iscsit: use target_execute_cmd for WRITEs
[deliverable/linux.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
CommitLineData
a42d985b
BVA
1/*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/err.h>
39#include <linux/ctype.h>
40#include <linux/kthread.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/atomic.h>
44#include <scsi/scsi_tcq.h>
45#include <target/configfs_macros.h>
46#include <target/target_core_base.h>
47#include <target/target_core_fabric_configfs.h>
48#include <target/target_core_fabric.h>
49#include <target/target_core_configfs.h>
50#include "ib_srpt.h"
51
52/* Name of this kernel module. */
53#define DRV_NAME "ib_srpt"
54#define DRV_VERSION "2.0.0"
55#define DRV_RELDATE "2011-02-14"
56
57#define SRPT_ID_STRING "Linux SRP target"
58
59#undef pr_fmt
60#define pr_fmt(fmt) DRV_NAME " " fmt
61
62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65MODULE_LICENSE("Dual BSD/GPL");
66
67/*
68 * Global Variables
69 */
70
71static u64 srpt_service_guid;
486d8b9f
RD
72static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
a42d985b
BVA
74
75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76module_param(srp_max_req_size, int, 0444);
77MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81module_param(srpt_srq_size, int, 0444);
82MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86{
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88}
89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95static struct ib_client srpt_client;
96static struct target_fabric_configfs *srpt_target;
97static void srpt_release_channel(struct srpt_rdma_ch *ch);
98static int srpt_queue_status(struct se_cmd *cmd);
99
100/**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103static inline
104enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105{
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
110 }
111}
112
113/**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
118static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119{
120 return sdev->device->name;
121}
122
123static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124{
125 unsigned long flags;
126 enum rdma_ch_state state;
127
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
132}
133
134static enum rdma_ch_state
135srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136{
137 unsigned long flags;
138 enum rdma_ch_state prev;
139
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
145}
146
147/**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152static bool
153srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
155{
156 unsigned long flags;
157 enum rdma_ch_state prev;
158
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
165}
166
167/**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
175static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
177{
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
180
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
184
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
187
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
194 }
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 /* Refresh port data asynchronously. */
202 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 sport = &sdev->port[event->element.port_num - 1];
204 if (!sport->lid && !sport->sm_lid)
205 schedule_work(&sport->work);
206 }
207 break;
208 default:
209 printk(KERN_ERR "received unrecognized IB event %d\n",
210 event->event);
211 break;
212 }
213}
214
215/**
216 * srpt_srq_event() - SRQ event callback function.
217 */
218static void srpt_srq_event(struct ib_event *event, void *ctx)
219{
220 printk(KERN_INFO "SRQ event %d\n", event->event);
221}
222
223/**
224 * srpt_qp_event() - QP event callback function.
225 */
226static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227{
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231 switch (event->event) {
232 case IB_EVENT_COMM_EST:
233 ib_cm_notify(ch->cm_id, event->event);
234 break;
235 case IB_EVENT_QP_LAST_WQE_REACHED:
236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 CH_RELEASING))
238 srpt_release_channel(ch);
239 else
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch->sess_name, srpt_get_ch_state(ch));
242 break;
243 default:
244 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245 event->event);
246 break;
247 }
248}
249
250/**
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252 *
253 * @slot: one-based slot number.
254 * @value: four-bit value.
255 *
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
258 */
259static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260{
261 u16 id;
262 u8 tmp;
263
264 id = (slot - 1) / 2;
265 if (slot & 0x1) {
266 tmp = c_list[id] & 0xf;
267 c_list[id] = (value << 4) | tmp;
268 } else {
269 tmp = c_list[id] & 0xf0;
270 c_list[id] = (value & 0xf) | tmp;
271 }
272}
273
274/**
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276 *
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278 * Specification.
