drm/i915: Early alloc request in execbuff
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
468c6816 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
e981e7b1
TD
143#define RING_EXECLIST_QFULL (1 << 0x2)
144#define RING_EXECLIST1_VALID (1 << 0x3)
145#define RING_EXECLIST0_VALID (1 << 0x4)
146#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147#define RING_EXECLIST1_ACTIVE (1 << 0x11)
148#define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
156
157#define CTX_LRI_HEADER_0 0x01
158#define CTX_CONTEXT_CONTROL 0x02
159#define CTX_RING_HEAD 0x04
160#define CTX_RING_TAIL 0x06
161#define CTX_RING_BUFFER_START 0x08
162#define CTX_RING_BUFFER_CONTROL 0x0a
163#define CTX_BB_HEAD_U 0x0c
164#define CTX_BB_HEAD_L 0x0e
165#define CTX_BB_STATE 0x10
166#define CTX_SECOND_BB_HEAD_U 0x12
167#define CTX_SECOND_BB_HEAD_L 0x14
168#define CTX_SECOND_BB_STATE 0x16
169#define CTX_BB_PER_CTX_PTR 0x18
170#define CTX_RCS_INDIRECT_CTX 0x1a
171#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172#define CTX_LRI_HEADER_1 0x21
173#define CTX_CTX_TIMESTAMP 0x22
174#define CTX_PDP3_UDW 0x24
175#define CTX_PDP3_LDW 0x26
176#define CTX_PDP2_UDW 0x28
177#define CTX_PDP2_LDW 0x2a
178#define CTX_PDP1_UDW 0x2c
179#define CTX_PDP1_LDW 0x2e
180#define CTX_PDP0_UDW 0x30
181#define CTX_PDP0_LDW 0x32
182#define CTX_LRI_HEADER_2 0x41
183#define CTX_R_PWR_CLK_STATE 0x42
184#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
84b790f8
BW
186#define GEN8_CTX_VALID (1<<0)
187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188#define GEN8_CTX_FORCE_RESTORE (1<<2)
189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
190#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
191
192#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
d7b2633d 193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
e5815a2e
MT
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198}
199
84b790f8
BW
200enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205};
206#define GEN8_CTX_MODE_SHIFT 3
207enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212};
213#define GEN8_CTX_ID_SHIFT 32
17ee950d 214#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 215
7ba717cf
TD
216static int intel_lr_context_pin(struct intel_engine_cs *ring,
217 struct intel_context *ctx);
218
73e4d07f
OM
219/**
220 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
221 * @dev: DRM device.
222 * @enable_execlists: value of i915.enable_execlists module parameter.
223 *
224 * Only certain platforms support Execlists (the prerequisites being
27401d12 225 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
226 *
227 * Return: 1 if Execlists is supported and has to be enabled.
228 */
127f1003
OM
229int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
230{
bd84b1e9
DV
231 WARN_ON(i915.enable_ppgtt == -1);
232
70ee45e1
DL
233 if (INTEL_INFO(dev)->gen >= 9)
234 return 1;
235
127f1003
OM
236 if (enable_execlists == 0)
237 return 0;
238
14bf993e
OM
239 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
240 i915.use_mmio_flip >= 0)
127f1003
OM
241 return 1;
242
243 return 0;
244}
ede7d42b 245
73e4d07f
OM
246/**
247 * intel_execlists_ctx_id() - get the Execlists Context ID
248 * @ctx_obj: Logical Ring Context backing object.
249 *
250 * Do not confuse with ctx->id! Unfortunately we have a name overload
251 * here: the old context ID we pass to userspace as a handler so that
252 * they can refer to a context, and the new context ID we pass to the
253 * ELSP so that the GPU can inform us of the context status via
254 * interrupts.
255 *
256 * Return: 20-bits globally unique context ID.
257 */
84b790f8
BW
258u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
259{
260 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262 /* LRCA is required to be 4K aligned so the more significant 20 bits
263 * are globally unique */
264 return lrca >> 12;
265}
266
203a571b
NH
267static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
268 struct drm_i915_gem_object *ctx_obj)
84b790f8 269{
203a571b 270 struct drm_device *dev = ring->dev;
84b790f8
BW
271 uint64_t desc;
272 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
273
274 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
275
276 desc = GEN8_CTX_VALID;
277 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
51847fb9
AS
278 if (IS_GEN8(ctx_obj->base.dev))
279 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
280 desc |= GEN8_CTX_PRIVILEGE;
281 desc |= lrca;
282 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283
284 /* TODO: WaDisableLiteRestore when we start using semaphore
285 * signalling between Command Streamers */
286 /* desc |= GEN8_CTX_FORCE_RESTORE; */
287
203a571b
NH
288 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 if (IS_GEN9(dev) &&
290 INTEL_REVID(dev) <= SKL_REVID_B0 &&
291 (ring->id == BCS || ring->id == VCS ||
292 ring->id == VECS || ring->id == VCS2))
293 desc |= GEN8_CTX_FORCE_RESTORE;
294
84b790f8
BW
295 return desc;
296}
297
298static void execlists_elsp_write(struct intel_engine_cs *ring,
299 struct drm_i915_gem_object *ctx_obj0,
300 struct drm_i915_gem_object *ctx_obj1)
301{
6e7cc470
TU
302 struct drm_device *dev = ring->dev;
303 struct drm_i915_private *dev_priv = dev->dev_private;
84b790f8
BW
304 uint64_t temp = 0;
305 uint32_t desc[4];
306
307 /* XXX: You must always write both descriptors in the order below. */
308 if (ctx_obj1)
203a571b 309 temp = execlists_ctx_descriptor(ring, ctx_obj1);
84b790f8
BW
310 else
311 temp = 0;
312 desc[1] = (u32)(temp >> 32);
313 desc[0] = (u32)temp;
314
203a571b 315 temp = execlists_ctx_descriptor(ring, ctx_obj0);
84b790f8
BW
316 desc[3] = (u32)(temp >> 32);
317 desc[2] = (u32)temp;
318
a6111f7b
CW
319 spin_lock(&dev_priv->uncore.lock);
320 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
321 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
323 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
6daccb0b 324
84b790f8 325 /* The context is automatically loaded after the following */
a6111f7b 326 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
84b790f8
BW
327
328 /* ELSP is a wo register, so use another nearby reg for posting instead */
a6111f7b
CW
329 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
330 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
331 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
332}
333
7ba717cf
TD
334static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
335 struct drm_i915_gem_object *ring_obj,
d7b2633d 336 struct i915_hw_ppgtt *ppgtt,
7ba717cf 337 u32 tail)
ae1250b9
OM
338{
339 struct page *page;
340 uint32_t *reg_state;
341
342 page = i915_gem_object_get_page(ctx_obj, 1);
343 reg_state = kmap_atomic(page);
344
345 reg_state[CTX_RING_TAIL+1] = tail;
7ba717cf 346 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
ae1250b9 347
d7b2633d
MT
348 /* True PPGTT with dynamic page allocation: update PDP registers and
349 * point the unallocated PDPs to the scratch page
350 */
351 if (ppgtt) {
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
355 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
356 }
357
ae1250b9
OM
358 kunmap_atomic(reg_state);
359
360 return 0;
361}
362
cd0707cb
DG
363static void execlists_submit_contexts(struct intel_engine_cs *ring,
364 struct intel_context *to0, u32 tail0,
365 struct intel_context *to1, u32 tail1)
84b790f8 366{
7ba717cf
TD
367 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
368 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
84b790f8 369 struct drm_i915_gem_object *ctx_obj1 = NULL;
7ba717cf 370 struct intel_ringbuffer *ringbuf1 = NULL;
84b790f8 371
84b790f8 372 BUG_ON(!ctx_obj0);
acdd884a 373 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
7ba717cf 374 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
84b790f8 375
d7b2633d 376 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
ae1250b9 377
84b790f8 378 if (to1) {
7ba717cf 379 ringbuf1 = to1->engine[ring->id].ringbuf;
84b790f8
BW
380 ctx_obj1 = to1->engine[ring->id].state;
381 BUG_ON(!ctx_obj1);
acdd884a 382 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
7ba717cf 383 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
ae1250b9 384
d7b2633d 385 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
84b790f8
BW
386 }
387
388 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
84b790f8
BW
389}
390
acdd884a
MT
391static void execlists_context_unqueue(struct intel_engine_cs *ring)
392{
6d3d8274
NH
393 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
394 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
395
396 assert_spin_locked(&ring->execlist_lock);
acdd884a 397
779949f4
PA
398 /*
399 * If irqs are not active generate a warning as batches that finish
400 * without the irqs may get lost and a GPU Hang may occur.
