drm/i915: Trim the flush for the legacy request emission
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
7069b144 227#define GEN8_CTX_ID_WIDTH 21
71562919
MT
228#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 230
978f1e09
CW
231static int execlists_context_deferred_alloc(struct intel_context *ctx,
232 struct intel_engine_cs *engine);
e5292823
TU
233static int intel_lr_context_pin(struct intel_context *ctx,
234 struct intel_engine_cs *engine);
7ba717cf 235
73e4d07f
OM
236/**
237 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238 * @dev: DRM device.
239 * @enable_execlists: value of i915.enable_execlists module parameter.
240 *
241 * Only certain platforms support Execlists (the prerequisites being
27401d12 242 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
243 *
244 * Return: 1 if Execlists is supported and has to be enabled.
245 */
127f1003
OM
246int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
247{
bd84b1e9
DV
248 WARN_ON(i915.enable_ppgtt == -1);
249
a0bd6c31
ZL
250 /* On platforms with execlist available, vGPU will only
251 * support execlist mode, no ring buffer mode.
252 */
253 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
254 return 1;
255
70ee45e1
DL
256 if (INTEL_INFO(dev)->gen >= 9)
257 return 1;
258
127f1003
OM
259 if (enable_execlists == 0)
260 return 0;
261
14bf993e
OM
262 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
263 i915.use_mmio_flip >= 0)
127f1003
OM
264 return 1;
265
266 return 0;
267}
ede7d42b 268
ca82580c 269static void
0bc40be8 270logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 271{
0bc40be8 272 struct drm_device *dev = engine->dev;
ca82580c 273
c6a2ac71 274 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 275 engine->idle_lite_restore_wa = ~0;
c6a2ac71 276
0bc40be8 277 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 278 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8
TU
281 engine->ctx_desc_template = GEN8_CTX_VALID;
282 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
283 GEN8_CTX_ADDRESSING_MODE_SHIFT;
284 if (IS_GEN8(dev))
0bc40be8
TU
285 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
287
288 /* TODO: WaDisableLiteRestore when we start using semaphore
289 * signalling between Command Streamers */
290 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
294 if (engine->disable_lite_restore_wa)
295 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
296}
297
73e4d07f 298/**
ca82580c
TU
299 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300 * descriptor for a pinned context
73e4d07f 301 *
ca82580c
TU
302 * @ctx: Context to work on
303 * @ring: Engine the descriptor will be used with
73e4d07f 304 *
ca82580c
TU
305 * The context descriptor encodes various attributes of a context,
306 * including its GTT address and some flags. Because it's fairly
307 * expensive to calculate, we'll just do it once and cache the result,
308 * which remains valid until the context is unpinned.
309 *
310 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 311 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 312 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 313 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
314 * bits 53-54: mbz, reserved for use by hardware
315 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 316 */
ca82580c
TU
317static void
318intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 319 struct intel_engine_cs *engine)
84b790f8 320{
7069b144 321 u64 desc;
84b790f8 322
7069b144 323 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 324
7069b144
CW
325 desc = engine->ctx_desc_template; /* bits 0-11 */
326 desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
327 LRC_PPHWSP_PN * PAGE_SIZE;
328 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 329
0bc40be8 330 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
331}
332
919f1f55 333uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 334 struct intel_engine_cs *engine)
84b790f8 335{
0bc40be8 336 return ctx->engine[engine->id].lrc_desc;
ca82580c 337}
203a571b 338
cc3c4253
MK
339static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
340 struct drm_i915_gem_request *rq1)
84b790f8 341{
cc3c4253 342
4a570db5 343 struct intel_engine_cs *engine = rq0->engine;
e2f80391 344 struct drm_device *dev = engine->dev;
6e7cc470 345 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 346 uint64_t desc[2];
84b790f8 347
1cff8cc3 348 if (rq1) {
4a570db5 349 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
350 rq1->elsp_submitted++;
351 } else {
352 desc[1] = 0;
353 }
84b790f8 354
4a570db5 355 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 356 rq0->elsp_submitted++;
84b790f8 357
1cff8cc3 358 /* You must always write both descriptors in the order below. */
e2f80391
TU
359 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
360 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 361
e2f80391 362 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 363 /* The context is automatically loaded after the following */
e2f80391 364 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 365
1cff8cc3 366 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 367 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
368}
369
c6a2ac71
TU
370static void
371execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
372{
373 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
376 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
377}
378
379static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 380{
4a570db5 381 struct intel_engine_cs *engine = rq->engine;
05d9824b 382 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 383 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 384
05d9824b 385 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 386
c6a2ac71
TU
387 /* True 32b PPGTT with dynamic page allocation: update PDP
388 * registers and point the unallocated PDPs to scratch page.
389 * PML4 is allocated during ppgtt init, so this is not needed
390 * in 48-bit mode.
391 */
392 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
393 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
394}
395
d8cb8875
MK
396static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
397 struct drm_i915_gem_request *rq1)
84b790f8 398{
26720ab9 399 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 400 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 401
05d9824b 402 execlists_update_context(rq0);
d8cb8875 403
cc3c4253 404 if (rq1)
05d9824b 405 execlists_update_context(rq1);
84b790f8 406
27af5eea 407 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 408 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 409
cc3c4253 410 execlists_elsp_write(rq0, rq1);
26720ab9 411
3756685a 412 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 413 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
414}
415
26720ab9 416static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 417{
6d3d8274 418 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 419 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 420
0bc40be8 421 assert_spin_locked(&engine->execlist_lock);
acdd884a 422
779949f4
PA
423 /*
424 * If irqs are not active generate a warning as batches that finish
425 * without the irqs may get lost and a GPU Hang may occur.
426 */
0bc40be8 427 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 428
acdd884a 429 /* Try to read in pairs */
0bc40be8 430 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
431 execlist_link) {
432 if (!req0) {
433 req0 = cursor;
6d3d8274 434 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
435 /* Same ctx: ignore first request, as second request
436 * will update tail past first request's workload */
e1fee72c 437 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa
TU
438 list_del(&req0->execlist_link);
439 i915_gem_request_unreference(req0);
acdd884a
MT
440 req0 = cursor;
441 } else {
442 req1 = cursor;
c6a2ac71 443 WARN_ON(req1->elsp_submitted);
acdd884a
MT
444 break;
445 }
446 }
447
c6a2ac71
TU
448 if (unlikely(!req0))
449 return;
450
0bc40be8 451 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 452 /*
c6a2ac71
TU
453 * WaIdleLiteRestore: make sure we never cause a lite restore
454 * with HEAD==TAIL.
455 *
456 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
457 * resubmit the request. See gen8_emit_request() for where we
458 * prepare the padding after the end of the request.
53292cdb 459 */
c6a2ac71 460 struct intel_ringbuffer *ringbuf;
53292cdb 461
0bc40be8 462 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
463 req0->tail += 8;
464 req0->tail &= ringbuf->size - 1;
53292cdb
MT
465 }
466
d8cb8875 467 execlists_submit_requests(req0, req1);
acdd884a
MT
468}
469
c6a2ac71 470static unsigned int
e39d42fa 471execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 472{
6d3d8274 473 struct drm_i915_gem_request *head_req;
e981e7b1 474
0bc40be8 475 assert_spin_locked(&engine->execlist_lock);
e981e7b1 476
0bc40be8 477 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 478 struct drm_i915_gem_request,
e981e7b1
TD
479 execlist_link);
480
e39d42fa
TU
481 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
482 return 0;
c6a2ac71
TU
483
484 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
485
486 if (--head_req->elsp_submitted > 0)
487 return 0;
488
e39d42fa
TU
489 list_del(&head_req->execlist_link);
490 i915_gem_request_unreference(head_req);
e981e7b1 491
c6a2ac71 492 return 1;
e981e7b1
TD
493}
494
c6a2ac71 495static u32
0bc40be8 496get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 497 u32 *context_id)
91a41032 498{
0bc40be8 499 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 500 u32 status;
91a41032 501
c6a2ac71
TU
502 read_pointer %= GEN8_CSB_ENTRIES;
503
0bc40be8 504 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
505
506 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
507 return 0;
91a41032 508
0bc40be8 509 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
510 read_pointer));
511
512 return status;
91a41032
BW
513}
514
73e4d07f 515/**
3f7531c3 516 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 517 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
518 *
519 * Check the unread Context Status Buffers and manage the submission of new
520 * contexts to the ELSP accordingly.
