can safely continue.
2637 */
2638 dev_priv->mm.interruptible = false;
2639 ret = i915_gem_object_finish_gpu(obj);
2640 dev_priv->mm.interruptible = was_interruptible;
2641
2642 return ret;
2643}
2644
7d5e3799
CW
2645static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2646{
2647 struct drm_device *dev = crtc->dev;
2648 struct drm_i915_private *dev_priv = dev->dev_private;
2649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2650 unsigned long flags;
2651 bool pending;
2652
2653 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2654 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2655 return false;
2656
2657 spin_lock_irqsave(&dev->event_lock, flags);
2658 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2659 spin_unlock_irqrestore(&dev->event_lock, flags);
2660
2661 return pending;
2662}
2663
5c3b82e2 2664static int
3c4fdcfb 2665intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2666 struct drm_framebuffer *fb)
79e53945
JB
2667{
2668 struct drm_device *dev = crtc->dev;
6b8e6ed0 2669 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2671 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2672 struct drm_framebuffer *old_fb = crtc->primary->fb;
2673 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2674 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2675 int ret;
79e53945 2676
7d5e3799
CW
2677 if (intel_crtc_has_pending_flip(crtc)) {
2678 DRM_ERROR("pipe is still busy with an old pageflip\n");
2679 return -EBUSY;
2680 }
2681
79e53945 2682 /* no fb bound */
94352cf9 2683 if (!fb) {
a5071c2f 2684 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2685 return 0;
2686 }
2687
7eb552ae 2688 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2689 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2690 plane_name(intel_crtc->plane),
2691 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2692 return -EINVAL;
79e53945
JB
2693 }
2694
5c3b82e2 2695 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2696 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2697 if (ret == 0)
91565c85 2698 i915_gem_track_fb(old_obj, obj,
a071fa00 2699 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2700 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2701 if (ret != 0) {
a5071c2f 2702 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2703 return ret;
2704 }
79e53945 2705
bb2043de
DL
2706 /*
2707 * Update pipe size and adjust fitter if needed: the reason for this is
2708 * that in compute_mode_changes we check the native mode (not the pfit
2709 * mode) to see if we can flip rather than do a full mode set. In the
2710 * fastboot case, we'll flip, but if we don't update the pipesrc and
2711 * pfit state, we'll end up with a big fb scanned out into the wrong
2712 * sized surface.
2713 *
2714 * To fix this properly, we need to hoist the checks up into
2715 * compute_mode_changes (or above), check the actual pfit state and
2716 * whether the platform allows pfit disable with pipe active, and only
2717 * then update the pipesrc and pfit state, even on the flip path.
2718 */
d330a953 2719 if (i915.fastboot) {
d7bf63f2
DL
2720 const struct drm_display_mode *adjusted_mode =
2721 &intel_crtc->config.adjusted_mode;
2722
4d6a3e63 2723 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2724 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2725 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2726 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2727 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2728 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2729 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2730 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2731 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2732 }
0637d60d
JB
2733 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2734 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2735 }
2736
29b9bde6 2737 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2738
f99d7069
DV
2739 if (intel_crtc->active)
2740 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2741
f4510a27 2742 crtc->primary->fb = fb;
6c4c86f5
DV
2743 crtc->x = x;
2744 crtc->y = y;
94352cf9 2745
b7f1de28 2746 if (old_fb) {
d7697eea
DV
2747 if (intel_crtc->active && old_fb != fb)
2748 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2749 mutex_lock(&dev->struct_mutex);
2ff8fde1 2750 intel_unpin_fb_obj(old_obj);
8ac36ec1 2751 mutex_unlock(&dev->struct_mutex);
b7f1de28 2752 }
652c393a 2753
8ac36ec1 2754 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2755 intel_update_fbc(dev);
5c3b82e2 2756 mutex_unlock(&dev->struct_mutex);
79e53945 2757
5c3b82e2 2758 return 0;
79e53945
JB
2759}
2760
5e84e1a4
ZW
2761static void intel_fdi_normal_train(struct drm_crtc *crtc)
2762{
2763 struct drm_device *dev = crtc->dev;
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2766 int pipe = intel_crtc->pipe;
2767 u32 reg, temp;
2768
2769 /* enable normal train */
2770 reg = FDI_TX_CTL(pipe);
2771 temp = I915_READ(reg);
61e499bf 2772 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2773 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2774 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2775 } else {
2776 temp &= ~FDI_LINK_TRAIN_NONE;
2777 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2778 }
5e84e1a4
ZW
2779 I915_WRITE(reg, temp);
2780
2781 reg = FDI_RX_CTL(pipe);
2782 temp = I915_READ(reg);
2783 if (HAS_PCH_CPT(dev)) {
2784 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2785 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2786 } else {
2787 temp &= ~FDI_LINK_TRAIN_NONE;
2788 temp |= FDI_LINK_TRAIN_NONE;
2789 }
2790 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2791
2792 /* wait one idle pattern time */
2793 POSTING_READ(reg);
2794 udelay(1000);
357555c0
JB
2795
2796 /* IVB wants error correction enabled */
2797 if (IS_IVYBRIDGE(dev))
2798 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2799 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2800}
2801
1fbc0d78 2802static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2803{
1fbc0d78
DV
2804 return crtc->base.enabled && crtc->active &&
2805 crtc->config.has_pch_encoder;
1e833f40
DV
2806}
2807
01a415fd
DV
2808static void ivb_modeset_global_resources(struct drm_device *dev)
2809{
2810 struct drm_i915_private *dev_priv = dev->dev_private;
2811 struct intel_crtc *pipe_B_crtc =
2812 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2813 struct intel_crtc *pipe_C_crtc =
2814 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2815 uint32_t temp;
2816
1e833f40
DV
2817 /*
2818 * When everything is off disable fdi C so that we could enable fdi B
2819 * with all lanes. Note that we don't care about enabled pipes without
2820 * an enabled pch encoder.
2821 */
2822 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2823 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2824 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2825 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2826
2827 temp = I915_READ(SOUTH_CHICKEN1);
2828 temp &= ~FDI_BC_BIFURCATION_SELECT;
2829 DRM_DEBUG_KMS("disabling fdi C rx\n");
2830 I915_WRITE(SOUTH_CHICKEN1, temp);
2831 }
2832}
2833
8db9d77b
ZW
2834/* The FDI link training functions for ILK/Ibexpeak. */
2835static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2836{
2837 struct drm_device *dev = crtc->dev;
2838 struct drm_i915_private *dev_priv = dev->dev_private;
2839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2840 int pipe = intel_crtc->pipe;
5eddb70b 2841 u32 reg, temp, tries;
8db9d77b 2842
1c8562f6 2843 /* FDI needs bits from pipe first */
0fc932b8 2844 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2845
e1a44743
AJ
2846 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2847 for train result */
5eddb70b
CW
2848 reg = FDI_RX_IMR(pipe);
2849 temp = I915_READ(reg);
e1a44743
AJ
2850 temp &= ~FDI_RX_SYMBOL_LOCK;
2851 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2852 I915_WRITE(reg, temp);
2853 I915_READ(reg);
e1a44743
AJ
2854 udelay(150);
2855
8db9d77b 2856 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2857 reg = FDI_TX_CTL(pipe);
2858 temp = I915_READ(reg);
627eb5a3
DV
2859 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2860 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2861 temp &= ~FDI_LINK_TRAIN_NONE;
2862 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2863 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2864
5eddb70b
CW
2865 reg = FDI_RX_CTL(pipe);
2866 temp = I915_READ(reg);
8db9d77b
ZW
2867 temp &= ~FDI_LINK_TRAIN_NONE;
2868 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2869 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2870
2871 POSTING_READ(reg);
8db9d77b
ZW
2872 udelay(150);
2873
5b2adf89 2874 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2875 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2876 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2877 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2878
5eddb70b 2879 reg = FDI_RX_IIR(pipe);
e1a44743 2880 for (tries = 0; tries < 5; tries++) {
5eddb70b 2881 temp = I915_READ(reg);
8db9d77b
ZW
2882 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2883
2884 if ((temp & FDI_RX_BIT_LOCK)) {
2885 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2886 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2887 break;
2888 }
8db9d77b 2889 }
e1a44743 2890 if (tries == 5)
5eddb70b 2891 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2892
2893 /* Train 2 */
5eddb70b
CW
2894 reg = FDI_TX_CTL(pipe);
2895 temp = I915_READ(reg);
8db9d77b
ZW
2896 temp &= ~FDI_LINK_TRAIN_NONE;
2897 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2898 I915_WRITE(reg, temp);
8db9d77b 2899
5eddb70b
CW
2900 reg = FDI_RX_CTL(pipe);
2901 temp = I915_READ(reg);
8db9d77b
ZW
2902 temp &= ~FDI_LINK_TRAIN_NONE;
2903 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2904 I915_WRITE(reg, temp);
8db9d77b 2905
5eddb70b
CW
2906 POSTING_READ(reg);
2907 udelay(150);
8db9d77b 2908
5eddb70b 2909 reg = FDI_RX_IIR(pipe);
e1a44743 2910 for (tries = 0; tries < 5; tries++) {
5eddb70b 2911 temp = I915_READ(reg);
8db9d77b
ZW
2912 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2913
2914 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2915 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2916 DRM_DEBUG_KMS("FDI train 2 done.\n");
2917 break;
2918 }
8db9d77b 2919 }
e1a44743 2920 if (tries == 5)
5eddb70b 2921 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2922
2923 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2924
8db9d77b
ZW
2925}
2926
0206e353 2927static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2928 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2929 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2930 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2931 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2932};
2933
2934/* The FDI link training functions for SNB/Cougarpoint. */
2935static void gen6_fdi_link_train(struct drm_crtc *crtc)
2936{
2937 struct drm_device *dev = crtc->dev;
2938 struct drm_i915_private *dev_priv = dev->dev_private;
2939 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2940 int pipe = intel_crtc->pipe;
fa37d39e 2941 u32 reg, temp, i, retry;
8db9d77b 2942
e1a44743
AJ
2943 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2944 for train result */
5eddb70b
CW
2945 reg = FDI_RX_IMR(pipe);
2946 temp = I915_READ(reg);
e1a44743
AJ
2947 temp &= ~FDI_RX_SYMBOL_LOCK;
2948 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2949 I915_WRITE(reg, temp);
2950
2951 POSTING_READ(reg);
e1a44743
AJ
2952 udelay(150);
2953
8db9d77b 2954 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2955 reg = FDI_TX_CTL(pipe);
2956 temp = I915_READ(reg);
627eb5a3
DV
2957 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2958 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2959 temp &= ~FDI_LINK_TRAIN_NONE;
2960 temp |= FDI_LINK_TRAIN_PATTERN_1;
2961 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2962 /* SNB-B */
2963 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2964 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2965
d74cf324
DV
2966 I915_WRITE(FDI_RX_MISC(pipe),
2967 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2968
5eddb70b
CW
2969 reg = FDI_RX_CTL(pipe);
2970 temp = I915_READ(reg);
8db9d77b
ZW
2971 if (HAS_PCH_CPT(dev)) {
2972 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2973 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2974 } else {
2975 temp &= ~FDI_LINK_TRAIN_NONE;
2976 temp |= FDI_LINK_TRAIN_PATTERN_1;
2977 }
5eddb70b
CW
2978 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2979
2980 POSTING_READ(reg);
8db9d77b
ZW
2981 udelay(150);
2982
0206e353 2983 for (i = 0; i < 4; i++) {
5eddb70b
CW
2984 reg = FDI_TX_CTL(pipe);
2985 temp = I915_READ(reg);
8db9d77b
ZW
2986 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2987 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2988 I915_WRITE(reg, temp);
2989
2990 POSTING_READ(reg);
8db9d77b
ZW
2991 udelay(500);
2992
fa37d39e
SP
2993 for (retry = 0; retry < 5; retry++) {
2994 reg = FDI_RX_IIR(pipe);
2995 temp = I915_READ(reg);
2996 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2997 if (temp & FDI_RX_BIT_LOCK) {
2998 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2999 DRM_DEBUG_KMS("FDI train 1 done.\n");
3000 break;
3001 }
3002 udelay(50);
8db9d77b 3003 }
fa37d39e
SP
3004 if (retry < 5)
3005 break;
8db9d77b
ZW
3006 }
3007 if (i == 4)
5eddb70b 3008 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3009
3010 /* Train 2 */
5eddb70b
CW
3011 reg = FDI_TX_CTL(pipe);
3012 temp = I915_READ(reg);
8db9d77b
ZW
3013 temp &= ~FDI_LINK_TRAIN_NONE;
3014 temp |= FDI_LINK_TRAIN_PATTERN_2;
3015 if (IS_GEN6(dev)) {
3016 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3017 /* SNB-B */
3018 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3019 }
5eddb70b 3020 I915_WRITE(reg, temp);
8db9d77b 3021
5eddb70b
CW
3022 reg = FDI_RX_CTL(pipe);
3023 temp = I915_READ(reg);
8db9d77b
ZW
3024 if (HAS_PCH_CPT(dev)) {
3025 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3026 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3027 } else {
3028 temp &= ~FDI_LINK_TRAIN_NONE;
3029 temp |= FDI_LINK_TRAIN_PATTERN_2;
3030 }
5eddb70b
CW
3031 I915_WRITE(reg, temp);
3032
3033 POSTING_READ(reg);
8db9d77b
ZW
3034 udelay(150);
3035
0206e353 3036 for (i = 0; i < 4; i++) {
5eddb70b
CW
3037 reg = FDI_TX_CTL(pipe);
3038 temp = I915_READ(reg);
8db9d77b
ZW
3039 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3040 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3041 I915_WRITE(reg, temp);
3042
3043 POSTING_READ(reg);
8db9d77b
ZW
3044 udelay(500);
3045
fa37d39e
SP
3046 for (retry = 0; retry < 5; retry++) {
3047 reg = FDI_RX_IIR(pipe);
3048 temp = I915_READ(reg);
3049 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3050 if (temp & FDI_RX_SYMBOL_LOCK) {
3051 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3052 DRM_DEBUG_KMS("FDI train 2 done.\n");
3053 break;
3054 }
3055 udelay(50);
8db9d77b 3056 }
fa37d39e
SP
3057 if (retry < 5)
3058 break;
8db9d77b
ZW
3059 }
3060 if (i == 4)
5eddb70b 3061 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3062
3063 DRM_DEBUG_KMS("FDI train done.\n");
3064}
3065
357555c0
JB
3066/* Manual link training for Ivy Bridge A0 parts */
3067static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3068{
3069 struct drm_device *dev = crtc->dev;
3070 struct drm_i915_private *dev_priv = dev->dev_private;
3071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3072 int pipe = intel_crtc->pipe;
139ccd3f 3073 u32 reg, temp, i, j;
357555c0
JB
3074
3075 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3076 for train result */
3077 reg = FDI_RX_IMR(pipe);
3078 temp = I915_READ(reg);
3079 temp &= ~FDI_RX_SYMBOL_LOCK;
3080 temp &= ~FDI_RX_BIT_LOCK;
3081 I915_WRITE(reg, temp);
3082
3083 POSTING_READ(reg);
3084 udelay(150);
3085
01a415fd
DV
3086 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3087 I915_READ(FDI_RX_IIR(pipe)));
3088
139ccd3f
JB
3089 /* Try each vswing and preemphasis setting twice before moving on */
3090 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3091 /* disable first in case we need to retry */
3092 reg = FDI_TX_CTL(pipe);
3093 temp = I915_READ(reg);
3094 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3095 temp &= ~FDI_TX_ENABLE;
3096 I915_WRITE(reg, temp);
357555c0 3097
139ccd3f
JB
3098 reg = FDI_RX_CTL(pipe);
3099 temp = I915_READ(reg);
3100 temp &= ~FDI_LINK_TRAIN_AUTO;
3101 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3102 temp &= ~FDI_RX_ENABLE;
3103 I915_WRITE(reg, temp);
357555c0 3104
139ccd3f 3105 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3106 reg = FDI_TX_CTL(pipe);
3107 temp = I915_READ(reg);
139ccd3f
JB
3108 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3109 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3110 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3111 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3112 temp |= snb_b_fdi_train_param[j/2];
3113 temp |= FDI_COMPOSITE_SYNC;
3114 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3115
139ccd3f
JB
3116 I915_WRITE(FDI_RX_MISC(pipe),
3117 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3118
139ccd3f 3119 reg = FDI_RX_CTL(pipe);
357555c0 3120 temp = I915_READ(reg);
139ccd3f
JB
3121 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3122 temp |= FDI_COMPOSITE_SYNC;
3123 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3124
139ccd3f
JB
3125 POSTING_READ(reg);
3126 udelay(1); /* should be 0.5us */
357555c0 3127
139ccd3f
JB
3128 for (i = 0; i < 4; i++) {
3129 reg = FDI_RX_IIR(pipe);
3130 temp = I915_READ(reg);
3131 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3132
139ccd3f
JB
3133 if (temp & FDI_RX_BIT_LOCK ||
3134 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3135 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3136 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3137 i);
3138 break;
3139 }
3140 udelay(1); /* should be 0.5us */
3141 }
3142 if (i == 4) {
3143 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3144 continue;
3145 }
357555c0 3146
139ccd3f 3147 /* Train 2 */
357555c0
JB
3148 reg = FDI_TX_CTL(pipe);
3149 temp = I915_READ(reg);
139ccd3f
JB
3150 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3151 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3152 I915_WRITE(reg, temp);
3153
3154 reg = FDI_RX_CTL(pipe);
3155 temp = I915_READ(reg);
3156 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3157 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3158 I915_WRITE(reg, temp);
3159
3160 POSTING_READ(reg);
139ccd3f 3161 udelay(2); /* should be 1.5us */
357555c0 3162
139ccd3f
JB
3163 for (i = 0; i < 4; i++) {
3164 reg = FDI_RX_IIR(pipe);
3165 temp = I915_READ(reg);
3166 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3167
139ccd3f
JB
3168 if (temp & FDI_RX_SYMBOL_LOCK ||
3169 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3170 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3171 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3172 i);
3173 goto train_done;
3174 }
3175 udelay(2); /* should be 1.5us */
357555c0 3176 }
139ccd3f
JB
3177 if (i == 4)
3178 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3179 }
357555c0 3180
139ccd3f 3181train_done:
357555c0
JB
3182 DRM_DEBUG_KMS("FDI train done.\n");
3183}
3184
88cefb6c 3185static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3186{
88cefb6c 3187 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3188 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3189 int pipe = intel_crtc->pipe;
5eddb70b 3190 u32 reg, temp;
79e53945 3191
c64e311e 3192
c98e9dcf 3193 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3194 reg = FDI_RX_CTL(pipe);
3195 temp = I915_READ(reg);
627eb5a3
DV
3196 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3197 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3198 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3199 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3200
3201 POSTING_READ(reg);
c98e9dcf
JB
3202 udelay(200);
3203
3204 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3205 temp = I915_READ(reg);
3206 I915_WRITE(reg, temp | FDI_PCDCLK);
3207
3208 POSTING_READ(reg);
c98e9dcf
JB
3209 udelay(200);
3210
20749730
PZ
3211 /* Enable CPU FDI TX PLL, always on for Ironlake */
3212 reg = FDI_TX_CTL(pipe);
3213 temp = I915_READ(reg);
3214 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3215 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3216
20749730
PZ
3217 POSTING_READ(reg);
3218 udelay(100);
6be4a607 3219 }
0e23b99d
JB
3220}
3221
88cefb6c
DV
3222static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3223{
3224 struct drm_device *dev = intel_crtc->base.dev;
3225 struct drm_i915_private *dev_priv = dev->dev_private;
3226 int pipe = intel_crtc->pipe;
3227 u32 reg, temp;
3228
3229 /* Switch from PCDclk to Rawclk */
3230 reg = FDI_RX_CTL(pipe);
3231 temp = I915_READ(reg);
3232 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3233
3234 /* Disable CPU FDI TX PLL */
3235 reg = FDI_TX_CTL(pipe);
3236 temp = I915_READ(reg);
3237 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3238
3239 POSTING_READ(reg);
3240 udelay(100);
3241
3242 reg = FDI_RX_CTL(pipe);
3243 temp = I915_READ(reg);
3244 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3245
3246 /* Wait for the clocks to turn off. */
3247 POSTING_READ(reg);
3248 udelay(100);
3249}
3250
0fc932b8
JB
3251static void ironlake_fdi_disable(struct drm_crtc *crtc)
3252{
3253 struct drm_device *dev = crtc->dev;
3254 struct drm_i915_private *dev_priv = dev->dev_private;
3255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256 int pipe = intel_crtc->pipe;
3257 u32 reg, temp;
3258
3259 /* disable CPU FDI tx and PCH FDI rx */
3260 reg = FDI_TX_CTL(pipe);
3261 temp = I915_READ(reg);
3262 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3263 POSTING_READ(reg);
3264
3265 reg = FDI_RX_CTL(pipe);
3266 temp = I915_READ(reg);
3267 temp &= ~(0x7 << 16);
dfd07d72 3268 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3269 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3270
3271 POSTING_READ(reg);
3272 udelay(100);
3273
3274 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3275 if (HAS_PCH_IBX(dev))
6f06ce18 3276 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3277
3278 /* still set train pattern 1 */
3279 reg = FDI_TX_CTL(pipe);
3280 temp = I915_READ(reg);
3281 temp &= ~FDI_LINK_TRAIN_NONE;
3282 temp |= FDI_LINK_TRAIN_PATTERN_1;
3283 I915_WRITE(reg, temp);
3284
3285 reg = FDI_RX_CTL(pipe);
3286 temp = I915_READ(reg);
3287 if (HAS_PCH_CPT(dev)) {
3288 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3289 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3290 } else {
3291 temp &= ~FDI_LINK_TRAIN_NONE;
3292 temp |= FDI_LINK_TRAIN_PATTERN_1;
3293 }
3294 /* BPC in FDI rx is consistent with that in PIPECONF */
3295 temp &= ~(0x07 << 16);
dfd07d72 3296 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3297 I915_WRITE(reg, temp);
3298
3299 POSTING_READ(reg);
3300 udelay(100);
3301}
3302
5dce5b93
CW
3303bool intel_has_pending_fb_unpin(struct drm_device *dev)
3304{
3305 struct intel_crtc *crtc;
3306
3307 /* Note that we don't need to be called with mode_config.lock here
3308 * as our list of CRTC objects is static for the lifetime of the
3309 * device and so cannot disappear as we iterate. Similarly, we can
3310 * happily treat the predicates as racy, atomic checks as userspace
3311 * cannot claim and pin a new fb without at least acquring the
3312 * struct_mutex and so serialising with us.
3313 */
d3fcc808 3314 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3315 if (atomic_read(&crtc->unpin_work_count) == 0)
3316 continue;
3317
3318 if (crtc->unpin_work)
3319 intel_wait_for_vblank(dev, crtc->pipe);
3320
3321 return true;
3322 }
3323
3324 return false;
3325}
3326
46a55d30 3327void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3328{
0f91128d 3329 struct drm_device *dev = crtc->dev;
5bb61643 3330 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3331
f4510a27 3332 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3333 return;
3334
2c10d571
DV
3335 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3336
eed6d67d
DV
3337 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3338 !intel_crtc_has_pending_flip(crtc),
3339 60*HZ) == 0);
5bb61643 3340
0f91128d 3341 mutex_lock(&dev->struct_mutex);
f4510a27 3342 intel_finish_fb(crtc->primary->fb);
0f91128d 3343 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3344}
3345
e615efe4
ED
3346/* Program iCLKIP clock to the desired frequency */
3347static void lpt_program_iclkip(struct drm_crtc *crtc)
3348{
3349 struct drm_device *dev = crtc->dev;
3350 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3351 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3352 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3353 u32 temp;
3354
09153000
DV
3355 mutex_lock(&dev_priv->dpio_lock);
3356
e615efe4
ED
3357 /* It is necessary to ungate the pixclk gate prior to programming
3358 * the divisors, and gate it back when it is done.
3359 */
3360 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3361
3362 /* Disable SSCCTL */
3363 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3364 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3365 SBI_SSCCTL_DISABLE,
3366 SBI_ICLK);
e615efe4
ED
3367
3368 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3369 if (clock == 20000) {
e615efe4
ED
3370 auxdiv = 1;
3371 divsel = 0x41;
3372 phaseinc = 0x20;
3373 } else {
3374 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3375 * but the adjusted_mode->crtc_clock in in KHz. To get the
3376 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3377 * convert the virtual clock precision to KHz here for higher
3378 * precision.
3379 */
3380 u32 iclk_virtual_root_freq = 172800 * 1000;
3381 u32 iclk_pi_range = 64;
3382 u32 desired_divisor, msb_divisor_value, pi_value;
3383
12d7ceed 3384 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3385 msb_divisor_value = desired_divisor / iclk_pi_range;
3386 pi_value = desired_divisor % iclk_pi_range;
3387
3388 auxdiv = 0;
3389 divsel = msb_divisor_value - 2;
3390 phaseinc = pi_value;
3391 }
3392
3393 /* This should not happen with any sane values */
3394 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3395 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3396 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3397 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3398
3399 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3400 clock,
e615efe4
ED
3401 auxdiv,
3402 divsel,
3403 phasedir,
3404 phaseinc);
3405
3406 /* Program SSCDIVINTPHASE6 */
988d6ee8 3407 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3408 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3409 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3410 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3411 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3412 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3413 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3414 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3415
3416 /* Program SSCAUXDIV */
988d6ee8 3417 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3418 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3419 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3420 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3421
3422 /* Enable modulator and associated divider */
988d6ee8 3423 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3424 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3425 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3426
3427 /* Wait for initialization time */
3428 udelay(24);
3429
3430 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3431
3432 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3433}
3434
275f01b2
DV
3435static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3436 enum pipe pch_transcoder)
3437{
3438 struct drm_device *dev = crtc->base.dev;
3439 struct drm_i915_private *dev_priv = dev->dev_private;
3440 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3441
3442 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3443 I915_READ(HTOTAL(cpu_transcoder)));
3444 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3445 I915_READ(HBLANK(cpu_transcoder)));
3446 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3447 I915_READ(HSYNC(cpu_transcoder)));
3448
3449 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3450 I915_READ(VTOTAL(cpu_transcoder)));
3451 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3452 I915_READ(VBLANK(cpu_transcoder)));
3453 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3454 I915_READ(VSYNC(cpu_transcoder)));
3455 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3456 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3457}
3458
1fbc0d78
DV
3459static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3460{
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462 uint32_t temp;
3463
3464 temp = I915_READ(SOUTH_CHICKEN1);
3465 if (temp & FDI_BC_BIFURCATION_SELECT)
3466 return;
3467
3468 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3469 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3470
3471 temp |= FDI_BC_BIFURCATION_SELECT;
3472 DRM_DEBUG_KMS("enabling fdi C rx\n");
3473 I915_WRITE(SOUTH_CHICKEN1, temp);
3474 POSTING_READ(SOUTH_CHICKEN1);
3475}
3476
3477static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3478{
3479 struct drm_device *dev = intel_crtc->base.dev;
3480 struct drm_i915_private *dev_priv = dev->dev_private;
3481
3482 switch (intel_crtc->pipe) {
3483 case PIPE_A:
3484 break;
3485 case PIPE_B:
3486 if (intel_crtc->config.fdi_lanes > 2)
3487 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3488 else
3489 cpt_enable_fdi_bc_bifurcation(dev);
3490
3491 break;
3492 case PIPE_C:
3493 cpt_enable_fdi_bc_bifurcation(dev);
3494
3495 break;
3496 default:
3497 BUG();
3498 }
3499}
3500
f67a559d
JB
3501/*
3502 * Enable PCH resources required for PCH ports:
3503 * - PCH PLLs
3504 * - FDI training & RX/TX
3505 * - update transcoder timings
3506 * - DP transcoding bits
3507 * - transcoder
3508 */
3509static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3510{
3511 struct drm_device *dev = crtc->dev;
3512 struct drm_i915_private *dev_priv = dev->dev_private;
3513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3514 int pipe = intel_crtc->pipe;
ee7b9f93 3515 u32 reg, temp;
2c07245f 3516
ab9412ba 3517 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3518
1fbc0d78
DV
3519 if (IS_IVYBRIDGE(dev))
3520 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3521
cd986abb
DV
3522 /* Write the TU size bits before fdi link training, so that error
3523 * detection works. */
3524 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3525 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3526
c98e9dcf 3527 /* For PCH output, training FDI link */
674cf967 3528 dev_priv->display.fdi_link_train(crtc);
2c07245f 3529
3ad8a208
DV
3530 /* We need to program the right clock selection before writing the pixel
3531 * mutliplier into the DPLL. */
303b81e0 3532 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3533 u32 sel;
4b645f14 3534
c98e9dcf 3535 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3536 temp |= TRANS_DPLL_ENABLE(pipe);
3537 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3538 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3539 temp |= sel;
3540 else
3541 temp &= ~sel;
c98e9dcf 3542 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3543 }
5eddb70b 3544
3ad8a208
DV
3545 /* XXX: pch pll's can be enabled any time before we enable the PCH
3546 * transcoder, and we actually should do this to not upset any PCH
3547 * transcoder that already use the clock when we share it.
3548 *
3549 * Note that enable_shared_dpll tries to do the right thing, but
3550 * get_shared_dpll unconditionally resets the pll - we need that to have
3551 * the right LVDS enable sequence. */
85b3894f 3552 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3553
d9b6cb56
JB
3554 /* set transcoder timing, panel must allow it */
3555 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3556 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3557
303b81e0 3558 intel_fdi_normal_train(crtc);
5e84e1a4 3559
c98e9dcf
JB
3560 /* For PCH DP, enable TRANS_DP_CTL */
3561 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3562 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3563 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3564 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3565 reg = TRANS_DP_CTL(pipe);
3566 temp = I915_READ(reg);
3567 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3568 TRANS_DP_SYNC_MASK |
3569 TRANS_DP_BPC_MASK);
5eddb70b
CW
3570 temp |= (TRANS_DP_OUTPUT_ENABLE |
3571 TRANS_DP_ENH_FRAMING);
9325c9f0 3572 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3573
3574 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3575 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3576 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3577 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3578
3579 switch (intel_trans_dp_port_sel(crtc)) {
3580 case PCH_DP_B:
5eddb70b 3581 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3582 break;
3583 case PCH_DP_C:
5eddb70b 3584 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3585 break;
3586 case PCH_DP_D:
5eddb70b 3587 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3588 break;
3589 default:
e95d41e1 3590 BUG();
32f9d658 3591 }
2c07245f 3592
5eddb70b 3593 I915_WRITE(reg, temp);
6be4a607 3594 }
b52eb4dc 3595
b8a4f404 3596 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3597}
3598
1507e5bd
PZ
3599static void lpt_pch_enable(struct drm_crtc *crtc)
3600{
3601 struct drm_device *dev = crtc->dev;
3602 struct drm_i915_private *dev_priv = dev->dev_private;
3603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3604 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3605
ab9412ba 3606 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3607
8c52b5e8 3608 lpt_program_iclkip(crtc);
1507e5bd 3609
0540e488 3610 /* Set transcoder timing. */
275f01b2 3611 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3612
937bb610 3613 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3614}
3615
e2b78267 3616static void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3617{
e2b78267 3618 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3619
3620 if (pll == NULL)
3621 return;
3622
3623 if (pll->refcount == 0) {
46edb027 3624 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3625 return;
3626 }
3627
f4a091c7
DV
3628 if (--pll->refcount == 0) {
3629 WARN_ON(pll->on);
3630 WARN_ON(pll->active);
3631 }
3632
a43f6e0f 3633 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3634}
3635
b89a1d39 3636static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3637{
e2b78267
DV
3638 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3639 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3640 enum intel_dpll_id i;
ee7b9f93 3641
ee7b9f93 3642 if (pll) {
46edb027
DV
3643 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3644 crtc->base.base.id, pll->name);
e2b78267 3645 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3646 }
3647
98b6bd99
DV
3648 if (HAS_PCH_IBX(dev_priv->dev)) {
3649 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3650 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3651 pll = &dev_priv->shared_dplls[i];
98b6bd99 3652
46edb027
DV
3653 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3654 crtc->base.base.id, pll->name);
98b6bd99 3655
f2a69f44
DV
3656 WARN_ON(pll->refcount);
3657
98b6bd99
DV
3658 goto found;
3659 }
3660
e72f9fbf
DV
3661 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3662 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3663
3664 /* Only want to check enabled timings first */
3665 if (pll->refcount == 0)
3666 continue;
3667
b89a1d39
DV
3668 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3669 sizeof(pll->hw_state)) == 0) {
46edb027 3670 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3671 crtc->base.base.id,
46edb027 3672 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3673
3674 goto found;
3675 }
3676 }
3677
3678 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3679 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3680 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3681 if (pll->refcount == 0) {
46edb027
DV
3682 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3683 crtc->base.base.id, pll->name);
ee7b9f93
JB
3684 goto found;
3685 }
3686 }
3687
3688 return NULL;
3689
3690found:
f2a69f44
DV
3691 if (pll->refcount == 0)
3692 pll->hw_state = crtc->config.dpll_hw_state;
3693
a43f6e0f 3694 crtc->config.shared_dpll = i;
46edb027
DV
3695 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3696 pipe_name(crtc->pipe));
ee7b9f93 3697
cdbd2316 3698 pll->refcount++;
e04c7350 3699
ee7b9f93
JB
3700 return pll;
3701}
3702
a1520318 3703static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3704{
3705 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3706 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3707 u32 temp;
3708
3709 temp = I915_READ(dslreg);
3710 udelay(500);
3711 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3712 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3713 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3714 }
3715}
3716
b074cec8
JB
3717static void ironlake_pfit_enable(struct intel_crtc *crtc)
3718{
3719 struct drm_device *dev = crtc->base.dev;
3720 struct drm_i915_private *dev_priv = dev->dev_private;
3721 int pipe = crtc->pipe;
3722
fd4daa9c 3723 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3724 /* Force use of hard-coded filter coefficients
3725 * as some pre-programmed values are broken,
3726 * e.g. x201.
3727 */
3728 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3729 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3730 PF_PIPE_SEL_IVB(pipe));
3731 else
3732 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3733 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3734 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3735 }
3736}
3737
bb53d4ae
VS
3738static void intel_enable_planes(struct drm_crtc *crtc)
3739{
3740 struct drm_device *dev = crtc->dev;
3741 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3742 struct drm_plane *plane;
bb53d4ae
VS
3743 struct intel_plane *intel_plane;
3744
af2b653b
MR
3745 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3746 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3747 if (intel_plane->pipe == pipe)
3748 intel_plane_restore(&intel_plane->base);
af2b653b 3749 }
bb53d4ae
VS
3750}
3751
3752static void intel_disable_planes(struct drm_crtc *crtc)
3753{
3754 struct drm_device *dev = crtc->dev;
3755 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3756 struct drm_plane *plane;
bb53d4ae
VS
3757 struct intel_plane *intel_plane;
3758
af2b653b
MR
3759 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3760 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3761 if (intel_plane->pipe == pipe)
3762 intel_plane_disable(&intel_plane->base);
af2b653b 3763 }
bb53d4ae
VS
3764}
3765
20bc8673 3766void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3767{
cea165c3
VS
3768 struct drm_device *dev = crtc->base.dev;
3769 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3770
3771 if (!crtc->config.ips_enabled)
3772 return;
3773
cea165c3
VS
3774 /* We can only enable IPS after we enable a plane and wait for a vblank */
3775 intel_wait_for_vblank(dev, crtc->pipe);
3776
d77e4531 3777 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3778 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3779 mutex_lock(&dev_priv->rps.hw_lock);
3780 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3781 mutex_unlock(&dev_priv->rps.hw_lock);
3782 /* Quoting Art Runyan: "its not safe to expect any particular
3783 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3784 * mailbox." Moreover, the mailbox may return a bogus state,
3785 * so we need to just enable it and continue on.
2a114cc1
BW
3786 */
3787 } else {
3788 I915_WRITE(IPS_CTL, IPS_ENABLE);
3789 /* The bit only becomes 1 in the next vblank, so this wait here
3790 * is essentially intel_wait_for_vblank. If we don't have this
3791 * and don't wait for vblanks until the end of crtc_enable, then
3792 * the HW state readout code will complain that the expected
3793 * IPS_CTL value is not the one we read. */
3794 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3795 DRM_ERROR("Timed out waiting for IPS enable\n");
3796 }
d77e4531
PZ
3797}
3798
20bc8673 3799void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3800{
3801 struct drm_device *dev = crtc->base.dev;
3802 struct drm_i915_private *dev_priv = dev->dev_private;
3803
3804 if (!crtc->config.ips_enabled)
3805 return;
3806
3807 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3808 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3809 mutex_lock(&dev_priv->rps.hw_lock);
3810 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3811 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3812 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3813 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3814 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3815 } else {
2a114cc1 3816 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3817 POSTING_READ(IPS_CTL);
3818 }
d77e4531
PZ
3819
3820 /* We need to wait for a vblank before we can disable the plane. */
3821 intel_wait_for_vblank(dev, crtc->pipe);
3822}
3823
3824/** Loads the palette/gamma unit for the CRTC with the prepared values */
3825static void intel_crtc_load_lut(struct drm_crtc *crtc)
3826{
3827 struct drm_device *dev = crtc->dev;
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3830 enum pipe pipe = intel_crtc->pipe;
3831 int palreg = PALETTE(pipe);
3832 int i;
3833 bool reenable_ips = false;
3834
3835 /* The clocks have to be on to load the palette. */
3836 if (!crtc->enabled || !intel_crtc->active)
3837 return;
3838
3839 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3840 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3841 assert_dsi_pll_enabled(dev_priv);
3842 else
3843 assert_pll_enabled(dev_priv, pipe);
3844 }
3845
3846 /* use legacy palette for Ironlake */
3847 if (HAS_PCH_SPLIT(dev))
3848 palreg = LGC_PALETTE(pipe);
3849
3850 /* Workaround : Do not read or write the pipe palette/gamma data while
3851 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3852 */
41e6fc4c 3853 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3854 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3855 GAMMA_MODE_MODE_SPLIT)) {
3856 hsw_disable_ips(intel_crtc);
3857 reenable_ips = true;
3858 }
3859
3860 for (i = 0; i < 256; i++) {
3861 I915_WRITE(palreg + 4 * i,
3862 (intel_crtc->lut_r[i] << 16) |
3863 (intel_crtc->lut_g[i] << 8) |
3864 intel_crtc->lut_b[i]);
3865 }
3866
3867 if (reenable_ips)
3868 hsw_enable_ips(intel_crtc);
3869}
3870
d3eedb1a
VS
3871static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3872{
3873 if (!enable && intel_crtc->overlay) {
3874 struct drm_device *dev = intel_crtc->base.dev;
3875 struct drm_i915_private *dev_priv = dev->dev_private;
3876
3877 mutex_lock(&dev->struct_mutex);
3878 dev_priv->mm.interruptible = false;
3879 (void) intel_overlay_switch_off(intel_crtc->overlay);
3880 dev_priv->mm.interruptible = true;
3881 mutex_unlock(&dev->struct_mutex);
3882 }
3883
3884 /* Let userspace switch the overlay on again. In most cases userspace
3885 * has to recompute where to put it anyway.
3886 */
3887}
3888
d3eedb1a 3889static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3890{
3891 struct drm_device *dev = crtc->dev;
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3894 int pipe = intel_crtc->pipe;
3895 int plane = intel_crtc->plane;
3896
f98551ae
VS
3897 drm_vblank_on(dev, pipe);
3898
a5c4d7bc
VS
3899 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3900 intel_enable_planes(crtc);
3901 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3902 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3903
3904 hsw_enable_ips(intel_crtc);
3905
3906 mutex_lock(&dev->struct_mutex);
3907 intel_update_fbc(dev);
3908 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3909
3910 /*
3911 * FIXME: Once we grow proper nuclear flip support out of this we need
3912 * to compute the mask of flip planes precisely. For the time being
3913 * consider this a flip from a NULL plane.
3914 */
3915 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3916}
3917
d3eedb1a 3918static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3919{
3920 struct drm_device *dev = crtc->dev;
3921 struct drm_i915_private *dev_priv = dev->dev_private;
3922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3923 int pipe = intel_crtc->pipe;
3924 int plane = intel_crtc->plane;
3925
3926 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3927
3928 if (dev_priv->fbc.plane == plane)
3929 intel_disable_fbc(dev);
3930
3931 hsw_disable_ips(intel_crtc);
3932
d3eedb1a 3933 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3934 intel_crtc_update_cursor(crtc, false);
3935 intel_disable_planes(crtc);
3936 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3937
f99d7069
DV
3938 /*
3939 * FIXME: Once we grow proper nuclear flip support out of this we need
3940 * to compute the mask of flip planes precisely. For the time being
3941 * consider this a flip to a NULL plane.