279 */
280static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281{
282 struct ib_class_port_info *cif;
283
284 cif = (struct ib_class_port_info *)mad->data;
285 memset(cif, 0, sizeof *cif);
286 cif->base_version = 1;
287 cif->class_version = 1;
288 cif->resp_time_value = 20;
289
290 mad->mad_hdr.status = 0;
291}
292
293/**
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295 *
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
298 */
299static void srpt_get_iou(struct ib_dm_mad *mad)
300{
301 struct ib_dm_iou_info *ioui;
302 u8 slot;
303 int i;
304
305 ioui = (struct ib_dm_iou_info *)mad->data;
306 ioui->change_id = __constant_cpu_to_be16(1);
307 ioui->max_controllers = 16;
308
309 /* set present for slot 1 and empty for the rest */
310 srpt_set_ioc(ioui->controller_list, 1, 1);
311 for (i = 1, slot = 2; i < 16; i++, slot++)
312 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314 mad->mad_hdr.status = 0;
315}
316
317/**
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
326{
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
329
330 iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332 if (!slot || slot > 16) {
333 mad->mad_hdr.status
334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 return;
336 }
337
338 if (slot > 2) {
339 mad->mad_hdr.status
340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 return;
342 }
343
344 memset(iocp, 0, sizeof *iocp);
345 strcpy(iocp->id_string, SRPT_ID_STRING);
346 iocp->guid = cpu_to_be64(srpt_service_guid);
347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 iocp->subsys_device_id = 0x0;
352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 iocp->rdma_read_depth = 4;
358 iocp->send_size = cpu_to_be32(srp_max_req_size);
359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 1U << 24));
361 iocp->num_svc_entries = 1;
362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365 mad->mad_hdr.status = 0;
366}
367
368/**
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370 *
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
373 */
374static void srpt_get_svc_entries(u64 ioc_guid,
375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376{
377 struct ib_dm_svc_entries *svc_entries;
378
379 WARN_ON(!ioc_guid);
380
381 if (!slot || slot > 16) {
382 mad->mad_hdr.status
383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 return;
385 }
386
387 if (slot > 2 || lo > hi || hi > 1) {
388 mad->mad_hdr.status
389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 return;
391 }
392
393 svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 memset(svc_entries, 0, sizeof *svc_entries);
395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 snprintf(svc_entries->service_entries[0].name,
397 sizeof(svc_entries->service_entries[0].name),
398 "%s%016llx",
399 SRP_SERVICE_NAME_PREFIX,
400 ioc_guid);
401
402 mad->mad_hdr.status = 0;
403}
404
405/**
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp: source port through which the MAD has been received.
408 * @rq_mad: received MAD.
409 * @rsp_mad: response MAD.
410 */
411static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 struct ib_dm_mad *rsp_mad)
413{
414 u16 attr_id;
415 u32 slot;
416 u8 hi, lo;
417
418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 switch (attr_id) {
420 case DM_ATTR_CLASS_PORT_INFO:
421 srpt_get_class_port_info(rsp_mad);
422 break;
423 case DM_ATTR_IOU_INFO:
424 srpt_get_iou(rsp_mad);
425 break;
426 case DM_ATTR_IOC_PROFILE:
427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 srpt_get_ioc(sp, slot, rsp_mad);
429 break;
430 case DM_ATTR_SVC_ENTRIES:
431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 hi = (u8) ((slot >> 8) & 0xff);
433 lo = (u8) (slot & 0xff);
434 slot = (u16) ((slot >> 16) & 0xffff);
435 srpt_get_svc_entries(srpt_service_guid,
436 slot, hi, lo, rsp_mad);
437 break;
438 default:
439 rsp_mad->mad_hdr.status =
440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 break;
442 }
443}
444
445/**
446 * srpt_mad_send_handler() - Post MAD-send callback function.
447 */
448static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 struct ib_mad_send_wc *mad_wc)
450{
451 ib_destroy_ah(mad_wc->send_buf->ah);
452 ib_free_send_mad(mad_wc->send_buf);
453}
454
455/**
456 * srpt_mad_recv_handler() - MAD reception callback function.
