drm/i915: Refactor execlists default context pinning
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
7069b144 227#define GEN8_CTX_ID_WIDTH 21
71562919
MT
228#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 230
e5292823
TU
231static int intel_lr_context_pin(struct intel_context *ctx,
232 struct intel_engine_cs *engine);
7ba717cf 233
73e4d07f
OM
234/**
235 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
236 * @dev: DRM device.
237 * @enable_execlists: value of i915.enable_execlists module parameter.
238 *
239 * Only certain platforms support Execlists (the prerequisites being
27401d12 240 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
241 *
242 * Return: 1 if Execlists is supported and has to be enabled.
243 */
127f1003
OM
244int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
245{
bd84b1e9
DV
246 WARN_ON(i915.enable_ppgtt == -1);
247
a0bd6c31
ZL
248 /* On platforms with execlist available, vGPU will only
249 * support execlist mode, no ring buffer mode.
250 */
251 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
252 return 1;
253
70ee45e1
DL
254 if (INTEL_INFO(dev)->gen >= 9)
255 return 1;
256
127f1003
OM
257 if (enable_execlists == 0)
258 return 0;
259
14bf993e
OM
260 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
261 i915.use_mmio_flip >= 0)
127f1003
OM
262 return 1;
263
264 return 0;
265}
ede7d42b 266
ca82580c 267static void
0bc40be8 268logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 269{
0bc40be8 270 struct drm_device *dev = engine->dev;
ca82580c 271
c6a2ac71 272 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 273 engine->idle_lite_restore_wa = ~0;
c6a2ac71 274
0bc40be8 275 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 276 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 277 (engine->id == VCS || engine->id == VCS2);
ca82580c 278
0bc40be8
TU
279 engine->ctx_desc_template = GEN8_CTX_VALID;
280 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
281 GEN8_CTX_ADDRESSING_MODE_SHIFT;
282 if (IS_GEN8(dev))
0bc40be8
TU
283 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
285
286 /* TODO: WaDisableLiteRestore when we start using semaphore
287 * signalling between Command Streamers */
288 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
292 if (engine->disable_lite_restore_wa)
293 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
294}
295
73e4d07f 296/**
ca82580c
TU
297 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298 * descriptor for a pinned context
73e4d07f 299 *
ca82580c
TU
300 * @ctx: Context to work on
301 * @ring: Engine the descriptor will be used with
73e4d07f 302 *
ca82580c
TU
303 * The context descriptor encodes various attributes of a context,
304 * including its GTT address and some flags. Because it's fairly
305 * expensive to calculate, we'll just do it once and cache the result,
306 * which remains valid until the context is unpinned.
307 *
308 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 309 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 310 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 311 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
312 * bits 53-54: mbz, reserved for use by hardware
313 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 314 */
ca82580c
TU
315static void
316intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 317 struct intel_engine_cs *engine)
84b790f8 318{
7069b144 319 u64 desc;
84b790f8 320
7069b144 321 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 322
7069b144
CW
323 desc = engine->ctx_desc_template; /* bits 0-11 */
324 desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
325 LRC_PPHWSP_PN * PAGE_SIZE;
326 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 327
0bc40be8 328 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
329}
330
919f1f55 331uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 332 struct intel_engine_cs *engine)
84b790f8 333{
0bc40be8 334 return ctx->engine[engine->id].lrc_desc;
ca82580c 335}
203a571b 336
cc3c4253
MK
337static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
338 struct drm_i915_gem_request *rq1)
84b790f8 339{
cc3c4253 340
4a570db5 341 struct intel_engine_cs *engine = rq0->engine;
e2f80391 342 struct drm_device *dev = engine->dev;
6e7cc470 343 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 344 uint64_t desc[2];
84b790f8 345
1cff8cc3 346 if (rq1) {
4a570db5 347 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
348 rq1->elsp_submitted++;
349 } else {
350 desc[1] = 0;
351 }
84b790f8 352
4a570db5 353 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 354 rq0->elsp_submitted++;
84b790f8 355
1cff8cc3 356 /* You must always write both descriptors in the order below. */
e2f80391
TU
357 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
358 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 359
e2f80391 360 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 361 /* The context is automatically loaded after the following */
e2f80391 362 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 363
1cff8cc3 364 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 365 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
366}
367
c6a2ac71
TU
368static void
369execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
370{
371 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
372 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
373 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
375}
376
377static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 378{
4a570db5 379 struct intel_engine_cs *engine = rq->engine;
05d9824b 380 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 381 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 382
05d9824b 383 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 384
c6a2ac71
TU
385 /* True 32b PPGTT with dynamic page allocation: update PDP
386 * registers and point the unallocated PDPs to scratch page.
387 * PML4 is allocated during ppgtt init, so this is not needed
388 * in 48-bit mode.
389 */
390 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
391 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
392}
393
d8cb8875
MK
394static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
395 struct drm_i915_gem_request *rq1)
84b790f8 396{
26720ab9 397 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 398 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 399
05d9824b 400 execlists_update_context(rq0);
d8cb8875 401
cc3c4253 402 if (rq1)
05d9824b 403 execlists_update_context(rq1);
84b790f8 404
27af5eea 405 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 406 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 407
cc3c4253 408 execlists_elsp_write(rq0, rq1);
26720ab9 409
3756685a 410 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 411 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
412}
413
26720ab9 414static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 415{
6d3d8274 416 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 417 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 418
0bc40be8 419 assert_spin_locked(&engine->execlist_lock);
acdd884a 420
779949f4
PA
421 /*
422 * If irqs are not active generate a warning as batches that finish
423 * without the irqs may get lost and a GPU Hang may occur.
424 */
0bc40be8 425 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 426
acdd884a 427 /* Try to read in pairs */
0bc40be8 428 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
429 execlist_link) {
430 if (!req0) {
431 req0 = cursor;
6d3d8274 432 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
433 /* Same ctx: ignore first request, as second request
434 * will update tail past first request's workload */
e1fee72c 435 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25 436 list_move_tail(&req0->execlist_link,
0bc40be8 437 &engine->execlist_retired_req_list);
acdd884a
MT
438 req0 = cursor;
439 } else {
440 req1 = cursor;
c6a2ac71 441 WARN_ON(req1->elsp_submitted);
acdd884a
MT
442 break;
443 }
444 }
445
c6a2ac71
TU
446 if (unlikely(!req0))
447 return;
448
0bc40be8 449 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 450 /*
c6a2ac71
TU
451 * WaIdleLiteRestore: make sure we never cause a lite restore
452 * with HEAD==TAIL.
453 *
454 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
455 * resubmit the request. See gen8_emit_request() for where we
456 * prepare the padding after the end of the request.
53292cdb 457 */
c6a2ac71 458 struct intel_ringbuffer *ringbuf;
53292cdb 459
0bc40be8 460 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
461 req0->tail += 8;
462 req0->tail &= ringbuf->size - 1;
53292cdb
MT
463 }
464
d8cb8875 465 execlists_submit_requests(req0, req1);
acdd884a
MT
466}
467
c6a2ac71 468static unsigned int
0bc40be8 469execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
e981e7b1 470{
6d3d8274 471 struct drm_i915_gem_request *head_req;
e981e7b1 472
0bc40be8 473 assert_spin_locked(&engine->execlist_lock);
e981e7b1 474
0bc40be8 475 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 476 struct drm_i915_gem_request,
e981e7b1
TD
477 execlist_link);
478
c6a2ac71
TU
479 if (!head_req)
480 return 0;
e1fee72c 481
7069b144 482 if (unlikely(head_req->ctx->hw_id != request_id))
c6a2ac71
TU
483 return 0;
484
485 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted > 0)
488 return 0;
489
490 list_move_tail(&head_req->execlist_link,
0bc40be8 491 &engine->execlist_retired_req_list);
e981e7b1 492
c6a2ac71 493 return 1;
e981e7b1
TD
494}
495
c6a2ac71 496static u32
0bc40be8 497get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 498 u32 *context_id)
91a41032 499{
0bc40be8 500 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 501 u32 status;
91a41032 502
c6a2ac71
TU
503 read_pointer %= GEN8_CSB_ENTRIES;
504
0bc40be8 505 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
506
507 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
508 return 0;
91a41032 509
0bc40be8 510 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
511 read_pointer));
512
513 return status;
91a41032
BW
514}
515
73e4d07f 516/**
3f7531c3 517 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 518 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
519 *
520 * Check the unread Context Status Buffers and manage the submission of new
521 * contexts to the ELSP accordingly.