3942 */
3943 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3944
f98551ae 3945 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3946}
3947
f67a559d
JB
3948static void ironlake_crtc_enable(struct drm_crtc *crtc)
3949{
3950 struct drm_device *dev = crtc->dev;
3951 struct drm_i915_private *dev_priv = dev->dev_private;
3952 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3953 struct intel_encoder *encoder;
f67a559d 3954 int pipe = intel_crtc->pipe;
29407aab 3955 enum plane plane = intel_crtc->plane;
f67a559d 3956
08a48469
DV
3957 WARN_ON(!crtc->enabled);
3958
f67a559d
JB
3959 if (intel_crtc->active)
3960 return;
3961
b14b1055
DV
3962 if (intel_crtc->config.has_pch_encoder)
3963 intel_prepare_shared_dpll(intel_crtc);
3964
29407aab
DV
3965 if (intel_crtc->config.has_dp_encoder)
3966 intel_dp_set_m_n(intel_crtc);
3967
3968 intel_set_pipe_timings(intel_crtc);
3969
3970 if (intel_crtc->config.has_pch_encoder) {
3971 intel_cpu_transcoder_set_m_n(intel_crtc,
3972 &intel_crtc->config.fdi_m_n);
3973 }
3974
3975 ironlake_set_pipeconf(crtc);
3976
3977 /* Set up the display plane register */
3978 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3979 POSTING_READ(DSPCNTR(plane));
3980
3981 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3982 crtc->x, crtc->y);
3983
f67a559d 3984 intel_crtc->active = true;
8664281b
PZ
3985
3986 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3987 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3988
f6736a1a 3989 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
3990 if (encoder->pre_enable)
3991 encoder->pre_enable(encoder);
f67a559d 3992
5bfe2ac0 3993 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
3994 /* Note: FDI PLL enabling _must_ be done before we enable the
3995 * cpu pipes, hence this is separate from all the other fdi/pch
3996 * enabling. */
88cefb6c 3997 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3998 } else {
3999 assert_fdi_tx_disabled(dev_priv, pipe);
4000 assert_fdi_rx_disabled(dev_priv, pipe);
4001 }
f67a559d 4002
b074cec8 4003 ironlake_pfit_enable(intel_crtc);
f67a559d 4004
9c54c0dd
JB
4005 /*
4006 * On ILK+ LUT must be loaded before the pipe is running but with
4007 * clocks enabled
4008 */
4009 intel_crtc_load_lut(crtc);
4010
f37fcc2a 4011 intel_update_watermarks(crtc);
e1fdc473 4012 intel_enable_pipe(intel_crtc);
f67a559d 4013
5bfe2ac0 4014 if (intel_crtc->config.has_pch_encoder)
f67a559d 4015 ironlake_pch_enable(crtc);
c98e9dcf 4016
fa5c73b1
DV
4017 for_each_encoder_on_crtc(dev, crtc, encoder)
4018 encoder->enable(encoder);
61b77ddd
DV
4019
4020 if (HAS_PCH_CPT(dev))
a1520318 4021 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4022
d3eedb1a 4023 intel_crtc_enable_planes(crtc);
6be4a607
JB
4024}
4025
42db64ef
PZ
4026/* IPS only exists on ULT machines and is tied to pipe A. */
4027static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4028{
f5adf94e 4029 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4030}
4031
e4916946
PZ
4032/*
4033 * This implements the workaround described in the "notes" section of the mode
4034 * set sequence documentation. When going from no pipes or single pipe to
4035 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4036 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4037 */
4038static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4039{
4040 struct drm_device *dev = crtc->base.dev;
4041 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4042
4043 /* We want to get the other_active_crtc only if there's only 1 other
4044 * active crtc. */
d3fcc808 4045 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4046 if (!crtc_it->active || crtc_it == crtc)
4047 continue;
4048
4049 if (other_active_crtc)
4050 return;
4051
4052 other_active_crtc = crtc_it;
4053 }
4054 if (!other_active_crtc)
4055 return;
4056
4057 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4058 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4059}
4060
4f771f10
PZ
4061static void haswell_crtc_enable(struct drm_crtc *crtc)
4062{
4063 struct drm_device *dev = crtc->dev;
4064 struct drm_i915_private *dev_priv = dev->dev_private;
4065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4066 struct intel_encoder *encoder;
4067 int pipe = intel_crtc->pipe;
229fca97 4068 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4069
4070 WARN_ON(!crtc->enabled);
4071
4072 if (intel_crtc->active)
4073 return;
4074
229fca97
DV
4075 if (intel_crtc->config.has_dp_encoder)
4076 intel_dp_set_m_n(intel_crtc);
4077
4078 intel_set_pipe_timings(intel_crtc);
4079
4080 if (intel_crtc->config.has_pch_encoder) {
4081 intel_cpu_transcoder_set_m_n(intel_crtc,
4082 &intel_crtc->config.fdi_m_n);
4083 }
4084
4085 haswell_set_pipeconf(crtc);
4086
4087 intel_set_pipe_csc(crtc);
4088
4089 /* Set up the display plane register */
4090 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4091 POSTING_READ(DSPCNTR(plane));
4092
4093 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4094 crtc->x, crtc->y);
4095
4f771f10 4096 intel_crtc->active = true;
8664281b
PZ
4097
4098 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4099 if (intel_crtc->config.has_pch_encoder)
4100 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4101
5bfe2ac0 4102 if (intel_crtc->config.has_pch_encoder)
04945641 4103 dev_priv->display.fdi_link_train(crtc);
4f771f10
PZ
4104
4105 for_each_encoder_on_crtc(dev, crtc, encoder)
4106 if (encoder->pre_enable)
4107 encoder->pre_enable(encoder);
4108
1f544388 4109 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4110
b074cec8 4111 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4112
4113 /*
4114 * On ILK+ LUT must be loaded before the pipe is running but with
4115 * clocks enabled
4116 */
4117 intel_crtc_load_lut(crtc);
4118
1f544388 4119 intel_ddi_set_pipe_settings(crtc);
8228c251 4120 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4121
f37fcc2a 4122 intel_update_watermarks(crtc);
e1fdc473 4123 intel_enable_pipe(intel_crtc);
42db64ef 4124
5bfe2ac0 4125 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4126 lpt_pch_enable(crtc);
4f771f10 4127
8807e55b 4128 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4129 encoder->enable(encoder);
8807e55b
JN
4130 intel_opregion_notify_encoder(encoder, true);
4131 }
4f771f10 4132
e4916946
PZ
4133 /* If we change the relative order between pipe/planes enabling, we need
4134 * to change the workaround. */
4135 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4136 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4137}
4138
3f8dce3a
DV
4139static void ironlake_pfit_disable(struct intel_crtc *crtc)
4140{
4141 struct drm_device *dev = crtc->base.dev;
4142 struct drm_i915_private *dev_priv = dev->dev_private;
4143 int pipe = crtc->pipe;
4144
4145 /* To avoid upsetting the power well on haswell only disable the pfit if
4146 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4147 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4148 I915_WRITE(PF_CTL(pipe), 0);
4149 I915_WRITE(PF_WIN_POS(pipe), 0);
4150 I915_WRITE(PF_WIN_SZ(pipe), 0);
4151 }
4152}
4153
6be4a607
JB
4154static void ironlake_crtc_disable(struct drm_crtc *crtc)
4155{
4156 struct drm_device *dev = crtc->dev;
4157 struct drm_i915_private *dev_priv = dev->dev_private;
4158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4159 struct intel_encoder *encoder;
6be4a607 4160 int pipe = intel_crtc->pipe;
5eddb70b 4161 u32 reg, temp;
b52eb4dc 4162
f7abfe8b
CW
4163 if (!intel_crtc->active)
4164 return;
4165
d3eedb1a 4166 intel_crtc_disable_planes(crtc);
a5c4d7bc 4167
ea9d758d
DV
4168 for_each_encoder_on_crtc(dev, crtc, encoder)
4169 encoder->disable(encoder);
4170
d925c59a
DV
4171 if (intel_crtc->config.has_pch_encoder)
4172 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4173
b24e7179 4174 intel_disable_pipe(dev_priv, pipe);
32f9d658 4175
3f8dce3a 4176 ironlake_pfit_disable(intel_crtc);
2c07245f 4177
bf49ec8c
DV
4178 for_each_encoder_on_crtc(dev, crtc, encoder)
4179 if (encoder->post_disable)
4180 encoder->post_disable(encoder);
2c07245f 4181
d925c59a
DV
4182 if (intel_crtc->config.has_pch_encoder) {
4183 ironlake_fdi_disable(crtc);
913d8d11 4184
d925c59a
DV
4185 ironlake_disable_pch_transcoder(dev_priv, pipe);
4186 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4187
d925c59a
DV
4188 if (HAS_PCH_CPT(dev)) {
4189 /* disable TRANS_DP_CTL */
4190 reg = TRANS_DP_CTL(pipe);
4191 temp = I915_READ(reg);
4192 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4193 TRANS_DP_PORT_SEL_MASK);
4194 temp |= TRANS_DP_PORT_SEL_NONE;
4195 I915_WRITE(reg, temp);
4196
4197 /* disable DPLL_SEL */
4198 temp = I915_READ(PCH_DPLL_SEL);
11887397 4199 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4200 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4201 }
e3421a18 4202
d925c59a 4203 /* disable PCH DPLL */
e72f9fbf 4204 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4205
d925c59a
DV
4206 ironlake_fdi_pll_disable(intel_crtc);
4207 }
6b383a7f 4208
f7abfe8b 4209 intel_crtc->active = false;
46ba614c 4210 intel_update_watermarks(crtc);
d1ebd816
BW
4211
4212 mutex_lock(&dev->struct_mutex);
6b383a7f 4213 intel_update_fbc(dev);
d1ebd816 4214 mutex_unlock(&dev->struct_mutex);
6be4a607 4215}
1b3c7a47 4216
4f771f10 4217static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4218{
4f771f10
PZ
4219 struct drm_device *dev = crtc->dev;
4220 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4222 struct intel_encoder *encoder;
4223 int pipe = intel_crtc->pipe;
3b117c8f 4224 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4225
4f771f10
PZ
4226 if (!intel_crtc->active)
4227 return;
4228
d3eedb1a 4229 intel_crtc_disable_planes(crtc);
dda9a66a 4230
8807e55b
JN
4231 for_each_encoder_on_crtc(dev, crtc, encoder) {
4232 intel_opregion_notify_encoder(encoder, false);
4f771f10 4233 encoder->disable(encoder);
8807e55b 4234 }
4f771f10 4235
8664281b
PZ
4236 if (intel_crtc->config.has_pch_encoder)
4237 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4238 intel_disable_pipe(dev_priv, pipe);
4239
ad80a810 4240 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4241
3f8dce3a 4242 ironlake_pfit_disable(intel_crtc);
4f771f10 4243
1f544388 4244 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
4245
4246 for_each_encoder_on_crtc(dev, crtc, encoder)
4247 if (encoder->post_disable)
4248 encoder->post_disable(encoder);
4249
88adfff1 4250 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4251 lpt_disable_pch_transcoder(dev_priv);
8664281b 4252 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4253 intel_ddi_fdi_disable(crtc);
83616634 4254 }
4f771f10
PZ
4255
4256 intel_crtc->active = false;
46ba614c 4257 intel_update_watermarks(crtc);
4f771f10
PZ
4258
4259 mutex_lock(&dev->struct_mutex);
4260 intel_update_fbc(dev);
4261 mutex_unlock(&dev->struct_mutex);
4262}
4263
ee7b9f93
JB
4264static void ironlake_crtc_off(struct drm_crtc *crtc)
4265{
4266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4267 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4268}
4269
6441ab5f
PZ
4270static void haswell_crtc_off(struct drm_crtc *crtc)
4271{
4272 intel_ddi_put_crtc_pll(crtc);
4273}
4274
2dd24552
JB
4275static void i9xx_pfit_enable(struct intel_crtc *crtc)
4276{
4277 struct drm_device *dev = crtc->base.dev;
4278 struct drm_i915_private *dev_priv = dev->dev_private;
4279 struct intel_crtc_config *pipe_config = &crtc->config;
4280
328d8e82 4281 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4282 return;
4283
2dd24552 4284 /*
c0b03411
DV
4285 * The panel fitter should only be adjusted whilst the pipe is disabled,
4286 * according to register description and PRM.
2dd24552 4287 */
c0b03411
DV
4288 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4289 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4290
b074cec8
JB
4291 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4292 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4293
4294 /* Border color in case we don't scale up to the full screen. Black by
4295 * default, change to something else for debugging. */
4296 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4297}
4298
77d22dca
ID
4299#define for_each_power_domain(domain, mask) \
4300 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4301 if ((1 << (domain)) & (mask))
4302
319be8ae
ID
4303enum intel_display_power_domain
4304intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4305{
4306 struct drm_device *dev = intel_encoder->base.dev;
4307 struct intel_digital_port *intel_dig_port;
4308
4309 switch (intel_encoder->type) {
4310 case INTEL_OUTPUT_UNKNOWN:
4311 /* Only DDI platforms should ever use this output type */
4312 WARN_ON_ONCE(!HAS_DDI(dev));
4313 case INTEL_OUTPUT_DISPLAYPORT:
4314 case INTEL_OUTPUT_HDMI:
4315 case INTEL_OUTPUT_EDP:
4316 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4317 switch (intel_dig_port->port) {
4318 case PORT_A:
4319 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4320 case PORT_B:
4321 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4322 case PORT_C:
4323 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4324 case PORT_D:
4325 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4326 default:
4327 WARN_ON_ONCE(1);
4328 return POWER_DOMAIN_PORT_OTHER;
4329 }
4330 case INTEL_OUTPUT_ANALOG:
4331 return POWER_DOMAIN_PORT_CRT;
4332 case INTEL_OUTPUT_DSI:
4333 return POWER_DOMAIN_PORT_DSI;
4334 default:
4335 return POWER_DOMAIN_PORT_OTHER;
4336 }
4337}
4338
4339static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4340{
319be8ae
ID
4341 struct drm_device *dev = crtc->dev;
4342 struct intel_encoder *intel_encoder;
4343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4344 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4345 unsigned long mask;
4346 enum transcoder transcoder;
4347
4348 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4349
4350 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4351 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4352 if (intel_crtc->config.pch_pfit.enabled ||
4353 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4354 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4355
319be8ae
ID
4356 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4357 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4358
77d22dca
ID
4359 return mask;
4360}
4361
4362void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4363 bool enable)
4364{
4365 if (dev_priv->power_domains.init_power_on == enable)
4366 return;
4367
4368 if (enable)
4369 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4370 else
4371 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4372
4373 dev_priv->power_domains.init_power_on = enable;
4374}
4375
4376static void modeset_update_crtc_power_domains(struct drm_device *dev)
4377{
4378 struct drm_i915_private *dev_priv = dev->dev_private;
4379 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4380 struct intel_crtc *crtc;
4381
4382 /*
4383 * First get all needed power domains, then put all unneeded, to avoid
4384 * any unnecessary toggling of the power wells.
4385 */
d3fcc808 4386 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4387 enum intel_display_power_domain domain;
4388
4389 if (!crtc->base.enabled)
4390 continue;
4391
319be8ae 4392 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4393
4394 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4395 intel_display_power_get(dev_priv, domain);
4396 }
4397
d3fcc808 4398 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4399 enum intel_display_power_domain domain;
4400
4401 for_each_power_domain(domain, crtc->enabled_power_domains)
4402 intel_display_power_put(dev_priv, domain);
4403
4404 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4405 }
4406
4407 intel_display_set_init_power(dev_priv, false);
4408}
4409
dfcab17e 4410/* returns HPLL frequency in kHz */
f8bf63fd 4411static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4412{
586f49dc 4413 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4414
586f49dc
JB
4415 /* Obtain SKU information */
4416 mutex_lock(&dev_priv->dpio_lock);
4417 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4418 CCK_FUSE_HPLL_FREQ_MASK;
4419 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4420
dfcab17e 4421 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4422}
4423
f8bf63fd
VS
4424static void vlv_update_cdclk(struct drm_device *dev)
4425{
4426 struct drm_i915_private *dev_priv = dev->dev_private;
4427
4428 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4429 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4430 dev_priv->vlv_cdclk_freq);
4431
4432 /*
4433 * Program the gmbus_freq based on the cdclk frequency.
4434 * BSpec erroneously claims we should aim for 4MHz, but
4435 * in fact 1MHz is the correct frequency.
4436 */
4437 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4438}
4439
30a970c6
JB
4440/* Adjust CDclk dividers to allow high res or save power if possible */
4441static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4442{
4443 struct drm_i915_private *dev_priv = dev->dev_private;
4444 u32 val, cmd;
4445
d197b7d3 4446 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4447
dfcab17e 4448 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4449 cmd = 2;
dfcab17e 4450 else if (cdclk == 266667)
30a970c6
JB
4451 cmd = 1;
4452 else
4453 cmd = 0;
4454
4455 mutex_lock(&dev_priv->rps.hw_lock);
4456 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4457 val &= ~DSPFREQGUAR_MASK;
4458 val |= (cmd << DSPFREQGUAR_SHIFT);
4459 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4460 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4461 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4462 50)) {
4463 DRM_ERROR("timed out waiting for CDclk change\n");
4464 }
4465 mutex_unlock(&dev_priv->rps.hw_lock);
4466
dfcab17e 4467 if (cdclk == 400000) {
30a970c6
JB
4468 u32 divider, vco;
4469
4470 vco = valleyview_get_vco(dev_priv);
dfcab17e 4471 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4472
4473 mutex_lock(&dev_priv->dpio_lock);
4474 /* adjust cdclk divider */
4475 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4476 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4477 val |= divider;
4478 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4479
4480 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4481 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4482 50))
4483 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4484 mutex_unlock(&dev_priv->dpio_lock);
4485 }
4486
4487 mutex_lock(&dev_priv->dpio_lock);
4488 /* adjust self-refresh exit latency value */
4489 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4490 val &= ~0x7f;
4491
4492 /*
4493 * For high bandwidth configs, we set a higher latency in the bunit
4494 * so that the core display fetch happens in time to avoid underruns.
4495 */
dfcab17e 4496 if (cdclk == 400000)
30a970c6
JB
4497 val |= 4500 / 250; /* 4.5 usec */
4498 else
4499 val |= 3000 / 250; /* 3.0 usec */
4500 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4501 mutex_unlock(&dev_priv->dpio_lock);
4502
f8bf63fd 4503 vlv_update_cdclk(dev);
30a970c6
JB
4504}
4505
30a970c6
JB
4506static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4507 int max_pixclk)
4508{
29dc7ef3
VS
4509 int vco = valleyview_get_vco(dev_priv);
4510 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4511
30a970c6
JB
4512 /*
4513 * Really only a few cases to deal with, as only 4 CDclks are supported:
4514 * 200MHz
4515 * 267MHz
29dc7ef3 4516 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4517 * 400MHz
4518 * So we check to see whether we're above 90% of the lower bin and
4519 * adjust if needed.
e37c67a1
VS
4520 *
4521 * We seem to get an unstable or solid color picture at 200MHz.
4522 * Not sure what's wrong. For now use 200MHz only when all pipes
4523 * are off.
30a970c6 4524 */
29dc7ef3 4525 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4526 return 400000;
4527 else if (max_pixclk > 266667*9/10)
29dc7ef3 4528 return freq_320;
e37c67a1 4529 else if (max_pixclk > 0)
dfcab17e 4530 return 266667;
e37c67a1
VS
4531 else
4532 return 200000;
30a970c6
JB
4533}
4534
2f2d7aa1
VS
4535/* compute the max pixel clock for new configuration */
4536static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4537{
4538 struct drm_device *dev = dev_priv->dev;
4539 struct intel_crtc *intel_crtc;
4540 int max_pixclk = 0;
4541
d3fcc808 4542 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4543 if (intel_crtc->new_enabled)
30a970c6 4544 max_pixclk = max(max_pixclk,
2f2d7aa1 4545 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4546 }
4547
4548 return max_pixclk;
4549}
4550
4551static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4552 unsigned *prepare_pipes)
30a970c6
JB
4553{
4554 struct drm_i915_private *dev_priv = dev->dev_private;
4555 struct intel_crtc *intel_crtc;
2f2d7aa1 4556 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4557
d60c4473
ID
4558 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4559 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4560 return;
4561
2f2d7aa1 4562 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4563 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4564 if (intel_crtc->base.enabled)
4565 *prepare_pipes |= (1 << intel_crtc->pipe);
4566}
4567
4568static void valleyview_modeset_global_resources(struct drm_device *dev)
4569{
4570 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4571 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4572 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4573
d60c4473 4574 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4575 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4576 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4577}
4578
89b667f8
JB
4579static void valleyview_crtc_enable(struct drm_crtc *crtc)
4580{
4581 struct drm_device *dev = crtc->dev;
5b18e57c 4582 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4583 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4584 struct intel_encoder *encoder;
4585 int pipe = intel_crtc->pipe;
5b18e57c 4586 int plane = intel_crtc->plane;
23538ef1 4587 bool is_dsi;
5b18e57c 4588 u32 dspcntr;
89b667f8
JB
4589
4590 WARN_ON(!crtc->enabled);
4591
4592 if (intel_crtc->active)
4593 return;
4594
8525a235
SK
4595 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4596
4597 if (!is_dsi && !IS_CHERRYVIEW(dev))
4598 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4599
5b18e57c
DV
4600 /* Set up the display plane register */
4601 dspcntr = DISPPLANE_GAMMA_ENABLE;
4602
4603 if (intel_crtc->config.has_dp_encoder)
4604 intel_dp_set_m_n(intel_crtc);
4605
4606 intel_set_pipe_timings(intel_crtc);
4607
4608 /* pipesrc and dspsize control the size that is scaled from,
4609 * which should always be the user's requested size.
4610 */
4611 I915_WRITE(DSPSIZE(plane),
4612 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4613 (intel_crtc->config.pipe_src_w - 1));
4614 I915_WRITE(DSPPOS(plane), 0);
4615
4616 i9xx_set_pipeconf(intel_crtc);
4617
4618 I915_WRITE(DSPCNTR(plane), dspcntr);
4619 POSTING_READ(DSPCNTR(plane));
4620
4621 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4622 crtc->x, crtc->y);
4623
89b667f8 4624 intel_crtc->active = true;
89b667f8 4625
4a3436e8
VS
4626 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4627
89b667f8
JB
4628 for_each_encoder_on_crtc(dev, crtc, encoder)
4629 if (encoder->pre_pll_enable)
4630 encoder->pre_pll_enable(encoder);
4631
9d556c99
CML
4632 if (!is_dsi) {
4633 if (IS_CHERRYVIEW(dev))
4634 chv_enable_pll(intel_crtc);
4635 else
4636 vlv_enable_pll(intel_crtc);
4637 }
89b667f8
JB
4638
4639 for_each_encoder_on_crtc(dev, crtc, encoder)
4640 if (encoder->pre_enable)
4641 encoder->pre_enable(encoder);
4642
2dd24552
JB
4643 i9xx_pfit_enable(intel_crtc);
4644
63cbb074
VS
4645 intel_crtc_load_lut(crtc);
4646
f37fcc2a 4647 intel_update_watermarks(crtc);
e1fdc473 4648 intel_enable_pipe(intel_crtc);
be6a6f8e 4649
5004945f
JN
4650 for_each_encoder_on_crtc(dev, crtc, encoder)
4651 encoder->enable(encoder);
9ab0460b
VS
4652
4653 intel_crtc_enable_planes(crtc);
d40d9187 4654
56b80e1f
VS
4655 /* Underruns don't raise interrupts, so check manually. */
4656 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4657}
4658
f13c2ef3
DV
4659static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4660{
4661 struct drm_device *dev = crtc->base.dev;
4662 struct drm_i915_private *dev_priv = dev->dev_private;
4663
4664 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4665 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4666}
4667
0b8765c6 4668static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4669{
4670 struct drm_device *dev = crtc->dev;
5b18e57c 4671 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4673 struct intel_encoder *encoder;
79e53945 4674 int pipe = intel_crtc->pipe;
5b18e57c
DV
4675 int plane = intel_crtc->plane;
4676 u32 dspcntr;
79e53945 4677
08a48469
DV
4678 WARN_ON(!crtc->enabled);
4679
f7abfe8b
CW
4680 if (intel_crtc->active)
4681 return;
4682
f13c2ef3
DV
4683 i9xx_set_pll_dividers(intel_crtc);
4684
5b18e57c
DV
4685 /* Set up the display plane register */
4686 dspcntr = DISPPLANE_GAMMA_ENABLE;
4687
4688 if (pipe == 0)
4689 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4690 else
4691 dspcntr |= DISPPLANE_SEL_PIPE_B;
4692
4693 if (intel_crtc->config.has_dp_encoder)
4694 intel_dp_set_m_n(intel_crtc);
4695
4696 intel_set_pipe_timings(intel_crtc);
4697
4698 /* pipesrc and dspsize control the size that is scaled from,
4699 * which should always be the user's requested size.
4700 */
4701 I915_WRITE(DSPSIZE(plane),
4702 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4703 (intel_crtc->config.pipe_src_w - 1));
4704 I915_WRITE(DSPPOS(plane), 0);
4705
4706 i9xx_set_pipeconf(intel_crtc);
4707
4708 I915_WRITE(DSPCNTR(plane), dspcntr);
4709 POSTING_READ(DSPCNTR(plane));
4710
4711 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4712 crtc->x, crtc->y);
4713
f7abfe8b 4714 intel_crtc->active = true;
6b383a7f 4715
4a3436e8
VS
4716 if (!IS_GEN2(dev))
4717 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4718
9d6d9f19
MK
4719 for_each_encoder_on_crtc(dev, crtc, encoder)
4720 if (encoder->pre_enable)
4721 encoder->pre_enable(encoder);
4722
f6736a1a
DV
4723 i9xx_enable_pll(intel_crtc);
4724
2dd24552
JB
4725 i9xx_pfit_enable(intel_crtc);
4726
63cbb074
VS
4727 intel_crtc_load_lut(crtc);
4728
f37fcc2a 4729 intel_update_watermarks(crtc);
e1fdc473 4730 intel_enable_pipe(intel_crtc);
be6a6f8e 4731
fa5c73b1
DV
4732 for_each_encoder_on_crtc(dev, crtc, encoder)
4733 encoder->enable(encoder);
9ab0460b
VS
4734
4735 intel_crtc_enable_planes(crtc);
d40d9187 4736
4a3436e8
VS
4737 /*
4738 * Gen2 reports pipe underruns whenever all planes are disabled.
4739 * So don't enable underrun reporting before at least some planes
4740 * are enabled.
4741 * FIXME: Need to fix the logic to work when we turn off all planes
4742 * but leave the pipe running.
4743 */
4744 if (IS_GEN2(dev))
4745 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4746
56b80e1f
VS
4747 /* Underruns don't raise interrupts, so check manually. */
4748 i9xx_check_fifo_underruns(dev);
0b8765c6 4749}
79e53945 4750
87476d63
DV
4751static void i9xx_pfit_disable(struct intel_crtc *crtc)
4752{
4753 struct drm_device *dev = crtc->base.dev;
4754 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4755
328d8e82
DV
4756 if (!crtc->config.gmch_pfit.control)
4757 return;
87476d63 4758
328d8e82 4759 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4760
328d8e82
DV
4761 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4762 I915_READ(PFIT_CONTROL));
4763 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4764}
4765
0b8765c6
JB
4766static void i9xx_crtc_disable(struct drm_crtc *crtc)
4767{
4768 struct drm_device *dev = crtc->dev;
4769 struct drm_i915_private *dev_priv = dev->dev_private;
4770 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4771 struct intel_encoder *encoder;
0b8765c6 4772 int pipe = intel_crtc->pipe;
ef9c3aee 4773
f7abfe8b
CW
4774 if (!intel_crtc->active)
4775 return;
4776
4a3436e8
VS
4777 /*
4778 * Gen2 reports pipe underruns whenever all planes are disabled.
4779 * So diasble underrun reporting before all the planes get disabled.
4780 * FIXME: Need to fix the logic to work when we turn off all planes
4781 * but leave the pipe running.
4782 */
4783 if (IS_GEN2(dev))
4784 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4785
564ed191
ID
4786 /*
4787 * Vblank time updates from the shadow to live plane control register
4788 * are blocked if the memory self-refresh mode is active at that
4789 * moment. So to make sure the plane gets truly disabled, disable
4790 * first the self-refresh mode. The self-refresh enable bit in turn
4791 * will be checked/applied by the HW only at the next frame start
4792 * event which is after the vblank start event, so we need to have a
4793 * wait-for-vblank between disabling the plane and the pipe.
4794 */
4795 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4796 intel_crtc_disable_planes(crtc);
4797
ea9d758d
DV
4798 for_each_encoder_on_crtc(dev, crtc, encoder)
4799 encoder->disable(encoder);
4800
6304cd91
VS
4801 /*
4802 * On gen2 planes are double buffered but the pipe isn't, so we must
4803 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4804 * We also need to wait on all gmch platforms because of the
4805 * self-refresh mode constraint explained above.
6304cd91 4806 */
564ed191 4807 intel_wait_for_vblank(dev, pipe);
6304cd91 4808
b24e7179 4809 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4810
87476d63 4811 i9xx_pfit_disable(intel_crtc);
24a1f16d 4812
89b667f8
JB
4813 for_each_encoder_on_crtc(dev, crtc, encoder)
4814 if (encoder->post_disable)
4815 encoder->post_disable(encoder);
4816
076ed3b2
CML
4817 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4818 if (IS_CHERRYVIEW(dev))
4819 chv_disable_pll(dev_priv, pipe);
4820 else if (IS_VALLEYVIEW(dev))
4821 vlv_disable_pll(dev_priv, pipe);
4822 else
4823 i9xx_disable_pll(dev_priv, pipe);
4824 }
0b8765c6 4825
4a3436e8
VS
4826 if (!IS_GEN2(dev))
4827 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4828
f7abfe8b 4829 intel_crtc->active = false;
46ba614c 4830 intel_update_watermarks(crtc);
f37fcc2a 4831
efa9624e 4832 mutex_lock(&dev->struct_mutex);
6b383a7f 4833 intel_update_fbc(dev);
efa9624e 4834 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4835}
4836
ee7b9f93
JB
4837static void i9xx_crtc_off(struct drm_crtc *crtc)
4838{
4839}
4840
976f8a20
DV
4841static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4842 bool enabled)
2c07245f
ZW
4843{
4844 struct drm_device *dev = crtc->dev;
4845 struct drm_i915_master_private *master_priv;
4846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4847 int pipe = intel_crtc->pipe;
79e53945
JB
4848
4849 if (!dev->primary->master)
4850 return;
4851
4852 master_priv = dev->primary->master->driver_priv;
4853 if (!master_priv->sarea_priv)
4854 return;
4855
79e53945
JB
4856 switch (pipe) {
4857 case 0:
4858 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4859 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4860 break;
4861 case 1:
4862 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4863 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4864 break;
4865 default:
9db4a9c7 4866 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4867 break;
4868 }
79e53945
JB
4869}
4870
976f8a20
DV
4871/**
4872 * Sets the power management mode of the pipe and plane.
4873 */
4874void intel_crtc_update_dpms(struct drm_crtc *crtc)
4875{
4876 struct drm_device *dev = crtc->dev;
4877 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
976f8a20 4879 struct intel_encoder *intel_encoder;
0e572fe7
DV
4880 enum intel_display_power_domain domain;
4881 unsigned long domains;
976f8a20
DV
4882 bool enable = false;
4883
4884 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4885 enable |= intel_encoder->connectors_active;
4886
0e572fe7
DV
4887 if (enable) {
4888 if (!intel_crtc->active) {
4889 /*
4890 * FIXME: DDI plls and relevant code isn't converted
4891 * yet, so do runtime PM for DPMS only for all other
4892 * platforms for now.
4893 */
4894 if (!HAS_DDI(dev)) {
4895 domains = get_crtc_power_domains(crtc);
4896 for_each_power_domain(domain, domains)
4897 intel_display_power_get(dev_priv, domain);
4898 intel_crtc->enabled_power_domains = domains;
4899 }
4900
4901 dev_priv->display.crtc_enable(crtc);
4902 }
4903 } else {
4904 if (intel_crtc->active) {
4905 dev_priv->display.crtc_disable(crtc);
4906
4907 if (!HAS_DDI(dev)) {
4908 domains = intel_crtc->enabled_power_domains;
4909 for_each_power_domain(domain, domains)
4910 intel_display_power_put(dev_priv, domain);
4911 intel_crtc->enabled_power_domains = 0;
4912 }
4913 }
4914 }
976f8a20
DV
4915
4916 intel_crtc_update_sarea(crtc, enable);
4917}
4918
cdd59983
CW
4919static void intel_crtc_disable(struct drm_crtc *crtc)
4920{
cdd59983 4921 struct drm_device *dev = crtc->dev;
976f8a20 4922 struct drm_connector *connector;
ee7b9f93 4923 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4924 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4925 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4926
976f8a20
DV
4927 /* crtc should still be enabled when we disable it. */
4928 WARN_ON(!crtc->enabled);
4929
4930 dev_priv->display.crtc_disable(crtc);
4931 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4932 dev_priv->display.off(crtc);
4933
931872fc 4934 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
a071fa00
DV
4935 assert_cursor_disabled(dev_priv, pipe);
4936 assert_pipe_disabled(dev->dev_private, pipe);
cdd59983 4937
f4510a27 4938 if (crtc->primary->fb) {
cdd59983 4939 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4940 intel_unpin_fb_obj(old_obj);
4941 i915_gem_track_fb(old_obj, NULL,
4942 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4943 mutex_unlock(&dev->struct_mutex);
f4510a27 4944 crtc->primary->fb = NULL;
976f8a20
DV
4945 }
4946
4947 /* Update computed state. */
4948 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4949 if (!connector->encoder || !connector->encoder->crtc)
4950 continue;
4951
4952 if (connector->encoder->crtc != crtc)
4953 continue;
4954
4955 connector->dpms = DRM_MODE_DPMS_OFF;
4956 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4957 }
4958}
4959
ea5b213a 4960void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4961{
4ef69c7a 4962 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4963
ea5b213a
CW
4964 drm_encoder_cleanup(encoder);
4965 kfree(intel_encoder);
7e7d76c3
JB
4966}
4967
9237329d 4968/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
4969 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4970 * state of the entire output pipe. */
9237329d 4971static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 4972{
5ab432ef
DV
4973 if (mode == DRM_MODE_DPMS_ON) {
4974 encoder->connectors_active = true;
4975
b2cabb0e 4976 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
4977 } else {
4978 encoder->connectors_active = false;
4979
b2cabb0e 4980 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 4981 }
79e53945
JB
4982}
4983
0a91ca29
DV
4984/* Cross check the actual hw state with our own modeset state tracking (and it's
4985 * internal consistency). */
b980514c 4986static void intel_connector_check_state(struct intel_connector *connector)
79e53945 4987{
0a91ca29
DV
4988 if (connector->get_hw_state(connector)) {
4989 struct intel_encoder *encoder = connector->encoder;
4990 struct drm_crtc *crtc;
4991 bool encoder_enabled;
4992 enum pipe pipe;
4993
4994 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4995 connector->base.base.id,
c23cc417 4996 connector->base.name);
0a91ca29
DV
4997
4998 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4999 "wrong connector dpms state\n");
5000 WARN(connector->base.encoder != &encoder->base,
5001 "active connector not linked to encoder\n");
5002 WARN(!encoder->connectors_active,
5003 "encoder->connectors_active not set\n");
5004
5005 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5006 WARN(!encoder_enabled, "encoder not enabled\n");
5007 if (WARN_ON(!encoder->base.crtc))
5008 return;
5009
5010 crtc = encoder->base.crtc;
5011
5012 WARN(!crtc->enabled, "crtc not enabled\n");
5013 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5014 WARN(pipe != to_intel_crtc(crtc)->pipe,
5015 "encoder active on the wrong pipe\n");
5016 }
79e53945
JB
5017}
5018
5ab432ef
DV
5019/* Even simpler default implementation, if there's really no special case to
5020 * consider. */
5021void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5022{
5ab432ef
DV
5023 /* All the simple cases only support two dpms states. */
5024 if (mode != DRM_MODE_DPMS_ON)
5025 mode = DRM_MODE_DPMS_OFF;
d4270e57 5026
5ab432ef
DV
5027 if (mode == connector->dpms)
5028 return;
5029
5030 connector->dpms = mode;
5031
5032 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5033 if (connector->encoder)
5034 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5035
b980514c 5036 intel_modeset_check_state(connector->dev);
79e53945
JB
5037}
5038
f0947c37
DV
5039/* Simple connector->get_hw_state implementation for encoders that support only
5040 * one connector and no cloning and hence the encoder state determines the state
5041 * of the connector. */
5042bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5043{
24929352 5044 enum pipe pipe = 0;
f0947c37 5045 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5046
f0947c37 5047 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5048}
5049
1857e1da
DV
5050static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5051 struct intel_crtc_config *pipe_config)
5052{
5053 struct drm_i915_private *dev_priv = dev->dev_private;
5054 struct intel_crtc *pipe_B_crtc =
5055 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5056
5057 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5058 pipe_name(pipe), pipe_config->fdi_lanes);
5059 if (pipe_config->fdi_lanes > 4) {
5060 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5061 pipe_name(pipe), pipe_config->fdi_lanes);
5062 return false;
5063 }
5064
bafb6553 5065 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5066 if (pipe_config->fdi_lanes > 2) {
5067 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5068 pipe_config->fdi_lanes);
5069 return false;
5070 } else {
5071 return true;
5072 }
5073 }
5074
5075 if (INTEL_INFO(dev)->num_pipes == 2)
5076 return true;
5077
5078 /* Ivybridge 3 pipe is really complicated */
5079 switch (pipe) {
5080 case PIPE_A:
5081 return true;
5082 case PIPE_B:
5083 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5084 pipe_config->fdi_lanes > 2) {
5085 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5086 pipe_name(pipe), pipe_config->fdi_lanes);
5087 return false;
5088 }
5089 return true;
5090 case PIPE_C:
1e833f40 5091 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5092 pipe_B_crtc->config.fdi_lanes <= 2) {
5093 if (pipe_config->fdi_lanes > 2) {
5094 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5095 pipe_name(pipe), pipe_config->fdi_lanes);
5096 return false;
5097 }
5098 } else {
5099 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5100 return false;
5101 }
5102 return true;
5103 default:
5104 BUG();
5105 }
5106}
5107
e29c22c0
DV
5108#define RETRY 1
5109static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5110 struct intel_crtc_config *pipe_config)
877d48d5 5111{
1857e1da 5112 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5113 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5114 int lane, link_bw, fdi_dotclock;
e29c22c0 5115 bool setup_ok, needs_recompute = false;
877d48d5 5116
e29c22c0 5117retry:
877d48d5
DV
5118 /* FDI is a binary signal running at ~2.7GHz, encoding
5119 * each output octet as 10 bits. The actual frequency
5120 * is stored as a divider into a 100MHz clock, and the
5121 * mode pixel clock is stored in units of 1KHz.
5122 * Hence the bw of each lane in terms of the mode signal
5123 * is:
5124 */
5125 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5126
241bfc38 5127 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5128
2bd89a07 5129 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5130 pipe_config->pipe_bpp);
5131
5132 pipe_config->fdi_lanes = lane;
5133
2bd89a07 5134 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5135 link_bw, &pipe_config->fdi_m_n);
1857e1da 5136
e29c22c0
DV
5137 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5138 intel_crtc->pipe, pipe_config);
5139 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5140 pipe_config->pipe_bpp -= 2*3;
5141 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5142 pipe_config->pipe_bpp);
5143 needs_recompute = true;
5144 pipe_config->bw_constrained = true;
5145
5146 goto retry;
5147 }
5148
5149 if (needs_recompute)
5150 return RETRY;
5151
5152 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5153}
5154
42db64ef
PZ
5155static void hsw_compute_ips_config(struct intel_crtc *crtc,
5156 struct intel_crtc_config *pipe_config)
5157{
d330a953 5158 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5159 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5160 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5161}
5162
a43f6e0f 5163static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5164 struct intel_crtc_config *pipe_config)
79e53945 5165{
a43f6e0f 5166 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5167 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5168
ad3a4479 5169 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5170 if (INTEL_INFO(dev)->gen < 4) {
5171 struct drm_i915_private *dev_priv = dev->dev_private;
5172 int clock_limit =
5173 dev_priv->display.get_display_clock_speed(dev);
5174
5175 /*
5176 * Enable pixel doubling when the dot clock
5177 * is > 90% of the (display) core speed.