401 */
402 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
403
acdd884a
MT
404 if (list_empty(&ring->execlist_queue))
405 return;
406
407 /* Try to read in pairs */
408 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
409 execlist_link) {
410 if (!req0) {
411 req0 = cursor;
6d3d8274 412 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
413 /* Same ctx: ignore first request, as second request
414 * will update tail past first request's workload */
e1fee72c 415 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 416 list_del(&req0->execlist_link);
c86ee3a9
TD
417 list_add_tail(&req0->execlist_link,
418 &ring->execlist_retired_req_list);
acdd884a
MT
419 req0 = cursor;
420 } else {
421 req1 = cursor;
422 break;
423 }
424 }
425
53292cdb
MT
426 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
427 /*
428 * WaIdleLiteRestore: make sure we never cause a lite
429 * restore with HEAD==TAIL
430 */
d63f820f 431 if (req0->elsp_submitted) {
53292cdb
MT
432 /*
433 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
434 * as we resubmit the request. See gen8_emit_request()
435 * for where we prepare the padding after the end of the
436 * request.
437 */
438 struct intel_ringbuffer *ringbuf;
439
440 ringbuf = req0->ctx->engine[ring->id].ringbuf;
441 req0->tail += 8;
442 req0->tail &= ringbuf->size - 1;
443 }
444 }
445
e1fee72c
OM
446 WARN_ON(req1 && req1->elsp_submitted);
447
6d3d8274
NH
448 execlists_submit_contexts(ring, req0->ctx, req0->tail,
449 req1 ? req1->ctx : NULL,
450 req1 ? req1->tail : 0);
e1fee72c
OM
451
452 req0->elsp_submitted++;
453 if (req1)
454 req1->elsp_submitted++;
acdd884a
MT
455}
456
e981e7b1
TD
457static bool execlists_check_remove_request(struct intel_engine_cs *ring,
458 u32 request_id)
459{
6d3d8274 460 struct drm_i915_gem_request *head_req;
e981e7b1
TD
461
462 assert_spin_locked(&ring->execlist_lock);
463
464 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 465 struct drm_i915_gem_request,
e981e7b1
TD
466 execlist_link);
467
468 if (head_req != NULL) {
469 struct drm_i915_gem_object *ctx_obj =
6d3d8274 470 head_req->ctx->engine[ring->id].state;
e981e7b1 471 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
472 WARN(head_req->elsp_submitted == 0,
473 "Never submitted head request\n");
474
475 if (--head_req->elsp_submitted <= 0) {
476 list_del(&head_req->execlist_link);
c86ee3a9
TD
477 list_add_tail(&head_req->execlist_link,
478 &ring->execlist_retired_req_list);
e1fee72c
OM
479 return true;
480 }
e981e7b1
TD
481 }
482 }
483
484 return false;
485}
486
73e4d07f 487/**
3f7531c3 488 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
489 * @ring: Engine Command Streamer to handle.
490 *
491 * Check the unread Context Status Buffers and manage the submission of new
492 * contexts to the ELSP accordingly.
493 */
3f7531c3 494void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
495{
496 struct drm_i915_private *dev_priv = ring->dev->dev_private;
497 u32 status_pointer;
498 u8 read_pointer;
499 u8 write_pointer;
500 u32 status;
501 u32 status_id;
502 u32 submit_contexts = 0;
503
504 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
505
506 read_pointer = ring->next_context_status_buffer;
507 write_pointer = status_pointer & 0x07;
508 if (read_pointer > write_pointer)
509 write_pointer += 6;
510
511 spin_lock(&ring->execlist_lock);
512
513 while (read_pointer < write_pointer) {
514 read_pointer++;
515 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516 (read_pointer % 6) * 8);
517 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
518 (read_pointer % 6) * 8 + 4);
519
e1fee72c
OM
520 if (status & GEN8_CTX_STATUS_PREEMPTED) {
521 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
522 if (execlists_check_remove_request(ring, status_id))
523 WARN(1, "Lite Restored request removed from queue\n");
524 } else
525 WARN(1, "Preemption without Lite Restore\n");
526 }
527
528 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
529 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
530 if (execlists_check_remove_request(ring, status_id))
531 submit_contexts++;
532 }
533 }
534
535 if (submit_contexts != 0)
536 execlists_context_unqueue(ring);
537
538 spin_unlock(&ring->execlist_lock);
539
540 WARN(submit_contexts > 2, "More than two context complete events?\n");
541 ring->next_context_status_buffer = write_pointer % 6;
542
543 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
544 ((u32)ring->next_context_status_buffer & 0x07) << 8);
545}
546
acdd884a
MT
547static int execlists_context_queue(struct intel_engine_cs *ring,
548 struct intel_context *to,
2d12955a
NH
549 u32 tail,
550 struct drm_i915_gem_request *request)
acdd884a 551{
6d3d8274 552 struct drm_i915_gem_request *cursor;
f1ad5a1f 553 int num_elements = 0;
acdd884a 554
7ba717cf
TD
555 if (to != ring->default_context)
556 intel_lr_context_pin(ring, to);
557
2d12955a
NH
558 if (!request) {
559 /*
560 * If there isn't a request associated with this submission,
561 * create one as a temporary holder.
562 */
2d12955a
NH
563 request = kzalloc(sizeof(*request), GFP_KERNEL);
564 if (request == NULL)
565 return -ENOMEM;
2d12955a 566 request->ring = ring;
6d3d8274 567 request->ctx = to;
b3a38998 568 kref_init(&request->ref);
b3a38998 569 i915_gem_context_reference(request->ctx);
21076372 570 } else {
b3a38998 571 i915_gem_request_reference(request);
21076372 572 WARN_ON(to != request->ctx);
2d12955a 573 }
72f95afa 574 request->tail = tail;
2d12955a 575
b5eba372 576 spin_lock_irq(&ring->execlist_lock);
acdd884a 577
f1ad5a1f
OM
578 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
579 if (++num_elements > 2)
580 break;
581
582 if (num_elements > 2) {
6d3d8274 583 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
584
585 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 586 struct drm_i915_gem_request,
f1ad5a1f
OM
587 execlist_link);
588
6d3d8274 589 if (to == tail_req->ctx) {
f1ad5a1f 590 WARN(tail_req->elsp_submitted != 0,
7ba717cf 591 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 592 list_del(&tail_req->execlist_link);
c86ee3a9
TD
593 list_add_tail(&tail_req->execlist_link,
594 &ring->execlist_retired_req_list);
f1ad5a1f
OM
595 }
596 }
597
6d3d8274 598 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 599 if (num_elements == 0)
acdd884a
MT
600 execlists_context_unqueue(ring);
601
b5eba372 602 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
603
604 return 0;
605}
606
21076372
NH
607static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
608 struct intel_context *ctx)
ba8b7ccb
OM
609{
610 struct intel_engine_cs *ring = ringbuf->ring;
611 uint32_t flush_domains;
612 int ret;
613
614 flush_domains = 0;
615 if (ring->gpu_caches_dirty)
616 flush_domains = I915_GEM_GPU_DOMAINS;
617
21076372
NH
618 ret = ring->emit_flush(ringbuf, ctx,
619 I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
620 if (ret)
621 return ret;
622
623 ring->gpu_caches_dirty = false;
624 return 0;
625}
626
627static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
21076372 628 struct intel_context *ctx,
ba8b7ccb
OM
629 struct list_head *vmas)
630{
631 struct intel_engine_cs *ring = ringbuf->ring;
03ade511 632 const unsigned other_rings = ~intel_ring_flag(ring);
ba8b7ccb
OM
633 struct i915_vma *vma;
634 uint32_t flush_domains = 0;
635 bool flush_chipset = false;
636 int ret;
637
638 list_for_each_entry(vma, vmas, exec_list) {
639 struct drm_i915_gem_object *obj = vma->obj;
640
03ade511
CW
641 if (obj->active & other_rings) {
642 ret = i915_gem_object_sync(obj, ring);
643 if (ret)
644 return ret;
645 }
ba8b7ccb
OM
646
647 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
648 flush_chipset |= i915_gem_clflush_object(obj, false);
649
650 flush_domains |= obj->base.write_domain;
651 }
652
653 if (flush_domains & I915_GEM_DOMAIN_GTT)
654 wmb();
655
656 /* Unconditionally invalidate gpu caches and ensure that we do flush
657 * any residual writes from the previous batch.