522 */
27af5eea 523static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 524{
27af5eea 525 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
0bc40be8 526 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 527 u32 status_pointer;
c6a2ac71 528 unsigned int read_pointer, write_pointer;
26720ab9
TU
529 u32 csb[GEN8_CSB_ENTRIES][2];
530 unsigned int csb_read = 0, i;
c6a2ac71
TU
531 unsigned int submit_contexts = 0;
532
3756685a 533 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 534
0bc40be8 535 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 536
0bc40be8 537 read_pointer = engine->next_context_status_buffer;
5590a5f0 538 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 539 if (read_pointer > write_pointer)
dfc53c5e 540 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 541
e981e7b1 542 while (read_pointer < write_pointer) {
26720ab9
TU
543 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
544 break;
545 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
546 &csb[csb_read][1]);
547 csb_read++;
548 }
91a41032 549
26720ab9
TU
550 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
551
552 /* Update the read pointer to the old write pointer. Manual ringbuffer
553 * management ftw </sarcasm> */
554 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
555 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
556 engine->next_context_status_buffer << 8));
557
3756685a 558 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
559
560 spin_lock(&engine->execlist_lock);
561
562 for (i = 0; i < csb_read; i++) {
563 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
564 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
565 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
566 WARN(1, "Lite Restored request removed from queue\n");
567 } else
568 WARN(1, "Preemption without Lite Restore\n");
569 }
570
26720ab9 571 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
572 GEN8_CTX_STATUS_ELEMENT_SWITCH))
573 submit_contexts +=
26720ab9 574 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
575 }
576
c6a2ac71 577 if (submit_contexts) {
0bc40be8 578 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
579 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
580 execlists_context_unqueue(engine);
5af05fef 581 }
e981e7b1 582
0bc40be8 583 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
584
585 if (unlikely(submit_contexts > 2))
586 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
587}
588
c6a2ac71 589static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 590{
4a570db5 591 struct intel_engine_cs *engine = request->engine;
6d3d8274 592 struct drm_i915_gem_request *cursor;
f1ad5a1f 593 int num_elements = 0;
acdd884a 594
24f1d3cc 595 intel_lr_context_pin(request->ctx, request->engine);
9bb1af44
JH
596 i915_gem_request_reference(request);
597
27af5eea 598 spin_lock_bh(&engine->execlist_lock);
acdd884a 599
e2f80391 600 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
601 if (++num_elements > 2)
602 break;
603
604 if (num_elements > 2) {
6d3d8274 605 struct drm_i915_gem_request *tail_req;
f1ad5a1f 606
e2f80391 607 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 608 struct drm_i915_gem_request,
f1ad5a1f
OM
609 execlist_link);
610
ae70797d 611 if (request->ctx == tail_req->ctx) {
f1ad5a1f 612 WARN(tail_req->elsp_submitted != 0,
7ba717cf 613 "More than 2 already-submitted reqs queued\n");
7eb08a25 614 list_move_tail(&tail_req->execlist_link,
e2f80391 615 &engine->execlist_retired_req_list);
f1ad5a1f
OM
616 }
617 }
618
e2f80391 619 list_add_tail(&request->execlist_link, &engine->execlist_queue);
f1ad5a1f 620 if (num_elements == 0)
e2f80391 621 execlists_context_unqueue(engine);
acdd884a 622
27af5eea 623 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
624}
625
2f20055d 626static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 627{
4a570db5 628 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
629 uint32_t flush_domains;
630 int ret;
631
632 flush_domains = 0;
e2f80391 633 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
634 flush_domains = I915_GEM_GPU_DOMAINS;
635
e2f80391 636 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
637 if (ret)
638 return ret;
639
e2f80391 640 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
641 return 0;
642}
643
535fbe82 644static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
645 struct list_head *vmas)
646{
666796da 647 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
648 struct i915_vma *vma;
649 uint32_t flush_domains = 0;
650 bool flush_chipset = false;
651 int ret;
652
653 list_for_each_entry(vma, vmas, exec_list) {
654 struct drm_i915_gem_object *obj = vma->obj;
655
03ade511 656 if (obj->active & other_rings) {
4a570db5 657 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
658 if (ret)
659 return ret;
660 }
ba8b7ccb
OM
661
662 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
663 flush_chipset |= i915_gem_clflush_object(obj, false);
664
665 flush_domains |= obj->base.write_domain;
666 }
667
668 if (flush_domains & I915_GEM_DOMAIN_GTT)
669 wmb();
670
671 /* Unconditionally invalidate gpu caches and ensure that we do flush
672 * any residual writes from the previous batch.
673 */
2f20055d 674 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
675}
676
40e895ce 677int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 678{
24f1d3cc 679 struct intel_engine_cs *engine = request->engine;
bfa01200 680 int ret;
bc0dce3f 681
6310346e
CW
682 /* Flush enough space to reduce the likelihood of waiting after
683 * we start building the request - in which case we will just
684 * have to repeat work.
685 */
686 request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;
687
24f1d3cc 688 request->ringbuf = request->ctx->engine[engine->id].ringbuf;
f3cc01f0 689
a7e02199
AD
690 if (i915.enable_guc_submission) {
691 /*
692 * Check that the GuC has space for the request before
693 * going any further, as the i915_add_request() call
694 * later on mustn't fail ...
695 */
696 struct intel_guc *guc = &request->i915->guc;
697
698 ret = i915_guc_wq_check_space(guc->execbuf_client);
699 if (ret)
700 return ret;
701 }
702
24f1d3cc
CW
703 ret = intel_lr_context_pin(request->ctx, engine);
704 if (ret)
705 return ret;
e28e404c 706
bfa01200
CW
707 ret = intel_ring_begin(request, 0);
708 if (ret)
709 goto err_unpin;
710
24f1d3cc
CW
711 if (!request->ctx->engine[engine->id].initialised) {
712 ret = engine->init_context(request);
713 if (ret)
714 goto err_unpin;
715
716 request->ctx->engine[engine->id].initialised = true;
717 }
718
719 /* Note that after this point, we have committed to using
720 * this request as it is being used to both track the
721 * state of engine initialisation and liveness of the
722 * golden renderstate above. Think twice before you try
723 * to cancel/unwind this request now.
724 */
725
6310346e 726 request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
727 return 0;
728
729err_unpin:
24f1d3cc 730 intel_lr_context_unpin(request->ctx, engine);
e28e404c 731 return ret;
bc0dce3f
JH
732}
733
bc0dce3f
JH
734/*
735 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 736 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
737 *
738 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
739 * really happens during submission is that the context and current tail will be placed
740 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
741 * point, the tail *inside* the context is updated and the ELSP written to.
742 */
7c17d377 743static int
ae70797d 744intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 745{
7c17d377 746 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 747 struct drm_i915_private *dev_priv = request->i915;
4a570db5 748 struct intel_engine_cs *engine = request->engine;
bc0dce3f 749
7c17d377
CW
750 intel_logical_ring_advance(ringbuf);
751 request->tail = ringbuf->tail;
bc0dce3f 752
7c17d377
CW
753 /*
754 * Here we add two extra NOOPs as padding to avoid
755 * lite restore of a context with HEAD==TAIL.
756 *
757 * Caller must reserve WA_TAIL_DWORDS for us!
758 */
759 intel_logical_ring_emit(ringbuf, MI_NOOP);
760 intel_logical_ring_emit(ringbuf, MI_NOOP);
761 intel_logical_ring_advance(ringbuf);
d1675198 762
117897f4 763 if (intel_engine_stopped(engine))
7c17d377 764 return 0;
bc0dce3f 765
f4e2dece
TU
766 if (engine->last_context != request->ctx) {
767 if (engine->last_context)
768 intel_lr_context_unpin(engine->last_context, engine);
24f1d3cc
CW
769 intel_lr_context_pin(request->ctx, engine);
770 engine->last_context = request->ctx;
f4e2dece
TU
771 }
772
d1675198
AD
773 if (dev_priv->guc.execbuf_client)
774 i915_guc_submit(dev_priv->guc.execbuf_client, request);
775 else
776 execlists_context_queue(request);
7c17d377
CW
777
778 return 0;
bc0dce3f
JH
779}
780
73e4d07f
OM
781/**
782 * execlists_submission() - submit a batchbuffer for execution, Execlists style
783 * @dev: DRM device.
784 * @file: DRM file.
785 * @ring: Engine Command Streamer to submit to.
786 * @ctx: Context to employ for this submission.
787 * @args: execbuffer call arguments.
788 * @vmas: list of vmas.
789 * @batch_obj: the batchbuffer to submit.
790 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 791 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
792 *
793 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
794 * away the submission details of the execbuffer ioctl call.
795 *
796 * Return: non-zero if the submission fails.