5178 *
b397c96b
VS
5179 * GDG double wide on either pipe,
5180 * otherwise pipe A only.
cf532bb2 5181 */
b397c96b 5182 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5183 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5184 clock_limit *= 2;
cf532bb2 5185 pipe_config->double_wide = true;
ad3a4479
VS
5186 }
5187
241bfc38 5188 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5189 return -EINVAL;
2c07245f 5190 }
89749350 5191
1d1d0e27
VS
5192 /*
5193 * Pipe horizontal size must be even in:
5194 * - DVO ganged mode
5195 * - LVDS dual channel mode
5196 * - Double wide pipe
5197 */
5198 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5199 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5200 pipe_config->pipe_src_w &= ~1;
5201
8693a824
DL
5202 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5203 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5204 */
5205 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5206 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5207 return -EINVAL;
44f46b42 5208
bd080ee5 5209 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5210 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5211 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5212 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5213 * for lvds. */
5214 pipe_config->pipe_bpp = 8*3;
5215 }
5216
f5adf94e 5217 if (HAS_IPS(dev))
a43f6e0f
DV
5218 hsw_compute_ips_config(crtc, pipe_config);
5219
5220 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5221 * clock survives for now. */
5222 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5223 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5224
877d48d5 5225 if (pipe_config->has_pch_encoder)
a43f6e0f 5226 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5227
e29c22c0 5228 return 0;
79e53945
JB
5229}
5230
25eb05fc
JB
5231static int valleyview_get_display_clock_speed(struct drm_device *dev)
5232{
d197b7d3
VS
5233 struct drm_i915_private *dev_priv = dev->dev_private;
5234 int vco = valleyview_get_vco(dev_priv);
5235 u32 val;
5236 int divider;
5237
5238 mutex_lock(&dev_priv->dpio_lock);
5239 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5240 mutex_unlock(&dev_priv->dpio_lock);
5241
5242 divider = val & DISPLAY_FREQUENCY_VALUES;
5243
7d007f40
VS
5244 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5245 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5246 "cdclk change in progress\n");
5247
d197b7d3 5248 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5249}
5250
e70236a8
JB
5251static int i945_get_display_clock_speed(struct drm_device *dev)
5252{
5253 return 400000;
5254}
79e53945 5255
e70236a8 5256static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5257{
e70236a8
JB
5258 return 333000;
5259}
79e53945 5260
e70236a8
JB
5261static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5262{
5263 return 200000;
5264}
79e53945 5265
257a7ffc
DV
5266static int pnv_get_display_clock_speed(struct drm_device *dev)
5267{
5268 u16 gcfgc = 0;
5269
5270 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5271
5272 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5273 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5274 return 267000;
5275 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5276 return 333000;
5277 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5278 return 444000;
5279 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5280 return 200000;
5281 default:
5282 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5283 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5284 return 133000;
5285 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5286 return 167000;
5287 }
5288}
5289
e70236a8
JB
5290static int i915gm_get_display_clock_speed(struct drm_device *dev)
5291{
5292 u16 gcfgc = 0;
79e53945 5293
e70236a8
JB
5294 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5295
5296 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5297 return 133000;
5298 else {
5299 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5300 case GC_DISPLAY_CLOCK_333_MHZ:
5301 return 333000;
5302 default:
5303 case GC_DISPLAY_CLOCK_190_200_MHZ:
5304 return 190000;
79e53945 5305 }
e70236a8
JB
5306 }
5307}
5308
5309static int i865_get_display_clock_speed(struct drm_device *dev)
5310{
5311 return 266000;
5312}
5313
5314static int i855_get_display_clock_speed(struct drm_device *dev)
5315{
5316 u16 hpllcc = 0;
5317 /* Assume that the hardware is in the high speed state. This
5318 * should be the default.
5319 */
5320 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5321 case GC_CLOCK_133_200:
5322 case GC_CLOCK_100_200:
5323 return 200000;
5324 case GC_CLOCK_166_250:
5325 return 250000;
5326 case GC_CLOCK_100_133:
79e53945 5327 return 133000;
e70236a8 5328 }
79e53945 5329
e70236a8
JB
5330 /* Shouldn't happen */
5331 return 0;
5332}
79e53945 5333
e70236a8
JB
5334static int i830_get_display_clock_speed(struct drm_device *dev)
5335{
5336 return 133000;
79e53945
JB
5337}
5338
2c07245f 5339static void
a65851af 5340intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5341{
a65851af
VS
5342 while (*num > DATA_LINK_M_N_MASK ||
5343 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5344 *num >>= 1;
5345 *den >>= 1;
5346 }
5347}
5348
a65851af
VS
5349static void compute_m_n(unsigned int m, unsigned int n,
5350 uint32_t *ret_m, uint32_t *ret_n)
5351{
5352 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5353 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5354 intel_reduce_m_n_ratio(ret_m, ret_n);
5355}
5356
e69d0bc1
DV
5357void
5358intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5359 int pixel_clock, int link_clock,
5360 struct intel_link_m_n *m_n)
2c07245f 5361{
e69d0bc1 5362 m_n->tu = 64;
a65851af
VS
5363
5364 compute_m_n(bits_per_pixel * pixel_clock,
5365 link_clock * nlanes * 8,
5366 &m_n->gmch_m, &m_n->gmch_n);
5367
5368 compute_m_n(pixel_clock, link_clock,
5369 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5370}
5371
a7615030
CW
5372static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5373{
d330a953
JN
5374 if (i915.panel_use_ssc >= 0)
5375 return i915.panel_use_ssc != 0;
41aa3448 5376 return dev_priv->vbt.lvds_use_ssc
435793df 5377 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5378}
5379
c65d77d8
JB
5380static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5381{
5382 struct drm_device *dev = crtc->dev;
5383 struct drm_i915_private *dev_priv = dev->dev_private;
5384 int refclk;
5385
a0c4da24 5386 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5387 refclk = 100000;
a0c4da24 5388 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5389 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5390 refclk = dev_priv->vbt.lvds_ssc_freq;
5391 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5392 } else if (!IS_GEN2(dev)) {
5393 refclk = 96000;
5394 } else {
5395 refclk = 48000;
5396 }
5397
5398 return refclk;
5399}
5400
7429e9d4 5401static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5402{
7df00d7a 5403 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5404}
f47709a9 5405
7429e9d4
DV
5406static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5407{
5408 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5409}
5410
f47709a9 5411static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5412 intel_clock_t *reduced_clock)
5413{
f47709a9 5414 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5415 u32 fp, fp2 = 0;
5416
5417 if (IS_PINEVIEW(dev)) {
7429e9d4 5418 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5419 if (reduced_clock)
7429e9d4 5420 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5421 } else {
7429e9d4 5422 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5423 if (reduced_clock)
7429e9d4 5424 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5425 }
5426
8bcc2795 5427 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5428
f47709a9
DV
5429 crtc->lowfreq_avail = false;
5430 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5431 reduced_clock && i915.powersave) {
8bcc2795 5432 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5433 crtc->lowfreq_avail = true;
a7516a05 5434 } else {
8bcc2795 5435 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5436 }
5437}
5438
5e69f97f
CML
5439static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5440 pipe)
89b667f8
JB
5441{
5442 u32 reg_val;
5443
5444 /*
5445 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5446 * and set it to a reasonable value instead.
5447 */
ab3c759a 5448 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5449 reg_val &= 0xffffff00;
5450 reg_val |= 0x00000030;
ab3c759a 5451 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5452
ab3c759a 5453 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5454 reg_val &= 0x8cffffff;
5455 reg_val = 0x8c000000;
ab3c759a 5456 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5457
ab3c759a 5458 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5459 reg_val &= 0xffffff00;
ab3c759a 5460 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5461
ab3c759a 5462 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5463 reg_val &= 0x00ffffff;
5464 reg_val |= 0xb0000000;
ab3c759a 5465 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5466}
5467
b551842d
DV
5468static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5469 struct intel_link_m_n *m_n)
5470{
5471 struct drm_device *dev = crtc->base.dev;
5472 struct drm_i915_private *dev_priv = dev->dev_private;
5473 int pipe = crtc->pipe;
5474
e3b95f1e
DV
5475 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5476 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5477 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5478 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5479}
5480
5481static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5482 struct intel_link_m_n *m_n)
5483{
5484 struct drm_device *dev = crtc->base.dev;
5485 struct drm_i915_private *dev_priv = dev->dev_private;
5486 int pipe = crtc->pipe;
5487 enum transcoder transcoder = crtc->config.cpu_transcoder;
5488
5489 if (INTEL_INFO(dev)->gen >= 5) {
5490 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5491 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5492 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5493 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5494 } else {
e3b95f1e
DV
5495 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5496 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5497 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5498 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5499 }
5500}
5501
03afc4a2
DV
5502static void intel_dp_set_m_n(struct intel_crtc *crtc)
5503{
5504 if (crtc->config.has_pch_encoder)
5505 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5506 else
5507 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5508}
5509
f47709a9 5510static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5511{
5512 u32 dpll, dpll_md;
5513
5514 /*
5515 * Enable DPIO clock input. We should never disable the reference
5516 * clock for pipe B, since VGA hotplug / manual detection depends
5517 * on it.
5518 */
5519 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5520 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5521 /* We should never disable this, set it here for state tracking */
5522 if (crtc->pipe == PIPE_B)
5523 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5524 dpll |= DPLL_VCO_ENABLE;
5525 crtc->config.dpll_hw_state.dpll = dpll;
5526
5527 dpll_md = (crtc->config.pixel_multiplier - 1)
5528 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5529 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5530}
5531
5532static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5533{
f47709a9 5534 struct drm_device *dev = crtc->base.dev;
a0c4da24 5535 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5536 int pipe = crtc->pipe;
bdd4b6a6 5537 u32 mdiv;
a0c4da24 5538 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5539 u32 coreclk, reg_val;
a0c4da24 5540
09153000
DV
5541 mutex_lock(&dev_priv->dpio_lock);
5542
f47709a9
DV
5543 bestn = crtc->config.dpll.n;
5544 bestm1 = crtc->config.dpll.m1;
5545 bestm2 = crtc->config.dpll.m2;
5546 bestp1 = crtc->config.dpll.p1;
5547 bestp2 = crtc->config.dpll.p2;
a0c4da24 5548
89b667f8
JB
5549 /* See eDP HDMI DPIO driver vbios notes doc */
5550
5551 /* PLL B needs special handling */
bdd4b6a6 5552 if (pipe == PIPE_B)
5e69f97f 5553 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5554
5555 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5556 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5557
5558 /* Disable target IRef on PLL */
ab3c759a 5559 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5560 reg_val &= 0x00ffffff;
ab3c759a 5561 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5562
5563 /* Disable fast lock */
ab3c759a 5564 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5565
5566 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5567 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5568 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5569 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5570 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5571
5572 /*
5573 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5574 * but we don't support that).
5575 * Note: don't use the DAC post divider as it seems unstable.
5576 */
5577 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5578 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5579
a0c4da24 5580 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5581 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5582
89b667f8 5583 /* Set HBR and RBR LPF coefficients */
ff9a6750 5584 if (crtc->config.port_clock == 162000 ||
99750bd4 5585 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5586 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5587 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5588 0x009f0003);
89b667f8 5589 else
ab3c759a 5590 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5591 0x00d0000f);
5592
5593 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5594 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5595 /* Use SSC source */
bdd4b6a6 5596 if (pipe == PIPE_A)
ab3c759a 5597 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5598 0x0df40000);
5599 else
ab3c759a 5600 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5601 0x0df70000);
5602 } else { /* HDMI or VGA */
5603 /* Use bend source */
bdd4b6a6 5604 if (pipe == PIPE_A)
ab3c759a 5605 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5606 0x0df70000);
5607 else
ab3c759a 5608 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5609 0x0df40000);
5610 }
a0c4da24 5611
ab3c759a 5612 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5613 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5614 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5615 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5616 coreclk |= 0x01000000;
ab3c759a 5617 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5618
ab3c759a 5619 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5620 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5621}
5622
9d556c99
CML
5623static void chv_update_pll(struct intel_crtc *crtc)
5624{
5625 struct drm_device *dev = crtc->base.dev;
5626 struct drm_i915_private *dev_priv = dev->dev_private;
5627 int pipe = crtc->pipe;
5628 int dpll_reg = DPLL(crtc->pipe);
5629 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5630 u32 loopfilter, intcoeff;
9d556c99
CML
5631 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5632 int refclk;
5633
a11b0703
VS
5634 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5635 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5636 DPLL_VCO_ENABLE;
5637 if (pipe != PIPE_A)
5638 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5639
5640 crtc->config.dpll_hw_state.dpll_md =
5641 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5642
5643 bestn = crtc->config.dpll.n;
5644 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5645 bestm1 = crtc->config.dpll.m1;
5646 bestm2 = crtc->config.dpll.m2 >> 22;
5647 bestp1 = crtc->config.dpll.p1;
5648 bestp2 = crtc->config.dpll.p2;
5649
5650 /*
5651 * Enable Refclk and SSC
5652 */
a11b0703
VS
5653 I915_WRITE(dpll_reg,
5654 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5655
5656 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5657
9d556c99
CML
5658 /* p1 and p2 divider */
5659 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5660 5 << DPIO_CHV_S1_DIV_SHIFT |
5661 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5662 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5663 1 << DPIO_CHV_K_DIV_SHIFT);
5664
5665 /* Feedback post-divider - m2 */
5666 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5667
5668 /* Feedback refclk divider - n and m1 */
5669 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5670 DPIO_CHV_M1_DIV_BY_2 |
5671 1 << DPIO_CHV_N_DIV_SHIFT);
5672
5673 /* M2 fraction division */
5674 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5675
5676 /* M2 fraction division enable */
5677 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5678 DPIO_CHV_FRAC_DIV_EN |
5679 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5680
5681 /* Loop filter */
5682 refclk = i9xx_get_refclk(&crtc->base, 0);
5683 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5684 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5685 if (refclk == 100000)
5686 intcoeff = 11;
5687 else if (refclk == 38400)
5688 intcoeff = 10;
5689 else
5690 intcoeff = 9;
5691 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5692 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5693
5694 /* AFC Recal */
5695 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5696 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5697 DPIO_AFC_RECAL);
5698
5699 mutex_unlock(&dev_priv->dpio_lock);
5700}
5701
f47709a9
DV
5702static void i9xx_update_pll(struct intel_crtc *crtc,
5703 intel_clock_t *reduced_clock,
eb1cbe48
DV
5704 int num_connectors)
5705{
f47709a9 5706 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5707 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5708 u32 dpll;
5709 bool is_sdvo;
f47709a9 5710 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5711
f47709a9 5712 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5713
f47709a9
DV
5714 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5715 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5716
5717 dpll = DPLL_VGA_MODE_DIS;
5718
f47709a9 5719 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5720 dpll |= DPLLB_MODE_LVDS;
5721 else
5722 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5723
ef1b460d 5724 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5725 dpll |= (crtc->config.pixel_multiplier - 1)
5726 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5727 }
198a037f
DV
5728
5729 if (is_sdvo)
4a33e48d 5730 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5731
f47709a9 5732 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5733 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5734
5735 /* compute bitmask from p1 value */
5736 if (IS_PINEVIEW(dev))
5737 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5738 else {
5739 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5740 if (IS_G4X(dev) && reduced_clock)
5741 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5742 }
5743 switch (clock->p2) {
5744 case 5:
5745 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5746 break;
5747 case 7:
5748 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5749 break;
5750 case 10:
5751 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5752 break;
5753 case 14:
5754 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5755 break;
5756 }
5757 if (INTEL_INFO(dev)->gen >= 4)
5758 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5759
09ede541 5760 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5761 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5762 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5763 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5764 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5765 else
5766 dpll |= PLL_REF_INPUT_DREFCLK;
5767
5768 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5769 crtc->config.dpll_hw_state.dpll = dpll;
5770
eb1cbe48 5771 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5772 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5773 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5774 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5775 }
5776}
5777
f47709a9 5778static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5779 intel_clock_t *reduced_clock,
eb1cbe48
DV
5780 int num_connectors)
5781{
f47709a9 5782 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5783 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5784 u32 dpll;
f47709a9 5785 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5786
f47709a9 5787 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5788
eb1cbe48
DV
5789 dpll = DPLL_VGA_MODE_DIS;
5790
f47709a9 5791 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5792 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5793 } else {
5794 if (clock->p1 == 2)
5795 dpll |= PLL_P1_DIVIDE_BY_TWO;
5796 else
5797 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5798 if (clock->p2 == 4)
5799 dpll |= PLL_P2_DIVIDE_BY_4;
5800 }
5801
4a33e48d
DV
5802 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5803 dpll |= DPLL_DVO_2X_MODE;
5804
f47709a9 5805 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5806 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5807 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5808 else
5809 dpll |= PLL_REF_INPUT_DREFCLK;
5810
5811 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5812 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5813}
5814
8a654f3b 5815static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5816{
5817 struct drm_device *dev = intel_crtc->base.dev;
5818 struct drm_i915_private *dev_priv = dev->dev_private;
5819 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5820 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5821 struct drm_display_mode *adjusted_mode =
5822 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5823 uint32_t crtc_vtotal, crtc_vblank_end;
5824 int vsyncshift = 0;
4d8a62ea
DV
5825
5826 /* We need to be careful not to changed the adjusted mode, for otherwise
5827 * the hw state checker will get angry at the mismatch. */
5828 crtc_vtotal = adjusted_mode->crtc_vtotal;
5829 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5830
609aeaca 5831 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5832 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5833 crtc_vtotal -= 1;
5834 crtc_vblank_end -= 1;
609aeaca
VS
5835
5836 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5837 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5838 else
5839 vsyncshift = adjusted_mode->crtc_hsync_start -
5840 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5841 if (vsyncshift < 0)
5842 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5843 }
5844
5845 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5846 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5847
fe2b8f9d 5848 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5849 (adjusted_mode->crtc_hdisplay - 1) |
5850 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5851 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5852 (adjusted_mode->crtc_hblank_start - 1) |
5853 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5854 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5855 (adjusted_mode->crtc_hsync_start - 1) |
5856 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5857
fe2b8f9d 5858 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5859 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5860 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5861 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5862 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5863 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5864 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5865 (adjusted_mode->crtc_vsync_start - 1) |
5866 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5867
b5e508d4
PZ
5868 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5869 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5870 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5871 * bits. */
5872 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5873 (pipe == PIPE_B || pipe == PIPE_C))
5874 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5875
b0e77b9c
PZ
5876 /* pipesrc controls the size that is scaled from, which should
5877 * always be the user's requested size.
5878 */
5879 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5880 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5881 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5882}
5883
1bd1bd80
DV
5884static void intel_get_pipe_timings(struct intel_crtc *crtc,
5885 struct intel_crtc_config *pipe_config)
5886{
5887 struct drm_device *dev = crtc->base.dev;
5888 struct drm_i915_private *dev_priv = dev->dev_private;
5889 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5890 uint32_t tmp;
5891
5892 tmp = I915_READ(HTOTAL(cpu_transcoder));
5893 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5894 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5895 tmp = I915_READ(HBLANK(cpu_transcoder));
5896 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5897 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5898 tmp = I915_READ(HSYNC(cpu_transcoder));
5899 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5900 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5901
5902 tmp = I915_READ(VTOTAL(cpu_transcoder));
5903 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5904 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5905 tmp = I915_READ(VBLANK(cpu_transcoder));
5906 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5907 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5908 tmp = I915_READ(VSYNC(cpu_transcoder));
5909 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5910 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5911
5912 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5913 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5914 pipe_config->adjusted_mode.crtc_vtotal += 1;
5915 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5916 }
5917
5918 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5919 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5920 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5921
5922 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5923 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5924}
5925
f6a83288
DV
5926void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5927 struct intel_crtc_config *pipe_config)
babea61d 5928{
f6a83288
DV
5929 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5930 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5931 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5932 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5933
f6a83288
DV
5934 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5935 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5936 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5937 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5938
f6a83288 5939 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5940
f6a83288
DV
5941 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5942 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5943}
5944
84b046f3
DV
5945static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5946{
5947 struct drm_device *dev = intel_crtc->base.dev;
5948 struct drm_i915_private *dev_priv = dev->dev_private;
5949 uint32_t pipeconf;
5950
9f11a9e4 5951 pipeconf = 0;
84b046f3 5952
67c72a12
DV
5953 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5954 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5955 pipeconf |= PIPECONF_ENABLE;
5956
cf532bb2
VS
5957 if (intel_crtc->config.double_wide)
5958 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5959
ff9ce46e
DV
5960 /* only g4x and later have fancy bpc/dither controls */
5961 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5962 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5963 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5964 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5965 PIPECONF_DITHER_TYPE_SP;
84b046f3 5966
ff9ce46e
DV
5967 switch (intel_crtc->config.pipe_bpp) {
5968 case 18:
5969 pipeconf |= PIPECONF_6BPC;
5970 break;
5971 case 24:
5972 pipeconf |= PIPECONF_8BPC;
5973 break;
5974 case 30:
5975 pipeconf |= PIPECONF_10BPC;
5976 break;
5977 default:
5978 /* Case prevented by intel_choose_pipe_bpp_dither. */
5979 BUG();
84b046f3
DV
5980 }
5981 }
5982
5983 if (HAS_PIPE_CXSR(dev)) {
5984 if (intel_crtc->lowfreq_avail) {
5985 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5986 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5987 } else {
5988 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
5989 }
5990 }
5991
efc2cfff
VS
5992 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5993 if (INTEL_INFO(dev)->gen < 4 ||
5994 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5995 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5996 else
5997 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5998 } else
84b046f3
DV
5999 pipeconf |= PIPECONF_PROGRESSIVE;
6000
9f11a9e4
DV
6001 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6002 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6003
84b046f3
DV
6004 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6005 POSTING_READ(PIPECONF(intel_crtc->pipe));
6006}
6007
f564048e 6008static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6009 int x, int y,
94352cf9 6010 struct drm_framebuffer *fb)
79e53945
JB
6011{
6012 struct drm_device *dev = crtc->dev;
6013 struct drm_i915_private *dev_priv = dev->dev_private;
6014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6015 int refclk, num_connectors = 0;
652c393a 6016 intel_clock_t clock, reduced_clock;
a16af721 6017 bool ok, has_reduced_clock = false;
e9fd1c02 6018 bool is_lvds = false, is_dsi = false;
5eddb70b 6019 struct intel_encoder *encoder;
d4906093 6020 const intel_limit_t *limit;
79e53945 6021
6c2b7c12 6022 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6023 switch (encoder->type) {
79e53945
JB
6024 case INTEL_OUTPUT_LVDS:
6025 is_lvds = true;
6026 break;
e9fd1c02
JN
6027 case INTEL_OUTPUT_DSI:
6028 is_dsi = true;
6029 break;
79e53945 6030 }
43565a06 6031
c751ce4f 6032 num_connectors++;
79e53945
JB
6033 }
6034
f2335330 6035 if (is_dsi)
5b18e57c 6036 return 0;
f2335330
JN
6037
6038 if (!intel_crtc->config.clock_set) {
6039 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6040
e9fd1c02
JN
6041 /*
6042 * Returns a set of divisors for the desired target clock with
6043 * the given refclk, or FALSE. The returned values represent
6044 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6045 * 2) / p1 / p2.
6046 */
6047 limit = intel_limit(crtc, refclk);
6048 ok = dev_priv->display.find_dpll(limit, crtc,
6049 intel_crtc->config.port_clock,
6050 refclk, NULL, &clock);
f2335330 6051 if (!ok) {
e9fd1c02
JN
6052 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6053 return -EINVAL;
6054 }
79e53945 6055
f2335330
JN
6056 if (is_lvds && dev_priv->lvds_downclock_avail) {
6057 /*
6058 * Ensure we match the reduced clock's P to the target
6059 * clock. If the clocks don't match, we can't switch
6060 * the display clock by using the FP0/FP1. In such case
6061 * we will disable the LVDS downclock feature.
6062 */
6063 has_reduced_clock =
6064 dev_priv->display.find_dpll(limit, crtc,
6065 dev_priv->lvds_downclock,
6066 refclk, &clock,
6067 &reduced_clock);
6068 }
6069 /* Compat-code for transition, will disappear. */
f47709a9
DV
6070 intel_crtc->config.dpll.n = clock.n;
6071 intel_crtc->config.dpll.m1 = clock.m1;
6072 intel_crtc->config.dpll.m2 = clock.m2;
6073 intel_crtc->config.dpll.p1 = clock.p1;
6074 intel_crtc->config.dpll.p2 = clock.p2;
6075 }
7026d4ac 6076
e9fd1c02 6077 if (IS_GEN2(dev)) {
8a654f3b 6078 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6079 has_reduced_clock ? &reduced_clock : NULL,
6080 num_connectors);
9d556c99
CML
6081 } else if (IS_CHERRYVIEW(dev)) {
6082 chv_update_pll(intel_crtc);
e9fd1c02 6083 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6084 vlv_update_pll(intel_crtc);
e9fd1c02 6085 } else {
f47709a9 6086 i9xx_update_pll(intel_crtc,
eb1cbe48 6087 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6088 num_connectors);
e9fd1c02 6089 }
79e53945 6090
c8f7a0db 6091 return 0;
f564048e
EA
6092}
6093
2fa2fe9a
DV
6094static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6095 struct intel_crtc_config *pipe_config)
6096{
6097 struct drm_device *dev = crtc->base.dev;
6098 struct drm_i915_private *dev_priv = dev->dev_private;
6099 uint32_t tmp;
6100
dc9e7dec
VS
6101 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6102 return;
6103
2fa2fe9a 6104 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6105 if (!(tmp & PFIT_ENABLE))
6106 return;
2fa2fe9a 6107
06922821 6108 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6109 if (INTEL_INFO(dev)->gen < 4) {
6110 if (crtc->pipe != PIPE_B)
6111 return;
2fa2fe9a
DV
6112 } else {
6113 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6114 return;
6115 }
6116
06922821 6117 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6118 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6119 if (INTEL_INFO(dev)->gen < 5)
6120 pipe_config->gmch_pfit.lvds_border_bits =
6121 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6122}
6123
acbec814
JB
6124static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6125 struct intel_crtc_config *pipe_config)
6126{
6127 struct drm_device *dev = crtc->base.dev;
6128 struct drm_i915_private *dev_priv = dev->dev_private;
6129 int pipe = pipe_config->cpu_transcoder;
6130 intel_clock_t clock;
6131 u32 mdiv;
662c6ecb 6132 int refclk = 100000;
acbec814
JB
6133
6134 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6135 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6136 mutex_unlock(&dev_priv->dpio_lock);
6137
6138 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6139 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6140 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6141 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6142 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6143
f646628b 6144 vlv_clock(refclk, &clock);
acbec814 6145
f646628b
VS
6146 /* clock.dot is the fast clock */
6147 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6148}
6149
1ad292b5
JB
6150static void i9xx_get_plane_config(struct intel_crtc *crtc,
6151 struct intel_plane_config *plane_config)
6152{
6153 struct drm_device *dev = crtc->base.dev;
6154 struct drm_i915_private *dev_priv = dev->dev_private;
6155 u32 val, base, offset;
6156 int pipe = crtc->pipe, plane = crtc->plane;
6157 int fourcc, pixel_format;
6158 int aligned_height;
6159
66e514c1
DA
6160 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6161 if (!crtc->base.primary->fb) {
1ad292b5
JB
6162 DRM_DEBUG_KMS("failed to alloc fb\n");
6163 return;
6164 }
6165
6166 val = I915_READ(DSPCNTR(plane));
6167
6168 if (INTEL_INFO(dev)->gen >= 4)
6169 if (val & DISPPLANE_TILED)
6170 plane_config->tiled = true;
6171
6172 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6173 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6174 crtc->base.primary->fb->pixel_format = fourcc;
6175 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6176 drm_format_plane_cpp(fourcc, 0) * 8;
6177
6178 if (INTEL_INFO(dev)->gen >= 4) {
6179 if (plane_config->tiled)
6180 offset = I915_READ(DSPTILEOFF(plane));
6181 else
6182 offset = I915_READ(DSPLINOFF(plane));
6183 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6184 } else {
6185 base = I915_READ(DSPADDR(plane));
6186 }
6187 plane_config->base = base;
6188
6189 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6190 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6191 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6192
6193 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6194 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6195
66e514c1 6196 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6197 plane_config->tiled);
6198
1267a26b
FF
6199 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6200 aligned_height);
1ad292b5
JB
6201
6202 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6203 pipe, plane, crtc->base.primary->fb->width,
6204 crtc->base.primary->fb->height,
6205 crtc->base.primary->fb->bits_per_pixel, base,
6206 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6207 plane_config->size);
6208
6209}
6210
70b23a98
VS
6211static void chv_crtc_clock_get(struct intel_crtc *crtc,
6212 struct intel_crtc_config *pipe_config)
6213{
6214 struct drm_device *dev = crtc->base.dev;
6215 struct drm_i915_private *dev_priv = dev->dev_private;
6216 int pipe = pipe_config->cpu_transcoder;
6217 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6218 intel_clock_t clock;
6219 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6220 int refclk = 100000;
6221
6222 mutex_lock(&dev_priv->dpio_lock);
6223 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6224 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6225 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6226 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6227 mutex_unlock(&dev_priv->dpio_lock);
6228
6229 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6230 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6231 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6232 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6233 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6234
6235 chv_clock(refclk, &clock);
6236
6237 /* clock.dot is the fast clock */
6238 pipe_config->port_clock = clock.dot / 5;
6239}
6240
0e8ffe1b
DV
6241static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6242 struct intel_crtc_config *pipe_config)
6243{
6244 struct drm_device *dev = crtc->base.dev;
6245 struct drm_i915_private *dev_priv = dev->dev_private;
6246 uint32_t tmp;
6247
b5482bd0
ID
6248 if (!intel_display_power_enabled(dev_priv,
6249 POWER_DOMAIN_PIPE(crtc->pipe)))
6250 return false;
6251
e143a21c 6252 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6253 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6254
0e8ffe1b
DV
6255 tmp = I915_READ(PIPECONF(crtc->pipe));
6256 if (!(tmp & PIPECONF_ENABLE))
6257 return false;
6258
42571aef
VS
6259 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6260 switch (tmp & PIPECONF_BPC_MASK) {
6261 case PIPECONF_6BPC:
6262 pipe_config->pipe_bpp = 18;
6263 break;
6264 case PIPECONF_8BPC:
6265 pipe_config->pipe_bpp = 24;
6266 break;
6267 case PIPECONF_10BPC:
6268 pipe_config->pipe_bpp = 30;
6269 break;
6270 default:
6271 break;
6272 }
6273 }
6274
b5a9fa09
DV
6275 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6276 pipe_config->limited_color_range = true;
6277
282740f7
VS
6278 if (INTEL_INFO(dev)->gen < 4)
6279 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6280
1bd1bd80
DV
6281 intel_get_pipe_timings(crtc, pipe_config);
6282
2fa2fe9a
DV
6283 i9xx_get_pfit_config(crtc, pipe_config);
6284
6c49f241
DV
6285 if (INTEL_INFO(dev)->gen >= 4) {
6286 tmp = I915_READ(DPLL_MD(crtc->pipe));
6287 pipe_config->pixel_multiplier =
6288 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6289 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6290 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6291 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6292 tmp = I915_READ(DPLL(crtc->pipe));
6293 pipe_config->pixel_multiplier =
6294 ((tmp & SDVO_MULTIPLIER_MASK)
6295 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6296 } else {
6297 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6298 * port and will be fixed up in the encoder->get_config
6299 * function. */
6300 pipe_config->pixel_multiplier = 1;
6301 }
8bcc2795
DV
6302 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6303 if (!IS_VALLEYVIEW(dev)) {
6304 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6305 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6306 } else {
6307 /* Mask out read-only status bits. */
6308 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6309 DPLL_PORTC_READY_MASK |
6310 DPLL_PORTB_READY_MASK);
8bcc2795 6311 }
6c49f241 6312
70b23a98
VS
6313 if (IS_CHERRYVIEW(dev))
6314 chv_crtc_clock_get(crtc, pipe_config);
6315 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6316 vlv_crtc_clock_get(crtc, pipe_config);
6317 else
6318 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6319
0e8ffe1b
DV
6320 return true;
6321}
6322
dde86e2d 6323static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6324{
6325 struct drm_i915_private *dev_priv = dev->dev_private;
6326 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6327 struct intel_encoder *encoder;
74cfd7ac 6328 u32 val, final;
13d83a67 6329 bool has_lvds = false;
199e5d79 6330 bool has_cpu_edp = false;
199e5d79 6331 bool has_panel = false;
99eb6a01
KP
6332 bool has_ck505 = false;
6333 bool can_ssc = false;
13d83a67
JB
6334
6335 /* We need to take the global config into account */
199e5d79
KP
6336 list_for_each_entry(encoder, &mode_config->encoder_list,
6337 base.head) {
6338 switch (encoder->type) {
6339 case INTEL_OUTPUT_LVDS:
6340 has_panel = true;
6341 has_lvds = true;
6342 break;
6343 case INTEL_OUTPUT_EDP:
6344 has_panel = true;
2de6905f 6345 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6346 has_cpu_edp = true;
6347 break;
13d83a67
JB
6348 }
6349 }
6350
99eb6a01 6351 if (HAS_PCH_IBX(dev)) {
41aa3448 6352 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6353 can_ssc = has_ck505;
6354 } else {
6355 has_ck505 = false;
6356 can_ssc = true;
6357 }
6358
2de6905f
ID
6359 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6360 has_panel, has_lvds, has_ck505);
13d83a67
JB
6361
6362 /* Ironlake: try to setup display ref clock before DPLL
6363 * enabling. This is only under driver's control after
6364 * PCH B stepping, previous chipset stepping should be
6365 * ignoring this setting.
6366 */
74cfd7ac
CW
6367 val = I915_READ(PCH_DREF_CONTROL);
6368
6369 /* As we must carefully and slowly disable/enable each source in turn,
6370 * compute the final state we want first and check if we need to
6371 * make any changes at all.
6372 */
6373 final = val;
6374 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6375 if (has_ck505)
6376 final |= DREF_NONSPREAD_CK505_ENABLE;
6377 else
6378 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6379
6380 final &= ~DREF_SSC_SOURCE_MASK;
6381 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6382 final &= ~DREF_SSC1_ENABLE;
6383
6384 if (has_panel) {
6385 final |= DREF_SSC_SOURCE_ENABLE;
6386
6387 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6388 final |= DREF_SSC1_ENABLE;
6389
6390 if (has_cpu_edp) {
6391 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6392 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6393 else
6394 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6395 } else
6396 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6397 } else {
6398 final |= DREF_SSC_SOURCE_DISABLE;
6399 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6400 }
6401
6402 if (final == val)
6403 return;
6404
13d83a67 6405 /* Always enable nonspread source */
74cfd7ac 6406 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6407
99eb6a01 6408 if (has_ck505)
74cfd7ac 6409 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6410 else
74cfd7ac 6411 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6412
199e5d79 6413 if (has_panel) {
74cfd7ac
CW
6414 val &= ~DREF_SSC_SOURCE_MASK;
6415 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6416
199e5d79 6417 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6418 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6419 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6420 val |= DREF_SSC1_ENABLE;
e77166b5 6421 } else
74cfd7ac 6422 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6423
6424 /* Get SSC going before enabling the outputs */
74cfd7ac 6425 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6426 POSTING_READ(PCH_DREF_CONTROL);
6427 udelay(200);
6428
74cfd7ac 6429 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6430
6431 /* Enable CPU source on CPU attached eDP */
199e5d79 6432 if (has_cpu_edp) {
99eb6a01 6433 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6434 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6435 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6436 } else
74cfd7ac 6437 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6438 } else
74cfd7ac 6439 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6440
74cfd7ac 6441 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6442 POSTING_READ(PCH_DREF_CONTROL);
6443 udelay(200);
6444 } else {
6445 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6446
74cfd7ac 6447 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6448
6449 /* Turn off CPU output */
74cfd7ac 6450 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6451
74cfd7ac 6452 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6453 POSTING_READ(PCH_DREF_CONTROL);
6454 udelay(200);
6455
6456 /* Turn off the SSC source */
74cfd7ac
CW
6457 val &= ~DREF_SSC_SOURCE_MASK;
6458 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6459
6460 /* Turn off SSC1 */
74cfd7ac 6461 val &= ~DREF_SSC1_ENABLE;
199e5d79 6462
74cfd7ac 6463 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6464 POSTING_READ(PCH_DREF_CONTROL);
6465 udelay(200);
6466 }
74cfd7ac
CW
6467
6468 BUG_ON(val != final);
13d83a67
JB
6469}
6470
f31f2d55 6471static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6472{
f31f2d55 6473 uint32_t tmp;
dde86e2d 6474
0ff066a9
PZ
6475 tmp = I915_READ(SOUTH_CHICKEN2);
6476 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6477 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6478
0ff066a9
PZ
6479 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6480 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6481 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6482
0ff066a9
PZ
6483 tmp = I915_READ(SOUTH_CHICKEN2);
6484 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6485 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6486
0ff066a9
PZ
6487 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6488 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6489 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6490}
6491
6492/* WaMPhyProgramming:hsw */
6493static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6494{
6495 uint32_t tmp;
dde86e2d
PZ
6496
6497 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6498 tmp &= ~(0xFF << 24);
6499 tmp |= (0x12 << 24);
6500 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6501
dde86e2d
PZ
6502 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6503 tmp |= (1 << 11);
6504 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6505
6506 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6507 tmp |= (1 << 11);
6508 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6509
dde86e2d
PZ
6510 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6511 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6512 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6513
6514 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6515 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6516 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6517
0ff066a9
PZ
6518 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6519 tmp &= ~(7 << 13);
6520 tmp |= (5 << 13);
6521 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6522
0ff066a9
PZ
6523 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6524 tmp &= ~(7 << 13);
6525 tmp |= (5 << 13);
6526 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6527
6528 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6529 tmp &= ~0xFF;
6530 tmp |= 0x1C;
6531 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6532
6533 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6534 tmp &= ~0xFF;
6535 tmp |= 0x1C;
6536 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6537
6538 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6539 tmp &= ~(0xFF << 16);
6540 tmp |= (0x1C << 16);
6541 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6542
6543 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6544 tmp &= ~(0xFF << 16);
6545 tmp |= (0x1C << 16);
6546 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6547
0ff066a9
PZ
6548 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6549 tmp |= (1 << 27);
6550 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6551
0ff066a9
PZ
6552 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6553 tmp |= (1 << 27);
6554 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6555
0ff066a9
PZ
6556 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6557 tmp &= ~(0xF << 28);
6558 tmp |= (4 << 28);
6559 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6560
0ff066a9
PZ
6561 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6562 tmp &= ~(0xF << 28);
6563 tmp |= (4 << 28);
6564 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6565}
6566
2fa86a1f
PZ
6567/* Implements 3 different sequences from BSpec chapter "Display iCLK
6568 * Programming" based on the parameters passed:
6569 * - Sequence to enable CLKOUT_DP
6570 * - Sequence to enable CLKOUT_DP without spread
6571 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6572 */
6573static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6574 bool with_fdi)
f31f2d55
PZ
6575{
6576 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6577 uint32_t reg, tmp;
6578
6579 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6580 with_spread = true;
6581 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6582 with_fdi, "LP PCH doesn't have FDI\n"))
6583 with_fdi = false;
f31f2d55
PZ
6584
6585 mutex_lock(&dev_priv->dpio_lock);
6586
6587 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6588 tmp &= ~SBI_SSCCTL_DISABLE;
6589 tmp |= SBI_SSCCTL_PATHALT;
6590 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6591
6592 udelay(24);
6593
2fa86a1f
PZ
6594 if (with_spread) {
6595 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6596 tmp &= ~SBI_SSCCTL_PATHALT;
6597 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6598
2fa86a1f
PZ
6599 if (with_fdi) {
6600 lpt_reset_fdi_mphy(dev_priv);
6601 lpt_program_fdi_mphy(dev_priv);
6602 }
6603 }
dde86e2d 6604
2fa86a1f
PZ
6605 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6606 SBI_GEN0 : SBI_DBUFF0;
6607 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6608 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6609 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6610
6611 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6612}
6613
47701c3b
PZ
6614/* Sequence to disable CLKOUT_DP */
6615static void lpt_disable_clkout_dp(struct drm_device *dev)
6616{
6617 struct drm_i915_private *dev_priv = dev->dev_private;
6618 uint32_t reg, tmp;
6619
6620 mutex_lock(&dev_priv->dpio_lock);
6621
6622 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6623 SBI_GEN0 : SBI_DBUFF0;
6624 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6625 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6626 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6627
6628 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6629 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6630 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6631 tmp |= SBI_SSCCTL_PATHALT;
6632 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6633 udelay(32);
6634 }
6635 tmp |= SBI_SSCCTL_DISABLE;
6636 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6637 }
6638
6639 mutex_unlock(&dev_priv->dpio_lock);
6640}
6641
bf8fa3d3
PZ
6642static void lpt_init_pch_refclk(struct drm_device *dev)
6643{
6644 struct drm_mode_config *mode_config = &dev->mode_config;
6645 struct intel_encoder *encoder;
6646 bool has_vga = false;
6647
6648 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6649 switch (encoder->type) {
6650 case INTEL_OUTPUT_ANALOG:
6651 has_vga = true;
6652 break;
6653 }
6654 }
6655
47701c3b
PZ
6656 if (has_vga)
6657 lpt_enable_clkout_dp(dev, true, true);
6658 else
6659 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6660}
6661
dde86e2d
PZ
6662/*
6663 * Initialize reference clocks when the driver loads
6664 */
6665void intel_init_pch_refclk(struct drm_device *dev)
6666{
6667 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6668 ironlake_init_pch_refclk(dev);
6669 else if (HAS_PCH_LPT(dev))
6670 lpt_init_pch_refclk(dev);
6671}
6672
d9d444cb
JB
6673static int ironlake_get_refclk(struct drm_crtc *crtc)
6674{
6675 struct drm_device *dev = crtc->dev;
6676 struct drm_i915_private *dev_priv = dev->dev_private;
6677 struct intel_encoder *encoder;
d9d444cb
JB
6678 int num_connectors = 0;
6679 bool is_lvds = false;
6680
6c2b7c12 6681 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6682 switch (encoder->type) {
6683 case INTEL_OUTPUT_LVDS:
6684 is_lvds = true;
6685 break;
d9d444cb
JB
6686 }
6687 num_connectors++;
6688 }
6689
6690 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6691 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6692 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6693 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6694 }
6695
6696 return 120000;
6697}
6698
6ff93609 6699static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6700{
c8203565 6701 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6703 int pipe = intel_crtc->pipe;
c8203565
PZ
6704 uint32_t val;
6705
78114071 6706 val = 0;
c8203565 6707
965e0c48 6708 switch (intel_crtc->config.pipe_bpp) {
c8203565 6709 case 18:
dfd07d72 6710 val |= PIPECONF_6BPC;
c8203565
PZ
6711 break;
6712 case 24:
dfd07d72 6713 val |= PIPECONF_8BPC;
c8203565
PZ
6714 break;
6715 case 30:
dfd07d72 6716 val |= PIPECONF_10BPC;
c8203565
PZ
6717 break;
6718 case 36:
dfd07d72 6719 val |= PIPECONF_12BPC;
c8203565
PZ
6720 break;
6721 default:
cc769b62
PZ
6722 /* Case prevented by intel_choose_pipe_bpp_dither. */
6723 BUG();
c8203565
PZ
6724 }
6725
d8b32247 6726 if (intel_crtc->config.dither)
c8203565
PZ
6727 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6728
6ff93609 6729 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6730 val |= PIPECONF_INTERLACED_ILK;
6731 else
6732 val |= PIPECONF_PROGRESSIVE;
6733
50f3b016 6734 if (intel_crtc->config.limited_color_range)
3685a8f3 6735 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6736
c8203565
PZ
6737 I915_WRITE(PIPECONF(pipe), val);
6738 POSTING_READ(PIPECONF(pipe));
6739}
6740
86d3efce
VS
6741/*
6742 * Set up the pipe CSC unit.