521 */
27af5eea 522static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 523{
27af5eea 524 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
0bc40be8 525 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 526 u32 status_pointer;
c6a2ac71 527 unsigned int read_pointer, write_pointer;
26720ab9
TU
528 u32 csb[GEN8_CSB_ENTRIES][2];
529 unsigned int csb_read = 0, i;
c6a2ac71
TU
530 unsigned int submit_contexts = 0;
531
3756685a 532 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 533
0bc40be8 534 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 535
0bc40be8 536 read_pointer = engine->next_context_status_buffer;
5590a5f0 537 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 538 if (read_pointer > write_pointer)
dfc53c5e 539 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 540
e981e7b1 541 while (read_pointer < write_pointer) {
26720ab9
TU
542 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
543 break;
544 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
545 &csb[csb_read][1]);
546 csb_read++;
547 }
91a41032 548
26720ab9
TU
549 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
550
551 /* Update the read pointer to the old write pointer. Manual ringbuffer
552 * management ftw </sarcasm> */
553 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
554 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
555 engine->next_context_status_buffer << 8));
556
3756685a 557 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
558
559 spin_lock(&engine->execlist_lock);
560
561 for (i = 0; i < csb_read; i++) {
562 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
563 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
564 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
565 WARN(1, "Lite Restored request removed from queue\n");
566 } else
567 WARN(1, "Preemption without Lite Restore\n");
568 }
569
26720ab9 570 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
571 GEN8_CTX_STATUS_ELEMENT_SWITCH))
572 submit_contexts +=
26720ab9 573 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
574 }
575
c6a2ac71 576 if (submit_contexts) {
0bc40be8 577 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
578 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
579 execlists_context_unqueue(engine);
5af05fef 580 }
e981e7b1 581
0bc40be8 582 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
583
584 if (unlikely(submit_contexts > 2))
585 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
586}
587
c6a2ac71 588static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 589{
4a570db5 590 struct intel_engine_cs *engine = request->engine;
6d3d8274 591 struct drm_i915_gem_request *cursor;
f1ad5a1f 592 int num_elements = 0;
acdd884a 593
27af5eea 594 spin_lock_bh(&engine->execlist_lock);
acdd884a 595
e2f80391 596 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
597 if (++num_elements > 2)
598 break;
599
600 if (num_elements > 2) {
6d3d8274 601 struct drm_i915_gem_request *tail_req;
f1ad5a1f 602
e2f80391 603 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 604 struct drm_i915_gem_request,
f1ad5a1f
OM
605 execlist_link);
606
ae70797d 607 if (request->ctx == tail_req->ctx) {
f1ad5a1f 608 WARN(tail_req->elsp_submitted != 0,
7ba717cf 609 "More than 2 already-submitted reqs queued\n");
e39d42fa
TU
610 list_del(&tail_req->execlist_link);
611 i915_gem_request_unreference(tail_req);
f1ad5a1f
OM
612 }
613 }
614
e39d42fa 615 i915_gem_request_reference(request);
e2f80391 616 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 617 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 618 if (num_elements == 0)
e2f80391 619 execlists_context_unqueue(engine);
acdd884a 620
27af5eea 621 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
622}
623
2f20055d 624static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 625{
4a570db5 626 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
627 uint32_t flush_domains;
628 int ret;
629
630 flush_domains = 0;
e2f80391 631 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
632 flush_domains = I915_GEM_GPU_DOMAINS;
633
e2f80391 634 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
635 if (ret)
636 return ret;
637
e2f80391 638 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
639 return 0;
640}
641
535fbe82 642static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
643 struct list_head *vmas)
644{
666796da 645 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
646 struct i915_vma *vma;
647 uint32_t flush_domains = 0;
648 bool flush_chipset = false;
649 int ret;
650
651 list_for_each_entry(vma, vmas, exec_list) {
652 struct drm_i915_gem_object *obj = vma->obj;
653
03ade511 654 if (obj->active & other_rings) {
4a570db5 655 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
656 if (ret)
657 return ret;
658 }
ba8b7ccb
OM
659
660 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
661 flush_chipset |= i915_gem_clflush_object(obj, false);
662
663 flush_domains |= obj->base.write_domain;
664 }
665
666 if (flush_domains & I915_GEM_DOMAIN_GTT)
667 wmb();
668
669 /* Unconditionally invalidate gpu caches and ensure that we do flush
670 * any residual writes from the previous batch.
671 */
2f20055d 672 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
673}
674
40e895ce 675int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 676{
24f1d3cc 677 struct intel_engine_cs *engine = request->engine;
bfa01200 678 int ret;
bc0dce3f 679
6310346e
CW
680 /* Flush enough space to reduce the likelihood of waiting after
681 * we start building the request - in which case we will just
682 * have to repeat work.
683 */
684 request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;
685
978f1e09
CW
686 if (request->ctx->engine[engine->id].state == NULL) {
687 ret = execlists_context_deferred_alloc(request->ctx, engine);
688 if (ret)
689 return ret;
690 }
691
24f1d3cc 692 request->ringbuf = request->ctx->engine[engine->id].ringbuf;
f3cc01f0 693
a7e02199
AD
694 if (i915.enable_guc_submission) {
695 /*
696 * Check that the GuC has space for the request before
697 * going any further, as the i915_add_request() call
698 * later on mustn't fail ...
699 */
700 struct intel_guc *guc = &request->i915->guc;
701
702 ret = i915_guc_wq_check_space(guc->execbuf_client);
703 if (ret)
704 return ret;
705 }
706
24f1d3cc
CW
707 ret = intel_lr_context_pin(request->ctx, engine);
708 if (ret)
709 return ret;
e28e404c 710
bfa01200
CW
711 ret = intel_ring_begin(request, 0);
712 if (ret)
713 goto err_unpin;
714
24f1d3cc
CW
715 if (!request->ctx->engine[engine->id].initialised) {
716 ret = engine->init_context(request);
717 if (ret)
718 goto err_unpin;
719
720 request->ctx->engine[engine->id].initialised = true;
721 }
722
723 /* Note that after this point, we have committed to using
724 * this request as it is being used to both track the
725 * state of engine initialisation and liveness of the
726 * golden renderstate above. Think twice before you try
727 * to cancel/unwind this request now.
728 */
729
6310346e 730 request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
731 return 0;
732
733err_unpin:
24f1d3cc 734 intel_lr_context_unpin(request->ctx, engine);
e28e404c 735 return ret;
bc0dce3f
JH
736}
737
bc0dce3f
JH
738/*
739 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 740 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
741 *
742 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
743 * really happens during submission is that the context and current tail will be placed
744 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
745 * point, the tail *inside* the context is updated and the ELSP written to.
746 */
7c17d377 747static int
ae70797d 748intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 749{
7c17d377 750 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 751 struct drm_i915_private *dev_priv = request->i915;
4a570db5 752 struct intel_engine_cs *engine = request->engine;
bc0dce3f 753
7c17d377
CW
754 intel_logical_ring_advance(ringbuf);
755 request->tail = ringbuf->tail;
bc0dce3f 756
7c17d377
CW
757 /*
758 * Here we add two extra NOOPs as padding to avoid
759 * lite restore of a context with HEAD==TAIL.
760 *
761 * Caller must reserve WA_TAIL_DWORDS for us!
762 */
763 intel_logical_ring_emit(ringbuf, MI_NOOP);
764 intel_logical_ring_emit(ringbuf, MI_NOOP);
765 intel_logical_ring_advance(ringbuf);
d1675198 766
117897f4 767 if (intel_engine_stopped(engine))
7c17d377 768 return 0;
bc0dce3f 769
a16a4052
CW
770 /* We keep the previous context alive until we retire the following
771 * request. This ensures that any the context object is still pinned
772 * for any residual writes the HW makes into it on the context switch
773 * into the next object following the breadcrumb. Otherwise, we may
774 * retire the context too early.
775 */
776 request->previous_context = engine->last_context;
777 engine->last_context = request->ctx;
f4e2dece 778
d1675198
AD
779 if (dev_priv->guc.execbuf_client)
780 i915_guc_submit(dev_priv->guc.execbuf_client, request);
781 else
782 execlists_context_queue(request);
7c17d377
CW
783
784 return 0;
bc0dce3f
JH
785}
786
73e4d07f
OM
787/**
788 * execlists_submission() - submit a batchbuffer for execution, Execlists style
789 * @dev: DRM device.
790 * @file: DRM file.
791 * @ring: Engine Command Streamer to submit to.
792 * @ctx: Context to employ for this submission.
793 * @args: execbuffer call arguments.
794 * @vmas: list of vmas.
795 * @batch_obj: the batchbuffer to submit.
796 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 797 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
798 *
799 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
800 * away the submission details of the execbuffer ioctl call.
801 *
802 * Return: non-zero if the submission fails.