797 */
5f19e2bf 798int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 799 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 800 struct list_head *vmas)
454afebd 801{
5f19e2bf 802 struct drm_device *dev = params->dev;
4a570db5 803 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 804 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 805 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 806 u64 exec_start;
ba8b7ccb
OM
807 int instp_mode;
808 u32 instp_mask;
809 int ret;
810
811 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
812 instp_mask = I915_EXEC_CONSTANTS_MASK;
813 switch (instp_mode) {
814 case I915_EXEC_CONSTANTS_REL_GENERAL:
815 case I915_EXEC_CONSTANTS_ABSOLUTE:
816 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 817 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
818 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
819 return -EINVAL;
820 }
821
822 if (instp_mode != dev_priv->relative_constants_mode) {
823 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
824 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
825 return -EINVAL;
826 }
827
828 /* The HW changed the meaning on this bit on gen6 */
829 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
830 }
831 break;
832 default:
833 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
834 return -EINVAL;
835 }
836
ba8b7ccb
OM
837 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
838 DRM_DEBUG("sol reset is gen7 only\n");
839 return -EINVAL;
840 }
841
535fbe82 842 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
843 if (ret)
844 return ret;
845
4a570db5 846 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 847 instp_mode != dev_priv->relative_constants_mode) {
987046ad 848 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
849 if (ret)
850 return ret;
851
852 intel_logical_ring_emit(ringbuf, MI_NOOP);
853 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 854 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
855 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
856 intel_logical_ring_advance(ringbuf);
857
858 dev_priv->relative_constants_mode = instp_mode;
859 }
860
5f19e2bf
JH
861 exec_start = params->batch_obj_vm_offset +
862 args->batch_start_offset;
863
e2f80391 864 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
865 if (ret)
866 return ret;
867
95c24161 868 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 869
8a8edb59 870 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 871
454afebd
OM
872 return 0;
873}
874
0bc40be8 875void intel_execlists_retire_requests(struct intel_engine_cs *engine)
c86ee3a9 876{
6d3d8274 877 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
878 struct list_head retired_list;
879
0bc40be8
TU
880 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
881 if (list_empty(&engine->execlist_retired_req_list))
c86ee3a9
TD
882 return;
883
884 INIT_LIST_HEAD(&retired_list);
27af5eea 885 spin_lock_bh(&engine->execlist_lock);
0bc40be8 886 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
27af5eea 887 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9
TD
888
889 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
24f1d3cc 890 intel_lr_context_unpin(req->ctx, engine);
e5292823 891
c86ee3a9 892 list_del(&req->execlist_link);
f8210795 893 i915_gem_request_unreference(req);
c86ee3a9
TD
894 }
895}
896
0bc40be8 897void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 898{
0bc40be8 899 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
900 int ret;
901
117897f4 902 if (!intel_engine_initialized(engine))
9832b9da
OM
903 return;
904
666796da 905 ret = intel_engine_idle(engine);
f4457ae7 906 if (ret)
9832b9da 907 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 908 engine->name, ret);
9832b9da
OM
909
910 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
911 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
912 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
913 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
914 return;
915 }
0bc40be8 916 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
917}
918
4866d729 919int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 920{
4a570db5 921 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
922 int ret;
923
e2f80391 924 if (!engine->gpu_caches_dirty)
48e29f55
OM
925 return 0;
926
e2f80391 927 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
928 if (ret)
929 return ret;
930
e2f80391 931 engine->gpu_caches_dirty = false;
48e29f55
OM
932 return 0;
933}
934
24f1d3cc
CW
935static int intel_lr_context_pin(struct intel_context *ctx,
936 struct intel_engine_cs *engine)
dcb4c12a 937{
24f1d3cc
CW
938 struct drm_i915_private *dev_priv = ctx->i915;
939 struct drm_i915_gem_object *ctx_obj;
940 struct intel_ringbuffer *ringbuf;
7d774cac
TU
941 void *vaddr;
942 u32 *lrc_reg_state;
ca82580c 943 int ret;
dcb4c12a 944
24f1d3cc 945 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
ca82580c 946
24f1d3cc
CW
947 if (ctx->engine[engine->id].pin_count++)
948 return 0;
949
950 ctx_obj = ctx->engine[engine->id].state;
e84fe803
NH
951 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
952 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
953 if (ret)
24f1d3cc 954 goto err;
7ba717cf 955
7d774cac
TU
956 vaddr = i915_gem_object_pin_map(ctx_obj);
957 if (IS_ERR(vaddr)) {
958 ret = PTR_ERR(vaddr);
82352e90
TU
959 goto unpin_ctx_obj;
960 }
961
7d774cac
TU
962 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
963
24f1d3cc 964 ringbuf = ctx->engine[engine->id].ringbuf;
0bc40be8 965 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803 966 if (ret)
7d774cac 967 goto unpin_map;
d1675198 968
24f1d3cc 969 i915_gem_context_reference(ctx);
0bc40be8
TU
970 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
971 intel_lr_context_descriptor_update(ctx, engine);
77b04a04 972 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 973 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 974 ctx_obj->dirty = true;
e93c28f3 975
e84fe803
NH
976 /* Invalidate GuC TLB. */
977 if (i915.enable_guc_submission)
978 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 979
24f1d3cc 980 return 0;
7ba717cf 981
7d774cac
TU
982unpin_map:
983 i915_gem_object_unpin_map(ctx_obj);
7ba717cf
TD
984unpin_ctx_obj:
985 i915_gem_object_ggtt_unpin(ctx_obj);
24f1d3cc
CW
986err:
987 ctx->engine[engine->id].pin_count = 0;
e84fe803
NH
988 return ret;
989}
990
24f1d3cc
CW
991void intel_lr_context_unpin(struct intel_context *ctx,
992 struct intel_engine_cs *engine)
e84fe803 993{
24f1d3cc 994 struct drm_i915_gem_object *ctx_obj;
e84fe803 995
24f1d3cc
CW
996 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
997 GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
321fe304 998
24f1d3cc
CW
999 if (--ctx->engine[engine->id].pin_count)
1000 return;
e84fe803 1001
24f1d3cc 1002 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
dcb4c12a 1003
24f1d3cc
CW
1004 ctx_obj = ctx->engine[engine->id].state;
1005 i915_gem_object_unpin_map(ctx_obj);
1006 i915_gem_object_ggtt_unpin(ctx_obj);
af3302b9 1007
24f1d3cc
CW
1008 ctx->engine[engine->id].lrc_vma = NULL;
1009 ctx->engine[engine->id].lrc_desc = 0;
1010 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304 1011
24f1d3cc 1012 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1013}
1014
e2be4faf 1015static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1016{
1017 int ret, i;
4a570db5 1018 struct intel_engine_cs *engine = req->engine;
e2be4faf 1019 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1020 struct drm_device *dev = engine->dev;
771b9a53
MT
1021 struct drm_i915_private *dev_priv = dev->dev_private;
1022 struct i915_workarounds *w = &dev_priv->workarounds;
1023
cd7feaaa 1024 if (w->count == 0)
771b9a53
MT
1025 return 0;
1026
e2f80391 1027 engine->gpu_caches_dirty = true;
4866d729 1028 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1029 if (ret)
1030 return ret;
1031
987046ad 1032 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1033 if (ret)
1034 return ret;
1035
1036 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1037 for (i = 0; i < w->count; i++) {
f92a9162 1038 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1039 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1040 }
1041 intel_logical_ring_emit(ringbuf, MI_NOOP);
1042
1043 intel_logical_ring_advance(ringbuf);
1044
e2f80391 1045 engine->gpu_caches_dirty = true;
4866d729 1046 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1047 if (ret)
1048 return ret;
1049
1050 return 0;
1051}
1052
83b8a982 1053#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1054 do { \
83b8a982
AS
1055 int __index = (index)++; \
1056 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1057 return -ENOSPC; \
1058 } \
83b8a982 1059 batch[__index] = (cmd); \
17ee950d
AS
1060 } while (0)
1061
8f40db77 1062#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1063 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1064
1065/*
1066 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1067 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1068 * but there is a slight complication as this is applied in WA batch where the
1069 * values are only initialized once so we cannot take register value at the
1070 * beginning and reuse it further; hence we save its value to memory, upload a
1071 * constant value with bit21 set and then we restore it back with the saved value.
1072 * To simplify the WA, a constant value is formed by using the default value
1073 * of this register. This shouldn't be a problem because we are only modifying
1074 * it for a short period and this batch in non-premptible. We can ofcourse
1075 * use additional instructions that read the actual value of the register
1076 * at that time and set our bit of interest but it makes the WA complicated.
1077 *
1078 * This WA is also required for Gen9 so extracting as a function avoids
1079 * code duplication.
1080 */
0bc40be8 1081static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1082 uint32_t *const batch,
1083 uint32_t index)
1084{
1085 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1086
a4106a78
AS
1087 /*
1088 * WaDisableLSQCROPERFforOCL:skl
1089 * This WA is implemented in skl_init_clock_gating() but since
1090 * this batch updates GEN8_L3SQCREG4 with default value we need to
1091 * set this bit here to retain the WA during flush.