6743 *
6744 * Currently only full range RGB to limited range RGB conversion
6745 * is supported, but eventually this should handle various
6746 * RGB<->YCbCr scenarios as well.
6747 */
50f3b016 6748static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6749{
6750 struct drm_device *dev = crtc->dev;
6751 struct drm_i915_private *dev_priv = dev->dev_private;
6752 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6753 int pipe = intel_crtc->pipe;
6754 uint16_t coeff = 0x7800; /* 1.0 */
6755
6756 /*
6757 * TODO: Check what kind of values actually come out of the pipe
6758 * with these coeff/postoff values and adjust to get the best
6759 * accuracy. Perhaps we even need to take the bpc value into
6760 * consideration.
6761 */
6762
50f3b016 6763 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6764 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6765
6766 /*
6767 * GY/GU and RY/RU should be the other way around according
6768 * to BSpec, but reality doesn't agree. Just set them up in
6769 * a way that results in the correct picture.
6770 */
6771 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6772 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6773
6774 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6775 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6776
6777 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6778 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6779
6780 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6781 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6782 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6783
6784 if (INTEL_INFO(dev)->gen > 6) {
6785 uint16_t postoff = 0;
6786
50f3b016 6787 if (intel_crtc->config.limited_color_range)
32cf0cb0 6788 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6789
6790 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6791 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6792 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6793
6794 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6795 } else {
6796 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6797
50f3b016 6798 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6799 mode |= CSC_BLACK_SCREEN_OFFSET;
6800
6801 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6802 }
6803}
6804
6ff93609 6805static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6806{
756f85cf
PZ
6807 struct drm_device *dev = crtc->dev;
6808 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6810 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6811 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6812 uint32_t val;
6813
3eff4faa 6814 val = 0;
ee2b0b38 6815
756f85cf 6816 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6817 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6818
6ff93609 6819 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6820 val |= PIPECONF_INTERLACED_ILK;
6821 else
6822 val |= PIPECONF_PROGRESSIVE;
6823
702e7a56
PZ
6824 I915_WRITE(PIPECONF(cpu_transcoder), val);
6825 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6826
6827 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6828 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6829
6830 if (IS_BROADWELL(dev)) {
6831 val = 0;
6832
6833 switch (intel_crtc->config.pipe_bpp) {
6834 case 18:
6835 val |= PIPEMISC_DITHER_6_BPC;
6836 break;
6837 case 24:
6838 val |= PIPEMISC_DITHER_8_BPC;
6839 break;
6840 case 30:
6841 val |= PIPEMISC_DITHER_10_BPC;
6842 break;
6843 case 36:
6844 val |= PIPEMISC_DITHER_12_BPC;
6845 break;
6846 default:
6847 /* Case prevented by pipe_config_set_bpp. */
6848 BUG();
6849 }
6850
6851 if (intel_crtc->config.dither)
6852 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6853
6854 I915_WRITE(PIPEMISC(pipe), val);
6855 }
ee2b0b38
PZ
6856}
6857
6591c6e4 6858static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6859 intel_clock_t *clock,
6860 bool *has_reduced_clock,
6861 intel_clock_t *reduced_clock)
6862{
6863 struct drm_device *dev = crtc->dev;
6864 struct drm_i915_private *dev_priv = dev->dev_private;
6865 struct intel_encoder *intel_encoder;
6866 int refclk;
d4906093 6867 const intel_limit_t *limit;
a16af721 6868 bool ret, is_lvds = false;
79e53945 6869
6591c6e4
PZ
6870 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6871 switch (intel_encoder->type) {
79e53945
JB
6872 case INTEL_OUTPUT_LVDS:
6873 is_lvds = true;
6874 break;
79e53945
JB
6875 }
6876 }
6877
d9d444cb 6878 refclk = ironlake_get_refclk(crtc);
79e53945 6879
d4906093
ML
6880 /*
6881 * Returns a set of divisors for the desired target clock with the given
6882 * refclk, or FALSE. The returned values represent the clock equation:
6883 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6884 */
1b894b59 6885 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6886 ret = dev_priv->display.find_dpll(limit, crtc,
6887 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6888 refclk, NULL, clock);
6591c6e4
PZ
6889 if (!ret)
6890 return false;
cda4b7d3 6891
ddc9003c 6892 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6893 /*
6894 * Ensure we match the reduced clock's P to the target clock.
6895 * If the clocks don't match, we can't switch the display clock
6896 * by using the FP0/FP1. In such case we will disable the LVDS
6897 * downclock feature.
6898 */
ee9300bb
DV
6899 *has_reduced_clock =
6900 dev_priv->display.find_dpll(limit, crtc,
6901 dev_priv->lvds_downclock,
6902 refclk, clock,
6903 reduced_clock);
652c393a 6904 }
61e9653f 6905
6591c6e4
PZ
6906 return true;
6907}
6908
d4b1931c
PZ
6909int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6910{
6911 /*
6912 * Account for spread spectrum to avoid
6913 * oversubscribing the link. Max center spread
6914 * is 2.5%; use 5% for safety's sake.
6915 */
6916 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6917 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6918}
6919
7429e9d4 6920static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6921{
7429e9d4 6922 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6923}
6924
de13a2e3 6925static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6926 u32 *fp,
9a7c7890 6927 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6928{
de13a2e3 6929 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6930 struct drm_device *dev = crtc->dev;
6931 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6932 struct intel_encoder *intel_encoder;
6933 uint32_t dpll;
6cc5f341 6934 int factor, num_connectors = 0;
09ede541 6935 bool is_lvds = false, is_sdvo = false;
79e53945 6936
de13a2e3
PZ
6937 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6938 switch (intel_encoder->type) {
79e53945
JB
6939 case INTEL_OUTPUT_LVDS:
6940 is_lvds = true;
6941 break;
6942 case INTEL_OUTPUT_SDVO:
7d57382e 6943 case INTEL_OUTPUT_HDMI:
79e53945 6944 is_sdvo = true;
79e53945 6945 break;
79e53945 6946 }
43565a06 6947
c751ce4f 6948 num_connectors++;
79e53945 6949 }
79e53945 6950
c1858123 6951 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6952 factor = 21;
6953 if (is_lvds) {
6954 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6955 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6956 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6957 factor = 25;
09ede541 6958 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6959 factor = 20;
c1858123 6960
7429e9d4 6961 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6962 *fp |= FP_CB_TUNE;
2c07245f 6963
9a7c7890
DV
6964 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6965 *fp2 |= FP_CB_TUNE;
6966
5eddb70b 6967 dpll = 0;
2c07245f 6968
a07d6787
EA
6969 if (is_lvds)
6970 dpll |= DPLLB_MODE_LVDS;
6971 else
6972 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6973
ef1b460d
DV
6974 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6975 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
6976
6977 if (is_sdvo)
4a33e48d 6978 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 6979 if (intel_crtc->config.has_dp_encoder)
4a33e48d 6980 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 6981
a07d6787 6982 /* compute bitmask from p1 value */
7429e9d4 6983 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 6984 /* also FPA1 */
7429e9d4 6985 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 6986
7429e9d4 6987 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
6988 case 5:
6989 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6990 break;
6991 case 7:
6992 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6993 break;
6994 case 10:
6995 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6996 break;
6997 case 14:
6998 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6999 break;
79e53945
JB
7000 }
7001
b4c09f3b 7002 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7003 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7004 else
7005 dpll |= PLL_REF_INPUT_DREFCLK;
7006
959e16d6 7007 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7008}
7009
7010static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7011 int x, int y,
7012 struct drm_framebuffer *fb)
7013{
7014 struct drm_device *dev = crtc->dev;
de13a2e3 7015 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7016 int num_connectors = 0;
7017 intel_clock_t clock, reduced_clock;
cbbab5bd 7018 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7019 bool ok, has_reduced_clock = false;
8b47047b 7020 bool is_lvds = false;
de13a2e3 7021 struct intel_encoder *encoder;
e2b78267 7022 struct intel_shared_dpll *pll;
de13a2e3
PZ
7023
7024 for_each_encoder_on_crtc(dev, crtc, encoder) {
7025 switch (encoder->type) {
7026 case INTEL_OUTPUT_LVDS:
7027 is_lvds = true;
7028 break;
de13a2e3
PZ
7029 }
7030
7031 num_connectors++;
a07d6787 7032 }
79e53945 7033
5dc5298b
PZ
7034 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7035 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7036
ff9a6750 7037 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7038 &has_reduced_clock, &reduced_clock);
ee9300bb 7039 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7040 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7041 return -EINVAL;
79e53945 7042 }
f47709a9
DV
7043 /* Compat-code for transition, will disappear. */
7044 if (!intel_crtc->config.clock_set) {
7045 intel_crtc->config.dpll.n = clock.n;
7046 intel_crtc->config.dpll.m1 = clock.m1;
7047 intel_crtc->config.dpll.m2 = clock.m2;
7048 intel_crtc->config.dpll.p1 = clock.p1;
7049 intel_crtc->config.dpll.p2 = clock.p2;
7050 }
79e53945 7051
5dc5298b 7052 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7053 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7054 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7055 if (has_reduced_clock)
7429e9d4 7056 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7057
7429e9d4 7058 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7059 &fp, &reduced_clock,
7060 has_reduced_clock ? &fp2 : NULL);
7061
959e16d6 7062 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7063 intel_crtc->config.dpll_hw_state.fp0 = fp;
7064 if (has_reduced_clock)
7065 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7066 else
7067 intel_crtc->config.dpll_hw_state.fp1 = fp;
7068
b89a1d39 7069 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7070 if (pll == NULL) {
84f44ce7 7071 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7072 pipe_name(intel_crtc->pipe));
4b645f14
JB
7073 return -EINVAL;
7074 }
ee7b9f93 7075 } else
e72f9fbf 7076 intel_put_shared_dpll(intel_crtc);
79e53945 7077
d330a953 7078 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7079 intel_crtc->lowfreq_avail = true;
7080 else
7081 intel_crtc->lowfreq_avail = false;
e2b78267 7082
c8f7a0db 7083 return 0;
79e53945
JB
7084}
7085
eb14cb74
VS
7086static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7087 struct intel_link_m_n *m_n)
7088{
7089 struct drm_device *dev = crtc->base.dev;
7090 struct drm_i915_private *dev_priv = dev->dev_private;
7091 enum pipe pipe = crtc->pipe;
7092
7093 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7094 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7095 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7096 & ~TU_SIZE_MASK;
7097 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7098 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7099 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7100}
7101
7102static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7103 enum transcoder transcoder,
7104 struct intel_link_m_n *m_n)
72419203
DV
7105{
7106 struct drm_device *dev = crtc->base.dev;
7107 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7108 enum pipe pipe = crtc->pipe;
72419203 7109
eb14cb74
VS
7110 if (INTEL_INFO(dev)->gen >= 5) {
7111 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7112 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7113 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7114 & ~TU_SIZE_MASK;
7115 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7116 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7117 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7118 } else {
7119 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7120 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7121 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7122 & ~TU_SIZE_MASK;
7123 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7124 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7125 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7126 }
7127}
7128
7129void intel_dp_get_m_n(struct intel_crtc *crtc,
7130 struct intel_crtc_config *pipe_config)
7131{
7132 if (crtc->config.has_pch_encoder)
7133 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7134 else
7135 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7136 &pipe_config->dp_m_n);
7137}
72419203 7138
eb14cb74
VS
7139static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7140 struct intel_crtc_config *pipe_config)
7141{
7142 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7143 &pipe_config->fdi_m_n);
72419203
DV
7144}
7145
2fa2fe9a
DV
7146static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7147 struct intel_crtc_config *pipe_config)
7148{
7149 struct drm_device *dev = crtc->base.dev;
7150 struct drm_i915_private *dev_priv = dev->dev_private;
7151 uint32_t tmp;
7152
7153 tmp = I915_READ(PF_CTL(crtc->pipe));
7154
7155 if (tmp & PF_ENABLE) {
fd4daa9c 7156 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7157 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7158 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7159
7160 /* We currently do not free assignements of panel fitters on
7161 * ivb/hsw (since we don't use the higher upscaling modes which
7162 * differentiates them) so just WARN about this case for now. */
7163 if (IS_GEN7(dev)) {
7164 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7165 PF_PIPE_SEL_IVB(crtc->pipe));
7166 }
2fa2fe9a 7167 }
79e53945
JB
7168}
7169
4c6baa59
JB
7170static void ironlake_get_plane_config(struct intel_crtc *crtc,
7171 struct intel_plane_config *plane_config)
7172{
7173 struct drm_device *dev = crtc->base.dev;
7174 struct drm_i915_private *dev_priv = dev->dev_private;
7175 u32 val, base, offset;
7176 int pipe = crtc->pipe, plane = crtc->plane;
7177 int fourcc, pixel_format;
7178 int aligned_height;
7179
66e514c1
DA
7180 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7181 if (!crtc->base.primary->fb) {
4c6baa59
JB
7182 DRM_DEBUG_KMS("failed to alloc fb\n");
7183 return;
7184 }
7185
7186 val = I915_READ(DSPCNTR(plane));
7187
7188 if (INTEL_INFO(dev)->gen >= 4)
7189 if (val & DISPPLANE_TILED)
7190 plane_config->tiled = true;
7191
7192 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7193 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7194 crtc->base.primary->fb->pixel_format = fourcc;
7195 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7196 drm_format_plane_cpp(fourcc, 0) * 8;
7197
7198 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7199 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7200 offset = I915_READ(DSPOFFSET(plane));
7201 } else {
7202 if (plane_config->tiled)
7203 offset = I915_READ(DSPTILEOFF(plane));
7204 else
7205 offset = I915_READ(DSPLINOFF(plane));
7206 }
7207 plane_config->base = base;
7208
7209 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7210 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7211 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7212
7213 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7214 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7215
66e514c1 7216 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7217 plane_config->tiled);
7218
1267a26b
FF
7219 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7220 aligned_height);
4c6baa59
JB
7221
7222 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7223 pipe, plane, crtc->base.primary->fb->width,
7224 crtc->base.primary->fb->height,
7225 crtc->base.primary->fb->bits_per_pixel, base,
7226 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7227 plane_config->size);
7228}
7229
0e8ffe1b
DV
7230static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7231 struct intel_crtc_config *pipe_config)
7232{
7233 struct drm_device *dev = crtc->base.dev;
7234 struct drm_i915_private *dev_priv = dev->dev_private;
7235 uint32_t tmp;
7236
e143a21c 7237 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7238 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7239
0e8ffe1b
DV
7240 tmp = I915_READ(PIPECONF(crtc->pipe));
7241 if (!(tmp & PIPECONF_ENABLE))
7242 return false;
7243
42571aef
VS
7244 switch (tmp & PIPECONF_BPC_MASK) {
7245 case PIPECONF_6BPC:
7246 pipe_config->pipe_bpp = 18;
7247 break;
7248 case PIPECONF_8BPC:
7249 pipe_config->pipe_bpp = 24;
7250 break;
7251 case PIPECONF_10BPC:
7252 pipe_config->pipe_bpp = 30;
7253 break;
7254 case PIPECONF_12BPC:
7255 pipe_config->pipe_bpp = 36;
7256 break;
7257 default:
7258 break;
7259 }
7260
b5a9fa09
DV
7261 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7262 pipe_config->limited_color_range = true;
7263
ab9412ba 7264 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7265 struct intel_shared_dpll *pll;
7266
88adfff1
DV
7267 pipe_config->has_pch_encoder = true;
7268
627eb5a3
DV
7269 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7270 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7271 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7272
7273 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7274
c0d43d62 7275 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7276 pipe_config->shared_dpll =
7277 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7278 } else {
7279 tmp = I915_READ(PCH_DPLL_SEL);
7280 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7281 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7282 else
7283 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7284 }
66e985c0
DV
7285
7286 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7287
7288 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7289 &pipe_config->dpll_hw_state));
c93f54cf
DV
7290
7291 tmp = pipe_config->dpll_hw_state.dpll;
7292 pipe_config->pixel_multiplier =
7293 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7294 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7295
7296 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7297 } else {
7298 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7299 }
7300
1bd1bd80
DV
7301 intel_get_pipe_timings(crtc, pipe_config);
7302
2fa2fe9a
DV
7303 ironlake_get_pfit_config(crtc, pipe_config);
7304
0e8ffe1b
DV
7305 return true;
7306}
7307
be256dc7
PZ
7308static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7309{
7310 struct drm_device *dev = dev_priv->dev;
7311 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7312 struct intel_crtc *crtc;
be256dc7 7313
d3fcc808 7314 for_each_intel_crtc(dev, crtc)
798183c5 7315 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7316 pipe_name(crtc->pipe));
7317
7318 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7319 WARN(plls->spll_refcount, "SPLL enabled\n");
7320 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7321 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7322 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7323 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7324 "CPU PWM1 enabled\n");
7325 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7326 "CPU PWM2 enabled\n");
7327 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7328 "PCH PWM1 enabled\n");
7329 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7330 "Utility pin enabled\n");
7331 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7332
9926ada1
PZ
7333 /*
7334 * In theory we can still leave IRQs enabled, as long as only the HPD
7335 * interrupts remain enabled. We used to check for that, but since it's
7336 * gen-specific and since we only disable LCPLL after we fully disable
7337 * the interrupts, the check below should be enough.
7338 */
7339 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
be256dc7
PZ
7340}
7341
3c4c9b81
PZ
7342static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7343{
7344 struct drm_device *dev = dev_priv->dev;
7345
7346 if (IS_HASWELL(dev)) {
7347 mutex_lock(&dev_priv->rps.hw_lock);
7348 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7349 val))
f475dadf 7350 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7351 mutex_unlock(&dev_priv->rps.hw_lock);
7352 } else {
7353 I915_WRITE(D_COMP, val);
7354 }
7355 POSTING_READ(D_COMP);
be256dc7
PZ
7356}
7357
7358/*
7359 * This function implements pieces of two sequences from BSpec:
7360 * - Sequence for display software to disable LCPLL
7361 * - Sequence for display software to allow package C8+
7362 * The steps implemented here are just the steps that actually touch the LCPLL
7363 * register. Callers should take care of disabling all the display engine
7364 * functions, doing the mode unset, fixing interrupts, etc.
7365 */
6ff58d53
PZ
7366static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7367 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7368{
7369 uint32_t val;
7370
7371 assert_can_disable_lcpll(dev_priv);
7372
7373 val = I915_READ(LCPLL_CTL);
7374
7375 if (switch_to_fclk) {
7376 val |= LCPLL_CD_SOURCE_FCLK;
7377 I915_WRITE(LCPLL_CTL, val);
7378
7379 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7380 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7381 DRM_ERROR("Switching to FCLK failed\n");
7382
7383 val = I915_READ(LCPLL_CTL);
7384 }
7385
7386 val |= LCPLL_PLL_DISABLE;
7387 I915_WRITE(LCPLL_CTL, val);
7388 POSTING_READ(LCPLL_CTL);
7389
7390 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7391 DRM_ERROR("LCPLL still locked\n");
7392
7393 val = I915_READ(D_COMP);
7394 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7395 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7396 ndelay(100);
7397
7398 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7399 DRM_ERROR("D_COMP RCOMP still in progress\n");
7400
7401 if (allow_power_down) {
7402 val = I915_READ(LCPLL_CTL);
7403 val |= LCPLL_POWER_DOWN_ALLOW;
7404 I915_WRITE(LCPLL_CTL, val);
7405 POSTING_READ(LCPLL_CTL);
7406 }
7407}
7408
7409/*
7410 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7411 * source.
7412 */
6ff58d53 7413static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7414{
7415 uint32_t val;
a8a8bd54 7416 unsigned long irqflags;
be256dc7
PZ
7417
7418 val = I915_READ(LCPLL_CTL);
7419
7420 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7421 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7422 return;
7423
a8a8bd54
PZ
7424 /*
7425 * Make sure we're not on PC8 state before disabling PC8, otherwise
7426 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7427 *
7428 * The other problem is that hsw_restore_lcpll() is called as part of
7429 * the runtime PM resume sequence, so we can't just call
7430 * gen6_gt_force_wake_get() because that function calls
7431 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7432 * while we are on the resume sequence. So to solve this problem we have
7433 * to call special forcewake code that doesn't touch runtime PM and
7434 * doesn't enable the forcewake delayed work.
7435 */
7436 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7437 if (dev_priv->uncore.forcewake_count++ == 0)
7438 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7439 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7440
be256dc7
PZ
7441 if (val & LCPLL_POWER_DOWN_ALLOW) {
7442 val &= ~LCPLL_POWER_DOWN_ALLOW;
7443 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7444 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7445 }
7446
7447 val = I915_READ(D_COMP);
7448 val |= D_COMP_COMP_FORCE;
7449 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7450 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7451
7452 val = I915_READ(LCPLL_CTL);
7453 val &= ~LCPLL_PLL_DISABLE;
7454 I915_WRITE(LCPLL_CTL, val);
7455
7456 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7457 DRM_ERROR("LCPLL not locked yet\n");
7458
7459 if (val & LCPLL_CD_SOURCE_FCLK) {
7460 val = I915_READ(LCPLL_CTL);
7461 val &= ~LCPLL_CD_SOURCE_FCLK;
7462 I915_WRITE(LCPLL_CTL, val);
7463
7464 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7465 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7466 DRM_ERROR("Switching back to LCPLL failed\n");
7467 }
215733fa 7468
a8a8bd54
PZ
7469 /* See the big comment above. */
7470 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7471 if (--dev_priv->uncore.forcewake_count == 0)
7472 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7473 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7474}
7475
765dab67
PZ
7476/*
7477 * Package states C8 and deeper are really deep PC states that can only be
7478 * reached when all the devices on the system allow it, so even if the graphics
7479 * device allows PC8+, it doesn't mean the system will actually get to these
7480 * states. Our driver only allows PC8+ when going into runtime PM.
7481 *
7482 * The requirements for PC8+ are that all the outputs are disabled, the power
7483 * well is disabled and most interrupts are disabled, and these are also
7484 * requirements for runtime PM. When these conditions are met, we manually do
7485 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7486 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7487 * hang the machine.
7488 *
7489 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7490 * the state of some registers, so when we come back from PC8+ we need to
7491 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7492 * need to take care of the registers kept by RC6. Notice that this happens even
7493 * if we don't put the device in PCI D3 state (which is what currently happens
7494 * because of the runtime PM support).
7495 *
7496 * For more, read "Display Sequences for Package C8" on the hardware
7497 * documentation.
7498 */
a14cb6fc 7499void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7500{
c67a470b
PZ
7501 struct drm_device *dev = dev_priv->dev;
7502 uint32_t val;
7503
c67a470b
PZ
7504 DRM_DEBUG_KMS("Enabling package C8+\n");
7505
c67a470b
PZ
7506 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7507 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7508 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7509 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7510 }
7511
7512 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7513 hsw_disable_lcpll(dev_priv, true, true);
7514}
7515
a14cb6fc 7516void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7517{
7518 struct drm_device *dev = dev_priv->dev;
7519 uint32_t val;
7520
c67a470b
PZ
7521 DRM_DEBUG_KMS("Disabling package C8+\n");
7522
7523 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7524 lpt_init_pch_refclk(dev);
7525
7526 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7527 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7528 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7529 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7530 }
7531
7532 intel_prepare_ddi(dev);
c67a470b
PZ
7533}
7534
9a952a0d
PZ
7535static void snb_modeset_global_resources(struct drm_device *dev)
7536{
7537 modeset_update_crtc_power_domains(dev);
7538}
7539
4f074129
ID
7540static void haswell_modeset_global_resources(struct drm_device *dev)
7541{
da723569 7542 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7543}
7544
09b4ddf9 7545static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7546 int x, int y,
7547 struct drm_framebuffer *fb)
7548{
09b4ddf9 7549 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7550
566b734a 7551 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7552 return -EINVAL;
566b734a 7553 intel_ddi_pll_enable(intel_crtc);
6441ab5f 7554
644cef34
DV
7555 intel_crtc->lowfreq_avail = false;
7556
c8f7a0db 7557 return 0;
79e53945
JB
7558}
7559
0e8ffe1b
DV
7560static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7561 struct intel_crtc_config *pipe_config)
7562{
7563 struct drm_device *dev = crtc->base.dev;
7564 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7565 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7566 uint32_t tmp;
7567
b5482bd0
ID
7568 if (!intel_display_power_enabled(dev_priv,
7569 POWER_DOMAIN_PIPE(crtc->pipe)))
7570 return false;
7571
e143a21c 7572 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7573 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7574
eccb140b
DV
7575 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7576 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7577 enum pipe trans_edp_pipe;
7578 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7579 default:
7580 WARN(1, "unknown pipe linked to edp transcoder\n");
7581 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7582 case TRANS_DDI_EDP_INPUT_A_ON:
7583 trans_edp_pipe = PIPE_A;
7584 break;
7585 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7586 trans_edp_pipe = PIPE_B;
7587 break;
7588 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7589 trans_edp_pipe = PIPE_C;
7590 break;
7591 }
7592
7593 if (trans_edp_pipe == crtc->pipe)
7594 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7595 }
7596
da7e29bd 7597 if (!intel_display_power_enabled(dev_priv,
eccb140b 7598 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7599 return false;
7600
eccb140b 7601 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7602 if (!(tmp & PIPECONF_ENABLE))
7603 return false;
7604
88adfff1 7605 /*
f196e6be 7606 * Haswell has only FDI/PCH transcoder A. It is which is connected to
88adfff1
DV
7607 * DDI E. So just check whether this pipe is wired to DDI E and whether
7608 * the PCH transcoder is on.
7609 */
eccb140b 7610 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
88adfff1 7611 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
ab9412ba 7612 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
88adfff1
DV
7613 pipe_config->has_pch_encoder = true;
7614
627eb5a3
DV
7615 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7616 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7617 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7618
7619 ironlake_get_fdi_m_n_config(crtc, pipe_config);
627eb5a3
DV
7620 }
7621
1bd1bd80
DV
7622 intel_get_pipe_timings(crtc, pipe_config);
7623
2fa2fe9a 7624 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7625 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7626 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7627
e59150dc
JB
7628 if (IS_HASWELL(dev))
7629 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7630 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7631
6c49f241
DV
7632 pipe_config->pixel_multiplier = 1;
7633
0e8ffe1b
DV
7634 return true;
7635}
7636
1a91510d
JN
7637static struct {
7638 int clock;
7639 u32 config;
7640} hdmi_audio_clock[] = {
7641 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7642 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7643 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7644 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7645 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7646 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7647 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7648 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7649 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7650 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7651};
7652
7653/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7654static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7655{
7656 int i;
7657
7658 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7659 if (mode->clock == hdmi_audio_clock[i].clock)
7660 break;
7661 }
7662
7663 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7664 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7665 i = 1;
7666 }
7667
7668 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7669 hdmi_audio_clock[i].clock,
7670 hdmi_audio_clock[i].config);
7671
7672 return hdmi_audio_clock[i].config;
7673}
7674
3a9627f4
WF
7675static bool intel_eld_uptodate(struct drm_connector *connector,
7676 int reg_eldv, uint32_t bits_eldv,
7677 int reg_elda, uint32_t bits_elda,
7678 int reg_edid)
7679{
7680 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7681 uint8_t *eld = connector->eld;
7682 uint32_t i;
7683
7684 i = I915_READ(reg_eldv);
7685 i &= bits_eldv;
7686
7687 if (!eld[0])
7688 return !i;
7689
7690 if (!i)
7691 return false;
7692
7693 i = I915_READ(reg_elda);
7694 i &= ~bits_elda;
7695 I915_WRITE(reg_elda, i);
7696
7697 for (i = 0; i < eld[2]; i++)
7698 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7699 return false;
7700
7701 return true;
7702}
7703
e0dac65e 7704static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7705 struct drm_crtc *crtc,
7706 struct drm_display_mode *mode)
e0dac65e
WF
7707{
7708 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7709 uint8_t *eld = connector->eld;
7710 uint32_t eldv;
7711 uint32_t len;
7712 uint32_t i;
7713
7714 i = I915_READ(G4X_AUD_VID_DID);
7715
7716 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7717 eldv = G4X_ELDV_DEVCL_DEVBLC;
7718 else
7719 eldv = G4X_ELDV_DEVCTG;
7720
3a9627f4
WF
7721 if (intel_eld_uptodate(connector,
7722 G4X_AUD_CNTL_ST, eldv,
7723 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7724 G4X_HDMIW_HDMIEDID))
7725 return;
7726
e0dac65e
WF
7727 i = I915_READ(G4X_AUD_CNTL_ST);
7728 i &= ~(eldv | G4X_ELD_ADDR);
7729 len = (i >> 9) & 0x1f; /* ELD buffer size */
7730 I915_WRITE(G4X_AUD_CNTL_ST, i);
7731
7732 if (!eld[0])
7733 return;
7734
7735 len = min_t(uint8_t, eld[2], len);
7736 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7737 for (i = 0; i < len; i++)
7738 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7739
7740 i = I915_READ(G4X_AUD_CNTL_ST);
7741 i |= eldv;
7742 I915_WRITE(G4X_AUD_CNTL_ST, i);
7743}
7744
83358c85 7745static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7746 struct drm_crtc *crtc,
7747 struct drm_display_mode *mode)
83358c85
WX
7748{
7749 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7750 uint8_t *eld = connector->eld;
83358c85
WX
7751 uint32_t eldv;
7752 uint32_t i;
7753 int len;
7754 int pipe = to_intel_crtc(crtc)->pipe;
7755 int tmp;
7756
7757 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7758 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7759 int aud_config = HSW_AUD_CFG(pipe);
7760 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7761
83358c85
WX
7762 /* Audio output enable */
7763 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7764 tmp = I915_READ(aud_cntrl_st2);
7765 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7766 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7767 POSTING_READ(aud_cntrl_st2);
83358c85 7768
c7905792 7769 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7770
7771 /* Set ELD valid state */
7772 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7773 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7774 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7775 I915_WRITE(aud_cntrl_st2, tmp);
7776 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7777 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7778
7779 /* Enable HDMI mode */
7780 tmp = I915_READ(aud_config);
7e7cb34f 7781 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7782 /* clear N_programing_enable and N_value_index */
7783 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7784 I915_WRITE(aud_config, tmp);
7785
7786 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7787
7788 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7789
7790 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7791 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7792 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7793 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7794 } else {
7795 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7796 }
83358c85
WX
7797
7798 if (intel_eld_uptodate(connector,
7799 aud_cntrl_st2, eldv,
7800 aud_cntl_st, IBX_ELD_ADDRESS,
7801 hdmiw_hdmiedid))
7802 return;
7803
7804 i = I915_READ(aud_cntrl_st2);
7805 i &= ~eldv;
7806 I915_WRITE(aud_cntrl_st2, i);
7807
7808 if (!eld[0])
7809 return;
7810
7811 i = I915_READ(aud_cntl_st);
7812 i &= ~IBX_ELD_ADDRESS;
7813 I915_WRITE(aud_cntl_st, i);
7814 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7815 DRM_DEBUG_DRIVER("port num:%d\n", i);
7816
7817 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7818 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7819 for (i = 0; i < len; i++)
7820 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7821
7822 i = I915_READ(aud_cntrl_st2);
7823 i |= eldv;
7824 I915_WRITE(aud_cntrl_st2, i);
7825
7826}
7827
e0dac65e 7828static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7829 struct drm_crtc *crtc,
7830 struct drm_display_mode *mode)
e0dac65e
WF
7831{
7832 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7833 uint8_t *eld = connector->eld;
7834 uint32_t eldv;
7835 uint32_t i;
7836 int len;
7837 int hdmiw_hdmiedid;
b6daa025 7838 int aud_config;
e0dac65e
WF
7839 int aud_cntl_st;
7840 int aud_cntrl_st2;
9b138a83 7841 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7842
b3f33cbf 7843 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7844 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7845 aud_config = IBX_AUD_CFG(pipe);
7846 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7847 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7848 } else if (IS_VALLEYVIEW(connector->dev)) {
7849 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7850 aud_config = VLV_AUD_CFG(pipe);
7851 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7852 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7853 } else {
9b138a83
WX
7854 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7855 aud_config = CPT_AUD_CFG(pipe);
7856 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7857 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7858 }
7859
9b138a83 7860 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7861
9ca2fe73
ML
7862 if (IS_VALLEYVIEW(connector->dev)) {
7863 struct intel_encoder *intel_encoder;
7864 struct intel_digital_port *intel_dig_port;
7865
7866 intel_encoder = intel_attached_encoder(connector);
7867 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7868 i = intel_dig_port->port;
7869 } else {
7870 i = I915_READ(aud_cntl_st);
7871 i = (i >> 29) & DIP_PORT_SEL_MASK;
7872 /* DIP_Port_Select, 0x1 = PortB */
7873 }
7874
e0dac65e
WF
7875 if (!i) {
7876 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7877 /* operate blindly on all ports */
1202b4c6
WF
7878 eldv = IBX_ELD_VALIDB;
7879 eldv |= IBX_ELD_VALIDB << 4;
7880 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7881 } else {
2582a850 7882 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7883 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7884 }
7885
3a9627f4
WF
7886 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7887 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7888 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7889 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7890 } else {
7891 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7892 }
e0dac65e 7893
3a9627f4
WF
7894 if (intel_eld_uptodate(connector,
7895 aud_cntrl_st2, eldv,
7896 aud_cntl_st, IBX_ELD_ADDRESS,
7897 hdmiw_hdmiedid))
7898 return;
7899
e0dac65e
WF
7900 i = I915_READ(aud_cntrl_st2);
7901 i &= ~eldv;
7902 I915_WRITE(aud_cntrl_st2, i);
7903
7904 if (!eld[0])
7905 return;
7906
e0dac65e 7907 i = I915_READ(aud_cntl_st);
1202b4c6 7908 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7909 I915_WRITE(aud_cntl_st, i);
7910
7911 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7912 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7913 for (i = 0; i < len; i++)
7914 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7915
7916 i = I915_READ(aud_cntrl_st2);
7917 i |= eldv;
7918 I915_WRITE(aud_cntrl_st2, i);
7919}
7920
7921void intel_write_eld(struct drm_encoder *encoder,
7922 struct drm_display_mode *mode)
7923{
7924 struct drm_crtc *crtc = encoder->crtc;
7925 struct drm_connector *connector;
7926 struct drm_device *dev = encoder->dev;
7927 struct drm_i915_private *dev_priv = dev->dev_private;
7928
7929 connector = drm_select_eld(encoder, mode);
7930 if (!connector)
7931 return;
7932
7933 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7934 connector->base.id,
c23cc417 7935 connector->name,
e0dac65e 7936 connector->encoder->base.id,
8e329a03 7937 connector->encoder->name);
e0dac65e
WF
7938
7939 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7940
7941 if (dev_priv->display.write_eld)
34427052 7942 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
7943}
7944
560b85bb
CW
7945static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7946{
7947 struct drm_device *dev = crtc->dev;
7948 struct drm_i915_private *dev_priv = dev->dev_private;
7949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 7950 uint32_t cntl;
560b85bb 7951
4b0e333e 7952 if (base != intel_crtc->cursor_base) {
560b85bb
CW
7953 /* On these chipsets we can only modify the base whilst
7954 * the cursor is disabled.
7955 */
4b0e333e
CW
7956 if (intel_crtc->cursor_cntl) {
7957 I915_WRITE(_CURACNTR, 0);
7958 POSTING_READ(_CURACNTR);
7959 intel_crtc->cursor_cntl = 0;
7960 }
7961
9db4a9c7 7962 I915_WRITE(_CURABASE, base);
4b0e333e
CW
7963 POSTING_READ(_CURABASE);
7964 }
560b85bb 7965
4b0e333e
CW
7966 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7967 cntl = 0;
7968 if (base)
7969 cntl = (CURSOR_ENABLE |
560b85bb 7970 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
7971 CURSOR_FORMAT_ARGB);
7972 if (intel_crtc->cursor_cntl != cntl) {
7973 I915_WRITE(_CURACNTR, cntl);
7974 POSTING_READ(_CURACNTR);
7975 intel_crtc->cursor_cntl = cntl;
7976 }
560b85bb
CW
7977}
7978
7979static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7980{
7981 struct drm_device *dev = crtc->dev;
7982 struct drm_i915_private *dev_priv = dev->dev_private;
7983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7984 int pipe = intel_crtc->pipe;
4b0e333e 7985 uint32_t cntl;
4726e0b0 7986
4b0e333e
CW
7987 cntl = 0;
7988 if (base) {
7989 cntl = MCURSOR_GAMMA_ENABLE;
7990 switch (intel_crtc->cursor_width) {
4726e0b0
SK
7991 case 64:
7992 cntl |= CURSOR_MODE_64_ARGB_AX;
7993 break;
7994 case 128:
7995 cntl |= CURSOR_MODE_128_ARGB_AX;
7996 break;
7997 case 256:
7998 cntl |= CURSOR_MODE_256_ARGB_AX;
7999 break;
8000 default:
8001 WARN_ON(1);
8002 return;
560b85bb 8003 }
4b0e333e
CW
8004 cntl |= pipe << 28; /* Connect to correct pipe */
8005 }
8006 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8007 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8008 POSTING_READ(CURCNTR(pipe));
8009 intel_crtc->cursor_cntl = cntl;
560b85bb 8010 }
4b0e333e 8011
560b85bb 8012 /* and commit changes on next vblank */
9db4a9c7 8013 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8014 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8015}
8016
65a21cd6
JB
8017static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8018{
8019 struct drm_device *dev = crtc->dev;
8020 struct drm_i915_private *dev_priv = dev->dev_private;
8021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8022 int pipe = intel_crtc->pipe;
4b0e333e
CW
8023 uint32_t cntl;
8024
8025 cntl = 0;
8026 if (base) {
8027 cntl = MCURSOR_GAMMA_ENABLE;
8028 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8029 case 64:
8030 cntl |= CURSOR_MODE_64_ARGB_AX;
8031 break;
8032 case 128:
8033 cntl |= CURSOR_MODE_128_ARGB_AX;
8034 break;
8035 case 256:
8036 cntl |= CURSOR_MODE_256_ARGB_AX;
8037 break;
8038 default:
8039 WARN_ON(1);
8040 return;
65a21cd6 8041 }
4b0e333e
CW
8042 }
8043 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8044 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8045
4b0e333e
CW
8046 if (intel_crtc->cursor_cntl != cntl) {
8047 I915_WRITE(CURCNTR(pipe), cntl);
8048 POSTING_READ(CURCNTR(pipe));
8049 intel_crtc->cursor_cntl = cntl;
65a21cd6 8050 }
4b0e333e 8051
65a21cd6 8052 /* and commit changes on next vblank */
5efb3e28
VS
8053 I915_WRITE(CURBASE(pipe), base);
8054 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8055}
8056
cda4b7d3 8057/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8058static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8059 bool on)
cda4b7d3
CW
8060{
8061 struct drm_device *dev = crtc->dev;
8062 struct drm_i915_private *dev_priv = dev->dev_private;
8063 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8064 int pipe = intel_crtc->pipe;
3d7d6510
MR
8065 int x = crtc->cursor_x;
8066 int y = crtc->cursor_y;
d6e4db15 8067 u32 base = 0, pos = 0;
cda4b7d3 8068
d6e4db15 8069 if (on)
cda4b7d3 8070 base = intel_crtc->cursor_addr;
cda4b7d3 8071
d6e4db15
VS
8072 if (x >= intel_crtc->config.pipe_src_w)
8073 base = 0;
8074
8075 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8076 base = 0;
8077
8078 if (x < 0) {
efc9064e 8079 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8080 base = 0;
8081
8082 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8083 x = -x;
8084 }
8085 pos |= x << CURSOR_X_SHIFT;
8086
8087 if (y < 0) {
efc9064e 8088 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8089 base = 0;
8090
8091 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8092 y = -y;
8093 }
8094 pos |= y << CURSOR_Y_SHIFT;
8095
4b0e333e 8096 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8097 return;
8098
5efb3e28
VS
8099 I915_WRITE(CURPOS(pipe), pos);
8100
8101 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8102 ivb_update_cursor(crtc, base);
5efb3e28
VS
8103 else if (IS_845G(dev) || IS_I865G(dev))
8104 i845_update_cursor(crtc, base);
8105 else
8106 i9xx_update_cursor(crtc, base);
4b0e333e 8107 intel_crtc->cursor_base = base;
cda4b7d3
CW
8108}
8109
e3287951
MR
8110/*
8111 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8112 *
8113 * Note that the object's reference will be consumed if the update fails. If
8114 * the update succeeds, the reference of the old object (if any) will be
8115 * consumed.
