drm/i915: Set crtc->new_config to NULL for pipes that are about to be disabled
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
CommitLineData
85208be0
ED
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
2b4e57bd 28#include <linux/cpufreq.h>
85208be0
ED
29#include "i915_drv.h"
30#include "intel_drv.h"
eb48eb00
DV
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
f9dcb0df 33#include <linux/vgaarb.h>
f4db9321 34#include <drm/i915_powerwell.h>
8a187455 35#include <linux/pm_runtime.h>
85208be0 36
dc39fff7
BW
37/**
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54#define INTEL_RC6_ENABLE (1<<0)
55#define INTEL_RC6p_ENABLE (1<<1)
56#define INTEL_RC6pp_ENABLE (1<<2)
57
f6750b3c
ED
58/* FBC, or Frame Buffer Compression, is a technique employed to compress the
59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
60 * during in-memory transfers and, therefore, reduce the power packet.
85208be0 61 *
f6750b3c
ED
62 * The benefits of FBC are mostly visible with solid backgrounds and
63 * variation-less patterns.
85208be0 64 *
f6750b3c
ED
65 * FBC-related functionality can be enabled by the means of the
66 * i915.i915_enable_fbc parameter
85208be0
ED
67 */
68
1fa61106 69static void i8xx_disable_fbc(struct drm_device *dev)
85208be0
ED
70{
71 struct drm_i915_private *dev_priv = dev->dev_private;
72 u32 fbc_ctl;
73
74 /* Disable compression */
75 fbc_ctl = I915_READ(FBC_CONTROL);
76 if ((fbc_ctl & FBC_CTL_EN) == 0)
77 return;
78
79 fbc_ctl &= ~FBC_CTL_EN;
80 I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82 /* Wait for compressing bit to clear */
83 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84 DRM_DEBUG_KMS("FBC idle timed out\n");
85 return;
86 }
87
88 DRM_DEBUG_KMS("disabled FBC\n");
89}
90
993495ae 91static void i8xx_enable_fbc(struct drm_crtc *crtc)
85208be0
ED
92{
93 struct drm_device *dev = crtc->dev;
94 struct drm_i915_private *dev_priv = dev->dev_private;
95 struct drm_framebuffer *fb = crtc->fb;
96 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97 struct drm_i915_gem_object *obj = intel_fb->obj;
98 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99 int cfb_pitch;
100 int plane, i;
159f9875 101 u32 fbc_ctl;
85208be0 102
5c3fe8b0 103 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
85208be0
ED
104 if (fb->pitches[0] < cfb_pitch)
105 cfb_pitch = fb->pitches[0];
106
42a430f5
VS
107 /* FBC_CTL wants 32B or 64B units */
108 if (IS_GEN2(dev))
109 cfb_pitch = (cfb_pitch / 32) - 1;
110 else
111 cfb_pitch = (cfb_pitch / 64) - 1;
85208be0
ED
112 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
113
114 /* Clear old tags */
115 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
116 I915_WRITE(FBC_TAG + (i * 4), 0);
117
159f9875
VS
118 if (IS_GEN4(dev)) {
119 u32 fbc_ctl2;
120
121 /* Set it up... */
122 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
123 fbc_ctl2 |= plane;
124 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
125 I915_WRITE(FBC_FENCE_OFF, crtc->y);
126 }
85208be0
ED
127
128 /* enable it... */
993495ae
VS
129 fbc_ctl = I915_READ(FBC_CONTROL);
130 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
131 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
85208be0
ED
132 if (IS_I945GM(dev))
133 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
134 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
85208be0
ED
135 fbc_ctl |= obj->fence_reg;
136 I915_WRITE(FBC_CONTROL, fbc_ctl);
137
84f44ce7
VS
138 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
139 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
85208be0
ED
140}
141
1fa61106 142static bool i8xx_fbc_enabled(struct drm_device *dev)
85208be0
ED
143{
144 struct drm_i915_private *dev_priv = dev->dev_private;
145
146 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
147}
148
993495ae 149static void g4x_enable_fbc(struct drm_crtc *crtc)
85208be0
ED
150{
151 struct drm_device *dev = crtc->dev;
152 struct drm_i915_private *dev_priv = dev->dev_private;
153 struct drm_framebuffer *fb = crtc->fb;
154 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
155 struct drm_i915_gem_object *obj = intel_fb->obj;
156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
157 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
85208be0
ED
158 u32 dpfc_ctl;
159
160 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
161 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
163
85208be0
ED
164 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
165
166 /* enable it... */
167 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
168
84f44ce7 169 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
85208be0
ED
170}
171
1fa61106 172static void g4x_disable_fbc(struct drm_device *dev)
85208be0
ED
173{
174 struct drm_i915_private *dev_priv = dev->dev_private;
175 u32 dpfc_ctl;
176
177 /* Disable compression */
178 dpfc_ctl = I915_READ(DPFC_CONTROL);
179 if (dpfc_ctl & DPFC_CTL_EN) {
180 dpfc_ctl &= ~DPFC_CTL_EN;
181 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
182
183 DRM_DEBUG_KMS("disabled FBC\n");
184 }
185}
186
1fa61106 187static bool g4x_fbc_enabled(struct drm_device *dev)
85208be0
ED
188{
189 struct drm_i915_private *dev_priv = dev->dev_private;
190
191 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
192}
193
194static void sandybridge_blit_fbc_update(struct drm_device *dev)
195{
196 struct drm_i915_private *dev_priv = dev->dev_private;
197 u32 blt_ecoskpd;
198
199 /* Make sure blitter notifies FBC of writes */
940aece4
D
200
201 /* Blitter is part of Media powerwell on VLV. No impact of
202 * his param in other platforms for now */
203 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
c8d9a590 204
85208be0
ED
205 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
206 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
207 GEN6_BLITTER_LOCK_SHIFT;
208 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
209 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
210 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
211 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
212 GEN6_BLITTER_LOCK_SHIFT);
213 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
214 POSTING_READ(GEN6_BLITTER_ECOSKPD);
c8d9a590 215
940aece4 216 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
85208be0
ED
217}
218
993495ae 219static void ironlake_enable_fbc(struct drm_crtc *crtc)
85208be0
ED
220{
221 struct drm_device *dev = crtc->dev;
222 struct drm_i915_private *dev_priv = dev->dev_private;
223 struct drm_framebuffer *fb = crtc->fb;
224 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
225 struct drm_i915_gem_object *obj = intel_fb->obj;
226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
227 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
85208be0
ED
228 u32 dpfc_ctl;
229
230 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
231 dpfc_ctl &= DPFC_RESERVED;
232 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
233 /* Set persistent mode for front-buffer rendering, ala X. */
234 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
d629336b
VS
235 dpfc_ctl |= DPFC_CTL_FENCE_EN;
236 if (IS_GEN5(dev))
237 dpfc_ctl |= obj->fence_reg;
85208be0
ED
238 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
239
85208be0 240 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
f343c5f6 241 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
85208be0
ED
242 /* enable it... */
243 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
244
245 if (IS_GEN6(dev)) {
246 I915_WRITE(SNB_DPFC_CTL_SA,
247 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
248 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
249 sandybridge_blit_fbc_update(dev);
250 }
251
84f44ce7 252 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
85208be0
ED
253}
254
1fa61106 255static void ironlake_disable_fbc(struct drm_device *dev)
85208be0
ED
256{
257 struct drm_i915_private *dev_priv = dev->dev_private;
258 u32 dpfc_ctl;
259
260 /* Disable compression */
261 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
262 if (dpfc_ctl & DPFC_CTL_EN) {
263 dpfc_ctl &= ~DPFC_CTL_EN;
264 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
265
266 DRM_DEBUG_KMS("disabled FBC\n");
267 }
268}
269
1fa61106 270static bool ironlake_fbc_enabled(struct drm_device *dev)
85208be0
ED
271{
272 struct drm_i915_private *dev_priv = dev->dev_private;
273
274 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
275}
276
993495ae 277static void gen7_enable_fbc(struct drm_crtc *crtc)
abe959c7
RV
278{
279 struct drm_device *dev = crtc->dev;
280 struct drm_i915_private *dev_priv = dev->dev_private;
281 struct drm_framebuffer *fb = crtc->fb;
282 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
283 struct drm_i915_gem_object *obj = intel_fb->obj;
284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
285
f343c5f6 286 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
abe959c7
RV
287
288 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
289 IVB_DPFC_CTL_FENCE_EN |
290 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
291
891348b2 292 if (IS_IVYBRIDGE(dev)) {
7dd23ba0 293 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
891348b2 294 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
28554164 295 } else {
7dd23ba0 296 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
28554164
RV
297 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
298 HSW_BYPASS_FBC_QUEUE);
891348b2 299 }
b74ea102 300
abe959c7
RV
301 I915_WRITE(SNB_DPFC_CTL_SA,
302 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
303 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
304
305 sandybridge_blit_fbc_update(dev);
306
b19870ee 307 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
abe959c7
RV
308}
309
85208be0
ED
310bool intel_fbc_enabled(struct drm_device *dev)
311{
312 struct drm_i915_private *dev_priv = dev->dev_private;
313
314 if (!dev_priv->display.fbc_enabled)
315 return false;
316
317 return dev_priv->display.fbc_enabled(dev);
318}
319
320static void intel_fbc_work_fn(struct work_struct *__work)
321{
322 struct intel_fbc_work *work =
323 container_of(to_delayed_work(__work),
324 struct intel_fbc_work, work);
325 struct drm_device *dev = work->crtc->dev;
326 struct drm_i915_private *dev_priv = dev->dev_private;
327
328 mutex_lock(&dev->struct_mutex);
5c3fe8b0 329 if (work == dev_priv->fbc.fbc_work) {
85208be0
ED
330 /* Double check that we haven't switched fb without cancelling
331 * the prior work.
332 */
333 if (work->crtc->fb == work->fb) {
993495ae 334 dev_priv->display.enable_fbc(work->crtc);
85208be0 335
5c3fe8b0
BW
336 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
337 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
338 dev_priv->fbc.y = work->crtc->y;
85208be0
ED
339 }
340
5c3fe8b0 341 dev_priv->fbc.fbc_work = NULL;
85208be0
ED
342 }
343 mutex_unlock(&dev->struct_mutex);
344
345 kfree(work);
346}
347
348static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349{
5c3fe8b0 350 if (dev_priv->fbc.fbc_work == NULL)
85208be0
ED
351 return;
352
353 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354
355 /* Synchronisation is provided by struct_mutex and checking of
5c3fe8b0 356 * dev_priv->fbc.fbc_work, so we can perform the cancellation
85208be0
ED
357 * entirely asynchronously.
358 */
5c3fe8b0 359 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
85208be0 360 /* tasklet was killed before being run, clean up */
5c3fe8b0 361 kfree(dev_priv->fbc.fbc_work);
85208be0
ED
362
363 /* Mark the work as no longer wanted so that if it does
364 * wake-up (because the work was already running and waiting
365 * for our mutex), it will discover that is no longer
366 * necessary to run.
367 */
5c3fe8b0 368 dev_priv->fbc.fbc_work = NULL;
85208be0
ED
369}
370
993495ae 371static void intel_enable_fbc(struct drm_crtc *crtc)
85208be0
ED
372{
373 struct intel_fbc_work *work;
374 struct drm_device *dev = crtc->dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 if (!dev_priv->display.enable_fbc)
378 return;
379
380 intel_cancel_fbc_work(dev_priv);
381
b14c5679 382 work = kzalloc(sizeof(*work), GFP_KERNEL);
85208be0 383 if (work == NULL) {
6cdcb5e7 384 DRM_ERROR("Failed to allocate FBC work structure\n");
993495ae 385 dev_priv->display.enable_fbc(crtc);
85208be0
ED
386 return;
387 }
388
389 work->crtc = crtc;
390 work->fb = crtc->fb;
85208be0
ED
391 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
5c3fe8b0 393 dev_priv->fbc.fbc_work = work;
85208be0 394
85208be0
ED
395 /* Delay the actual enabling to let pageflipping cease and the
396 * display to settle before starting the compression. Note that
397 * this delay also serves a second purpose: it allows for a
398 * vblank to pass after disabling the FBC before we attempt
399 * to modify the control registers.
400 *
401 * A more complicated solution would involve tracking vblanks
402 * following the termination of the page-flipping sequence
403 * and indeed performing the enable as a co-routine and not
404 * waiting synchronously upon the vblank.
7457d617
DL
405 *
406 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
85208be0
ED
407 */
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409}
410
411void intel_disable_fbc(struct drm_device *dev)
412{
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 intel_cancel_fbc_work(dev_priv);
416
417 if (!dev_priv->display.disable_fbc)
418 return;
419
420 dev_priv->display.disable_fbc(dev);
5c3fe8b0 421 dev_priv->fbc.plane = -1;
85208be0
ED
422}
423
29ebf90f
CW
424static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425 enum no_fbc_reason reason)
426{
427 if (dev_priv->fbc.no_fbc_reason == reason)
428 return false;
429
430 dev_priv->fbc.no_fbc_reason = reason;
431 return true;
432}
433
85208be0
ED
434/**
435 * intel_update_fbc - enable/disable FBC as needed
436 * @dev: the drm_device
437 *
438 * Set up the framebuffer compression hardware at mode set time. We
439 * enable it if possible:
440 * - plane A only (on pre-965)
441 * - no pixel mulitply/line duplication
442 * - no alpha buffer discard
443 * - no dual wide
f85da868 444 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
85208be0
ED
445 *
446 * We can't assume that any compression will take place (worst case),
447 * so the compressed buffer has to be the same size as the uncompressed
448 * one. It also must reside (along with the line length buffer) in
449 * stolen memory.
450 *
451 * We need to enable/disable FBC on a global basis.
452 */
453void intel_update_fbc(struct drm_device *dev)
454{
455 struct drm_i915_private *dev_priv = dev->dev_private;
456 struct drm_crtc *crtc = NULL, *tmp_crtc;
457 struct intel_crtc *intel_crtc;
458 struct drm_framebuffer *fb;
459 struct intel_framebuffer *intel_fb;
460 struct drm_i915_gem_object *obj;
ef644fda 461 const struct drm_display_mode *adjusted_mode;
37327abd 462 unsigned int max_width, max_height;
85208be0 463
3a77c4c4 464 if (!HAS_FBC(dev)) {
29ebf90f 465 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
85208be0 466 return;
29ebf90f 467 }
85208be0 468
29ebf90f
CW
469 if (!i915_powersave) {
470 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
471 DRM_DEBUG_KMS("fbc disabled per module param\n");
85208be0 472 return;
29ebf90f 473 }
85208be0
ED
474
475 /*
476 * If FBC is already on, we just have to verify that we can
477 * keep it that way...
478 * Need to disable if:
479 * - more than one pipe is active
480 * - changing FBC params (stride, fence, mode)
481 * - new fb is too large to fit in compressed buffer
482 * - going to an unsupported config (interlace, pixel multiply, etc.)
483 */
484 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
3490ea5d 485 if (intel_crtc_active(tmp_crtc) &&
4c445e0e 486 to_intel_crtc(tmp_crtc)->primary_enabled) {
85208be0 487 if (crtc) {
29ebf90f
CW
488 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
489 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
85208be0
ED
490 goto out_disable;
491 }
492 crtc = tmp_crtc;
493 }
494 }
495
496 if (!crtc || crtc->fb == NULL) {
29ebf90f
CW
497 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
498 DRM_DEBUG_KMS("no output, disabling\n");
85208be0
ED
499 goto out_disable;
500 }
501
502 intel_crtc = to_intel_crtc(crtc);
503 fb = crtc->fb;
504 intel_fb = to_intel_framebuffer(fb);
505 obj = intel_fb->obj;
ef644fda 506 adjusted_mode = &intel_crtc->config.adjusted_mode;
85208be0 507
8a5729a3
DL
508 if (i915_enable_fbc < 0 &&
509 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
29ebf90f
CW
510 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
511 DRM_DEBUG_KMS("disabled per chip default\n");
8a5729a3 512 goto out_disable;
85208be0 513 }
8a5729a3 514 if (!i915_enable_fbc) {
29ebf90f
CW
515 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
516 DRM_DEBUG_KMS("fbc disabled per module param\n");
85208be0
ED
517 goto out_disable;
518 }
ef644fda
VS
519 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
520 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
29ebf90f
CW
521 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
522 DRM_DEBUG_KMS("mode incompatible with compression, "
523 "disabling\n");
85208be0
ED
524 goto out_disable;
525 }
f85da868
PZ
526
527 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
37327abd
VS
528 max_width = 4096;
529 max_height = 2048;
f85da868 530 } else {
37327abd
VS
531 max_width = 2048;
532 max_height = 1536;
f85da868 533 }
37327abd
VS
534 if (intel_crtc->config.pipe_src_w > max_width ||
535 intel_crtc->config.pipe_src_h > max_height) {
29ebf90f
CW
536 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
537 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
85208be0
ED
538 goto out_disable;
539 }
c5a44aa0
VS
540 if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
541 intel_crtc->plane != PLANE_A) {
29ebf90f 542 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
c5a44aa0 543 DRM_DEBUG_KMS("plane not A, disabling compression\n");
85208be0
ED
544 goto out_disable;
545 }
546
547 /* The use of a CPU fence is mandatory in order to detect writes
548 * by the CPU to the scanout and trigger updates to the FBC.
549 */
550 if (obj->tiling_mode != I915_TILING_X ||
551 obj->fence_reg == I915_FENCE_REG_NONE) {
29ebf90f
CW
552 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
553 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
85208be0
ED
554 goto out_disable;
555 }
556
557 /* If the kernel debugger is active, always disable compression */
558 if (in_dbg_master())
559 goto out_disable;
560
11be49eb 561 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
29ebf90f
CW
562 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
563 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
11be49eb
CW
564 goto out_disable;
565 }
566
85208be0
ED
567 /* If the scanout has not changed, don't modify the FBC settings.
568 * Note that we make the fundamental assumption that the fb->obj
569 * cannot be unpinned (and have its GTT offset and fence revoked)
570 * without first being decoupled from the scanout and FBC disabled.
571 */
5c3fe8b0
BW
572 if (dev_priv->fbc.plane == intel_crtc->plane &&
573 dev_priv->fbc.fb_id == fb->base.id &&
574 dev_priv->fbc.y == crtc->y)
85208be0
ED
575 return;
576
577 if (intel_fbc_enabled(dev)) {
578 /* We update FBC along two paths, after changing fb/crtc
579 * configuration (modeswitching) and after page-flipping
580 * finishes. For the latter, we know that not only did
581 * we disable the FBC at the start of the page-flip
582 * sequence, but also more than one vblank has passed.
583 *
584 * For the former case of modeswitching, it is possible
585 * to switch between two FBC valid configurations
586 * instantaneously so we do need to disable the FBC
587 * before we can modify its control registers. We also
588 * have to wait for the next vblank for that to take
589 * effect. However, since we delay enabling FBC we can
590 * assume that a vblank has passed since disabling and
591 * that we can safely alter the registers in the deferred
592 * callback.
593 *
594 * In the scenario that we go from a valid to invalid
595 * and then back to valid FBC configuration we have
596 * no strict enforcement that a vblank occurred since
597 * disabling the FBC. However, along all current pipe
598 * disabling paths we do need to wait for a vblank at
599 * some point. And we wait before enabling FBC anyway.
600 */
601 DRM_DEBUG_KMS("disabling active FBC for update\n");
602 intel_disable_fbc(dev);
603 }
604
993495ae 605 intel_enable_fbc(crtc);
29ebf90f 606 dev_priv->fbc.no_fbc_reason = FBC_OK;
85208be0
ED
607 return;
608
609out_disable:
610 /* Multiple disables should be harmless */
611 if (intel_fbc_enabled(dev)) {
612 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
613 intel_disable_fbc(dev);
614 }
11be49eb 615 i915_gem_stolen_cleanup_compression(dev);
85208be0
ED
616}
617
c921aba8
DV
618static void i915_pineview_get_mem_freq(struct drm_device *dev)
619{
620 drm_i915_private_t *dev_priv = dev->dev_private;
621 u32 tmp;
622
623 tmp = I915_READ(CLKCFG);
624
625 switch (tmp & CLKCFG_FSB_MASK) {
626 case CLKCFG_FSB_533:
627 dev_priv->fsb_freq = 533; /* 133*4 */
628 break;
629 case CLKCFG_FSB_800:
630 dev_priv->fsb_freq = 800; /* 200*4 */
631 break;
632 case CLKCFG_FSB_667:
633 dev_priv->fsb_freq = 667; /* 167*4 */
634 break;
635 case CLKCFG_FSB_400:
636 dev_priv->fsb_freq = 400; /* 100*4 */
637 break;
638 }
639
640 switch (tmp & CLKCFG_MEM_MASK) {
641 case CLKCFG_MEM_533:
642 dev_priv->mem_freq = 533;
643 break;
644 case CLKCFG_MEM_667:
645 dev_priv->mem_freq = 667;
646 break;
647 case CLKCFG_MEM_800:
648 dev_priv->mem_freq = 800;
649 break;
650 }
651
652 /* detect pineview DDR3 setting */
653 tmp = I915_READ(CSHRDDR3CTL);
654 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
655}
656
657static void i915_ironlake_get_mem_freq(struct drm_device *dev)
658{
659 drm_i915_private_t *dev_priv = dev->dev_private;
660 u16 ddrpll, csipll;
661
662 ddrpll = I915_READ16(DDRMPLL1);
663 csipll = I915_READ16(CSIPLL0);
664
665 switch (ddrpll & 0xff) {
666 case 0xc:
667 dev_priv->mem_freq = 800;
668 break;
669 case 0x10:
670 dev_priv->mem_freq = 1066;
671 break;
672 case 0x14:
673 dev_priv->mem_freq = 1333;
674 break;
675 case 0x18:
676 dev_priv->mem_freq = 1600;
677 break;
678 default:
679 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
680 ddrpll & 0xff);
681 dev_priv->mem_freq = 0;
682 break;
683 }
684
20e4d407 685 dev_priv->ips.r_t = dev_priv->mem_freq;
c921aba8
DV
686
687 switch (csipll & 0x3ff) {
688 case 0x00c:
689 dev_priv->fsb_freq = 3200;
690 break;
691 case 0x00e:
692 dev_priv->fsb_freq = 3733;
693 break;
694 case 0x010:
695 dev_priv->fsb_freq = 4266;
696 break;
697 case 0x012:
698 dev_priv->fsb_freq = 4800;
699 break;
700 case 0x014:
701 dev_priv->fsb_freq = 5333;
702 break;
703 case 0x016:
704 dev_priv->fsb_freq = 5866;
705 break;
706 case 0x018:
707 dev_priv->fsb_freq = 6400;
708 break;
709 default:
710 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
711 csipll & 0x3ff);
712 dev_priv->fsb_freq = 0;
713 break;
714 }
715
716 if (dev_priv->fsb_freq == 3200) {
20e4d407 717 dev_priv->ips.c_m = 0;
c921aba8 718 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
20e4d407 719 dev_priv->ips.c_m = 1;
c921aba8 720 } else {
20e4d407 721 dev_priv->ips.c_m = 2;
c921aba8
DV
722 }
723}
724
b445e3b0
ED
725static const struct cxsr_latency cxsr_latency_table[] = {
726 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
727 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
728 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
729 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
730 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
731
732 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
733 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
734 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
735 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
736 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
737
738 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
739 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
740 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
741 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
742 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
743
744 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
745 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
746 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
747 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
748 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
749
750 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
751 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
752 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
753 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
754 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
755
756 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
757 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
758 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
759 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
760 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
761};
762
63c62275 763static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
b445e3b0
ED
764 int is_ddr3,
765 int fsb,
766 int mem)
767{
768 const struct cxsr_latency *latency;
769 int i;
770
771 if (fsb == 0 || mem == 0)
772 return NULL;
773
774 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
775 latency = &cxsr_latency_table[i];
776 if (is_desktop == latency->is_desktop &&
777 is_ddr3 == latency->is_ddr3 &&
778 fsb == latency->fsb_freq && mem == latency->mem_freq)
779 return latency;
780 }
781
782 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
783
784 return NULL;
785}
786
1fa61106 787static void pineview_disable_cxsr(struct drm_device *dev)
b445e3b0
ED
788{
789 struct drm_i915_private *dev_priv = dev->dev_private;
790
791 /* deactivate cxsr */
792 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
793}
794
795/*
796 * Latency for FIFO fetches is dependent on several factors:
797 * - memory configuration (speed, channels)
798 * - chipset
799 * - current MCH state
800 * It can be fairly high in some situations, so here we assume a fairly
801 * pessimal value. It's a tradeoff between extra memory fetches (if we
802 * set this value too high, the FIFO will fetch frequently to stay full)
803 * and power consumption (set it too low to save power and we might see
804 * FIFO underruns and display "flicker").