1092 */
0bc40be8 1093 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1094 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1095
f1afe24f 1096 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1097 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1098 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1099 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1100 wa_ctx_emit(batch, index, 0);
1101
1102 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1103 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1104 wa_ctx_emit(batch, index, l3sqc4_flush);
1105
1106 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1107 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1108 PIPE_CONTROL_DC_FLUSH_ENABLE));
1109 wa_ctx_emit(batch, index, 0);
1110 wa_ctx_emit(batch, index, 0);
1111 wa_ctx_emit(batch, index, 0);
1112 wa_ctx_emit(batch, index, 0);
1113
f1afe24f 1114 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1115 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1116 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1117 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1118 wa_ctx_emit(batch, index, 0);
9e000847
AS
1119
1120 return index;
1121}
1122
17ee950d
AS
1123static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1124 uint32_t offset,
1125 uint32_t start_alignment)
1126{
1127 return wa_ctx->offset = ALIGN(offset, start_alignment);
1128}
1129
1130static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1131 uint32_t offset,
1132 uint32_t size_alignment)
1133{
1134 wa_ctx->size = offset - wa_ctx->offset;
1135
1136 WARN(wa_ctx->size % size_alignment,
1137 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1138 wa_ctx->size, size_alignment);
1139 return 0;
1140}
1141
1142/**
1143 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1144 *
1145 * @ring: only applicable for RCS
1146 * @wa_ctx: structure representing wa_ctx
1147 * offset: specifies start of the batch, should be cache-aligned. This is updated
1148 * with the offset value received as input.
1149 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1150 * @batch: page in which WA are loaded
1151 * @offset: This field specifies the start of the batch, it should be
1152 * cache-aligned otherwise it is adjusted accordingly.
1153 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1154 * initialized at the beginning and shared across all contexts but this field
1155 * helps us to have multiple batches at different offsets and select them based
1156 * on a criteria. At the moment this batch always start at the beginning of the page
1157 * and at this point we don't have multiple wa_ctx batch buffers.
1158 *
1159 * The number of WA applied are not known at the beginning; we use this field
1160 * to return the no of DWORDS written.
4d78c8dc 1161 *
17ee950d
AS
1162 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1163 * so it adds NOOPs as padding to make it cacheline aligned.
1164 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1165 * makes a complete batch buffer.
1166 *
1167 * Return: non-zero if we exceed the PAGE_SIZE limit.
1168 */
1169
0bc40be8 1170static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1171 struct i915_wa_ctx_bb *wa_ctx,
1172 uint32_t *const batch,
1173 uint32_t *offset)
1174{
0160f055 1175 uint32_t scratch_addr;
17ee950d
AS
1176 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1177
7ad00d1a 1178 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1179 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1180
c82435bb 1181 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1182 if (IS_BROADWELL(engine->dev)) {
1183 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1184 if (rc < 0)
1185 return rc;
1186 index = rc;
c82435bb
AS
1187 }
1188
0160f055
AS
1189 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1190 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1191 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1192
83b8a982
AS
1193 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1194 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1195 PIPE_CONTROL_GLOBAL_GTT_IVB |
1196 PIPE_CONTROL_CS_STALL |
1197 PIPE_CONTROL_QW_WRITE));
1198 wa_ctx_emit(batch, index, scratch_addr);
1199 wa_ctx_emit(batch, index, 0);
1200 wa_ctx_emit(batch, index, 0);
1201 wa_ctx_emit(batch, index, 0);
0160f055 1202
17ee950d
AS
1203 /* Pad to end of cacheline */
1204 while (index % CACHELINE_DWORDS)
83b8a982 1205 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1206
1207 /*
1208 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1209 * execution depends on the length specified in terms of cache lines
1210 * in the register CTX_RCS_INDIRECT_CTX
1211 */
1212
1213 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1214}
1215
1216/**
1217 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1218 *
1219 * @ring: only applicable for RCS
1220 * @wa_ctx: structure representing wa_ctx
1221 * offset: specifies start of the batch, should be cache-aligned.
1222 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1223 * @batch: page in which WA are loaded
17ee950d
AS
1224 * @offset: This field specifies the start of this batch.
1225 * This batch is started immediately after indirect_ctx batch. Since we ensure
1226 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1227 *
1228 * The number of DWORDS written are returned using this field.
1229 *
1230 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1231 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1232 */
0bc40be8 1233static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1234 struct i915_wa_ctx_bb *wa_ctx,
1235 uint32_t *const batch,
1236 uint32_t *offset)
1237{
1238 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1239
7ad00d1a 1240 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1241 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1242
83b8a982 1243 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1244
1245 return wa_ctx_end(wa_ctx, *offset = index, 1);
1246}
1247
0bc40be8 1248static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1249 struct i915_wa_ctx_bb *wa_ctx,
1250 uint32_t *const batch,
1251 uint32_t *offset)
1252{
a4106a78 1253 int ret;
0bc40be8 1254 struct drm_device *dev = engine->dev;
0504cffc
AS
1255 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1256
0907c8f7 1257 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1258 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1259 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1260 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1261
a4106a78 1262 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1263 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1264 if (ret < 0)
1265 return ret;
1266 index = ret;
1267
0504cffc
AS
1268 /* Pad to end of cacheline */
1269 while (index % CACHELINE_DWORDS)
1270 wa_ctx_emit(batch, index, MI_NOOP);
1271
1272 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1273}
1274
0bc40be8 1275static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1276 struct i915_wa_ctx_bb *wa_ctx,
1277 uint32_t *const batch,
1278 uint32_t *offset)
1279{
0bc40be8 1280 struct drm_device *dev = engine->dev;
0504cffc
AS
1281 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1282
9b01435d 1283 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1284 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1285 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1286 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1287 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1288 wa_ctx_emit(batch, index,
1289 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1290 wa_ctx_emit(batch, index, MI_NOOP);
1291 }
1292
b1e429fe
TG
1293 /* WaClearTdlStateAckDirtyBits:bxt */
1294 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1295 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1296
1297 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1298 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1299
1300 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1301 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1302
1303 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1304 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1305
1306 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1307 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1308 wa_ctx_emit(batch, index, 0x0);
1309 wa_ctx_emit(batch, index, MI_NOOP);
1310 }
1311
0907c8f7 1312 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1313 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1314 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1315 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1316
0504cffc
AS
1317 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1318
1319 return wa_ctx_end(wa_ctx, *offset = index, 1);
1320}
1321
0bc40be8 1322static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1323{
1324 int ret;
1325
d37cd8a8 1326 engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
0bc40be8 1327 PAGE_ALIGN(size));
fe3db79b 1328 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1329 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1330 ret = PTR_ERR(engine->wa_ctx.obj);
1331 engine->wa_ctx.obj = NULL;
1332 return ret;
17ee950d
AS
1333 }
1334
0bc40be8 1335 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1336 if (ret) {
1337 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1338 ret);
0bc40be8 1339 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1340 return ret;
1341 }
1342
1343 return 0;
1344}
1345
0bc40be8 1346static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1347{
0bc40be8
TU
1348 if (engine->wa_ctx.obj) {
1349 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1350 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1351 engine->wa_ctx.obj = NULL;
17ee950d
AS
1352 }
1353}
1354
0bc40be8 1355static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1356{
1357 int ret;
1358 uint32_t *batch;
1359 uint32_t offset;
1360 struct page *page;
0bc40be8 1361 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1362
0bc40be8 1363 WARN_ON(engine->id != RCS);
17ee950d 1364
5e60d790 1365 /* update this when WA for higher Gen are added */
0bc40be8 1366 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1367 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1368 INTEL_INFO(engine->dev)->gen);
5e60d790 1369 return 0;
0504cffc 1370 }
5e60d790 1371
c4db7599 1372 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1373 if (engine->scratch.obj == NULL) {
1374 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1375 return -EINVAL;
1376 }
1377
0bc40be8 1378 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1379 if (ret) {
1380 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1381 return ret;
1382 }
1383
033908ae 1384 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1385 batch = kmap_atomic(page);
1386 offset = 0;
1387
0bc40be8
TU
1388 if (INTEL_INFO(engine->dev)->gen == 8) {
1389 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1390 &wa_ctx->indirect_ctx,
1391 batch,
1392 &offset);
1393 if (ret)
1394 goto out;
1395
0bc40be8 1396 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1397 &wa_ctx->per_ctx,
1398 batch,
1399 &offset);
1400 if (ret)
1401 goto out;
0bc40be8
TU
1402 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1403 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1404 &wa_ctx->indirect_ctx,
1405 batch,
1406 &offset);
1407 if (ret)
1408 goto out;
1409
0bc40be8 1410 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1411 &wa_ctx->per_ctx,
1412 batch,
1413 &offset);
1414 if (ret)
1415 goto out;
17ee950d
AS
1416 }
1417
1418out:
1419 kunmap_atomic(batch);
1420 if (ret)
0bc40be8 1421 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1422
1423 return ret;
1424}
1425
04794adb
TU
1426static void lrc_init_hws(struct intel_engine_cs *engine)
1427{
1428 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1429
1430 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1431 (u32)engine->status_page.gfx_addr);
1432 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1433}
1434
0bc40be8 1435static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1436{
0bc40be8 1437 struct drm_device *dev = engine->dev;
9b1136d5 1438 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1439 unsigned int next_context_status_buffer_hw;
9b1136d5 1440
04794adb 1441 lrc_init_hws(engine);
e84fe803 1442
0bc40be8
TU
1443 I915_WRITE_IMR(engine,
1444 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1445 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1446
0bc40be8 1447 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1448 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1449 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1450 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1451
1452 /*
1453 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1454 * zero, we need to read the write pointer from hardware and use its
1455 * value because "this register is power context save restored".