8116 */
8117static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8118 struct drm_i915_gem_object *obj,
8119 uint32_t width, uint32_t height)
79e53945
JB
8120{
8121 struct drm_device *dev = crtc->dev;
8122 struct drm_i915_private *dev_priv = dev->dev_private;
8123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8124 enum pipe pipe = intel_crtc->pipe;
64f962e3 8125 unsigned old_width;
cda4b7d3 8126 uint32_t addr;
3f8bc370 8127 int ret;
79e53945 8128
79e53945 8129 /* if we want to turn off the cursor ignore width and height */
e3287951 8130 if (!obj) {
28c97730 8131 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8132 addr = 0;
05394f39 8133 obj = NULL;
5004417d 8134 mutex_lock(&dev->struct_mutex);
3f8bc370 8135 goto finish;
79e53945
JB
8136 }
8137
4726e0b0
SK
8138 /* Check for which cursor types we support */
8139 if (!((width == 64 && height == 64) ||
8140 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8141 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8142 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8143 return -EINVAL;
8144 }
8145
05394f39 8146 if (obj->base.size < width * height * 4) {
e3287951 8147 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8148 ret = -ENOMEM;
8149 goto fail;
79e53945
JB
8150 }
8151
71acb5eb 8152 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8153 mutex_lock(&dev->struct_mutex);
3d13ef2e 8154 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8155 unsigned alignment;
8156
d9e86c0e 8157 if (obj->tiling_mode) {
3b25b31f 8158 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8159 ret = -EINVAL;
8160 goto fail_locked;
8161 }
8162
693db184
CW
8163 /* Note that the w/a also requires 2 PTE of padding following
8164 * the bo. We currently fill all unused PTE with the shadow
8165 * page and so we should always have valid PTE following the
8166 * cursor preventing the VT-d warning.
8167 */
8168 alignment = 0;
8169 if (need_vtd_wa(dev))
8170 alignment = 64*1024;
8171
8172 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8173 if (ret) {
3b25b31f 8174 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8175 goto fail_locked;
e7b526bb
CW
8176 }
8177
d9e86c0e
CW
8178 ret = i915_gem_object_put_fence(obj);
8179 if (ret) {
3b25b31f 8180 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8181 goto fail_unpin;
8182 }
8183
f343c5f6 8184 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8185 } else {
6eeefaf3 8186 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8187 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8188 if (ret) {
3b25b31f 8189 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8190 goto fail_locked;
71acb5eb 8191 }
00731155 8192 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8193 }
8194
a6c45cf0 8195 if (IS_GEN2(dev))
14b60391
JB
8196 I915_WRITE(CURSIZE, (height << 12) | width);
8197
3f8bc370 8198 finish:
3f8bc370 8199 if (intel_crtc->cursor_bo) {
00731155 8200 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8201 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8202 }
80824003 8203
a071fa00
DV
8204 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8205 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8206 mutex_unlock(&dev->struct_mutex);
3f8bc370 8207
64f962e3
CW
8208 old_width = intel_crtc->cursor_width;
8209
3f8bc370 8210 intel_crtc->cursor_addr = addr;
05394f39 8211 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8212 intel_crtc->cursor_width = width;
8213 intel_crtc->cursor_height = height;
8214
64f962e3
CW
8215 if (intel_crtc->active) {
8216 if (old_width != width)
8217 intel_update_watermarks(crtc);
f2f5f771 8218 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8219 }
3f8bc370 8220
f99d7069
DV
8221 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8222
79e53945 8223 return 0;
e7b526bb 8224fail_unpin:
cc98b413 8225 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8226fail_locked:
34b8686e 8227 mutex_unlock(&dev->struct_mutex);
bc9025bd 8228fail:
05394f39 8229 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8230 return ret;
79e53945
JB
8231}
8232
79e53945 8233static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8234 u16 *blue, uint32_t start, uint32_t size)
79e53945 8235{
7203425a 8236 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8238
7203425a 8239 for (i = start; i < end; i++) {
79e53945
JB
8240 intel_crtc->lut_r[i] = red[i] >> 8;
8241 intel_crtc->lut_g[i] = green[i] >> 8;
8242 intel_crtc->lut_b[i] = blue[i] >> 8;
8243 }
8244
8245 intel_crtc_load_lut(crtc);
8246}
8247
79e53945
JB
8248/* VESA 640x480x72Hz mode to set on the pipe */
8249static struct drm_display_mode load_detect_mode = {
8250 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8251 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8252};
8253
a8bb6818
DV
8254struct drm_framebuffer *
8255__intel_framebuffer_create(struct drm_device *dev,
8256 struct drm_mode_fb_cmd2 *mode_cmd,
8257 struct drm_i915_gem_object *obj)
d2dff872
CW
8258{
8259 struct intel_framebuffer *intel_fb;
8260 int ret;
8261
8262 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8263 if (!intel_fb) {
8264 drm_gem_object_unreference_unlocked(&obj->base);
8265 return ERR_PTR(-ENOMEM);
8266 }
8267
8268 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8269 if (ret)
8270 goto err;
d2dff872
CW
8271
8272 return &intel_fb->base;
dd4916c5
DV
8273err:
8274 drm_gem_object_unreference_unlocked(&obj->base);
8275 kfree(intel_fb);
8276
8277 return ERR_PTR(ret);
d2dff872
CW
8278}
8279
b5ea642a 8280static struct drm_framebuffer *
a8bb6818
DV
8281intel_framebuffer_create(struct drm_device *dev,
8282 struct drm_mode_fb_cmd2 *mode_cmd,
8283 struct drm_i915_gem_object *obj)
8284{
8285 struct drm_framebuffer *fb;
8286 int ret;
8287
8288 ret = i915_mutex_lock_interruptible(dev);
8289 if (ret)
8290 return ERR_PTR(ret);
8291 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8292 mutex_unlock(&dev->struct_mutex);
8293
8294 return fb;
8295}
8296
d2dff872
CW
8297static u32
8298intel_framebuffer_pitch_for_width(int width, int bpp)
8299{
8300 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8301 return ALIGN(pitch, 64);
8302}
8303
8304static u32
8305intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8306{
8307 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8308 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8309}
8310
8311static struct drm_framebuffer *
8312intel_framebuffer_create_for_mode(struct drm_device *dev,
8313 struct drm_display_mode *mode,
8314 int depth, int bpp)
8315{
8316 struct drm_i915_gem_object *obj;
0fed39bd 8317 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8318
8319 obj = i915_gem_alloc_object(dev,
8320 intel_framebuffer_size_for_mode(mode, bpp));
8321 if (obj == NULL)
8322 return ERR_PTR(-ENOMEM);
8323
8324 mode_cmd.width = mode->hdisplay;
8325 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8326 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8327 bpp);
5ca0c34a 8328 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8329
8330 return intel_framebuffer_create(dev, &mode_cmd, obj);
8331}
8332
8333static struct drm_framebuffer *
8334mode_fits_in_fbdev(struct drm_device *dev,
8335 struct drm_display_mode *mode)
8336{
4520f53a 8337#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8338 struct drm_i915_private *dev_priv = dev->dev_private;
8339 struct drm_i915_gem_object *obj;
8340 struct drm_framebuffer *fb;
8341
4c0e5528 8342 if (!dev_priv->fbdev)
d2dff872
CW
8343 return NULL;
8344
4c0e5528 8345 if (!dev_priv->fbdev->fb)
d2dff872
CW
8346 return NULL;
8347
4c0e5528
DV
8348 obj = dev_priv->fbdev->fb->obj;
8349 BUG_ON(!obj);
8350
8bcd4553 8351 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8352 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8353 fb->bits_per_pixel))
d2dff872
CW
8354 return NULL;
8355
01f2c773 8356 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8357 return NULL;
8358
8359 return fb;
4520f53a
DV
8360#else
8361 return NULL;
8362#endif
d2dff872
CW
8363}
8364
d2434ab7 8365bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8366 struct drm_display_mode *mode,
51fd371b
RC
8367 struct intel_load_detect_pipe *old,
8368 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8369{
8370 struct intel_crtc *intel_crtc;
d2434ab7
DV
8371 struct intel_encoder *intel_encoder =
8372 intel_attached_encoder(connector);
79e53945 8373 struct drm_crtc *possible_crtc;
4ef69c7a 8374 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8375 struct drm_crtc *crtc = NULL;
8376 struct drm_device *dev = encoder->dev;
94352cf9 8377 struct drm_framebuffer *fb;
51fd371b
RC
8378 struct drm_mode_config *config = &dev->mode_config;
8379 int ret, i = -1;
79e53945 8380
d2dff872 8381 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8382 connector->base.id, connector->name,
8e329a03 8383 encoder->base.id, encoder->name);
d2dff872 8384
51fd371b
RC
8385 drm_modeset_acquire_init(ctx, 0);
8386
8387retry:
8388 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8389 if (ret)
8390 goto fail_unlock;
6e9f798d 8391
79e53945
JB
8392 /*
8393 * Algorithm gets a little messy:
7a5e4805 8394 *
79e53945
JB
8395 * - if the connector already has an assigned crtc, use it (but make
8396 * sure it's on first)
7a5e4805 8397 *
79e53945
JB
8398 * - try to find the first unused crtc that can drive this connector,
8399 * and use that if we find one
79e53945
JB
8400 */
8401
8402 /* See if we already have a CRTC for this connector */
8403 if (encoder->crtc) {
8404 crtc = encoder->crtc;
8261b191 8405
51fd371b
RC
8406 ret = drm_modeset_lock(&crtc->mutex, ctx);
8407 if (ret)
8408 goto fail_unlock;
7b24056b 8409
24218aac 8410 old->dpms_mode = connector->dpms;
8261b191
CW
8411 old->load_detect_temp = false;
8412
8413 /* Make sure the crtc and connector are running */
24218aac
DV
8414 if (connector->dpms != DRM_MODE_DPMS_ON)
8415 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8416
7173188d 8417 return true;
79e53945
JB
8418 }
8419
8420 /* Find an unused one (if possible) */
70e1e0ec 8421 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8422 i++;
8423 if (!(encoder->possible_crtcs & (1 << i)))
8424 continue;
8425 if (!possible_crtc->enabled) {
8426 crtc = possible_crtc;
8427 break;
8428 }
79e53945
JB
8429 }
8430
8431 /*
8432 * If we didn't find an unused CRTC, don't use any.
8433 */
8434 if (!crtc) {
7173188d 8435 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8436 goto fail_unlock;
79e53945
JB
8437 }
8438
51fd371b
RC
8439 ret = drm_modeset_lock(&crtc->mutex, ctx);
8440 if (ret)
8441 goto fail_unlock;
fc303101
DV
8442 intel_encoder->new_crtc = to_intel_crtc(crtc);
8443 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8444
8445 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8446 intel_crtc->new_enabled = true;
8447 intel_crtc->new_config = &intel_crtc->config;
24218aac 8448 old->dpms_mode = connector->dpms;
8261b191 8449 old->load_detect_temp = true;
d2dff872 8450 old->release_fb = NULL;
79e53945 8451
6492711d
CW
8452 if (!mode)
8453 mode = &load_detect_mode;
79e53945 8454
d2dff872
CW
8455 /* We need a framebuffer large enough to accommodate all accesses
8456 * that the plane may generate whilst we perform load detection.
8457 * We can not rely on the fbcon either being present (we get called
8458 * during its initialisation to detect all boot displays, or it may
8459 * not even exist) or that it is large enough to satisfy the
8460 * requested mode.
8461 */
94352cf9
DV
8462 fb = mode_fits_in_fbdev(dev, mode);
8463 if (fb == NULL) {
d2dff872 8464 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8465 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8466 old->release_fb = fb;
d2dff872
CW
8467 } else
8468 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8469 if (IS_ERR(fb)) {
d2dff872 8470 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8471 goto fail;
79e53945 8472 }
79e53945 8473
c0c36b94 8474 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8475 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8476 if (old->release_fb)
8477 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8478 goto fail;
79e53945 8479 }
7173188d 8480
79e53945 8481 /* let the connector get through one full cycle before testing */
9d0498a2 8482 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8483 return true;
412b61d8
VS
8484
8485 fail:
8486 intel_crtc->new_enabled = crtc->enabled;
8487 if (intel_crtc->new_enabled)
8488 intel_crtc->new_config = &intel_crtc->config;
8489 else
8490 intel_crtc->new_config = NULL;
51fd371b
RC
8491fail_unlock:
8492 if (ret == -EDEADLK) {
8493 drm_modeset_backoff(ctx);
8494 goto retry;
8495 }
8496
8497 drm_modeset_drop_locks(ctx);
8498 drm_modeset_acquire_fini(ctx);
6e9f798d 8499
412b61d8 8500 return false;
79e53945
JB
8501}
8502
d2434ab7 8503void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8504 struct intel_load_detect_pipe *old,
8505 struct drm_modeset_acquire_ctx *ctx)
79e53945 8506{
d2434ab7
DV
8507 struct intel_encoder *intel_encoder =
8508 intel_attached_encoder(connector);
4ef69c7a 8509 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8510 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8511 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8512
d2dff872 8513 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8514 connector->base.id, connector->name,
8e329a03 8515 encoder->base.id, encoder->name);
d2dff872 8516
8261b191 8517 if (old->load_detect_temp) {
fc303101
DV
8518 to_intel_connector(connector)->new_encoder = NULL;
8519 intel_encoder->new_crtc = NULL;
412b61d8
VS
8520 intel_crtc->new_enabled = false;
8521 intel_crtc->new_config = NULL;
fc303101 8522 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8523
36206361
DV
8524 if (old->release_fb) {
8525 drm_framebuffer_unregister_private(old->release_fb);
8526 drm_framebuffer_unreference(old->release_fb);
8527 }
d2dff872 8528
51fd371b 8529 goto unlock;
0622a53c 8530 return;
79e53945
JB
8531 }
8532
c751ce4f 8533 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8534 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8535 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8536
51fd371b
RC
8537unlock:
8538 drm_modeset_drop_locks(ctx);
8539 drm_modeset_acquire_fini(ctx);
79e53945
JB
8540}
8541
da4a1efa
VS
8542static int i9xx_pll_refclk(struct drm_device *dev,
8543 const struct intel_crtc_config *pipe_config)
8544{
8545 struct drm_i915_private *dev_priv = dev->dev_private;
8546 u32 dpll = pipe_config->dpll_hw_state.dpll;
8547
8548 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8549 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8550 else if (HAS_PCH_SPLIT(dev))
8551 return 120000;
8552 else if (!IS_GEN2(dev))
8553 return 96000;
8554 else
8555 return 48000;
8556}
8557
79e53945 8558/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8559static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8560 struct intel_crtc_config *pipe_config)
79e53945 8561{
f1f644dc 8562 struct drm_device *dev = crtc->base.dev;
79e53945 8563 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8564 int pipe = pipe_config->cpu_transcoder;
293623f7 8565 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8566 u32 fp;
8567 intel_clock_t clock;
da4a1efa 8568 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8569
8570 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8571 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8572 else
293623f7 8573 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8574
8575 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8576 if (IS_PINEVIEW(dev)) {
8577 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8578 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8579 } else {
8580 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8581 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8582 }
8583
a6c45cf0 8584 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8585 if (IS_PINEVIEW(dev))
8586 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8587 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8588 else
8589 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8590 DPLL_FPA01_P1_POST_DIV_SHIFT);
8591
8592 switch (dpll & DPLL_MODE_MASK) {
8593 case DPLLB_MODE_DAC_SERIAL:
8594 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8595 5 : 10;
8596 break;
8597 case DPLLB_MODE_LVDS:
8598 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8599 7 : 14;
8600 break;
8601 default:
28c97730 8602 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8603 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8604 return;
79e53945
JB
8605 }
8606
ac58c3f0 8607 if (IS_PINEVIEW(dev))
da4a1efa 8608 pineview_clock(refclk, &clock);
ac58c3f0 8609 else
da4a1efa 8610 i9xx_clock(refclk, &clock);
79e53945 8611 } else {
0fb58223 8612 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8613 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8614
8615 if (is_lvds) {
8616 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8617 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8618
8619 if (lvds & LVDS_CLKB_POWER_UP)
8620 clock.p2 = 7;
8621 else
8622 clock.p2 = 14;
79e53945
JB
8623 } else {
8624 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8625 clock.p1 = 2;
8626 else {
8627 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8628 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8629 }
8630 if (dpll & PLL_P2_DIVIDE_BY_4)
8631 clock.p2 = 4;
8632 else
8633 clock.p2 = 2;
79e53945 8634 }
da4a1efa
VS
8635
8636 i9xx_clock(refclk, &clock);
79e53945
JB
8637 }
8638
18442d08
VS
8639 /*
8640 * This value includes pixel_multiplier. We will use
241bfc38 8641 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8642 * encoder's get_config() function.
8643 */
8644 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8645}
8646
6878da05
VS
8647int intel_dotclock_calculate(int link_freq,
8648 const struct intel_link_m_n *m_n)
f1f644dc 8649{
f1f644dc
JB
8650 /*
8651 * The calculation for the data clock is:
1041a02f 8652 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8653 * But we want to avoid losing precison if possible, so:
1041a02f 8654 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8655 *
8656 * and the link clock is simpler:
1041a02f 8657 * link_clock = (m * link_clock) / n
f1f644dc
JB
8658 */
8659
6878da05
VS
8660 if (!m_n->link_n)
8661 return 0;
f1f644dc 8662
6878da05
VS
8663 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8664}
f1f644dc 8665
18442d08
VS
8666static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8667 struct intel_crtc_config *pipe_config)
6878da05
VS
8668{
8669 struct drm_device *dev = crtc->base.dev;
79e53945 8670
18442d08
VS
8671 /* read out port_clock from the DPLL */
8672 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8673
f1f644dc 8674 /*
18442d08 8675 * This value does not include pixel_multiplier.
241bfc38 8676 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8677 * agree once we know their relationship in the encoder's
8678 * get_config() function.
79e53945 8679 */
241bfc38 8680 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8681 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8682 &pipe_config->fdi_m_n);
79e53945
JB
8683}
8684
8685/** Returns the currently programmed mode of the given pipe. */
8686struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8687 struct drm_crtc *crtc)
8688{
548f245b 8689 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8691 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8692 struct drm_display_mode *mode;
f1f644dc 8693 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8694 int htot = I915_READ(HTOTAL(cpu_transcoder));
8695 int hsync = I915_READ(HSYNC(cpu_transcoder));
8696 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8697 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8698 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8699
8700 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8701 if (!mode)
8702 return NULL;
8703
f1f644dc
JB
8704 /*
8705 * Construct a pipe_config sufficient for getting the clock info
8706 * back out of crtc_clock_get.
8707 *
8708 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8709 * to use a real value here instead.
8710 */
293623f7 8711 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8712 pipe_config.pixel_multiplier = 1;
293623f7
VS
8713 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8714 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8715 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8716 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8717
773ae034 8718 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8719 mode->hdisplay = (htot & 0xffff) + 1;
8720 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8721 mode->hsync_start = (hsync & 0xffff) + 1;
8722 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8723 mode->vdisplay = (vtot & 0xffff) + 1;
8724 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8725 mode->vsync_start = (vsync & 0xffff) + 1;
8726 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8727
8728 drm_mode_set_name(mode);
79e53945
JB
8729
8730 return mode;
8731}
8732
cc36513c
DV
8733static void intel_increase_pllclock(struct drm_device *dev,
8734 enum pipe pipe)
652c393a 8735{
fbee40df 8736 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8737 int dpll_reg = DPLL(pipe);
8738 int dpll;
652c393a 8739
bad720ff 8740 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8741 return;
8742
8743 if (!dev_priv->lvds_downclock_avail)
8744 return;
8745
dbdc6479 8746 dpll = I915_READ(dpll_reg);
652c393a 8747 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8748 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8749
8ac5a6d5 8750 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8751
8752 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8753 I915_WRITE(dpll_reg, dpll);
9d0498a2 8754 intel_wait_for_vblank(dev, pipe);
dbdc6479 8755
652c393a
JB
8756 dpll = I915_READ(dpll_reg);
8757 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8758 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8759 }
652c393a
JB
8760}
8761
8762static void intel_decrease_pllclock(struct drm_crtc *crtc)
8763{
8764 struct drm_device *dev = crtc->dev;
fbee40df 8765 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8767
bad720ff 8768 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8769 return;
8770
8771 if (!dev_priv->lvds_downclock_avail)
8772 return;
8773
8774 /*
8775 * Since this is called by a timer, we should never get here in
8776 * the manual case.
8777 */
8778 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8779 int pipe = intel_crtc->pipe;
8780 int dpll_reg = DPLL(pipe);
8781 int dpll;
f6e5b160 8782
44d98a61 8783 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8784
8ac5a6d5 8785 assert_panel_unlocked(dev_priv, pipe);
652c393a 8786
dc257cf1 8787 dpll = I915_READ(dpll_reg);
652c393a
JB
8788 dpll |= DISPLAY_RATE_SELECT_FPA1;
8789 I915_WRITE(dpll_reg, dpll);
9d0498a2 8790 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8791 dpll = I915_READ(dpll_reg);
8792 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8793 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8794 }
8795
8796}
8797
f047e395
CW
8798void intel_mark_busy(struct drm_device *dev)
8799{
c67a470b
PZ
8800 struct drm_i915_private *dev_priv = dev->dev_private;
8801
f62a0076
CW
8802 if (dev_priv->mm.busy)
8803 return;
8804
43694d69 8805 intel_runtime_pm_get(dev_priv);
c67a470b 8806 i915_update_gfx_val(dev_priv);
f62a0076 8807 dev_priv->mm.busy = true;
f047e395
CW
8808}
8809
8810void intel_mark_idle(struct drm_device *dev)
652c393a 8811{
c67a470b 8812 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8813 struct drm_crtc *crtc;
652c393a 8814
f62a0076
CW
8815 if (!dev_priv->mm.busy)
8816 return;
8817
8818 dev_priv->mm.busy = false;
8819
d330a953 8820 if (!i915.powersave)
bb4cdd53 8821 goto out;
652c393a 8822
70e1e0ec 8823 for_each_crtc(dev, crtc) {
f4510a27 8824 if (!crtc->primary->fb)
652c393a
JB
8825 continue;
8826
725a5b54 8827 intel_decrease_pllclock(crtc);
652c393a 8828 }
b29c19b6 8829
3d13ef2e 8830 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8831 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8832
8833out:
43694d69 8834 intel_runtime_pm_put(dev_priv);
652c393a
JB
8835}
8836
7c8f8a70 8837
f99d7069
DV
8838/**
8839 * intel_mark_fb_busy - mark given planes as busy
8840 * @dev: DRM device
8841 * @frontbuffer_bits: bits for the affected planes
8842 * @ring: optional ring for asynchronous commands
8843 *
8844 * This function gets called every time the screen contents change. It can be
8845 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8846 */
8847static void intel_mark_fb_busy(struct drm_device *dev,
8848 unsigned frontbuffer_bits,
8849 struct intel_engine_cs *ring)
652c393a 8850{
cc36513c 8851 enum pipe pipe;
652c393a 8852
d330a953 8853 if (!i915.powersave)
acb87dfb
CW
8854 return;
8855
cc36513c 8856 for_each_pipe(pipe) {
f99d7069 8857 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8858 continue;
8859
cc36513c 8860 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8861 if (ring && intel_fbc_enabled(dev))
8862 ring->fbc_dirty = true;
652c393a
JB
8863 }
8864}
8865
f99d7069
DV
8866/**
8867 * intel_fb_obj_invalidate - invalidate frontbuffer object
8868 * @obj: GEM object to invalidate
8869 * @ring: set for asynchronous rendering
8870 *
8871 * This function gets called every time rendering on the given object starts and
8872 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8873 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8874 * until the rendering completes or a flip on this frontbuffer plane is
8875 * scheduled.
8876 */
8877void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8878 struct intel_engine_cs *ring)
8879{
8880 struct drm_device *dev = obj->base.dev;
8881 struct drm_i915_private *dev_priv = dev->dev_private;
8882
8883 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8884
8885 if (!obj->frontbuffer_bits)
8886 return;
8887
8888 if (ring) {
8889 mutex_lock(&dev_priv->fb_tracking.lock);
8890 dev_priv->fb_tracking.busy_bits
8891 |= obj->frontbuffer_bits;
8892 dev_priv->fb_tracking.flip_bits
8893 &= ~obj->frontbuffer_bits;
8894 mutex_unlock(&dev_priv->fb_tracking.lock);
8895 }
8896
8897 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8898
8899 intel_edp_psr_exit(dev);
8900}
8901
8902/**
8903 * intel_frontbuffer_flush - flush frontbuffer
8904 * @dev: DRM device
8905 * @frontbuffer_bits: frontbuffer plane tracking bits
8906 *
8907 * This function gets called every time rendering on the given planes has
8908 * completed and frontbuffer caching can be started again. Flushes will get
8909 * delayed if they're blocked by some oustanding asynchronous rendering.
8910 *
8911 * Can be called without any locks held.
8912 */
8913void intel_frontbuffer_flush(struct drm_device *dev,
8914 unsigned frontbuffer_bits)
8915{
8916 struct drm_i915_private *dev_priv = dev->dev_private;
8917
8918 /* Delay flushing when rings are still busy.*/
8919 mutex_lock(&dev_priv->fb_tracking.lock);
8920 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8921 mutex_unlock(&dev_priv->fb_tracking.lock);
8922
8923 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8924
8925 intel_edp_psr_exit(dev);
8926}
8927
8928/**
8929 * intel_fb_obj_flush - flush frontbuffer object
8930 * @obj: GEM object to flush
8931 * @retire: set when retiring asynchronous rendering
8932 *
8933 * This function gets called every time rendering on the given object has
8934 * completed and frontbuffer caching can be started again. If @retire is true
8935 * then any delayed flushes will be unblocked.
8936 */
8937void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8938 bool retire)
8939{
8940 struct drm_device *dev = obj->base.dev;
8941 struct drm_i915_private *dev_priv = dev->dev_private;
8942 unsigned frontbuffer_bits;
8943
8944 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8945
8946 if (!obj->frontbuffer_bits)
8947 return;
8948
8949 frontbuffer_bits = obj->frontbuffer_bits;
8950
8951 if (retire) {
8952 mutex_lock(&dev_priv->fb_tracking.lock);
8953 /* Filter out new bits since rendering started. */
8954 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
8955
8956 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
8957 mutex_unlock(&dev_priv->fb_tracking.lock);
8958 }
8959
8960 intel_frontbuffer_flush(dev, frontbuffer_bits);
8961}
8962
8963/**
8964 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
8965 * @dev: DRM device
8966 * @frontbuffer_bits: frontbuffer plane tracking bits
8967 *
8968 * This function gets called after scheduling a flip on @obj. The actual
8969 * frontbuffer flushing will be delayed until completion is signalled with
8970 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
8971 * flush will be cancelled.
8972 *
8973 * Can be called without any locks held.
8974 */
8975void intel_frontbuffer_flip_prepare(struct drm_device *dev,
8976 unsigned frontbuffer_bits)
8977{
8978 struct drm_i915_private *dev_priv = dev->dev_private;
8979
8980 mutex_lock(&dev_priv->fb_tracking.lock);
8981 dev_priv->fb_tracking.flip_bits
8982 |= frontbuffer_bits;
8983 mutex_unlock(&dev_priv->fb_tracking.lock);
8984}
8985
8986/**
8987 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
8988 * @dev: DRM device
8989 * @frontbuffer_bits: frontbuffer plane tracking bits
8990 *
8991 * This function gets called after the flip has been latched and will complete
8992 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
8993 *
8994 * Can be called without any locks held.
8995 */
8996void intel_frontbuffer_flip_complete(struct drm_device *dev,
8997 unsigned frontbuffer_bits)
8998{
8999 struct drm_i915_private *dev_priv = dev->dev_private;
9000
9001 mutex_lock(&dev_priv->fb_tracking.lock);
9002 /* Mask any cancelled flips. */
9003 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9004 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9005 mutex_unlock(&dev_priv->fb_tracking.lock);
9006
9007 intel_frontbuffer_flush(dev, frontbuffer_bits);
9008}
9009
79e53945
JB
9010static void intel_crtc_destroy(struct drm_crtc *crtc)
9011{
9012 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9013 struct drm_device *dev = crtc->dev;
9014 struct intel_unpin_work *work;
9015 unsigned long flags;
9016
9017 spin_lock_irqsave(&dev->event_lock, flags);
9018 work = intel_crtc->unpin_work;
9019 intel_crtc->unpin_work = NULL;
9020 spin_unlock_irqrestore(&dev->event_lock, flags);
9021
9022 if (work) {
9023 cancel_work_sync(&work->work);
9024 kfree(work);
9025 }
79e53945
JB
9026
9027 drm_crtc_cleanup(crtc);
67e77c5a 9028
79e53945
JB
9029 kfree(intel_crtc);
9030}
9031
6b95a207
KH
9032static void intel_unpin_work_fn(struct work_struct *__work)
9033{
9034 struct intel_unpin_work *work =
9035 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9036 struct drm_device *dev = work->crtc->dev;
f99d7069 9037 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9038
b4a98e57 9039 mutex_lock(&dev->struct_mutex);
1690e1eb 9040 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9041 drm_gem_object_unreference(&work->pending_flip_obj->base);
9042 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9043
b4a98e57
CW
9044 intel_update_fbc(dev);
9045 mutex_unlock(&dev->struct_mutex);
9046
f99d7069
DV
9047 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9048
b4a98e57
CW
9049 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9050 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9051
6b95a207
KH
9052 kfree(work);
9053}
9054
1afe3e9d 9055static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9056 struct drm_crtc *crtc)
6b95a207 9057{
fbee40df 9058 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9059 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9060 struct intel_unpin_work *work;
6b95a207
KH
9061 unsigned long flags;
9062
9063 /* Ignore early vblank irqs */
9064 if (intel_crtc == NULL)
9065 return;
9066
9067 spin_lock_irqsave(&dev->event_lock, flags);
9068 work = intel_crtc->unpin_work;
e7d841ca
CW
9069
9070 /* Ensure we don't miss a work->pending update ... */
9071 smp_rmb();
9072
9073 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9074 spin_unlock_irqrestore(&dev->event_lock, flags);
9075 return;
9076 }
9077
e7d841ca
CW
9078 /* and that the unpin work is consistent wrt ->pending. */
9079 smp_rmb();
9080
6b95a207 9081 intel_crtc->unpin_work = NULL;
6b95a207 9082
45a066eb
RC
9083 if (work->event)
9084 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9085
87b6b101 9086 drm_crtc_vblank_put(crtc);
0af7e4df 9087
6b95a207
KH
9088 spin_unlock_irqrestore(&dev->event_lock, flags);
9089
2c10d571 9090 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9091
9092 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9093
9094 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9095}
9096
1afe3e9d
JB
9097void intel_finish_page_flip(struct drm_device *dev, int pipe)
9098{
fbee40df 9099 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9100 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9101
49b14a5c 9102 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9103}
9104
9105void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9106{
fbee40df 9107 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9108 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9109
49b14a5c 9110 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9111}
9112
75f7f3ec
VS
9113/* Is 'a' after or equal to 'b'? */
9114static bool g4x_flip_count_after_eq(u32 a, u32 b)
9115{
9116 return !((a - b) & 0x80000000);
9117}
9118
9119static bool page_flip_finished(struct intel_crtc *crtc)
9120{
9121 struct drm_device *dev = crtc->base.dev;
9122 struct drm_i915_private *dev_priv = dev->dev_private;
9123
9124 /*
9125 * The relevant registers doen't exist on pre-ctg.
9126 * As the flip done interrupt doesn't trigger for mmio
9127 * flips on gmch platforms, a flip count check isn't
9128 * really needed there. But since ctg has the registers,
9129 * include it in the check anyway.
9130 */
9131 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9132 return true;
9133
9134 /*
9135 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9136 * used the same base address. In that case the mmio flip might
9137 * have completed, but the CS hasn't even executed the flip yet.
9138 *
9139 * A flip count check isn't enough as the CS might have updated
9140 * the base address just after start of vblank, but before we
9141 * managed to process the interrupt. This means we'd complete the
9142 * CS flip too soon.
9143 *
9144 * Combining both checks should get us a good enough result. It may
9145 * still happen that the CS flip has been executed, but has not
9146 * yet actually completed. But in case the base address is the same
9147 * anyway, we don't really care.
9148 */
9149 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9150 crtc->unpin_work->gtt_offset &&
9151 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9152 crtc->unpin_work->flip_count);
9153}
9154
6b95a207
KH
9155void intel_prepare_page_flip(struct drm_device *dev, int plane)
9156{
fbee40df 9157 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9158 struct intel_crtc *intel_crtc =
9159 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9160 unsigned long flags;
9161
e7d841ca
CW
9162 /* NB: An MMIO update of the plane base pointer will also
9163 * generate a page-flip completion irq, i.e. every modeset
9164 * is also accompanied by a spurious intel_prepare_page_flip().
9165 */
6b95a207 9166 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9167 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9168 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9169 spin_unlock_irqrestore(&dev->event_lock, flags);
9170}
9171
eba905b2 9172static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9173{
9174 /* Ensure that the work item is consistent when activating it ... */
9175 smp_wmb();
9176 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9177 /* and that it is marked active as soon as the irq could fire. */
9178 smp_wmb();
9179}
9180
8c9f3aaf
JB
9181static int intel_gen2_queue_flip(struct drm_device *dev,
9182 struct drm_crtc *crtc,
9183 struct drm_framebuffer *fb,
ed8d1975 9184 struct drm_i915_gem_object *obj,
a4872ba6 9185 struct intel_engine_cs *ring,
ed8d1975 9186 uint32_t flags)
8c9f3aaf 9187{
8c9f3aaf 9188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9189 u32 flip_mask;
9190 int ret;
9191
6d90c952 9192 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9193 if (ret)
4fa62c89 9194 return ret;
8c9f3aaf
JB
9195
9196 /* Can't queue multiple flips, so wait for the previous
9197 * one to finish before executing the next.
9198 */
9199 if (intel_crtc->plane)
9200 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9201 else
9202 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9203 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9204 intel_ring_emit(ring, MI_NOOP);
9205 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9206 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9207 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9208 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9209 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9210
9211 intel_mark_page_flip_active(intel_crtc);
09246732 9212 __intel_ring_advance(ring);
83d4092b 9213 return 0;
8c9f3aaf
JB
9214}
9215
9216static int intel_gen3_queue_flip(struct drm_device *dev,
9217 struct drm_crtc *crtc,
9218 struct drm_framebuffer *fb,
ed8d1975 9219 struct drm_i915_gem_object *obj,
a4872ba6 9220 struct intel_engine_cs *ring,
ed8d1975 9221 uint32_t flags)
8c9f3aaf 9222{
8c9f3aaf 9223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9224 u32 flip_mask;
9225 int ret;
9226
6d90c952 9227 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9228 if (ret)
4fa62c89 9229 return ret;
8c9f3aaf
JB
9230
9231 if (intel_crtc->plane)
9232 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9233 else
9234 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9235 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9236 intel_ring_emit(ring, MI_NOOP);
9237 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9238 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9239 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9240 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9241 intel_ring_emit(ring, MI_NOOP);
9242
e7d841ca 9243 intel_mark_page_flip_active(intel_crtc);
09246732 9244 __intel_ring_advance(ring);
83d4092b 9245 return 0;
8c9f3aaf
JB
9246}
9247
9248static int intel_gen4_queue_flip(struct drm_device *dev,
9249 struct drm_crtc *crtc,
9250 struct drm_framebuffer *fb,
ed8d1975 9251 struct drm_i915_gem_object *obj,
a4872ba6 9252 struct intel_engine_cs *ring,
ed8d1975 9253 uint32_t flags)
8c9f3aaf
JB
9254{
9255 struct drm_i915_private *dev_priv = dev->dev_private;
9256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9257 uint32_t pf, pipesrc;
9258 int ret;
9259
6d90c952 9260 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9261 if (ret)
4fa62c89 9262 return ret;
8c9f3aaf
JB
9263
9264 /* i965+ uses the linear or tiled offsets from the
9265 * Display Registers (which do not change across a page-flip)
9266 * so we need only reprogram the base address.
9267 */
6d90c952
DV
9268 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9269 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9270 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9271 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9272 obj->tiling_mode);
8c9f3aaf
JB
9273
9274 /* XXX Enabling the panel-fitter across page-flip is so far
9275 * untested on non-native modes, so ignore it for now.
9276 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9277 */
9278 pf = 0;
9279 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9280 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9281
9282 intel_mark_page_flip_active(intel_crtc);
09246732 9283 __intel_ring_advance(ring);
83d4092b 9284 return 0;
8c9f3aaf
JB
9285}
9286
9287static int intel_gen6_queue_flip(struct drm_device *dev,
9288 struct drm_crtc *crtc,
9289 struct drm_framebuffer *fb,
ed8d1975 9290 struct drm_i915_gem_object *obj,
a4872ba6 9291 struct intel_engine_cs *ring,
ed8d1975 9292 uint32_t flags)
8c9f3aaf
JB
9293{
9294 struct drm_i915_private *dev_priv = dev->dev_private;
9295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9296 uint32_t pf, pipesrc;
9297 int ret;
9298
6d90c952 9299 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9300 if (ret)
4fa62c89 9301 return ret;
8c9f3aaf 9302
6d90c952
DV
9303 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9304 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9305 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9306 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9307
dc257cf1
DV
9308 /* Contrary to the suggestions in the documentation,
9309 * "Enable Panel Fitter" does not seem to be required when page
9310 * flipping with a non-native mode, and worse causes a normal
9311 * modeset to fail.
9312 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9313 */
9314 pf = 0;
8c9f3aaf 9315 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9316 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9317
9318 intel_mark_page_flip_active(intel_crtc);
09246732 9319 __intel_ring_advance(ring);
83d4092b 9320 return 0;
8c9f3aaf
JB
9321}
9322
7c9017e5
JB
9323static int intel_gen7_queue_flip(struct drm_device *dev,
9324 struct drm_crtc *crtc,
9325 struct drm_framebuffer *fb,
ed8d1975 9326 struct drm_i915_gem_object *obj,
a4872ba6 9327 struct intel_engine_cs *ring,
ed8d1975 9328 uint32_t flags)
7c9017e5 9329{
7c9017e5 9330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9331 uint32_t plane_bit = 0;
ffe74d75
CW
9332 int len, ret;
9333
eba905b2 9334 switch (intel_crtc->plane) {
cb05d8de
DV
9335 case PLANE_A:
9336 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9337 break;
9338 case PLANE_B:
9339 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9340 break;
9341 case PLANE_C:
9342 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9343 break;
9344 default:
9345 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9346 return -ENODEV;
cb05d8de
DV
9347 }
9348
ffe74d75 9349 len = 4;
f476828a 9350 if (ring->id == RCS) {
ffe74d75 9351 len += 6;
f476828a
DL
9352 /*
9353 * On Gen 8, SRM is now taking an extra dword to accommodate
9354 * 48bits addresses, and we need a NOOP for the batch size to
9355 * stay even.