658 */
21076372 659 return logical_ring_invalidate_all_caches(ringbuf, ctx);
ba8b7ccb
OM
660}
661
6689cb2b
JH
662int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
663 struct intel_context *ctx)
bc0dce3f 664{
bc0dce3f
JH
665 int ret;
666
6689cb2b
JH
667 if (ctx != request->ring->default_context) {
668 ret = intel_lr_context_pin(request->ring, ctx);
669 if (ret)
bc0dce3f 670 return ret;
bc0dce3f
JH
671 }
672
6689cb2b
JH
673 request->ringbuf = ctx->engine[request->ring->id].ringbuf;
674 request->ctx = ctx;
bc0dce3f 675 i915_gem_context_reference(request->ctx);
bc0dce3f 676
bc0dce3f
JH
677 return 0;
678}
679
595e1eeb
CW
680static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
681 struct intel_context *ctx,
682 int bytes)
bc0dce3f
JH
683{
684 struct intel_engine_cs *ring = ringbuf->ring;
685 struct drm_i915_gem_request *request;
b4716185
CW
686 unsigned space;
687 int ret;
bc0dce3f 688
29b1b415
JH
689 /* The whole point of reserving space is to not wait! */
690 WARN_ON(ringbuf->reserved_in_use);
691
bc0dce3f
JH
692 if (intel_ring_space(ringbuf) >= bytes)
693 return 0;
694
695 list_for_each_entry(request, &ring->request_list, list) {
696 /*
697 * The request queue is per-engine, so can contain requests
698 * from multiple ringbuffers. Here, we must ignore any that
699 * aren't from the ringbuffer we're considering.
700 */
b4716185 701 if (request->ringbuf != ringbuf)
bc0dce3f
JH
702 continue;
703
704 /* Would completion of this request free enough space? */
b4716185
CW
705 space = __intel_ring_space(request->postfix, ringbuf->tail,
706 ringbuf->size);
707 if (space >= bytes)
bc0dce3f 708 break;
bc0dce3f
JH
709 }
710
595e1eeb 711 if (WARN_ON(&request->list == &ring->request_list))
bc0dce3f
JH
712 return -ENOSPC;
713
714 ret = i915_wait_request(request);
715 if (ret)
716 return ret;
717
b4716185
CW
718 ringbuf->space = space;
719 return 0;
bc0dce3f
JH
720}
721
722/*
723 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
724 * @ringbuf: Logical Ringbuffer to advance.
725 *
726 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
727 * really happens during submission is that the context and current tail will be placed
728 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
729 * point, the tail *inside* the context is updated and the ELSP written to.
730 */
731static void
732intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
733 struct intel_context *ctx,
734 struct drm_i915_gem_request *request)
735{
736 struct intel_engine_cs *ring = ringbuf->ring;
737
738 intel_logical_ring_advance(ringbuf);
739
740 if (intel_ring_stopped(ring))
741 return;
742
743 execlists_context_queue(ring, ctx, ringbuf->tail, request);
744}
745
bc0dce3f
JH
746static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
747 struct intel_context *ctx)
748{
749 uint32_t __iomem *virt;
750 int rem = ringbuf->size - ringbuf->tail;
751
29b1b415
JH
752 /* Can't wrap if space has already been reserved! */
753 WARN_ON(ringbuf->reserved_in_use);
754
bc0dce3f
JH
755 if (ringbuf->space < rem) {
756 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
757
758 if (ret)
759 return ret;
760 }
761
762 virt = ringbuf->virtual_start + ringbuf->tail;
763 rem /= 4;
764 while (rem--)
765 iowrite32(MI_NOOP, virt++);
766
767 ringbuf->tail = 0;
768 intel_ring_update_space(ringbuf);
769
770 return 0;
771}
772
773static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
774 struct intel_context *ctx, int bytes)
775{
776 int ret;
777
29b1b415
JH
778 /*
779 * Add on the reserved size to the request to make sure that after
780 * the intended commands have been emitted, there is guaranteed to
781 * still be enough free space to send them to the hardware.
782 */
783 if (!ringbuf->reserved_in_use)
784 bytes += ringbuf->reserved_size;
785
bc0dce3f
JH
786 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
787 ret = logical_ring_wrap_buffer(ringbuf, ctx);
788 if (unlikely(ret))
789 return ret;
29b1b415
JH
790
791 if(ringbuf->reserved_size) {
792 uint32_t size = ringbuf->reserved_size;
793
794 intel_ring_reserved_space_cancel(ringbuf);
795 intel_ring_reserved_space_reserve(ringbuf, size);
796 }
bc0dce3f
JH
797 }
798
799 if (unlikely(ringbuf->space < bytes)) {
800 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
801 if (unlikely(ret))
802 return ret;
803 }
804
805 return 0;
806}
807
808/**
809 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
810 *
811 * @ringbuf: Logical ringbuffer.
812 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
813 *
814 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
815 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
816 * and also preallocates a request (every workload submission is still mediated through
817 * requests, same as it did with legacy ringbuffer submission).
818 *
819 * Return: non-zero if the ringbuffer is not ready to be written to.
820 */
821static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
822 struct intel_context *ctx, int num_dwords)
823{
824 struct intel_engine_cs *ring = ringbuf->ring;
825 struct drm_device *dev = ring->dev;
826 struct drm_i915_private *dev_priv = dev->dev_private;
827 int ret;
828
829 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
830 dev_priv->mm.interruptible);
831 if (ret)
832 return ret;
833
834 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
835 if (ret)
836 return ret;
837
838 /* Preallocate the olr before touching the ring */
6689cb2b 839 ret = i915_gem_request_alloc(ring, ctx);
bc0dce3f
JH
840 if (ret)
841 return ret;
842
843 ringbuf->space -= num_dwords * sizeof(uint32_t);
844 return 0;
845}
846
73e4d07f
OM
847/**
848 * execlists_submission() - submit a batchbuffer for execution, Execlists style
849 * @dev: DRM device.
850 * @file: DRM file.
851 * @ring: Engine Command Streamer to submit to.
852 * @ctx: Context to employ for this submission.
853 * @args: execbuffer call arguments.
854 * @vmas: list of vmas.
855 * @batch_obj: the batchbuffer to submit.
856 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 857 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
858 *
859 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
860 * away the submission details of the execbuffer ioctl call.
861 *
862 * Return: non-zero if the submission fails.