1456 * Effectively, these states have been observed:
1457 *
1458 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1459 * BDW | CSB regs not reset | CSB regs reset |
1460 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1461 * SKL | ? | ? |
1462 * BXT | ? | ? |
dfc53c5e 1463 */
5590a5f0 1464 next_context_status_buffer_hw =
0bc40be8 1465 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1466
1467 /*
1468 * When the CSB registers are reset (also after power-up / gpu reset),
1469 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1470 * this special case, so the first element read is CSB[0].
1471 */
1472 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1473 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1474
0bc40be8
TU
1475 engine->next_context_status_buffer = next_context_status_buffer_hw;
1476 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1477
fc0768ce 1478 intel_engine_init_hangcheck(engine);
9b1136d5 1479
0ccdacf6 1480 return intel_mocs_init_engine(engine);
9b1136d5
OM
1481}
1482
0bc40be8 1483static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1484{
0bc40be8 1485 struct drm_device *dev = engine->dev;
9b1136d5
OM
1486 struct drm_i915_private *dev_priv = dev->dev_private;
1487 int ret;
1488
0bc40be8 1489 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1490 if (ret)
1491 return ret;
1492
1493 /* We need to disable the AsyncFlip performance optimisations in order
1494 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1495 * programmed to '1' on all products.
1496 *
1497 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1498 */
1499 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1500
9b1136d5
OM
1501 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1502
0bc40be8 1503 return init_workarounds_ring(engine);
9b1136d5
OM
1504}
1505
0bc40be8 1506static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1507{
1508 int ret;
1509
0bc40be8 1510 ret = gen8_init_common_ring(engine);
82ef822e
DL
1511 if (ret)
1512 return ret;
1513
0bc40be8 1514 return init_workarounds_ring(engine);
82ef822e
DL
1515}
1516
7a01a0a2
MT
1517static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1518{
1519 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1520 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1521 struct intel_ringbuffer *ringbuf = req->ringbuf;
1522 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1523 int i, ret;
1524
987046ad 1525 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1526 if (ret)
1527 return ret;
1528
1529 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1530 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1531 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1532
e2f80391
TU
1533 intel_logical_ring_emit_reg(ringbuf,
1534 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1535 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1536 intel_logical_ring_emit_reg(ringbuf,
1537 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1538 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1539 }
1540
1541 intel_logical_ring_emit(ringbuf, MI_NOOP);
1542 intel_logical_ring_advance(ringbuf);
1543
1544 return 0;
1545}
1546
be795fc1 1547static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1548 u64 offset, unsigned dispatch_flags)
15648585 1549{
be795fc1 1550 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1551 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1552 int ret;
1553
7a01a0a2
MT
1554 /* Don't rely in hw updating PDPs, specially in lite-restore.
1555 * Ideally, we should set Force PD Restore in ctx descriptor,
1556 * but we can't. Force Restore would be a second option, but
1557 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1558 * not idle). PML4 is allocated during ppgtt init so this is
1559 * not needed in 48-bit.*/
7a01a0a2 1560 if (req->ctx->ppgtt &&
666796da 1561 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1562 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1563 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1564 ret = intel_logical_ring_emit_pdps(req);
1565 if (ret)
1566 return ret;
1567 }
7a01a0a2 1568
666796da 1569 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1570 }
1571
987046ad 1572 ret = intel_ring_begin(req, 4);
15648585
OM
1573 if (ret)
1574 return ret;
1575
1576 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1577 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1578 (ppgtt<<8) |
1579 (dispatch_flags & I915_DISPATCH_RS ?
1580 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1581 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1582 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1583 intel_logical_ring_emit(ringbuf, MI_NOOP);
1584 intel_logical_ring_advance(ringbuf);
1585
1586 return 0;
1587}
1588
0bc40be8 1589static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1590{
0bc40be8 1591 struct drm_device *dev = engine->dev;
73d477f6
OM
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 unsigned long flags;
1594
7cd512f1 1595 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1596 return false;
1597
1598 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1599 if (engine->irq_refcount++ == 0) {
1600 I915_WRITE_IMR(engine,
1601 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1602 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1603 }
1604 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1605
1606 return true;
1607}
1608
0bc40be8 1609static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1610{
0bc40be8 1611 struct drm_device *dev = engine->dev;
73d477f6
OM
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 unsigned long flags;
1614
1615 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1616 if (--engine->irq_refcount == 0) {
1617 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1618 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1619 }
1620 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1621}
1622
7deb4d39 1623static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1624 u32 invalidate_domains,
1625 u32 unused)
1626{
7deb4d39 1627 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1628 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1629 struct drm_device *dev = engine->dev;
4712274c
OM
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 uint32_t cmd;
1632 int ret;
1633
987046ad 1634 ret = intel_ring_begin(request, 4);
4712274c
OM
1635 if (ret)
1636 return ret;
1637
1638 cmd = MI_FLUSH_DW + 1;
1639
f0a1fb10
CW
1640 /* We always require a command barrier so that subsequent
1641 * commands, such as breadcrumb interrupts, are strictly ordered
1642 * wrt the contents of the write cache being flushed to memory
1643 * (and thus being coherent from the CPU).
1644 */
1645 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1646
1647 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1648 cmd |= MI_INVALIDATE_TLB;
4a570db5 1649 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1650 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1651 }
1652
1653 intel_logical_ring_emit(ringbuf, cmd);
1654 intel_logical_ring_emit(ringbuf,
1655 I915_GEM_HWS_SCRATCH_ADDR |
1656 MI_FLUSH_DW_USE_GTT);
1657 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1658 intel_logical_ring_emit(ringbuf, 0); /* value */
1659 intel_logical_ring_advance(ringbuf);
1660
1661 return 0;
1662}
1663
7deb4d39 1664static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1665 u32 invalidate_domains,
1666 u32 flush_domains)
1667{
7deb4d39 1668 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1669 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1670 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1671 bool vf_flush_wa = false;
4712274c
OM
1672 u32 flags = 0;
1673 int ret;
1674
1675 flags |= PIPE_CONTROL_CS_STALL;
1676
1677 if (flush_domains) {
1678 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1679 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1680 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1681 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1682 }
1683
1684 if (invalidate_domains) {
1685 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1686 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1687 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1688 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1689 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1690 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1691 flags |= PIPE_CONTROL_QW_WRITE;
1692 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1693
1a5a9ce7
BW
1694 /*
1695 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1696 * pipe control.
1697 */
e2f80391 1698 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1699 vf_flush_wa = true;
1700 }
9647ff36 1701
987046ad 1702 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1703 if (ret)
1704 return ret;
1705
9647ff36
ID
1706 if (vf_flush_wa) {
1707 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1708 intel_logical_ring_emit(ringbuf, 0);
1709 intel_logical_ring_emit(ringbuf, 0);
1710 intel_logical_ring_emit(ringbuf, 0);
1711 intel_logical_ring_emit(ringbuf, 0);
1712 intel_logical_ring_emit(ringbuf, 0);
1713 }
1714
4712274c
OM
1715 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1716 intel_logical_ring_emit(ringbuf, flags);
1717 intel_logical_ring_emit(ringbuf, scratch_addr);
1718 intel_logical_ring_emit(ringbuf, 0);
1719 intel_logical_ring_emit(ringbuf, 0);
1720 intel_logical_ring_emit(ringbuf, 0);
1721 intel_logical_ring_advance(ringbuf);
1722
1723 return 0;
1724}
1725
c04e0f3b 1726static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1727{
0bc40be8 1728 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1729}
1730
0bc40be8 1731static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1732{
0bc40be8 1733 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1734}
1735
c04e0f3b 1736static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1737{
319404df
ID
1738 /*
1739 * On BXT A steppings there is a HW coherency issue whereby the
1740 * MI_STORE_DATA_IMM storing the completed request's seqno
1741 * occasionally doesn't invalidate the CPU cache. Work around this by
1742 * clflushing the corresponding cacheline whenever the caller wants
1743 * the coherency to be guaranteed. Note that this cacheline is known
1744 * to be clean at this point, since we only write it in
1745 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1746 * this clflush in practice becomes an invalidate operation.