805 *
806 * A value of 5us seems to be a good balance; safe for very low end
807 * platforms but not overly aggressive on lower latency configs.
808 */
809static const int latency_ns = 5000;
810
1fa61106 811static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
812{
813 struct drm_i915_private *dev_priv = dev->dev_private;
814 uint32_t dsparb = I915_READ(DSPARB);
815 int size;
816
817 size = dsparb & 0x7f;
818 if (plane)
819 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
820
821 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
822 plane ? "B" : "A", size);
823
824 return size;
825}
826
feb56b93 827static int i830_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
828{
829 struct drm_i915_private *dev_priv = dev->dev_private;
830 uint32_t dsparb = I915_READ(DSPARB);
831 int size;
832
833 size = dsparb & 0x1ff;
834 if (plane)
835 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
836 size >>= 1; /* Convert to cachelines */
837
838 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
839 plane ? "B" : "A", size);
840
841 return size;
842}
843
1fa61106 844static int i845_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
845{
846 struct drm_i915_private *dev_priv = dev->dev_private;
847 uint32_t dsparb = I915_READ(DSPARB);
848 int size;
849
850 size = dsparb & 0x7f;
851 size >>= 2; /* Convert to cachelines */
852
853 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
854 plane ? "B" : "A",
855 size);
856
857 return size;
858}
859
b445e3b0
ED
860/* Pineview has different values for various configs */
861static const struct intel_watermark_params pineview_display_wm = {
862 PINEVIEW_DISPLAY_FIFO,
863 PINEVIEW_MAX_WM,
864 PINEVIEW_DFT_WM,
865 PINEVIEW_GUARD_WM,
866 PINEVIEW_FIFO_LINE_SIZE
867};
868static const struct intel_watermark_params pineview_display_hplloff_wm = {
869 PINEVIEW_DISPLAY_FIFO,
870 PINEVIEW_MAX_WM,
871 PINEVIEW_DFT_HPLLOFF_WM,
872 PINEVIEW_GUARD_WM,
873 PINEVIEW_FIFO_LINE_SIZE
874};
875static const struct intel_watermark_params pineview_cursor_wm = {
876 PINEVIEW_CURSOR_FIFO,
877 PINEVIEW_CURSOR_MAX_WM,
878 PINEVIEW_CURSOR_DFT_WM,
879 PINEVIEW_CURSOR_GUARD_WM,
880 PINEVIEW_FIFO_LINE_SIZE,
881};
882static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
883 PINEVIEW_CURSOR_FIFO,
884 PINEVIEW_CURSOR_MAX_WM,
885 PINEVIEW_CURSOR_DFT_WM,
886 PINEVIEW_CURSOR_GUARD_WM,
887 PINEVIEW_FIFO_LINE_SIZE
888};
889static const struct intel_watermark_params g4x_wm_info = {
890 G4X_FIFO_SIZE,
891 G4X_MAX_WM,
892 G4X_MAX_WM,
893 2,
894 G4X_FIFO_LINE_SIZE,
895};
896static const struct intel_watermark_params g4x_cursor_wm_info = {
897 I965_CURSOR_FIFO,
898 I965_CURSOR_MAX_WM,
899 I965_CURSOR_DFT_WM,
900 2,
901 G4X_FIFO_LINE_SIZE,
902};
903static const struct intel_watermark_params valleyview_wm_info = {
904 VALLEYVIEW_FIFO_SIZE,
905 VALLEYVIEW_MAX_WM,
906 VALLEYVIEW_MAX_WM,
907 2,
908 G4X_FIFO_LINE_SIZE,
909};
910static const struct intel_watermark_params valleyview_cursor_wm_info = {
911 I965_CURSOR_FIFO,
912 VALLEYVIEW_CURSOR_MAX_WM,
913 I965_CURSOR_DFT_WM,
914 2,
915 G4X_FIFO_LINE_SIZE,
916};
917static const struct intel_watermark_params i965_cursor_wm_info = {
918 I965_CURSOR_FIFO,
919 I965_CURSOR_MAX_WM,
920 I965_CURSOR_DFT_WM,
921 2,
922 I915_FIFO_LINE_SIZE,
923};
924static const struct intel_watermark_params i945_wm_info = {
925 I945_FIFO_SIZE,
926 I915_MAX_WM,
927 1,
928 2,
929 I915_FIFO_LINE_SIZE
930};
931static const struct intel_watermark_params i915_wm_info = {
932 I915_FIFO_SIZE,
933 I915_MAX_WM,
934 1,
935 2,
936 I915_FIFO_LINE_SIZE
937};
feb56b93 938static const struct intel_watermark_params i830_wm_info = {
b445e3b0
ED
939 I855GM_FIFO_SIZE,
940 I915_MAX_WM,
941 1,
942 2,
943 I830_FIFO_LINE_SIZE
944};
feb56b93 945static const struct intel_watermark_params i845_wm_info = {
b445e3b0
ED
946 I830_FIFO_SIZE,
947 I915_MAX_WM,
948 1,
949 2,
950 I830_FIFO_LINE_SIZE
951};
952
b445e3b0
ED
953/**
954 * intel_calculate_wm - calculate watermark level
955 * @clock_in_khz: pixel clock
956 * @wm: chip FIFO params
957 * @pixel_size: display pixel size
958 * @latency_ns: memory latency for the platform
959 *
960 * Calculate the watermark level (the level at which the display plane will
961 * start fetching from memory again). Each chip has a different display
962 * FIFO size and allocation, so the caller needs to figure that out and pass
963 * in the correct intel_watermark_params structure.
964 *
965 * As the pixel clock runs, the FIFO will be drained at a rate that depends
966 * on the pixel size. When it reaches the watermark level, it'll start
967 * fetching FIFO line sized based chunks from memory until the FIFO fills
968 * past the watermark point. If the FIFO drains completely, a FIFO underrun
969 * will occur, and a display engine hang could result.
970 */
971static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
972 const struct intel_watermark_params *wm,
973 int fifo_size,
974 int pixel_size,
975 unsigned long latency_ns)
976{
977 long entries_required, wm_size;
978
979 /*
980 * Note: we need to make sure we don't overflow for various clock &
981 * latency values.
982 * clocks go from a few thousand to several hundred thousand.
983 * latency is usually a few thousand
984 */
985 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
986 1000;
987 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
988
989 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
990
991 wm_size = fifo_size - (entries_required + wm->guard_size);
992
993 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
994
995 /* Don't promote wm_size to unsigned... */
996 if (wm_size > (long)wm->max_wm)
997 wm_size = wm->max_wm;
998 if (wm_size <= 0)
999 wm_size = wm->default_wm;
1000 return wm_size;
1001}
1002
1003static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1004{
1005 struct drm_crtc *crtc, *enabled = NULL;
1006
1007 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3490ea5d 1008 if (intel_crtc_active(crtc)) {
b445e3b0
ED
1009 if (enabled)
1010 return NULL;
1011 enabled = crtc;
1012 }
1013 }
1014
1015 return enabled;
1016}
1017
46ba614c 1018static void pineview_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1019{
46ba614c 1020 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1021 struct drm_i915_private *dev_priv = dev->dev_private;
1022 struct drm_crtc *crtc;
1023 const struct cxsr_latency *latency;
1024 u32 reg;
1025 unsigned long wm;
1026
1027 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1028 dev_priv->fsb_freq, dev_priv->mem_freq);
1029 if (!latency) {
1030 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1031 pineview_disable_cxsr(dev);
1032 return;
1033 }
1034
1035 crtc = single_enabled_crtc(dev);
1036 if (crtc) {
241bfc38 1037 const struct drm_display_mode *adjusted_mode;
b445e3b0 1038 int pixel_size = crtc->fb->bits_per_pixel / 8;
241bfc38
DL
1039 int clock;
1040
1041 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1042 clock = adjusted_mode->crtc_clock;
b445e3b0
ED
1043
1044 /* Display SR */
1045 wm = intel_calculate_wm(clock, &pineview_display_wm,
1046 pineview_display_wm.fifo_size,
1047 pixel_size, latency->display_sr);
1048 reg = I915_READ(DSPFW1);
1049 reg &= ~DSPFW_SR_MASK;
1050 reg |= wm << DSPFW_SR_SHIFT;
1051 I915_WRITE(DSPFW1, reg);
1052 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1053
1054 /* cursor SR */
1055 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1056 pineview_display_wm.fifo_size,
1057 pixel_size, latency->cursor_sr);
1058 reg = I915_READ(DSPFW3);
1059 reg &= ~DSPFW_CURSOR_SR_MASK;
1060 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1061 I915_WRITE(DSPFW3, reg);
1062
1063 /* Display HPLL off SR */
1064 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1065 pineview_display_hplloff_wm.fifo_size,
1066 pixel_size, latency->display_hpll_disable);
1067 reg = I915_READ(DSPFW3);
1068 reg &= ~DSPFW_HPLL_SR_MASK;
1069 reg |= wm & DSPFW_HPLL_SR_MASK;
1070 I915_WRITE(DSPFW3, reg);
1071
1072 /* cursor HPLL off SR */
1073 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1074 pineview_display_hplloff_wm.fifo_size,
1075 pixel_size, latency->cursor_hpll_disable);
1076 reg = I915_READ(DSPFW3);
1077 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1078 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1079 I915_WRITE(DSPFW3, reg);
1080 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1081
1082 /* activate cxsr */
1083 I915_WRITE(DSPFW3,
1084 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1085 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1086 } else {
1087 pineview_disable_cxsr(dev);
1088 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1089 }
1090}
1091
1092static bool g4x_compute_wm0(struct drm_device *dev,
1093 int plane,
1094 const struct intel_watermark_params *display,
1095 int display_latency_ns,
1096 const struct intel_watermark_params *cursor,
1097 int cursor_latency_ns,
1098 int *plane_wm,
1099 int *cursor_wm)
1100{
1101 struct drm_crtc *crtc;
4fe8590a 1102 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
1103 int htotal, hdisplay, clock, pixel_size;
1104 int line_time_us, line_count;
1105 int entries, tlb_miss;
1106
1107 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 1108 if (!intel_crtc_active(crtc)) {
b445e3b0
ED
1109 *cursor_wm = cursor->guard_size;
1110 *plane_wm = display->guard_size;
1111 return false;
1112 }
1113
4fe8590a 1114 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
241bfc38 1115 clock = adjusted_mode->crtc_clock;
fec8cba3 1116 htotal = adjusted_mode->crtc_htotal;
37327abd 1117 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1118 pixel_size = crtc->fb->bits_per_pixel / 8;
1119
1120 /* Use the small buffer method to calculate plane watermark */
1121 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1122 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1123 if (tlb_miss > 0)
1124 entries += tlb_miss;
1125 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1126 *plane_wm = entries + display->guard_size;
1127 if (*plane_wm > (int)display->max_wm)
1128 *plane_wm = display->max_wm;
1129
1130 /* Use the large buffer method to calculate cursor watermark */
1131 line_time_us = ((htotal * 1000) / clock);
1132 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1133 entries = line_count * 64 * pixel_size;
1134 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1135 if (tlb_miss > 0)
1136 entries += tlb_miss;
1137 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1138 *cursor_wm = entries + cursor->guard_size;
1139 if (*cursor_wm > (int)cursor->max_wm)
1140 *cursor_wm = (int)cursor->max_wm;
1141
1142 return true;
1143}
1144
1145/*
1146 * Check the wm result.
1147 *
1148 * If any calculated watermark values is larger than the maximum value that
1149 * can be programmed into the associated watermark register, that watermark
1150 * must be disabled.
1151 */
1152static bool g4x_check_srwm(struct drm_device *dev,
1153 int display_wm, int cursor_wm,
1154 const struct intel_watermark_params *display,
1155 const struct intel_watermark_params *cursor)
1156{
1157 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1158 display_wm, cursor_wm);
1159
1160 if (display_wm > display->max_wm) {
1161 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1162 display_wm, display->max_wm);
1163 return false;
1164 }
1165
1166 if (cursor_wm > cursor->max_wm) {
1167 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1168 cursor_wm, cursor->max_wm);
1169 return false;
1170 }
1171
1172 if (!(display_wm || cursor_wm)) {
1173 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1174 return false;
1175 }
1176
1177 return true;
1178}
1179
1180static bool g4x_compute_srwm(struct drm_device *dev,
1181 int plane,
1182 int latency_ns,
1183 const struct intel_watermark_params *display,
1184 const struct intel_watermark_params *cursor,
1185 int *display_wm, int *cursor_wm)
1186{
1187 struct drm_crtc *crtc;
4fe8590a 1188 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
1189 int hdisplay, htotal, pixel_size, clock;
1190 unsigned long line_time_us;
1191 int line_count, line_size;
1192 int small, large;
1193 int entries;
1194
1195 if (!latency_ns) {
1196 *display_wm = *cursor_wm = 0;
1197 return false;
1198 }
1199
1200 crtc = intel_get_crtc_for_plane(dev, plane);
4fe8590a 1201 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
241bfc38 1202 clock = adjusted_mode->crtc_clock;
fec8cba3 1203 htotal = adjusted_mode->crtc_htotal;
37327abd 1204 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1205 pixel_size = crtc->fb->bits_per_pixel / 8;
1206
1207 line_time_us = (htotal * 1000) / clock;
1208 line_count = (latency_ns / line_time_us + 1000) / 1000;
1209 line_size = hdisplay * pixel_size;
1210
1211 /* Use the minimum of the small and large buffer method for primary */
1212 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1213 large = line_count * line_size;
1214
1215 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1216 *display_wm = entries + display->guard_size;
1217
1218 /* calculate the self-refresh watermark for display cursor */
1219 entries = line_count * pixel_size * 64;
1220 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1221 *cursor_wm = entries + cursor->guard_size;
1222
1223 return g4x_check_srwm(dev,
1224 *display_wm, *cursor_wm,
1225 display, cursor);
1226}
1227
1228static bool vlv_compute_drain_latency(struct drm_device *dev,
1229 int plane,
1230 int *plane_prec_mult,
1231 int *plane_dl,
1232 int *cursor_prec_mult,
1233 int *cursor_dl)
1234{
1235 struct drm_crtc *crtc;
1236 int clock, pixel_size;
1237 int entries;
1238
1239 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 1240 if (!intel_crtc_active(crtc))
b445e3b0
ED
1241 return false;
1242
241bfc38 1243 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
b445e3b0
ED
1244 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1245
1246 entries = (clock / 1000) * pixel_size;
1247 *plane_prec_mult = (entries > 256) ?
1248 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1249 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1250 pixel_size);
1251
1252 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1253 *cursor_prec_mult = (entries > 256) ?
1254 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1256
1257 return true;
1258}
1259
1260/*
1261 * Update drain latency registers of memory arbiter
1262 *
1263 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1264 * to be programmed. Each plane has a drain latency multiplier and a drain
1265 * latency value.
1266 */
1267
1268static void vlv_update_drain_latency(struct drm_device *dev)
1269{
1270 struct drm_i915_private *dev_priv = dev->dev_private;
1271 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1272 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1273 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1274 either 16 or 32 */
1275
1276 /* For plane A, Cursor A */
1277 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1278 &cursor_prec_mult, &cursora_dl)) {
1279 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1280 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1281 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1282 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1283
1284 I915_WRITE(VLV_DDL1, cursora_prec |
1285 (cursora_dl << DDL_CURSORA_SHIFT) |
1286 planea_prec | planea_dl);
1287 }
1288
1289 /* For plane B, Cursor B */
1290 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1291 &cursor_prec_mult, &cursorb_dl)) {
1292 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1293 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1294 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1295 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1296
1297 I915_WRITE(VLV_DDL2, cursorb_prec |
1298 (cursorb_dl << DDL_CURSORB_SHIFT) |
1299 planeb_prec | planeb_dl);
1300 }
1301}
1302
1303#define single_plane_enabled(mask) is_power_of_2(mask)
1304
46ba614c 1305static void valleyview_update_wm(struct drm_crtc *crtc)
b445e3b0 1306{
46ba614c 1307 struct drm_device *dev = crtc->dev;
b445e3b0
ED
1308 static const int sr_latency_ns = 12000;
1309 struct drm_i915_private *dev_priv = dev->dev_private;
1310 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1311 int plane_sr, cursor_sr;
af6c4575 1312 int ignore_plane_sr, ignore_cursor_sr;
b445e3b0
ED
1313 unsigned int enabled = 0;
1314
1315 vlv_update_drain_latency(dev);
1316
51cea1f4 1317 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1318 &valleyview_wm_info, latency_ns,
1319 &valleyview_cursor_wm_info, latency_ns,
1320 &planea_wm, &cursora_wm))
51cea1f4 1321 enabled |= 1 << PIPE_A;
b445e3b0 1322
51cea1f4 1323 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1324 &valleyview_wm_info, latency_ns,
1325 &valleyview_cursor_wm_info, latency_ns,
1326 &planeb_wm, &cursorb_wm))
51cea1f4 1327 enabled |= 1 << PIPE_B;
b445e3b0 1328
b445e3b0
ED
1329 if (single_plane_enabled(enabled) &&
1330 g4x_compute_srwm(dev, ffs(enabled) - 1,
1331 sr_latency_ns,
1332 &valleyview_wm_info,
1333 &valleyview_cursor_wm_info,
af6c4575
CW
1334 &plane_sr, &ignore_cursor_sr) &&
1335 g4x_compute_srwm(dev, ffs(enabled) - 1,
1336 2*sr_latency_ns,
1337 &valleyview_wm_info,
1338 &valleyview_cursor_wm_info,
52bd02d8 1339 &ignore_plane_sr, &cursor_sr)) {
b445e3b0 1340 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
52bd02d8 1341 } else {
b445e3b0
ED
1342 I915_WRITE(FW_BLC_SELF_VLV,
1343 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
52bd02d8
CW
1344 plane_sr = cursor_sr = 0;
1345 }
b445e3b0
ED
1346
1347 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1348 planea_wm, cursora_wm,
1349 planeb_wm, cursorb_wm,
1350 plane_sr, cursor_sr);
1351
1352 I915_WRITE(DSPFW1,
1353 (plane_sr << DSPFW_SR_SHIFT) |
1354 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1355 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1356 planea_wm);
1357 I915_WRITE(DSPFW2,
8c919b28 1358 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1359 (cursora_wm << DSPFW_CURSORA_SHIFT));
1360 I915_WRITE(DSPFW3,
8c919b28
CW
1361 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1362 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
b445e3b0
ED
1363}
1364
46ba614c 1365static void g4x_update_wm(struct drm_crtc *crtc)
b445e3b0 1366{
46ba614c 1367 struct drm_device *dev = crtc->dev;
b445e3b0
ED
1368 static const int sr_latency_ns = 12000;
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371 int plane_sr, cursor_sr;
1372 unsigned int enabled = 0;
1373
51cea1f4 1374 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1375 &g4x_wm_info, latency_ns,
1376 &g4x_cursor_wm_info, latency_ns,
1377 &planea_wm, &cursora_wm))
51cea1f4 1378 enabled |= 1 << PIPE_A;
b445e3b0 1379
51cea1f4 1380 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1381 &g4x_wm_info, latency_ns,
1382 &g4x_cursor_wm_info, latency_ns,
1383 &planeb_wm, &cursorb_wm))
51cea1f4 1384 enabled |= 1 << PIPE_B;
b445e3b0 1385
b445e3b0
ED
1386 if (single_plane_enabled(enabled) &&
1387 g4x_compute_srwm(dev, ffs(enabled) - 1,
1388 sr_latency_ns,
1389 &g4x_wm_info,
1390 &g4x_cursor_wm_info,
52bd02d8 1391 &plane_sr, &cursor_sr)) {
b445e3b0 1392 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
52bd02d8 1393 } else {
b445e3b0
ED
1394 I915_WRITE(FW_BLC_SELF,
1395 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
52bd02d8
CW
1396 plane_sr = cursor_sr = 0;
1397 }
b445e3b0
ED
1398
1399 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1400 planea_wm, cursora_wm,
1401 planeb_wm, cursorb_wm,
1402 plane_sr, cursor_sr);
1403
1404 I915_WRITE(DSPFW1,
1405 (plane_sr << DSPFW_SR_SHIFT) |
1406 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1407 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1408 planea_wm);
1409 I915_WRITE(DSPFW2,
8c919b28 1410 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1411 (cursora_wm << DSPFW_CURSORA_SHIFT));
1412 /* HPLL off in SR has some issues on G4x... disable it */
1413 I915_WRITE(DSPFW3,
8c919b28 1414 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
b445e3b0
ED
1415 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1416}
1417
46ba614c 1418static void i965_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1419{
46ba614c 1420 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1421 struct drm_i915_private *dev_priv = dev->dev_private;
1422 struct drm_crtc *crtc;
1423 int srwm = 1;
1424 int cursor_sr = 16;
1425
1426 /* Calc sr entries for one plane configs */
1427 crtc = single_enabled_crtc(dev);
1428 if (crtc) {
1429 /* self-refresh has much higher latency */
1430 static const int sr_latency_ns = 12000;
4fe8590a
VS
1431 const struct drm_display_mode *adjusted_mode =
1432 &to_intel_crtc(crtc)->config.adjusted_mode;
241bfc38 1433 int clock = adjusted_mode->crtc_clock;
fec8cba3 1434 int htotal = adjusted_mode->crtc_htotal;
37327abd 1435 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1436 int pixel_size = crtc->fb->bits_per_pixel / 8;
1437 unsigned long line_time_us;
1438 int entries;
1439
1440 line_time_us = ((htotal * 1000) / clock);
1441
1442 /* Use ns/us then divide to preserve precision */
1443 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1444 pixel_size * hdisplay;
1445 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1446 srwm = I965_FIFO_SIZE - entries;
1447 if (srwm < 0)
1448 srwm = 1;
1449 srwm &= 0x1ff;
1450 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1451 entries, srwm);
1452
1453 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1454 pixel_size * 64;
1455 entries = DIV_ROUND_UP(entries,
1456 i965_cursor_wm_info.cacheline_size);
1457 cursor_sr = i965_cursor_wm_info.fifo_size -
1458 (entries + i965_cursor_wm_info.guard_size);
1459
1460 if (cursor_sr > i965_cursor_wm_info.max_wm)
1461 cursor_sr = i965_cursor_wm_info.max_wm;
1462
1463 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1464 "cursor %d\n", srwm, cursor_sr);
1465
1466 if (IS_CRESTLINE(dev))
1467 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1468 } else {
1469 /* Turn off self refresh if both pipes are enabled */
1470 if (IS_CRESTLINE(dev))
1471 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1472 & ~FW_BLC_SELF_EN);
1473 }
1474
1475 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1476 srwm);
1477
1478 /* 965 has limitations... */
1479 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1480 (8 << 16) | (8 << 8) | (8 << 0));
1481 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1482 /* update cursor SR watermark */
1483 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1484}
1485
46ba614c 1486static void i9xx_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1487{
46ba614c 1488 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490 const struct intel_watermark_params *wm_info;
1491 uint32_t fwater_lo;
1492 uint32_t fwater_hi;
1493 int cwm, srwm = 1;
1494 int fifo_size;
1495 int planea_wm, planeb_wm;
1496 struct drm_crtc *crtc, *enabled = NULL;
1497
1498 if (IS_I945GM(dev))
1499 wm_info = &i945_wm_info;
1500 else if (!IS_GEN2(dev))
1501 wm_info = &i915_wm_info;
1502 else
feb56b93 1503 wm_info = &i830_wm_info;
b445e3b0
ED
1504
1505 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1506 crtc = intel_get_crtc_for_plane(dev, 0);
3490ea5d 1507 if (intel_crtc_active(crtc)) {
241bfc38 1508 const struct drm_display_mode *adjusted_mode;
b9e0bda3
CW
1509 int cpp = crtc->fb->bits_per_pixel / 8;
1510 if (IS_GEN2(dev))
1511 cpp = 4;
1512
241bfc38
DL
1513 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1514 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
b9e0bda3 1515 wm_info, fifo_size, cpp,
b445e3b0
ED
1516 latency_ns);
1517 enabled = crtc;
1518 } else
1519 planea_wm = fifo_size - wm_info->guard_size;
1520
1521 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1522 crtc = intel_get_crtc_for_plane(dev, 1);
3490ea5d 1523 if (intel_crtc_active(crtc)) {
241bfc38 1524 const struct drm_display_mode *adjusted_mode;
b9e0bda3
CW
1525 int cpp = crtc->fb->bits_per_pixel / 8;
1526 if (IS_GEN2(dev))
1527 cpp = 4;
1528
241bfc38
DL
1529 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1530 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
b9e0bda3 1531 wm_info, fifo_size, cpp,
b445e3b0
ED
1532 latency_ns);
1533 if (enabled == NULL)
1534 enabled = crtc;
1535 else
1536 enabled = NULL;
1537 } else
1538 planeb_wm = fifo_size - wm_info->guard_size;
1539
1540 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1541
1542 /*
1543 * Overlay gets an aggressive default since video jitter is bad.