457 */
458static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 struct ib_mad_recv_wc *mad_wc)
460{
461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 struct ib_ah *ah;
463 struct ib_mad_send_buf *rsp;
464 struct ib_dm_mad *dm_mad;
465
466 if (!mad_wc || !mad_wc->recv_buf.mad)
467 return;
468
469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 mad_wc->recv_buf.grh, mad_agent->port_num);
471 if (IS_ERR(ah))
472 goto err;
473
474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 mad_wc->wc->pkey_index, 0,
478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 GFP_KERNEL);
480 if (IS_ERR(rsp))
481 goto err_rsp;
482
483 rsp->ah = ah;
484
485 dm_mad = rsp->mad;
486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 dm_mad->mad_hdr.status = 0;
489
490 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 case IB_MGMT_METHOD_GET:
492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 break;
494 case IB_MGMT_METHOD_SET:
495 dm_mad->mad_hdr.status =
496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 break;
498 default:
499 dm_mad->mad_hdr.status =
500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 break;
502 }
503
504 if (!ib_post_send_mad(rsp, NULL)) {
505 ib_free_recv_mad(mad_wc);
506 /* will destroy_ah & free_send_mad in send completion */
507 return;
508 }
509
510 ib_free_send_mad(rsp);
511
512err_rsp:
513 ib_destroy_ah(ah);
514err:
515 ib_free_recv_mad(mad_wc);
516}
517
518/**
519 * srpt_refresh_port() - Configure a HCA port.
520 *
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
524 *
525 * Note: It is safe to call this function more than once for the same port.
526 */
527static int srpt_refresh_port(struct srpt_port *sport)
528{
529 struct ib_mad_reg_req reg_req;
530 struct ib_port_modify port_modify;
531 struct ib_port_attr port_attr;
532 int ret;
533
534 memset(&port_modify, 0, sizeof port_modify);
535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 port_modify.clr_port_cap_mask = 0;
537
538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 if (ret)
540 goto err_mod_port;
541
542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 if (ret)
544 goto err_query_port;
545
546 sport->sm_lid = port_attr.sm_lid;
547 sport->lid = port_attr.lid;
548
549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 if (ret)
551 goto err_query_port;
552
553 if (!sport->mad_agent) {
554 memset(&reg_req, 0, sizeof reg_req);
555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 sport->port,
562 IB_QPT_GSI,
563 &reg_req, 0,
564 srpt_mad_send_handler,
565 srpt_mad_recv_handler,
566 sport);
567 if (IS_ERR(sport->mad_agent)) {
568 ret = PTR_ERR(sport->mad_agent);
569 sport->mad_agent = NULL;
570 goto err_query_port;
571 }
572 }
573
574 return 0;
575
576err_query_port:
577
578 port_modify.set_port_cap_mask = 0;
579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582err_mod_port:
583
584 return ret;
585}
586
587/**
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 *
590 * Note: It is safe to call this function more than once for the same device.
591 */
592static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593{
594 struct ib_port_modify port_modify = {
595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 };
597 struct srpt_port *sport;
598 int i;
599
600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 sport = &sdev->port[i - 1];
602 WARN_ON(sport->port != i);
603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 printk(KERN_ERR "disabling MAD processing failed.\n");
605 if (sport->mad_agent) {
606 ib_unregister_mad_agent(sport->mad_agent);
607 sport->mad_agent = NULL;
608 }
609 }
610}
611
612/**
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 */
615static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 int ioctx_size, int dma_size,
617 enum dma_data_direction dir)
618{
619 struct srpt_ioctx *ioctx;
620
621 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 if (!ioctx)
623 goto err;
624
625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 if (!ioctx->buf)
627 goto err_free_ioctx;
628
629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 goto err_free_buf;
632
633 return ioctx;
634
635err_free_buf:
636 kfree(ioctx->buf);
637err_free_ioctx:
638 kfree(ioctx);
639err:
640 return NULL;
641}
642
643/**
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 */
646static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 int dma_size, enum dma_data_direction dir)
648{
649 if (!ioctx)
650 return;
651
652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 kfree(ioctx->buf);
654 kfree(ioctx);
655}
656
657/**
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
664 */
665static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 int ring_size, int ioctx_size,
667 int dma_size, enum dma_data_direction dir)
668{
669 struct srpt_ioctx **ring;
670 int i;
671
672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 if (!ring)
677 goto out;
678 for (i = 0; i < ring_size; ++i) {
679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 if (!ring[i])
681 goto err;
682 ring[i]->index = i;
683 }
684 goto out;
685
686err:
687 while (--i >= 0)
688 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 kfree(ring);
715252d4 690 ring = NULL;
a42d985b
BVA
691out:
692 return ring;
693}
694
695/**
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 */
698static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 struct srpt_device *sdev, int ring_size,
700 int dma_size, enum dma_data_direction dir)
701{
702 int i;
703
704 for (i = 0; i < ring_size; ++i)
705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 kfree(ioctx_ring);
707}
708
709/**
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 */
712static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713{
714 enum srpt_command_state state;
715 unsigned long flags;
716
717 BUG_ON(!ioctx);
718
719 spin_lock_irqsave(&ioctx->spinlock, flags);
720 state = ioctx->state;
721 spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 return state;
723}
724
725/**
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 *
728 * Does not modify the state of aborted commands. Returns the previous command
729 * state.