863 */
454afebd
OM
864int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
865 struct intel_engine_cs *ring,
866 struct intel_context *ctx,
867 struct drm_i915_gem_execbuffer2 *args,
868 struct list_head *vmas,
869 struct drm_i915_gem_object *batch_obj,
8e004efc 870 u64 exec_start, u32 dispatch_flags)
454afebd 871{
ba8b7ccb
OM
872 struct drm_i915_private *dev_priv = dev->dev_private;
873 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
874 int instp_mode;
875 u32 instp_mask;
876 int ret;
877
878 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
879 instp_mask = I915_EXEC_CONSTANTS_MASK;
880 switch (instp_mode) {
881 case I915_EXEC_CONSTANTS_REL_GENERAL:
882 case I915_EXEC_CONSTANTS_ABSOLUTE:
883 case I915_EXEC_CONSTANTS_REL_SURFACE:
884 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
885 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
886 return -EINVAL;
887 }
888
889 if (instp_mode != dev_priv->relative_constants_mode) {
890 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
891 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
892 return -EINVAL;
893 }
894
895 /* The HW changed the meaning on this bit on gen6 */
896 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
897 }
898 break;
899 default:
900 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
901 return -EINVAL;
902 }
903
904 if (args->num_cliprects != 0) {
905 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
906 return -EINVAL;
907 } else {
908 if (args->DR4 == 0xffffffff) {
909 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
910 args->DR4 = 0;
911 }
912
913 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
914 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
915 return -EINVAL;
916 }
917 }
918
919 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
920 DRM_DEBUG("sol reset is gen7 only\n");
921 return -EINVAL;
922 }
923
21076372 924 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
ba8b7ccb
OM
925 if (ret)
926 return ret;
927
928 if (ring == &dev_priv->ring[RCS] &&
929 instp_mode != dev_priv->relative_constants_mode) {
21076372 930 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
ba8b7ccb
OM
931 if (ret)
932 return ret;
933
934 intel_logical_ring_emit(ringbuf, MI_NOOP);
935 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
936 intel_logical_ring_emit(ringbuf, INSTPM);
937 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
938 intel_logical_ring_advance(ringbuf);
939
940 dev_priv->relative_constants_mode = instp_mode;
941 }
942
8e004efc 943 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
ba8b7ccb
OM
944 if (ret)
945 return ret;
946
5e4be7bd
JH
947 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
948
ba8b7ccb
OM
949 i915_gem_execbuffer_move_to_active(vmas, ring);
950 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
951
454afebd
OM
952 return 0;
953}
954
c86ee3a9
TD
955void intel_execlists_retire_requests(struct intel_engine_cs *ring)
956{
6d3d8274 957 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
958 struct list_head retired_list;
959
960 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
961 if (list_empty(&ring->execlist_retired_req_list))
962 return;
963
964 INIT_LIST_HEAD(&retired_list);
b5eba372 965 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 966 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 967 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
968
969 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 970 struct intel_context *ctx = req->ctx;
7ba717cf
TD
971 struct drm_i915_gem_object *ctx_obj =
972 ctx->engine[ring->id].state;
973
974 if (ctx_obj && (ctx != ring->default_context))
975 intel_lr_context_unpin(ring, ctx);
c86ee3a9 976 list_del(&req->execlist_link);
f8210795 977 i915_gem_request_unreference(req);
c86ee3a9
TD
978 }
979}
980
454afebd
OM
981void intel_logical_ring_stop(struct intel_engine_cs *ring)
982{
9832b9da
OM
983 struct drm_i915_private *dev_priv = ring->dev->dev_private;
984 int ret;
985
986 if (!intel_ring_initialized(ring))
987 return;
988
989 ret = intel_ring_idle(ring);
990 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
991 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
992 ring->name, ret);
993
994 /* TODO: Is this correct with Execlists enabled? */
995 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
996 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
997 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
998 return;
999 }
1000 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1001}
1002
21076372
NH
1003int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
1004 struct intel_context *ctx)
48e29f55
OM
1005{
1006 struct intel_engine_cs *ring = ringbuf->ring;
1007 int ret;
1008
1009 if (!ring->gpu_caches_dirty)
1010 return 0;
1011
21076372 1012 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1013 if (ret)
1014 return ret;
1015
1016 ring->gpu_caches_dirty = false;
1017 return 0;
1018}
1019
dcb4c12a
OM
1020static int intel_lr_context_pin(struct intel_engine_cs *ring,
1021 struct intel_context *ctx)
1022{
1023 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1024 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1025 int ret = 0;
1026
1027 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1028 if (ctx->engine[ring->id].pin_count++ == 0) {
dcb4c12a
OM
1029 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1030 GEN8_LR_CONTEXT_ALIGN, 0);
1031 if (ret)
a7cbedec 1032 goto reset_pin_count;
7ba717cf
TD
1033
1034 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1035 if (ret)
1036 goto unpin_ctx_obj;
dcb4c12a
OM
1037 }
1038
7ba717cf
TD
1039 return ret;
1040
1041unpin_ctx_obj:
1042 i915_gem_object_ggtt_unpin(ctx_obj);
a7cbedec
MK
1043reset_pin_count:
1044 ctx->engine[ring->id].pin_count = 0;
7ba717cf 1045
dcb4c12a
OM
1046 return ret;
1047}
1048
1049void intel_lr_context_unpin(struct intel_engine_cs *ring,
1050 struct intel_context *ctx)
1051{
1052 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1053 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1054
1055 if (ctx_obj) {
1056 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1057 if (--ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1058 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1059 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1060 }
dcb4c12a
OM
1061 }
1062}
1063
771b9a53
MT
1064static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1065 struct intel_context *ctx)
1066{
1067 int ret, i;
1068 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 struct i915_workarounds *w = &dev_priv->workarounds;
1072
e6c1abb7 1073 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1074 return 0;
1075
1076 ring->gpu_caches_dirty = true;
21076372 1077 ret = logical_ring_flush_all_caches(ringbuf, ctx);
771b9a53
MT
1078 if (ret)
1079 return ret;
1080
21076372 1081 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
771b9a53
MT
1082 if (ret)
1083 return ret;
1084
1085 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1086 for (i = 0; i < w->count; i++) {
1087 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1088 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1089 }
1090 intel_logical_ring_emit(ringbuf, MI_NOOP);
1091
1092 intel_logical_ring_advance(ringbuf);
1093
1094 ring->gpu_caches_dirty = true;
21076372 1095 ret = logical_ring_flush_all_caches(ringbuf, ctx);
771b9a53
MT
1096 if (ret)
1097 return ret;
1098
1099 return 0;
1100}
1101
17ee950d
AS
1102#define wa_ctx_emit(batch, cmd) \
1103 do { \
1104 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1105 return -ENOSPC; \
1106 } \
1107 batch[index++] = (cmd); \
1108 } while (0)
1109
1110static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1111 uint32_t offset,
1112 uint32_t start_alignment)
1113{
1114 return wa_ctx->offset = ALIGN(offset, start_alignment);
1115}
1116
1117static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1118 uint32_t offset,
1119 uint32_t size_alignment)
1120{
1121 wa_ctx->size = offset - wa_ctx->offset;
1122
1123 WARN(wa_ctx->size % size_alignment,
1124 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1125 wa_ctx->size, size_alignment);
1126 return 0;
1127}
1128
1129/**
1130 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1131 *
1132 * @ring: only applicable for RCS
1133 * @wa_ctx: structure representing wa_ctx
1134 * offset: specifies start of the batch, should be cache-aligned. This is updated
1135 * with the offset value received as input.
1136 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1137 * @batch: page in which WA are loaded
1138 * @offset: This field specifies the start of the batch, it should be
1139 * cache-aligned otherwise it is adjusted accordingly.
1140 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1141 * initialized at the beginning and shared across all contexts but this field
1142 * helps us to have multiple batches at different offsets and select them based
1143 * on a criteria. At the moment this batch always start at the beginning of the page
1144 * and at this point we don't have multiple wa_ctx batch buffers.
1145 *
1146 * The number of WA applied are not known at the beginning; we use this field
1147 * to return the no of DWORDS written.
1148
1149 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1150 * so it adds NOOPs as padding to make it cacheline aligned.
1151 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1152 * makes a complete batch buffer.
1153 *
1154 * Return: non-zero if we exceed the PAGE_SIZE limit.
1155 */
1156
1157static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1158 struct i915_wa_ctx_bb *wa_ctx,
1159 uint32_t *const batch,
1160 uint32_t *offset)
1161{
1162 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1163
7ad00d1a
AS
1164 /* WaDisableCtxRestoreArbitration:bdw,chv */
1165 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1166
c82435bb
AS
1167 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1168 if (IS_BROADWELL(ring->dev)) {
1169 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1170 uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) |
1171 GEN8_LQSC_FLUSH_COHERENT_LINES);
1172
1173 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1174 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1175 wa_ctx_emit(batch, l3sqc4_flush);
1176
1177 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1178 wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
1179 PIPE_CONTROL_DC_FLUSH_ENABLE));
1180 wa_ctx_emit(batch, 0);
1181 wa_ctx_emit(batch, 0);
1182 wa_ctx_emit(batch, 0);
1183 wa_ctx_emit(batch, 0);
1184
1185 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1186 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1187 wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES);
1188 }
1189
17ee950d
AS
1190 /* Pad to end of cacheline */
1191 while (index % CACHELINE_DWORDS)
1192 wa_ctx_emit(batch, MI_NOOP);
1193
1194 /*
1195 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1196 * execution depends on the length specified in terms of cache lines
1197 * in the register CTX_RCS_INDIRECT_CTX
1198 */
1199
1200 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1201}
1202
1203/**
1204 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1205 *
1206 * @ring: only applicable for RCS
1207 * @wa_ctx: structure representing wa_ctx
1208 * offset: specifies start of the batch, should be cache-aligned.