1544 */
1545 cwm = 2;
1546
1547 /* Play safe and disable self-refresh before adjusting watermarks. */
1548 if (IS_I945G(dev) || IS_I945GM(dev))
1549 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1550 else if (IS_I915GM(dev))
3f2dc5ac 1551 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
b445e3b0
ED
1552
1553 /* Calc sr entries for one plane configs */
1554 if (HAS_FW_BLC(dev) && enabled) {
1555 /* self-refresh has much higher latency */
1556 static const int sr_latency_ns = 6000;
4fe8590a
VS
1557 const struct drm_display_mode *adjusted_mode =
1558 &to_intel_crtc(enabled)->config.adjusted_mode;
241bfc38 1559 int clock = adjusted_mode->crtc_clock;
fec8cba3 1560 int htotal = adjusted_mode->crtc_htotal;
f727b490 1561 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
b445e3b0
ED
1562 int pixel_size = enabled->fb->bits_per_pixel / 8;
1563 unsigned long line_time_us;
1564 int entries;
1565
1566 line_time_us = (htotal * 1000) / clock;
1567
1568 /* Use ns/us then divide to preserve precision */
1569 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1570 pixel_size * hdisplay;
1571 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1572 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1573 srwm = wm_info->fifo_size - entries;
1574 if (srwm < 0)
1575 srwm = 1;
1576
1577 if (IS_I945G(dev) || IS_I945GM(dev))
1578 I915_WRITE(FW_BLC_SELF,
1579 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1580 else if (IS_I915GM(dev))
1581 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1582 }
1583
1584 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1585 planea_wm, planeb_wm, cwm, srwm);
1586
1587 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1588 fwater_hi = (cwm & 0x1f);
1589
1590 /* Set request length to 8 cachelines per fetch */
1591 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1592 fwater_hi = fwater_hi | (1 << 8);
1593
1594 I915_WRITE(FW_BLC, fwater_lo);
1595 I915_WRITE(FW_BLC2, fwater_hi);
1596
1597 if (HAS_FW_BLC(dev)) {
1598 if (enabled) {
1599 if (IS_I945G(dev) || IS_I945GM(dev))
1600 I915_WRITE(FW_BLC_SELF,
1601 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1602 else if (IS_I915GM(dev))
3f2dc5ac 1603 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
b445e3b0
ED
1604 DRM_DEBUG_KMS("memory self refresh enabled\n");
1605 } else
1606 DRM_DEBUG_KMS("memory self refresh disabled\n");
1607 }
1608}
1609
feb56b93 1610static void i845_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1611{
46ba614c 1612 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1613 struct drm_i915_private *dev_priv = dev->dev_private;
1614 struct drm_crtc *crtc;
241bfc38 1615 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
1616 uint32_t fwater_lo;
1617 int planea_wm;
1618
1619 crtc = single_enabled_crtc(dev);
1620 if (crtc == NULL)
1621 return;
1622
241bfc38
DL
1623 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1624 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
feb56b93 1625 &i845_wm_info,
b445e3b0 1626 dev_priv->display.get_fifo_size(dev, 0),
b9e0bda3 1627 4, latency_ns);
b445e3b0
ED
1628 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1629 fwater_lo |= (3<<8) | planea_wm;
1630
1631 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1632
1633 I915_WRITE(FW_BLC, fwater_lo);
1634}
1635
3658729a
VS
1636static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1637 struct drm_crtc *crtc)
801bcfff
PZ
1638{
1639 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
fd4daa9c 1640 uint32_t pixel_rate;
801bcfff 1641
241bfc38 1642 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
801bcfff
PZ
1643
1644 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1645 * adjust the pixel_rate here. */
1646
fd4daa9c 1647 if (intel_crtc->config.pch_pfit.enabled) {
801bcfff 1648 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
fd4daa9c 1649 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
801bcfff 1650
37327abd
VS
1651 pipe_w = intel_crtc->config.pipe_src_w;
1652 pipe_h = intel_crtc->config.pipe_src_h;
801bcfff
PZ
1653 pfit_w = (pfit_size >> 16) & 0xFFFF;
1654 pfit_h = pfit_size & 0xFFFF;
1655 if (pipe_w < pfit_w)
1656 pipe_w = pfit_w;
1657 if (pipe_h < pfit_h)
1658 pipe_h = pfit_h;
1659
1660 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1661 pfit_w * pfit_h);
1662 }
1663
1664 return pixel_rate;
1665}
1666
37126462 1667/* latency must be in 0.1us units. */
23297044 1668static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
801bcfff
PZ
1669 uint32_t latency)
1670{
1671 uint64_t ret;
1672
3312ba65
VS
1673 if (WARN(latency == 0, "Latency value missing\n"))
1674 return UINT_MAX;
1675
801bcfff
PZ
1676 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1677 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1678
1679 return ret;
1680}
1681
37126462 1682/* latency must be in 0.1us units. */
23297044 1683static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
801bcfff
PZ
1684 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1685 uint32_t latency)
1686{
1687 uint32_t ret;
1688
3312ba65
VS
1689 if (WARN(latency == 0, "Latency value missing\n"))
1690 return UINT_MAX;
1691
801bcfff
PZ
1692 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1693 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1694 ret = DIV_ROUND_UP(ret, 64) + 2;
1695 return ret;
1696}
1697
23297044 1698static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
cca32e9a
PZ
1699 uint8_t bytes_per_pixel)
1700{
1701 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1702}
1703
820c1980 1704struct ilk_pipe_wm_parameters {
801bcfff 1705 bool active;
801bcfff
PZ
1706 uint32_t pipe_htotal;
1707 uint32_t pixel_rate;
c35426d2
VS
1708 struct intel_plane_wm_parameters pri;
1709 struct intel_plane_wm_parameters spr;
1710 struct intel_plane_wm_parameters cur;
801bcfff
PZ
1711};
1712
820c1980 1713struct ilk_wm_maximums {
cca32e9a
PZ
1714 uint16_t pri;
1715 uint16_t spr;
1716 uint16_t cur;
1717 uint16_t fbc;
1718};
1719
240264f4
VS
1720/* used in computing the new watermarks state */
1721struct intel_wm_config {
1722 unsigned int num_pipes_active;
1723 bool sprites_enabled;
1724 bool sprites_scaled;
240264f4
VS
1725};
1726
37126462
VS
1727/*
1728 * For both WM_PIPE and WM_LP.
1729 * mem_value must be in 0.1us units.
1730 */
820c1980 1731static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
cca32e9a
PZ
1732 uint32_t mem_value,
1733 bool is_lp)
801bcfff 1734{
cca32e9a
PZ
1735 uint32_t method1, method2;
1736
c35426d2 1737 if (!params->active || !params->pri.enabled)
801bcfff
PZ
1738 return 0;
1739
23297044 1740 method1 = ilk_wm_method1(params->pixel_rate,
c35426d2 1741 params->pri.bytes_per_pixel,
cca32e9a
PZ
1742 mem_value);
1743
1744 if (!is_lp)
1745 return method1;
1746
23297044 1747 method2 = ilk_wm_method2(params->pixel_rate,
cca32e9a 1748 params->pipe_htotal,
c35426d2
VS
1749 params->pri.horiz_pixels,
1750 params->pri.bytes_per_pixel,
cca32e9a
PZ
1751 mem_value);
1752
1753 return min(method1, method2);
801bcfff
PZ
1754}
1755
37126462
VS
1756/*
1757 * For both WM_PIPE and WM_LP.
1758 * mem_value must be in 0.1us units.
1759 */
820c1980 1760static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
801bcfff
PZ
1761 uint32_t mem_value)
1762{
1763 uint32_t method1, method2;
1764
c35426d2 1765 if (!params->active || !params->spr.enabled)
801bcfff
PZ
1766 return 0;
1767
23297044 1768 method1 = ilk_wm_method1(params->pixel_rate,
c35426d2 1769 params->spr.bytes_per_pixel,
801bcfff 1770 mem_value);
23297044 1771 method2 = ilk_wm_method2(params->pixel_rate,
801bcfff 1772 params->pipe_htotal,
c35426d2
VS
1773 params->spr.horiz_pixels,
1774 params->spr.bytes_per_pixel,
801bcfff
PZ
1775 mem_value);
1776 return min(method1, method2);
1777}
1778
37126462
VS
1779/*
1780 * For both WM_PIPE and WM_LP.
1781 * mem_value must be in 0.1us units.
1782 */
820c1980 1783static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
801bcfff
PZ
1784 uint32_t mem_value)
1785{
c35426d2 1786 if (!params->active || !params->cur.enabled)
801bcfff
PZ
1787 return 0;
1788
23297044 1789 return ilk_wm_method2(params->pixel_rate,
801bcfff 1790 params->pipe_htotal,
c35426d2
VS
1791 params->cur.horiz_pixels,
1792 params->cur.bytes_per_pixel,
801bcfff
PZ
1793 mem_value);
1794}
1795
cca32e9a 1796/* Only for WM_LP. */
820c1980 1797static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1fda9882 1798 uint32_t pri_val)
cca32e9a 1799{
c35426d2 1800 if (!params->active || !params->pri.enabled)
cca32e9a
PZ
1801 return 0;
1802
23297044 1803 return ilk_wm_fbc(pri_val,
c35426d2
VS
1804 params->pri.horiz_pixels,
1805 params->pri.bytes_per_pixel);
cca32e9a
PZ
1806}
1807
158ae64f
VS
1808static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1809{
416f4727
VS
1810 if (INTEL_INFO(dev)->gen >= 8)
1811 return 3072;
1812 else if (INTEL_INFO(dev)->gen >= 7)
158ae64f
VS
1813 return 768;
1814 else
1815 return 512;
1816}
1817
1818/* Calculate the maximum primary/sprite plane watermark */
1819static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1820 int level,
240264f4 1821 const struct intel_wm_config *config,
158ae64f
VS
1822 enum intel_ddb_partitioning ddb_partitioning,
1823 bool is_sprite)
1824{
1825 unsigned int fifo_size = ilk_display_fifo_size(dev);
1826 unsigned int max;
1827
1828 /* if sprites aren't enabled, sprites get nothing */
240264f4 1829 if (is_sprite && !config->sprites_enabled)
158ae64f
VS
1830 return 0;
1831
1832 /* HSW allows LP1+ watermarks even with multiple pipes */
240264f4 1833 if (level == 0 || config->num_pipes_active > 1) {
158ae64f
VS
1834 fifo_size /= INTEL_INFO(dev)->num_pipes;
1835
1836 /*
1837 * For some reason the non self refresh
1838 * FIFO size is only half of the self
1839 * refresh FIFO size on ILK/SNB.
1840 */
1841 if (INTEL_INFO(dev)->gen <= 6)
1842 fifo_size /= 2;
1843 }
1844
240264f4 1845 if (config->sprites_enabled) {
158ae64f
VS
1846 /* level 0 is always calculated with 1:1 split */
1847 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1848 if (is_sprite)
1849 fifo_size *= 5;
1850 fifo_size /= 6;
1851 } else {
1852 fifo_size /= 2;
1853 }
1854 }
1855
1856 /* clamp to max that the registers can hold */
416f4727
VS
1857 if (INTEL_INFO(dev)->gen >= 8)
1858 max = level == 0 ? 255 : 2047;
1859 else if (INTEL_INFO(dev)->gen >= 7)
158ae64f
VS
1860 /* IVB/HSW primary/sprite plane watermarks */
1861 max = level == 0 ? 127 : 1023;
1862 else if (!is_sprite)
1863 /* ILK/SNB primary plane watermarks */
1864 max = level == 0 ? 127 : 511;
1865 else
1866 /* ILK/SNB sprite plane watermarks */
1867 max = level == 0 ? 63 : 255;
1868
1869 return min(fifo_size, max);
1870}
1871
1872/* Calculate the maximum cursor plane watermark */
1873static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
240264f4
VS
1874 int level,
1875 const struct intel_wm_config *config)
158ae64f
VS
1876{
1877 /* HSW LP1+ watermarks w/ multiple pipes */
240264f4 1878 if (level > 0 && config->num_pipes_active > 1)
158ae64f
VS
1879 return 64;
1880
1881 /* otherwise just report max that registers can hold */
1882 if (INTEL_INFO(dev)->gen >= 7)
1883 return level == 0 ? 63 : 255;
1884 else
1885 return level == 0 ? 31 : 63;
1886}
1887
1888/* Calculate the maximum FBC watermark */
416f4727 1889static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
158ae64f
VS
1890{
1891 /* max that registers can hold */
416f4727
VS
1892 if (INTEL_INFO(dev)->gen >= 8)
1893 return 31;
1894 else
1895 return 15;
158ae64f
VS
1896}
1897
34982fe1
VS
1898static void ilk_compute_wm_maximums(struct drm_device *dev,
1899 int level,
1900 const struct intel_wm_config *config,
1901 enum intel_ddb_partitioning ddb_partitioning,
820c1980 1902 struct ilk_wm_maximums *max)
158ae64f 1903{
240264f4
VS
1904 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1905 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1906 max->cur = ilk_cursor_wm_max(dev, level, config);
416f4727 1907 max->fbc = ilk_fbc_wm_max(dev);
158ae64f
VS
1908}
1909
d9395655 1910static bool ilk_validate_wm_level(int level,
820c1980 1911 const struct ilk_wm_maximums *max,
d9395655 1912 struct intel_wm_level *result)
a9786a11
VS
1913{
1914 bool ret;
1915
1916 /* already determined to be invalid? */
1917 if (!result->enable)
1918 return false;
1919
1920 result->enable = result->pri_val <= max->pri &&
1921 result->spr_val <= max->spr &&
1922 result->cur_val <= max->cur;
1923
1924 ret = result->enable;
1925
1926 /*
1927 * HACK until we can pre-compute everything,
1928 * and thus fail gracefully if LP0 watermarks
1929 * are exceeded...
1930 */
1931 if (level == 0 && !result->enable) {
1932 if (result->pri_val > max->pri)
1933 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1934 level, result->pri_val, max->pri);
1935 if (result->spr_val > max->spr)
1936 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1937 level, result->spr_val, max->spr);
1938 if (result->cur_val > max->cur)
1939 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1940 level, result->cur_val, max->cur);
1941
1942 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1943 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1944 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1945 result->enable = true;
1946 }
1947
a9786a11
VS
1948 return ret;
1949}
1950
6f5ddd17
VS
1951static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
1952 int level,
820c1980 1953 const struct ilk_pipe_wm_parameters *p,
1fd527cc 1954 struct intel_wm_level *result)
6f5ddd17
VS
1955{
1956 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1957 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1958 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1959
1960 /* WM1+ latency values stored in 0.5us units */
1961 if (level > 0) {
1962 pri_latency *= 5;
1963 spr_latency *= 5;
1964 cur_latency *= 5;
1965 }
1966
1967 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1968 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1969 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1970 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1971 result->enable = true;
1972}
1973
801bcfff
PZ
1974static uint32_t
1975hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1f8eeabf
ED
1976{
1977 struct drm_i915_private *dev_priv = dev->dev_private;
1011d8c4 1978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1011d8c4 1979 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
85a02deb 1980 u32 linetime, ips_linetime;
1f8eeabf 1981
801bcfff
PZ
1982 if (!intel_crtc_active(crtc))
1983 return 0;
1011d8c4 1984
1f8eeabf
ED
1985 /* The WM are computed with base on how long it takes to fill a single
1986 * row at the given clock rate, multiplied by 8.
1987 * */
fec8cba3
JB
1988 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1989 mode->crtc_clock);
1990 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
85a02deb 1991 intel_ddi_get_cdclk_freq(dev_priv));
1f8eeabf 1992
801bcfff
PZ
1993 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1994 PIPE_WM_LINETIME_TIME(linetime);
1f8eeabf
ED
1995}
1996
12b134df
VS
1997static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
1998{
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000
a42a5719 2001 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12b134df
VS
2002 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2003
2004 wm[0] = (sskpd >> 56) & 0xFF;
2005 if (wm[0] == 0)
2006 wm[0] = sskpd & 0xF;
e5d5019e
VS
2007 wm[1] = (sskpd >> 4) & 0xFF;
2008 wm[2] = (sskpd >> 12) & 0xFF;
2009 wm[3] = (sskpd >> 20) & 0x1FF;
2010 wm[4] = (sskpd >> 32) & 0x1FF;
63cf9a13
VS
2011 } else if (INTEL_INFO(dev)->gen >= 6) {
2012 uint32_t sskpd = I915_READ(MCH_SSKPD);
2013
2014 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2015 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2016 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2017 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
3a88d0ac
VS
2018 } else if (INTEL_INFO(dev)->gen >= 5) {
2019 uint32_t mltr = I915_READ(MLTR_ILK);
2020
2021 /* ILK primary LP0 latency is 700 ns */
2022 wm[0] = 7;
2023 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2024 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
12b134df
VS
2025 }
2026}
2027
53615a5e
VS
2028static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2029{
2030 /* ILK sprite LP0 latency is 1300 ns */
2031 if (INTEL_INFO(dev)->gen == 5)
2032 wm[0] = 13;
2033}
2034
2035static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2036{
2037 /* ILK cursor LP0 latency is 1300 ns */
2038 if (INTEL_INFO(dev)->gen == 5)
2039 wm[0] = 13;
2040
2041 /* WaDoubleCursorLP3Latency:ivb */
2042 if (IS_IVYBRIDGE(dev))
2043 wm[3] *= 2;
2044}
2045
ad0d6dc4 2046static int ilk_wm_max_level(const struct drm_device *dev)
26ec971e 2047{
26ec971e 2048 /* how many WM levels are we expecting */
a42a5719 2049 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ad0d6dc4 2050 return 4;
26ec971e 2051 else if (INTEL_INFO(dev)->gen >= 6)
ad0d6dc4 2052 return 3;
26ec971e 2053 else
ad0d6dc4
VS
2054 return 2;
2055}
2056
2057static void intel_print_wm_latency(struct drm_device *dev,
2058 const char *name,
2059 const uint16_t wm[5])
2060{
2061 int level, max_level = ilk_wm_max_level(dev);
26ec971e
VS
2062
2063 for (level = 0; level <= max_level; level++) {
2064 unsigned int latency = wm[level];
2065
2066 if (latency == 0) {
2067 DRM_ERROR("%s WM%d latency not provided\n",
2068 name, level);
2069 continue;
2070 }
2071
2072 /* WM1+ latency values in 0.5us units */
2073 if (level > 0)
2074 latency *= 5;
2075
2076 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2077 name, level, wm[level],
2078 latency / 10, latency % 10);
2079 }
2080}
2081
53615a5e
VS
2082static void intel_setup_wm_latency(struct drm_device *dev)
2083{
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085
2086 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2087
2088 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2089 sizeof(dev_priv->wm.pri_latency));
2090 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2091 sizeof(dev_priv->wm.pri_latency));
2092
2093 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2094 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
26ec971e
VS
2095
2096 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2097 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2098 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
53615a5e
VS
2099}
2100
820c1980
ID
2101static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2102 struct ilk_pipe_wm_parameters *p,
a485bfb8 2103 struct intel_wm_config *config)
1011d8c4 2104{
7c4a395f
VS
2105 struct drm_device *dev = crtc->dev;
2106 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2107 enum pipe pipe = intel_crtc->pipe;
7c4a395f 2108 struct drm_plane *plane;
1011d8c4 2109
7c4a395f
VS
2110 p->active = intel_crtc_active(crtc);
2111 if (p->active) {
576b259e 2112 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
3658729a 2113 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
c35426d2
VS
2114 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2115 p->cur.bytes_per_pixel = 4;
37327abd 2116 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
c35426d2
VS
2117 p->cur.horiz_pixels = 64;
2118 /* TODO: for now, assume primary and cursor planes are always enabled. */
2119 p->pri.enabled = true;
2120 p->cur.enabled = true;
801bcfff
PZ
2121 }
2122
7c4a395f 2123 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
a485bfb8 2124 config->num_pipes_active += intel_crtc_active(crtc);
7c4a395f 2125
801bcfff
PZ
2126 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2127 struct intel_plane *intel_plane = to_intel_plane(plane);
801bcfff 2128
7c4a395f
VS
2129 if (intel_plane->pipe == pipe)
2130 p->spr = intel_plane->wm;
cca32e9a 2131
a485bfb8
VS
2132 config->sprites_enabled |= intel_plane->wm.enabled;
2133 config->sprites_scaled |= intel_plane->wm.scaled;
cca32e9a 2134 }
801bcfff
PZ
2135}
2136
0b2ae6d7
VS
2137/* Compute new watermarks for the pipe */
2138static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
820c1980 2139 const struct ilk_pipe_wm_parameters *params,
0b2ae6d7
VS
2140 struct intel_pipe_wm *pipe_wm)
2141{
2142 struct drm_device *dev = crtc->dev;
2143 struct drm_i915_private *dev_priv = dev->dev_private;
2144 int level, max_level = ilk_wm_max_level(dev);
2145 /* LP0 watermark maximums depend on this pipe alone */
2146 struct intel_wm_config config = {
2147 .num_pipes_active = 1,
2148 .sprites_enabled = params->spr.enabled,
2149 .sprites_scaled = params->spr.scaled,
2150 };
820c1980 2151 struct ilk_wm_maximums max;
0b2ae6d7 2152
0b2ae6d7 2153 /* LP0 watermarks always use 1/2 DDB partitioning */
34982fe1 2154 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
0b2ae6d7 2155
7b39a0b7
VS
2156 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2157 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2158 max_level = 1;
2159
2160 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2161 if (params->spr.scaled)
2162 max_level = 0;
2163
0b2ae6d7
VS
2164 for (level = 0; level <= max_level; level++)
2165 ilk_compute_wm_level(dev_priv, level, params,
2166 &pipe_wm->wm[level]);
2167
a42a5719 2168 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ce0e0713 2169 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
0b2ae6d7
VS
2170
2171 /* At least LP0 must be valid */
d9395655 2172 return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
0b2ae6d7
VS
2173}
2174
2175/*
2176 * Merge the watermarks from all active pipes for a specific level.
2177 */
2178static void ilk_merge_wm_level(struct drm_device *dev,
2179 int level,
2180 struct intel_wm_level *ret_wm)
2181{
2182 const struct intel_crtc *intel_crtc;
2183
2184 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2185 const struct intel_wm_level *wm =
2186 &intel_crtc->wm.active.wm[level];
2187
2188 if (!wm->enable)
2189 return;
2190
2191 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2192 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2193 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2194 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2195 }
2196
2197 ret_wm->enable = true;
2198}
2199
2200/*
2201 * Merge all low power watermarks for all active pipes.
2202 */
2203static void ilk_wm_merge(struct drm_device *dev,
0ba22e26 2204 const struct intel_wm_config *config,
820c1980 2205 const struct ilk_wm_maximums *max,
0b2ae6d7
VS
2206 struct intel_pipe_wm *merged)
2207{
2208 int level, max_level = ilk_wm_max_level(dev);
2209
0ba22e26
VS
2210 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2211 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2212 config->num_pipes_active > 1)
2213 return;
2214
6c8b6c28
VS
2215 /* ILK: FBC WM must be disabled always */
2216 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
0b2ae6d7
VS
2217
2218 /* merge each WM1+ level */
2219 for (level = 1; level <= max_level; level++) {
2220 struct intel_wm_level *wm = &merged->wm[level];
2221
2222 ilk_merge_wm_level(dev, level, wm);
2223
d9395655 2224 if (!ilk_validate_wm_level(level, max, wm))
0b2ae6d7
VS
2225 break;
2226
2227 /*
2228 * The spec says it is preferred to disable
2229 * FBC WMs instead of disabling a WM level.
2230 */
2231 if (wm->fbc_val > max->fbc) {
2232 merged->fbc_wm_enabled = false;
2233 wm->fbc_val = 0;
2234 }
2235 }
6c8b6c28
VS
2236
2237 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2238 /*
2239 * FIXME this is racy. FBC might get enabled later.
2240 * What we should check here is whether FBC can be
2241 * enabled sometime later.