803 */
5f19e2bf 804int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 805 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 806 struct list_head *vmas)
454afebd 807{
5f19e2bf 808 struct drm_device *dev = params->dev;
4a570db5 809 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 810 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 811 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 812 u64 exec_start;
ba8b7ccb
OM
813 int instp_mode;
814 u32 instp_mask;
815 int ret;
816
817 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
818 instp_mask = I915_EXEC_CONSTANTS_MASK;
819 switch (instp_mode) {
820 case I915_EXEC_CONSTANTS_REL_GENERAL:
821 case I915_EXEC_CONSTANTS_ABSOLUTE:
822 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 823 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
824 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
825 return -EINVAL;
826 }
827
828 if (instp_mode != dev_priv->relative_constants_mode) {
829 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
830 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
831 return -EINVAL;
832 }
833
834 /* The HW changed the meaning on this bit on gen6 */
835 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
836 }
837 break;
838 default:
839 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
840 return -EINVAL;
841 }
842
ba8b7ccb
OM
843 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
844 DRM_DEBUG("sol reset is gen7 only\n");
845 return -EINVAL;
846 }
847
535fbe82 848 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
849 if (ret)
850 return ret;
851
4a570db5 852 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 853 instp_mode != dev_priv->relative_constants_mode) {
987046ad 854 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
855 if (ret)
856 return ret;
857
858 intel_logical_ring_emit(ringbuf, MI_NOOP);
859 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 860 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
861 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
862 intel_logical_ring_advance(ringbuf);
863
864 dev_priv->relative_constants_mode = instp_mode;
865 }
866
5f19e2bf
JH
867 exec_start = params->batch_obj_vm_offset +
868 args->batch_start_offset;
869
e2f80391 870 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
871 if (ret)
872 return ret;
873
95c24161 874 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 875
8a8edb59 876 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 877
454afebd
OM
878 return 0;
879}
880
e39d42fa 881void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 882{
6d3d8274 883 struct drm_i915_gem_request *req, *tmp;
e39d42fa 884 LIST_HEAD(cancel_list);
c86ee3a9 885
0bc40be8 886 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
c86ee3a9 887
27af5eea 888 spin_lock_bh(&engine->execlist_lock);
e39d42fa 889 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 890 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 891
e39d42fa 892 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 893 list_del(&req->execlist_link);
f8210795 894 i915_gem_request_unreference(req);
c86ee3a9
TD
895 }
896}
897
0bc40be8 898void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 899{
0bc40be8 900 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
901 int ret;
902
117897f4 903 if (!intel_engine_initialized(engine))
9832b9da
OM
904 return;
905
666796da 906 ret = intel_engine_idle(engine);
f4457ae7 907 if (ret)
9832b9da 908 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 909 engine->name, ret);
9832b9da
OM
910
911 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
912 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
913 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
914 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
915 return;
916 }
0bc40be8 917 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
918}
919
4866d729 920int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 921{
4a570db5 922 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
923 int ret;
924
e2f80391 925 if (!engine->gpu_caches_dirty)
48e29f55
OM
926 return 0;
927
e2f80391 928 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
929 if (ret)
930 return ret;
931
e2f80391 932 engine->gpu_caches_dirty = false;
48e29f55
OM
933 return 0;
934}
935
24f1d3cc
CW
936static int intel_lr_context_pin(struct intel_context *ctx,
937 struct intel_engine_cs *engine)
dcb4c12a 938{
24f1d3cc
CW
939 struct drm_i915_private *dev_priv = ctx->i915;
940 struct drm_i915_gem_object *ctx_obj;
941 struct intel_ringbuffer *ringbuf;
7d774cac
TU
942 void *vaddr;
943 u32 *lrc_reg_state;
ca82580c 944 int ret;
dcb4c12a 945
24f1d3cc 946 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
ca82580c 947
24f1d3cc
CW
948 if (ctx->engine[engine->id].pin_count++)
949 return 0;
950
951 ctx_obj = ctx->engine[engine->id].state;
e84fe803
NH
952 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
953 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
954 if (ret)
24f1d3cc 955 goto err;
7ba717cf 956
7d774cac
TU
957 vaddr = i915_gem_object_pin_map(ctx_obj);
958 if (IS_ERR(vaddr)) {
959 ret = PTR_ERR(vaddr);
82352e90
TU
960 goto unpin_ctx_obj;
961 }
962
7d774cac
TU
963 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
964
24f1d3cc 965 ringbuf = ctx->engine[engine->id].ringbuf;
0bc40be8 966 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803 967 if (ret)
7d774cac 968 goto unpin_map;
d1675198 969
24f1d3cc 970 i915_gem_context_reference(ctx);
0bc40be8
TU
971 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
972 intel_lr_context_descriptor_update(ctx, engine);
77b04a04 973 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 974 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 975 ctx_obj->dirty = true;
e93c28f3 976
e84fe803
NH
977 /* Invalidate GuC TLB. */
978 if (i915.enable_guc_submission)
979 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 980
24f1d3cc 981 return 0;
7ba717cf 982
7d774cac
TU
983unpin_map:
984 i915_gem_object_unpin_map(ctx_obj);
7ba717cf
TD
985unpin_ctx_obj:
986 i915_gem_object_ggtt_unpin(ctx_obj);
24f1d3cc
CW
987err:
988 ctx->engine[engine->id].pin_count = 0;
e84fe803
NH
989 return ret;
990}
991
24f1d3cc
CW
992void intel_lr_context_unpin(struct intel_context *ctx,
993 struct intel_engine_cs *engine)
e84fe803 994{
24f1d3cc 995 struct drm_i915_gem_object *ctx_obj;
e84fe803 996
24f1d3cc
CW
997 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
998 GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
321fe304 999
24f1d3cc
CW
1000 if (--ctx->engine[engine->id].pin_count)
1001 return;
e84fe803 1002
24f1d3cc 1003 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
dcb4c12a 1004
24f1d3cc
CW
1005 ctx_obj = ctx->engine[engine->id].state;
1006 i915_gem_object_unpin_map(ctx_obj);
1007 i915_gem_object_ggtt_unpin(ctx_obj);
af3302b9 1008
24f1d3cc
CW
1009 ctx->engine[engine->id].lrc_vma = NULL;
1010 ctx->engine[engine->id].lrc_desc = 0;
1011 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304 1012
24f1d3cc 1013 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1014}
1015
e2be4faf 1016static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1017{
1018 int ret, i;
4a570db5 1019 struct intel_engine_cs *engine = req->engine;
e2be4faf 1020 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1021 struct drm_device *dev = engine->dev;
771b9a53
MT
1022 struct drm_i915_private *dev_priv = dev->dev_private;
1023 struct i915_workarounds *w = &dev_priv->workarounds;
1024
cd7feaaa 1025 if (w->count == 0)
771b9a53
MT
1026 return 0;
1027
e2f80391 1028 engine->gpu_caches_dirty = true;
4866d729 1029 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1030 if (ret)
1031 return ret;
1032
987046ad 1033 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1034 if (ret)
1035 return ret;
1036
1037 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1038 for (i = 0; i < w->count; i++) {
f92a9162 1039 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1040 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1041 }
1042 intel_logical_ring_emit(ringbuf, MI_NOOP);
1043
1044 intel_logical_ring_advance(ringbuf);
1045
e2f80391 1046 engine->gpu_caches_dirty = true;
4866d729 1047 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1048 if (ret)
1049 return ret;
1050
1051 return 0;
1052}
1053
83b8a982 1054#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1055 do { \
83b8a982
AS
1056 int __index = (index)++; \
1057 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1058 return -ENOSPC; \
1059 } \
83b8a982 1060 batch[__index] = (cmd); \
17ee950d
AS
1061 } while (0)
1062
8f40db77 1063#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1064 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1065
1066/*
1067 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1068 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1069 * but there is a slight complication as this is applied in WA batch where the
1070 * values are only initialized once so we cannot take register value at the
1071 * beginning and reuse it further; hence we save its value to memory, upload a
1072 * constant value with bit21 set and then we restore it back with the saved value.
1073 * To simplify the WA, a constant value is formed by using the default value
1074 * of this register. This shouldn't be a problem because we are only modifying
1075 * it for a short period and this batch in non-premptible. We can ofcourse
1076 * use additional instructions that read the actual value of the register
1077 * at that time and set our bit of interest but it makes the WA complicated.
1078 *
1079 * This WA is also required for Gen9 so extracting as a function avoids
1080 * code duplication.
1081 */
0bc40be8 1082static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1083 uint32_t *const batch,
1084 uint32_t index)
1085{
1086 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1087
a4106a78
AS
1088 /*
1089 * WaDisableLSQCROPERFforOCL:skl
1090 * This WA is implemented in skl_init_clock_gating() but since
1091 * this batch updates GEN8_L3SQCREG4 with default value we need to
1092 * set this bit here to retain the WA during flush.