9356 */
9357 if (IS_GEN8(dev))
9358 len += 2;
9359 }
ffe74d75 9360
f66fab8e
VS
9361 /*
9362 * BSpec MI_DISPLAY_FLIP for IVB:
9363 * "The full packet must be contained within the same cache line."
9364 *
9365 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9366 * cacheline, if we ever start emitting more commands before
9367 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9368 * then do the cacheline alignment, and finally emit the
9369 * MI_DISPLAY_FLIP.
9370 */
9371 ret = intel_ring_cacheline_align(ring);
9372 if (ret)
4fa62c89 9373 return ret;
f66fab8e 9374
ffe74d75 9375 ret = intel_ring_begin(ring, len);
7c9017e5 9376 if (ret)
4fa62c89 9377 return ret;
7c9017e5 9378
ffe74d75
CW
9379 /* Unmask the flip-done completion message. Note that the bspec says that
9380 * we should do this for both the BCS and RCS, and that we must not unmask
9381 * more than one flip event at any time (or ensure that one flip message
9382 * can be sent by waiting for flip-done prior to queueing new flips).
9383 * Experimentation says that BCS works despite DERRMR masking all
9384 * flip-done completion events and that unmasking all planes at once
9385 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9386 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9387 */
9388 if (ring->id == RCS) {
9389 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9390 intel_ring_emit(ring, DERRMR);
9391 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9392 DERRMR_PIPEB_PRI_FLIP_DONE |
9393 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9394 if (IS_GEN8(dev))
9395 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9396 MI_SRM_LRM_GLOBAL_GTT);
9397 else
9398 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9399 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9400 intel_ring_emit(ring, DERRMR);
9401 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9402 if (IS_GEN8(dev)) {
9403 intel_ring_emit(ring, 0);
9404 intel_ring_emit(ring, MI_NOOP);
9405 }
ffe74d75
CW
9406 }
9407
cb05d8de 9408 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9409 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9410 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9411 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9412
9413 intel_mark_page_flip_active(intel_crtc);
09246732 9414 __intel_ring_advance(ring);
83d4092b 9415 return 0;
7c9017e5
JB
9416}
9417
84c33a64
SG
9418static bool use_mmio_flip(struct intel_engine_cs *ring,
9419 struct drm_i915_gem_object *obj)
9420{
9421 /*
9422 * This is not being used for older platforms, because
9423 * non-availability of flip done interrupt forces us to use
9424 * CS flips. Older platforms derive flip done using some clever
9425 * tricks involving the flip_pending status bits and vblank irqs.
9426 * So using MMIO flips there would disrupt this mechanism.
9427 */
9428
8e09bf83
CW
9429 if (ring == NULL)
9430 return true;
9431
84c33a64
SG
9432 if (INTEL_INFO(ring->dev)->gen < 5)
9433 return false;
9434
9435 if (i915.use_mmio_flip < 0)
9436 return false;
9437 else if (i915.use_mmio_flip > 0)
9438 return true;
9439 else
9440 return ring != obj->ring;
9441}
9442
9443static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9444{
9445 struct drm_device *dev = intel_crtc->base.dev;
9446 struct drm_i915_private *dev_priv = dev->dev_private;
9447 struct intel_framebuffer *intel_fb =
9448 to_intel_framebuffer(intel_crtc->base.primary->fb);
9449 struct drm_i915_gem_object *obj = intel_fb->obj;
9450 u32 dspcntr;
9451 u32 reg;
9452
9453 intel_mark_page_flip_active(intel_crtc);
9454
9455 reg = DSPCNTR(intel_crtc->plane);
9456 dspcntr = I915_READ(reg);
9457
9458 if (INTEL_INFO(dev)->gen >= 4) {
9459 if (obj->tiling_mode != I915_TILING_NONE)
9460 dspcntr |= DISPPLANE_TILED;
9461 else
9462 dspcntr &= ~DISPPLANE_TILED;
9463 }
9464 I915_WRITE(reg, dspcntr);
9465
9466 I915_WRITE(DSPSURF(intel_crtc->plane),
9467 intel_crtc->unpin_work->gtt_offset);
9468 POSTING_READ(DSPSURF(intel_crtc->plane));
9469}
9470
9471static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9472{
9473 struct intel_engine_cs *ring;
9474 int ret;
9475
9476 lockdep_assert_held(&obj->base.dev->struct_mutex);
9477
9478 if (!obj->last_write_seqno)
9479 return 0;
9480
9481 ring = obj->ring;
9482
9483 if (i915_seqno_passed(ring->get_seqno(ring, true),
9484 obj->last_write_seqno))
9485 return 0;
9486
9487 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9488 if (ret)
9489 return ret;
9490
9491 if (WARN_ON(!ring->irq_get(ring)))
9492 return 0;
9493
9494 return 1;
9495}
9496
9497void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9498{
9499 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9500 struct intel_crtc *intel_crtc;
9501 unsigned long irq_flags;
9502 u32 seqno;
9503
9504 seqno = ring->get_seqno(ring, false);
9505
9506 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9507 for_each_intel_crtc(ring->dev, intel_crtc) {
9508 struct intel_mmio_flip *mmio_flip;
9509
9510 mmio_flip = &intel_crtc->mmio_flip;
9511 if (mmio_flip->seqno == 0)
9512 continue;
9513
9514 if (ring->id != mmio_flip->ring_id)
9515 continue;
9516
9517 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9518 intel_do_mmio_flip(intel_crtc);
9519 mmio_flip->seqno = 0;
9520 ring->irq_put(ring);
9521 }
9522 }
9523 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9524}
9525
9526static int intel_queue_mmio_flip(struct drm_device *dev,
9527 struct drm_crtc *crtc,
9528 struct drm_framebuffer *fb,
9529 struct drm_i915_gem_object *obj,
9530 struct intel_engine_cs *ring,
9531 uint32_t flags)
9532{
9533 struct drm_i915_private *dev_priv = dev->dev_private;
9534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9535 unsigned long irq_flags;
9536 int ret;
9537
9538 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9539 return -EBUSY;
9540
9541 ret = intel_postpone_flip(obj);
9542 if (ret < 0)
9543 return ret;
9544 if (ret == 0) {
9545 intel_do_mmio_flip(intel_crtc);
9546 return 0;
9547 }
9548
9549 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9550 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9551 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9552 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9553
9554 /*
9555 * Double check to catch cases where irq fired before
9556 * mmio flip data was ready
9557 */
9558 intel_notify_mmio_flip(obj->ring);
9559 return 0;
9560}
9561
8c9f3aaf
JB
9562static int intel_default_queue_flip(struct drm_device *dev,
9563 struct drm_crtc *crtc,
9564 struct drm_framebuffer *fb,
ed8d1975 9565 struct drm_i915_gem_object *obj,
a4872ba6 9566 struct intel_engine_cs *ring,
ed8d1975 9567 uint32_t flags)
8c9f3aaf
JB
9568{
9569 return -ENODEV;
9570}
9571
6b95a207
KH
9572static int intel_crtc_page_flip(struct drm_crtc *crtc,
9573 struct drm_framebuffer *fb,
ed8d1975
KP
9574 struct drm_pending_vblank_event *event,
9575 uint32_t page_flip_flags)
6b95a207
KH
9576{
9577 struct drm_device *dev = crtc->dev;
9578 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9579 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9580 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9582 enum pipe pipe = intel_crtc->pipe;
6b95a207 9583 struct intel_unpin_work *work;
a4872ba6 9584 struct intel_engine_cs *ring;
8c9f3aaf 9585 unsigned long flags;
52e68630 9586 int ret;
6b95a207 9587
2ff8fde1
MR
9588 /*
9589 * drm_mode_page_flip_ioctl() should already catch this, but double
9590 * check to be safe. In the future we may enable pageflipping from
9591 * a disabled primary plane.
9592 */
9593 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9594 return -EBUSY;
9595
e6a595d2 9596 /* Can't change pixel format via MI display flips. */
f4510a27 9597 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9598 return -EINVAL;
9599
9600 /*
9601 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9602 * Note that pitch changes could also affect these register.
9603 */
9604 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9605 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9606 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9607 return -EINVAL;
9608
f900db47
CW
9609 if (i915_terminally_wedged(&dev_priv->gpu_error))
9610 goto out_hang;
9611
b14c5679 9612 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9613 if (work == NULL)
9614 return -ENOMEM;
9615
6b95a207 9616 work->event = event;
b4a98e57 9617 work->crtc = crtc;
2ff8fde1 9618 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9619 INIT_WORK(&work->work, intel_unpin_work_fn);
9620
87b6b101 9621 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9622 if (ret)
9623 goto free_work;
9624
6b95a207
KH
9625 /* We borrow the event spin lock for protecting unpin_work */
9626 spin_lock_irqsave(&dev->event_lock, flags);
9627 if (intel_crtc->unpin_work) {
9628 spin_unlock_irqrestore(&dev->event_lock, flags);
9629 kfree(work);
87b6b101 9630 drm_crtc_vblank_put(crtc);
468f0b44
CW
9631
9632 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9633 return -EBUSY;
9634 }
9635 intel_crtc->unpin_work = work;
9636 spin_unlock_irqrestore(&dev->event_lock, flags);
9637
b4a98e57
CW
9638 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9639 flush_workqueue(dev_priv->wq);
9640
79158103
CW
9641 ret = i915_mutex_lock_interruptible(dev);
9642 if (ret)
9643 goto cleanup;
6b95a207 9644
75dfca80 9645 /* Reference the objects for the scheduled work. */
05394f39
CW
9646 drm_gem_object_reference(&work->old_fb_obj->base);
9647 drm_gem_object_reference(&obj->base);
6b95a207 9648
f4510a27 9649 crtc->primary->fb = fb;
96b099fd 9650
e1f99ce6 9651 work->pending_flip_obj = obj;
e1f99ce6 9652
4e5359cd
SF
9653 work->enable_stall_check = true;
9654
b4a98e57 9655 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9656 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9657
75f7f3ec 9658 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9659 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9660
4fa62c89
VS
9661 if (IS_VALLEYVIEW(dev)) {
9662 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9663 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9664 /* vlv: DISPLAY_FLIP fails to change tiling */
9665 ring = NULL;
2a92d5bc
CW
9666 } else if (IS_IVYBRIDGE(dev)) {
9667 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9668 } else if (INTEL_INFO(dev)->gen >= 7) {
9669 ring = obj->ring;
9670 if (ring == NULL || ring->id != RCS)
9671 ring = &dev_priv->ring[BCS];
9672 } else {
9673 ring = &dev_priv->ring[RCS];
9674 }
9675
9676 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9677 if (ret)
9678 goto cleanup_pending;
6b95a207 9679
4fa62c89
VS
9680 work->gtt_offset =
9681 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9682
84c33a64
SG
9683 if (use_mmio_flip(ring, obj))
9684 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9685 page_flip_flags);
9686 else
9687 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9688 page_flip_flags);
4fa62c89
VS
9689 if (ret)
9690 goto cleanup_unpin;
9691
a071fa00
DV
9692 i915_gem_track_fb(work->old_fb_obj, obj,
9693 INTEL_FRONTBUFFER_PRIMARY(pipe));
9694
7782de3b 9695 intel_disable_fbc(dev);
f99d7069 9696 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9697 mutex_unlock(&dev->struct_mutex);
9698
e5510fac
JB
9699 trace_i915_flip_request(intel_crtc->plane, obj);
9700
6b95a207 9701 return 0;
96b099fd 9702
4fa62c89
VS
9703cleanup_unpin:
9704 intel_unpin_fb_obj(obj);
8c9f3aaf 9705cleanup_pending:
b4a98e57 9706 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9707 crtc->primary->fb = old_fb;
05394f39
CW
9708 drm_gem_object_unreference(&work->old_fb_obj->base);
9709 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9710 mutex_unlock(&dev->struct_mutex);
9711
79158103 9712cleanup:
96b099fd
CW
9713 spin_lock_irqsave(&dev->event_lock, flags);
9714 intel_crtc->unpin_work = NULL;
9715 spin_unlock_irqrestore(&dev->event_lock, flags);
9716
87b6b101 9717 drm_crtc_vblank_put(crtc);
7317c75e 9718free_work:
96b099fd
CW
9719 kfree(work);
9720
f900db47
CW
9721 if (ret == -EIO) {
9722out_hang:
9723 intel_crtc_wait_for_pending_flips(crtc);
9724 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9725 if (ret == 0 && event)
a071fa00 9726 drm_send_vblank_event(dev, pipe, event);
f900db47 9727 }
96b099fd 9728 return ret;
6b95a207
KH
9729}
9730
f6e5b160 9731static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9732 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9733 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9734};
9735
9a935856
DV
9736/**
9737 * intel_modeset_update_staged_output_state
9738 *
9739 * Updates the staged output configuration state, e.g. after we've read out the
9740 * current hw state.
9741 */
9742static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9743{
7668851f 9744 struct intel_crtc *crtc;
9a935856
DV
9745 struct intel_encoder *encoder;
9746 struct intel_connector *connector;
f6e5b160 9747
9a935856
DV
9748 list_for_each_entry(connector, &dev->mode_config.connector_list,
9749 base.head) {
9750 connector->new_encoder =
9751 to_intel_encoder(connector->base.encoder);
9752 }
f6e5b160 9753
9a935856
DV
9754 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9755 base.head) {
9756 encoder->new_crtc =
9757 to_intel_crtc(encoder->base.crtc);
9758 }
7668851f 9759
d3fcc808 9760 for_each_intel_crtc(dev, crtc) {
7668851f 9761 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9762
9763 if (crtc->new_enabled)
9764 crtc->new_config = &crtc->config;
9765 else
9766 crtc->new_config = NULL;
7668851f 9767 }
f6e5b160
CW
9768}
9769
9a935856
DV
9770/**
9771 * intel_modeset_commit_output_state
9772 *
9773 * This function copies the stage display pipe configuration to the real one.
9774 */
9775static void intel_modeset_commit_output_state(struct drm_device *dev)
9776{
7668851f 9777 struct intel_crtc *crtc;
9a935856
DV
9778 struct intel_encoder *encoder;
9779 struct intel_connector *connector;
f6e5b160 9780
9a935856
DV
9781 list_for_each_entry(connector, &dev->mode_config.connector_list,
9782 base.head) {
9783 connector->base.encoder = &connector->new_encoder->base;
9784 }
f6e5b160 9785
9a935856
DV
9786 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9787 base.head) {
9788 encoder->base.crtc = &encoder->new_crtc->base;
9789 }
7668851f 9790
d3fcc808 9791 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9792 crtc->base.enabled = crtc->new_enabled;
9793 }
9a935856
DV
9794}
9795
050f7aeb 9796static void
eba905b2 9797connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9798 struct intel_crtc_config *pipe_config)
9799{
9800 int bpp = pipe_config->pipe_bpp;
9801
9802 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9803 connector->base.base.id,
c23cc417 9804 connector->base.name);
050f7aeb
DV
9805
9806 /* Don't use an invalid EDID bpc value */
9807 if (connector->base.display_info.bpc &&
9808 connector->base.display_info.bpc * 3 < bpp) {
9809 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9810 bpp, connector->base.display_info.bpc*3);
9811 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9812 }
9813
9814 /* Clamp bpp to 8 on screens without EDID 1.4 */
9815 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9816 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9817 bpp);
9818 pipe_config->pipe_bpp = 24;
9819 }
9820}
9821
4e53c2e0 9822static int
050f7aeb
DV
9823compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9824 struct drm_framebuffer *fb,
9825 struct intel_crtc_config *pipe_config)
4e53c2e0 9826{
050f7aeb
DV
9827 struct drm_device *dev = crtc->base.dev;
9828 struct intel_connector *connector;
4e53c2e0
DV
9829 int bpp;
9830
d42264b1
DV
9831 switch (fb->pixel_format) {
9832 case DRM_FORMAT_C8:
4e53c2e0
DV
9833 bpp = 8*3; /* since we go through a colormap */
9834 break;
d42264b1
DV
9835 case DRM_FORMAT_XRGB1555:
9836 case DRM_FORMAT_ARGB1555:
9837 /* checked in intel_framebuffer_init already */
9838 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9839 return -EINVAL;
9840 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9841 bpp = 6*3; /* min is 18bpp */
9842 break;
d42264b1
DV
9843 case DRM_FORMAT_XBGR8888:
9844 case DRM_FORMAT_ABGR8888:
9845 /* checked in intel_framebuffer_init already */
9846 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9847 return -EINVAL;
9848 case DRM_FORMAT_XRGB8888:
9849 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9850 bpp = 8*3;
9851 break;
d42264b1
DV
9852 case DRM_FORMAT_XRGB2101010:
9853 case DRM_FORMAT_ARGB2101010:
9854 case DRM_FORMAT_XBGR2101010:
9855 case DRM_FORMAT_ABGR2101010:
9856 /* checked in intel_framebuffer_init already */
9857 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9858 return -EINVAL;
4e53c2e0
DV
9859 bpp = 10*3;
9860 break;
baba133a 9861 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9862 default:
9863 DRM_DEBUG_KMS("unsupported depth\n");
9864 return -EINVAL;
9865 }
9866
4e53c2e0
DV
9867 pipe_config->pipe_bpp = bpp;
9868
9869 /* Clamp display bpp to EDID value */
9870 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9871 base.head) {
1b829e05
DV
9872 if (!connector->new_encoder ||
9873 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9874 continue;
9875
050f7aeb 9876 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9877 }
9878
9879 return bpp;
9880}
9881
644db711
DV
9882static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9883{
9884 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9885 "type: 0x%x flags: 0x%x\n",
1342830c 9886 mode->crtc_clock,
644db711
DV
9887 mode->crtc_hdisplay, mode->crtc_hsync_start,
9888 mode->crtc_hsync_end, mode->crtc_htotal,
9889 mode->crtc_vdisplay, mode->crtc_vsync_start,
9890 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9891}
9892
c0b03411
DV
9893static void intel_dump_pipe_config(struct intel_crtc *crtc,
9894 struct intel_crtc_config *pipe_config,
9895 const char *context)
9896{
9897 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9898 context, pipe_name(crtc->pipe));
9899
9900 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9901 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9902 pipe_config->pipe_bpp, pipe_config->dither);
9903 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9904 pipe_config->has_pch_encoder,
9905 pipe_config->fdi_lanes,
9906 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9907 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9908 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9909 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9910 pipe_config->has_dp_encoder,
9911 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9912 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9913 pipe_config->dp_m_n.tu);
c0b03411
DV
9914 DRM_DEBUG_KMS("requested mode:\n");
9915 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9916 DRM_DEBUG_KMS("adjusted mode:\n");
9917 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9918 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9919 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9920 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9921 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9922 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9923 pipe_config->gmch_pfit.control,
9924 pipe_config->gmch_pfit.pgm_ratios,
9925 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9926 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9927 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9928 pipe_config->pch_pfit.size,
9929 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9930 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9931 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9932}
9933
bc079e8b
VS
9934static bool encoders_cloneable(const struct intel_encoder *a,
9935 const struct intel_encoder *b)
accfc0c5 9936{
bc079e8b
VS
9937 /* masks could be asymmetric, so check both ways */
9938 return a == b || (a->cloneable & (1 << b->type) &&
9939 b->cloneable & (1 << a->type));
9940}
9941
9942static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9943 struct intel_encoder *encoder)
9944{
9945 struct drm_device *dev = crtc->base.dev;
9946 struct intel_encoder *source_encoder;
9947
9948 list_for_each_entry(source_encoder,
9949 &dev->mode_config.encoder_list, base.head) {
9950 if (source_encoder->new_crtc != crtc)
9951 continue;
9952
9953 if (!encoders_cloneable(encoder, source_encoder))
9954 return false;
9955 }
9956
9957 return true;
9958}
9959
9960static bool check_encoder_cloning(struct intel_crtc *crtc)
9961{
9962 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
9963 struct intel_encoder *encoder;
9964
bc079e8b
VS
9965 list_for_each_entry(encoder,
9966 &dev->mode_config.encoder_list, base.head) {
9967 if (encoder->new_crtc != crtc)
accfc0c5
DV
9968 continue;
9969
bc079e8b
VS
9970 if (!check_single_encoder_cloning(crtc, encoder))
9971 return false;
accfc0c5
DV
9972 }
9973
bc079e8b 9974 return true;
accfc0c5
DV
9975}
9976
b8cecdf5
DV
9977static struct intel_crtc_config *
9978intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 9979 struct drm_framebuffer *fb,
b8cecdf5 9980 struct drm_display_mode *mode)
ee7b9f93 9981{
7758a113 9982 struct drm_device *dev = crtc->dev;
7758a113 9983 struct intel_encoder *encoder;
b8cecdf5 9984 struct intel_crtc_config *pipe_config;
e29c22c0
DV
9985 int plane_bpp, ret = -EINVAL;
9986 bool retry = true;
ee7b9f93 9987
bc079e8b 9988 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
9989 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9990 return ERR_PTR(-EINVAL);
9991 }
9992
b8cecdf5
DV
9993 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9994 if (!pipe_config)
7758a113
DV
9995 return ERR_PTR(-ENOMEM);
9996
b8cecdf5
DV
9997 drm_mode_copy(&pipe_config->adjusted_mode, mode);
9998 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 9999
e143a21c
DV
10000 pipe_config->cpu_transcoder =
10001 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10002 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10003
2960bc9c
ID
10004 /*
10005 * Sanitize sync polarity flags based on requested ones. If neither
10006 * positive or negative polarity is requested, treat this as meaning
10007 * negative polarity.
10008 */
10009 if (!(pipe_config->adjusted_mode.flags &
10010 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10011 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10012
10013 if (!(pipe_config->adjusted_mode.flags &
10014 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10015 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10016
050f7aeb
DV
10017 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10018 * plane pixel format and any sink constraints into account. Returns the
10019 * source plane bpp so that dithering can be selected on mismatches
10020 * after encoders and crtc also have had their say. */
10021 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10022 fb, pipe_config);
4e53c2e0
DV
10023 if (plane_bpp < 0)
10024 goto fail;
10025
e41a56be
VS
10026 /*
10027 * Determine the real pipe dimensions. Note that stereo modes can
10028 * increase the actual pipe size due to the frame doubling and
10029 * insertion of additional space for blanks between the frame. This
10030 * is stored in the crtc timings. We use the requested mode to do this
10031 * computation to clearly distinguish it from the adjusted mode, which
10032 * can be changed by the connectors in the below retry loop.
10033 */
10034 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10035 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10036 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10037
e29c22c0 10038encoder_retry:
ef1b460d 10039 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10040 pipe_config->port_clock = 0;
ef1b460d 10041 pipe_config->pixel_multiplier = 1;
ff9a6750 10042
135c81b8 10043 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10044 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10045
7758a113
DV
10046 /* Pass our mode to the connectors and the CRTC to give them a chance to
10047 * adjust it according to limitations or connector properties, and also
10048 * a chance to reject the mode entirely.
47f1c6c9 10049 */
7758a113
DV
10050 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10051 base.head) {
47f1c6c9 10052
7758a113
DV
10053 if (&encoder->new_crtc->base != crtc)
10054 continue;
7ae89233 10055
efea6e8e
DV
10056 if (!(encoder->compute_config(encoder, pipe_config))) {
10057 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10058 goto fail;
10059 }
ee7b9f93 10060 }
47f1c6c9 10061
ff9a6750
DV
10062 /* Set default port clock if not overwritten by the encoder. Needs to be
10063 * done afterwards in case the encoder adjusts the mode. */
10064 if (!pipe_config->port_clock)
241bfc38
DL
10065 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10066 * pipe_config->pixel_multiplier;
ff9a6750 10067
a43f6e0f 10068 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10069 if (ret < 0) {
7758a113
DV
10070 DRM_DEBUG_KMS("CRTC fixup failed\n");
10071 goto fail;
ee7b9f93 10072 }
e29c22c0
DV
10073
10074 if (ret == RETRY) {
10075 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10076 ret = -EINVAL;
10077 goto fail;
10078 }
10079
10080 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10081 retry = false;
10082 goto encoder_retry;
10083 }
10084
4e53c2e0
DV
10085 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10086 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10087 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10088
b8cecdf5 10089 return pipe_config;
7758a113 10090fail:
b8cecdf5 10091 kfree(pipe_config);
e29c22c0 10092 return ERR_PTR(ret);
ee7b9f93 10093}
47f1c6c9 10094
e2e1ed41
DV
10095/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10096 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10097static void
10098intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10099 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10100{
10101 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10102 struct drm_device *dev = crtc->dev;
10103 struct intel_encoder *encoder;
10104 struct intel_connector *connector;
10105 struct drm_crtc *tmp_crtc;
79e53945 10106
e2e1ed41 10107 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10108
e2e1ed41
DV
10109 /* Check which crtcs have changed outputs connected to them, these need
10110 * to be part of the prepare_pipes mask. We don't (yet) support global
10111 * modeset across multiple crtcs, so modeset_pipes will only have one
10112 * bit set at most. */
10113 list_for_each_entry(connector, &dev->mode_config.connector_list,
10114 base.head) {
10115 if (connector->base.encoder == &connector->new_encoder->base)
10116 continue;
79e53945 10117
e2e1ed41
DV
10118 if (connector->base.encoder) {
10119 tmp_crtc = connector->base.encoder->crtc;
10120
10121 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10122 }
10123
10124 if (connector->new_encoder)
10125 *prepare_pipes |=
10126 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10127 }
10128
e2e1ed41
DV
10129 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10130 base.head) {
10131 if (encoder->base.crtc == &encoder->new_crtc->base)
10132 continue;
10133
10134 if (encoder->base.crtc) {
10135 tmp_crtc = encoder->base.crtc;
10136
10137 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10138 }
10139
10140 if (encoder->new_crtc)
10141 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10142 }
10143
7668851f 10144 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10145 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10146 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10147 continue;
7e7d76c3 10148
7668851f 10149 if (!intel_crtc->new_enabled)
e2e1ed41 10150 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10151 else
10152 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10153 }
10154
e2e1ed41
DV
10155
10156 /* set_mode is also used to update properties on life display pipes. */
10157 intel_crtc = to_intel_crtc(crtc);
7668851f 10158 if (intel_crtc->new_enabled)
e2e1ed41
DV
10159 *prepare_pipes |= 1 << intel_crtc->pipe;
10160
b6c5164d
DV
10161 /*
10162 * For simplicity do a full modeset on any pipe where the output routing
10163 * changed. We could be more clever, but that would require us to be
10164 * more careful with calling the relevant encoder->mode_set functions.
10165 */
e2e1ed41
DV
10166 if (*prepare_pipes)
10167 *modeset_pipes = *prepare_pipes;
10168
10169 /* ... and mask these out. */
10170 *modeset_pipes &= ~(*disable_pipes);
10171 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10172
10173 /*
10174 * HACK: We don't (yet) fully support global modesets. intel_set_config
10175 * obies this rule, but the modeset restore mode of
10176 * intel_modeset_setup_hw_state does not.
10177 */
10178 *modeset_pipes &= 1 << intel_crtc->pipe;
10179 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10180
10181 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10182 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10183}
79e53945 10184
ea9d758d 10185static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10186{
ea9d758d 10187 struct drm_encoder *encoder;
f6e5b160 10188 struct drm_device *dev = crtc->dev;
f6e5b160 10189
ea9d758d
DV
10190 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10191 if (encoder->crtc == crtc)
10192 return true;
10193
10194 return false;
10195}
10196
10197static void
10198intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10199{
10200 struct intel_encoder *intel_encoder;
10201 struct intel_crtc *intel_crtc;
10202 struct drm_connector *connector;
10203
10204 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10205 base.head) {
10206 if (!intel_encoder->base.crtc)
10207 continue;
10208
10209 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10210
10211 if (prepare_pipes & (1 << intel_crtc->pipe))
10212 intel_encoder->connectors_active = false;
10213 }
10214
10215 intel_modeset_commit_output_state(dev);
10216
7668851f 10217 /* Double check state. */
d3fcc808 10218 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10219 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10220 WARN_ON(intel_crtc->new_config &&
10221 intel_crtc->new_config != &intel_crtc->config);
10222 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10223 }
10224
10225 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10226 if (!connector->encoder || !connector->encoder->crtc)
10227 continue;
10228
10229 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10230
10231 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10232 struct drm_property *dpms_property =
10233 dev->mode_config.dpms_property;
10234
ea9d758d 10235 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10236 drm_object_property_set_value(&connector->base,
68d34720
DV
10237 dpms_property,
10238 DRM_MODE_DPMS_ON);
ea9d758d
DV
10239
10240 intel_encoder = to_intel_encoder(connector->encoder);
10241 intel_encoder->connectors_active = true;
10242 }
10243 }
10244
10245}
10246
3bd26263 10247static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10248{
3bd26263 10249 int diff;
f1f644dc
JB
10250
10251 if (clock1 == clock2)
10252 return true;
10253
10254 if (!clock1 || !clock2)
10255 return false;
10256
10257 diff = abs(clock1 - clock2);
10258
10259 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10260 return true;
10261
10262 return false;
10263}
10264
25c5b266
DV
10265#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10266 list_for_each_entry((intel_crtc), \
10267 &(dev)->mode_config.crtc_list, \
10268 base.head) \
0973f18f 10269 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10270
0e8ffe1b 10271static bool
2fa2fe9a
DV
10272intel_pipe_config_compare(struct drm_device *dev,
10273 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10274 struct intel_crtc_config *pipe_config)
10275{
66e985c0
DV
10276#define PIPE_CONF_CHECK_X(name) \
10277 if (current_config->name != pipe_config->name) { \
10278 DRM_ERROR("mismatch in " #name " " \
10279 "(expected 0x%08x, found 0x%08x)\n", \
10280 current_config->name, \
10281 pipe_config->name); \
10282 return false; \
10283 }
10284
08a24034
DV
10285#define PIPE_CONF_CHECK_I(name) \
10286 if (current_config->name != pipe_config->name) { \
10287 DRM_ERROR("mismatch in " #name " " \
10288 "(expected %i, found %i)\n", \
10289 current_config->name, \
10290 pipe_config->name); \
10291 return false; \
88adfff1
DV
10292 }
10293
1bd1bd80
DV
10294#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10295 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10296 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10297 "(expected %i, found %i)\n", \
10298 current_config->name & (mask), \
10299 pipe_config->name & (mask)); \
10300 return false; \
10301 }
10302
5e550656
VS
10303#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10304 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10305 DRM_ERROR("mismatch in " #name " " \
10306 "(expected %i, found %i)\n", \
10307 current_config->name, \
10308 pipe_config->name); \
10309 return false; \
10310 }
10311
bb760063
DV
10312#define PIPE_CONF_QUIRK(quirk) \
10313 ((current_config->quirks | pipe_config->quirks) & (quirk))
10314
eccb140b
DV
10315 PIPE_CONF_CHECK_I(cpu_transcoder);
10316
08a24034
DV
10317 PIPE_CONF_CHECK_I(has_pch_encoder);
10318 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10319 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10320 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10321 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10322 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10323 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10324
eb14cb74
VS
10325 PIPE_CONF_CHECK_I(has_dp_encoder);
10326 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10327 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10328 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10329 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10330 PIPE_CONF_CHECK_I(dp_m_n.tu);
10331
1bd1bd80
DV
10332 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10333 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10334 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10335 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10336 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10337 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10338
10339 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10340 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10341 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10342 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10343 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10344 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10345
c93f54cf 10346 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10347 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10348 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10349 IS_VALLEYVIEW(dev))
10350 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10351
9ed109a7
DV
10352 PIPE_CONF_CHECK_I(has_audio);
10353
1bd1bd80
DV
10354 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10355 DRM_MODE_FLAG_INTERLACE);
10356
bb760063
DV
10357 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10358 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10359 DRM_MODE_FLAG_PHSYNC);
10360 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10361 DRM_MODE_FLAG_NHSYNC);
10362 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10363 DRM_MODE_FLAG_PVSYNC);
10364 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10365 DRM_MODE_FLAG_NVSYNC);
10366 }
045ac3b5 10367
37327abd
VS
10368 PIPE_CONF_CHECK_I(pipe_src_w);
10369 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10370
9953599b
DV
10371 /*
10372 * FIXME: BIOS likes to set up a cloned config with lvds+external
10373 * screen. Since we don't yet re-compute the pipe config when moving
10374 * just the lvds port away to another pipe the sw tracking won't match.
10375 *
10376 * Proper atomic modesets with recomputed global state will fix this.
10377 * Until then just don't check gmch state for inherited modes.
10378 */
10379 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10380 PIPE_CONF_CHECK_I(gmch_pfit.control);
10381 /* pfit ratios are autocomputed by the hw on gen4+ */
10382 if (INTEL_INFO(dev)->gen < 4)
10383 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10384 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10385 }
10386
fd4daa9c
CW
10387 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10388 if (current_config->pch_pfit.enabled) {
10389 PIPE_CONF_CHECK_I(pch_pfit.pos);
10390 PIPE_CONF_CHECK_I(pch_pfit.size);
10391 }
2fa2fe9a 10392
e59150dc
JB
10393 /* BDW+ don't expose a synchronous way to read the state */
10394 if (IS_HASWELL(dev))
10395 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10396
282740f7
VS
10397 PIPE_CONF_CHECK_I(double_wide);
10398
c0d43d62 10399 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10400 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10401 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10402 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10403 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
c0d43d62 10404
42571aef
VS
10405 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10406 PIPE_CONF_CHECK_I(pipe_bpp);
10407
a9a7e98a
JB
10408 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10409 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10410
66e985c0 10411#undef PIPE_CONF_CHECK_X
08a24034 10412#undef PIPE_CONF_CHECK_I
1bd1bd80 10413#undef PIPE_CONF_CHECK_FLAGS
5e550656 10414#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10415#undef PIPE_CONF_QUIRK
88adfff1 10416
0e8ffe1b
DV
10417 return true;
10418}
10419
91d1b4bd
DV
10420static void
10421check_connector_state(struct drm_device *dev)
8af6cf88 10422{
8af6cf88
DV
10423 struct intel_connector *connector;
10424
10425 list_for_each_entry(connector, &dev->mode_config.connector_list,
10426 base.head) {
10427 /* This also checks the encoder/connector hw state with the
10428 * ->get_hw_state callbacks. */
10429 intel_connector_check_state(connector);
10430
10431 WARN(&connector->new_encoder->base != connector->base.encoder,
10432 "connector's staged encoder doesn't match current encoder\n");
10433 }
91d1b4bd
DV
10434}
10435
10436static void
10437check_encoder_state(struct drm_device *dev)
10438{
10439 struct intel_encoder *encoder;
10440 struct intel_connector *connector;
8af6cf88
DV
10441
10442 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10443 base.head) {
10444 bool enabled = false;
10445 bool active = false;
10446 enum pipe pipe, tracked_pipe;
10447
10448 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10449 encoder->base.base.id,
8e329a03 10450 encoder->base.name);
8af6cf88
DV
10451
10452 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10453 "encoder's stage crtc doesn't match current crtc\n");
10454 WARN(encoder->connectors_active && !encoder->base.crtc,
10455 "encoder's active_connectors set, but no crtc\n");
10456
10457 list_for_each_entry(connector, &dev->mode_config.connector_list,
10458 base.head) {
10459 if (connector->base.encoder != &encoder->base)
10460 continue;
10461 enabled = true;
10462 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10463 active = true;
10464 }
10465 WARN(!!encoder->base.crtc != enabled,
10466 "encoder's enabled state mismatch "
10467 "(expected %i, found %i)\n",
10468 !!encoder->base.crtc, enabled);
10469 WARN(active && !encoder->base.crtc,
10470 "active encoder with no crtc\n");
10471
10472 WARN(encoder->connectors_active != active,
10473 "encoder's computed active state doesn't match tracked active state "
10474 "(expected %i, found %i)\n", active, encoder->connectors_active);
10475
10476 active = encoder->get_hw_state(encoder, &pipe);
10477 WARN(active != encoder->connectors_active,
10478 "encoder's hw state doesn't match sw tracking "
10479 "(expected %i, found %i)\n",
10480 encoder->connectors_active, active);
10481
10482 if (!encoder->base.crtc)
10483 continue;
10484
10485 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10486 WARN(active && pipe != tracked_pipe,
10487 "active encoder's pipe doesn't match"
10488 "(expected %i, found %i)\n",
10489 tracked_pipe, pipe);
10490
10491 }
91d1b4bd
DV
10492}
10493
10494static void
10495check_crtc_state(struct drm_device *dev)
10496{
fbee40df 10497 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10498 struct intel_crtc *crtc;
10499 struct intel_encoder *encoder;
10500 struct intel_crtc_config pipe_config;
8af6cf88 10501
d3fcc808 10502 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10503 bool enabled = false;
10504 bool active = false;
10505
045ac3b5
JB
10506 memset(&pipe_config, 0, sizeof(pipe_config));
10507
8af6cf88
DV
10508 DRM_DEBUG_KMS("[CRTC:%d]\n",
10509 crtc->base.base.id);
10510
10511 WARN(crtc->active && !crtc->base.enabled,
10512 "active crtc, but not enabled in sw tracking\n");
10513
10514 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10515 base.head) {
10516 if (encoder->base.crtc != &crtc->base)
10517 continue;
10518 enabled = true;
10519 if (encoder->connectors_active)
10520 active = true;
10521 }
6c49f241 10522
8af6cf88
DV
10523 WARN(active != crtc->active,
10524 "crtc's computed active state doesn't match tracked active state "
10525 "(expected %i, found %i)\n", active, crtc->active);
10526 WARN(enabled != crtc->base.enabled,
10527 "crtc's computed enabled state doesn't match tracked enabled state "
10528 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10529
0e8ffe1b
DV
10530 active = dev_priv->display.get_pipe_config(crtc,
10531 &pipe_config);
d62cf62a
DV
10532
10533 /* hw state is inconsistent with the pipe A quirk */
10534 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10535 active = crtc->active;
10536
6c49f241
DV
10537 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10538 base.head) {
3eaba51c 10539 enum pipe pipe;
6c49f241
DV
10540 if (encoder->base.crtc != &crtc->base)
10541 continue;
1d37b689 10542 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10543 encoder->get_config(encoder, &pipe_config);
10544 }
10545
0e8ffe1b
DV
10546 WARN(crtc->active != active,
10547 "crtc active state doesn't match with hw state "
10548 "(expected %i, found %i)\n", crtc->active, active);
10549
c0b03411
DV
10550 if (active &&
10551 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10552 WARN(1, "pipe state doesn't match!\n");
10553 intel_dump_pipe_config(crtc, &pipe_config,
10554 "[hw state]");
10555 intel_dump_pipe_config(crtc, &crtc->config,
10556 "[sw state]");
10557 }
8af6cf88
DV
10558 }
10559}
10560
91d1b4bd
DV
10561static void
10562check_shared_dpll_state(struct drm_device *dev)
10563{
fbee40df 10564 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10565 struct intel_crtc *crtc;
10566 struct intel_dpll_hw_state dpll_hw_state;
10567 int i;
5358901f
DV
10568
10569 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10570 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10571 int enabled_crtcs = 0, active_crtcs = 0;
10572 bool active;
10573
10574 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10575
10576 DRM_DEBUG_KMS("%s\n", pll->name);
10577
10578 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10579
10580 WARN(pll->active > pll->refcount,
10581 "more active pll users than references: %i vs %i\n",
10582 pll->active, pll->refcount);
10583 WARN(pll->active && !pll->on,
10584 "pll in active use but not on in sw tracking\n");
35c95375
DV
10585 WARN(pll->on && !pll->active,
10586 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10587 WARN(pll->on != active,
10588 "pll on state mismatch (expected %i, found %i)\n",
10589 pll->on, active);
10590
d3fcc808 10591 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10592 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10593 enabled_crtcs++;
10594 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10595 active_crtcs++;
10596 }
10597 WARN(pll->active != active_crtcs,
10598 "pll active crtcs mismatch (expected %i, found %i)\n",
10599 pll->active, active_crtcs);
10600 WARN(pll->refcount != enabled_crtcs,
10601 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10602 pll->refcount, enabled_crtcs);
66e985c0
DV
10603
10604 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10605 sizeof(dpll_hw_state)),
10606 "pll hw state mismatch\n");
5358901f 10607 }
8af6cf88
DV
10608}
10609
91d1b4bd
DV
10610void
10611intel_modeset_check_state(struct drm_device *dev)
10612{
10613 check_connector_state(dev);
10614 check_encoder_state(dev);
10615 check_crtc_state(dev);
10616 check_shared_dpll_state(dev);
10617}
10618
18442d08
VS
10619void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10620 int dotclock)
10621{
10622 /*
10623 * FDI already provided one idea for the dotclock.
10624 * Yell if the encoder disagrees.