2242 */
2243 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2244 for (level = 2; level <= max_level; level++) {
2245 struct intel_wm_level *wm = &merged->wm[level];
2246
2247 wm->enable = false;
2248 }
2249 }
0b2ae6d7
VS
2250}
2251
b380ca3c
VS
2252static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2253{
2254 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2255 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2256}
2257
a68d68ee
VS
2258/* The value we need to program into the WM_LPx latency field */
2259static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2260{
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262
a42a5719 2263 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
a68d68ee
VS
2264 return 2 * level;
2265 else
2266 return dev_priv->wm.pri_latency[level];
2267}
2268
820c1980 2269static void ilk_compute_wm_results(struct drm_device *dev,
0362c781 2270 const struct intel_pipe_wm *merged,
609cedef 2271 enum intel_ddb_partitioning partitioning,
820c1980 2272 struct ilk_wm_values *results)
801bcfff 2273{
0b2ae6d7
VS
2274 struct intel_crtc *intel_crtc;
2275 int level, wm_lp;
cca32e9a 2276
0362c781 2277 results->enable_fbc_wm = merged->fbc_wm_enabled;
609cedef 2278 results->partitioning = partitioning;
cca32e9a 2279
0b2ae6d7 2280 /* LP1+ register values */
cca32e9a 2281 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
1fd527cc 2282 const struct intel_wm_level *r;
801bcfff 2283
b380ca3c 2284 level = ilk_wm_lp_to_level(wm_lp, merged);
0b2ae6d7 2285
0362c781 2286 r = &merged->wm[level];
0b2ae6d7 2287 if (!r->enable)
cca32e9a
PZ
2288 break;
2289
416f4727 2290 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
a68d68ee 2291 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
416f4727
VS
2292 (r->pri_val << WM1_LP_SR_SHIFT) |
2293 r->cur_val;
2294
2295 if (INTEL_INFO(dev)->gen >= 8)
2296 results->wm_lp[wm_lp - 1] |=
2297 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2298 else
2299 results->wm_lp[wm_lp - 1] |=
2300 r->fbc_val << WM1_LP_FBC_SHIFT;
2301
6cef2b8a
VS
2302 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2303 WARN_ON(wm_lp != 1);
2304 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2305 } else
2306 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
cca32e9a 2307 }
801bcfff 2308
0b2ae6d7
VS
2309 /* LP0 register values */
2310 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2311 enum pipe pipe = intel_crtc->pipe;
2312 const struct intel_wm_level *r =
2313 &intel_crtc->wm.active.wm[0];
2314
2315 if (WARN_ON(!r->enable))
2316 continue;
2317
2318 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
1011d8c4 2319
0b2ae6d7
VS
2320 results->wm_pipe[pipe] =
2321 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2322 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2323 r->cur_val;
801bcfff
PZ
2324 }
2325}
2326
861f3389
PZ
2327/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2328 * case both are at the same level. Prefer r1 in case they're the same. */
820c1980 2329static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
198a1e9b
VS
2330 struct intel_pipe_wm *r1,
2331 struct intel_pipe_wm *r2)
861f3389 2332{
198a1e9b
VS
2333 int level, max_level = ilk_wm_max_level(dev);
2334 int level1 = 0, level2 = 0;
861f3389 2335
198a1e9b
VS
2336 for (level = 1; level <= max_level; level++) {
2337 if (r1->wm[level].enable)
2338 level1 = level;
2339 if (r2->wm[level].enable)
2340 level2 = level;
861f3389
PZ
2341 }
2342
198a1e9b
VS
2343 if (level1 == level2) {
2344 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
861f3389
PZ
2345 return r2;
2346 else
2347 return r1;
198a1e9b 2348 } else if (level1 > level2) {
861f3389
PZ
2349 return r1;
2350 } else {
2351 return r2;
2352 }
2353}
2354
49a687c4
VS
2355/* dirty bits used to track which watermarks need changes */
2356#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2357#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2358#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2359#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2360#define WM_DIRTY_FBC (1 << 24)
2361#define WM_DIRTY_DDB (1 << 25)
2362
2363static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
820c1980
ID
2364 const struct ilk_wm_values *old,
2365 const struct ilk_wm_values *new)
49a687c4
VS
2366{
2367 unsigned int dirty = 0;
2368 enum pipe pipe;
2369 int wm_lp;
2370
2371 for_each_pipe(pipe) {
2372 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2373 dirty |= WM_DIRTY_LINETIME(pipe);
2374 /* Must disable LP1+ watermarks too */
2375 dirty |= WM_DIRTY_LP_ALL;
2376 }
2377
2378 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2379 dirty |= WM_DIRTY_PIPE(pipe);
2380 /* Must disable LP1+ watermarks too */
2381 dirty |= WM_DIRTY_LP_ALL;
2382 }
2383 }
2384
2385 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2386 dirty |= WM_DIRTY_FBC;
2387 /* Must disable LP1+ watermarks too */
2388 dirty |= WM_DIRTY_LP_ALL;
2389 }
2390
2391 if (old->partitioning != new->partitioning) {
2392 dirty |= WM_DIRTY_DDB;
2393 /* Must disable LP1+ watermarks too */
2394 dirty |= WM_DIRTY_LP_ALL;
2395 }
2396
2397 /* LP1+ watermarks already deemed dirty, no need to continue */
2398 if (dirty & WM_DIRTY_LP_ALL)
2399 return dirty;
2400
2401 /* Find the lowest numbered LP1+ watermark in need of an update... */
2402 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2403 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2404 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2405 break;
2406 }
2407
2408 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2409 for (; wm_lp <= 3; wm_lp++)
2410 dirty |= WM_DIRTY_LP(wm_lp);
2411
2412 return dirty;
2413}
2414
8553c18e
VS
2415static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2416 unsigned int dirty)
801bcfff 2417{
820c1980 2418 struct ilk_wm_values *previous = &dev_priv->wm.hw;
8553c18e 2419 bool changed = false;
801bcfff 2420
facd619b
VS
2421 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2422 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2423 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
8553c18e 2424 changed = true;
facd619b
VS
2425 }
2426 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2427 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2428 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
8553c18e 2429 changed = true;
facd619b
VS
2430 }
2431 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2432 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2433 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
8553c18e 2434 changed = true;
facd619b 2435 }
801bcfff 2436
facd619b
VS
2437 /*
2438 * Don't touch WM1S_LP_EN here.
2439 * Doing so could cause underruns.
2440 */
6cef2b8a 2441
8553c18e
VS
2442 return changed;
2443}
2444
2445/*
2446 * The spec says we shouldn't write when we don't need, because every write
2447 * causes WMs to be re-evaluated, expending some power.
2448 */
820c1980
ID
2449static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2450 struct ilk_wm_values *results)
8553c18e
VS
2451{
2452 struct drm_device *dev = dev_priv->dev;
820c1980 2453 struct ilk_wm_values *previous = &dev_priv->wm.hw;
8553c18e
VS
2454 unsigned int dirty;
2455 uint32_t val;
2456
2457 dirty = ilk_compute_wm_dirty(dev, previous, results);
2458 if (!dirty)
2459 return;
2460
2461 _ilk_disable_lp_wm(dev_priv, dirty);
2462
49a687c4 2463 if (dirty & WM_DIRTY_PIPE(PIPE_A))
801bcfff 2464 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
49a687c4 2465 if (dirty & WM_DIRTY_PIPE(PIPE_B))
801bcfff 2466 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
49a687c4 2467 if (dirty & WM_DIRTY_PIPE(PIPE_C))
801bcfff
PZ
2468 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2469
49a687c4 2470 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
801bcfff 2471 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
49a687c4 2472 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
801bcfff 2473 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
49a687c4 2474 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
801bcfff
PZ
2475 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2476
49a687c4 2477 if (dirty & WM_DIRTY_DDB) {
a42a5719 2478 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
ac9545fd
VS
2479 val = I915_READ(WM_MISC);
2480 if (results->partitioning == INTEL_DDB_PART_1_2)
2481 val &= ~WM_MISC_DATA_PARTITION_5_6;
2482 else
2483 val |= WM_MISC_DATA_PARTITION_5_6;
2484 I915_WRITE(WM_MISC, val);
2485 } else {
2486 val = I915_READ(DISP_ARB_CTL2);
2487 if (results->partitioning == INTEL_DDB_PART_1_2)
2488 val &= ~DISP_DATA_PARTITION_5_6;
2489 else
2490 val |= DISP_DATA_PARTITION_5_6;
2491 I915_WRITE(DISP_ARB_CTL2, val);
2492 }
1011d8c4
PZ
2493 }
2494
49a687c4 2495 if (dirty & WM_DIRTY_FBC) {
cca32e9a
PZ
2496 val = I915_READ(DISP_ARB_CTL);
2497 if (results->enable_fbc_wm)
2498 val &= ~DISP_FBC_WM_DIS;
2499 else
2500 val |= DISP_FBC_WM_DIS;
2501 I915_WRITE(DISP_ARB_CTL, val);
2502 }
2503
954911eb
ID
2504 if (dirty & WM_DIRTY_LP(1) &&
2505 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2506 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2507
2508 if (INTEL_INFO(dev)->gen >= 7) {
6cef2b8a
VS
2509 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2510 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2511 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2512 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2513 }
801bcfff 2514
facd619b 2515 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
801bcfff 2516 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
facd619b 2517 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
801bcfff 2518 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
facd619b 2519 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
801bcfff 2520 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
609cedef
VS
2521
2522 dev_priv->wm.hw = *results;
801bcfff
PZ
2523}
2524
8553c18e
VS
2525static bool ilk_disable_lp_wm(struct drm_device *dev)
2526{
2527 struct drm_i915_private *dev_priv = dev->dev_private;
2528
2529 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2530}
2531
820c1980 2532static void ilk_update_wm(struct drm_crtc *crtc)
801bcfff 2533{
7c4a395f 2534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
46ba614c 2535 struct drm_device *dev = crtc->dev;
801bcfff 2536 struct drm_i915_private *dev_priv = dev->dev_private;
820c1980
ID
2537 struct ilk_wm_maximums max;
2538 struct ilk_pipe_wm_parameters params = {};
2539 struct ilk_wm_values results = {};
77c122bc 2540 enum intel_ddb_partitioning partitioning;
7c4a395f 2541 struct intel_pipe_wm pipe_wm = {};
198a1e9b 2542 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
a485bfb8 2543 struct intel_wm_config config = {};
7c4a395f 2544
820c1980 2545 ilk_compute_wm_parameters(crtc, &params, &config);
7c4a395f
VS
2546
2547 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2548
2549 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2550 return;
861f3389 2551
7c4a395f 2552 intel_crtc->wm.active = pipe_wm;
861f3389 2553
34982fe1 2554 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
0ba22e26 2555 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
a485bfb8
VS
2556
2557 /* 5/6 split only in single pipe config on IVB+ */
ec98c8d1
VS
2558 if (INTEL_INFO(dev)->gen >= 7 &&
2559 config.num_pipes_active == 1 && config.sprites_enabled) {
34982fe1 2560 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
0ba22e26 2561 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
0362c781 2562
820c1980 2563 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
861f3389 2564 } else {
198a1e9b 2565 best_lp_wm = &lp_wm_1_2;
861f3389
PZ
2566 }
2567
198a1e9b 2568 partitioning = (best_lp_wm == &lp_wm_1_2) ?
77c122bc 2569 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
801bcfff 2570
820c1980 2571 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
609cedef 2572
820c1980 2573 ilk_write_wm_values(dev_priv, &results);
1011d8c4
PZ
2574}
2575
820c1980 2576static void ilk_update_sprite_wm(struct drm_plane *plane,
adf3d35e 2577 struct drm_crtc *crtc,
526682e9 2578 uint32_t sprite_width, int pixel_size,
bdd57d03 2579 bool enabled, bool scaled)
526682e9 2580{
8553c18e 2581 struct drm_device *dev = plane->dev;
adf3d35e 2582 struct intel_plane *intel_plane = to_intel_plane(plane);
526682e9 2583
adf3d35e
VS
2584 intel_plane->wm.enabled = enabled;
2585 intel_plane->wm.scaled = scaled;
2586 intel_plane->wm.horiz_pixels = sprite_width;
2587 intel_plane->wm.bytes_per_pixel = pixel_size;
526682e9 2588
8553c18e
VS
2589 /*
2590 * IVB workaround: must disable low power watermarks for at least
2591 * one frame before enabling scaling. LP watermarks can be re-enabled
2592 * when scaling is disabled.
2593 *
2594 * WaCxSRDisabledForSpriteScaling:ivb
2595 */
2596 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2597 intel_wait_for_vblank(dev, intel_plane->pipe);
2598
820c1980 2599 ilk_update_wm(crtc);
526682e9
PZ
2600}
2601
243e6a44
VS
2602static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2603{
2604 struct drm_device *dev = crtc->dev;
2605 struct drm_i915_private *dev_priv = dev->dev_private;
820c1980 2606 struct ilk_wm_values *hw = &dev_priv->wm.hw;
243e6a44
VS
2607 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2608 struct intel_pipe_wm *active = &intel_crtc->wm.active;
2609 enum pipe pipe = intel_crtc->pipe;
2610 static const unsigned int wm0_pipe_reg[] = {
2611 [PIPE_A] = WM0_PIPEA_ILK,
2612 [PIPE_B] = WM0_PIPEB_ILK,
2613 [PIPE_C] = WM0_PIPEC_IVB,
2614 };
2615
2616 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
a42a5719 2617 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ce0e0713 2618 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
243e6a44
VS
2619
2620 if (intel_crtc_active(crtc)) {
2621 u32 tmp = hw->wm_pipe[pipe];
2622
2623 /*
2624 * For active pipes LP0 watermark is marked as
2625 * enabled, and LP1+ watermaks as disabled since
2626 * we can't really reverse compute them in case
2627 * multiple pipes are active.
2628 */
2629 active->wm[0].enable = true;
2630 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2631 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2632 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2633 active->linetime = hw->wm_linetime[pipe];
2634 } else {
2635 int level, max_level = ilk_wm_max_level(dev);
2636
2637 /*
2638 * For inactive pipes, all watermark levels
2639 * should be marked as enabled but zeroed,
2640 * which is what we'd compute them to.
2641 */
2642 for (level = 0; level <= max_level; level++)
2643 active->wm[level].enable = true;
2644 }
2645}
2646
2647void ilk_wm_get_hw_state(struct drm_device *dev)
2648{
2649 struct drm_i915_private *dev_priv = dev->dev_private;
820c1980 2650 struct ilk_wm_values *hw = &dev_priv->wm.hw;
243e6a44
VS
2651 struct drm_crtc *crtc;
2652
2653 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2654 ilk_pipe_wm_get_hw_state(crtc);
2655
2656 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2657 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2658 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2659
2660 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2661 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2662 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2663
a42a5719 2664 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ac9545fd
VS
2665 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2666 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2667 else if (IS_IVYBRIDGE(dev))
2668 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2669 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
243e6a44
VS
2670
2671 hw->enable_fbc_wm =
2672 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2673}
2674
b445e3b0
ED
2675/**
2676 * intel_update_watermarks - update FIFO watermark values based on current modes
2677 *
2678 * Calculate watermark values for the various WM regs based on current mode
2679 * and plane configuration.
2680 *
2681 * There are several cases to deal with here:
2682 * - normal (i.e. non-self-refresh)
2683 * - self-refresh (SR) mode
2684 * - lines are large relative to FIFO size (buffer can hold up to 2)
2685 * - lines are small relative to FIFO size (buffer can hold more than 2
2686 * lines), so need to account for TLB latency
2687 *
2688 * The normal calculation is:
2689 * watermark = dotclock * bytes per pixel * latency
2690 * where latency is platform & configuration dependent (we assume pessimal
2691 * values here).
2692 *
2693 * The SR calculation is:
2694 * watermark = (trunc(latency/line time)+1) * surface width *
2695 * bytes per pixel
2696 * where
2697 * line time = htotal / dotclock
2698 * surface width = hdisplay for normal plane and 64 for cursor
2699 * and latency is assumed to be high, as above.
2700 *
2701 * The final value programmed to the register should always be rounded up,
2702 * and include an extra 2 entries to account for clock crossings.
2703 *
2704 * We don't use the sprite, so we can ignore that. And on Crestline we have
2705 * to set the non-SR watermarks to 8.
2706 */
46ba614c 2707void intel_update_watermarks(struct drm_crtc *crtc)
b445e3b0 2708{
46ba614c 2709 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
b445e3b0
ED
2710
2711 if (dev_priv->display.update_wm)
46ba614c 2712 dev_priv->display.update_wm(crtc);
b445e3b0
ED
2713}
2714
adf3d35e
VS
2715void intel_update_sprite_watermarks(struct drm_plane *plane,
2716 struct drm_crtc *crtc,
4c4ff43a 2717 uint32_t sprite_width, int pixel_size,
39db4a4d 2718 bool enabled, bool scaled)
b445e3b0 2719{
adf3d35e 2720 struct drm_i915_private *dev_priv = plane->dev->dev_private;
b445e3b0
ED
2721
2722 if (dev_priv->display.update_sprite_wm)
adf3d35e 2723 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
39db4a4d 2724 pixel_size, enabled, scaled);
b445e3b0
ED
2725}
2726
2b4e57bd
ED
2727static struct drm_i915_gem_object *
2728intel_alloc_context_page(struct drm_device *dev)
2729{
2730 struct drm_i915_gem_object *ctx;
2731 int ret;
2732
2733 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2734
2735 ctx = i915_gem_alloc_object(dev, 4096);
2736 if (!ctx) {
2737 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2738 return NULL;
2739 }
2740
c37e2204 2741 ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
2b4e57bd
ED
2742 if (ret) {
2743 DRM_ERROR("failed to pin power context: %d\n", ret);
2744 goto err_unref;
2745 }
2746
2747 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2748 if (ret) {
2749 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2750 goto err_unpin;
2751 }
2752
2753 return ctx;
2754
2755err_unpin:
2756 i915_gem_object_unpin(ctx);
2757err_unref:
2758 drm_gem_object_unreference(&ctx->base);
2b4e57bd
ED
2759 return NULL;
2760}
2761
9270388e
DV
2762/**
2763 * Lock protecting IPS related data structures
9270388e
DV
2764 */
2765DEFINE_SPINLOCK(mchdev_lock);
2766
2767/* Global for IPS driver to get at the current i915 device. Protected by
2768 * mchdev_lock. */
2769static struct drm_i915_private *i915_mch_dev;
2770
2b4e57bd
ED
2771bool ironlake_set_drps(struct drm_device *dev, u8 val)
2772{
2773 struct drm_i915_private *dev_priv = dev->dev_private;
2774 u16 rgvswctl;
2775
9270388e
DV
2776 assert_spin_locked(&mchdev_lock);
2777
2b4e57bd
ED
2778 rgvswctl = I915_READ16(MEMSWCTL);
2779 if (rgvswctl & MEMCTL_CMD_STS) {
2780 DRM_DEBUG("gpu busy, RCS change rejected\n");
2781 return false; /* still busy with another command */
2782 }
2783
2784 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2785 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2786 I915_WRITE16(MEMSWCTL, rgvswctl);
2787 POSTING_READ16(MEMSWCTL);
2788
2789 rgvswctl |= MEMCTL_CMD_STS;
2790 I915_WRITE16(MEMSWCTL, rgvswctl);
2791
2792 return true;
2793}
2794
8090c6b9 2795static void ironlake_enable_drps(struct drm_device *dev)
2b4e57bd
ED
2796{
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 u32 rgvmodectl = I915_READ(MEMMODECTL);
2799 u8 fmax, fmin, fstart, vstart;
2800
9270388e
DV
2801 spin_lock_irq(&mchdev_lock);
2802
2b4e57bd
ED
2803 /* Enable temp reporting */
2804 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2805 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2806
2807 /* 100ms RC evaluation intervals */
2808 I915_WRITE(RCUPEI, 100000);
2809 I915_WRITE(RCDNEI, 100000);
2810
2811 /* Set max/min thresholds to 90ms and 80ms respectively */
2812 I915_WRITE(RCBMAXAVG, 90000);
2813 I915_WRITE(RCBMINAVG, 80000);
2814
2815 I915_WRITE(MEMIHYST, 1);
2816
2817 /* Set up min, max, and cur for interrupt handling */
2818 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2819 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2820 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2821 MEMMODE_FSTART_SHIFT;
2822
2823 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2824 PXVFREQ_PX_SHIFT;
2825
20e4d407
DV
2826 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2827 dev_priv->ips.fstart = fstart;
2b4e57bd 2828
20e4d407
DV
2829 dev_priv->ips.max_delay = fstart;
2830 dev_priv->ips.min_delay = fmin;
2831 dev_priv->ips.cur_delay = fstart;
2b4e57bd
ED
2832
2833 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2834 fmax, fmin, fstart);
2835
2836 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2837
2838 /*
2839 * Interrupts will be enabled in ironlake_irq_postinstall
2840 */
2841
2842 I915_WRITE(VIDSTART, vstart);
2843 POSTING_READ(VIDSTART);
2844
2845 rgvmodectl |= MEMMODE_SWMODE_EN;
2846 I915_WRITE(MEMMODECTL, rgvmodectl);
2847
9270388e 2848 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2b4e57bd 2849 DRM_ERROR("stuck trying to change perf mode\n");
9270388e 2850 mdelay(1);
2b4e57bd
ED
2851
2852 ironlake_set_drps(dev, fstart);
2853
20e4d407 2854 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2b4e57bd 2855 I915_READ(0x112e0);
20e4d407
DV
2856 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2857 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2858 getrawmonotonic(&dev_priv->ips.last_time2);
9270388e
DV
2859
2860 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
2861}
2862
8090c6b9 2863static void ironlake_disable_drps(struct drm_device *dev)
2b4e57bd
ED
2864{
2865 struct drm_i915_private *dev_priv = dev->dev_private;
9270388e
DV
2866 u16 rgvswctl;
2867
2868 spin_lock_irq(&mchdev_lock);
2869
2870 rgvswctl = I915_READ16(MEMSWCTL);
2b4e57bd
ED
2871
2872 /* Ack interrupts, disable EFC interrupt */
2873 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2874 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2875 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2876 I915_WRITE(DEIIR, DE_PCU_EVENT);
2877 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2878
2879 /* Go back to the starting frequency */
20e4d407 2880 ironlake_set_drps(dev, dev_priv->ips.fstart);
9270388e 2881 mdelay(1);
2b4e57bd
ED
2882 rgvswctl |= MEMCTL_CMD_STS;
2883 I915_WRITE(MEMSWCTL, rgvswctl);
9270388e 2884 mdelay(1);
2b4e57bd 2885
9270388e 2886 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
2887}
2888
acbe9475
DV
2889/* There's a funny hw issue where the hw returns all 0 when reading from
2890 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2891 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2892 * all limits and the gpu stuck at whatever frequency it is at atm).