730 */
731static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 enum srpt_command_state new)
733{
734 enum srpt_command_state previous;
735 unsigned long flags;
736
737 BUG_ON(!ioctx);
738
739 spin_lock_irqsave(&ioctx->spinlock, flags);
740 previous = ioctx->state;
741 if (previous != SRPT_STATE_DONE)
742 ioctx->state = new;
743 spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745 return previous;
746}
747
748/**
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 *
751 * Returns true if and only if the previous command state was equal to 'old'.
752 */
753static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 enum srpt_command_state old,
755 enum srpt_command_state new)
756{
757 enum srpt_command_state previous;
758 unsigned long flags;
759
760 WARN_ON(!ioctx);
761 WARN_ON(old == SRPT_STATE_DONE);
762 WARN_ON(new == SRPT_STATE_NEW);
763
764 spin_lock_irqsave(&ioctx->spinlock, flags);
765 previous = ioctx->state;
766 if (previous == old)
767 ioctx->state = new;
768 spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 return previous == old;
770}
771
772/**
773 * srpt_post_recv() - Post an IB receive request.
774 */
775static int srpt_post_recv(struct srpt_device *sdev,
776 struct srpt_recv_ioctx *ioctx)
777{
778 struct ib_sge list;
779 struct ib_recv_wr wr, *bad_wr;
780
781 BUG_ON(!sdev);
782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784 list.addr = ioctx->ioctx.dma;
785 list.length = srp_max_req_size;
786 list.lkey = sdev->mr->lkey;
787
788 wr.next = NULL;
789 wr.sg_list = &list;
790 wr.num_sge = 1;
791
792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793}
794
795/**
796 * srpt_post_send() - Post an IB send request.
797 *
798 * Returns zero upon success and a non-zero value upon failure.
799 */
800static int srpt_post_send(struct srpt_rdma_ch *ch,
801 struct srpt_send_ioctx *ioctx, int len)
802{
803 struct ib_sge list;
804 struct ib_send_wr wr, *bad_wr;
805 struct srpt_device *sdev = ch->sport->sdev;
806 int ret;
807
808 atomic_inc(&ch->req_lim);
809
810 ret = -ENOMEM;
811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 printk(KERN_WARNING "IB send queue full (needed 1)\n");
813 goto out;
814 }
815
816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 DMA_TO_DEVICE);
818
819 list.addr = ioctx->ioctx.dma;
820 list.length = len;
821 list.lkey = sdev->mr->lkey;
822
823 wr.next = NULL;
824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 wr.sg_list = &list;
826 wr.num_sge = 1;
827 wr.opcode = IB_WR_SEND;
828 wr.send_flags = IB_SEND_SIGNALED;
829
830 ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832out:
833 if (ret < 0) {
834 atomic_inc(&ch->sq_wr_avail);
835 atomic_dec(&ch->req_lim);
836 }
837 return ret;
838}
839
840/**
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
845 * written.
846 * @data_len: Pointer to the variable to which the total data length of all
847 * descriptors in the SRP_CMD request will be written.