1093 */
0bc40be8 1094 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1095 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1096
f1afe24f 1097 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1098 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1099 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1100 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1101 wa_ctx_emit(batch, index, 0);
1102
1103 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1104 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1105 wa_ctx_emit(batch, index, l3sqc4_flush);
1106
1107 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1108 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1109 PIPE_CONTROL_DC_FLUSH_ENABLE));
1110 wa_ctx_emit(batch, index, 0);
1111 wa_ctx_emit(batch, index, 0);
1112 wa_ctx_emit(batch, index, 0);
1113 wa_ctx_emit(batch, index, 0);
1114
f1afe24f 1115 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1116 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1117 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1118 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1119 wa_ctx_emit(batch, index, 0);
9e000847
AS
1120
1121 return index;
1122}
1123
17ee950d
AS
1124static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1125 uint32_t offset,
1126 uint32_t start_alignment)
1127{
1128 return wa_ctx->offset = ALIGN(offset, start_alignment);
1129}
1130
1131static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1132 uint32_t offset,
1133 uint32_t size_alignment)
1134{
1135 wa_ctx->size = offset - wa_ctx->offset;
1136
1137 WARN(wa_ctx->size % size_alignment,
1138 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1139 wa_ctx->size, size_alignment);
1140 return 0;
1141}
1142
1143/**
1144 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1145 *
1146 * @ring: only applicable for RCS
1147 * @wa_ctx: structure representing wa_ctx
1148 * offset: specifies start of the batch, should be cache-aligned. This is updated
1149 * with the offset value received as input.
1150 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1151 * @batch: page in which WA are loaded
1152 * @offset: This field specifies the start of the batch, it should be
1153 * cache-aligned otherwise it is adjusted accordingly.
1154 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1155 * initialized at the beginning and shared across all contexts but this field
1156 * helps us to have multiple batches at different offsets and select them based
1157 * on a criteria. At the moment this batch always start at the beginning of the page
1158 * and at this point we don't have multiple wa_ctx batch buffers.
1159 *
1160 * The number of WA applied are not known at the beginning; we use this field
1161 * to return the no of DWORDS written.
4d78c8dc 1162 *
17ee950d
AS
1163 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1164 * so it adds NOOPs as padding to make it cacheline aligned.
1165 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1166 * makes a complete batch buffer.
1167 *
1168 * Return: non-zero if we exceed the PAGE_SIZE limit.
1169 */
1170
0bc40be8 1171static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1172 struct i915_wa_ctx_bb *wa_ctx,
1173 uint32_t *const batch,
1174 uint32_t *offset)
1175{
0160f055 1176 uint32_t scratch_addr;
17ee950d
AS
1177 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1178
7ad00d1a 1179 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1180 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1181
c82435bb 1182 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1183 if (IS_BROADWELL(engine->dev)) {
1184 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1185 if (rc < 0)
1186 return rc;
1187 index = rc;
c82435bb
AS
1188 }
1189
0160f055
AS
1190 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1191 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1192 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1193
83b8a982
AS
1194 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1195 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1196 PIPE_CONTROL_GLOBAL_GTT_IVB |
1197 PIPE_CONTROL_CS_STALL |
1198 PIPE_CONTROL_QW_WRITE));
1199 wa_ctx_emit(batch, index, scratch_addr);
1200 wa_ctx_emit(batch, index, 0);
1201 wa_ctx_emit(batch, index, 0);
1202 wa_ctx_emit(batch, index, 0);
0160f055 1203
17ee950d
AS
1204 /* Pad to end of cacheline */
1205 while (index % CACHELINE_DWORDS)
83b8a982 1206 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1207
1208 /*
1209 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1210 * execution depends on the length specified in terms of cache lines
1211 * in the register CTX_RCS_INDIRECT_CTX
1212 */
1213
1214 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1215}
1216
1217/**
1218 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1219 *
1220 * @ring: only applicable for RCS
1221 * @wa_ctx: structure representing wa_ctx
1222 * offset: specifies start of the batch, should be cache-aligned.
1223 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1224 * @batch: page in which WA are loaded
17ee950d
AS
1225 * @offset: This field specifies the start of this batch.
1226 * This batch is started immediately after indirect_ctx batch. Since we ensure
1227 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1228 *
1229 * The number of DWORDS written are returned using this field.
1230 *
1231 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1232 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1233 */
0bc40be8 1234static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1235 struct i915_wa_ctx_bb *wa_ctx,
1236 uint32_t *const batch,
1237 uint32_t *offset)
1238{
1239 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1240
7ad00d1a 1241 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1242 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1243
83b8a982 1244 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1245
1246 return wa_ctx_end(wa_ctx, *offset = index, 1);
1247}
1248
0bc40be8 1249static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1250 struct i915_wa_ctx_bb *wa_ctx,
1251 uint32_t *const batch,
1252 uint32_t *offset)
1253{
a4106a78 1254 int ret;
0bc40be8 1255 struct drm_device *dev = engine->dev;
0504cffc
AS
1256 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1257
0907c8f7 1258 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1259 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1260 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1261 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1262
a4106a78 1263 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1264 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1265 if (ret < 0)
1266 return ret;
1267 index = ret;
1268
0504cffc
AS
1269 /* Pad to end of cacheline */
1270 while (index % CACHELINE_DWORDS)
1271 wa_ctx_emit(batch, index, MI_NOOP);
1272
1273 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1274}
1275
0bc40be8 1276static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1277 struct i915_wa_ctx_bb *wa_ctx,
1278 uint32_t *const batch,
1279 uint32_t *offset)
1280{
0bc40be8 1281 struct drm_device *dev = engine->dev;
0504cffc
AS
1282 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1283
9b01435d 1284 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1285 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1286 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1287 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1288 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1289 wa_ctx_emit(batch, index,
1290 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1291 wa_ctx_emit(batch, index, MI_NOOP);
1292 }
1293
b1e429fe
TG
1294 /* WaClearTdlStateAckDirtyBits:bxt */
1295 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1296 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1297
1298 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1299 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1300
1301 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1302 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1303
1304 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1305 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1306
1307 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1308 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1309 wa_ctx_emit(batch, index, 0x0);
1310 wa_ctx_emit(batch, index, MI_NOOP);
1311 }
1312
0907c8f7 1313 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1314 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1315 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1316 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1317
0504cffc
AS
1318 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1319
1320 return wa_ctx_end(wa_ctx, *offset = index, 1);
1321}
1322
0bc40be8 1323static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1324{
1325 int ret;
1326
d37cd8a8 1327 engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
0bc40be8 1328 PAGE_ALIGN(size));
fe3db79b 1329 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1330 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1331 ret = PTR_ERR(engine->wa_ctx.obj);
1332 engine->wa_ctx.obj = NULL;
1333 return ret;
17ee950d
AS
1334 }
1335
0bc40be8 1336 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1337 if (ret) {
1338 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1339 ret);
0bc40be8 1340 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1341 return ret;
1342 }
1343
1344 return 0;
1345}
1346
0bc40be8 1347static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1348{
0bc40be8
TU
1349 if (engine->wa_ctx.obj) {
1350 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1351 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1352 engine->wa_ctx.obj = NULL;
17ee950d
AS
1353 }
1354}
1355
0bc40be8 1356static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1357{
1358 int ret;
1359 uint32_t *batch;
1360 uint32_t offset;
1361 struct page *page;
0bc40be8 1362 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1363
0bc40be8 1364 WARN_ON(engine->id != RCS);
17ee950d 1365
5e60d790 1366 /* update this when WA for higher Gen are added */
0bc40be8 1367 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1368 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1369 INTEL_INFO(engine->dev)->gen);
5e60d790 1370 return 0;
0504cffc 1371 }
5e60d790 1372
c4db7599 1373 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1374 if (engine->scratch.obj == NULL) {
1375 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1376 return -EINVAL;
1377 }
1378
0bc40be8 1379 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1380 if (ret) {
1381 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1382 return ret;
1383 }
1384
033908ae 1385 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1386 batch = kmap_atomic(page);
1387 offset = 0;
1388
0bc40be8
TU
1389 if (INTEL_INFO(engine->dev)->gen == 8) {
1390 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1391 &wa_ctx->indirect_ctx,
1392 batch,
1393 &offset);
1394 if (ret)
1395 goto out;
1396
0bc40be8 1397 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1398 &wa_ctx->per_ctx,
1399 batch,
1400 &offset);
1401 if (ret)
1402 goto out;
0bc40be8
TU
1403 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1404 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1405 &wa_ctx->indirect_ctx,
1406 batch,
1407 &offset);
1408 if (ret)
1409 goto out;
1410
0bc40be8 1411 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1412 &wa_ctx->per_ctx,
1413 batch,
1414 &offset);
1415 if (ret)
1416 goto out;
17ee950d
AS
1417 }
1418
1419out:
1420 kunmap_atomic(batch);
1421 if (ret)
0bc40be8 1422 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1423
1424 return ret;
1425}
1426
04794adb
TU
1427static void lrc_init_hws(struct intel_engine_cs *engine)
1428{
1429 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1430
1431 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1432 (u32)engine->status_page.gfx_addr);
1433 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1434}
1435
0bc40be8 1436static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1437{
0bc40be8 1438 struct drm_device *dev = engine->dev;
9b1136d5 1439 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1440 unsigned int next_context_status_buffer_hw;
9b1136d5 1441
04794adb 1442 lrc_init_hws(engine);
e84fe803 1443
0bc40be8
TU
1444 I915_WRITE_IMR(engine,
1445 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1446 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1447
0bc40be8 1448 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1449 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1450 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1451 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1452
1453 /*
1454 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1455 * zero, we need to read the write pointer from hardware and use its
1456 * value because "this register is power context save restored".