2893 */
6917c7b9 2894static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2b4e57bd 2895{
7b9e0ae6 2896 u32 limits;
2b4e57bd 2897
20b46e59
DV
2898 /* Only set the down limit when we've reached the lowest level to avoid
2899 * getting more interrupts, otherwise leave this clear. This prevents a
2900 * race in the hw when coming out of rc6: There's a tiny window where
2901 * the hw runs at the minimal clock before selecting the desired
2902 * frequency, if the down threshold expires in that window we will not
2903 * receive a down interrupt. */
6917c7b9
CW
2904 limits = dev_priv->rps.max_delay << 24;
2905 if (val <= dev_priv->rps.min_delay)
c6a828d3 2906 limits |= dev_priv->rps.min_delay << 16;
20b46e59
DV
2907
2908 return limits;
2909}
2910
dd75fdc8
CW
2911static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2912{
2913 int new_power;
2914
2915 new_power = dev_priv->rps.power;
2916 switch (dev_priv->rps.power) {
2917 case LOW_POWER:
2918 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
2919 new_power = BETWEEN;
2920 break;
2921
2922 case BETWEEN:
2923 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
2924 new_power = LOW_POWER;
2925 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
2926 new_power = HIGH_POWER;
2927 break;
2928
2929 case HIGH_POWER:
2930 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
2931 new_power = BETWEEN;
2932 break;
2933 }
2934 /* Max/min bins are special */
2935 if (val == dev_priv->rps.min_delay)
2936 new_power = LOW_POWER;
2937 if (val == dev_priv->rps.max_delay)
2938 new_power = HIGH_POWER;
2939 if (new_power == dev_priv->rps.power)
2940 return;
2941
2942 /* Note the units here are not exactly 1us, but 1280ns. */
2943 switch (new_power) {
2944 case LOW_POWER:
2945 /* Upclock if more than 95% busy over 16ms */
2946 I915_WRITE(GEN6_RP_UP_EI, 12500);
2947 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2948
2949 /* Downclock if less than 85% busy over 32ms */
2950 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2951 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
2952
2953 I915_WRITE(GEN6_RP_CONTROL,
2954 GEN6_RP_MEDIA_TURBO |
2955 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2956 GEN6_RP_MEDIA_IS_GFX |
2957 GEN6_RP_ENABLE |
2958 GEN6_RP_UP_BUSY_AVG |
2959 GEN6_RP_DOWN_IDLE_AVG);
2960 break;
2961
2962 case BETWEEN:
2963 /* Upclock if more than 90% busy over 13ms */
2964 I915_WRITE(GEN6_RP_UP_EI, 10250);
2965 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
2966
2967 /* Downclock if less than 75% busy over 32ms */
2968 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2969 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
2970
2971 I915_WRITE(GEN6_RP_CONTROL,
2972 GEN6_RP_MEDIA_TURBO |
2973 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2974 GEN6_RP_MEDIA_IS_GFX |
2975 GEN6_RP_ENABLE |
2976 GEN6_RP_UP_BUSY_AVG |
2977 GEN6_RP_DOWN_IDLE_AVG);
2978 break;
2979
2980 case HIGH_POWER:
2981 /* Upclock if more than 85% busy over 10ms */
2982 I915_WRITE(GEN6_RP_UP_EI, 8000);
2983 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
2984
2985 /* Downclock if less than 60% busy over 32ms */
2986 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2987 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
2988
2989 I915_WRITE(GEN6_RP_CONTROL,
2990 GEN6_RP_MEDIA_TURBO |
2991 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2992 GEN6_RP_MEDIA_IS_GFX |
2993 GEN6_RP_ENABLE |
2994 GEN6_RP_UP_BUSY_AVG |
2995 GEN6_RP_DOWN_IDLE_AVG);
2996 break;
2997 }
2998
2999 dev_priv->rps.power = new_power;
3000 dev_priv->rps.last_adj = 0;
3001}
3002
20b46e59
DV
3003void gen6_set_rps(struct drm_device *dev, u8 val)
3004{
3005 struct drm_i915_private *dev_priv = dev->dev_private;
7b9e0ae6 3006
4fc688ce 3007 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79249636
BW
3008 WARN_ON(val > dev_priv->rps.max_delay);
3009 WARN_ON(val < dev_priv->rps.min_delay);
004777cb 3010
c6a828d3 3011 if (val == dev_priv->rps.cur_delay)
7b9e0ae6
CW
3012 return;
3013
dd75fdc8
CW
3014 gen6_set_rps_thresholds(dev_priv, val);
3015
92bd1bf0
RV
3016 if (IS_HASWELL(dev))
3017 I915_WRITE(GEN6_RPNSWREQ,
3018 HSW_FREQUENCY(val));
3019 else
3020 I915_WRITE(GEN6_RPNSWREQ,
3021 GEN6_FREQUENCY(val) |
3022 GEN6_OFFSET(0) |
3023 GEN6_AGGRESSIVE_TURBO);
7b9e0ae6
CW
3024
3025 /* Make sure we continue to get interrupts
3026 * until we hit the minimum or maximum frequencies.
3027 */
6917c7b9
CW
3028 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3029 gen6_rps_limits(dev_priv, val));
7b9e0ae6 3030
d5570a72
BW
3031 POSTING_READ(GEN6_RPNSWREQ);
3032
c6a828d3 3033 dev_priv->rps.cur_delay = val;
be2cde9a
DV
3034
3035 trace_intel_gpu_freq_change(val * 50);
2b4e57bd
ED
3036}
3037
b29c19b6
CW
3038void gen6_rps_idle(struct drm_i915_private *dev_priv)
3039{
691bb717
DL
3040 struct drm_device *dev = dev_priv->dev;
3041
b29c19b6 3042 mutex_lock(&dev_priv->rps.hw_lock);
c0951f0c 3043 if (dev_priv->rps.enabled) {
691bb717 3044 if (IS_VALLEYVIEW(dev))
c0951f0c
CW
3045 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3046 else
3047 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3048 dev_priv->rps.last_adj = 0;
3049 }
b29c19b6
CW
3050 mutex_unlock(&dev_priv->rps.hw_lock);
3051}
3052
3053void gen6_rps_boost(struct drm_i915_private *dev_priv)
3054{
691bb717
DL
3055 struct drm_device *dev = dev_priv->dev;
3056
b29c19b6 3057 mutex_lock(&dev_priv->rps.hw_lock);
c0951f0c 3058 if (dev_priv->rps.enabled) {
691bb717 3059 if (IS_VALLEYVIEW(dev))
c0951f0c
CW
3060 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3061 else
3062 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3063 dev_priv->rps.last_adj = 0;
3064 }
b29c19b6
CW
3065 mutex_unlock(&dev_priv->rps.hw_lock);
3066}
3067
0a073b84
JB
3068void valleyview_set_rps(struct drm_device *dev, u8 val)
3069{
3070 struct drm_i915_private *dev_priv = dev->dev_private;
7a67092a 3071
0a073b84
JB
3072 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3073 WARN_ON(val > dev_priv->rps.max_delay);
3074 WARN_ON(val < dev_priv->rps.min_delay);
3075
73008b98 3076 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
2ec3815f 3077 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
73008b98 3078 dev_priv->rps.cur_delay,
2ec3815f 3079 vlv_gpu_freq(dev_priv, val), val);
0a073b84
JB
3080
3081 if (val == dev_priv->rps.cur_delay)
3082 return;
3083
ae99258f 3084 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
0a073b84 3085
80814ae4 3086 dev_priv->rps.cur_delay = val;
0a073b84 3087
2ec3815f 3088 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
0a073b84
JB
3089}
3090
44fc7d5c 3091static void gen6_disable_rps_interrupts(struct drm_device *dev)
2b4e57bd
ED
3092{
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3094
2b4e57bd 3095 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4848405c 3096 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
2b4e57bd
ED
3097 /* Complete PM interrupt masking here doesn't race with the rps work
3098 * item again unmasking PM interrupts because that is using a different
3099 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3100 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3101
59cdb63d 3102 spin_lock_irq(&dev_priv->irq_lock);
c6a828d3 3103 dev_priv->rps.pm_iir = 0;
59cdb63d 3104 spin_unlock_irq(&dev_priv->irq_lock);
2b4e57bd 3105
4848405c 3106 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
2b4e57bd
ED
3107}
3108
44fc7d5c 3109static void gen6_disable_rps(struct drm_device *dev)
d20d4f0c
JB
3110{
3111 struct drm_i915_private *dev_priv = dev->dev_private;
3112
3113 I915_WRITE(GEN6_RC_CONTROL, 0);
44fc7d5c 3114 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
d20d4f0c 3115
44fc7d5c
DV
3116 gen6_disable_rps_interrupts(dev);
3117}
3118
3119static void valleyview_disable_rps(struct drm_device *dev)
3120{
3121 struct drm_i915_private *dev_priv = dev->dev_private;
3122
3123 I915_WRITE(GEN6_RC_CONTROL, 0);
d20d4f0c 3124
44fc7d5c 3125 gen6_disable_rps_interrupts(dev);
c9cddffc
JB
3126
3127 if (dev_priv->vlv_pctx) {
3128 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3129 dev_priv->vlv_pctx = NULL;
3130 }
d20d4f0c
JB
3131}
3132
dc39fff7
BW
3133static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3134{
3135 if (IS_GEN6(dev))
3136 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3137
3138 if (IS_HASWELL(dev))
3139 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3140
3141 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3142 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3143 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3144 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3145}
3146
2b4e57bd
ED
3147int intel_enable_rc6(const struct drm_device *dev)
3148{
eb4926e4
DL
3149 /* No RC6 before Ironlake */
3150 if (INTEL_INFO(dev)->gen < 5)
3151 return 0;
3152
456470eb 3153 /* Respect the kernel parameter if it is set */
2b4e57bd
ED
3154 if (i915_enable_rc6 >= 0)
3155 return i915_enable_rc6;
3156
6567d748
CW
3157 /* Disable RC6 on Ironlake */
3158 if (INTEL_INFO(dev)->gen == 5)
3159 return 0;
2b4e57bd 3160
dc39fff7 3161 if (IS_HASWELL(dev))
4a637c2c 3162 return INTEL_RC6_ENABLE;
2b4e57bd 3163
456470eb 3164 /* snb/ivb have more than one rc6 state. */
dc39fff7 3165 if (INTEL_INFO(dev)->gen == 6)
2b4e57bd 3166 return INTEL_RC6_ENABLE;
456470eb 3167
2b4e57bd
ED
3168 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3169}
3170
44fc7d5c
DV
3171static void gen6_enable_rps_interrupts(struct drm_device *dev)
3172{
3173 struct drm_i915_private *dev_priv = dev->dev_private;
a9c1f90c 3174 u32 enabled_intrs;
44fc7d5c
DV
3175
3176 spin_lock_irq(&dev_priv->irq_lock);
a0b3335a 3177 WARN_ON(dev_priv->rps.pm_iir);
edbfdb45 3178 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
44fc7d5c
DV
3179 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3180 spin_unlock_irq(&dev_priv->irq_lock);
a9c1f90c 3181
fd547d25 3182 /* only unmask PM interrupts we need. Mask all others. */
a9c1f90c
MK
3183 enabled_intrs = GEN6_PM_RPS_EVENTS;
3184
3185 /* IVB and SNB hard hangs on looping batchbuffer
3186 * if GEN6_PM_UP_EI_EXPIRED is masked.
3187 */
3188 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3189 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3190
3191 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
44fc7d5c
DV
3192}
3193
6edee7f3
BW
3194static void gen8_enable_rps(struct drm_device *dev)
3195{
3196 struct drm_i915_private *dev_priv = dev->dev_private;
3197 struct intel_ring_buffer *ring;
3198 uint32_t rc6_mask = 0, rp_state_cap;
3199 int unused;
3200
3201 /* 1a: Software RC state - RC0 */
3202 I915_WRITE(GEN6_RC_STATE, 0);
3203
3204 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3205 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
c8d9a590 3206 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
6edee7f3
BW
3207
3208 /* 2a: Disable RC states. */
3209 I915_WRITE(GEN6_RC_CONTROL, 0);
3210
3211 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3212
3213 /* 2b: Program RC6 thresholds.*/
3214 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3215 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3216 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3217 for_each_ring(ring, dev_priv, unused)
3218 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3219 I915_WRITE(GEN6_RC_SLEEP, 0);
3220 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3221
3222 /* 3: Enable RC6 */
3223 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3224 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3225 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3226 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3227 GEN6_RC_CTL_EI_MODE(1) |
3228 rc6_mask);
3229
3230 /* 4 Program defaults and thresholds for RPS*/
3231 I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3232 I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3233 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3234 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3235
3236 /* Docs recommend 900MHz, and 300 MHz respectively */
3237 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3238 dev_priv->rps.max_delay << 24 |
3239 dev_priv->rps.min_delay << 16);
3240
3241 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3242 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3243 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3244 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3245
3246 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3247
3248 /* 5: Enable RPS */
3249 I915_WRITE(GEN6_RP_CONTROL,
3250 GEN6_RP_MEDIA_TURBO |
3251 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3252 GEN6_RP_MEDIA_IS_GFX |
3253 GEN6_RP_ENABLE |
3254 GEN6_RP_UP_BUSY_AVG |
3255 GEN6_RP_DOWN_IDLE_AVG);
3256
3257 /* 6: Ring frequency + overclocking (our driver does this later */
3258
3259 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3260
3261 gen6_enable_rps_interrupts(dev);
3262
c8d9a590 3263 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
6edee7f3
BW
3264}
3265
79f5b2c7 3266static void gen6_enable_rps(struct drm_device *dev)
2b4e57bd 3267{
79f5b2c7 3268 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 3269 struct intel_ring_buffer *ring;
7b9e0ae6
CW
3270 u32 rp_state_cap;
3271 u32 gt_perf_status;
31643d54 3272 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2b4e57bd 3273 u32 gtfifodbg;
2b4e57bd 3274 int rc6_mode;
42c0526c 3275 int i, ret;
2b4e57bd 3276
4fc688ce 3277 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 3278
2b4e57bd
ED
3279 /* Here begins a magic sequence of register writes to enable
3280 * auto-downclocking.
3281 *
3282 * Perhaps there might be some value in exposing these to
3283 * userspace...
3284 */
3285 I915_WRITE(GEN6_RC_STATE, 0);
2b4e57bd
ED
3286
3287 /* Clear the DBG now so we don't confuse earlier errors */
3288 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3289 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3290 I915_WRITE(GTFIFODBG, gtfifodbg);
3291 }
3292
c8d9a590 3293 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
2b4e57bd 3294
7b9e0ae6
CW
3295 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3296 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3297
31c77388
BW
3298 /* In units of 50MHz */
3299 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
dd75fdc8
CW
3300 dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3301 dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
3302 dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
3303 dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
c6a828d3 3304 dev_priv->rps.cur_delay = 0;
7b9e0ae6 3305
2b4e57bd
ED
3306 /* disable the counters and set deterministic thresholds */
3307 I915_WRITE(GEN6_RC_CONTROL, 0);
3308
3309 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3310 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3311 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3312 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3313 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3314
b4519513
CW
3315 for_each_ring(ring, dev_priv, i)
3316 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2b4e57bd
ED
3317
3318 I915_WRITE(GEN6_RC_SLEEP, 0);
3319 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
29c78f60 3320 if (IS_IVYBRIDGE(dev))
351aa566
SM
3321 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3322 else
3323 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
0920a487 3324 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2b4e57bd
ED
3325 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3326
5a7dc92a 3327 /* Check if we are enabling RC6 */
2b4e57bd
ED
3328 rc6_mode = intel_enable_rc6(dev_priv->dev);
3329 if (rc6_mode & INTEL_RC6_ENABLE)
3330 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3331
5a7dc92a
ED
3332 /* We don't use those on Haswell */
3333 if (!IS_HASWELL(dev)) {
3334 if (rc6_mode & INTEL_RC6p_ENABLE)
3335 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2b4e57bd 3336
5a7dc92a
ED
3337 if (rc6_mode & INTEL_RC6pp_ENABLE)
3338 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3339 }
2b4e57bd 3340
dc39fff7 3341 intel_print_rc6_info(dev, rc6_mask);
2b4e57bd
ED
3342
3343 I915_WRITE(GEN6_RC_CONTROL,
3344 rc6_mask |
3345 GEN6_RC_CTL_EI_MODE(1) |
3346 GEN6_RC_CTL_HW_ENABLE);
3347
dd75fdc8
CW
3348 /* Power down if completely idle for over 50ms */
3349 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
2b4e57bd 3350 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2b4e57bd 3351
42c0526c 3352 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
988b36e5 3353 if (!ret) {
42c0526c
BW
3354 pcu_mbox = 0;
3355 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
a2b3fc01 3356 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
10e08497 3357 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
a2b3fc01
BW
3358 (dev_priv->rps.max_delay & 0xff) * 50,
3359 (pcu_mbox & 0xff) * 50);
31c77388 3360 dev_priv->rps.hw_max = pcu_mbox & 0xff;
42c0526c
BW
3361 }
3362 } else {
3363 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2b4e57bd
ED
3364 }
3365
dd75fdc8
CW
3366 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3367 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
2b4e57bd 3368
44fc7d5c 3369 gen6_enable_rps_interrupts(dev);
2b4e57bd 3370
31643d54
BW
3371 rc6vids = 0;
3372 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3373 if (IS_GEN6(dev) && ret) {
3374 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3375 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3376 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3377 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3378 rc6vids &= 0xffff00;
3379 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3380 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3381 if (ret)
3382 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3383 }
3384
c8d9a590 3385 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
2b4e57bd
ED
3386}
3387
c67a470b 3388void gen6_update_ring_freq(struct drm_device *dev)
2b4e57bd 3389{
79f5b2c7 3390 struct drm_i915_private *dev_priv = dev->dev_private;
2b4e57bd 3391 int min_freq = 15;
3ebecd07
CW
3392 unsigned int gpu_freq;
3393 unsigned int max_ia_freq, min_ring_freq;
2b4e57bd 3394 int scaling_factor = 180;
eda79642 3395 struct cpufreq_policy *policy;
2b4e57bd 3396
4fc688ce 3397 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 3398
eda79642
BW
3399 policy = cpufreq_cpu_get(0);
3400 if (policy) {
3401 max_ia_freq = policy->cpuinfo.max_freq;
3402 cpufreq_cpu_put(policy);
3403 } else {
3404 /*
3405 * Default to measured freq if none found, PCU will ensure we
3406 * don't go over
3407 */
2b4e57bd 3408 max_ia_freq = tsc_khz;
eda79642 3409 }
2b4e57bd
ED
3410
3411 /* Convert from kHz to MHz */
3412 max_ia_freq /= 1000;
3413
153b4b95 3414 min_ring_freq = I915_READ(DCLK) & 0xf;
f6aca45c
BW
3415 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3416 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3ebecd07 3417
2b4e57bd
ED
3418 /*
3419 * For each potential GPU frequency, load a ring frequency we'd like
3420 * to use for memory access. We do this by specifying the IA frequency
3421 * the PCU should use as a reference to determine the ring frequency.
3422 */
c6a828d3 3423 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2b4e57bd 3424 gpu_freq--) {
c6a828d3 3425 int diff = dev_priv->rps.max_delay - gpu_freq;
3ebecd07
CW
3426 unsigned int ia_freq = 0, ring_freq = 0;
3427
46c764d4
BW
3428 if (INTEL_INFO(dev)->gen >= 8) {
3429 /* max(2 * GT, DDR). NB: GT is 50MHz units */
3430 ring_freq = max(min_ring_freq, gpu_freq);
3431 } else if (IS_HASWELL(dev)) {
f6aca45c 3432 ring_freq = mult_frac(gpu_freq, 5, 4);
3ebecd07
CW
3433 ring_freq = max(min_ring_freq, ring_freq);
3434 /* leave ia_freq as the default, chosen by cpufreq */
3435 } else {
3436 /* On older processors, there is no separate ring
3437 * clock domain, so in order to boost the bandwidth
3438 * of the ring, we need to upclock the CPU (ia_freq).
3439 *
3440 * For GPU frequencies less than 750MHz,
3441 * just use the lowest ring freq.
3442 */
3443 if (gpu_freq < min_freq)
3444 ia_freq = 800;
3445 else
3446 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3447 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3448 }
2b4e57bd 3449
42c0526c
BW
3450 sandybridge_pcode_write(dev_priv,
3451 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3ebecd07
CW
3452 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3453 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3454 gpu_freq);
2b4e57bd 3455 }
2b4e57bd
ED
3456}
3457
0a073b84
JB
3458int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3459{
3460 u32 val, rp0;
3461
64936258 3462 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
0a073b84
JB
3463
3464 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3465 /* Clamp to max */
3466 rp0 = min_t(u32, rp0, 0xea);
3467
3468 return rp0;
3469}
3470
3471static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3472{
3473 u32 val, rpe;
3474
64936258 3475 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
0a073b84 3476 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
64936258 3477 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
0a073b84
JB
3478 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3479
3480 return rpe;
3481}
3482
3483int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3484{
64936258 3485 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
0a073b84
JB
3486}
3487
c9cddffc
JB
3488static void valleyview_setup_pctx(struct drm_device *dev)
3489{
3490 struct drm_i915_private *dev_priv = dev->dev_private;
3491 struct drm_i915_gem_object *pctx;
3492 unsigned long pctx_paddr;
3493 u32 pcbr;
3494 int pctx_size = 24*1024;
3495
3496 pcbr = I915_READ(VLV_PCBR);
3497 if (pcbr) {
3498 /* BIOS set it up already, grab the pre-alloc'd space */
3499 int pcbr_offset;
3500
3501 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3502 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3503 pcbr_offset,
190d6cd5 3504 I915_GTT_OFFSET_NONE,
c9cddffc
JB
3505 pctx_size);
3506 goto out;
3507 }
3508
3509 /*
3510 * From the Gunit register HAS:
3511 * The Gfx driver is expected to program this register and ensure
3512 * proper allocation within Gfx stolen memory. For example, this
3513 * register should be programmed such than the PCBR range does not
3514 * overlap with other ranges, such as the frame buffer, protected
3515 * memory, or any other relevant ranges.
3516 */
3517 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3518 if (!pctx) {
3519 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3520 return;
3521 }
3522
3523 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3524 I915_WRITE(VLV_PCBR, pctx_paddr);
3525
3526out:
3527 dev_priv->vlv_pctx = pctx;
3528}
3529
0a073b84
JB
3530static void valleyview_enable_rps(struct drm_device *dev)
3531{
3532 struct drm_i915_private *dev_priv = dev->dev_private;
3533 struct intel_ring_buffer *ring;
a2b23fe0 3534 u32 gtfifodbg, val, rc6_mode = 0;
0a073b84
JB
3535 int i;
3536
3537 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3538
3539 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
f7d85c1e
JB
3540 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3541 gtfifodbg);
0a073b84
JB
3542 I915_WRITE(GTFIFODBG, gtfifodbg);
3543 }
3544
c9cddffc
JB
3545 valleyview_setup_pctx(dev);
3546
c8d9a590
D
3547 /* If VLV, Forcewake all wells, else re-direct to regular path */
3548 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
0a073b84
JB
3549
3550 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3551 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3552 I915_WRITE(GEN6_RP_UP_EI, 66000);
3553 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3554
3555 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3556
3557 I915_WRITE(GEN6_RP_CONTROL,
3558 GEN6_RP_MEDIA_TURBO |
3559 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3560 GEN6_RP_MEDIA_IS_GFX |
3561 GEN6_RP_ENABLE |
3562 GEN6_RP_UP_BUSY_AVG |
3563 GEN6_RP_DOWN_IDLE_CONT);
3564
3565 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3566 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3567 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3568
3569 for_each_ring(ring, dev_priv, i)
3570 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3571
2f0aa304 3572 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
0a073b84
JB
3573
3574 /* allows RC6 residency counter to work */
49798eb2
JB
3575 I915_WRITE(VLV_COUNTER_CONTROL,
3576 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3577 VLV_MEDIA_RC6_COUNT_EN |
3578 VLV_RENDER_RC6_COUNT_EN));
a2b23fe0 3579 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
6b88f295 3580 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
dc39fff7
BW
3581
3582 intel_print_rc6_info(dev, rc6_mode);
3583
a2b23fe0 3584 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
0a073b84 3585
64936258 3586 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
0a073b84
JB
3587
3588 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3589 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3590
0a073b84 3591 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
73008b98 3592 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
2ec3815f 3593 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
73008b98 3594 dev_priv->rps.cur_delay);
0a073b84
JB
3595
3596 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3597 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
73008b98 3598 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
2ec3815f 3599 vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
73008b98 3600 dev_priv->rps.max_delay);
0a073b84 3601
73008b98
VS
3602 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3603 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
2ec3815f 3604 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
73008b98 3605 dev_priv->rps.rpe_delay);
0a073b84 3606
73008b98
VS
3607 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3608 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
2ec3815f 3609 vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
73008b98 3610 dev_priv->rps.min_delay);
0a073b84 3611
73008b98 3612 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
2ec3815f 3613 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
73008b98 3614 dev_priv->rps.rpe_delay);
0a073b84 3615
73008b98 3616 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
0a073b84 3617
44fc7d5c 3618 gen6_enable_rps_interrupts(dev);
0a073b84 3619
c8d9a590 3620 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
0a073b84
JB
3621}
3622
930ebb46 3623void ironlake_teardown_rc6(struct drm_device *dev)
2b4e57bd
ED
3624{
3625 struct drm_i915_private *dev_priv = dev->dev_private;
3626
3e373948
DV
3627 if (dev_priv->ips.renderctx) {
3628 i915_gem_object_unpin(dev_priv->ips.renderctx);
3629 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3630 dev_priv->ips.renderctx = NULL;
2b4e57bd
ED
3631 }
3632
3e373948
DV
3633 if (dev_priv->ips.pwrctx) {
3634 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3635 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3636 dev_priv->ips.pwrctx = NULL;
2b4e57bd
ED
3637 }
3638}
3639
930ebb46 3640static void ironlake_disable_rc6(struct drm_device *dev)
2b4e57bd
ED
3641{
3642 struct drm_i915_private *dev_priv = dev->dev_private;
3643
3644 if (I915_READ(PWRCTXA)) {
3645 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3646 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3647 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3648 50);
3649
3650 I915_WRITE(PWRCTXA, 0);
3651 POSTING_READ(PWRCTXA);
3652
3653 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3654 POSTING_READ(RSTDBYCTL);
3655 }
2b4e57bd
ED
3656}
3657
3658static int ironlake_setup_rc6(struct drm_device *dev)
3659{
3660 struct drm_i915_private *dev_priv = dev->dev_private;
3661
3e373948
DV
3662 if (dev_priv->ips.renderctx == NULL)
3663 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3664 if (!dev_priv->ips.renderctx)
2b4e57bd
ED
3665 return -ENOMEM;
3666
3e373948
DV
3667 if (dev_priv->ips.pwrctx == NULL)
3668 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3669 if (!dev_priv->ips.pwrctx) {
2b4e57bd
ED
3670 ironlake_teardown_rc6(dev);
3671 return -ENOMEM;
3672 }
3673
3674 return 0;
3675}
3676
930ebb46 3677static void ironlake_enable_rc6(struct drm_device *dev)
2b4e57bd
ED
3678{
3679 struct drm_i915_private *dev_priv = dev->dev_private;
6d90c952 3680 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3e960501 3681 bool was_interruptible;
2b4e57bd
ED
3682 int ret;
3683
3684 /* rc6 disabled by default due to repeated reports of hanging during
3685 * boot and resume.