848 *
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 *
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
853 */
854static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 struct srp_cmd *srp_cmd,
856 enum dma_data_direction *dir, u64 *data_len)
857{
858 struct srp_indirect_buf *idb;
859 struct srp_direct_buf *db;
860 unsigned add_cdb_offset;
861 int ret;
862
863 /*
864 * The pointer computations below will only be compiled correctly
865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 * whether srp_cmd::add_data has been declared as a byte pointer.
867 */
868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871 BUG_ON(!dir);
872 BUG_ON(!data_len);
873
874 ret = 0;
875 *data_len = 0;
876
877 /*
878 * The lower four bits of the buffer format field contain the DATA-IN
879 * buffer descriptor format, and the highest four bits contain the
880 * DATA-OUT buffer descriptor format.
881 */
882 *dir = DMA_NONE;
883 if (srp_cmd->buf_fmt & 0xf)
884 /* DATA-IN: transfer data from target to initiator (read). */
885 *dir = DMA_FROM_DEVICE;
886 else if (srp_cmd->buf_fmt >> 4)
887 /* DATA-OUT: transfer data from initiator to target (write). */
888 *dir = DMA_TO_DEVICE;
889
890 /*
891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 * CDB LENGTH' field are reserved and the size in bytes of this field
893 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 */
895 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 ioctx->n_rbuf = 1;
899 ioctx->rbufs = &ioctx->single_rbuf;
900
901 db = (struct srp_direct_buf *)(srp_cmd->add_data
902 + add_cdb_offset);
903 memcpy(ioctx->rbufs, db, sizeof *db);
904 *data_len = be32_to_cpu(db->len);
905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 + add_cdb_offset);
909
910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912 if (ioctx->n_rbuf >
913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 printk(KERN_ERR "received unsupported SRP_CMD request"
915 " type (%u out + %u in != %u / %zu)\n",
916 srp_cmd->data_out_desc_cnt,
917 srp_cmd->data_in_desc_cnt,
918 be32_to_cpu(idb->table_desc.len),
919 sizeof(*db));
920 ioctx->n_rbuf = 0;
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (ioctx->n_rbuf == 1)
926 ioctx->rbufs = &ioctx->single_rbuf;
927 else {
928 ioctx->rbufs =
929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 if (!ioctx->rbufs) {
931 ioctx->n_rbuf = 0;
932 ret = -ENOMEM;
933 goto out;
934 }
935 }
936
937 db = idb->desc_list;
938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 *data_len = be32_to_cpu(idb->len);
940 }
941out:
942 return ret;
943}
944
945/**
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 *
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 */
951static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952{
953 struct ib_qp_attr *attr;
954 int ret;
955
956 attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 if (!attr)
958 return -ENOMEM;
959
960 attr->qp_state = IB_QPS_INIT;
961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 IB_ACCESS_REMOTE_WRITE;
963 attr->port_num = ch->sport->port;
964 attr->pkey_index = 0;
965
966 ret = ib_modify_qp(qp, attr,
967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 IB_QP_PKEY_INDEX);
969
970 kfree(attr);
971 return ret;
972}
973
974/**
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
978 *
979 * Returns zero upon success and a negative value upon failure.