1747 */
c04e0f3b 1748 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1749}
1750
0bc40be8 1751static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1752{
0bc40be8 1753 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1754
1755 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1756 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1757}
1758
7c17d377
CW
1759/*
1760 * Reserve space for 2 NOOPs at the end of each request to be
1761 * used as a workaround for not being allowed to do lite
1762 * restore with HEAD==TAIL (WaIdleLiteRestore).
1763 */
1764#define WA_TAIL_DWORDS 2
1765
1766static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1767{
1768 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1769}
1770
c4e76638 1771static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1772{
c4e76638 1773 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1774 int ret;
1775
987046ad 1776 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1777 if (ret)
1778 return ret;
1779
7c17d377
CW
1780 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1781 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1782
4da46e1e 1783 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1784 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1785 intel_logical_ring_emit(ringbuf,
4a570db5 1786 hws_seqno_address(request->engine) |
7c17d377 1787 MI_FLUSH_DW_USE_GTT);
4da46e1e 1788 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1789 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1790 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1791 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1792 return intel_logical_ring_advance_and_submit(request);
1793}
4da46e1e 1794
7c17d377
CW
1795static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1796{
1797 struct intel_ringbuffer *ringbuf = request->ringbuf;
1798 int ret;
53292cdb 1799
987046ad 1800 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1801 if (ret)
1802 return ret;
1803
ce81a65c
MW
1804 /* We're using qword write, seqno should be aligned to 8 bytes. */
1805 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1806
7c17d377
CW
1807 /* w/a for post sync ops following a GPGPU operation we
1808 * need a prior CS_STALL, which is emitted by the flush
1809 * following the batch.
1810 */
ce81a65c 1811 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1812 intel_logical_ring_emit(ringbuf,
1813 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1814 PIPE_CONTROL_CS_STALL |
1815 PIPE_CONTROL_QW_WRITE));
4a570db5 1816 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
7c17d377
CW
1817 intel_logical_ring_emit(ringbuf, 0);
1818 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1819 /* We're thrashing one dword of HWS. */
1820 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1821 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1822 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1823 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1824}
1825
be01363f 1826static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1827{
cef437ad 1828 struct render_state so;
cef437ad
DL
1829 int ret;
1830
4a570db5 1831 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1832 if (ret)
1833 return ret;
1834
1835 if (so.rodata == NULL)
1836 return 0;
1837
4a570db5 1838 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1839 I915_DISPATCH_SECURE);
cef437ad
DL
1840 if (ret)
1841 goto out;
1842
4a570db5 1843 ret = req->engine->emit_bb_start(req,
84e81020
AS
1844 (so.ggtt_offset + so.aux_batch_offset),
1845 I915_DISPATCH_SECURE);
1846 if (ret)
1847 goto out;
1848
b2af0376 1849 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1850
cef437ad
DL
1851out:
1852 i915_gem_render_state_fini(&so);
1853 return ret;
1854}
1855
8753181e 1856static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1857{
1858 int ret;
1859
e2be4faf 1860 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1861 if (ret)
1862 return ret;
1863
3bbaba0c
PA
1864 ret = intel_rcs_context_init_mocs(req);
1865 /*
1866 * Failing to program the MOCS is non-fatal.The system will not
1867 * run at peak performance. So generate an error and carry on.
1868 */
1869 if (ret)
1870 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1871
be01363f 1872 return intel_lr_context_render_state_init(req);
e7778be1
TD
1873}
1874
73e4d07f
OM
1875/**
1876 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1877 *
1878 * @ring: Engine Command Streamer.
1879 *
1880 */
0bc40be8 1881void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1882{
6402c330 1883 struct drm_i915_private *dev_priv;
9832b9da 1884
117897f4 1885 if (!intel_engine_initialized(engine))
48d82387
OM
1886 return;
1887
27af5eea
TU
1888 /*
1889 * Tasklet cannot be active at this point due intel_mark_active/idle
1890 * so this is just for documentation.
1891 */
1892 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1893 tasklet_kill(&engine->irq_tasklet);
1894
0bc40be8 1895 dev_priv = engine->dev->dev_private;
6402c330 1896
0bc40be8
TU
1897 if (engine->buffer) {
1898 intel_logical_ring_stop(engine);
1899 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1900 }
48d82387 1901
0bc40be8
TU
1902 if (engine->cleanup)
1903 engine->cleanup(engine);
48d82387 1904
0bc40be8
TU
1905 i915_cmd_parser_fini_ring(engine);
1906 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1907
0bc40be8 1908 if (engine->status_page.obj) {
7d774cac 1909 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1910 engine->status_page.obj = NULL;
48d82387 1911 }
24f1d3cc 1912 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1913
0bc40be8
TU
1914 engine->idle_lite_restore_wa = 0;
1915 engine->disable_lite_restore_wa = false;
1916 engine->ctx_desc_template = 0;
ca82580c 1917
0bc40be8
TU
1918 lrc_destroy_wa_ctx_obj(engine);
1919 engine->dev = NULL;
454afebd
OM
1920}
1921
c9cacf93
TU
1922static void
1923logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 1924 struct intel_engine_cs *engine)
c9cacf93
TU
1925{
1926 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1927 engine->init_hw = gen8_init_common_ring;
1928 engine->emit_request = gen8_emit_request;
1929 engine->emit_flush = gen8_emit_flush;
1930 engine->irq_get = gen8_logical_ring_get_irq;
1931 engine->irq_put = gen8_logical_ring_put_irq;
1932 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1933 engine->get_seqno = gen8_get_seqno;
1934 engine->set_seqno = gen8_set_seqno;
c9cacf93 1935 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
c04e0f3b 1936 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1937 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1938 }
1939}
1940
d9f3af96 1941static inline void
0bc40be8 1942logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1943{
0bc40be8
TU
1944 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1945 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1946}
1947
7d774cac 1948static int
04794adb
TU
1949lrc_setup_hws(struct intel_engine_cs *engine,
1950 struct drm_i915_gem_object *dctx_obj)
1951{
7d774cac 1952 void *hws;
04794adb
TU
1953
1954 /* The HWSP is part of the default context object in LRC mode. */
1955 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1956 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1957 hws = i915_gem_object_pin_map(dctx_obj);
1958 if (IS_ERR(hws))
1959 return PTR_ERR(hws);
1960 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1961 engine->status_page.obj = dctx_obj;
7d774cac
TU
1962
1963 return 0;
04794adb
TU
1964}
1965
c9cacf93 1966static int
0bc40be8 1967logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 1968{
3756685a
TU
1969 struct drm_i915_private *dev_priv = to_i915(dev);
1970 struct intel_context *dctx = dev_priv->kernel_context;
1971 enum forcewake_domains fw_domains;
48d82387 1972 int ret;
48d82387
OM
1973
1974 /* Intentionally left blank. */
0bc40be8 1975 engine->buffer = NULL;
48d82387 1976
0bc40be8
TU
1977 engine->dev = dev;
1978 INIT_LIST_HEAD(&engine->active_list);
1979 INIT_LIST_HEAD(&engine->request_list);
1980 i915_gem_batch_pool_init(dev, &engine->batch_pool);
1981 init_waitqueue_head(&engine->irq_queue);
48d82387 1982
0bc40be8
TU
1983 INIT_LIST_HEAD(&engine->buffers);
1984 INIT_LIST_HEAD(&engine->execlist_queue);
1985 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
1986 spin_lock_init(&engine->execlist_lock);
acdd884a 1987
27af5eea
TU
1988 tasklet_init(&engine->irq_tasklet,
1989 intel_lrc_irq_handler, (unsigned long)engine);
1990
0bc40be8 1991 logical_ring_init_platform_invariants(engine);
ca82580c 1992
3756685a
TU
1993 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1994 RING_ELSP(engine),
1995 FW_REG_WRITE);
1996
1997 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1998 RING_CONTEXT_STATUS_PTR(engine),
1999 FW_REG_READ | FW_REG_WRITE);
2000
2001 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2002 RING_CONTEXT_STATUS_BUF_BASE(engine),
2003 FW_REG_READ);
2004
2005 engine->fw_domains = fw_domains;
2006
0bc40be8 2007 ret = i915_cmd_parser_init_ring(engine);
48d82387 2008 if (ret)
b0366a54 2009 goto error;
48d82387 2010
0bc40be8 2011 ret = intel_lr_context_deferred_alloc(dctx, engine);
e84fe803 2012 if (ret)
b0366a54 2013 goto error;
e84fe803
NH
2014
2015 /* As this is the default context, always pin it */
24f1d3cc 2016 ret = intel_lr_context_pin(dctx, engine);
e84fe803 2017 if (ret) {
24f1d3cc
CW
2018 DRM_ERROR("Failed to pin context for %s: %d\n",
2019 engine->name, ret);
b0366a54 2020 goto error;
e84fe803 2021 }
564ddb2f 2022
04794adb 2023 /* And setup the hardware status page. */
7d774cac
TU
2024 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2025 if (ret) {
2026 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2027 goto error;