3686 */
3687 if (!intel_enable_rc6(dev))
3688 return;
3689
79f5b2c7
DV
3690 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3691
2b4e57bd 3692 ret = ironlake_setup_rc6(dev);
79f5b2c7 3693 if (ret)
2b4e57bd 3694 return;
2b4e57bd 3695
3e960501
CW
3696 was_interruptible = dev_priv->mm.interruptible;
3697 dev_priv->mm.interruptible = false;
3698
2b4e57bd
ED
3699 /*
3700 * GPU can automatically power down the render unit if given a page
3701 * to save state.
3702 */
6d90c952 3703 ret = intel_ring_begin(ring, 6);
2b4e57bd
ED
3704 if (ret) {
3705 ironlake_teardown_rc6(dev);
3e960501 3706 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd
ED
3707 return;
3708 }
3709
6d90c952
DV
3710 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3711 intel_ring_emit(ring, MI_SET_CONTEXT);
f343c5f6 3712 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
6d90c952
DV
3713 MI_MM_SPACE_GTT |
3714 MI_SAVE_EXT_STATE_EN |
3715 MI_RESTORE_EXT_STATE_EN |
3716 MI_RESTORE_INHIBIT);
3717 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3718 intel_ring_emit(ring, MI_NOOP);
3719 intel_ring_emit(ring, MI_FLUSH);
3720 intel_ring_advance(ring);
2b4e57bd
ED
3721
3722 /*
3723 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3724 * does an implicit flush, combined with MI_FLUSH above, it should be
3725 * safe to assume that renderctx is valid
3726 */
3e960501
CW
3727 ret = intel_ring_idle(ring);
3728 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd 3729 if (ret) {
def27a58 3730 DRM_ERROR("failed to enable ironlake power savings\n");
2b4e57bd 3731 ironlake_teardown_rc6(dev);
2b4e57bd
ED
3732 return;
3733 }
3734
f343c5f6 3735 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
2b4e57bd 3736 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
dc39fff7
BW
3737
3738 intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
2b4e57bd
ED
3739}
3740
dde18883
ED
3741static unsigned long intel_pxfreq(u32 vidfreq)
3742{
3743 unsigned long freq;
3744 int div = (vidfreq & 0x3f0000) >> 16;
3745 int post = (vidfreq & 0x3000) >> 12;
3746 int pre = (vidfreq & 0x7);
3747
3748 if (!pre)
3749 return 0;
3750
3751 freq = ((div * 133333) / ((1<<post) * pre));
3752
3753 return freq;
3754}
3755
eb48eb00
DV
3756static const struct cparams {
3757 u16 i;
3758 u16 t;
3759 u16 m;
3760 u16 c;
3761} cparams[] = {
3762 { 1, 1333, 301, 28664 },
3763 { 1, 1066, 294, 24460 },
3764 { 1, 800, 294, 25192 },
3765 { 0, 1333, 276, 27605 },
3766 { 0, 1066, 276, 27605 },
3767 { 0, 800, 231, 23784 },
3768};
3769
f531dcb2 3770static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
3771{
3772 u64 total_count, diff, ret;
3773 u32 count1, count2, count3, m = 0, c = 0;
3774 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3775 int i;
3776
02d71956
DV
3777 assert_spin_locked(&mchdev_lock);
3778
20e4d407 3779 diff1 = now - dev_priv->ips.last_time1;
eb48eb00
DV
3780
3781 /* Prevent division-by-zero if we are asking too fast.
3782 * Also, we don't get interesting results if we are polling
3783 * faster than once in 10ms, so just return the saved value
3784 * in such cases.
3785 */
3786 if (diff1 <= 10)
20e4d407 3787 return dev_priv->ips.chipset_power;
eb48eb00
DV
3788
3789 count1 = I915_READ(DMIEC);
3790 count2 = I915_READ(DDREC);
3791 count3 = I915_READ(CSIEC);
3792
3793 total_count = count1 + count2 + count3;
3794
3795 /* FIXME: handle per-counter overflow */
20e4d407
DV
3796 if (total_count < dev_priv->ips.last_count1) {
3797 diff = ~0UL - dev_priv->ips.last_count1;
eb48eb00
DV
3798 diff += total_count;
3799 } else {
20e4d407 3800 diff = total_count - dev_priv->ips.last_count1;
eb48eb00
DV
3801 }
3802
3803 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
20e4d407
DV
3804 if (cparams[i].i == dev_priv->ips.c_m &&
3805 cparams[i].t == dev_priv->ips.r_t) {
eb48eb00
DV
3806 m = cparams[i].m;
3807 c = cparams[i].c;
3808 break;
3809 }
3810 }
3811
3812 diff = div_u64(diff, diff1);
3813 ret = ((m * diff) + c);
3814 ret = div_u64(ret, 10);
3815
20e4d407
DV
3816 dev_priv->ips.last_count1 = total_count;
3817 dev_priv->ips.last_time1 = now;
eb48eb00 3818
20e4d407 3819 dev_priv->ips.chipset_power = ret;
eb48eb00
DV
3820
3821 return ret;
3822}
3823
f531dcb2
CW
3824unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3825{
3826 unsigned long val;
3827
3828 if (dev_priv->info->gen != 5)
3829 return 0;
3830
3831 spin_lock_irq(&mchdev_lock);
3832
3833 val = __i915_chipset_val(dev_priv);
3834
3835 spin_unlock_irq(&mchdev_lock);
3836
3837 return val;
3838}
3839
eb48eb00
DV
3840unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3841{
3842 unsigned long m, x, b;
3843 u32 tsfs;
3844
3845 tsfs = I915_READ(TSFS);
3846
3847 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3848 x = I915_READ8(TR1);
3849
3850 b = tsfs & TSFS_INTR_MASK;
3851
3852 return ((m * x) / 127) - b;
3853}
3854
3855static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3856{
3857 static const struct v_table {
3858 u16 vd; /* in .1 mil */
3859 u16 vm; /* in .1 mil */
3860 } v_table[] = {
3861 { 0, 0, },
3862 { 375, 0, },
3863 { 500, 0, },
3864 { 625, 0, },
3865 { 750, 0, },
3866 { 875, 0, },
3867 { 1000, 0, },
3868 { 1125, 0, },
3869 { 4125, 3000, },
3870 { 4125, 3000, },
3871 { 4125, 3000, },
3872 { 4125, 3000, },
3873 { 4125, 3000, },
3874 { 4125, 3000, },
3875 { 4125, 3000, },
3876 { 4125, 3000, },
3877 { 4125, 3000, },
3878 { 4125, 3000, },
3879 { 4125, 3000, },
3880 { 4125, 3000, },
3881 { 4125, 3000, },
3882 { 4125, 3000, },
3883 { 4125, 3000, },
3884 { 4125, 3000, },
3885 { 4125, 3000, },
3886 { 4125, 3000, },
3887 { 4125, 3000, },
3888 { 4125, 3000, },
3889 { 4125, 3000, },
3890 { 4125, 3000, },
3891 { 4125, 3000, },
3892 { 4125, 3000, },
3893 { 4250, 3125, },
3894 { 4375, 3250, },
3895 { 4500, 3375, },
3896 { 4625, 3500, },
3897 { 4750, 3625, },
3898 { 4875, 3750, },
3899 { 5000, 3875, },
3900 { 5125, 4000, },
3901 { 5250, 4125, },
3902 { 5375, 4250, },
3903 { 5500, 4375, },
3904 { 5625, 4500, },
3905 { 5750, 4625, },
3906 { 5875, 4750, },
3907 { 6000, 4875, },
3908 { 6125, 5000, },
3909 { 6250, 5125, },
3910 { 6375, 5250, },
3911 { 6500, 5375, },
3912 { 6625, 5500, },
3913 { 6750, 5625, },
3914 { 6875, 5750, },
3915 { 7000, 5875, },
3916 { 7125, 6000, },
3917 { 7250, 6125, },
3918 { 7375, 6250, },
3919 { 7500, 6375, },
3920 { 7625, 6500, },
3921 { 7750, 6625, },
3922 { 7875, 6750, },
3923 { 8000, 6875, },
3924 { 8125, 7000, },
3925 { 8250, 7125, },
3926 { 8375, 7250, },
3927 { 8500, 7375, },
3928 { 8625, 7500, },
3929 { 8750, 7625, },
3930 { 8875, 7750, },
3931 { 9000, 7875, },
3932 { 9125, 8000, },
3933 { 9250, 8125, },
3934 { 9375, 8250, },
3935 { 9500, 8375, },
3936 { 9625, 8500, },
3937 { 9750, 8625, },
3938 { 9875, 8750, },
3939 { 10000, 8875, },
3940 { 10125, 9000, },
3941 { 10250, 9125, },
3942 { 10375, 9250, },
3943 { 10500, 9375, },
3944 { 10625, 9500, },
3945 { 10750, 9625, },
3946 { 10875, 9750, },
3947 { 11000, 9875, },
3948 { 11125, 10000, },
3949 { 11250, 10125, },
3950 { 11375, 10250, },
3951 { 11500, 10375, },
3952 { 11625, 10500, },
3953 { 11750, 10625, },
3954 { 11875, 10750, },
3955 { 12000, 10875, },
3956 { 12125, 11000, },
3957 { 12250, 11125, },
3958 { 12375, 11250, },
3959 { 12500, 11375, },
3960 { 12625, 11500, },
3961 { 12750, 11625, },
3962 { 12875, 11750, },
3963 { 13000, 11875, },
3964 { 13125, 12000, },
3965 { 13250, 12125, },
3966 { 13375, 12250, },
3967 { 13500, 12375, },
3968 { 13625, 12500, },
3969 { 13750, 12625, },
3970 { 13875, 12750, },
3971 { 14000, 12875, },
3972 { 14125, 13000, },
3973 { 14250, 13125, },
3974 { 14375, 13250, },
3975 { 14500, 13375, },
3976 { 14625, 13500, },
3977 { 14750, 13625, },
3978 { 14875, 13750, },
3979 { 15000, 13875, },
3980 { 15125, 14000, },
3981 { 15250, 14125, },
3982 { 15375, 14250, },
3983 { 15500, 14375, },
3984 { 15625, 14500, },
3985 { 15750, 14625, },
3986 { 15875, 14750, },
3987 { 16000, 14875, },
3988 { 16125, 15000, },
3989 };
3990 if (dev_priv->info->is_mobile)
3991 return v_table[pxvid].vm;
3992 else
3993 return v_table[pxvid].vd;
3994}
3995
02d71956 3996static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
3997{
3998 struct timespec now, diff1;
3999 u64 diff;
4000 unsigned long diffms;
4001 u32 count;
4002
02d71956 4003 assert_spin_locked(&mchdev_lock);
eb48eb00
DV
4004
4005 getrawmonotonic(&now);
20e4d407 4006 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
eb48eb00
DV
4007
4008 /* Don't divide by 0 */
4009 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4010 if (!diffms)
4011 return;
4012
4013 count = I915_READ(GFXEC);
4014
20e4d407
DV
4015 if (count < dev_priv->ips.last_count2) {
4016 diff = ~0UL - dev_priv->ips.last_count2;
eb48eb00
DV
4017 diff += count;
4018 } else {
20e4d407 4019 diff = count - dev_priv->ips.last_count2;
eb48eb00
DV
4020 }
4021
20e4d407
DV
4022 dev_priv->ips.last_count2 = count;
4023 dev_priv->ips.last_time2 = now;
eb48eb00
DV
4024
4025 /* More magic constants... */
4026 diff = diff * 1181;
4027 diff = div_u64(diff, diffms * 10);
20e4d407 4028 dev_priv->ips.gfx_power = diff;
eb48eb00
DV
4029}
4030
02d71956
DV
4031void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4032{
4033 if (dev_priv->info->gen != 5)
4034 return;
4035
9270388e 4036 spin_lock_irq(&mchdev_lock);
02d71956
DV
4037
4038 __i915_update_gfx_val(dev_priv);
4039
9270388e 4040 spin_unlock_irq(&mchdev_lock);
02d71956
DV
4041}
4042
f531dcb2 4043static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
4044{
4045 unsigned long t, corr, state1, corr2, state2;
4046 u32 pxvid, ext_v;
4047
02d71956
DV
4048 assert_spin_locked(&mchdev_lock);
4049
c6a828d3 4050 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
eb48eb00
DV
4051 pxvid = (pxvid >> 24) & 0x7f;
4052 ext_v = pvid_to_extvid(dev_priv, pxvid);
4053
4054 state1 = ext_v;
4055
4056 t = i915_mch_val(dev_priv);
4057
4058 /* Revel in the empirically derived constants */
4059
4060 /* Correction factor in 1/100000 units */
4061 if (t > 80)
4062 corr = ((t * 2349) + 135940);
4063 else if (t >= 50)
4064 corr = ((t * 964) + 29317);
4065 else /* < 50 */
4066 corr = ((t * 301) + 1004);
4067
4068 corr = corr * ((150142 * state1) / 10000 - 78642);
4069 corr /= 100000;
20e4d407 4070 corr2 = (corr * dev_priv->ips.corr);
eb48eb00
DV
4071
4072 state2 = (corr2 * state1) / 10000;
4073 state2 /= 100; /* convert to mW */
4074
02d71956 4075 __i915_update_gfx_val(dev_priv);
eb48eb00 4076
20e4d407 4077 return dev_priv->ips.gfx_power + state2;
eb48eb00
DV
4078}
4079
f531dcb2
CW
4080unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4081{
4082 unsigned long val;
4083
4084 if (dev_priv->info->gen != 5)
4085 return 0;
4086
4087 spin_lock_irq(&mchdev_lock);
4088
4089 val = __i915_gfx_val(dev_priv);
4090
4091 spin_unlock_irq(&mchdev_lock);
4092
4093 return val;
4094}
4095
eb48eb00
DV
4096/**
4097 * i915_read_mch_val - return value for IPS use
4098 *
4099 * Calculate and return a value for the IPS driver to use when deciding whether
4100 * we have thermal and power headroom to increase CPU or GPU power budget.
4101 */
4102unsigned long i915_read_mch_val(void)
4103{
4104 struct drm_i915_private *dev_priv;
4105 unsigned long chipset_val, graphics_val, ret = 0;
4106
9270388e 4107 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4108 if (!i915_mch_dev)
4109 goto out_unlock;
4110 dev_priv = i915_mch_dev;
4111
f531dcb2
CW
4112 chipset_val = __i915_chipset_val(dev_priv);
4113 graphics_val = __i915_gfx_val(dev_priv);
eb48eb00
DV
4114
4115 ret = chipset_val + graphics_val;
4116
4117out_unlock:
9270388e 4118 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4119
4120 return ret;
4121}
4122EXPORT_SYMBOL_GPL(i915_read_mch_val);
4123
4124/**
4125 * i915_gpu_raise - raise GPU frequency limit
4126 *
4127 * Raise the limit; IPS indicates we have thermal headroom.
4128 */
4129bool i915_gpu_raise(void)
4130{
4131 struct drm_i915_private *dev_priv;
4132 bool ret = true;
4133
9270388e 4134 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4135 if (!i915_mch_dev) {
4136 ret = false;
4137 goto out_unlock;
4138 }
4139 dev_priv = i915_mch_dev;
4140
20e4d407
DV
4141 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4142 dev_priv->ips.max_delay--;
eb48eb00
DV
4143
4144out_unlock:
9270388e 4145 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4146
4147 return ret;
4148}
4149EXPORT_SYMBOL_GPL(i915_gpu_raise);
4150
4151/**
4152 * i915_gpu_lower - lower GPU frequency limit
4153 *
4154 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4155 * frequency maximum.
4156 */
4157bool i915_gpu_lower(void)
4158{
4159 struct drm_i915_private *dev_priv;
4160 bool ret = true;
4161
9270388e 4162 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4163 if (!i915_mch_dev) {
4164 ret = false;
4165 goto out_unlock;
4166 }
4167 dev_priv = i915_mch_dev;
4168
20e4d407
DV
4169 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4170 dev_priv->ips.max_delay++;
eb48eb00
DV
4171
4172out_unlock:
9270388e 4173 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4174
4175 return ret;
4176}
4177EXPORT_SYMBOL_GPL(i915_gpu_lower);
4178
4179/**
4180 * i915_gpu_busy - indicate GPU business to IPS
4181 *
4182 * Tell the IPS driver whether or not the GPU is busy.
4183 */
4184bool i915_gpu_busy(void)
4185{
4186 struct drm_i915_private *dev_priv;
f047e395 4187 struct intel_ring_buffer *ring;
eb48eb00 4188 bool ret = false;
f047e395 4189 int i;
eb48eb00 4190
9270388e 4191 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4192 if (!i915_mch_dev)
4193 goto out_unlock;
4194 dev_priv = i915_mch_dev;
4195
f047e395
CW
4196 for_each_ring(ring, dev_priv, i)
4197 ret |= !list_empty(&ring->request_list);
eb48eb00
DV
4198
4199out_unlock:
9270388e 4200 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4201
4202 return ret;
4203}
4204EXPORT_SYMBOL_GPL(i915_gpu_busy);
4205
4206/**
4207 * i915_gpu_turbo_disable - disable graphics turbo
4208 *
4209 * Disable graphics turbo by resetting the max frequency and setting the
4210 * current frequency to the default.
4211 */
4212bool i915_gpu_turbo_disable(void)
4213{
4214 struct drm_i915_private *dev_priv;
4215 bool ret = true;
4216
9270388e 4217 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4218 if (!i915_mch_dev) {
4219 ret = false;
4220 goto out_unlock;
4221 }
4222 dev_priv = i915_mch_dev;
4223
20e4d407 4224 dev_priv->ips.max_delay = dev_priv->ips.fstart;
eb48eb00 4225
20e4d407 4226 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
eb48eb00
DV
4227 ret = false;
4228
4229out_unlock:
9270388e 4230 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4231
4232 return ret;
4233}
4234EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4235
4236/**
4237 * Tells the intel_ips driver that the i915 driver is now loaded, if
4238 * IPS got loaded first.
4239 *
4240 * This awkward dance is so that neither module has to depend on the
4241 * other in order for IPS to do the appropriate communication of
4242 * GPU turbo limits to i915.
4243 */
4244static void
4245ips_ping_for_i915_load(void)
4246{
4247 void (*link)(void);
4248
4249 link = symbol_get(ips_link_to_i915_driver);
4250 if (link) {
4251 link();
4252 symbol_put(ips_link_to_i915_driver);
4253 }
4254}
4255
4256void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4257{
02d71956
DV
4258 /* We only register the i915 ips part with intel-ips once everything is
4259 * set up, to avoid intel-ips sneaking in and reading bogus values. */
9270388e 4260 spin_lock_irq(&mchdev_lock);
eb48eb00 4261 i915_mch_dev = dev_priv;
9270388e 4262 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4263
4264 ips_ping_for_i915_load();
4265}
4266
4267void intel_gpu_ips_teardown(void)
4268{
9270388e 4269 spin_lock_irq(&mchdev_lock);
eb48eb00 4270 i915_mch_dev = NULL;
9270388e 4271 spin_unlock_irq(&mchdev_lock);
eb48eb00 4272}
8090c6b9 4273static void intel_init_emon(struct drm_device *dev)
dde18883
ED
4274{
4275 struct drm_i915_private *dev_priv = dev->dev_private;
4276 u32 lcfuse;
4277 u8 pxw[16];
4278 int i;
4279
4280 /* Disable to program */
4281 I915_WRITE(ECR, 0);
4282 POSTING_READ(ECR);
4283
4284 /* Program energy weights for various events */
4285 I915_WRITE(SDEW, 0x15040d00);
4286 I915_WRITE(CSIEW0, 0x007f0000);
4287 I915_WRITE(CSIEW1, 0x1e220004);
4288 I915_WRITE(CSIEW2, 0x04000004);
4289
4290 for (i = 0; i < 5; i++)
4291 I915_WRITE(PEW + (i * 4), 0);
4292 for (i = 0; i < 3; i++)
4293 I915_WRITE(DEW + (i * 4), 0);
4294
4295 /* Program P-state weights to account for frequency power adjustment */
4296 for (i = 0; i < 16; i++) {
4297 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4298 unsigned long freq = intel_pxfreq(pxvidfreq);
4299 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4300 PXVFREQ_PX_SHIFT;
4301 unsigned long val;
4302
4303 val = vid * vid;
4304 val *= (freq / 1000);
4305 val *= 255;
4306 val /= (127*127*900);
4307 if (val > 0xff)
4308 DRM_ERROR("bad pxval: %ld\n", val);
4309 pxw[i] = val;
4310 }
4311 /* Render standby states get 0 weight */
4312 pxw[14] = 0;
4313 pxw[15] = 0;
4314
4315 for (i = 0; i < 4; i++) {
4316 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4317 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4318 I915_WRITE(PXW + (i * 4), val);
4319 }
4320
4321 /* Adjust magic regs to magic values (more experimental results) */
4322 I915_WRITE(OGW0, 0);
4323 I915_WRITE(OGW1, 0);
4324 I915_WRITE(EG0, 0x00007f00);
4325 I915_WRITE(EG1, 0x0000000e);
4326 I915_WRITE(EG2, 0x000e0000);
4327 I915_WRITE(EG3, 0x68000300);
4328 I915_WRITE(EG4, 0x42000000);
4329 I915_WRITE(EG5, 0x00140031);
4330 I915_WRITE(EG6, 0);
4331 I915_WRITE(EG7, 0);
4332
4333 for (i = 0; i < 8; i++)
4334 I915_WRITE(PXWL + (i * 4), 0);
4335
4336 /* Enable PMON + select events */
4337 I915_WRITE(ECR, 0x80000019);
4338
4339 lcfuse = I915_READ(LCFUSE02);
4340
20e4d407 4341 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
dde18883
ED
4342}
4343
8090c6b9
DV
4344void intel_disable_gt_powersave(struct drm_device *dev)
4345{
1a01ab3b
JB
4346 struct drm_i915_private *dev_priv = dev->dev_private;
4347
fd0c0642
DV
4348 /* Interrupts should be disabled already to avoid re-arming. */
4349 WARN_ON(dev->irq_enabled);
4350
930ebb46 4351 if (IS_IRONLAKE_M(dev)) {
8090c6b9 4352 ironlake_disable_drps(dev);
930ebb46 4353 ironlake_disable_rc6(dev);
0a073b84 4354 } else if (INTEL_INFO(dev)->gen >= 6) {
1a01ab3b 4355 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
250848ca 4356 cancel_work_sync(&dev_priv->rps.work);
4fc688ce 4357 mutex_lock(&dev_priv->rps.hw_lock);
d20d4f0c
JB
4358 if (IS_VALLEYVIEW(dev))
4359 valleyview_disable_rps(dev);
4360 else
4361 gen6_disable_rps(dev);
c0951f0c 4362 dev_priv->rps.enabled = false;
4fc688ce 4363 mutex_unlock(&dev_priv->rps.hw_lock);
930ebb46 4364 }
8090c6b9
DV
4365}
4366
1a01ab3b
JB
4367static void intel_gen6_powersave_work(struct work_struct *work)
4368{
4369 struct drm_i915_private *dev_priv =
4370 container_of(work, struct drm_i915_private,
4371 rps.delayed_resume_work.work);
4372 struct drm_device *dev = dev_priv->dev;
4373
4fc688ce 4374 mutex_lock(&dev_priv->rps.hw_lock);
0a073b84
JB
4375
4376 if (IS_VALLEYVIEW(dev)) {
4377 valleyview_enable_rps(dev);
6edee7f3
BW
4378 } else if (IS_BROADWELL(dev)) {
4379 gen8_enable_rps(dev);
4380 gen6_update_ring_freq(dev);
0a073b84
JB
4381 } else {
4382 gen6_enable_rps(dev);
4383 gen6_update_ring_freq(dev);
4384 }
c0951f0c 4385 dev_priv->rps.enabled = true;
4fc688ce 4386 mutex_unlock(&dev_priv->rps.hw_lock);
1a01ab3b
JB
4387}
4388
8090c6b9
DV
4389void intel_enable_gt_powersave(struct drm_device *dev)
4390{
1a01ab3b
JB
4391 struct drm_i915_private *dev_priv = dev->dev_private;
4392
8090c6b9
DV
4393 if (IS_IRONLAKE_M(dev)) {
4394 ironlake_enable_drps(dev);
4395 ironlake_enable_rc6(dev);
4396 intel_init_emon(dev);
0a073b84 4397 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
1a01ab3b
JB
4398 /*
4399 * PCU communication is slow and this doesn't need to be
4400 * done at any specific time, so do this out of our fast path
4401 * to make resume and init faster.