1457 * Effectively, these states have been observed:
1458 *
1459 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1460 * BDW | CSB regs not reset | CSB regs reset |
1461 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1462 * SKL | ? | ? |
1463 * BXT | ? | ? |
dfc53c5e 1464 */
5590a5f0 1465 next_context_status_buffer_hw =
0bc40be8 1466 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1467
1468 /*
1469 * When the CSB registers are reset (also after power-up / gpu reset),
1470 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1471 * this special case, so the first element read is CSB[0].
1472 */
1473 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1474 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1475
0bc40be8
TU
1476 engine->next_context_status_buffer = next_context_status_buffer_hw;
1477 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1478
fc0768ce 1479 intel_engine_init_hangcheck(engine);
9b1136d5 1480
0ccdacf6 1481 return intel_mocs_init_engine(engine);
9b1136d5
OM
1482}
1483
0bc40be8 1484static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1485{
0bc40be8 1486 struct drm_device *dev = engine->dev;
9b1136d5
OM
1487 struct drm_i915_private *dev_priv = dev->dev_private;
1488 int ret;
1489
0bc40be8 1490 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1491 if (ret)
1492 return ret;
1493
1494 /* We need to disable the AsyncFlip performance optimisations in order
1495 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1496 * programmed to '1' on all products.
1497 *
1498 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1499 */
1500 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1501
9b1136d5
OM
1502 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1503
0bc40be8 1504 return init_workarounds_ring(engine);
9b1136d5
OM
1505}
1506
0bc40be8 1507static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1508{
1509 int ret;
1510
0bc40be8 1511 ret = gen8_init_common_ring(engine);
82ef822e
DL
1512 if (ret)
1513 return ret;
1514
0bc40be8 1515 return init_workarounds_ring(engine);
82ef822e
DL
1516}
1517
7a01a0a2
MT
1518static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1519{
1520 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1521 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1522 struct intel_ringbuffer *ringbuf = req->ringbuf;
1523 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1524 int i, ret;
1525
987046ad 1526 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1527 if (ret)
1528 return ret;
1529
1530 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1531 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1532 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1533
e2f80391
TU
1534 intel_logical_ring_emit_reg(ringbuf,
1535 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1536 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1537 intel_logical_ring_emit_reg(ringbuf,
1538 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1539 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1540 }
1541
1542 intel_logical_ring_emit(ringbuf, MI_NOOP);
1543 intel_logical_ring_advance(ringbuf);
1544
1545 return 0;
1546}
1547
be795fc1 1548static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1549 u64 offset, unsigned dispatch_flags)
15648585 1550{
be795fc1 1551 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1552 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1553 int ret;
1554
7a01a0a2
MT
1555 /* Don't rely in hw updating PDPs, specially in lite-restore.
1556 * Ideally, we should set Force PD Restore in ctx descriptor,
1557 * but we can't. Force Restore would be a second option, but
1558 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1559 * not idle). PML4 is allocated during ppgtt init so this is
1560 * not needed in 48-bit.*/
7a01a0a2 1561 if (req->ctx->ppgtt &&
666796da 1562 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1563 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1564 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1565 ret = intel_logical_ring_emit_pdps(req);
1566 if (ret)
1567 return ret;
1568 }
7a01a0a2 1569
666796da 1570 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1571 }
1572
987046ad 1573 ret = intel_ring_begin(req, 4);
15648585
OM
1574 if (ret)
1575 return ret;
1576
1577 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1578 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1579 (ppgtt<<8) |
1580 (dispatch_flags & I915_DISPATCH_RS ?
1581 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1582 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1583 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1584 intel_logical_ring_emit(ringbuf, MI_NOOP);
1585 intel_logical_ring_advance(ringbuf);
1586
1587 return 0;
1588}
1589
0bc40be8 1590static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1591{
0bc40be8 1592 struct drm_device *dev = engine->dev;
73d477f6
OM
1593 struct drm_i915_private *dev_priv = dev->dev_private;
1594 unsigned long flags;
1595
7cd512f1 1596 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1597 return false;
1598
1599 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1600 if (engine->irq_refcount++ == 0) {
1601 I915_WRITE_IMR(engine,
1602 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1603 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1604 }
1605 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1606
1607 return true;
1608}
1609
0bc40be8 1610static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1611{
0bc40be8 1612 struct drm_device *dev = engine->dev;
73d477f6
OM
1613 struct drm_i915_private *dev_priv = dev->dev_private;
1614 unsigned long flags;
1615
1616 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1617 if (--engine->irq_refcount == 0) {
1618 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1619 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1620 }
1621 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1622}
1623
7deb4d39 1624static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1625 u32 invalidate_domains,
1626 u32 unused)
1627{
7deb4d39 1628 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1629 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1630 struct drm_device *dev = engine->dev;
4712274c
OM
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632 uint32_t cmd;
1633 int ret;
1634
987046ad 1635 ret = intel_ring_begin(request, 4);
4712274c
OM
1636 if (ret)
1637 return ret;
1638
1639 cmd = MI_FLUSH_DW + 1;
1640
f0a1fb10
CW
1641 /* We always require a command barrier so that subsequent
1642 * commands, such as breadcrumb interrupts, are strictly ordered
1643 * wrt the contents of the write cache being flushed to memory
1644 * (and thus being coherent from the CPU).
1645 */
1646 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1647
1648 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1649 cmd |= MI_INVALIDATE_TLB;
4a570db5 1650 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1651 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1652 }
1653
1654 intel_logical_ring_emit(ringbuf, cmd);
1655 intel_logical_ring_emit(ringbuf,
1656 I915_GEM_HWS_SCRATCH_ADDR |
1657 MI_FLUSH_DW_USE_GTT);
1658 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1659 intel_logical_ring_emit(ringbuf, 0); /* value */
1660 intel_logical_ring_advance(ringbuf);
1661
1662 return 0;
1663}
1664
7deb4d39 1665static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1666 u32 invalidate_domains,
1667 u32 flush_domains)
1668{
7deb4d39 1669 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1670 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1671 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1672 bool vf_flush_wa = false;
4712274c
OM
1673 u32 flags = 0;
1674 int ret;
1675
1676 flags |= PIPE_CONTROL_CS_STALL;
1677
1678 if (flush_domains) {
1679 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1680 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1681 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1682 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1683 }
1684
1685 if (invalidate_domains) {
1686 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1687 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1688 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1689 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1690 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1691 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1692 flags |= PIPE_CONTROL_QW_WRITE;
1693 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1694
1a5a9ce7
BW
1695 /*
1696 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1697 * pipe control.
1698 */
e2f80391 1699 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1700 vf_flush_wa = true;
1701 }
9647ff36 1702
987046ad 1703 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1704 if (ret)
1705 return ret;
1706
9647ff36
ID
1707 if (vf_flush_wa) {
1708 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1709 intel_logical_ring_emit(ringbuf, 0);
1710 intel_logical_ring_emit(ringbuf, 0);
1711 intel_logical_ring_emit(ringbuf, 0);
1712 intel_logical_ring_emit(ringbuf, 0);
1713 intel_logical_ring_emit(ringbuf, 0);
1714 }
1715
4712274c
OM
1716 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1717 intel_logical_ring_emit(ringbuf, flags);
1718 intel_logical_ring_emit(ringbuf, scratch_addr);
1719 intel_logical_ring_emit(ringbuf, 0);
1720 intel_logical_ring_emit(ringbuf, 0);
1721 intel_logical_ring_emit(ringbuf, 0);
1722 intel_logical_ring_advance(ringbuf);
1723
1724 return 0;
1725}
1726
c04e0f3b 1727static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1728{
0bc40be8 1729 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1730}
1731
0bc40be8 1732static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1733{
0bc40be8 1734 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1735}
1736
c04e0f3b 1737static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1738{
319404df
ID
1739 /*
1740 * On BXT A steppings there is a HW coherency issue whereby the
1741 * MI_STORE_DATA_IMM storing the completed request's seqno
1742 * occasionally doesn't invalidate the CPU cache. Work around this by
1743 * clflushing the corresponding cacheline whenever the caller wants
1744 * the coherency to be guaranteed. Note that this cacheline is known
1745 * to be clean at this point, since we only write it in
1746 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1747 * this clflush in practice becomes an invalidate operation.