2028 }
04794adb 2029
b0366a54
DG
2030 return 0;
2031
2032error:
0bc40be8 2033 intel_logical_ring_cleanup(engine);
564ddb2f 2034 return ret;
454afebd
OM
2035}
2036
2037static int logical_render_ring_init(struct drm_device *dev)
2038{
2039 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2040 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2041 int ret;
454afebd 2042
e2f80391
TU
2043 engine->name = "render ring";
2044 engine->id = RCS;
2045 engine->exec_id = I915_EXEC_RENDER;
2046 engine->guc_id = GUC_RENDER_ENGINE;
2047 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2048
e2f80391 2049 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2050 if (HAS_L3_DPF(dev))
e2f80391 2051 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2052
e2f80391 2053 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2054
2055 /* Override some for render ring. */
82ef822e 2056 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2057 engine->init_hw = gen9_init_render_ring;
82ef822e 2058 else
e2f80391
TU
2059 engine->init_hw = gen8_init_render_ring;
2060 engine->init_context = gen8_init_rcs_context;
2061 engine->cleanup = intel_fini_pipe_control;
2062 engine->emit_flush = gen8_emit_flush_render;
2063 engine->emit_request = gen8_emit_request_render;
9b1136d5 2064
e2f80391 2065 engine->dev = dev;
c4db7599 2066
e2f80391 2067 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2068 if (ret)
2069 return ret;
2070
e2f80391 2071 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2072 if (ret) {
2073 /*
2074 * We continue even if we fail to initialize WA batch
2075 * because we only expect rare glitches but nothing
2076 * critical to prevent us from using GPU
2077 */
2078 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2079 ret);
2080 }
2081
e2f80391 2082 ret = logical_ring_init(dev, engine);
c4db7599 2083 if (ret) {
e2f80391 2084 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2085 }
17ee950d
AS
2086
2087 return ret;
454afebd
OM
2088}
2089
2090static int logical_bsd_ring_init(struct drm_device *dev)
2091{
2092 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2093 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2094
e2f80391
TU
2095 engine->name = "bsd ring";
2096 engine->id = VCS;
2097 engine->exec_id = I915_EXEC_BSD;
2098 engine->guc_id = GUC_VIDEO_ENGINE;
2099 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2100
e2f80391
TU
2101 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2102 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2103
e2f80391 2104 return logical_ring_init(dev, engine);
454afebd
OM
2105}
2106
2107static int logical_bsd2_ring_init(struct drm_device *dev)
2108{
2109 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2110 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2111
e2f80391
TU
2112 engine->name = "bsd2 ring";
2113 engine->id = VCS2;
2114 engine->exec_id = I915_EXEC_BSD;
2115 engine->guc_id = GUC_VIDEO_ENGINE2;
2116 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2117
e2f80391
TU
2118 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2119 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2120
e2f80391 2121 return logical_ring_init(dev, engine);
454afebd
OM
2122}
2123
2124static int logical_blt_ring_init(struct drm_device *dev)
2125{
2126 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2127 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2128
e2f80391
TU
2129 engine->name = "blitter ring";
2130 engine->id = BCS;
2131 engine->exec_id = I915_EXEC_BLT;
2132 engine->guc_id = GUC_BLITTER_ENGINE;
2133 engine->mmio_base = BLT_RING_BASE;
454afebd 2134
e2f80391
TU
2135 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2136 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2137
e2f80391 2138 return logical_ring_init(dev, engine);
454afebd
OM
2139}
2140
2141static int logical_vebox_ring_init(struct drm_device *dev)
2142{
2143 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2144 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2145
e2f80391
TU
2146 engine->name = "video enhancement ring";
2147 engine->id = VECS;
2148 engine->exec_id = I915_EXEC_VEBOX;
2149 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2150 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2151
e2f80391
TU
2152 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2153 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2154
e2f80391 2155 return logical_ring_init(dev, engine);
454afebd
OM
2156}
2157
73e4d07f
OM
2158/**
2159 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2160 * @dev: DRM device.
2161 *
2162 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2163 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2164 * those engines that are present in the hardware.
2165 *
2166 * Return: non-zero if the initialization failed.
2167 */
454afebd
OM
2168int intel_logical_rings_init(struct drm_device *dev)
2169{
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171 int ret;
2172
2173 ret = logical_render_ring_init(dev);
2174 if (ret)
2175 return ret;
2176
2177 if (HAS_BSD(dev)) {
2178 ret = logical_bsd_ring_init(dev);
2179 if (ret)
2180 goto cleanup_render_ring;
2181 }
2182
2183 if (HAS_BLT(dev)) {
2184 ret = logical_blt_ring_init(dev);
2185 if (ret)
2186 goto cleanup_bsd_ring;
2187 }
2188
2189 if (HAS_VEBOX(dev)) {
2190 ret = logical_vebox_ring_init(dev);
2191 if (ret)
2192 goto cleanup_blt_ring;
2193 }
2194
2195 if (HAS_BSD2(dev)) {
2196 ret = logical_bsd2_ring_init(dev);
2197 if (ret)
2198 goto cleanup_vebox_ring;
2199 }
2200
454afebd
OM
2201 return 0;
2202
454afebd 2203cleanup_vebox_ring:
4a570db5 2204 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2205cleanup_blt_ring:
4a570db5 2206 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2207cleanup_bsd_ring:
4a570db5 2208 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2209cleanup_render_ring:
4a570db5 2210 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2211
2212 return ret;
2213}
2214
0cea6502
JM
2215static u32
2216make_rpcs(struct drm_device *dev)
2217{
2218 u32 rpcs = 0;
2219
2220 /*
2221 * No explicit RPCS request is needed to ensure full
2222 * slice/subslice/EU enablement prior to Gen9.
2223 */
2224 if (INTEL_INFO(dev)->gen < 9)
2225 return 0;
2226
2227 /*
2228 * Starting in Gen9, render power gating can leave
2229 * slice/subslice/EU in a partially enabled state. We
2230 * must make an explicit request through RPCS for full
2231 * enablement.
2232 */
2233 if (INTEL_INFO(dev)->has_slice_pg) {
2234 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2235 rpcs |= INTEL_INFO(dev)->slice_total <<
2236 GEN8_RPCS_S_CNT_SHIFT;
2237 rpcs |= GEN8_RPCS_ENABLE;
2238 }
2239
2240 if (INTEL_INFO(dev)->has_subslice_pg) {
2241 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2242 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2243 GEN8_RPCS_SS_CNT_SHIFT;
2244 rpcs |= GEN8_RPCS_ENABLE;
2245 }
2246
2247 if (INTEL_INFO(dev)->has_eu_pg) {
2248 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2249 GEN8_RPCS_EU_MIN_SHIFT;
2250 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2251 GEN8_RPCS_EU_MAX_SHIFT;
2252 rpcs |= GEN8_RPCS_ENABLE;
2253 }
2254
2255 return rpcs;
2256}
2257
0bc40be8 2258static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2259{
2260 u32 indirect_ctx_offset;
2261
0bc40be8 2262 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2263 default:
0bc40be8 2264 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2265 /* fall through */
2266 case 9:
2267 indirect_ctx_offset =
2268 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2269 break;
2270 case 8:
2271 indirect_ctx_offset =
2272 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2273 break;
2274 }
2275
2276 return indirect_ctx_offset;
2277}
2278
8670d6f9 2279static int
7d774cac
TU
2280populate_lr_context(struct intel_context *ctx,
2281 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2282 struct intel_engine_cs *engine,
2283 struct intel_ringbuffer *ringbuf)
8670d6f9 2284{
0bc40be8 2285 struct drm_device *dev = engine->dev;
2d965536 2286 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2287 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2288 void *vaddr;
2289 u32 *reg_state;
8670d6f9
OM
2290 int ret;
2291
2d965536
TD
2292 if (!ppgtt)
2293 ppgtt = dev_priv->mm.aliasing_ppgtt;
2294
8670d6f9
OM
2295 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2296 if (ret) {
2297 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2298 return ret;
2299 }
2300
7d774cac
TU
2301 vaddr = i915_gem_object_pin_map(ctx_obj);
2302 if (IS_ERR(vaddr)) {
2303 ret = PTR_ERR(vaddr);
2304 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2305 return ret;
2306 }
7d774cac 2307 ctx_obj->dirty = true;
8670d6f9
OM
2308
2309 /* The second page of the context object contains some fields which must
2310 * be set up prior to the first execution. */
7d774cac 2311 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2312
2313 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2314 * commands followed by (reg, value) pairs. The values we are setting here are
2315 * only for the first context restore: on a subsequent save, the GPU will
2316 * recreate this batchbuffer with new values (including all the missing
2317 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2318 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2319 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2320 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2321 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2322 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2323 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2324 (HAS_RESOURCE_STREAMER(dev) ?