4402 */
4403 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4404 round_jiffies_up_relative(HZ));
8090c6b9
DV
4405 }
4406}
4407
3107bd48
DV
4408static void ibx_init_clock_gating(struct drm_device *dev)
4409{
4410 struct drm_i915_private *dev_priv = dev->dev_private;
4411
4412 /*
4413 * On Ibex Peak and Cougar Point, we need to disable clock
4414 * gating for the panel power sequencer or it will fail to
4415 * start up when no ports are active.
4416 */
4417 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4418}
4419
0e088b8f
VS
4420static void g4x_disable_trickle_feed(struct drm_device *dev)
4421{
4422 struct drm_i915_private *dev_priv = dev->dev_private;
4423 int pipe;
4424
4425 for_each_pipe(pipe) {
4426 I915_WRITE(DSPCNTR(pipe),
4427 I915_READ(DSPCNTR(pipe)) |
4428 DISPPLANE_TRICKLE_FEED_DISABLE);
1dba99f4 4429 intel_flush_primary_plane(dev_priv, pipe);
0e088b8f
VS
4430 }
4431}
4432
017636cc
VS
4433static void ilk_init_lp_watermarks(struct drm_device *dev)
4434{
4435 struct drm_i915_private *dev_priv = dev->dev_private;
4436
4437 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4438 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4439 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4440
4441 /*
4442 * Don't touch WM1S_LP_EN here.
4443 * Doing so could cause underruns.
4444 */
4445}
4446
1fa61106 4447static void ironlake_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4448{
4449 struct drm_i915_private *dev_priv = dev->dev_private;
231e54f6 4450 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 4451
f1e8fa56
DL
4452 /*
4453 * Required for FBC
4454 * WaFbcDisableDpfcClockGating:ilk
4455 */
4d47e4f5
DL
4456 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4457 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4458 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
4459
4460 I915_WRITE(PCH_3DCGDIS0,
4461 MARIUNIT_CLOCK_GATE_DISABLE |
4462 SVSMUNIT_CLOCK_GATE_DISABLE);
4463 I915_WRITE(PCH_3DCGDIS1,
4464 VFMUNIT_CLOCK_GATE_DISABLE);
4465
6f1d69b0
ED
4466 /*
4467 * According to the spec the following bits should be set in
4468 * order to enable memory self-refresh
4469 * The bit 22/21 of 0x42004
4470 * The bit 5 of 0x42020
4471 * The bit 15 of 0x45000
4472 */
4473 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4474 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4475 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4d47e4f5 4476 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
4477 I915_WRITE(DISP_ARB_CTL,
4478 (I915_READ(DISP_ARB_CTL) |
4479 DISP_FBC_WM_DIS));
017636cc
VS
4480
4481 ilk_init_lp_watermarks(dev);
6f1d69b0
ED
4482
4483 /*
4484 * Based on the document from hardware guys the following bits
4485 * should be set unconditionally in order to enable FBC.
4486 * The bit 22 of 0x42000
4487 * The bit 22 of 0x42004
4488 * The bit 7,8,9 of 0x42020.
4489 */
4490 if (IS_IRONLAKE_M(dev)) {
4bb35334 4491 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6f1d69b0
ED
4492 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4493 I915_READ(ILK_DISPLAY_CHICKEN1) |
4494 ILK_FBCQ_DIS);
4495 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4496 I915_READ(ILK_DISPLAY_CHICKEN2) |
4497 ILK_DPARB_GATE);
6f1d69b0
ED
4498 }
4499
4d47e4f5
DL
4500 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4501
6f1d69b0
ED
4502 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4503 I915_READ(ILK_DISPLAY_CHICKEN2) |
4504 ILK_ELPIN_409_SELECT);
4505 I915_WRITE(_3D_CHICKEN2,
4506 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4507 _3D_CHICKEN2_WM_READ_PIPELINED);
4358a374 4508
ecdb4eb7 4509 /* WaDisableRenderCachePipelinedFlush:ilk */
4358a374
DV
4510 I915_WRITE(CACHE_MODE_0,
4511 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3107bd48 4512
0e088b8f 4513 g4x_disable_trickle_feed(dev);
bdad2b2f 4514
3107bd48
DV
4515 ibx_init_clock_gating(dev);
4516}
4517
4518static void cpt_init_clock_gating(struct drm_device *dev)
4519{
4520 struct drm_i915_private *dev_priv = dev->dev_private;
4521 int pipe;
3f704fa2 4522 uint32_t val;
3107bd48
DV
4523
4524 /*
4525 * On Ibex Peak and Cougar Point, we need to disable clock
4526 * gating for the panel power sequencer or it will fail to
4527 * start up when no ports are active.
4528 */
cd664078
JB
4529 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4530 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4531 PCH_CPUNIT_CLOCK_GATE_DISABLE);
3107bd48
DV
4532 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4533 DPLS_EDP_PPS_FIX_DIS);
335c07b7
TI
4534 /* The below fixes the weird display corruption, a few pixels shifted
4535 * downward, on (only) LVDS of some HP laptops with IVY.
4536 */
3f704fa2 4537 for_each_pipe(pipe) {
dc4bd2d1
PZ
4538 val = I915_READ(TRANS_CHICKEN2(pipe));
4539 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4540 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
41aa3448 4541 if (dev_priv->vbt.fdi_rx_polarity_inverted)
3f704fa2 4542 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
dc4bd2d1
PZ
4543 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4544 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4545 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3f704fa2
PZ
4546 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4547 }
3107bd48
DV
4548 /* WADP0ClockGatingDisable */
4549 for_each_pipe(pipe) {
4550 I915_WRITE(TRANS_CHICKEN1(pipe),
4551 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4552 }
6f1d69b0
ED
4553}
4554
1d7aaa0c
DV
4555static void gen6_check_mch_setup(struct drm_device *dev)
4556{
4557 struct drm_i915_private *dev_priv = dev->dev_private;
4558 uint32_t tmp;
4559
4560 tmp = I915_READ(MCH_SSKPD);
4561 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4562 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4563 DRM_INFO("This can cause pipe underruns and display issues.\n");
4564 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4565 }
4566}
4567
1fa61106 4568static void gen6_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4569{
4570 struct drm_i915_private *dev_priv = dev->dev_private;
231e54f6 4571 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 4572
231e54f6 4573 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6f1d69b0
ED
4574
4575 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4576 I915_READ(ILK_DISPLAY_CHICKEN2) |
4577 ILK_ELPIN_409_SELECT);
4578
ecdb4eb7 4579 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4283908e
DV
4580 I915_WRITE(_3D_CHICKEN,
4581 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4582
ecdb4eb7 4583 /* WaSetupGtModeTdRowDispatch:snb */
6547fbdb
DV
4584 if (IS_SNB_GT1(dev))
4585 I915_WRITE(GEN6_GT_MODE,
4586 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4587
017636cc 4588 ilk_init_lp_watermarks(dev);
6f1d69b0 4589
6f1d69b0 4590 I915_WRITE(CACHE_MODE_0,
50743298 4591 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6f1d69b0
ED
4592
4593 I915_WRITE(GEN6_UCGCTL1,
4594 I915_READ(GEN6_UCGCTL1) |
4595 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4596 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4597
4598 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4599 * gating disable must be set. Failure to set it results in
4600 * flickering pixels due to Z write ordering failures after
4601 * some amount of runtime in the Mesa "fire" demo, and Unigine
4602 * Sanctuary and Tropics, and apparently anything else with
4603 * alpha test or pixel discard.
4604 *
4605 * According to the spec, bit 11 (RCCUNIT) must also be set,
4606 * but we didn't debug actual testcases to find it out.
0f846f81 4607 *
ecdb4eb7
DL
4608 * Also apply WaDisableVDSUnitClockGating:snb and
4609 * WaDisableRCPBUnitClockGating:snb.
6f1d69b0
ED
4610 */
4611 I915_WRITE(GEN6_UCGCTL2,
0f846f81 4612 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6f1d69b0
ED
4613 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4614 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4615
4616 /* Bspec says we need to always set all mask bits. */
26b6e44a
KG
4617 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4618 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
6f1d69b0
ED
4619
4620 /*
4621 * According to the spec the following bits should be
4622 * set in order to enable memory self-refresh and fbc:
4623 * The bit21 and bit22 of 0x42000
4624 * The bit21 and bit22 of 0x42004
4625 * The bit5 and bit7 of 0x42020
4626 * The bit14 of 0x70180
4627 * The bit14 of 0x71180
4bb35334
DL
4628 *
4629 * WaFbcAsynchFlipDisableFbcQueue:snb
6f1d69b0
ED
4630 */
4631 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4632 I915_READ(ILK_DISPLAY_CHICKEN1) |
4633 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4634 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4635 I915_READ(ILK_DISPLAY_CHICKEN2) |
4636 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
231e54f6
DL
4637 I915_WRITE(ILK_DSPCLK_GATE_D,
4638 I915_READ(ILK_DSPCLK_GATE_D) |
4639 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4640 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6f1d69b0 4641
0e088b8f 4642 g4x_disable_trickle_feed(dev);
f8f2ac9a
BW
4643
4644 /* The default value should be 0x200 according to docs, but the two
4645 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4646 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4647 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3107bd48
DV
4648
4649 cpt_init_clock_gating(dev);
1d7aaa0c
DV
4650
4651 gen6_check_mch_setup(dev);
6f1d69b0
ED
4652}
4653
4654static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4655{
4656 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4657
4658 reg &= ~GEN7_FF_SCHED_MASK;
4659 reg |= GEN7_FF_TS_SCHED_HW;
4660 reg |= GEN7_FF_VS_SCHED_HW;
4661 reg |= GEN7_FF_DS_SCHED_HW;
4662
41c0b3a8
BW
4663 if (IS_HASWELL(dev_priv->dev))
4664 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4665
6f1d69b0
ED
4666 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4667}
4668
17a303ec
PZ
4669static void lpt_init_clock_gating(struct drm_device *dev)
4670{
4671 struct drm_i915_private *dev_priv = dev->dev_private;
4672
4673 /*
4674 * TODO: this bit should only be enabled when really needed, then
4675 * disabled when not needed anymore in order to save power.
4676 */
4677 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4678 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4679 I915_READ(SOUTH_DSPCLK_GATE_D) |
4680 PCH_LP_PARTITION_LEVEL_DISABLE);
0a790cdb
PZ
4681
4682 /* WADPOClockGatingDisable:hsw */
4683 I915_WRITE(_TRANSA_CHICKEN1,
4684 I915_READ(_TRANSA_CHICKEN1) |
4685 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
17a303ec
PZ
4686}
4687
7d708ee4
ID
4688static void lpt_suspend_hw(struct drm_device *dev)
4689{
4690 struct drm_i915_private *dev_priv = dev->dev_private;
4691
4692 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4693 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4694
4695 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4696 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4697 }
4698}
4699
1020a5c2
BW
4700static void gen8_init_clock_gating(struct drm_device *dev)
4701{
4702 struct drm_i915_private *dev_priv = dev->dev_private;
fe4ab3ce 4703 enum pipe i;
1020a5c2
BW
4704
4705 I915_WRITE(WM3_LP_ILK, 0);
4706 I915_WRITE(WM2_LP_ILK, 0);
4707 I915_WRITE(WM1_LP_ILK, 0);
50ed5fbd
BW
4708
4709 /* FIXME(BDW): Check all the w/a, some might only apply to
4710 * pre-production hw. */
4711
fd392b60
BW
4712 WARN(!i915_preliminary_hw_support,
4713 "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
4714 I915_WRITE(HALF_SLICE_CHICKEN3,
4715 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
bf66347c
BW
4716 I915_WRITE(HALF_SLICE_CHICKEN3,
4717 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4afe8d33
BW
4718 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4719
7f88da0c
BW
4720 I915_WRITE(_3D_CHICKEN3,
4721 _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4722
a75f3628
BW
4723 I915_WRITE(COMMON_SLICE_CHICKEN2,
4724 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4725
4c2e7a5f
BW
4726 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4727 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4728
ab57fff1 4729 /* WaSwitchSolVfFArbitrationPriority:bdw */
50ed5fbd 4730 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
fe4ab3ce 4731
ab57fff1 4732 /* WaPsrDPAMaskVBlankInSRD:bdw */
fe4ab3ce
BW
4733 I915_WRITE(CHICKEN_PAR1_1,
4734 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4735
ab57fff1 4736 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
fe4ab3ce
BW
4737 for_each_pipe(i) {
4738 I915_WRITE(CHICKEN_PIPESL_1(i),
4739 I915_READ(CHICKEN_PIPESL_1(i) |
4740 DPRS_MASK_VBLANK_SRD));
4741 }
63801f21
BW
4742
4743 /* Use Force Non-Coherent whenever executing a 3D context. This is a
4744 * workaround for for a possible hang in the unlikely event a TLB
4745 * invalidation occurs during a PSD flush.
4746 */
4747 I915_WRITE(HDC_CHICKEN0,
4748 I915_READ(HDC_CHICKEN0) |
4749 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
ab57fff1
BW
4750
4751 /* WaVSRefCountFullforceMissDisable:bdw */
4752 /* WaDSRefCountFullforceMissDisable:bdw */
4753 I915_WRITE(GEN7_FF_THREAD_MODE,
4754 I915_READ(GEN7_FF_THREAD_MODE) &
4755 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
1020a5c2
BW
4756}
4757
cad2a2d7
ED
4758static void haswell_init_clock_gating(struct drm_device *dev)
4759{
4760 struct drm_i915_private *dev_priv = dev->dev_private;
cad2a2d7 4761
017636cc 4762 ilk_init_lp_watermarks(dev);
cad2a2d7
ED
4763
4764 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 4765 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
cad2a2d7
ED
4766 */
4767 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4768
ecdb4eb7 4769 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
cad2a2d7
ED
4770 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4771 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4772
ecdb4eb7 4773 /* WaApplyL3ControlAndL3ChickenMode:hsw */
cad2a2d7
ED
4774 I915_WRITE(GEN7_L3CNTLREG1,
4775 GEN7_WA_FOR_GEN7_L3_CONTROL);
4776 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4777 GEN7_WA_L3_CHICKEN_MODE);
4778
f3fc4884
FJ
4779 /* L3 caching of data atomics doesn't work -- disable it. */
4780 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4781 I915_WRITE(HSW_ROW_CHICKEN3,
4782 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4783
ecdb4eb7 4784 /* This is required by WaCatErrorRejectionIssue:hsw */
cad2a2d7
ED
4785 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4786 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4787 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4788
ecdb4eb7 4789 /* WaVSRefCountFullforceMissDisable:hsw */
cad2a2d7
ED
4790 gen7_setup_fixed_func_scheduler(dev_priv);
4791
ecdb4eb7 4792 /* WaDisable4x2SubspanOptimization:hsw */
cad2a2d7
ED
4793 I915_WRITE(CACHE_MODE_1,
4794 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
1544d9d5 4795
ecdb4eb7 4796 /* WaSwitchSolVfFArbitrationPriority:hsw */
e3dff585
BW
4797 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4798
90a88643
PZ
4799 /* WaRsPkgCStateDisplayPMReq:hsw */
4800 I915_WRITE(CHICKEN_PAR1_1,
4801 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
1544d9d5 4802
17a303ec 4803 lpt_init_clock_gating(dev);
cad2a2d7
ED
4804}
4805
1fa61106 4806static void ivybridge_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4807{
4808 struct drm_i915_private *dev_priv = dev->dev_private;
20848223 4809 uint32_t snpcr;
6f1d69b0 4810
017636cc 4811 ilk_init_lp_watermarks(dev);
6f1d69b0 4812
231e54f6 4813 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 4814
ecdb4eb7 4815 /* WaDisableEarlyCull:ivb */
87f8020e
JB
4816 I915_WRITE(_3D_CHICKEN3,
4817 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4818
ecdb4eb7 4819 /* WaDisableBackToBackFlipFix:ivb */
6f1d69b0
ED
4820 I915_WRITE(IVB_CHICKEN3,
4821 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4822 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4823
ecdb4eb7 4824 /* WaDisablePSDDualDispatchEnable:ivb */
12f3382b
JB
4825 if (IS_IVB_GT1(dev))
4826 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4827 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4828 else
4829 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4830 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4831
ecdb4eb7 4832 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6f1d69b0
ED
4833 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4834 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4835
ecdb4eb7 4836 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6f1d69b0
ED
4837 I915_WRITE(GEN7_L3CNTLREG1,
4838 GEN7_WA_FOR_GEN7_L3_CONTROL);
4839 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8ab43976
JB
4840 GEN7_WA_L3_CHICKEN_MODE);
4841 if (IS_IVB_GT1(dev))
4842 I915_WRITE(GEN7_ROW_CHICKEN2,
4843 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4844 else
4845 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4846 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4847
6f1d69b0 4848
ecdb4eb7 4849 /* WaForceL3Serialization:ivb */
61939d97
JB
4850 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4851 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4852
0f846f81
JB
4853 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4854 * gating disable must be set. Failure to set it results in
4855 * flickering pixels due to Z write ordering failures after
4856 * some amount of runtime in the Mesa "fire" demo, and Unigine
4857 * Sanctuary and Tropics, and apparently anything else with
4858 * alpha test or pixel discard.
4859 *
4860 * According to the spec, bit 11 (RCCUNIT) must also be set,
4861 * but we didn't debug actual testcases to find it out.
4862 *
4863 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 4864 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
0f846f81
JB
4865 */
4866 I915_WRITE(GEN6_UCGCTL2,
4867 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4868 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4869
ecdb4eb7 4870 /* This is required by WaCatErrorRejectionIssue:ivb */
6f1d69b0
ED
4871 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4872 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4873 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4874
0e088b8f 4875 g4x_disable_trickle_feed(dev);
6f1d69b0 4876
ecdb4eb7 4877 /* WaVSRefCountFullforceMissDisable:ivb */
6f1d69b0 4878 gen7_setup_fixed_func_scheduler(dev_priv);
97e1930f 4879
ecdb4eb7 4880 /* WaDisable4x2SubspanOptimization:ivb */
97e1930f
DV
4881 I915_WRITE(CACHE_MODE_1,
4882 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
20848223
BW
4883
4884 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4885 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4886 snpcr |= GEN6_MBC_SNPCR_MED;
4887 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3107bd48 4888
ab5c608b
BW
4889 if (!HAS_PCH_NOP(dev))
4890 cpt_init_clock_gating(dev);
1d7aaa0c
DV
4891
4892 gen6_check_mch_setup(dev);
6f1d69b0
ED
4893}
4894
1fa61106 4895static void valleyview_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4896{
4897 struct drm_i915_private *dev_priv = dev->dev_private;
85b1d7b3
JB
4898 u32 val;
4899
4900 mutex_lock(&dev_priv->rps.hw_lock);
4901 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4902 mutex_unlock(&dev_priv->rps.hw_lock);
4903 switch ((val >> 6) & 3) {
4904 case 0:
85b1d7b3
JB
4905 dev_priv->mem_freq = 800;
4906 break;
f64a28a7 4907 case 1:
85b1d7b3
JB
4908 dev_priv->mem_freq = 1066;
4909 break;
f64a28a7 4910 case 2:
85b1d7b3
JB
4911 dev_priv->mem_freq = 1333;
4912 break;
f64a28a7 4913 case 3:
2325991e 4914 dev_priv->mem_freq = 1333;
f64a28a7 4915 break;
85b1d7b3
JB
4916 }
4917 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
6f1d69b0 4918
d7fe0cc0 4919 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 4920
ecdb4eb7 4921 /* WaDisableEarlyCull:vlv */
87f8020e
JB
4922 I915_WRITE(_3D_CHICKEN3,
4923 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4924
ecdb4eb7 4925 /* WaDisableBackToBackFlipFix:vlv */
6f1d69b0
ED
4926 I915_WRITE(IVB_CHICKEN3,
4927 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4928 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4929
ecdb4eb7 4930 /* WaDisablePSDDualDispatchEnable:vlv */
12f3382b 4931 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
d3bc0303
JB
4932 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4933 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
12f3382b 4934
ecdb4eb7 4935 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
6f1d69b0
ED
4936 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4937 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4938
ecdb4eb7 4939 /* WaApplyL3ControlAndL3ChickenMode:vlv */
d0cf5ead 4940 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
6f1d69b0
ED
4941 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4942
ecdb4eb7 4943 /* WaForceL3Serialization:vlv */
61939d97
JB
4944 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4945 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4946
ecdb4eb7 4947 /* WaDisableDopClockGating:vlv */
8ab43976
JB
4948 I915_WRITE(GEN7_ROW_CHICKEN2,
4949 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4950
ecdb4eb7 4951 /* This is required by WaCatErrorRejectionIssue:vlv */
6f1d69b0
ED
4952 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4953 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4954 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4955
0f846f81
JB
4956 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4957 * gating disable must be set. Failure to set it results in
4958 * flickering pixels due to Z write ordering failures after
4959 * some amount of runtime in the Mesa "fire" demo, and Unigine
4960 * Sanctuary and Tropics, and apparently anything else with
4961 * alpha test or pixel discard.
4962 *
4963 * According to the spec, bit 11 (RCCUNIT) must also be set,
4964 * but we didn't debug actual testcases to find it out.
4965 *
4966 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 4967 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
0f846f81 4968 *
ecdb4eb7
DL
4969 * Also apply WaDisableVDSUnitClockGating:vlv and
4970 * WaDisableRCPBUnitClockGating:vlv.
0f846f81
JB
4971 */
4972 I915_WRITE(GEN6_UCGCTL2,
4973 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6edaa7fc 4974 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
0f846f81
JB
4975 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4976 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4977 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4978
e3f33d46
JB
4979 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4980
e0d8d59b 4981 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6f1d69b0 4982
6b26c86d
DV
4983 I915_WRITE(CACHE_MODE_1,
4984 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7983117f 4985
2d809570 4986 /*
ecdb4eb7 4987 * WaDisableVLVClockGating_VBIIssue:vlv
2d809570
JB
4988 * Disable clock gating on th GCFG unit to prevent a delay
4989 * in the reporting of vblank events.