1748 */
c04e0f3b 1749 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1750}
1751
0bc40be8 1752static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1753{
0bc40be8 1754 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1755
1756 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1757 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1758}
1759
7c17d377
CW
1760/*
1761 * Reserve space for 2 NOOPs at the end of each request to be
1762 * used as a workaround for not being allowed to do lite
1763 * restore with HEAD==TAIL (WaIdleLiteRestore).
1764 */
1765#define WA_TAIL_DWORDS 2
1766
1767static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1768{
1769 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1770}
1771
c4e76638 1772static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1773{
c4e76638 1774 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1775 int ret;
1776
987046ad 1777 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1778 if (ret)
1779 return ret;
1780
7c17d377
CW
1781 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1782 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1783
4da46e1e 1784 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1785 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1786 intel_logical_ring_emit(ringbuf,
4a570db5 1787 hws_seqno_address(request->engine) |
7c17d377 1788 MI_FLUSH_DW_USE_GTT);
4da46e1e 1789 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1790 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1791 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1792 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1793 return intel_logical_ring_advance_and_submit(request);
1794}
4da46e1e 1795
7c17d377
CW
1796static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1797{
1798 struct intel_ringbuffer *ringbuf = request->ringbuf;
1799 int ret;
53292cdb 1800
987046ad 1801 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1802 if (ret)
1803 return ret;
1804
ce81a65c
MW
1805 /* We're using qword write, seqno should be aligned to 8 bytes. */
1806 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1807
7c17d377
CW
1808 /* w/a for post sync ops following a GPGPU operation we
1809 * need a prior CS_STALL, which is emitted by the flush
1810 * following the batch.
1811 */
ce81a65c 1812 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1813 intel_logical_ring_emit(ringbuf,
1814 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1815 PIPE_CONTROL_CS_STALL |
1816 PIPE_CONTROL_QW_WRITE));
4a570db5 1817 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
7c17d377
CW
1818 intel_logical_ring_emit(ringbuf, 0);
1819 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1820 /* We're thrashing one dword of HWS. */
1821 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1822 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1823 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1824 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1825}
1826
be01363f 1827static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1828{
cef437ad 1829 struct render_state so;
cef437ad
DL
1830 int ret;
1831
4a570db5 1832 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1833 if (ret)
1834 return ret;
1835
1836 if (so.rodata == NULL)
1837 return 0;
1838
4a570db5 1839 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1840 I915_DISPATCH_SECURE);
cef437ad
DL
1841 if (ret)
1842 goto out;
1843
4a570db5 1844 ret = req->engine->emit_bb_start(req,
84e81020
AS
1845 (so.ggtt_offset + so.aux_batch_offset),
1846 I915_DISPATCH_SECURE);
1847 if (ret)
1848 goto out;
1849
b2af0376 1850 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1851
cef437ad
DL
1852out:
1853 i915_gem_render_state_fini(&so);
1854 return ret;
1855}
1856
8753181e 1857static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1858{
1859 int ret;
1860
e2be4faf 1861 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1862 if (ret)
1863 return ret;
1864
3bbaba0c
PA
1865 ret = intel_rcs_context_init_mocs(req);
1866 /*
1867 * Failing to program the MOCS is non-fatal.The system will not
1868 * run at peak performance. So generate an error and carry on.
1869 */
1870 if (ret)
1871 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1872
be01363f 1873 return intel_lr_context_render_state_init(req);
e7778be1
TD
1874}
1875
73e4d07f
OM
1876/**
1877 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1878 *
1879 * @ring: Engine Command Streamer.
1880 *
1881 */
0bc40be8 1882void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1883{
6402c330 1884 struct drm_i915_private *dev_priv;
9832b9da 1885
117897f4 1886 if (!intel_engine_initialized(engine))
48d82387
OM
1887 return;
1888
27af5eea
TU
1889 /*
1890 * Tasklet cannot be active at this point due intel_mark_active/idle
1891 * so this is just for documentation.
1892 */
1893 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1894 tasklet_kill(&engine->irq_tasklet);
1895
0bc40be8 1896 dev_priv = engine->dev->dev_private;
6402c330 1897
0bc40be8
TU
1898 if (engine->buffer) {
1899 intel_logical_ring_stop(engine);
1900 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1901 }
48d82387 1902
0bc40be8
TU
1903 if (engine->cleanup)
1904 engine->cleanup(engine);
48d82387 1905
0bc40be8
TU
1906 i915_cmd_parser_fini_ring(engine);
1907 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1908
0bc40be8 1909 if (engine->status_page.obj) {
7d774cac 1910 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1911 engine->status_page.obj = NULL;
48d82387 1912 }
24f1d3cc 1913 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1914
0bc40be8
TU
1915 engine->idle_lite_restore_wa = 0;
1916 engine->disable_lite_restore_wa = false;
1917 engine->ctx_desc_template = 0;
ca82580c 1918
0bc40be8
TU
1919 lrc_destroy_wa_ctx_obj(engine);
1920 engine->dev = NULL;
454afebd
OM
1921}
1922
c9cacf93
TU
1923static void
1924logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 1925 struct intel_engine_cs *engine)
c9cacf93
TU
1926{
1927 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1928 engine->init_hw = gen8_init_common_ring;
1929 engine->emit_request = gen8_emit_request;
1930 engine->emit_flush = gen8_emit_flush;
1931 engine->irq_get = gen8_logical_ring_get_irq;
1932 engine->irq_put = gen8_logical_ring_put_irq;
1933 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1934 engine->get_seqno = gen8_get_seqno;
1935 engine->set_seqno = gen8_set_seqno;
c9cacf93 1936 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
c04e0f3b 1937 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1938 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1939 }
1940}
1941
d9f3af96 1942static inline void
0bc40be8 1943logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1944{
0bc40be8
TU
1945 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1946 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1947}
1948
7d774cac 1949static int
04794adb
TU
1950lrc_setup_hws(struct intel_engine_cs *engine,
1951 struct drm_i915_gem_object *dctx_obj)
1952{
7d774cac 1953 void *hws;
04794adb
TU
1954
1955 /* The HWSP is part of the default context object in LRC mode. */
1956 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1957 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1958 hws = i915_gem_object_pin_map(dctx_obj);
1959 if (IS_ERR(hws))
1960 return PTR_ERR(hws);
1961 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1962 engine->status_page.obj = dctx_obj;
7d774cac
TU
1963
1964 return 0;
04794adb
TU
1965}
1966
c9cacf93 1967static int
0bc40be8 1968logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 1969{
3756685a
TU
1970 struct drm_i915_private *dev_priv = to_i915(dev);
1971 struct intel_context *dctx = dev_priv->kernel_context;
1972 enum forcewake_domains fw_domains;
48d82387 1973 int ret;
48d82387
OM
1974
1975 /* Intentionally left blank. */
0bc40be8 1976 engine->buffer = NULL;
48d82387 1977
0bc40be8
TU
1978 engine->dev = dev;
1979 INIT_LIST_HEAD(&engine->active_list);
1980 INIT_LIST_HEAD(&engine->request_list);
1981 i915_gem_batch_pool_init(dev, &engine->batch_pool);
1982 init_waitqueue_head(&engine->irq_queue);
48d82387 1983
0bc40be8
TU
1984 INIT_LIST_HEAD(&engine->buffers);
1985 INIT_LIST_HEAD(&engine->execlist_queue);
0bc40be8 1986 spin_lock_init(&engine->execlist_lock);
acdd884a 1987
27af5eea
TU
1988 tasklet_init(&engine->irq_tasklet,
1989 intel_lrc_irq_handler, (unsigned long)engine);
1990
0bc40be8 1991 logical_ring_init_platform_invariants(engine);
ca82580c 1992
3756685a
TU
1993 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1994 RING_ELSP(engine),
1995 FW_REG_WRITE);
1996
1997 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1998 RING_CONTEXT_STATUS_PTR(engine),
1999 FW_REG_READ | FW_REG_WRITE);
2000
2001 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2002 RING_CONTEXT_STATUS_BUF_BASE(engine),
2003 FW_REG_READ);
2004
2005 engine->fw_domains = fw_domains;
2006
0bc40be8 2007 ret = i915_cmd_parser_init_ring(engine);
48d82387 2008 if (ret)
b0366a54 2009 goto error;
48d82387 2010
978f1e09 2011 ret = execlists_context_deferred_alloc(dctx, engine);
e84fe803 2012 if (ret)
b0366a54 2013 goto error;
e84fe803
NH
2014
2015 /* As this is the default context, always pin it */
24f1d3cc 2016 ret = intel_lr_context_pin(dctx, engine);
e84fe803 2017 if (ret) {
24f1d3cc
CW
2018 DRM_ERROR("Failed to pin context for %s: %d\n",
2019 engine->name, ret);
b0366a54 2020 goto error;
e84fe803 2021 }
564ddb2f 2022
04794adb 2023 /* And setup the hardware status page. */
7d774cac
TU
2024 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2025 if (ret) {
2026 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2027 goto error;