1209 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1210 * @offset: This field specifies the start of this batch.
1211 * This batch is started immediately after indirect_ctx batch. Since we ensure
1212 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1213 *
1214 * The number of DWORDS written are returned using this field.
1215 *
1216 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1217 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1218 */
1219static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1220 struct i915_wa_ctx_bb *wa_ctx,
1221 uint32_t *const batch,
1222 uint32_t *offset)
1223{
1224 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1225
7ad00d1a
AS
1226 /* WaDisableCtxRestoreArbitration:bdw,chv */
1227 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1228
17ee950d
AS
1229 wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1230
1231 return wa_ctx_end(wa_ctx, *offset = index, 1);
1232}
1233
1234static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1235{
1236 int ret;
1237
1238 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1239 if (!ring->wa_ctx.obj) {
1240 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1241 return -ENOMEM;
1242 }
1243
1244 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1245 if (ret) {
1246 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1247 ret);
1248 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1249 return ret;
1250 }
1251
1252 return 0;
1253}
1254
1255static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1256{
1257 if (ring->wa_ctx.obj) {
1258 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1259 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1260 ring->wa_ctx.obj = NULL;
1261 }
1262}
1263
1264static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1265{
1266 int ret;
1267 uint32_t *batch;
1268 uint32_t offset;
1269 struct page *page;
1270 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1271
1272 WARN_ON(ring->id != RCS);
1273
c4db7599
AS
1274 /* some WA perform writes to scratch page, ensure it is valid */
1275 if (ring->scratch.obj == NULL) {
1276 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1277 return -EINVAL;
1278 }
1279
17ee950d
AS
1280 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1281 if (ret) {
1282 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1283 return ret;
1284 }
1285
1286 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1287 batch = kmap_atomic(page);
1288 offset = 0;
1289
1290 if (INTEL_INFO(ring->dev)->gen == 8) {
1291 ret = gen8_init_indirectctx_bb(ring,
1292 &wa_ctx->indirect_ctx,
1293 batch,
1294 &offset);
1295 if (ret)
1296 goto out;
1297
1298 ret = gen8_init_perctx_bb(ring,
1299 &wa_ctx->per_ctx,
1300 batch,
1301 &offset);
1302 if (ret)
1303 goto out;
1304 } else {
1305 WARN(INTEL_INFO(ring->dev)->gen >= 8,
1306 "WA batch buffer is not initialized for Gen%d\n",
1307 INTEL_INFO(ring->dev)->gen);
1308 lrc_destroy_wa_ctx_obj(ring);
1309 }
1310
1311out:
1312 kunmap_atomic(batch);
1313 if (ret)
1314 lrc_destroy_wa_ctx_obj(ring);
1315
1316 return ret;
1317}
1318
9b1136d5
OM
1319static int gen8_init_common_ring(struct intel_engine_cs *ring)
1320{
1321 struct drm_device *dev = ring->dev;
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323
73d477f6
OM
1324 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1325 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1326
9b1136d5
OM
1327 I915_WRITE(RING_MODE_GEN7(ring),
1328 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1329 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1330 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1331 ring->next_context_status_buffer = 0;
9b1136d5
OM
1332 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1333
1334 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1335
1336 return 0;
1337}
1338
1339static int gen8_init_render_ring(struct intel_engine_cs *ring)
1340{
1341 struct drm_device *dev = ring->dev;
1342 struct drm_i915_private *dev_priv = dev->dev_private;
1343 int ret;
1344
1345 ret = gen8_init_common_ring(ring);
1346 if (ret)
1347 return ret;
1348
1349 /* We need to disable the AsyncFlip performance optimisations in order
1350 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1351 * programmed to '1' on all products.
1352 *
1353 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1354 */
1355 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1356
9b1136d5
OM
1357 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1358
771b9a53 1359 return init_workarounds_ring(ring);
9b1136d5
OM
1360}
1361
82ef822e
DL
1362static int gen9_init_render_ring(struct intel_engine_cs *ring)
1363{
1364 int ret;
1365
1366 ret = gen8_init_common_ring(ring);
1367 if (ret)
1368 return ret;
1369
1370 return init_workarounds_ring(ring);
1371}
1372
15648585 1373static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
21076372 1374 struct intel_context *ctx,
8e004efc 1375 u64 offset, unsigned dispatch_flags)
15648585 1376{
8e004efc 1377 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1378 int ret;
1379
21076372 1380 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
15648585
OM
1381 if (ret)
1382 return ret;
1383
1384 /* FIXME(BDW): Address space and security selectors. */
1385 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1386 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1387 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1388 intel_logical_ring_emit(ringbuf, MI_NOOP);
1389 intel_logical_ring_advance(ringbuf);
1390
1391 return 0;
1392}
1393
73d477f6
OM
1394static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1395{
1396 struct drm_device *dev = ring->dev;
1397 struct drm_i915_private *dev_priv = dev->dev_private;
1398 unsigned long flags;
1399
7cd512f1 1400 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1401 return false;
1402
1403 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1404 if (ring->irq_refcount++ == 0) {
1405 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1406 POSTING_READ(RING_IMR(ring->mmio_base));
1407 }
1408 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1409
1410 return true;
1411}
1412
1413static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1414{
1415 struct drm_device *dev = ring->dev;
1416 struct drm_i915_private *dev_priv = dev->dev_private;
1417 unsigned long flags;
1418
1419 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1420 if (--ring->irq_refcount == 0) {
1421 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1422 POSTING_READ(RING_IMR(ring->mmio_base));
1423 }
1424 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1425}
1426
4712274c 1427static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
21076372 1428 struct intel_context *ctx,
4712274c
OM
1429 u32 invalidate_domains,
1430 u32 unused)
1431{
1432 struct intel_engine_cs *ring = ringbuf->ring;
1433 struct drm_device *dev = ring->dev;
1434 struct drm_i915_private *dev_priv = dev->dev_private;
1435 uint32_t cmd;
1436 int ret;
1437
21076372 1438 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
4712274c
OM
1439 if (ret)
1440 return ret;
1441
1442 cmd = MI_FLUSH_DW + 1;
1443
f0a1fb10
CW
1444 /* We always require a command barrier so that subsequent
1445 * commands, such as breadcrumb interrupts, are strictly ordered
1446 * wrt the contents of the write cache being flushed to memory
1447 * (and thus being coherent from the CPU).
1448 */
1449 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1450
1451 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1452 cmd |= MI_INVALIDATE_TLB;
1453 if (ring == &dev_priv->ring[VCS])
1454 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1455 }
1456
1457 intel_logical_ring_emit(ringbuf, cmd);
1458 intel_logical_ring_emit(ringbuf,
1459 I915_GEM_HWS_SCRATCH_ADDR |
1460 MI_FLUSH_DW_USE_GTT);
1461 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1462 intel_logical_ring_emit(ringbuf, 0); /* value */
1463 intel_logical_ring_advance(ringbuf);
1464
1465 return 0;
1466}
1467
1468static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
21076372 1469 struct intel_context *ctx,
4712274c
OM
1470 u32 invalidate_domains,
1471 u32 flush_domains)
1472{
1473 struct intel_engine_cs *ring = ringbuf->ring;
1474 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
9647ff36 1475 bool vf_flush_wa;
4712274c
OM
1476 u32 flags = 0;
1477 int ret;
1478
1479 flags |= PIPE_CONTROL_CS_STALL;
1480
1481 if (flush_domains) {
1482 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1483 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1484 }
1485
1486 if (invalidate_domains) {
1487 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1488 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1489 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1490 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1491 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1492 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1493 flags |= PIPE_CONTROL_QW_WRITE;
1494 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1495 }
1496
9647ff36
ID
1497 /*
1498 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1499 * control.