4990 */
4e8c84a5
JB
4991 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4992
4993 /* Conservative clock gating settings for now */
4994 I915_WRITE(0x9400, 0xffffffff);
4995 I915_WRITE(0x9404, 0xffffffff);
4996 I915_WRITE(0x9408, 0xffffffff);
4997 I915_WRITE(0x940c, 0xffffffff);
4998 I915_WRITE(0x9410, 0xffffffff);
4999 I915_WRITE(0x9414, 0xffffffff);
5000 I915_WRITE(0x9418, 0xffffffff);
6f1d69b0
ED
5001}
5002
1fa61106 5003static void g4x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5004{
5005 struct drm_i915_private *dev_priv = dev->dev_private;
5006 uint32_t dspclk_gate;
5007
5008 I915_WRITE(RENCLK_GATE_D1, 0);
5009 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5010 GS_UNIT_CLOCK_GATE_DISABLE |
5011 CL_UNIT_CLOCK_GATE_DISABLE);
5012 I915_WRITE(RAMCLK_GATE_D, 0);
5013 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5014 OVRUNIT_CLOCK_GATE_DISABLE |
5015 OVCUNIT_CLOCK_GATE_DISABLE;
5016 if (IS_GM45(dev))
5017 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5018 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4358a374
DV
5019
5020 /* WaDisableRenderCachePipelinedFlush */
5021 I915_WRITE(CACHE_MODE_0,
5022 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
de1aa629 5023
0e088b8f 5024 g4x_disable_trickle_feed(dev);
6f1d69b0
ED
5025}
5026
1fa61106 5027static void crestline_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5028{
5029 struct drm_i915_private *dev_priv = dev->dev_private;
5030
5031 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5032 I915_WRITE(RENCLK_GATE_D2, 0);
5033 I915_WRITE(DSPCLK_GATE_D, 0);
5034 I915_WRITE(RAMCLK_GATE_D, 0);
5035 I915_WRITE16(DEUC, 0);
20f94967
VS
5036 I915_WRITE(MI_ARB_STATE,
5037 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
5038}
5039
1fa61106 5040static void broadwater_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5041{
5042 struct drm_i915_private *dev_priv = dev->dev_private;
5043
5044 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5045 I965_RCC_CLOCK_GATE_DISABLE |
5046 I965_RCPB_CLOCK_GATE_DISABLE |
5047 I965_ISC_CLOCK_GATE_DISABLE |
5048 I965_FBC_CLOCK_GATE_DISABLE);
5049 I915_WRITE(RENCLK_GATE_D2, 0);
20f94967
VS
5050 I915_WRITE(MI_ARB_STATE,
5051 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
5052}
5053
1fa61106 5054static void gen3_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5055{
5056 struct drm_i915_private *dev_priv = dev->dev_private;
5057 u32 dstate = I915_READ(D_STATE);
5058
5059 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5060 DSTATE_DOT_CLOCK_GATING;
5061 I915_WRITE(D_STATE, dstate);
13a86b85
CW
5062
5063 if (IS_PINEVIEW(dev))
5064 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
974a3b0f
DV
5065
5066 /* IIR "flip pending" means done if this bit is set */
5067 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6f1d69b0
ED
5068}
5069
1fa61106 5070static void i85x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5071{
5072 struct drm_i915_private *dev_priv = dev->dev_private;
5073
5074 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5075}
5076
1fa61106 5077static void i830_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5078{
5079 struct drm_i915_private *dev_priv = dev->dev_private;
5080
5081 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5082}
5083
6f1d69b0
ED
5084void intel_init_clock_gating(struct drm_device *dev)
5085{
5086 struct drm_i915_private *dev_priv = dev->dev_private;
5087
5088 dev_priv->display.init_clock_gating(dev);
6f1d69b0
ED
5089}
5090
7d708ee4
ID
5091void intel_suspend_hw(struct drm_device *dev)
5092{
5093 if (HAS_PCH_LPT(dev))
5094 lpt_suspend_hw(dev);
5095}
5096
c1ca727f
ID
5097#define for_each_power_well(i, power_well, domain_mask, power_domains) \
5098 for (i = 0; \
5099 i < (power_domains)->power_well_count && \
5100 ((power_well) = &(power_domains)->power_wells[i]); \
5101 i++) \
5102 if ((power_well)->domains & (domain_mask))
5103
5104#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5105 for (i = (power_domains)->power_well_count - 1; \
5106 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5107 i--) \
5108 if ((power_well)->domains & (domain_mask))
5109
15d199ea
PZ
5110/**
5111 * We should only use the power well if we explicitly asked the hardware to
5112 * enable it, so check if it's enabled and also check if we've requested it to
5113 * be enabled.
5114 */
c1ca727f
ID
5115static bool hsw_power_well_enabled(struct drm_device *dev,
5116 struct i915_power_well *power_well)
5117{
5118 struct drm_i915_private *dev_priv = dev->dev_private;
5119
5120 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5121 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5122}
5123
ddf9c536
ID
5124bool intel_display_power_enabled_sw(struct drm_device *dev,
5125 enum intel_display_power_domain domain)
5126{
5127 struct drm_i915_private *dev_priv = dev->dev_private;
5128 struct i915_power_domains *power_domains;
5129
5130 power_domains = &dev_priv->power_domains;
5131
5132 return power_domains->domain_use_count[domain];
5133}
5134
b97186f0
PZ
5135bool intel_display_power_enabled(struct drm_device *dev,
5136 enum intel_display_power_domain domain)
15d199ea
PZ
5137{
5138 struct drm_i915_private *dev_priv = dev->dev_private;
c1ca727f
ID
5139 struct i915_power_domains *power_domains;
5140 struct i915_power_well *power_well;
5141 bool is_enabled;
5142 int i;
15d199ea 5143
c1ca727f
ID
5144 power_domains = &dev_priv->power_domains;
5145
5146 is_enabled = true;
5147
5148 mutex_lock(&power_domains->lock);
5149 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6f3ef5dd
ID
5150 if (power_well->always_on)
5151 continue;
5152
c1ca727f
ID
5153 if (!power_well->is_enabled(dev, power_well)) {
5154 is_enabled = false;
5155 break;
5156 }
5157 }
5158 mutex_unlock(&power_domains->lock);
5159
5160 return is_enabled;
15d199ea
PZ
5161}
5162
d5e8fdc8
PZ
5163static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5164{
5165 struct drm_device *dev = dev_priv->dev;
5166 unsigned long irqflags;
5167
f9dcb0df
PZ
5168 /*
5169 * After we re-enable the power well, if we touch VGA register 0x3d5
5170 * we'll get unclaimed register interrupts. This stops after we write
5171 * anything to the VGA MSR register. The vgacon module uses this
5172 * register all the time, so if we unbind our driver and, as a
5173 * consequence, bind vgacon, we'll get stuck in an infinite loop at
5174 * console_unlock(). So make here we touch the VGA MSR register, making
5175 * sure vgacon can keep working normally without triggering interrupts
5176 * and error messages.
5177 */
5178 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5179 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5180 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5181
d5e8fdc8
PZ
5182 if (IS_BROADWELL(dev)) {
5183 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5184 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5185 dev_priv->de_irq_mask[PIPE_B]);
5186 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5187 ~dev_priv->de_irq_mask[PIPE_B] |
5188 GEN8_PIPE_VBLANK);
5189 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5190 dev_priv->de_irq_mask[PIPE_C]);
5191 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5192 ~dev_priv->de_irq_mask[PIPE_C] |
5193 GEN8_PIPE_VBLANK);
5194 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5195 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5196 }
5197}
5198
5199static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5200{
5201 struct drm_device *dev = dev_priv->dev;
5202 enum pipe p;
5203 unsigned long irqflags;
5204
5205 /*
5206 * After this, the registers on the pipes that are part of the power
5207 * well will become zero, so we have to adjust our counters according to
5208 * that.
5209 *
5210 * FIXME: Should we do this in general in drm_vblank_post_modeset?
5211 */
5212 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5213 for_each_pipe(p)
5214 if (p != PIPE_A)
5215 dev->vblank[p].last = 0;
5216 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5217}
5218
c1ca727f
ID
5219static void hsw_set_power_well(struct drm_device *dev,
5220 struct i915_power_well *power_well, bool enable)
d0d3e513
ED
5221{
5222 struct drm_i915_private *dev_priv = dev->dev_private;
fa42e23c
PZ
5223 bool is_enabled, enable_requested;
5224 uint32_t tmp;
d0d3e513 5225
d62292c8
PZ
5226 WARN_ON(dev_priv->pc8.enabled);
5227
fa42e23c 5228 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6aedd1f5
PZ
5229 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5230 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
d0d3e513 5231
fa42e23c
PZ
5232 if (enable) {
5233 if (!enable_requested)
6aedd1f5
PZ
5234 I915_WRITE(HSW_PWR_WELL_DRIVER,
5235 HSW_PWR_WELL_ENABLE_REQUEST);
d0d3e513 5236
fa42e23c
PZ
5237 if (!is_enabled) {
5238 DRM_DEBUG_KMS("Enabling power well\n");
5239 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6aedd1f5 5240 HSW_PWR_WELL_STATE_ENABLED), 20))
fa42e23c
PZ
5241 DRM_ERROR("Timeout enabling power well\n");
5242 }
596cc11e 5243
d5e8fdc8 5244 hsw_power_well_post_enable(dev_priv);
fa42e23c
PZ
5245 } else {
5246 if (enable_requested) {
5247 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
9dbd8feb 5248 POSTING_READ(HSW_PWR_WELL_DRIVER);
fa42e23c 5249 DRM_DEBUG_KMS("Requesting to disable the power well\n");
9dbd8feb 5250
d5e8fdc8 5251 hsw_power_well_post_disable(dev_priv);
d0d3e513
ED
5252 }
5253 }
fa42e23c 5254}
d0d3e513 5255
b4ed4484
ID
5256static void __intel_power_well_get(struct drm_device *dev,
5257 struct i915_power_well *power_well)
2d66aef5 5258{
d62292c8
PZ
5259 struct drm_i915_private *dev_priv = dev->dev_private;
5260
5261 if (!power_well->count++ && power_well->set) {
5262 hsw_disable_package_c8(dev_priv);
c1ca727f 5263 power_well->set(dev, power_well, true);
d62292c8 5264 }
2d66aef5
VS
5265}
5266
b4ed4484
ID
5267static void __intel_power_well_put(struct drm_device *dev,
5268 struct i915_power_well *power_well)
2d66aef5 5269{
d62292c8
PZ
5270 struct drm_i915_private *dev_priv = dev->dev_private;
5271
2d66aef5 5272 WARN_ON(!power_well->count);
c1ca727f 5273
d62292c8
PZ
5274 if (!--power_well->count && power_well->set &&
5275 i915_disable_power_well) {
c1ca727f 5276 power_well->set(dev, power_well, false);
d62292c8
PZ
5277 hsw_enable_package_c8(dev_priv);
5278 }
2d66aef5
VS
5279}
5280
6765625e
VS
5281void intel_display_power_get(struct drm_device *dev,
5282 enum intel_display_power_domain domain)
5283{
5284 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55 5285 struct i915_power_domains *power_domains;
c1ca727f
ID
5286 struct i915_power_well *power_well;
5287 int i;
6765625e 5288
83c00f55
ID
5289 power_domains = &dev_priv->power_domains;
5290
5291 mutex_lock(&power_domains->lock);
1da51581 5292
c1ca727f
ID
5293 for_each_power_well(i, power_well, BIT(domain), power_domains)
5294 __intel_power_well_get(dev, power_well);
1da51581 5295
ddf9c536
ID
5296 power_domains->domain_use_count[domain]++;
5297
83c00f55 5298 mutex_unlock(&power_domains->lock);
6765625e
VS
5299}
5300
5301void intel_display_power_put(struct drm_device *dev,
5302 enum intel_display_power_domain domain)
5303{
5304 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55 5305 struct i915_power_domains *power_domains;
c1ca727f
ID
5306 struct i915_power_well *power_well;
5307 int i;
6765625e 5308
83c00f55
ID
5309 power_domains = &dev_priv->power_domains;
5310
5311 mutex_lock(&power_domains->lock);
1da51581 5312
1da51581
ID
5313 WARN_ON(!power_domains->domain_use_count[domain]);
5314 power_domains->domain_use_count[domain]--;
ddf9c536
ID
5315
5316 for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
5317 __intel_power_well_put(dev, power_well);
1da51581 5318
83c00f55 5319 mutex_unlock(&power_domains->lock);
6765625e
VS
5320}
5321
83c00f55 5322static struct i915_power_domains *hsw_pwr;
a38911a3
WX
5323
5324/* Display audio driver power well request */
5325void i915_request_power_well(void)
5326{
b4ed4484
ID
5327 struct drm_i915_private *dev_priv;
5328
a38911a3
WX
5329 if (WARN_ON(!hsw_pwr))
5330 return;
5331
b4ed4484
ID
5332 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5333 power_domains);
fbeeaa23 5334 intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
a38911a3
WX
5335}
5336EXPORT_SYMBOL_GPL(i915_request_power_well);
5337
5338/* Display audio driver power well release */
5339void i915_release_power_well(void)
5340{
b4ed4484
ID
5341 struct drm_i915_private *dev_priv;
5342
a38911a3
WX
5343 if (WARN_ON(!hsw_pwr))
5344 return;
5345
b4ed4484
ID
5346 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5347 power_domains);
fbeeaa23 5348 intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
a38911a3
WX
5349}
5350EXPORT_SYMBOL_GPL(i915_release_power_well);
5351
1c2256df
ID
5352static struct i915_power_well i9xx_always_on_power_well[] = {
5353 {
5354 .name = "always-on",
5355 .always_on = 1,
5356 .domains = POWER_DOMAIN_MASK,
5357 },
5358};
5359
c1ca727f 5360static struct i915_power_well hsw_power_wells[] = {
6f3ef5dd
ID
5361 {
5362 .name = "always-on",
5363 .always_on = 1,
5364 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5365 },
c1ca727f
ID
5366 {
5367 .name = "display",
5368 .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
5369 .is_enabled = hsw_power_well_enabled,
5370 .set = hsw_set_power_well,
5371 },
5372};
5373
5374static struct i915_power_well bdw_power_wells[] = {
6f3ef5dd
ID
5375 {
5376 .name = "always-on",
5377 .always_on = 1,
5378 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5379 },
c1ca727f
ID
5380 {
5381 .name = "display",
5382 .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
5383 .is_enabled = hsw_power_well_enabled,
5384 .set = hsw_set_power_well,
5385 },
5386};
5387
5388#define set_power_wells(power_domains, __power_wells) ({ \
5389 (power_domains)->power_wells = (__power_wells); \
5390 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
5391})
5392
ddb642fb 5393int intel_power_domains_init(struct drm_device *dev)
a38911a3
WX
5394{
5395 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55 5396 struct i915_power_domains *power_domains = &dev_priv->power_domains;
c1ca727f 5397
83c00f55 5398 mutex_init(&power_domains->lock);
a38911a3 5399
c1ca727f
ID
5400 /*
5401 * The enabling order will be from lower to higher indexed wells,
5402 * the disabling order is reversed.
5403 */
5404 if (IS_HASWELL(dev)) {
5405 set_power_wells(power_domains, hsw_power_wells);
5406 hsw_pwr = power_domains;
5407 } else if (IS_BROADWELL(dev)) {
5408 set_power_wells(power_domains, bdw_power_wells);
5409 hsw_pwr = power_domains;
5410 } else {
1c2256df 5411 set_power_wells(power_domains, i9xx_always_on_power_well);
c1ca727f 5412 }
a38911a3
WX
5413
5414 return 0;
5415}
5416
ddb642fb 5417void intel_power_domains_remove(struct drm_device *dev)
a38911a3
WX
5418{
5419 hsw_pwr = NULL;
5420}
5421
ddb642fb 5422static void intel_power_domains_resume(struct drm_device *dev)
9cdb826c
VS
5423{
5424 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55
ID
5425 struct i915_power_domains *power_domains = &dev_priv->power_domains;
5426 struct i915_power_well *power_well;
c1ca727f 5427 int i;
9cdb826c 5428
83c00f55 5429 mutex_lock(&power_domains->lock);
c1ca727f
ID
5430 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
5431 if (power_well->set)
5432 power_well->set(dev, power_well, power_well->count > 0);
5433 }
83c00f55 5434 mutex_unlock(&power_domains->lock);
a38911a3
WX
5435}
5436
fa42e23c
PZ
5437/*
5438 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5439 * when not needed anymore. We have 4 registers that can request the power well
5440 * to be enabled, and it will only be disabled if none of the registers is
5441 * requesting it to be enabled.
d0d3e513 5442 */
ddb642fb 5443void intel_power_domains_init_hw(struct drm_device *dev)
d0d3e513
ED
5444{
5445 struct drm_i915_private *dev_priv = dev->dev_private;
d0d3e513 5446
fa42e23c 5447 /* For now, we need the power well to be always enabled. */
baa70707 5448 intel_display_set_init_power(dev, true);
ddb642fb 5449 intel_power_domains_resume(dev);
d0d3e513 5450
f7243ac9
ID
5451 if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
5452 return;
5453
fa42e23c
PZ
5454 /* We're taking over the BIOS, so clear any requests made by it since
5455 * the driver is in charge now. */
6aedd1f5 5456 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
fa42e23c 5457 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
d0d3e513
ED
5458}
5459
c67a470b
PZ
5460/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5461void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5462{
5463 hsw_disable_package_c8(dev_priv);
5464}
5465
5466void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5467{
5468 hsw_enable_package_c8(dev_priv);
5469}
5470
8a187455
PZ
5471void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5472{
5473 struct drm_device *dev = dev_priv->dev;
5474 struct device *device = &dev->pdev->dev;
5475
5476 if (!HAS_RUNTIME_PM(dev))
5477 return;
5478
5479 pm_runtime_get_sync(device);
5480 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5481}
5482
5483void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5484{
5485 struct drm_device *dev = dev_priv->dev;
5486 struct device *device = &dev->pdev->dev;
5487
5488 if (!HAS_RUNTIME_PM(dev))
5489 return;
5490
5491 pm_runtime_mark_last_busy(device);
5492 pm_runtime_put_autosuspend(device);
5493}
5494
5495void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
5496{
5497 struct drm_device *dev = dev_priv->dev;
5498 struct device *device = &dev->pdev->dev;
5499
5500 dev_priv->pm.suspended = false;
5501
5502 if (!HAS_RUNTIME_PM(dev))
5503 return;
5504
5505 pm_runtime_set_active(device);
5506
5507 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
5508 pm_runtime_mark_last_busy(device);
5509 pm_runtime_use_autosuspend(device);
5510}
5511
5512void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
5513{
5514 struct drm_device *dev = dev_priv->dev;
5515 struct device *device = &dev->pdev->dev;
5516
5517 if (!HAS_RUNTIME_PM(dev))
5518 return;
5519
5520 /* Make sure we're not suspended first. */
5521 pm_runtime_get_sync(device);
5522 pm_runtime_disable(device);
5523}
5524
1fa61106
ED
5525/* Set up chip specific power management-related functions */
5526void intel_init_pm(struct drm_device *dev)
5527{
5528 struct drm_i915_private *dev_priv = dev->dev_private;
5529
3a77c4c4 5530 if (HAS_FBC(dev)) {
40045465 5531 if (INTEL_INFO(dev)->gen >= 7) {
1fa61106 5532 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
40045465
VS
5533 dev_priv->display.enable_fbc = gen7_enable_fbc;
5534 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5535 } else if (INTEL_INFO(dev)->gen >= 5) {
5536 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5537 dev_priv->display.enable_fbc = ironlake_enable_fbc;
1fa61106
ED
5538 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5539 } else if (IS_GM45(dev)) {
5540 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5541 dev_priv->display.enable_fbc = g4x_enable_fbc;
5542 dev_priv->display.disable_fbc = g4x_disable_fbc;
40045465 5543 } else {
1fa61106
ED
5544 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5545 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5546 dev_priv->display.disable_fbc = i8xx_disable_fbc;
993495ae
VS
5547
5548 /* This value was pulled out of someone's hat */
5549 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
1fa61106 5550 }
1fa61106
ED
5551 }
5552
c921aba8
DV
5553 /* For cxsr */
5554 if (IS_PINEVIEW(dev))
5555 i915_pineview_get_mem_freq(dev);
5556 else if (IS_GEN5(dev))
5557 i915_ironlake_get_mem_freq(dev);
5558
1fa61106
ED
5559 /* For FIFO watermark updates */
5560 if (HAS_PCH_SPLIT(dev)) {
53615a5e
VS
5561 intel_setup_wm_latency(dev);
5562
bd602544
VS
5563 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
5564 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
5565 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
5566 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
5567 dev_priv->display.update_wm = ilk_update_wm;
5568 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
5569 } else {
5570 DRM_DEBUG_KMS("Failed to read display plane latency. "
5571 "Disable CxSR\n");
5572 }
5573
5574 if (IS_GEN5(dev))
1fa61106 5575 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
bd602544 5576 else if (IS_GEN6(dev))
1fa61106 5577 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
bd602544 5578 else if (IS_IVYBRIDGE(dev))
1fa61106 5579 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
bd602544 5580 else if (IS_HASWELL(dev))
cad2a2d7 5581 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
bd602544 5582 else if (INTEL_INFO(dev)->gen == 8)
1020a5c2 5583 dev_priv->display.init_clock_gating = gen8_init_clock_gating;
1fa61106
ED
5584 } else if (IS_VALLEYVIEW(dev)) {
5585 dev_priv->display.update_wm = valleyview_update_wm;
5586 dev_priv->display.init_clock_gating =
5587 valleyview_init_clock_gating;
1fa61106
ED
5588 } else if (IS_PINEVIEW(dev)) {
5589 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5590 dev_priv->is_ddr3,
5591 dev_priv->fsb_freq,
5592 dev_priv->mem_freq)) {
5593 DRM_INFO("failed to find known CxSR latency "
5594 "(found ddr%s fsb freq %d, mem freq %d), "
5595 "disabling CxSR\n",
5596 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5597 dev_priv->fsb_freq, dev_priv->mem_freq);
5598 /* Disable CxSR and never update its watermark again */
5599 pineview_disable_cxsr(dev);
5600 dev_priv->display.update_wm = NULL;
5601 } else
5602 dev_priv->display.update_wm = pineview_update_wm;
5603 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5604 } else if (IS_G4X(dev)) {
5605 dev_priv->display.update_wm = g4x_update_wm;
5606 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5607 } else if (IS_GEN4(dev)) {
5608 dev_priv->display.update_wm = i965_update_wm;
5609 if (IS_CRESTLINE(dev))
5610 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5611 else if (IS_BROADWATER(dev))
5612 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5613 } else if (IS_GEN3(dev)) {
5614 dev_priv->display.update_wm = i9xx_update_wm;
5615 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5616 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
feb56b93
DV
5617 } else if (IS_GEN2(dev)) {
5618 if (INTEL_INFO(dev)->num_pipes == 1) {
5619 dev_priv->display.update_wm = i845_update_wm;
1fa61106 5620 dev_priv->display.get_fifo_size = i845_get_fifo_size;
feb56b93
DV
5621 } else {
5622 dev_priv->display.update_wm = i9xx_update_wm;
1fa61106 5623 dev_priv->display.get_fifo_size = i830_get_fifo_size;
feb56b93
DV
5624 }
5625
5626 if (IS_I85X(dev) || IS_I865G(dev))
5627 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5628 else
5629 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5630 } else {
5631 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
1fa61106
ED
5632 }
5633}
5634
42c0526c
BW
5635int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5636{
4fc688ce 5637 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
5638
5639 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5640 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5641 return -EAGAIN;
5642 }
5643
5644 I915_WRITE(GEN6_PCODE_DATA, *val);
5645 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5646
5647 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5648 500)) {
5649 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5650 return -ETIMEDOUT;
5651 }
5652
5653 *val = I915_READ(GEN6_PCODE_DATA);
5654 I915_WRITE(GEN6_PCODE_DATA, 0);
5655
5656 return 0;
5657}
5658
5659int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5660{
4fc688ce 5661 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
5662
5663 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5664 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5665 return -EAGAIN;
5666 }
5667
5668 I915_WRITE(GEN6_PCODE_DATA, val);
5669 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5670
5671 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5672 500)) {
5673 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5674 return -ETIMEDOUT;
5675 }
5676
5677 I915_WRITE(GEN6_PCODE_DATA, 0);
5678
5679 return 0;
5680}
a0e4e199 5681
2ec3815f 5682int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
855ba3be 5683{
07ab118b 5684 int div;
855ba3be 5685
07ab118b 5686 /* 4 x czclk */
2ec3815f 5687 switch (dev_priv->mem_freq) {
855ba3be 5688 case 800:
07ab118b 5689 div = 10;
855ba3be
JB
5690 break;
5691 case 1066:
07ab118b 5692 div = 12;
855ba3be
JB
5693 break;
5694 case 1333:
07ab118b 5695 div = 16;
855ba3be
JB
5696 break;
5697 default:
5698 return -1;
5699 }
5700
2ec3815f 5701 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
855ba3be
JB
5702}
5703
2ec3815f 5704int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
855ba3be 5705{
07ab118b 5706 int mul;
855ba3be 5707
07ab118b 5708 /* 4 x czclk */
2ec3815f 5709 switch (dev_priv->mem_freq) {
855ba3be 5710 case 800:
07ab118b 5711 mul = 10;
855ba3be
JB
5712 break;
5713 case 1066:
07ab118b 5714 mul = 12;
855ba3be
JB
5715 break;
5716 case 1333:
07ab118b 5717 mul = 16;
855ba3be
JB
5718 break;
5719 default:
5720 return -1;
5721 }
5722
2ec3815f 5723 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
855ba3be
JB
5724}
5725
f742a552 5726void intel_pm_setup(struct drm_device *dev)
907b28c5
CW
5727{
5728 struct drm_i915_private *dev_priv = dev->dev_private;
5729
f742a552
DV
5730 mutex_init(&dev_priv->rps.hw_lock);
5731
5732 mutex_init(&dev_priv->pc8.lock);
5733 dev_priv->pc8.requirements_met = false;
5734 dev_priv->pc8.gpu_idle = false;
5735 dev_priv->pc8.irqs_disabled = false;
5736 dev_priv->pc8.enabled = false;
5737 dev_priv->pc8.disable_count = 2; /* requirements_met + gpu_idle */
5738 INIT_DELAYED_WORK(&dev_priv->pc8.enable_work, hsw_enable_pc8_work);
907b28c5
CW
5739 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5740 intel_gen6_powersave_work);
5741}
This page took 0.659734 seconds and 5 git commands to generate.