2028 }
04794adb 2029
b0366a54
DG
2030 return 0;
2031
2032error:
0bc40be8 2033 intel_logical_ring_cleanup(engine);
564ddb2f 2034 return ret;
454afebd
OM
2035}
2036
2037static int logical_render_ring_init(struct drm_device *dev)
2038{
2039 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2040 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2041 int ret;
454afebd 2042
e2f80391
TU
2043 engine->name = "render ring";
2044 engine->id = RCS;
2045 engine->exec_id = I915_EXEC_RENDER;
2046 engine->guc_id = GUC_RENDER_ENGINE;
2047 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2048
e2f80391 2049 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2050 if (HAS_L3_DPF(dev))
e2f80391 2051 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2052
e2f80391 2053 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2054
2055 /* Override some for render ring. */
82ef822e 2056 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2057 engine->init_hw = gen9_init_render_ring;
82ef822e 2058 else
e2f80391
TU
2059 engine->init_hw = gen8_init_render_ring;
2060 engine->init_context = gen8_init_rcs_context;
2061 engine->cleanup = intel_fini_pipe_control;
2062 engine->emit_flush = gen8_emit_flush_render;
2063 engine->emit_request = gen8_emit_request_render;
9b1136d5 2064
e2f80391 2065 engine->dev = dev;
c4db7599 2066
e2f80391 2067 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2068 if (ret)
2069 return ret;
2070
e2f80391 2071 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2072 if (ret) {
2073 /*
2074 * We continue even if we fail to initialize WA batch
2075 * because we only expect rare glitches but nothing
2076 * critical to prevent us from using GPU
2077 */
2078 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2079 ret);
2080 }
2081
e2f80391 2082 ret = logical_ring_init(dev, engine);
c4db7599 2083 if (ret) {
e2f80391 2084 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2085 }
17ee950d
AS
2086
2087 return ret;
454afebd
OM
2088}
2089
2090static int logical_bsd_ring_init(struct drm_device *dev)
2091{
2092 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2093 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2094
e2f80391
TU
2095 engine->name = "bsd ring";
2096 engine->id = VCS;
2097 engine->exec_id = I915_EXEC_BSD;
2098 engine->guc_id = GUC_VIDEO_ENGINE;
2099 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2100
e2f80391
TU
2101 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2102 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2103
e2f80391 2104 return logical_ring_init(dev, engine);
454afebd
OM
2105}
2106
2107static int logical_bsd2_ring_init(struct drm_device *dev)
2108{
2109 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2110 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2111
e2f80391
TU
2112 engine->name = "bsd2 ring";
2113 engine->id = VCS2;
2114 engine->exec_id = I915_EXEC_BSD;
2115 engine->guc_id = GUC_VIDEO_ENGINE2;
2116 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2117
e2f80391
TU
2118 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2119 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2120
e2f80391 2121 return logical_ring_init(dev, engine);
454afebd
OM
2122}
2123
2124static int logical_blt_ring_init(struct drm_device *dev)
2125{
2126 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2127 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2128
e2f80391
TU
2129 engine->name = "blitter ring";
2130 engine->id = BCS;
2131 engine->exec_id = I915_EXEC_BLT;
2132 engine->guc_id = GUC_BLITTER_ENGINE;
2133 engine->mmio_base = BLT_RING_BASE;
454afebd 2134
e2f80391
TU
2135 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2136 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2137
e2f80391 2138 return logical_ring_init(dev, engine);
454afebd
OM
2139}
2140
2141static int logical_vebox_ring_init(struct drm_device *dev)
2142{
2143 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2144 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2145
e2f80391
TU
2146 engine->name = "video enhancement ring";
2147 engine->id = VECS;
2148 engine->exec_id = I915_EXEC_VEBOX;
2149 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2150 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2151
e2f80391
TU
2152 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2153 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2154
e2f80391 2155 return logical_ring_init(dev, engine);
454afebd
OM
2156}
2157
73e4d07f
OM
2158/**
2159 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2160 * @dev: DRM device.
2161 *
2162 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2163 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2164 * those engines that are present in the hardware.
2165 *
2166 * Return: non-zero if the initialization failed.
2167 */
454afebd
OM
2168int intel_logical_rings_init(struct drm_device *dev)
2169{
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171 int ret;
2172
2173 ret = logical_render_ring_init(dev);
2174 if (ret)
2175 return ret;
2176
2177 if (HAS_BSD(dev)) {
2178 ret = logical_bsd_ring_init(dev);
2179 if (ret)
2180 goto cleanup_render_ring;
2181 }
2182
2183 if (HAS_BLT(dev)) {
2184 ret = logical_blt_ring_init(dev);
2185 if (ret)
2186 goto cleanup_bsd_ring;
2187 }
2188
2189 if (HAS_VEBOX(dev)) {
2190 ret = logical_vebox_ring_init(dev);
2191 if (ret)
2192 goto cleanup_blt_ring;
2193 }
2194
2195 if (HAS_BSD2(dev)) {
2196 ret = logical_bsd2_ring_init(dev);
2197 if (ret)
2198 goto cleanup_vebox_ring;
2199 }
2200
454afebd
OM
2201 return 0;
2202
454afebd 2203cleanup_vebox_ring:
4a570db5 2204 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2205cleanup_blt_ring:
4a570db5 2206 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2207cleanup_bsd_ring:
4a570db5 2208 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2209cleanup_render_ring:
4a570db5 2210 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2211
2212 return ret;
2213}
2214
0cea6502
JM
2215static u32
2216make_rpcs(struct drm_device *dev)
2217{
2218 u32 rpcs = 0;
2219
2220 /*
2221 * No explicit RPCS request is needed to ensure full
2222 * slice/subslice/EU enablement prior to Gen9.
2223 */
2224 if (INTEL_INFO(dev)->gen < 9)
2225 return 0;
2226
2227 /*
2228 * Starting in Gen9, render power gating can leave
2229 * slice/subslice/EU in a partially enabled state. We
2230 * must make an explicit request through RPCS for full
2231 * enablement.
2232 */
2233 if (INTEL_INFO(dev)->has_slice_pg) {
2234 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2235 rpcs |= INTEL_INFO(dev)->slice_total <<
2236 GEN8_RPCS_S_CNT_SHIFT;
2237 rpcs |= GEN8_RPCS_ENABLE;
2238 }
2239
2240 if (INTEL_INFO(dev)->has_subslice_pg) {
2241 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2242 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2243 GEN8_RPCS_SS_CNT_SHIFT;
2244 rpcs |= GEN8_RPCS_ENABLE;
2245 }
2246
2247 if (INTEL_INFO(dev)->has_eu_pg) {
2248 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2249 GEN8_RPCS_EU_MIN_SHIFT;
2250 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2251 GEN8_RPCS_EU_MAX_SHIFT;
2252 rpcs |= GEN8_RPCS_ENABLE;
2253 }
2254
2255 return rpcs;
2256}
2257
0bc40be8 2258static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2259{
2260 u32 indirect_ctx_offset;
2261
0bc40be8 2262 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2263 default:
0bc40be8 2264 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2265 /* fall through */
2266 case 9:
2267 indirect_ctx_offset =
2268 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2269 break;
2270 case 8:
2271 indirect_ctx_offset =
2272 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2273 break;
2274 }
2275
2276 return indirect_ctx_offset;
2277}
2278
8670d6f9 2279static int
7d774cac
TU
2280populate_lr_context(struct intel_context *ctx,
2281 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2282 struct intel_engine_cs *engine,
2283 struct intel_ringbuffer *ringbuf)
8670d6f9 2284{
0bc40be8 2285 struct drm_device *dev = engine->dev;
2d965536 2286 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2287 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2288 void *vaddr;
2289 u32 *reg_state;
8670d6f9
OM
2290 int ret;
2291
2d965536
TD
2292 if (!ppgtt)
2293 ppgtt = dev_priv->mm.aliasing_ppgtt;
2294
8670d6f9
OM
2295 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2296 if (ret) {
2297 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2298 return ret;
2299 }
2300
7d774cac
TU
2301 vaddr = i915_gem_object_pin_map(ctx_obj);
2302 if (IS_ERR(vaddr)) {
2303 ret = PTR_ERR(vaddr);
2304 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2305 return ret;
2306 }
7d774cac 2307 ctx_obj->dirty = true;
8670d6f9
OM
2308
2309 /* The second page of the context object contains some fields which must
2310 * be set up prior to the first execution. */
7d774cac 2311 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2312
2313 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2314 * commands followed by (reg, value) pairs. The values we are setting here are
2315 * only for the first context restore: on a subsequent save, the GPU will
2316 * recreate this batchbuffer with new values (including all the missing
2317 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2318 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2319 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2320 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2321 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2322 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2323 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2324 (HAS_RESOURCE_STREAMER(dev) ?