2325 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2326 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2327 0);
2328 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2329 0);
7ba717cf
TD
2330 /* Ring buffer start address is not known until the buffer is pinned.
2331 * It is written to the context image in execlists_update_context()
2332 */
0bc40be8
TU
2333 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2334 RING_START(engine->mmio_base), 0);
2335 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2336 RING_CTL(engine->mmio_base),
0d925ea0 2337 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2338 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2339 RING_BBADDR_UDW(engine->mmio_base), 0);
2340 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2341 RING_BBADDR(engine->mmio_base), 0);
2342 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2343 RING_BBSTATE(engine->mmio_base),
0d925ea0 2344 RING_BB_PPGTT);
0bc40be8
TU
2345 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2346 RING_SBBADDR_UDW(engine->mmio_base), 0);
2347 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2348 RING_SBBADDR(engine->mmio_base), 0);
2349 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2350 RING_SBBSTATE(engine->mmio_base), 0);
2351 if (engine->id == RCS) {
2352 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2353 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2354 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2355 RING_INDIRECT_CTX(engine->mmio_base), 0);
2356 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2357 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2358 if (engine->wa_ctx.obj) {
2359 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2360 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2361
2362 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2363 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2364 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2365
2366 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2367 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2368
2369 reg_state[CTX_BB_PER_CTX_PTR+1] =
2370 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2371 0x01;
2372 }
8670d6f9 2373 }
0d925ea0 2374 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2375 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2376 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2377 /* PDP values well be assigned later if needed */
0bc40be8
TU
2378 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2379 0);
2380 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2381 0);
2382 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2383 0);
2384 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2385 0);
2386 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2387 0);
2388 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2389 0);
2390 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2391 0);
2392 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2393 0);
d7b2633d 2394
2dba3239
MT
2395 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2396 /* 64b PPGTT (48bit canonical)
2397 * PDP0_DESCRIPTOR contains the base address to PML4 and
2398 * other PDP Descriptors are ignored.
2399 */
2400 ASSIGN_CTX_PML4(ppgtt, reg_state);
2401 } else {
2402 /* 32b PPGTT
2403 * PDP*_DESCRIPTOR contains the base address of space supported.
2404 * With dynamic page allocation, PDPs may not be allocated at
2405 * this point. Point the unallocated PDPs to the scratch page
2406 */
c6a2ac71 2407 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2408 }
2409
0bc40be8 2410 if (engine->id == RCS) {
8670d6f9 2411 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2412 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2413 make_rpcs(dev));
8670d6f9
OM
2414 }
2415
7d774cac 2416 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2417
2418 return 0;
2419}
2420
73e4d07f
OM
2421/**
2422 * intel_lr_context_free() - free the LRC specific bits of a context
2423 * @ctx: the LR context to free.
2424 *
2425 * The real context freeing is done in i915_gem_context_free: this only
2426 * takes care of the bits that are LRC related: the per-engine backing
2427 * objects and the logical ringbuffer.
2428 */
ede7d42b
OM
2429void intel_lr_context_free(struct intel_context *ctx)
2430{
8c857917
OM
2431 int i;
2432
666796da 2433 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2434 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2435 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2436
e28e404c
DG
2437 if (!ctx_obj)
2438 continue;
dcb4c12a 2439
e28e404c
DG
2440 WARN_ON(ctx->engine[i].pin_count);
2441 intel_ringbuffer_free(ringbuf);
2442 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2443 }
2444}
2445
c5d46ee2
DG
2446/**
2447 * intel_lr_context_size() - return the size of the context for an engine
2448 * @ring: which engine to find the context size for
2449 *
2450 * Each engine may require a different amount of space for a context image,
2451 * so when allocating (or copying) an image, this function can be used to
2452 * find the right size for the specific engine.
2453 *
2454 * Return: size (in bytes) of an engine-specific context image
2455 *
2456 * Note: this size includes the HWSP, which is part of the context image
2457 * in LRC mode, but does not include the "shared data page" used with
2458 * GuC submission. The caller should account for this if using the GuC.
2459 */
0bc40be8 2460uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2461{
2462 int ret = 0;
2463
0bc40be8 2464 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2465
0bc40be8 2466 switch (engine->id) {
8c857917 2467 case RCS:
0bc40be8 2468 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2469 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2470 else
2471 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2472 break;
2473 case VCS:
2474 case BCS:
2475 case VECS:
2476 case VCS2:
2477 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2478 break;
2479 }
2480
2481 return ret;
ede7d42b
OM
2482}
2483
73e4d07f 2484/**
e84fe803 2485 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2486 * @ctx: LR context to create.
2487 * @ring: engine to be used with the context.
2488 *
2489 * This function can be called more than once, with different engines, if we plan
2490 * to use the context with them. The context backing objects and the ringbuffers
2491 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2492 * the creation is a deferred call: it's better to make sure first that we need to use
2493 * a given ring with the context.
2494 *
32197aab 2495 * Return: non-zero on error.
73e4d07f 2496 */
e84fe803
NH
2497
2498int intel_lr_context_deferred_alloc(struct intel_context *ctx,
0bc40be8 2499 struct intel_engine_cs *engine)
ede7d42b 2500{
0bc40be8 2501 struct drm_device *dev = engine->dev;
8c857917
OM
2502 struct drm_i915_gem_object *ctx_obj;
2503 uint32_t context_size;
84c2377f 2504 struct intel_ringbuffer *ringbuf;
8c857917
OM
2505 int ret;
2506
ede7d42b 2507 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2508 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2509
0bc40be8 2510 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2511
d1675198
AD
2512 /* One extra page as the sharing data between driver and GuC */
2513 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2514
d37cd8a8 2515 ctx_obj = i915_gem_object_create(dev, context_size);
fe3db79b 2516 if (IS_ERR(ctx_obj)) {
3126a660 2517 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2518 return PTR_ERR(ctx_obj);
8c857917
OM
2519 }
2520
0bc40be8 2521 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2522 if (IS_ERR(ringbuf)) {
2523 ret = PTR_ERR(ringbuf);
e84fe803 2524 goto error_deref_obj;
8670d6f9
OM
2525 }
2526
0bc40be8 2527 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2528 if (ret) {
2529 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2530 goto error_ringbuf;
84c2377f
OM
2531 }
2532
0bc40be8
TU
2533 ctx->engine[engine->id].ringbuf = ringbuf;
2534 ctx->engine[engine->id].state = ctx_obj;
24f1d3cc 2535 ctx->engine[engine->id].initialised = engine->init_context == NULL;
ede7d42b
OM
2536
2537 return 0;
8670d6f9 2538
01101fa7
CW
2539error_ringbuf:
2540 intel_ringbuffer_free(ringbuf);
e84fe803 2541error_deref_obj:
8670d6f9 2542 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2543 ctx->engine[engine->id].ringbuf = NULL;
2544 ctx->engine[engine->id].state = NULL;
8670d6f9 2545 return ret;
ede7d42b 2546}
3e5b6f05 2547
7d774cac
TU
2548void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2549 struct intel_context *ctx)
3e5b6f05 2550{
e2f80391 2551 struct intel_engine_cs *engine;
3e5b6f05 2552
b4ac5afc 2553 for_each_engine(engine, dev_priv) {
3e5b6f05 2554 struct drm_i915_gem_object *ctx_obj =
e2f80391 2555 ctx->engine[engine->id].state;
3e5b6f05 2556 struct intel_ringbuffer *ringbuf =
e2f80391 2557 ctx->engine[engine->id].ringbuf;
7d774cac 2558 void *vaddr;
3e5b6f05 2559 uint32_t *reg_state;
3e5b6f05
TD
2560
2561 if (!ctx_obj)
2562 continue;
2563
7d774cac
TU
2564 vaddr = i915_gem_object_pin_map(ctx_obj);
2565 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2566 continue;
7d774cac
TU
2567
2568 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2569 ctx_obj->dirty = true;
3e5b6f05
TD
2570
2571 reg_state[CTX_RING_HEAD+1] = 0;
2572 reg_state[CTX_RING_TAIL+1] = 0;
2573
7d774cac 2574 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05
TD
2575
2576 ringbuf->head = 0;
2577 ringbuf->tail = 0;
2578 }
2579}
This page took 0.367105 seconds and 5 git commands to generate.