10625 */
241bfc38 10626 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10627 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10628 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10629}
10630
80715b2f
VS
10631static void update_scanline_offset(struct intel_crtc *crtc)
10632{
10633 struct drm_device *dev = crtc->base.dev;
10634
10635 /*
10636 * The scanline counter increments at the leading edge of hsync.
10637 *
10638 * On most platforms it starts counting from vtotal-1 on the
10639 * first active line. That means the scanline counter value is
10640 * always one less than what we would expect. Ie. just after
10641 * start of vblank, which also occurs at start of hsync (on the
10642 * last active line), the scanline counter will read vblank_start-1.
10643 *
10644 * On gen2 the scanline counter starts counting from 1 instead
10645 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10646 * to keep the value positive), instead of adding one.
10647 *
10648 * On HSW+ the behaviour of the scanline counter depends on the output
10649 * type. For DP ports it behaves like most other platforms, but on HDMI
10650 * there's an extra 1 line difference. So we need to add two instead of
10651 * one to the value.
10652 */
10653 if (IS_GEN2(dev)) {
10654 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10655 int vtotal;
10656
10657 vtotal = mode->crtc_vtotal;
10658 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10659 vtotal /= 2;
10660
10661 crtc->scanline_offset = vtotal - 1;
10662 } else if (HAS_DDI(dev) &&
10663 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10664 crtc->scanline_offset = 2;
10665 } else
10666 crtc->scanline_offset = 1;
10667}
10668
f30da187
DV
10669static int __intel_set_mode(struct drm_crtc *crtc,
10670 struct drm_display_mode *mode,
10671 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10672{
10673 struct drm_device *dev = crtc->dev;
fbee40df 10674 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10675 struct drm_display_mode *saved_mode;
b8cecdf5 10676 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10677 struct intel_crtc *intel_crtc;
10678 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10679 int ret = 0;
a6778b3c 10680
4b4b9238 10681 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10682 if (!saved_mode)
10683 return -ENOMEM;
a6778b3c 10684
e2e1ed41 10685 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10686 &prepare_pipes, &disable_pipes);
10687
3ac18232 10688 *saved_mode = crtc->mode;
a6778b3c 10689
25c5b266
DV
10690 /* Hack: Because we don't (yet) support global modeset on multiple
10691 * crtcs, we don't keep track of the new mode for more than one crtc.
10692 * Hence simply check whether any bit is set in modeset_pipes in all the
10693 * pieces of code that are not yet converted to deal with mutliple crtcs
10694 * changing their mode at the same time. */
25c5b266 10695 if (modeset_pipes) {
4e53c2e0 10696 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10697 if (IS_ERR(pipe_config)) {
10698 ret = PTR_ERR(pipe_config);
10699 pipe_config = NULL;
10700
3ac18232 10701 goto out;
25c5b266 10702 }
c0b03411
DV
10703 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10704 "[modeset]");
50741abc 10705 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10706 }
a6778b3c 10707
30a970c6
JB
10708 /*
10709 * See if the config requires any additional preparation, e.g.
10710 * to adjust global state with pipes off. We need to do this
10711 * here so we can get the modeset_pipe updated config for the new
10712 * mode set on this crtc. For other crtcs we need to use the
10713 * adjusted_mode bits in the crtc directly.
10714 */
c164f833 10715 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10716 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10717
c164f833
VS
10718 /* may have added more to prepare_pipes than we should */
10719 prepare_pipes &= ~disable_pipes;
10720 }
10721
460da916
DV
10722 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10723 intel_crtc_disable(&intel_crtc->base);
10724
ea9d758d
DV
10725 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10726 if (intel_crtc->base.enabled)
10727 dev_priv->display.crtc_disable(&intel_crtc->base);
10728 }
a6778b3c 10729
6c4c86f5
DV
10730 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10731 * to set it here already despite that we pass it down the callchain.
f6e5b160 10732 */
b8cecdf5 10733 if (modeset_pipes) {
25c5b266 10734 crtc->mode = *mode;
b8cecdf5
DV
10735 /* mode_set/enable/disable functions rely on a correct pipe
10736 * config. */
10737 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10738 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10739
10740 /*
10741 * Calculate and store various constants which
10742 * are later needed by vblank and swap-completion
10743 * timestamping. They are derived from true hwmode.
10744 */
10745 drm_calc_timestamping_constants(crtc,
10746 &pipe_config->adjusted_mode);
b8cecdf5 10747 }
7758a113 10748
ea9d758d
DV
10749 /* Only after disabling all output pipelines that will be changed can we
10750 * update the the output configuration. */
10751 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10752
47fab737
DV
10753 if (dev_priv->display.modeset_global_resources)
10754 dev_priv->display.modeset_global_resources(dev);
10755
a6778b3c
DV
10756 /* Set up the DPLL and any encoders state that needs to adjust or depend
10757 * on the DPLL.
f6e5b160 10758 */
25c5b266 10759 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10760 struct drm_framebuffer *old_fb = crtc->primary->fb;
10761 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10762 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10763
10764 mutex_lock(&dev->struct_mutex);
10765 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10766 obj,
4c10794f
DV
10767 NULL);
10768 if (ret != 0) {
10769 DRM_ERROR("pin & fence failed\n");
10770 mutex_unlock(&dev->struct_mutex);
10771 goto done;
10772 }
2ff8fde1 10773 if (old_fb)
a071fa00 10774 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10775 i915_gem_track_fb(old_obj, obj,
10776 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10777 mutex_unlock(&dev->struct_mutex);
10778
10779 crtc->primary->fb = fb;
10780 crtc->x = x;
10781 crtc->y = y;
10782
4271b753
DV
10783 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10784 x, y, fb);
c0c36b94
CW
10785 if (ret)
10786 goto done;
a6778b3c
DV
10787 }
10788
10789 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10790 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10791 update_scanline_offset(intel_crtc);
10792
25c5b266 10793 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10794 }
a6778b3c 10795
a6778b3c
DV
10796 /* FIXME: add subpixel order */
10797done:
4b4b9238 10798 if (ret && crtc->enabled)
3ac18232 10799 crtc->mode = *saved_mode;
a6778b3c 10800
3ac18232 10801out:
b8cecdf5 10802 kfree(pipe_config);
3ac18232 10803 kfree(saved_mode);
a6778b3c 10804 return ret;
f6e5b160
CW
10805}
10806
e7457a9a
DL
10807static int intel_set_mode(struct drm_crtc *crtc,
10808 struct drm_display_mode *mode,
10809 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10810{
10811 int ret;
10812
10813 ret = __intel_set_mode(crtc, mode, x, y, fb);
10814
10815 if (ret == 0)
10816 intel_modeset_check_state(crtc->dev);
10817
10818 return ret;
10819}
10820
c0c36b94
CW
10821void intel_crtc_restore_mode(struct drm_crtc *crtc)
10822{
f4510a27 10823 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10824}
10825
25c5b266
DV
10826#undef for_each_intel_crtc_masked
10827
d9e55608
DV
10828static void intel_set_config_free(struct intel_set_config *config)
10829{
10830 if (!config)
10831 return;
10832
1aa4b628
DV
10833 kfree(config->save_connector_encoders);
10834 kfree(config->save_encoder_crtcs);
7668851f 10835 kfree(config->save_crtc_enabled);
d9e55608
DV
10836 kfree(config);
10837}
10838
85f9eb71
DV
10839static int intel_set_config_save_state(struct drm_device *dev,
10840 struct intel_set_config *config)
10841{
7668851f 10842 struct drm_crtc *crtc;
85f9eb71
DV
10843 struct drm_encoder *encoder;
10844 struct drm_connector *connector;
10845 int count;
10846
7668851f
VS
10847 config->save_crtc_enabled =
10848 kcalloc(dev->mode_config.num_crtc,
10849 sizeof(bool), GFP_KERNEL);
10850 if (!config->save_crtc_enabled)
10851 return -ENOMEM;
10852
1aa4b628
DV
10853 config->save_encoder_crtcs =
10854 kcalloc(dev->mode_config.num_encoder,
10855 sizeof(struct drm_crtc *), GFP_KERNEL);
10856 if (!config->save_encoder_crtcs)
85f9eb71
DV
10857 return -ENOMEM;
10858
1aa4b628
DV
10859 config->save_connector_encoders =
10860 kcalloc(dev->mode_config.num_connector,
10861 sizeof(struct drm_encoder *), GFP_KERNEL);
10862 if (!config->save_connector_encoders)
85f9eb71
DV
10863 return -ENOMEM;
10864
10865 /* Copy data. Note that driver private data is not affected.
10866 * Should anything bad happen only the expected state is
10867 * restored, not the drivers personal bookkeeping.
10868 */
7668851f 10869 count = 0;
70e1e0ec 10870 for_each_crtc(dev, crtc) {
7668851f
VS
10871 config->save_crtc_enabled[count++] = crtc->enabled;
10872 }
10873
85f9eb71
DV
10874 count = 0;
10875 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10876 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10877 }
10878
10879 count = 0;
10880 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10881 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10882 }
10883
10884 return 0;
10885}
10886
10887static void intel_set_config_restore_state(struct drm_device *dev,
10888 struct intel_set_config *config)
10889{
7668851f 10890 struct intel_crtc *crtc;
9a935856
DV
10891 struct intel_encoder *encoder;
10892 struct intel_connector *connector;
85f9eb71
DV
10893 int count;
10894
7668851f 10895 count = 0;
d3fcc808 10896 for_each_intel_crtc(dev, crtc) {
7668851f 10897 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10898
10899 if (crtc->new_enabled)
10900 crtc->new_config = &crtc->config;
10901 else
10902 crtc->new_config = NULL;
7668851f
VS
10903 }
10904
85f9eb71 10905 count = 0;
9a935856
DV
10906 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10907 encoder->new_crtc =
10908 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10909 }
10910
10911 count = 0;
9a935856
DV
10912 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10913 connector->new_encoder =
10914 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10915 }
10916}
10917
e3de42b6 10918static bool
2e57f47d 10919is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10920{
10921 int i;
10922
2e57f47d
CW
10923 if (set->num_connectors == 0)
10924 return false;
10925
10926 if (WARN_ON(set->connectors == NULL))
10927 return false;
10928
10929 for (i = 0; i < set->num_connectors; i++)
10930 if (set->connectors[i]->encoder &&
10931 set->connectors[i]->encoder->crtc == set->crtc &&
10932 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10933 return true;
10934
10935 return false;
10936}
10937
5e2b584e
DV
10938static void
10939intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10940 struct intel_set_config *config)
10941{
10942
10943 /* We should be able to check here if the fb has the same properties
10944 * and then just flip_or_move it */
2e57f47d
CW
10945 if (is_crtc_connector_off(set)) {
10946 config->mode_changed = true;
f4510a27 10947 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
10948 /*
10949 * If we have no fb, we can only flip as long as the crtc is
10950 * active, otherwise we need a full mode set. The crtc may
10951 * be active if we've only disabled the primary plane, or
10952 * in fastboot situations.
10953 */
f4510a27 10954 if (set->crtc->primary->fb == NULL) {
319d9827
JB
10955 struct intel_crtc *intel_crtc =
10956 to_intel_crtc(set->crtc);
10957
3b150f08 10958 if (intel_crtc->active) {
319d9827
JB
10959 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10960 config->fb_changed = true;
10961 } else {
10962 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10963 config->mode_changed = true;
10964 }
5e2b584e
DV
10965 } else if (set->fb == NULL) {
10966 config->mode_changed = true;
72f4901e 10967 } else if (set->fb->pixel_format !=
f4510a27 10968 set->crtc->primary->fb->pixel_format) {
5e2b584e 10969 config->mode_changed = true;
e3de42b6 10970 } else {
5e2b584e 10971 config->fb_changed = true;
e3de42b6 10972 }
5e2b584e
DV
10973 }
10974
835c5873 10975 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
10976 config->fb_changed = true;
10977
10978 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10979 DRM_DEBUG_KMS("modes are different, full mode set\n");
10980 drm_mode_debug_printmodeline(&set->crtc->mode);
10981 drm_mode_debug_printmodeline(set->mode);
10982 config->mode_changed = true;
10983 }
a1d95703
CW
10984
10985 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10986 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
10987}
10988
2e431051 10989static int
9a935856
DV
10990intel_modeset_stage_output_state(struct drm_device *dev,
10991 struct drm_mode_set *set,
10992 struct intel_set_config *config)
50f56119 10993{
9a935856
DV
10994 struct intel_connector *connector;
10995 struct intel_encoder *encoder;
7668851f 10996 struct intel_crtc *crtc;
f3f08572 10997 int ro;
50f56119 10998
9abdda74 10999 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11000 * of connectors. For paranoia, double-check this. */
11001 WARN_ON(!set->fb && (set->num_connectors != 0));
11002 WARN_ON(set->fb && (set->num_connectors == 0));
11003
9a935856
DV
11004 list_for_each_entry(connector, &dev->mode_config.connector_list,
11005 base.head) {
11006 /* Otherwise traverse passed in connector list and get encoders
11007 * for them. */
50f56119 11008 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
11009 if (set->connectors[ro] == &connector->base) {
11010 connector->new_encoder = connector->encoder;
50f56119
DV
11011 break;
11012 }
11013 }
11014
9a935856
DV
11015 /* If we disable the crtc, disable all its connectors. Also, if
11016 * the connector is on the changing crtc but not on the new
11017 * connector list, disable it. */
11018 if ((!set->fb || ro == set->num_connectors) &&
11019 connector->base.encoder &&
11020 connector->base.encoder->crtc == set->crtc) {
11021 connector->new_encoder = NULL;
11022
11023 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11024 connector->base.base.id,
c23cc417 11025 connector->base.name);
9a935856
DV
11026 }
11027
11028
11029 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11030 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11031 config->mode_changed = true;
50f56119
DV
11032 }
11033 }
9a935856 11034 /* connector->new_encoder is now updated for all connectors. */
50f56119 11035
9a935856 11036 /* Update crtc of enabled connectors. */
9a935856
DV
11037 list_for_each_entry(connector, &dev->mode_config.connector_list,
11038 base.head) {
7668851f
VS
11039 struct drm_crtc *new_crtc;
11040
9a935856 11041 if (!connector->new_encoder)
50f56119
DV
11042 continue;
11043
9a935856 11044 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11045
11046 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11047 if (set->connectors[ro] == &connector->base)
50f56119
DV
11048 new_crtc = set->crtc;
11049 }
11050
11051 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11052 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11053 new_crtc)) {
5e2b584e 11054 return -EINVAL;
50f56119 11055 }
9a935856
DV
11056 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11057
11058 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11059 connector->base.base.id,
c23cc417 11060 connector->base.name,
9a935856
DV
11061 new_crtc->base.id);
11062 }
11063
11064 /* Check for any encoders that needs to be disabled. */
11065 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11066 base.head) {
5a65f358 11067 int num_connectors = 0;
9a935856
DV
11068 list_for_each_entry(connector,
11069 &dev->mode_config.connector_list,
11070 base.head) {
11071 if (connector->new_encoder == encoder) {
11072 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11073 num_connectors++;
9a935856
DV
11074 }
11075 }
5a65f358
PZ
11076
11077 if (num_connectors == 0)
11078 encoder->new_crtc = NULL;
11079 else if (num_connectors > 1)
11080 return -EINVAL;
11081
9a935856
DV
11082 /* Only now check for crtc changes so we don't miss encoders
11083 * that will be disabled. */
11084 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11085 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11086 config->mode_changed = true;
50f56119
DV
11087 }
11088 }
9a935856 11089 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 11090
d3fcc808 11091 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11092 crtc->new_enabled = false;
11093
11094 list_for_each_entry(encoder,
11095 &dev->mode_config.encoder_list,
11096 base.head) {
11097 if (encoder->new_crtc == crtc) {
11098 crtc->new_enabled = true;
11099 break;
11100 }
11101 }
11102
11103 if (crtc->new_enabled != crtc->base.enabled) {
11104 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11105 crtc->new_enabled ? "en" : "dis");
11106 config->mode_changed = true;
11107 }
7bd0a8e7
VS
11108
11109 if (crtc->new_enabled)
11110 crtc->new_config = &crtc->config;
11111 else
11112 crtc->new_config = NULL;
7668851f
VS
11113 }
11114
2e431051
DV
11115 return 0;
11116}
11117
7d00a1f5
VS
11118static void disable_crtc_nofb(struct intel_crtc *crtc)
11119{
11120 struct drm_device *dev = crtc->base.dev;
11121 struct intel_encoder *encoder;
11122 struct intel_connector *connector;
11123
11124 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11125 pipe_name(crtc->pipe));
11126
11127 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11128 if (connector->new_encoder &&
11129 connector->new_encoder->new_crtc == crtc)
11130 connector->new_encoder = NULL;
11131 }
11132
11133 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11134 if (encoder->new_crtc == crtc)
11135 encoder->new_crtc = NULL;
11136 }
11137
11138 crtc->new_enabled = false;
7bd0a8e7 11139 crtc->new_config = NULL;
7d00a1f5
VS
11140}
11141
2e431051
DV
11142static int intel_crtc_set_config(struct drm_mode_set *set)
11143{
11144 struct drm_device *dev;
2e431051
DV
11145 struct drm_mode_set save_set;
11146 struct intel_set_config *config;
11147 int ret;
2e431051 11148
8d3e375e
DV
11149 BUG_ON(!set);
11150 BUG_ON(!set->crtc);
11151 BUG_ON(!set->crtc->helper_private);
2e431051 11152
7e53f3a4
DV
11153 /* Enforce sane interface api - has been abused by the fb helper. */
11154 BUG_ON(!set->mode && set->fb);
11155 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11156
2e431051
DV
11157 if (set->fb) {
11158 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11159 set->crtc->base.id, set->fb->base.id,
11160 (int)set->num_connectors, set->x, set->y);
11161 } else {
11162 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11163 }
11164
11165 dev = set->crtc->dev;
11166
11167 ret = -ENOMEM;
11168 config = kzalloc(sizeof(*config), GFP_KERNEL);
11169 if (!config)
11170 goto out_config;
11171
11172 ret = intel_set_config_save_state(dev, config);
11173 if (ret)
11174 goto out_config;
11175
11176 save_set.crtc = set->crtc;
11177 save_set.mode = &set->crtc->mode;
11178 save_set.x = set->crtc->x;
11179 save_set.y = set->crtc->y;
f4510a27 11180 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11181
11182 /* Compute whether we need a full modeset, only an fb base update or no
11183 * change at all. In the future we might also check whether only the
11184 * mode changed, e.g. for LVDS where we only change the panel fitter in
11185 * such cases. */
11186 intel_set_config_compute_mode_changes(set, config);
11187
9a935856 11188 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11189 if (ret)
11190 goto fail;
11191
5e2b584e 11192 if (config->mode_changed) {
c0c36b94
CW
11193 ret = intel_set_mode(set->crtc, set->mode,
11194 set->x, set->y, set->fb);
5e2b584e 11195 } else if (config->fb_changed) {
3b150f08
MR
11196 struct drm_i915_private *dev_priv = dev->dev_private;
11197 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11198
4878cae2
VS
11199 intel_crtc_wait_for_pending_flips(set->crtc);
11200
4f660f49 11201 ret = intel_pipe_set_base(set->crtc,
94352cf9 11202 set->x, set->y, set->fb);
3b150f08
MR
11203
11204 /*
11205 * We need to make sure the primary plane is re-enabled if it
11206 * has previously been turned off.
11207 */
11208 if (!intel_crtc->primary_enabled && ret == 0) {
11209 WARN_ON(!intel_crtc->active);
11210 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11211 intel_crtc->pipe);
11212 }
11213
7ca51a3a
JB
11214 /*
11215 * In the fastboot case this may be our only check of the
11216 * state after boot. It would be better to only do it on
11217 * the first update, but we don't have a nice way of doing that
11218 * (and really, set_config isn't used much for high freq page
11219 * flipping, so increasing its cost here shouldn't be a big
11220 * deal).
11221 */
d330a953 11222 if (i915.fastboot && ret == 0)
7ca51a3a 11223 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11224 }
11225
2d05eae1 11226 if (ret) {
bf67dfeb
DV
11227 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11228 set->crtc->base.id, ret);
50f56119 11229fail:
2d05eae1 11230 intel_set_config_restore_state(dev, config);
50f56119 11231
7d00a1f5
VS
11232 /*
11233 * HACK: if the pipe was on, but we didn't have a framebuffer,
11234 * force the pipe off to avoid oopsing in the modeset code
11235 * due to fb==NULL. This should only happen during boot since
11236 * we don't yet reconstruct the FB from the hardware state.
11237 */
11238 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11239 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11240
2d05eae1
CW
11241 /* Try to restore the config */
11242 if (config->mode_changed &&
11243 intel_set_mode(save_set.crtc, save_set.mode,
11244 save_set.x, save_set.y, save_set.fb))
11245 DRM_ERROR("failed to restore config after modeset failure\n");
11246 }
50f56119 11247
d9e55608
DV
11248out_config:
11249 intel_set_config_free(config);
50f56119
DV
11250 return ret;
11251}
f6e5b160
CW
11252
11253static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11254 .gamma_set = intel_crtc_gamma_set,
50f56119 11255 .set_config = intel_crtc_set_config,
f6e5b160
CW
11256 .destroy = intel_crtc_destroy,
11257 .page_flip = intel_crtc_page_flip,
11258};
11259
79f689aa
PZ
11260static void intel_cpu_pll_init(struct drm_device *dev)
11261{
affa9354 11262 if (HAS_DDI(dev))
79f689aa
PZ
11263 intel_ddi_pll_init(dev);
11264}
11265
5358901f
DV
11266static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11267 struct intel_shared_dpll *pll,
11268 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11269{
5358901f 11270 uint32_t val;
ee7b9f93 11271
5358901f 11272 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11273 hw_state->dpll = val;
11274 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11275 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11276
11277 return val & DPLL_VCO_ENABLE;
11278}
11279
15bdd4cf
DV
11280static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11281 struct intel_shared_dpll *pll)
11282{
11283 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11284 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11285}
11286
e7b903d2
DV
11287static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11288 struct intel_shared_dpll *pll)
11289{
e7b903d2 11290 /* PCH refclock must be enabled first */
89eff4be 11291 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11292
15bdd4cf
DV
11293 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11294
11295 /* Wait for the clocks to stabilize. */
11296 POSTING_READ(PCH_DPLL(pll->id));
11297 udelay(150);
11298
11299 /* The pixel multiplier can only be updated once the
11300 * DPLL is enabled and the clocks are stable.
11301 *
11302 * So write it again.
11303 */
11304 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11305 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11306 udelay(200);
11307}
11308
11309static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11310 struct intel_shared_dpll *pll)
11311{
11312 struct drm_device *dev = dev_priv->dev;
11313 struct intel_crtc *crtc;
e7b903d2
DV
11314
11315 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11316 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11317 if (intel_crtc_to_shared_dpll(crtc) == pll)
11318 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11319 }
11320
15bdd4cf
DV
11321 I915_WRITE(PCH_DPLL(pll->id), 0);
11322 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11323 udelay(200);
11324}
11325
46edb027
DV
11326static char *ibx_pch_dpll_names[] = {
11327 "PCH DPLL A",
11328 "PCH DPLL B",
11329};
11330
7c74ade1 11331static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11332{
e7b903d2 11333 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11334 int i;
11335
7c74ade1 11336 dev_priv->num_shared_dpll = 2;
ee7b9f93 11337
e72f9fbf 11338 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11339 dev_priv->shared_dplls[i].id = i;
11340 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11341 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11342 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11343 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11344 dev_priv->shared_dplls[i].get_hw_state =
11345 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11346 }
11347}
11348
7c74ade1
DV
11349static void intel_shared_dpll_init(struct drm_device *dev)
11350{
e7b903d2 11351 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1
DV
11352
11353 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11354 ibx_pch_dpll_init(dev);
11355 else
11356 dev_priv->num_shared_dpll = 0;
11357
11358 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11359}
11360
465c120c
MR
11361static int
11362intel_primary_plane_disable(struct drm_plane *plane)
11363{
11364 struct drm_device *dev = plane->dev;
11365 struct drm_i915_private *dev_priv = dev->dev_private;
11366 struct intel_plane *intel_plane = to_intel_plane(plane);
11367 struct intel_crtc *intel_crtc;
11368
11369 if (!plane->fb)
11370 return 0;
11371
11372 BUG_ON(!plane->crtc);
11373
11374 intel_crtc = to_intel_crtc(plane->crtc);
11375
11376 /*
11377 * Even though we checked plane->fb above, it's still possible that
11378 * the primary plane has been implicitly disabled because the crtc
11379 * coordinates given weren't visible, or because we detected
11380 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11381 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11382 * In either case, we need to unpin the FB and let the fb pointer get
11383 * updated, but otherwise we don't need to touch the hardware.
11384 */
11385 if (!intel_crtc->primary_enabled)
11386 goto disable_unpin;
11387
11388 intel_crtc_wait_for_pending_flips(plane->crtc);
11389 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11390 intel_plane->pipe);
465c120c 11391disable_unpin:
2ff8fde1 11392 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11393 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11394 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
465c120c
MR
11395 plane->fb = NULL;
11396
11397 return 0;
11398}
11399
11400static int
11401intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11402 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11403 unsigned int crtc_w, unsigned int crtc_h,
11404 uint32_t src_x, uint32_t src_y,
11405 uint32_t src_w, uint32_t src_h)
11406{
11407 struct drm_device *dev = crtc->dev;
11408 struct drm_i915_private *dev_priv = dev->dev_private;
11409 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11410 struct intel_plane *intel_plane = to_intel_plane(plane);
2ff8fde1
MR
11411 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11412 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11413 struct drm_rect dest = {
11414 /* integer pixels */
11415 .x1 = crtc_x,
11416 .y1 = crtc_y,
11417 .x2 = crtc_x + crtc_w,
11418 .y2 = crtc_y + crtc_h,
11419 };
11420 struct drm_rect src = {
11421 /* 16.16 fixed point */
11422 .x1 = src_x,
11423 .y1 = src_y,
11424 .x2 = src_x + src_w,
11425 .y2 = src_y + src_h,
11426 };
11427 const struct drm_rect clip = {
11428 /* integer pixels */
11429 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11430 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11431 };
11432 bool visible;
11433 int ret;
11434
11435 ret = drm_plane_helper_check_update(plane, crtc, fb,
11436 &src, &dest, &clip,
11437 DRM_PLANE_HELPER_NO_SCALING,
11438 DRM_PLANE_HELPER_NO_SCALING,
11439 false, true, &visible);
11440
11441 if (ret)
11442 return ret;
11443
11444 /*
11445 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11446 * updating the fb pointer, and returning without touching the
11447 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11448 * turn on the display with all planes setup as desired.
11449 */
11450 if (!crtc->enabled) {
11451 /*
11452 * If we already called setplane while the crtc was disabled,
11453 * we may have an fb pinned; unpin it.
11454 */
11455 if (plane->fb)
a071fa00
DV
11456 intel_unpin_fb_obj(old_obj);
11457
11458 i915_gem_track_fb(old_obj, obj,
11459 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11460
11461 /* Pin and return without programming hardware */
a071fa00 11462 return intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11463 }
11464
11465 intel_crtc_wait_for_pending_flips(crtc);
11466
11467 /*
11468 * If clipping results in a non-visible primary plane, we'll disable
11469 * the primary plane. Note that this is a bit different than what
11470 * happens if userspace explicitly disables the plane by passing fb=0
11471 * because plane->fb still gets set and pinned.
11472 */
11473 if (!visible) {
11474 /*
11475 * Try to pin the new fb first so that we can bail out if we
11476 * fail.
11477 */
11478 if (plane->fb != fb) {
a071fa00 11479 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11480 if (ret)
11481 return ret;
11482 }
11483
a071fa00
DV
11484 i915_gem_track_fb(old_obj, obj,
11485 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11486
465c120c
MR
11487 if (intel_crtc->primary_enabled)
11488 intel_disable_primary_hw_plane(dev_priv,
11489 intel_plane->plane,
11490 intel_plane->pipe);
11491
11492
11493 if (plane->fb != fb)
11494 if (plane->fb)
a071fa00 11495 intel_unpin_fb_obj(old_obj);
465c120c
MR
11496
11497 return 0;
11498 }
11499
11500 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11501 if (ret)
11502 return ret;
11503
11504 if (!intel_crtc->primary_enabled)
11505 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11506 intel_crtc->pipe);
11507
11508 return 0;
11509}
11510
3d7d6510
MR
11511/* Common destruction function for both primary and cursor planes */
11512static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11513{
11514 struct intel_plane *intel_plane = to_intel_plane(plane);
11515 drm_plane_cleanup(plane);
11516 kfree(intel_plane);
11517}
11518
11519static const struct drm_plane_funcs intel_primary_plane_funcs = {
11520 .update_plane = intel_primary_plane_setplane,
11521 .disable_plane = intel_primary_plane_disable,
3d7d6510 11522 .destroy = intel_plane_destroy,
465c120c
MR
11523};
11524
11525static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11526 int pipe)
11527{
11528 struct intel_plane *primary;
11529 const uint32_t *intel_primary_formats;
11530 int num_formats;
11531
11532 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11533 if (primary == NULL)
11534 return NULL;
11535
11536 primary->can_scale = false;
11537 primary->max_downscale = 1;
11538 primary->pipe = pipe;
11539 primary->plane = pipe;
11540 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11541 primary->plane = !pipe;
11542
11543 if (INTEL_INFO(dev)->gen <= 3) {
11544 intel_primary_formats = intel_primary_formats_gen2;
11545 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11546 } else {
11547 intel_primary_formats = intel_primary_formats_gen4;
11548 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11549 }
11550
11551 drm_universal_plane_init(dev, &primary->base, 0,
11552 &intel_primary_plane_funcs,
11553 intel_primary_formats, num_formats,
11554 DRM_PLANE_TYPE_PRIMARY);
11555 return &primary->base;
11556}
11557
3d7d6510
MR
11558static int
11559intel_cursor_plane_disable(struct drm_plane *plane)
11560{
11561 if (!plane->fb)
11562 return 0;
11563
11564 BUG_ON(!plane->crtc);
11565
11566 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11567}
11568
11569static int
11570intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11571 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11572 unsigned int crtc_w, unsigned int crtc_h,
11573 uint32_t src_x, uint32_t src_y,
11574 uint32_t src_w, uint32_t src_h)
11575{
11576 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11577 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11578 struct drm_i915_gem_object *obj = intel_fb->obj;
11579 struct drm_rect dest = {
11580 /* integer pixels */
11581 .x1 = crtc_x,
11582 .y1 = crtc_y,
11583 .x2 = crtc_x + crtc_w,
11584 .y2 = crtc_y + crtc_h,
11585 };
11586 struct drm_rect src = {
11587 /* 16.16 fixed point */
11588 .x1 = src_x,
11589 .y1 = src_y,
11590 .x2 = src_x + src_w,
11591 .y2 = src_y + src_h,
11592 };
11593 const struct drm_rect clip = {
11594 /* integer pixels */
11595 .x2 = intel_crtc->config.pipe_src_w,
11596 .y2 = intel_crtc->config.pipe_src_h,
11597 };
11598 bool visible;
11599 int ret;
11600
11601 ret = drm_plane_helper_check_update(plane, crtc, fb,
11602 &src, &dest, &clip,
11603 DRM_PLANE_HELPER_NO_SCALING,
11604 DRM_PLANE_HELPER_NO_SCALING,
11605 true, true, &visible);
11606 if (ret)
11607 return ret;
11608
11609 crtc->cursor_x = crtc_x;
11610 crtc->cursor_y = crtc_y;
11611 if (fb != crtc->cursor->fb) {
11612 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11613 } else {
11614 intel_crtc_update_cursor(crtc, visible);
11615 return 0;
11616 }
11617}
11618static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11619 .update_plane = intel_cursor_plane_update,
11620 .disable_plane = intel_cursor_plane_disable,
11621 .destroy = intel_plane_destroy,
11622};
11623
11624static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11625 int pipe)
11626{
11627 struct intel_plane *cursor;
11628
11629 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11630 if (cursor == NULL)
11631 return NULL;
11632
11633 cursor->can_scale = false;
11634 cursor->max_downscale = 1;
11635 cursor->pipe = pipe;
11636 cursor->plane = pipe;
11637
11638 drm_universal_plane_init(dev, &cursor->base, 0,
11639 &intel_cursor_plane_funcs,
11640 intel_cursor_formats,
11641 ARRAY_SIZE(intel_cursor_formats),
11642 DRM_PLANE_TYPE_CURSOR);
11643 return &cursor->base;
11644}
11645
b358d0a6 11646static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11647{
fbee40df 11648 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11649 struct intel_crtc *intel_crtc;
3d7d6510
MR
11650 struct drm_plane *primary = NULL;
11651 struct drm_plane *cursor = NULL;
465c120c 11652 int i, ret;
79e53945 11653
955382f3 11654 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11655 if (intel_crtc == NULL)
11656 return;
11657
465c120c 11658 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11659 if (!primary)
11660 goto fail;
11661
11662 cursor = intel_cursor_plane_create(dev, pipe);
11663 if (!cursor)
11664 goto fail;
11665
465c120c 11666 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11667 cursor, &intel_crtc_funcs);
11668 if (ret)
11669 goto fail;
79e53945
JB
11670
11671 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11672 for (i = 0; i < 256; i++) {
11673 intel_crtc->lut_r[i] = i;
11674 intel_crtc->lut_g[i] = i;
11675 intel_crtc->lut_b[i] = i;
11676 }
11677
1f1c2e24
VS
11678 /*
11679 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11680 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11681 */
80824003
JB
11682 intel_crtc->pipe = pipe;
11683 intel_crtc->plane = pipe;
3a77c4c4 11684 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11685 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11686 intel_crtc->plane = !pipe;
80824003
JB
11687 }
11688
4b0e333e
CW
11689 intel_crtc->cursor_base = ~0;
11690 intel_crtc->cursor_cntl = ~0;
11691
8d7849db
VS
11692 init_waitqueue_head(&intel_crtc->vbl_wait);
11693
22fd0fab
JB
11694 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11695 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11696 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11697 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11698
79e53945 11699 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11700
11701 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11702 return;
11703
11704fail:
11705 if (primary)
11706 drm_plane_cleanup(primary);
11707 if (cursor)
11708 drm_plane_cleanup(cursor);
11709 kfree(intel_crtc);
79e53945
JB
11710}
11711
752aa88a
JB
11712enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11713{
11714 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11715 struct drm_device *dev = connector->base.dev;
752aa88a 11716
51fd371b 11717 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11718
11719 if (!encoder)
11720 return INVALID_PIPE;
11721
11722 return to_intel_crtc(encoder->crtc)->pipe;
11723}
11724
08d7b3d1 11725int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11726 struct drm_file *file)
08d7b3d1 11727{
08d7b3d1 11728 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
11729 struct drm_mode_object *drmmode_obj;
11730 struct intel_crtc *crtc;
08d7b3d1 11731
1cff8f6b
DV
11732 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11733 return -ENODEV;
08d7b3d1 11734
c05422d5
DV
11735 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11736 DRM_MODE_OBJECT_CRTC);
08d7b3d1 11737
c05422d5 11738 if (!drmmode_obj) {
08d7b3d1 11739 DRM_ERROR("no such CRTC id\n");
3f2c2057 11740 return -ENOENT;
08d7b3d1
CW
11741 }
11742
c05422d5
DV
11743 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11744 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11745
c05422d5 11746 return 0;
08d7b3d1
CW
11747}
11748
66a9278e 11749static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11750{
66a9278e
DV
11751 struct drm_device *dev = encoder->base.dev;
11752 struct intel_encoder *source_encoder;
79e53945 11753 int index_mask = 0;
79e53945
JB
11754 int entry = 0;
11755
66a9278e
DV
11756 list_for_each_entry(source_encoder,
11757 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11758 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11759 index_mask |= (1 << entry);
11760
79e53945
JB
11761 entry++;
11762 }
4ef69c7a 11763
79e53945
JB
11764 return index_mask;
11765}
11766
4d302442
CW
11767static bool has_edp_a(struct drm_device *dev)
11768{
11769 struct drm_i915_private *dev_priv = dev->dev_private;
11770
11771 if (!IS_MOBILE(dev))
11772 return false;
11773
11774 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11775 return false;
11776
e3589908 11777 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11778 return false;
11779
11780 return true;
11781}
11782
ba0fbca4
DL
11783const char *intel_output_name(int output)
11784{
11785 static const char *names[] = {
11786 [INTEL_OUTPUT_UNUSED] = "Unused",
11787 [INTEL_OUTPUT_ANALOG] = "Analog",
11788 [INTEL_OUTPUT_DVO] = "DVO",
11789 [INTEL_OUTPUT_SDVO] = "SDVO",
11790 [INTEL_OUTPUT_LVDS] = "LVDS",
11791 [INTEL_OUTPUT_TVOUT] = "TV",
11792 [INTEL_OUTPUT_HDMI] = "HDMI",
11793 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11794 [INTEL_OUTPUT_EDP] = "eDP",
11795 [INTEL_OUTPUT_DSI] = "DSI",
11796 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11797 };
11798
11799 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11800 return "Invalid";
11801
11802 return names[output];
11803}
11804
84b4e042
JB
11805static bool intel_crt_present(struct drm_device *dev)
11806{
11807 struct drm_i915_private *dev_priv = dev->dev_private;
11808
11809 if (IS_ULT(dev))
11810 return false;
11811
11812 if (IS_CHERRYVIEW(dev))
11813 return false;
11814
11815 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11816 return false;
11817
11818 return true;
11819}
11820
79e53945
JB
11821static void intel_setup_outputs(struct drm_device *dev)
11822{
725e30ad 11823 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11824 struct intel_encoder *encoder;
cb0953d7 11825 bool dpd_is_edp = false;
79e53945 11826
c9093354 11827 intel_lvds_init(dev);
79e53945 11828
84b4e042 11829 if (intel_crt_present(dev))
79935fca 11830 intel_crt_init(dev);
cb0953d7 11831
affa9354 11832 if (HAS_DDI(dev)) {
0e72a5b5
ED
11833 int found;
11834
11835 /* Haswell uses DDI functions to detect digital outputs */
11836 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11837 /* DDI A only supports eDP */
11838 if (found)
11839 intel_ddi_init(dev, PORT_A);
11840
11841 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11842 * register */
11843 found = I915_READ(SFUSE_STRAP);
11844
11845 if (found & SFUSE_STRAP_DDIB_DETECTED)
11846 intel_ddi_init(dev, PORT_B);
11847 if (found & SFUSE_STRAP_DDIC_DETECTED)
11848 intel_ddi_init(dev, PORT_C);
11849 if (found & SFUSE_STRAP_DDID_DETECTED)
11850 intel_ddi_init(dev, PORT_D);
11851 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11852 int found;
5d8a7752 11853 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11854
11855 if (has_edp_a(dev))
11856 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11857
dc0fa718 11858 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11859 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11860 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11861 if (!found)
e2debe91 11862 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11863 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11864 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11865 }
11866
dc0fa718 11867 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11868 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11869
dc0fa718 11870 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11871 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11872
5eb08b69 11873 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11874 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11875
270b3042 11876 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11877 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11878 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11879 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11880 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11881 PORT_B);
11882 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11883 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11884 }
11885
6f6005a5
JB
11886 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11887 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11888 PORT_C);
11889 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 11890 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 11891 }
19c03924 11892
9418c1f1
VS
11893 if (IS_CHERRYVIEW(dev)) {
11894 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11895 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11896 PORT_D);
11897 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11898 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11899 }
11900 }
11901
3cfca973 11902 intel_dsi_init(dev);
103a196f 11903 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 11904 bool found = false;
7d57382e 11905
e2debe91 11906 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11907 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 11908 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
11909 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11910 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 11911 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 11912 }
27185ae1 11913
e7281eab 11914 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11915 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 11916 }
13520b05
KH
11917
11918 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 11919
e2debe91 11920 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11921 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 11922 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 11923 }
27185ae1 11924
e2debe91 11925 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 11926
b01f2c3a
JB
11927 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11928 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 11929 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 11930 }
e7281eab 11931 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11932 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 11933 }
27185ae1 11934
b01f2c3a 11935 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 11936 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 11937 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 11938 } else if (IS_GEN2(dev))
79e53945
JB
11939 intel_dvo_init(dev);
11940
103a196f 11941 if (SUPPORTS_TV(dev))
79e53945
JB
11942 intel_tv_init(dev);
11943
7c8f8a70
RV
11944 intel_edp_psr_init(dev);
11945
4ef69c7a
CW
11946 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11947 encoder->base.possible_crtcs = encoder->crtc_mask;
11948 encoder->base.possible_clones =
66a9278e 11949 intel_encoder_clones(encoder);
79e53945 11950 }
47356eb6 11951
dde86e2d 11952 intel_init_pch_refclk(dev);
270b3042
DV
11953
11954 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
11955}
11956
11957static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11958{
60a5ca01 11959 struct drm_device *dev = fb->dev;
79e53945 11960 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 11961
ef2d633e 11962 drm_framebuffer_cleanup(fb);
60a5ca01 11963 mutex_lock(&dev->struct_mutex);
ef2d633e 11964 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
11965 drm_gem_object_unreference(&intel_fb->obj->base);
11966 mutex_unlock(&dev->struct_mutex);
79e53945
JB
11967 kfree(intel_fb);
11968}
11969
11970static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 11971 struct drm_file *file,
79e53945
JB
11972 unsigned int *handle)
11973{
11974 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 11975 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 11976
05394f39 11977 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
11978}
11979
11980static const struct drm_framebuffer_funcs intel_fb_funcs = {
11981 .destroy = intel_user_framebuffer_destroy,
11982 .create_handle = intel_user_framebuffer_create_handle,
11983};
11984
b5ea642a
DV
11985static int intel_framebuffer_init(struct drm_device *dev,
11986 struct intel_framebuffer *intel_fb,
11987 struct drm_mode_fb_cmd2 *mode_cmd,
11988 struct drm_i915_gem_object *obj)
79e53945 11989{
a57ce0b2 11990 int aligned_height;
a35cdaa0 11991 int pitch_limit;
79e53945
JB
11992 int ret;
11993
dd4916c5
DV
11994 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11995
c16ed4be
CW
11996 if (obj->tiling_mode == I915_TILING_Y) {
11997 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 11998 return -EINVAL;
c16ed4be 11999 }
57cd6508 12000
c16ed4be
CW
12001 if (mode_cmd->pitches[0] & 63) {
12002 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12003 mode_cmd->pitches[0]);
57cd6508 12004 return -EINVAL;
c16ed4be 12005 }
57cd6508 12006
a35cdaa0
CW
12007 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12008 pitch_limit = 32*1024;
12009 } else if (INTEL_INFO(dev)->gen >= 4) {
12010 if (obj->tiling_mode)
12011 pitch_limit = 16*1024;
12012 else
12013 pitch_limit = 32*1024;
12014 } else if (INTEL_INFO(dev)->gen >= 3) {
12015 if (obj->tiling_mode)
12016 pitch_limit = 8*1024;
12017 else
12018 pitch_limit = 16*1024;
12019 } else
12020 /* XXX DSPC is limited to 4k tiled */
12021 pitch_limit = 8*1024;
12022
12023 if (mode_cmd->pitches[0] > pitch_limit) {
12024 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12025 obj->tiling_mode ? "tiled" : "linear",
12026 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12027 return -EINVAL;
c16ed4be 12028 }
5d7bd705
VS
12029
12030 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12031 mode_cmd->pitches[0] != obj->stride) {
12032 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12033 mode_cmd->pitches[0], obj->stride);
5d7bd705 12034 return -EINVAL;
c16ed4be 12035 }
5d7bd705 12036
57779d06 12037 /* Reject formats not supported by any plane early. */
308e5bcb 12038 switch (mode_cmd->pixel_format) {
57779d06 12039 case DRM_FORMAT_C8:
04b3924d
VS
12040 case DRM_FORMAT_RGB565:
12041 case DRM_FORMAT_XRGB8888:
12042 case DRM_FORMAT_ARGB8888:
57779d06
VS
12043 break;
12044 case DRM_FORMAT_XRGB1555:
12045 case DRM_FORMAT_ARGB1555:
c16ed4be 12046 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12047 DRM_DEBUG("unsupported pixel format: %s\n",
12048 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12049 return -EINVAL;
c16ed4be 12050 }
57779d06
VS
12051 break;
12052 case DRM_FORMAT_XBGR8888:
12053 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12054 case DRM_FORMAT_XRGB2101010:
12055 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12056 case DRM_FORMAT_XBGR2101010:
12057 case DRM_FORMAT_ABGR2101010:
c16ed4be 12058 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12059 DRM_DEBUG("unsupported pixel format: %s\n",
12060 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12061 return -EINVAL;
c16ed4be 12062 }
b5626747 12063 break;
04b3924d
VS
12064 case DRM_FORMAT_YUYV:
12065 case DRM_FORMAT_UYVY:
12066 case DRM_FORMAT_YVYU:
12067 case DRM_FORMAT_VYUY:
c16ed4be 12068 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12069 DRM_DEBUG("unsupported pixel format: %s\n",
12070 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12071 return -EINVAL;
c16ed4be 12072 }
57cd6508
CW
12073 break;
12074 default:
4ee62c76
VS
12075 DRM_DEBUG("unsupported pixel format: %s\n",
12076 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12077 return -EINVAL;
12078 }
12079
90f9a336
VS
12080 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12081 if (mode_cmd->offsets[0] != 0)
12082 return -EINVAL;
12083
a57ce0b2
JB
12084 aligned_height = intel_align_height(dev, mode_cmd->height,
12085 obj->tiling_mode);
53155c0a
DV
12086 /* FIXME drm helper for size checks (especially planar formats)? */
12087 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12088 return -EINVAL;
12089
c7d73f6a
DV
12090 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12091 intel_fb->obj = obj;
80075d49 12092 intel_fb->obj->framebuffer_references++;
c7d73f6a 12093
79e53945
JB
12094 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12095 if (ret) {
12096 DRM_ERROR("framebuffer init failed %d\n", ret);
12097 return ret;
12098 }
12099
79e53945
JB
12100 return 0;
12101}
12102
79e53945
JB
12103static struct drm_framebuffer *
12104intel_user_framebuffer_create(struct drm_device *dev,
12105 struct drm_file *filp,
308e5bcb 12106 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12107{
05394f39 12108 struct drm_i915_gem_object *obj;
79e53945 12109
308e5bcb
JB
12110 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12111 mode_cmd->handles[0]));
c8725226 12112 if (&obj->base == NULL)
cce13ff7 12113 return ERR_PTR(-ENOENT);
79e53945 12114
d2dff872 12115 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12116}
12117
4520f53a 12118#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12119static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12120{
12121}
12122#endif
12123
79e53945 12124static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12125 .fb_create = intel_user_framebuffer_create,
0632fef6 12126 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12127};
12128
e70236a8
JB
12129/* Set up chip specific display functions */
12130static void intel_init_display(struct drm_device *dev)
12131{
12132 struct drm_i915_private *dev_priv = dev->dev_private;
12133
ee9300bb
DV
12134 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12135 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12136 else if (IS_CHERRYVIEW(dev))
12137 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12138 else if (IS_VALLEYVIEW(dev))
12139 dev_priv->display.find_dpll = vlv_find_best_dpll;
12140 else if (IS_PINEVIEW(dev))
12141 dev_priv->display.find_dpll = pnv_find_best_dpll;
12142 else
12143 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12144
affa9354 12145 if (HAS_DDI(dev)) {
0e8ffe1b 12146 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12147 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12148 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12149 dev_priv->display.crtc_enable = haswell_crtc_enable;
12150 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 12151 dev_priv->display.off = haswell_crtc_off;
262ca2b0
MR
12152 dev_priv->display.update_primary_plane =
12153 ironlake_update_primary_plane;
09b4ddf9 12154 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12155 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12156 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12157 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12158 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12159 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12160 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12161 dev_priv->display.update_primary_plane =
12162 ironlake_update_primary_plane;
89b667f8
JB
12163 } else if (IS_VALLEYVIEW(dev)) {
12164 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12165 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12166 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12167 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12168 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12169 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12170 dev_priv->display.update_primary_plane =
12171 i9xx_update_primary_plane;
f564048e 12172 } else {
0e8ffe1b 12173 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12174 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12175 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12176 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12177 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12178 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12179 dev_priv->display.update_primary_plane =
12180 i9xx_update_primary_plane;
f564048e 12181 }
e70236a8 12182
e70236a8 12183 /* Returns the core display clock speed */
25eb05fc
JB
12184 if (IS_VALLEYVIEW(dev))
12185 dev_priv->display.get_display_clock_speed =
12186 valleyview_get_display_clock_speed;
12187 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12188 dev_priv->display.get_display_clock_speed =
12189 i945_get_display_clock_speed;
12190 else if (IS_I915G(dev))
12191 dev_priv->display.get_display_clock_speed =
12192 i915_get_display_clock_speed;
257a7ffc 12193 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12194 dev_priv->display.get_display_clock_speed =
12195 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12196 else if (IS_PINEVIEW(dev))
12197 dev_priv->display.get_display_clock_speed =
12198 pnv_get_display_clock_speed;
e70236a8
JB
12199 else if (IS_I915GM(dev))
12200 dev_priv->display.get_display_clock_speed =
12201 i915gm_get_display_clock_speed;
12202 else if (IS_I865G(dev))
12203 dev_priv->display.get_display_clock_speed =
12204 i865_get_display_clock_speed;
f0f8a9ce 12205 else if (IS_I85X(dev))
e70236a8
JB
12206 dev_priv->display.get_display_clock_speed =
12207 i855_get_display_clock_speed;
12208 else /* 852, 830 */
12209 dev_priv->display.get_display_clock_speed =
12210 i830_get_display_clock_speed;
12211
7f8a8569 12212 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12213 if (IS_GEN5(dev)) {
674cf967 12214 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12215 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12216 } else if (IS_GEN6(dev)) {
674cf967 12217 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12218 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12219 dev_priv->display.modeset_global_resources =
12220 snb_modeset_global_resources;
357555c0
JB
12221 } else if (IS_IVYBRIDGE(dev)) {
12222 /* FIXME: detect B0+ stepping and use auto training */
12223 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12224 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12225 dev_priv->display.modeset_global_resources =
12226 ivb_modeset_global_resources;
4e0bbc31 12227 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12228 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12229 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12230 dev_priv->display.modeset_global_resources =
12231 haswell_modeset_global_resources;
a0e63c22 12232 }
6067aaea 12233 } else if (IS_G4X(dev)) {
e0dac65e 12234 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12235 } else if (IS_VALLEYVIEW(dev)) {
12236 dev_priv->display.modeset_global_resources =
12237 valleyview_modeset_global_resources;
9ca2fe73 12238 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12239 }
8c9f3aaf
JB
12240
12241 /* Default just returns -ENODEV to indicate unsupported */
12242 dev_priv->display.queue_flip = intel_default_queue_flip;
12243
12244 switch (INTEL_INFO(dev)->gen) {
12245 case 2:
12246 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12247 break;
12248
12249 case 3:
12250 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12251 break;
12252
12253 case 4:
12254 case 5:
12255 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12256 break;
12257
12258 case 6:
12259 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12260 break;
7c9017e5 12261 case 7:
4e0bbc31 12262 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12263 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12264 break;
8c9f3aaf 12265 }
7bd688cd
JN
12266
12267 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12268}
12269
b690e96c
JB
12270/*
12271 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12272 * resume, or other times. This quirk makes sure that's the case for
12273 * affected systems.