2325 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2326 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2327 0);
2328 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2329 0);
7ba717cf
TD
2330 /* Ring buffer start address is not known until the buffer is pinned.
2331 * It is written to the context image in execlists_update_context()
2332 */
0bc40be8
TU
2333 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2334 RING_START(engine->mmio_base), 0);
2335 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2336 RING_CTL(engine->mmio_base),
0d925ea0 2337 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2338 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2339 RING_BBADDR_UDW(engine->mmio_base), 0);
2340 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2341 RING_BBADDR(engine->mmio_base), 0);
2342 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2343 RING_BBSTATE(engine->mmio_base),
0d925ea0 2344 RING_BB_PPGTT);
0bc40be8
TU
2345 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2346 RING_SBBADDR_UDW(engine->mmio_base), 0);
2347 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2348 RING_SBBADDR(engine->mmio_base), 0);
2349 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2350 RING_SBBSTATE(engine->mmio_base), 0);
2351 if (engine->id == RCS) {
2352 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2353 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2354 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2355 RING_INDIRECT_CTX(engine->mmio_base), 0);
2356 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2357 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2358 if (engine->wa_ctx.obj) {
2359 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2360 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2361
2362 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2363 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2364 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2365
2366 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2367 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2368
2369 reg_state[CTX_BB_PER_CTX_PTR+1] =
2370 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2371 0x01;
2372 }
8670d6f9 2373 }
0d925ea0 2374 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2375 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2376 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2377 /* PDP values well be assigned later if needed */
0bc40be8
TU
2378 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2379 0);
2380 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2381 0);
2382 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2383 0);
2384 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2385 0);
2386 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2387 0);
2388 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2389 0);
2390 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2391 0);
2392 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2393 0);
d7b2633d 2394
2dba3239
MT
2395 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2396 /* 64b PPGTT (48bit canonical)
2397 * PDP0_DESCRIPTOR contains the base address to PML4 and
2398 * other PDP Descriptors are ignored.
2399 */
2400 ASSIGN_CTX_PML4(ppgtt, reg_state);
2401 } else {
2402 /* 32b PPGTT
2403 * PDP*_DESCRIPTOR contains the base address of space supported.
2404 * With dynamic page allocation, PDPs may not be allocated at
2405 * this point. Point the unallocated PDPs to the scratch page
2406 */
c6a2ac71 2407 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2408 }
2409
0bc40be8 2410 if (engine->id == RCS) {
8670d6f9 2411 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2412 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2413 make_rpcs(dev));
8670d6f9
OM
2414 }
2415
7d774cac 2416 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2417
2418 return 0;
2419}
2420
73e4d07f
OM
2421/**
2422 * intel_lr_context_free() - free the LRC specific bits of a context
2423 * @ctx: the LR context to free.
2424 *
2425 * The real context freeing is done in i915_gem_context_free: this only
2426 * takes care of the bits that are LRC related: the per-engine backing
2427 * objects and the logical ringbuffer.
2428 */
ede7d42b
OM
2429void intel_lr_context_free(struct intel_context *ctx)
2430{
8c857917
OM
2431 int i;
2432
666796da 2433 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2434 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2435 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2436
e28e404c
DG
2437 if (!ctx_obj)
2438 continue;
dcb4c12a 2439
e28e404c
DG
2440 WARN_ON(ctx->engine[i].pin_count);
2441 intel_ringbuffer_free(ringbuf);
2442 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2443 }
2444}
2445
c5d46ee2
DG
2446/**
2447 * intel_lr_context_size() - return the size of the context for an engine
2448 * @ring: which engine to find the context size for
2449 *
2450 * Each engine may require a different amount of space for a context image,
2451 * so when allocating (or copying) an image, this function can be used to
2452 * find the right size for the specific engine.
2453 *
2454 * Return: size (in bytes) of an engine-specific context image
2455 *
2456 * Note: this size includes the HWSP, which is part of the context image
2457 * in LRC mode, but does not include the "shared data page" used with
2458 * GuC submission. The caller should account for this if using the GuC.
2459 */
0bc40be8 2460uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2461{
2462 int ret = 0;
2463
0bc40be8 2464 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2465
0bc40be8 2466 switch (engine->id) {
8c857917 2467 case RCS:
0bc40be8 2468 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2469 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2470 else
2471 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2472 break;
2473 case VCS:
2474 case BCS:
2475 case VECS:
2476 case VCS2:
2477 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2478 break;
2479 }
2480
2481 return ret;
ede7d42b
OM
2482}
2483
73e4d07f 2484/**
978f1e09 2485 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2486 * @ctx: LR context to create.
978f1e09 2487 * @engine: engine to be used with the context.
73e4d07f
OM
2488 *
2489 * This function can be called more than once, with different engines, if we plan
2490 * to use the context with them. The context backing objects and the ringbuffers
2491 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2492 * the creation is a deferred call: it's better to make sure first that we need to use
2493 * a given ring with the context.
2494 *
32197aab 2495 * Return: non-zero on error.
73e4d07f 2496 */
978f1e09
CW
2497static int execlists_context_deferred_alloc(struct intel_context *ctx,
2498 struct intel_engine_cs *engine)
ede7d42b 2499{
0bc40be8 2500 struct drm_device *dev = engine->dev;
8c857917
OM
2501 struct drm_i915_gem_object *ctx_obj;
2502 uint32_t context_size;
84c2377f 2503 struct intel_ringbuffer *ringbuf;
8c857917
OM
2504 int ret;
2505
ede7d42b 2506 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2507 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2508
0bc40be8 2509 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2510
d1675198
AD
2511 /* One extra page as the sharing data between driver and GuC */
2512 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2513
d37cd8a8 2514 ctx_obj = i915_gem_object_create(dev, context_size);
fe3db79b 2515 if (IS_ERR(ctx_obj)) {
3126a660 2516 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2517 return PTR_ERR(ctx_obj);
8c857917
OM
2518 }
2519
0bc40be8 2520 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2521 if (IS_ERR(ringbuf)) {
2522 ret = PTR_ERR(ringbuf);
e84fe803 2523 goto error_deref_obj;
8670d6f9
OM
2524 }
2525
0bc40be8 2526 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2527 if (ret) {
2528 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2529 goto error_ringbuf;
84c2377f
OM
2530 }
2531
0bc40be8
TU
2532 ctx->engine[engine->id].ringbuf = ringbuf;
2533 ctx->engine[engine->id].state = ctx_obj;
24f1d3cc 2534 ctx->engine[engine->id].initialised = engine->init_context == NULL;
ede7d42b
OM
2535
2536 return 0;
8670d6f9 2537
01101fa7
CW
2538error_ringbuf:
2539 intel_ringbuffer_free(ringbuf);
e84fe803 2540error_deref_obj:
8670d6f9 2541 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2542 ctx->engine[engine->id].ringbuf = NULL;
2543 ctx->engine[engine->id].state = NULL;
8670d6f9 2544 return ret;
ede7d42b 2545}
3e5b6f05 2546
7d774cac
TU
2547void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2548 struct intel_context *ctx)
3e5b6f05 2549{
e2f80391 2550 struct intel_engine_cs *engine;
3e5b6f05 2551
b4ac5afc 2552 for_each_engine(engine, dev_priv) {
3e5b6f05 2553 struct drm_i915_gem_object *ctx_obj =
e2f80391 2554 ctx->engine[engine->id].state;
3e5b6f05 2555 struct intel_ringbuffer *ringbuf =
e2f80391 2556 ctx->engine[engine->id].ringbuf;
7d774cac 2557 void *vaddr;
3e5b6f05 2558 uint32_t *reg_state;
3e5b6f05
TD
2559
2560 if (!ctx_obj)
2561 continue;
2562
7d774cac
TU
2563 vaddr = i915_gem_object_pin_map(ctx_obj);
2564 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2565 continue;
7d774cac
TU
2566
2567 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2568 ctx_obj->dirty = true;
3e5b6f05
TD
2569
2570 reg_state[CTX_RING_HEAD+1] = 0;
2571 reg_state[CTX_RING_TAIL+1] = 0;
2572
7d774cac 2573 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05
TD
2574
2575 ringbuf->head = 0;
2576 ringbuf->tail = 0;
2577 }
2578}
This page took 0.381976 seconds and 5 git commands to generate.