980 *
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
984 */
985static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986{
987 struct ib_qp_attr qp_attr;
988 int attr_mask;
989 int ret;
990
991 qp_attr.qp_state = IB_QPS_RTR;
992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 if (ret)
994 goto out;
995
996 qp_attr.max_dest_rd_atomic = 4;
997
998 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000out:
1001 return ret;
1002}
1003
1004/**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016{
1017 struct ib_qp_attr qp_attr;
1018 int attr_mask;
1019 int ret;
1020
1021 qp_attr.qp_state = IB_QPS_RTS;
1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 if (ret)
1024 goto out;
1025
1026 qp_attr.max_rd_atomic = 4;
1027
1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030out:
1031 return ret;
1032}
1033
1034/**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038{
1039 struct ib_qp_attr qp_attr;
1040
1041 qp_attr.qp_state = IB_QPS_ERR;
1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043}
1044
1045/**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 struct srpt_send_ioctx *ioctx)
1050{
1051 struct scatterlist *sg;
1052 enum dma_data_direction dir;
1053
1054 BUG_ON(!ch);
1055 BUG_ON(!ioctx);
1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058 while (ioctx->n_rdma)
1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061 kfree(ioctx->rdma_ius);
1062 ioctx->rdma_ius = NULL;
1063
1064 if (ioctx->mapped_sg_count) {
1065 sg = ioctx->sg;
1066 WARN_ON(!sg);
1067 dir = ioctx->cmd.data_direction;
1068 BUG_ON(dir == DMA_NONE);
1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 opposite_dma_dir(dir));
1071 ioctx->mapped_sg_count = 0;
1072 }
1073}
1074
1075/**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 struct srpt_send_ioctx *ioctx)
1080{
1081 struct se_cmd *cmd;
1082 struct scatterlist *sg, *sg_orig;
1083 int sg_cnt;
1084 enum dma_data_direction dir;
1085 struct rdma_iu *riu;
1086 struct srp_direct_buf *db;
1087 dma_addr_t dma_addr;
1088 struct ib_sge *sge;
1089 u64 raddr;
1090 u32 rsize;
1091 u32 tsize;
1092 u32 dma_len;
1093 int count, nrdma;
1094 int i, j, k;
1095
1096 BUG_ON(!ch);
1097 BUG_ON(!ioctx);
1098 cmd = &ioctx->cmd;
1099 dir = cmd->data_direction;
1100 BUG_ON(dir == DMA_NONE);
1101
6f9e7f01
RD
1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
a42d985b
BVA
1104
1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106 opposite_dma_dir(dir));
1107 if (unlikely(!count))
1108 return -EAGAIN;
1109
1110 ioctx->mapped_sg_count = count;
1111
1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113 nrdma = ioctx->n_rdma_ius;
1114 else {
1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116 + ioctx->n_rbuf;
1117
1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119 if (!ioctx->rdma_ius)
1120 goto free_mem;
1121
1122 ioctx->n_rdma_ius = nrdma;
1123 }
1124
1125 db = ioctx->rbufs;
1126 tsize = cmd->data_length;
1127 dma_len = sg_dma_len(&sg[0]);
1128 riu = ioctx->rdma_ius;
1129
1130 /*
1131 * For each remote desc - calculate the #ib_sge.
1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 * each remote desc rdma_iu is required a rdma wr;
1134 * else
1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1136 * another rdma wr
1137 */
1138 for (i = 0, j = 0;
1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140 rsize = be32_to_cpu(db->len);
1141 raddr = be64_to_cpu(db->va);
1142 riu->raddr = raddr;
1143 riu->rkey = be32_to_cpu(db->key);
1144 riu->sge_cnt = 0;
1145
1146 /* calculate how many sge required for this remote_buf */
1147 while (rsize > 0 && tsize > 0) {
1148
1149 if (rsize >= dma_len) {
1150 tsize -= dma_len;
1151 rsize -= dma_len;
1152 raddr += dma_len;
1153
1154 if (tsize > 0) {
1155 ++j;
1156 if (j < count) {
1157 sg = sg_next(sg);
1158 dma_len = sg_dma_len(sg);
1159 }
1160 }
1161 } else {
1162 tsize -= rsize;
1163 dma_len -= rsize;
1164 rsize = 0;
1165 }
1166
1167 ++riu->sge_cnt;
1168