1500 */
1501 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1502 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1503
1504 ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
4712274c
OM
1505 if (ret)
1506 return ret;
1507
9647ff36
ID
1508 if (vf_flush_wa) {
1509 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1510 intel_logical_ring_emit(ringbuf, 0);
1511 intel_logical_ring_emit(ringbuf, 0);
1512 intel_logical_ring_emit(ringbuf, 0);
1513 intel_logical_ring_emit(ringbuf, 0);
1514 intel_logical_ring_emit(ringbuf, 0);
1515 }
1516
4712274c
OM
1517 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1518 intel_logical_ring_emit(ringbuf, flags);
1519 intel_logical_ring_emit(ringbuf, scratch_addr);
1520 intel_logical_ring_emit(ringbuf, 0);
1521 intel_logical_ring_emit(ringbuf, 0);
1522 intel_logical_ring_emit(ringbuf, 0);
1523 intel_logical_ring_advance(ringbuf);
1524
1525 return 0;
1526}
1527
e94e37ad
OM
1528static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1529{
1530 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1531}
1532
1533static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1534{
1535 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1536}
1537
2d12955a
NH
1538static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1539 struct drm_i915_gem_request *request)
4da46e1e
OM
1540{
1541 struct intel_engine_cs *ring = ringbuf->ring;
1542 u32 cmd;
1543 int ret;
1544
53292cdb
MT
1545 /*
1546 * Reserve space for 2 NOOPs at the end of each request to be
1547 * used as a workaround for not being allowed to do lite
1548 * restore with HEAD==TAIL (WaIdleLiteRestore).
1549 */
1550 ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
4da46e1e
OM
1551 if (ret)
1552 return ret;
1553
8edfbb8b 1554 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1555 cmd |= MI_GLOBAL_GTT;
1556
1557 intel_logical_ring_emit(ringbuf, cmd);
1558 intel_logical_ring_emit(ringbuf,
1559 (ring->status_page.gfx_addr +
1560 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1561 intel_logical_ring_emit(ringbuf, 0);
6259cead
JH
1562 intel_logical_ring_emit(ringbuf,
1563 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
4da46e1e
OM
1564 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1565 intel_logical_ring_emit(ringbuf, MI_NOOP);
21076372 1566 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
4da46e1e 1567
53292cdb
MT
1568 /*
1569 * Here we add two extra NOOPs as padding to avoid
1570 * lite restore of a context with HEAD==TAIL.
1571 */
1572 intel_logical_ring_emit(ringbuf, MI_NOOP);
1573 intel_logical_ring_emit(ringbuf, MI_NOOP);
1574 intel_logical_ring_advance(ringbuf);
1575
4da46e1e
OM
1576 return 0;
1577}
1578
cef437ad
DL
1579static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1580 struct intel_context *ctx)
1581{
1582 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1583 struct render_state so;
1584 struct drm_i915_file_private *file_priv = ctx->file_priv;
1585 struct drm_file *file = file_priv ? file_priv->file : NULL;
1586 int ret;
1587
1588 ret = i915_gem_render_state_prepare(ring, &so);
1589 if (ret)
1590 return ret;
1591
1592 if (so.rodata == NULL)
1593 return 0;
1594
1595 ret = ring->emit_bb_start(ringbuf,
1596 ctx,
1597 so.ggtt_offset,
1598 I915_DISPATCH_SECURE);
1599 if (ret)
1600 goto out;
1601
1602 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1603
bf7dc5b7 1604 __i915_add_request(ring, file, so.obj);
cef437ad
DL
1605 /* intel_logical_ring_add_request moves object to inactive if it
1606 * fails */
1607out:
1608 i915_gem_render_state_fini(&so);
1609 return ret;
1610}
1611
e7778be1
TD
1612static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1613 struct intel_context *ctx)
1614{
1615 int ret;
1616
1617 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1618 if (ret)
1619 return ret;
1620
1621 return intel_lr_context_render_state_init(ring, ctx);
1622}
1623
73e4d07f
OM
1624/**
1625 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1626 *
1627 * @ring: Engine Command Streamer.
1628 *
1629 */
454afebd
OM
1630void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1631{
6402c330 1632 struct drm_i915_private *dev_priv;
9832b9da 1633
48d82387
OM
1634 if (!intel_ring_initialized(ring))
1635 return;
1636
6402c330
JH
1637 dev_priv = ring->dev->dev_private;
1638
9832b9da
OM
1639 intel_logical_ring_stop(ring);
1640 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
6259cead 1641 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
48d82387
OM
1642
1643 if (ring->cleanup)
1644 ring->cleanup(ring);
1645
1646 i915_cmd_parser_fini_ring(ring);
06fbca71 1647 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1648
1649 if (ring->status_page.obj) {
1650 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1651 ring->status_page.obj = NULL;
1652 }
17ee950d
AS
1653
1654 lrc_destroy_wa_ctx_obj(ring);
454afebd
OM
1655}
1656
1657static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1658{
48d82387 1659 int ret;
48d82387
OM
1660
1661 /* Intentionally left blank. */
1662 ring->buffer = NULL;
1663
1664 ring->dev = dev;
1665 INIT_LIST_HEAD(&ring->active_list);
1666 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1667 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1668 init_waitqueue_head(&ring->irq_queue);
1669
acdd884a 1670 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1671 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1672 spin_lock_init(&ring->execlist_lock);
1673
48d82387
OM
1674 ret = i915_cmd_parser_init_ring(ring);
1675 if (ret)
1676 return ret;
1677
564ddb2f
OM
1678 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1679
1680 return ret;
454afebd
OM
1681}
1682
1683static int logical_render_ring_init(struct drm_device *dev)
1684{
1685 struct drm_i915_private *dev_priv = dev->dev_private;
1686 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1687 int ret;
454afebd
OM
1688
1689 ring->name = "render ring";
1690 ring->id = RCS;
1691 ring->mmio_base = RENDER_RING_BASE;
1692 ring->irq_enable_mask =
1693 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1694 ring->irq_keep_mask =
1695 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1696 if (HAS_L3_DPF(dev))
1697 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1698
82ef822e
DL
1699 if (INTEL_INFO(dev)->gen >= 9)
1700 ring->init_hw = gen9_init_render_ring;
1701 else
1702 ring->init_hw = gen8_init_render_ring;
e7778be1 1703 ring->init_context = gen8_init_rcs_context;
9b1136d5 1704 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1705 ring->get_seqno = gen8_get_seqno;
1706 ring->set_seqno = gen8_set_seqno;
4da46e1e 1707 ring->emit_request = gen8_emit_request;
4712274c 1708 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1709 ring->irq_get = gen8_logical_ring_get_irq;
1710 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1711 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1712
99be1dfe 1713 ring->dev = dev;
c4db7599
AS
1714
1715 ret = intel_init_pipe_control(ring);
99be1dfe
DV
1716 if (ret)
1717 return ret;
1718
17ee950d
AS
1719 ret = intel_init_workaround_bb(ring);
1720 if (ret) {
1721 /*
1722 * We continue even if we fail to initialize WA batch
1723 * because we only expect rare glitches but nothing
1724 * critical to prevent us from using GPU
1725 */
1726 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1727 ret);
1728 }
1729
c4db7599
AS
1730 ret = logical_ring_init(dev, ring);
1731 if (ret) {
17ee950d 1732 lrc_destroy_wa_ctx_obj(ring);
c4db7599 1733 }
17ee950d
AS
1734
1735 return ret;
454afebd
OM
1736}
1737
1738static int logical_bsd_ring_init(struct drm_device *dev)
1739{
1740 struct drm_i915_private *dev_priv = dev->dev_private;
1741 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1742
1743 ring->name = "bsd ring";
1744 ring->id = VCS;
1745 ring->mmio_base = GEN6_BSD_RING_BASE;
1746 ring->irq_enable_mask =
1747 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1748 ring->irq_keep_mask =
1749 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1750
ecfe00d8 1751 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1752 ring->get_seqno = gen8_get_seqno;
1753 ring->set_seqno = gen8_set_seqno;
4da46e1e 1754 ring->emit_request = gen8_emit_request;
4712274c 1755 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1756 ring->irq_get = gen8_logical_ring_get_irq;
1757 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1758 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1759
454afebd
OM
1760 return logical_ring_init(dev, ring);
1761}
1762
1763static int logical_bsd2_ring_init(struct drm_device *dev)
1764{
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1767
1768 ring->name = "bds2 ring";
1769 ring->id = VCS2;
1770 ring->mmio_base = GEN8_BSD2_RING_BASE;
1771 ring->irq_enable_mask =
1772 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1773 ring->irq_keep_mask =
1774 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1775
ecfe00d8 1776 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1777 ring->get_seqno = gen8_get_seqno;
1778 ring->set_seqno = gen8_set_seqno;
4da46e1e 1779 ring->emit_request = gen8_emit_request;
4712274c 1780 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1781 ring->irq_get = gen8_logical_ring_get_irq;
1782 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1783 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1784
454afebd
OM
1785 return logical_ring_init(dev, ring);
1786}
1787
1788static int logical_blt_ring_init(struct drm_device *dev)
1789{
1790 struct drm_i915_private *dev_priv = dev->dev_private;
1791 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1792
1793 ring->name = "blitter ring";
1794 ring->id = BCS;
1795 ring->mmio_base = BLT_RING_BASE;
1796 ring->irq_enable_mask =
1797 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1798 ring->irq_keep_mask =
1799 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1800
ecfe00d8 1801 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1802 ring->get_seqno = gen8_get_seqno;
1803 ring->set_seqno = gen8_set_seqno;
4da46e1e 1804 ring->emit_request = gen8_emit_request;
4712274c 1805 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1806 ring->irq_get = gen8_logical_ring_get_irq;
1807 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1808 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1809
454afebd
OM
1810 return logical_ring_init(dev, ring);
1811}
1812
1813static int logical_vebox_ring_init(struct drm_device *dev)
1814{
1815 struct drm_i915_private *dev_priv = dev->dev_private;
1816 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1817
1818 ring->name = "video enhancement ring";
1819 ring->id = VECS;
1820 ring->mmio_base = VEBOX_RING_BASE;
1821 ring->irq_enable_mask =
1822 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1823 ring->irq_keep_mask =
1824 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1825
ecfe00d8 1826 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1827 ring->get_seqno = gen8_get_seqno;
1828 ring->set_seqno = gen8_set_seqno;
4da46e1e 1829 ring->emit_request = gen8_emit_request;
4712274c 1830 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1831 ring->irq_get = gen8_logical_ring_get_irq;
1832 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1833 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1834
454afebd
OM
1835 return logical_ring_init(dev, ring);
1836}
1837
73e4d07f
OM
1838/**
1839 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1840 * @dev: DRM device.