12274 */
0206e353 12275static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12276{
12277 struct drm_i915_private *dev_priv = dev->dev_private;
12278
12279 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12280 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12281}
12282
435793df
KP
12283/*
12284 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12285 */
12286static void quirk_ssc_force_disable(struct drm_device *dev)
12287{
12288 struct drm_i915_private *dev_priv = dev->dev_private;
12289 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12290 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12291}
12292
4dca20ef 12293/*
5a15ab5b
CE
12294 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12295 * brightness value
4dca20ef
CE
12296 */
12297static void quirk_invert_brightness(struct drm_device *dev)
12298{
12299 struct drm_i915_private *dev_priv = dev->dev_private;
12300 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12301 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12302}
12303
b690e96c
JB
12304struct intel_quirk {
12305 int device;
12306 int subsystem_vendor;
12307 int subsystem_device;
12308 void (*hook)(struct drm_device *dev);
12309};
12310
5f85f176
EE
12311/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12312struct intel_dmi_quirk {
12313 void (*hook)(struct drm_device *dev);
12314 const struct dmi_system_id (*dmi_id_list)[];
12315};
12316
12317static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12318{
12319 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12320 return 1;
12321}
12322
12323static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12324 {
12325 .dmi_id_list = &(const struct dmi_system_id[]) {
12326 {
12327 .callback = intel_dmi_reverse_brightness,
12328 .ident = "NCR Corporation",
12329 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12330 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12331 },
12332 },
12333 { } /* terminating entry */
12334 },
12335 .hook = quirk_invert_brightness,
12336 },
12337};
12338
c43b5634 12339static struct intel_quirk intel_quirks[] = {
b690e96c 12340 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12341 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12342
b690e96c
JB
12343 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12344 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12345
b690e96c
JB
12346 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12347 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12348
435793df
KP
12349 /* Lenovo U160 cannot use SSC on LVDS */
12350 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12351
12352 /* Sony Vaio Y cannot use SSC on LVDS */
12353 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12354
be505f64
AH
12355 /* Acer Aspire 5734Z must invert backlight brightness */
12356 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12357
12358 /* Acer/eMachines G725 */
12359 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12360
12361 /* Acer/eMachines e725 */
12362 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12363
12364 /* Acer/Packard Bell NCL20 */
12365 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12366
12367 /* Acer Aspire 4736Z */
12368 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12369
12370 /* Acer Aspire 5336 */
12371 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
b690e96c
JB
12372};
12373
12374static void intel_init_quirks(struct drm_device *dev)
12375{
12376 struct pci_dev *d = dev->pdev;
12377 int i;
12378
12379 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12380 struct intel_quirk *q = &intel_quirks[i];
12381
12382 if (d->device == q->device &&
12383 (d->subsystem_vendor == q->subsystem_vendor ||
12384 q->subsystem_vendor == PCI_ANY_ID) &&
12385 (d->subsystem_device == q->subsystem_device ||
12386 q->subsystem_device == PCI_ANY_ID))
12387 q->hook(dev);
12388 }
5f85f176
EE
12389 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12390 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12391 intel_dmi_quirks[i].hook(dev);
12392 }
b690e96c
JB
12393}
12394
9cce37f4
JB
12395/* Disable the VGA plane that we never use */
12396static void i915_disable_vga(struct drm_device *dev)
12397{
12398 struct drm_i915_private *dev_priv = dev->dev_private;
12399 u8 sr1;
766aa1c4 12400 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12401
2b37c616 12402 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12403 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12404 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12405 sr1 = inb(VGA_SR_DATA);
12406 outb(sr1 | 1<<5, VGA_SR_DATA);
12407 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12408 udelay(300);
12409
12410 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12411 POSTING_READ(vga_reg);
12412}
12413
f817586c
DV
12414void intel_modeset_init_hw(struct drm_device *dev)
12415{
a8f78b58
ED
12416 intel_prepare_ddi(dev);
12417
f8bf63fd
VS
12418 if (IS_VALLEYVIEW(dev))
12419 vlv_update_cdclk(dev);
12420
f817586c
DV
12421 intel_init_clock_gating(dev);
12422
5382f5f3 12423 intel_reset_dpio(dev);
40e9cf64 12424
8090c6b9 12425 intel_enable_gt_powersave(dev);
f817586c
DV
12426}
12427
7d708ee4
ID
12428void intel_modeset_suspend_hw(struct drm_device *dev)
12429{
12430 intel_suspend_hw(dev);
12431}
12432
79e53945
JB
12433void intel_modeset_init(struct drm_device *dev)
12434{
652c393a 12435 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12436 int sprite, ret;
8cc87b75 12437 enum pipe pipe;
46f297fb 12438 struct intel_crtc *crtc;
79e53945
JB
12439
12440 drm_mode_config_init(dev);
12441
12442 dev->mode_config.min_width = 0;
12443 dev->mode_config.min_height = 0;
12444
019d96cb
DA
12445 dev->mode_config.preferred_depth = 24;
12446 dev->mode_config.prefer_shadow = 1;
12447
e6ecefaa 12448 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12449
b690e96c
JB
12450 intel_init_quirks(dev);
12451
1fa61106
ED
12452 intel_init_pm(dev);
12453
e3c74757
BW
12454 if (INTEL_INFO(dev)->num_pipes == 0)
12455 return;
12456
e70236a8
JB
12457 intel_init_display(dev);
12458
a6c45cf0
CW
12459 if (IS_GEN2(dev)) {
12460 dev->mode_config.max_width = 2048;
12461 dev->mode_config.max_height = 2048;
12462 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12463 dev->mode_config.max_width = 4096;
12464 dev->mode_config.max_height = 4096;
79e53945 12465 } else {
a6c45cf0
CW
12466 dev->mode_config.max_width = 8192;
12467 dev->mode_config.max_height = 8192;
79e53945 12468 }
068be561
DL
12469
12470 if (IS_GEN2(dev)) {
12471 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12472 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12473 } else {
12474 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12475 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12476 }
12477
5d4545ae 12478 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12479
28c97730 12480 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12481 INTEL_INFO(dev)->num_pipes,
12482 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12483
8cc87b75
DL
12484 for_each_pipe(pipe) {
12485 intel_crtc_init(dev, pipe);
1fe47785
DL
12486 for_each_sprite(pipe, sprite) {
12487 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12488 if (ret)
06da8da2 12489 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12490 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12491 }
79e53945
JB
12492 }
12493
f42bb70d 12494 intel_init_dpio(dev);
5382f5f3 12495 intel_reset_dpio(dev);
f42bb70d 12496
79f689aa 12497 intel_cpu_pll_init(dev);
e72f9fbf 12498 intel_shared_dpll_init(dev);
ee7b9f93 12499
9cce37f4
JB
12500 /* Just disable it once at startup */
12501 i915_disable_vga(dev);
79e53945 12502 intel_setup_outputs(dev);
11be49eb
CW
12503
12504 /* Just in case the BIOS is doing something questionable. */
12505 intel_disable_fbc(dev);
fa9fa083 12506
6e9f798d 12507 drm_modeset_lock_all(dev);
fa9fa083 12508 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12509 drm_modeset_unlock_all(dev);
46f297fb 12510
d3fcc808 12511 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12512 if (!crtc->active)
12513 continue;
12514
46f297fb 12515 /*
46f297fb
JB
12516 * Note that reserving the BIOS fb up front prevents us
12517 * from stuffing other stolen allocations like the ring
12518 * on top. This prevents some ugliness at boot time, and
12519 * can even allow for smooth boot transitions if the BIOS
12520 * fb is large enough for the active pipe configuration.
12521 */
12522 if (dev_priv->display.get_plane_config) {
12523 dev_priv->display.get_plane_config(crtc,
12524 &crtc->plane_config);
12525 /*
12526 * If the fb is shared between multiple heads, we'll
12527 * just get the first one.
12528 */
484b41dd 12529 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12530 }
46f297fb 12531 }
2c7111db
CW
12532}
12533
7fad798e
DV
12534static void intel_enable_pipe_a(struct drm_device *dev)
12535{
12536 struct intel_connector *connector;
12537 struct drm_connector *crt = NULL;
12538 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12539 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12540
12541 /* We can't just switch on the pipe A, we need to set things up with a
12542 * proper mode and output configuration. As a gross hack, enable pipe A
12543 * by enabling the load detect pipe once. */
12544 list_for_each_entry(connector,
12545 &dev->mode_config.connector_list,
12546 base.head) {
12547 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12548 crt = &connector->base;
12549 break;
12550 }
12551 }
12552
12553 if (!crt)
12554 return;
12555
51fd371b
RC
12556 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12557 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12558
652c393a 12559
7fad798e
DV
12560}
12561
fa555837
DV
12562static bool
12563intel_check_plane_mapping(struct intel_crtc *crtc)
12564{
7eb552ae
BW
12565 struct drm_device *dev = crtc->base.dev;
12566 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12567 u32 reg, val;
12568
7eb552ae 12569 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12570 return true;
12571
12572 reg = DSPCNTR(!crtc->plane);
12573 val = I915_READ(reg);
12574
12575 if ((val & DISPLAY_PLANE_ENABLE) &&
12576 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12577 return false;
12578
12579 return true;
12580}
12581
24929352
DV
12582static void intel_sanitize_crtc(struct intel_crtc *crtc)
12583{
12584 struct drm_device *dev = crtc->base.dev;
12585 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12586 u32 reg;
24929352 12587
24929352 12588 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12589 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12590 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12591
d3eaf884
VS
12592 /* restore vblank interrupts to correct state */
12593 if (crtc->active)
12594 drm_vblank_on(dev, crtc->pipe);
12595 else
12596 drm_vblank_off(dev, crtc->pipe);
12597
24929352 12598 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12599 * disable the crtc (and hence change the state) if it is wrong. Note
12600 * that gen4+ has a fixed plane -> pipe mapping. */
12601 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12602 struct intel_connector *connector;
12603 bool plane;
12604
24929352
DV
12605 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12606 crtc->base.base.id);
12607
12608 /* Pipe has the wrong plane attached and the plane is active.
12609 * Temporarily change the plane mapping and disable everything
12610 * ... */
12611 plane = crtc->plane;
12612 crtc->plane = !plane;
12613 dev_priv->display.crtc_disable(&crtc->base);
12614 crtc->plane = plane;
12615
12616 /* ... and break all links. */
12617 list_for_each_entry(connector, &dev->mode_config.connector_list,
12618 base.head) {
12619 if (connector->encoder->base.crtc != &crtc->base)
12620 continue;
12621
7f1950fb
EE
12622 connector->base.dpms = DRM_MODE_DPMS_OFF;
12623 connector->base.encoder = NULL;
24929352 12624 }
7f1950fb
EE
12625 /* multiple connectors may have the same encoder:
12626 * handle them and break crtc link separately */
12627 list_for_each_entry(connector, &dev->mode_config.connector_list,
12628 base.head)
12629 if (connector->encoder->base.crtc == &crtc->base) {
12630 connector->encoder->base.crtc = NULL;
12631 connector->encoder->connectors_active = false;
12632 }
24929352
DV
12633
12634 WARN_ON(crtc->active);
12635 crtc->base.enabled = false;
12636 }
24929352 12637
7fad798e
DV
12638 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12639 crtc->pipe == PIPE_A && !crtc->active) {
12640 /* BIOS forgot to enable pipe A, this mostly happens after
12641 * resume. Force-enable the pipe to fix this, the update_dpms
12642 * call below we restore the pipe to the right state, but leave
12643 * the required bits on. */
12644 intel_enable_pipe_a(dev);
12645 }
12646
24929352
DV
12647 /* Adjust the state of the output pipe according to whether we
12648 * have active connectors/encoders. */
12649 intel_crtc_update_dpms(&crtc->base);
12650
12651 if (crtc->active != crtc->base.enabled) {
12652 struct intel_encoder *encoder;
12653
12654 /* This can happen either due to bugs in the get_hw_state
12655 * functions or because the pipe is force-enabled due to the
12656 * pipe A quirk. */
12657 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12658 crtc->base.base.id,
12659 crtc->base.enabled ? "enabled" : "disabled",
12660 crtc->active ? "enabled" : "disabled");
12661
12662 crtc->base.enabled = crtc->active;
12663
12664 /* Because we only establish the connector -> encoder ->
12665 * crtc links if something is active, this means the
12666 * crtc is now deactivated. Break the links. connector
12667 * -> encoder links are only establish when things are
12668 * actually up, hence no need to break them. */
12669 WARN_ON(crtc->active);
12670
12671 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12672 WARN_ON(encoder->connectors_active);
12673 encoder->base.crtc = NULL;
12674 }
12675 }
c5ab3bc0
DV
12676
12677 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12678 /*
12679 * We start out with underrun reporting disabled to avoid races.
12680 * For correct bookkeeping mark this on active crtcs.
12681 *
c5ab3bc0
DV
12682 * Also on gmch platforms we dont have any hardware bits to
12683 * disable the underrun reporting. Which means we need to start
12684 * out with underrun reporting disabled also on inactive pipes,
12685 * since otherwise we'll complain about the garbage we read when
12686 * e.g. coming up after runtime pm.
12687 *
4cc31489
DV
12688 * No protection against concurrent access is required - at
12689 * worst a fifo underrun happens which also sets this to false.
12690 */
12691 crtc->cpu_fifo_underrun_disabled = true;
12692 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12693
12694 update_scanline_offset(crtc);
4cc31489 12695 }
24929352
DV
12696}
12697
12698static void intel_sanitize_encoder(struct intel_encoder *encoder)
12699{
12700 struct intel_connector *connector;
12701 struct drm_device *dev = encoder->base.dev;
12702
12703 /* We need to check both for a crtc link (meaning that the
12704 * encoder is active and trying to read from a pipe) and the
12705 * pipe itself being active. */
12706 bool has_active_crtc = encoder->base.crtc &&
12707 to_intel_crtc(encoder->base.crtc)->active;
12708
12709 if (encoder->connectors_active && !has_active_crtc) {
12710 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12711 encoder->base.base.id,
8e329a03 12712 encoder->base.name);
24929352
DV
12713
12714 /* Connector is active, but has no active pipe. This is
12715 * fallout from our resume register restoring. Disable
12716 * the encoder manually again. */
12717 if (encoder->base.crtc) {
12718 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12719 encoder->base.base.id,
8e329a03 12720 encoder->base.name);
24929352
DV
12721 encoder->disable(encoder);
12722 }
7f1950fb
EE
12723 encoder->base.crtc = NULL;
12724 encoder->connectors_active = false;
24929352
DV
12725
12726 /* Inconsistent output/port/pipe state happens presumably due to
12727 * a bug in one of the get_hw_state functions. Or someplace else
12728 * in our code, like the register restore mess on resume. Clamp
12729 * things to off as a safer default. */
12730 list_for_each_entry(connector,
12731 &dev->mode_config.connector_list,
12732 base.head) {
12733 if (connector->encoder != encoder)
12734 continue;
7f1950fb
EE
12735 connector->base.dpms = DRM_MODE_DPMS_OFF;
12736 connector->base.encoder = NULL;
24929352
DV
12737 }
12738 }
12739 /* Enabled encoders without active connectors will be fixed in
12740 * the crtc fixup. */
12741}
12742
04098753 12743void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12744{
12745 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12746 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12747
04098753
ID
12748 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12749 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12750 i915_disable_vga(dev);
12751 }
12752}
12753
12754void i915_redisable_vga(struct drm_device *dev)
12755{
12756 struct drm_i915_private *dev_priv = dev->dev_private;
12757
8dc8a27c
PZ
12758 /* This function can be called both from intel_modeset_setup_hw_state or
12759 * at a very early point in our resume sequence, where the power well
12760 * structures are not yet restored. Since this function is at a very
12761 * paranoid "someone might have enabled VGA while we were not looking"
12762 * level, just check if the power well is enabled instead of trying to
12763 * follow the "don't touch the power well if we don't need it" policy
12764 * the rest of the driver uses. */
04098753 12765 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12766 return;
12767
04098753 12768 i915_redisable_vga_power_on(dev);
0fde901f
KM
12769}
12770
98ec7739
VS
12771static bool primary_get_hw_state(struct intel_crtc *crtc)
12772{
12773 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12774
12775 if (!crtc->active)
12776 return false;
12777
12778 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12779}
12780
30e984df 12781static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12782{
12783 struct drm_i915_private *dev_priv = dev->dev_private;
12784 enum pipe pipe;
24929352
DV
12785 struct intel_crtc *crtc;
12786 struct intel_encoder *encoder;
12787 struct intel_connector *connector;
5358901f 12788 int i;
24929352 12789
d3fcc808 12790 for_each_intel_crtc(dev, crtc) {
88adfff1 12791 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12792
9953599b
DV
12793 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12794
0e8ffe1b
DV
12795 crtc->active = dev_priv->display.get_pipe_config(crtc,
12796 &crtc->config);
24929352
DV
12797
12798 crtc->base.enabled = crtc->active;
98ec7739 12799 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12800
12801 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12802 crtc->base.base.id,
12803 crtc->active ? "enabled" : "disabled");
12804 }
12805
5358901f 12806 /* FIXME: Smash this into the new shared dpll infrastructure. */
affa9354 12807 if (HAS_DDI(dev))
6441ab5f
PZ
12808 intel_ddi_setup_hw_pll_state(dev);
12809
5358901f
DV
12810 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12811 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12812
12813 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12814 pll->active = 0;
d3fcc808 12815 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12816 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12817 pll->active++;
12818 }
12819 pll->refcount = pll->active;
12820
35c95375
DV
12821 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12822 pll->name, pll->refcount, pll->on);
5358901f
DV
12823 }
12824
24929352
DV
12825 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12826 base.head) {
12827 pipe = 0;
12828
12829 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12830 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12831 encoder->base.crtc = &crtc->base;
1d37b689 12832 encoder->get_config(encoder, &crtc->config);
24929352
DV
12833 } else {
12834 encoder->base.crtc = NULL;
12835 }
12836
12837 encoder->connectors_active = false;
6f2bcceb 12838 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12839 encoder->base.base.id,
8e329a03 12840 encoder->base.name,
24929352 12841 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12842 pipe_name(pipe));
24929352
DV
12843 }
12844
12845 list_for_each_entry(connector, &dev->mode_config.connector_list,
12846 base.head) {
12847 if (connector->get_hw_state(connector)) {
12848 connector->base.dpms = DRM_MODE_DPMS_ON;
12849 connector->encoder->connectors_active = true;
12850 connector->base.encoder = &connector->encoder->base;
12851 } else {
12852 connector->base.dpms = DRM_MODE_DPMS_OFF;
12853 connector->base.encoder = NULL;
12854 }
12855 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12856 connector->base.base.id,
c23cc417 12857 connector->base.name,
24929352
DV
12858 connector->base.encoder ? "enabled" : "disabled");
12859 }
30e984df
DV
12860}
12861
12862/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12863 * and i915 state tracking structures. */
12864void intel_modeset_setup_hw_state(struct drm_device *dev,
12865 bool force_restore)
12866{
12867 struct drm_i915_private *dev_priv = dev->dev_private;
12868 enum pipe pipe;
30e984df
DV
12869 struct intel_crtc *crtc;
12870 struct intel_encoder *encoder;
35c95375 12871 int i;
30e984df
DV
12872
12873 intel_modeset_readout_hw_state(dev);
24929352 12874
babea61d
JB
12875 /*
12876 * Now that we have the config, copy it to each CRTC struct
12877 * Note that this could go away if we move to using crtc_config
12878 * checking everywhere.
12879 */
d3fcc808 12880 for_each_intel_crtc(dev, crtc) {
d330a953 12881 if (crtc->active && i915.fastboot) {
f6a83288 12882 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
12883 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12884 crtc->base.base.id);
12885 drm_mode_debug_printmodeline(&crtc->base.mode);
12886 }
12887 }
12888
24929352
DV
12889 /* HW state is read out, now we need to sanitize this mess. */
12890 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12891 base.head) {
12892 intel_sanitize_encoder(encoder);
12893 }
12894
12895 for_each_pipe(pipe) {
12896 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12897 intel_sanitize_crtc(crtc);
c0b03411 12898 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 12899 }
9a935856 12900
35c95375
DV
12901 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12902 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12903
12904 if (!pll->on || pll->active)
12905 continue;
12906
12907 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12908
12909 pll->disable(dev_priv, pll);
12910 pll->on = false;
12911 }
12912
96f90c54 12913 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
12914 ilk_wm_get_hw_state(dev);
12915
45e2b5f6 12916 if (force_restore) {
7d0bc1ea
VS
12917 i915_redisable_vga(dev);
12918
f30da187
DV
12919 /*
12920 * We need to use raw interfaces for restoring state to avoid
12921 * checking (bogus) intermediate states.
12922 */
45e2b5f6 12923 for_each_pipe(pipe) {
b5644d05
JB
12924 struct drm_crtc *crtc =
12925 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
12926
12927 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 12928 crtc->primary->fb);
45e2b5f6
DV
12929 }
12930 } else {
12931 intel_modeset_update_staged_output_state(dev);
12932 }
8af6cf88
DV
12933
12934 intel_modeset_check_state(dev);
2c7111db
CW
12935}
12936
12937void intel_modeset_gem_init(struct drm_device *dev)
12938{
484b41dd 12939 struct drm_crtc *c;
2ff8fde1 12940 struct drm_i915_gem_object *obj;
484b41dd 12941
ae48434c
ID
12942 mutex_lock(&dev->struct_mutex);
12943 intel_init_gt_powersave(dev);
12944 mutex_unlock(&dev->struct_mutex);
12945
1833b134 12946 intel_modeset_init_hw(dev);
02e792fb
DV
12947
12948 intel_setup_overlay(dev);
484b41dd
JB
12949
12950 /*
12951 * Make sure any fbs we allocated at startup are properly
12952 * pinned & fenced. When we do the allocation it's too early
12953 * for this.
12954 */
12955 mutex_lock(&dev->struct_mutex);
70e1e0ec 12956 for_each_crtc(dev, c) {
2ff8fde1
MR
12957 obj = intel_fb_obj(c->primary->fb);
12958 if (obj == NULL)
484b41dd
JB
12959 continue;
12960
2ff8fde1 12961 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
12962 DRM_ERROR("failed to pin boot fb on pipe %d\n",
12963 to_intel_crtc(c)->pipe);
66e514c1
DA
12964 drm_framebuffer_unreference(c->primary->fb);
12965 c->primary->fb = NULL;
484b41dd
JB
12966 }
12967 }
12968 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12969}
12970
4932e2c3
ID
12971void intel_connector_unregister(struct intel_connector *intel_connector)
12972{
12973 struct drm_connector *connector = &intel_connector->base;
12974
12975 intel_panel_destroy_backlight(connector);
12976 drm_sysfs_connector_remove(connector);
12977}
12978
79e53945
JB
12979void intel_modeset_cleanup(struct drm_device *dev)
12980{
652c393a 12981 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 12982 struct drm_connector *connector;
652c393a 12983
fd0c0642
DV
12984 /*
12985 * Interrupts and polling as the first thing to avoid creating havoc.
12986 * Too much stuff here (turning of rps, connectors, ...) would
12987 * experience fancy races otherwise.
12988 */
12989 drm_irq_uninstall(dev);
12990 cancel_work_sync(&dev_priv->hotplug_work);
12991 /*
12992 * Due to the hpd irq storm handling the hotplug work can re-arm the
12993 * poll handlers. Hence disable polling after hpd handling is shut down.
12994 */
f87ea761 12995 drm_kms_helper_poll_fini(dev);
fd0c0642 12996
652c393a
JB
12997 mutex_lock(&dev->struct_mutex);
12998
723bfd70
JB
12999 intel_unregister_dsm_handler();
13000
973d04f9 13001 intel_disable_fbc(dev);
e70236a8 13002
8090c6b9 13003 intel_disable_gt_powersave(dev);
0cdab21f 13004
930ebb46
DV
13005 ironlake_teardown_rc6(dev);
13006
69341a5e
KH
13007 mutex_unlock(&dev->struct_mutex);
13008
1630fe75
CW
13009 /* flush any delayed tasks or pending work */
13010 flush_scheduled_work();
13011
db31af1d
JN
13012 /* destroy the backlight and sysfs files before encoders/connectors */
13013 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13014 struct intel_connector *intel_connector;
13015
13016 intel_connector = to_intel_connector(connector);
13017 intel_connector->unregister(intel_connector);
db31af1d 13018 }
d9255d57 13019
79e53945 13020 drm_mode_config_cleanup(dev);
4d7bb011
DV
13021
13022 intel_cleanup_overlay(dev);
ae48434c
ID
13023
13024 mutex_lock(&dev->struct_mutex);
13025 intel_cleanup_gt_powersave(dev);
13026 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13027}
13028
f1c79df3
ZW
13029/*
13030 * Return which encoder is currently attached for connector.
13031 */
df0e9248 13032struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13033{
df0e9248
CW
13034 return &intel_attached_encoder(connector)->base;
13035}
f1c79df3 13036
df0e9248
CW
13037void intel_connector_attach_encoder(struct intel_connector *connector,
13038 struct intel_encoder *encoder)
13039{
13040 connector->encoder = encoder;
13041 drm_mode_connector_attach_encoder(&connector->base,
13042 &encoder->base);
79e53945 13043}
28d52043
DA
13044
13045/*
13046 * set vga decode state - true == enable VGA decode
13047 */
13048int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13049{
13050 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13051 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13052 u16 gmch_ctrl;
13053
75fa041d
CW
13054 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13055 DRM_ERROR("failed to read control word\n");
13056 return -EIO;
13057 }
13058
c0cc8a55
CW
13059 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13060 return 0;
13061
28d52043
DA
13062 if (state)
13063 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13064 else
13065 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13066
13067 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13068 DRM_ERROR("failed to write control word\n");
13069 return -EIO;
13070 }
13071
28d52043
DA
13072 return 0;
13073}
c4a1d9e4 13074
c4a1d9e4 13075struct intel_display_error_state {
ff57f1b0
PZ
13076
13077 u32 power_well_driver;
13078
63b66e5b
CW
13079 int num_transcoders;
13080
c4a1d9e4
CW
13081 struct intel_cursor_error_state {
13082 u32 control;
13083 u32 position;
13084 u32 base;
13085 u32 size;
52331309 13086 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13087
13088 struct intel_pipe_error_state {
ddf9c536 13089 bool power_domain_on;
c4a1d9e4 13090 u32 source;
f301b1e1 13091 u32 stat;
52331309 13092 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13093
13094 struct intel_plane_error_state {
13095 u32 control;
13096 u32 stride;
13097 u32 size;
13098 u32 pos;
13099 u32 addr;
13100 u32 surface;
13101 u32 tile_offset;
52331309 13102 } plane[I915_MAX_PIPES];
63b66e5b
CW
13103
13104 struct intel_transcoder_error_state {
ddf9c536 13105 bool power_domain_on;
63b66e5b
CW
13106 enum transcoder cpu_transcoder;
13107
13108 u32 conf;
13109
13110 u32 htotal;
13111 u32 hblank;
13112 u32 hsync;
13113 u32 vtotal;
13114 u32 vblank;
13115 u32 vsync;
13116 } transcoder[4];
c4a1d9e4
CW
13117};
13118
13119struct intel_display_error_state *
13120intel_display_capture_error_state(struct drm_device *dev)
13121{
fbee40df 13122 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13123 struct intel_display_error_state *error;
63b66e5b
CW
13124 int transcoders[] = {
13125 TRANSCODER_A,
13126 TRANSCODER_B,
13127 TRANSCODER_C,
13128 TRANSCODER_EDP,
13129 };
c4a1d9e4
CW
13130 int i;
13131
63b66e5b
CW
13132 if (INTEL_INFO(dev)->num_pipes == 0)
13133 return NULL;
13134
9d1cb914 13135 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13136 if (error == NULL)
13137 return NULL;
13138
190be112 13139 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13140 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13141
52331309 13142 for_each_pipe(i) {
ddf9c536 13143 error->pipe[i].power_domain_on =
bfafe93a
ID
13144 intel_display_power_enabled_unlocked(dev_priv,
13145 POWER_DOMAIN_PIPE(i));
ddf9c536 13146 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13147 continue;
13148
5efb3e28
VS
13149 error->cursor[i].control = I915_READ(CURCNTR(i));
13150 error->cursor[i].position = I915_READ(CURPOS(i));
13151 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13152
13153 error->plane[i].control = I915_READ(DSPCNTR(i));
13154 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13155 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13156 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13157 error->plane[i].pos = I915_READ(DSPPOS(i));
13158 }
ca291363
PZ
13159 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13160 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13161 if (INTEL_INFO(dev)->gen >= 4) {
13162 error->plane[i].surface = I915_READ(DSPSURF(i));
13163 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13164 }
13165
c4a1d9e4 13166 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1
ID
13167
13168 if (!HAS_PCH_SPLIT(dev))
13169 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13170 }
13171
13172 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13173 if (HAS_DDI(dev_priv->dev))
13174 error->num_transcoders++; /* Account for eDP. */
13175
13176 for (i = 0; i < error->num_transcoders; i++) {
13177 enum transcoder cpu_transcoder = transcoders[i];
13178
ddf9c536 13179 error->transcoder[i].power_domain_on =
bfafe93a 13180 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13181 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13182 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13183 continue;
13184
63b66e5b
CW
13185 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13186
13187 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13188 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13189 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13190 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13191 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13192 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13193 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13194 }
13195
13196 return error;
13197}
13198
edc3d884
MK
13199#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13200
c4a1d9e4 13201void
edc3d884 13202intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13203 struct drm_device *dev,
13204 struct intel_display_error_state *error)
13205{
13206 int i;
13207
63b66e5b
CW
13208 if (!error)
13209 return;
13210
edc3d884 13211 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13212 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13213 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13214 error->power_well_driver);
52331309 13215 for_each_pipe(i) {
edc3d884 13216 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13217 err_printf(m, " Power: %s\n",
13218 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13219 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13220 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13221
13222 err_printf(m, "Plane [%d]:\n", i);
13223 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13224 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13225 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13226 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13227 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13228 }
4b71a570 13229 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13230 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13231 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13232 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13233 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13234 }
13235
edc3d884
MK
13236 err_printf(m, "Cursor [%d]:\n", i);
13237 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13238 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13239 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13240 }
63b66e5b
CW
13241
13242 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13243 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13244 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13245 err_printf(m, " Power: %s\n",
13246 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13247 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13248 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13249 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13250 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13251 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13252 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13253 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13254 }
c4a1d9e4 13255}
This page took 2.215239 seconds and 5 git commands to generate.