1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170 ++ioctx->n_rdma;
1171 riu->sge =
1172 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173 GFP_KERNEL);
1174 if (!riu->sge)
1175 goto free_mem;
1176
1177 ++riu;
1178 riu->sge_cnt = 0;
1179 riu->raddr = raddr;
1180 riu->rkey = be32_to_cpu(db->key);
1181 }
1182 }
1183
1184 ++ioctx->n_rdma;
1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186 GFP_KERNEL);
1187 if (!riu->sge)
1188 goto free_mem;
1189 }
1190
1191 db = ioctx->rbufs;
1192 tsize = cmd->data_length;
1193 riu = ioctx->rdma_ius;
1194 sg = sg_orig;
1195 dma_len = sg_dma_len(&sg[0]);
1196 dma_addr = sg_dma_address(&sg[0]);
1197
1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199 for (i = 0, j = 0;
1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201 rsize = be32_to_cpu(db->len);
1202 sge = riu->sge;
1203 k = 0;
1204
1205 while (rsize > 0 && tsize > 0) {
1206 sge->addr = dma_addr;
1207 sge->lkey = ch->sport->sdev->mr->lkey;
1208
1209 if (rsize >= dma_len) {
1210 sge->length =
1211 (tsize < dma_len) ? tsize : dma_len;
1212 tsize -= dma_len;
1213 rsize -= dma_len;
1214
1215 if (tsize > 0) {
1216 ++j;
1217 if (j < count) {
1218 sg = sg_next(sg);
1219 dma_len = sg_dma_len(sg);
1220 dma_addr = sg_dma_address(sg);
1221 }
1222 }
1223 } else {
1224 sge->length = (tsize < rsize) ? tsize : rsize;
1225 tsize -= rsize;
1226 dma_len -= rsize;
1227 dma_addr += rsize;
1228 rsize = 0;
1229 }
1230
1231 ++k;
1232 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1233 ++riu;
1234 sge = riu->sge;
1235 k = 0;
1236 } else if (rsize > 0 && tsize > 0)
1237 ++sge;
1238 }
1239 }
1240
1241 return 0;
1242
1243free_mem:
1244 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1245
1246 return -ENOMEM;
1247}
1248
1249/**
1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1251 */
1252static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1253{
1254 struct srpt_send_ioctx *ioctx;
1255 unsigned long flags;
1256
1257 BUG_ON(!ch);
1258
1259 ioctx = NULL;
1260 spin_lock_irqsave(&ch->spinlock, flags);
1261 if (!list_empty(&ch->free_list)) {
1262 ioctx = list_first_entry(&ch->free_list,
1263 struct srpt_send_ioctx, free_list);
1264 list_del(&ioctx->free_list);
1265 }
1266 spin_unlock_irqrestore(&ch->spinlock, flags);
1267
1268 if (!ioctx)
1269 return ioctx;
1270
1271 BUG_ON(ioctx->ch != ch);
1272 kref_init(&ioctx->kref);
1273 spin_lock_init(&ioctx->spinlock);
1274 ioctx->state = SRPT_STATE_NEW;
1275 ioctx->n_rbuf = 0;
1276 ioctx->rbufs = NULL;
1277 ioctx->n_rdma = 0;
1278 ioctx->n_rdma_ius = 0;
1279 ioctx->rdma_ius = NULL;
1280 ioctx->mapped_sg_count = 0;
1281 init_completion(&ioctx->tx_done);
1282 ioctx->queue_status_only = false;
1283 /*
1284 * transport_init_se_cmd() does not initialize all fields, so do it
1285 * here.
1286 */
1287 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1288 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1289
1290 return ioctx;
1291}
1292
1293/**
1294 * srpt_put_send_ioctx() - Free up resources.
1295 */
1296static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx)
1297{
1298 struct srpt_rdma_ch *ch;
1299 unsigned long flags;
1300
1301 BUG_ON(!ioctx);
1302 ch = ioctx->ch;
1303 BUG_ON(!ch);
1304
1305 WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE);
1306
1307 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1308 transport_generic_free_cmd(&ioctx->cmd, 0);
1309
1310 if (ioctx->n_rbuf > 1) {
1311 kfree(ioctx->rbufs);
1312 ioctx->rbufs = NULL;
1313 ioctx->n_rbuf = 0;
1314 }
1315
1316 spin_lock_irqsave(&ch->spinlock, flags);
1317 list_add(&ioctx->free_list, &ch->free_list);
1318 spin_unlock_irqrestore(&ch->spinlock, flags);
1319}
1320
1321static void srpt_put_send_ioctx_kref(struct kref *kref)
1322{
1323 srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref));
1324}
1325
1326/**
1327 * srpt_abort_cmd() - Abort a SCSI command.
1328 * @ioctx: I/O context associated with the SCSI command.
1329 * @context: Preferred execution context.