1841 *
1842 * This function inits the engines for an Execlists submission style (the equivalent in the
1843 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1844 * those engines that are present in the hardware.
1845 *
1846 * Return: non-zero if the initialization failed.
1847 */
454afebd
OM
1848int intel_logical_rings_init(struct drm_device *dev)
1849{
1850 struct drm_i915_private *dev_priv = dev->dev_private;
1851 int ret;
1852
1853 ret = logical_render_ring_init(dev);
1854 if (ret)
1855 return ret;
1856
1857 if (HAS_BSD(dev)) {
1858 ret = logical_bsd_ring_init(dev);
1859 if (ret)
1860 goto cleanup_render_ring;
1861 }
1862
1863 if (HAS_BLT(dev)) {
1864 ret = logical_blt_ring_init(dev);
1865 if (ret)
1866 goto cleanup_bsd_ring;
1867 }
1868
1869 if (HAS_VEBOX(dev)) {
1870 ret = logical_vebox_ring_init(dev);
1871 if (ret)
1872 goto cleanup_blt_ring;
1873 }
1874
1875 if (HAS_BSD2(dev)) {
1876 ret = logical_bsd2_ring_init(dev);
1877 if (ret)
1878 goto cleanup_vebox_ring;
1879 }
1880
1881 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1882 if (ret)
1883 goto cleanup_bsd2_ring;
1884
1885 return 0;
1886
1887cleanup_bsd2_ring:
1888 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1889cleanup_vebox_ring:
1890 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1891cleanup_blt_ring:
1892 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1893cleanup_bsd_ring:
1894 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1895cleanup_render_ring:
1896 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1897
1898 return ret;
1899}
1900
0cea6502
JM
1901static u32
1902make_rpcs(struct drm_device *dev)
1903{
1904 u32 rpcs = 0;
1905
1906 /*
1907 * No explicit RPCS request is needed to ensure full
1908 * slice/subslice/EU enablement prior to Gen9.
1909 */
1910 if (INTEL_INFO(dev)->gen < 9)
1911 return 0;
1912
1913 /*
1914 * Starting in Gen9, render power gating can leave
1915 * slice/subslice/EU in a partially enabled state. We
1916 * must make an explicit request through RPCS for full
1917 * enablement.
1918 */
1919 if (INTEL_INFO(dev)->has_slice_pg) {
1920 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1921 rpcs |= INTEL_INFO(dev)->slice_total <<
1922 GEN8_RPCS_S_CNT_SHIFT;
1923 rpcs |= GEN8_RPCS_ENABLE;
1924 }
1925
1926 if (INTEL_INFO(dev)->has_subslice_pg) {
1927 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1928 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1929 GEN8_RPCS_SS_CNT_SHIFT;
1930 rpcs |= GEN8_RPCS_ENABLE;
1931 }
1932
1933 if (INTEL_INFO(dev)->has_eu_pg) {
1934 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1935 GEN8_RPCS_EU_MIN_SHIFT;
1936 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1937 GEN8_RPCS_EU_MAX_SHIFT;
1938 rpcs |= GEN8_RPCS_ENABLE;
1939 }
1940
1941 return rpcs;
1942}
1943
8670d6f9
OM
1944static int
1945populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1946 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1947{
2d965536
TD
1948 struct drm_device *dev = ring->dev;
1949 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 1950 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
1951 struct page *page;
1952 uint32_t *reg_state;
1953 int ret;
1954
2d965536
TD
1955 if (!ppgtt)
1956 ppgtt = dev_priv->mm.aliasing_ppgtt;
1957
8670d6f9
OM
1958 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1959 if (ret) {
1960 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1961 return ret;
1962 }
1963
1964 ret = i915_gem_object_get_pages(ctx_obj);
1965 if (ret) {
1966 DRM_DEBUG_DRIVER("Could not get object pages\n");
1967 return ret;
1968 }
1969
1970 i915_gem_object_pin_pages(ctx_obj);
1971
1972 /* The second page of the context object contains some fields which must
1973 * be set up prior to the first execution. */
1974 page = i915_gem_object_get_page(ctx_obj, 1);
1975 reg_state = kmap_atomic(page);
1976
1977 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1978 * commands followed by (reg, value) pairs. The values we are setting here are
1979 * only for the first context restore: on a subsequent save, the GPU will
1980 * recreate this batchbuffer with new values (including all the missing
1981 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1982 if (ring->id == RCS)
1983 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1984 else
1985 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1986 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1987 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1988 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5
ZW
1989 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1990 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
8670d6f9
OM
1991 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1992 reg_state[CTX_RING_HEAD+1] = 0;
1993 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1994 reg_state[CTX_RING_TAIL+1] = 0;
1995 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
1996 /* Ring buffer start address is not known until the buffer is pinned.
1997 * It is written to the context image in execlists_update_context()
1998 */
8670d6f9
OM
1999 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2000 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2001 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2002 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2003 reg_state[CTX_BB_HEAD_U+1] = 0;
2004 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2005 reg_state[CTX_BB_HEAD_L+1] = 0;
2006 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2007 reg_state[CTX_BB_STATE+1] = (1<<5);
2008 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2009 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2010 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2011 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2012 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2013 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2014 if (ring->id == RCS) {
8670d6f9
OM
2015 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2016 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2017 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2018 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2019 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2020 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
17ee950d
AS
2021 if (ring->wa_ctx.obj) {
2022 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2023 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2024
2025 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2026 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2027 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2028
2029 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2030 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2031
2032 reg_state[CTX_BB_PER_CTX_PTR+1] =
2033 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2034 0x01;
2035 }
8670d6f9
OM
2036 }
2037 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2038 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2039 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2040 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2041 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2042 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2043 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2044 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2045 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2046 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2047 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2048 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
d7b2633d
MT
2049
2050 /* With dynamic page allocation, PDPs may not be allocated at this point,
2051 * Point the unallocated PDPs to the scratch page
e5815a2e
MT
2052 */
2053 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2054 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2055 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2056 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
8670d6f9
OM
2057 if (ring->id == RCS) {
2058 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
2059 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2060 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
2061 }
2062
2063 kunmap_atomic(reg_state);
2064
2065 ctx_obj->dirty = 1;
2066 set_page_dirty(page);
2067 i915_gem_object_unpin_pages(ctx_obj);
2068
2069 return 0;
2070}
2071
73e4d07f
OM
2072/**
2073 * intel_lr_context_free() - free the LRC specific bits of a context
2074 * @ctx: the LR context to free.
2075 *
2076 * The real context freeing is done in i915_gem_context_free: this only
2077 * takes care of the bits that are LRC related: the per-engine backing
2078 * objects and the logical ringbuffer.
2079 */
ede7d42b
OM
2080void intel_lr_context_free(struct intel_context *ctx)
2081{
8c857917
OM
2082 int i;
2083
2084 for (i = 0; i < I915_NUM_RINGS; i++) {
2085 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2086
8c857917 2087 if (ctx_obj) {
dcb4c12a
OM
2088 struct intel_ringbuffer *ringbuf =
2089 ctx->engine[i].ringbuf;
2090 struct intel_engine_cs *ring = ringbuf->ring;
2091
7ba717cf
TD
2092 if (ctx == ring->default_context) {
2093 intel_unpin_ringbuffer_obj(ringbuf);
2094 i915_gem_object_ggtt_unpin(ctx_obj);
2095 }
a7cbedec 2096 WARN_ON(ctx->engine[ring->id].pin_count);
84c2377f
OM
2097 intel_destroy_ringbuffer_obj(ringbuf);
2098 kfree(ringbuf);
8c857917
OM
2099 drm_gem_object_unreference(&ctx_obj->base);
2100 }
2101 }
2102}
2103
2104static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2105{
2106 int ret = 0;
2107
468c6816 2108 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2109
2110 switch (ring->id) {
2111 case RCS:
468c6816
MN
2112 if (INTEL_INFO(ring->dev)->gen >= 9)
2113 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2114 else
2115 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2116 break;
2117 case VCS:
2118 case BCS:
2119 case VECS:
2120 case VCS2:
2121 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2122 break;
2123 }
2124
2125 return ret;
ede7d42b
OM
2126}
2127
70b0ea86 2128static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2129 struct drm_i915_gem_object *default_ctx_obj)
2130{
2131 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2132
2133 /* The status page is offset 0 from the default context object
2134 * in LRC mode. */
2135 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2136 ring->status_page.page_addr =
2137 kmap(sg_page(default_ctx_obj->pages->sgl));
1df06b75
TD
2138 ring->status_page.obj = default_ctx_obj;
2139
2140 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2141 (u32)ring->status_page.gfx_addr);
2142 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2143}
2144
73e4d07f
OM
2145/**
2146 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2147 * @ctx: LR context to create.
2148 * @ring: engine to be used with the context.
2149 *
2150 * This function can be called more than once, with different engines, if we plan
2151 * to use the context with them. The context backing objects and the ringbuffers
2152 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2153 * the creation is a deferred call: it's better to make sure first that we need to use
2154 * a given ring with the context.
2155 *
32197aab 2156 * Return: non-zero on error.
73e4d07f 2157 */
ede7d42b
OM
2158int intel_lr_context_deferred_create(struct intel_context *ctx,
2159 struct intel_engine_cs *ring)
2160{
dcb4c12a 2161 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917
OM
2162 struct drm_device *dev = ring->dev;
2163 struct drm_i915_gem_object *ctx_obj;
2164 uint32_t context_size;
84c2377f 2165 struct intel_ringbuffer *ringbuf;
8c857917
OM
2166 int ret;
2167
ede7d42b 2168 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2169 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2170
8c857917
OM
2171 context_size = round_up(get_lr_context_size(ring), 4096);
2172
149c86e7 2173 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2174 if (!ctx_obj) {
2175 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2176 return -ENOMEM;
8c857917
OM
2177 }
2178
dcb4c12a
OM
2179 if (is_global_default_ctx) {
2180 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2181 if (ret) {
2182 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2183 ret);
2184 drm_gem_object_unreference(&ctx_obj->base);
2185 return ret;
2186 }
8c857917
OM
2187 }
2188
84c2377f
OM
2189 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2190 if (!ringbuf) {
2191 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2192 ring->name);
84c2377f 2193 ret = -ENOMEM;
7ba717cf 2194 goto error_unpin_ctx;
84c2377f
OM
2195 }
2196
0c7dd53b 2197 ringbuf->ring = ring;
582d67f0 2198
84c2377f
OM
2199 ringbuf->size = 32 * PAGE_SIZE;
2200 ringbuf->effective_size = ringbuf->size;
2201 ringbuf->head = 0;
2202 ringbuf->tail = 0;
84c2377f 2203 ringbuf->last_retired_head = -1;
ebd0fd4b 2204 intel_ring_update_space(ringbuf);
84c2377f 2205
7ba717cf
TD
2206 if (ringbuf->obj == NULL) {
2207 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2208 if (ret) {
2209 DRM_DEBUG_DRIVER(
2210 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 2211 ring->name, ret);
7ba717cf
TD
2212 goto error_free_rbuf;
2213 }
2214
2215 if (is_global_default_ctx) {
2216 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2217 if (ret) {
2218 DRM_ERROR(
2219 "Failed to pin and map ringbuffer %s: %d\n",
2220 ring->name, ret);
2221 goto error_destroy_rbuf;
2222 }
2223 }
2224
8670d6f9
OM
2225 }
2226
2227 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2228 if (ret) {
2229 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 2230 goto error;
84c2377f
OM
2231 }
2232
2233 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2234 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2235
70b0ea86
DV
2236 if (ctx == ring->default_context)
2237 lrc_setup_hardware_status_page(ring, ctx_obj);
e7778be1 2238 else if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53
MT
2239 if (ring->init_context) {
2240 ret = ring->init_context(ring, ctx);
e7778be1 2241 if (ret) {
771b9a53 2242 DRM_ERROR("ring init context: %d\n", ret);
e7778be1
TD
2243 ctx->engine[ring->id].ringbuf = NULL;
2244 ctx->engine[ring->id].state = NULL;
2245 goto error;
2246 }
771b9a53
MT
2247 }
2248
564ddb2f
OM
2249 ctx->rcs_initialized = true;
2250 }
2251
ede7d42b 2252 return 0;
8670d6f9
OM
2253
2254error:
7ba717cf
TD
2255 if (is_global_default_ctx)
2256 intel_unpin_ringbuffer_obj(ringbuf);
2257error_destroy_rbuf:
2258 intel_destroy_ringbuffer_obj(ringbuf);
2259error_free_rbuf:
8670d6f9 2260 kfree(ringbuf);
7ba717cf 2261error_unpin_ctx:
dcb4c12a
OM
2262 if (is_global_default_ctx)
2263 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
2264 drm_gem_object_unreference(&ctx_obj->base);
2265 return ret;
ede7d42b 2266}
3e5b6f05
TD
2267
2268void intel_lr_context_reset(struct drm_device *dev,
2269 struct intel_context *ctx)
2270{
2271 struct drm_i915_private *dev_priv = dev->dev_private;
2272 struct intel_engine_cs *ring;
2273 int i;
2274
2275 for_each_ring(ring, dev_priv, i) {
2276 struct drm_i915_gem_object *ctx_obj =
2277 ctx->engine[ring->id].state;
2278 struct intel_ringbuffer *ringbuf =
2279 ctx->engine[ring->id].ringbuf;
2280 uint32_t *reg_state;
2281 struct page *page;
2282
2283 if (!ctx_obj)
2284 continue;
2285
2286 if (i915_gem_object_get_pages(ctx_obj)) {
2287 WARN(1, "Failed get_pages for context obj\n");
2288 continue;
2289 }
2290 page = i915_gem_object_get_page(ctx_obj, 1);
2291 reg_state = kmap_atomic(page);
2292
2293 reg_state[CTX_RING_HEAD+1] = 0;
2294 reg_state[CTX_RING_TAIL+1] = 0;
2295
2296 kunmap_atomic(reg_state);
2297
2298 ringbuf->head = 0;
2299 ringbuf->tail = 0;
2300 }
2301}
This page took 0.236708 seconds and 5 git commands to generate.