1330 */
1331static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1332{
1333 enum srpt_command_state state;
1334 unsigned long flags;
1335
1336 BUG_ON(!ioctx);
1337
1338 /*
1339 * If the command is in a state where the target core is waiting for
1340 * the ib_srpt driver, change the state to the next state. Changing
1341 * the state of the command from SRPT_STATE_NEED_DATA to
1342 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1343 * function a second time.
1344 */
1345
1346 spin_lock_irqsave(&ioctx->spinlock, flags);
1347 state = ioctx->state;
1348 switch (state) {
1349 case SRPT_STATE_NEED_DATA:
1350 ioctx->state = SRPT_STATE_DATA_IN;
1351 break;
1352 case SRPT_STATE_DATA_IN:
1353 case SRPT_STATE_CMD_RSP_SENT:
1354 case SRPT_STATE_MGMT_RSP_SENT:
1355 ioctx->state = SRPT_STATE_DONE;
1356 break;
1357 default:
1358 break;
1359 }
1360 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1361
1362 if (state == SRPT_STATE_DONE)
1363 goto out;
1364
1365 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1366 ioctx->tag);
1367
1368 switch (state) {
1369 case SRPT_STATE_NEW:
1370 case SRPT_STATE_DATA_IN:
1371 case SRPT_STATE_MGMT:
1372 /*
1373 * Do nothing - defer abort processing until
1374 * srpt_queue_response() is invoked.
1375 */
1376 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1377 break;
1378 case SRPT_STATE_NEED_DATA:
1379 /* DMA_TO_DEVICE (write) - RDMA read error. */
7d680f3b
CH
1380 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1381 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1382 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
a42d985b
BVA
1383 transport_generic_handle_data(&ioctx->cmd);
1384 break;
1385 case SRPT_STATE_CMD_RSP_SENT:
1386 /*
1387 * SRP_RSP sending failed or the SRP_RSP send completion has
1388 * not been received in time.
1389 */
1390 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
7d680f3b
CH
1391 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1392 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1393 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
a42d985b
BVA
1394 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1395 break;
1396 case SRPT_STATE_MGMT_RSP_SENT:
1397 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1398 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1399 break;
1400 default:
1401 WARN_ON("ERROR: unexpected command state");
1402 break;
1403 }
1404
1405out:
1406 return state;
1407}
1408
1409/**
1410 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1411 */
1412static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1413{
1414 struct srpt_send_ioctx *ioctx;
1415 enum srpt_command_state state;
1416 struct se_cmd *cmd;
1417 u32 index;
1418
1419 atomic_inc(&ch->sq_wr_avail);
1420
1421 index = idx_from_wr_id(wr_id);
1422 ioctx = ch->ioctx_ring[index];
1423 state = srpt_get_cmd_state(ioctx);
1424 cmd = &ioctx->cmd;
1425
1426 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1427 && state != SRPT_STATE_MGMT_RSP_SENT
1428 && state != SRPT_STATE_NEED_DATA
1429 && state != SRPT_STATE_DONE);
1430
1431 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1432 if (state == SRPT_STATE_CMD_RSP_SENT
1433 || state == SRPT_STATE_MGMT_RSP_SENT)
1434 atomic_dec(&ch->req_lim);
1435
1436 srpt_abort_cmd(ioctx);
1437}
1438
1439/**
1440 * srpt_handle_send_comp() - Process an IB send completion notification.
1441 */
1442static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1443 struct srpt_send_ioctx *ioctx)
1444{
1445 enum srpt_command_state state;
1446
1447 atomic_inc(&ch->sq_wr_avail);
1448
1449 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1450
1451 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1452 && state != SRPT_STATE_MGMT_RSP_SENT
1453 && state != SRPT_STATE_DONE))
1454 pr_debug("state = %d\n", state);
1455
1456 if (state != SRPT_STATE_DONE)
1457 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1458 else
1459 printk(KERN_ERR "IB completion has been received too late for"
1460 " wr_id = %u.\n", ioctx->ioctx.index);
1461}
1462
1463/**
1464 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1465 *
1466 * Note: transport_generic_handle_data() is asynchronous so unmapping the
1467 * data that has been transferred via IB RDMA must be postponed until the
1468 * check_stop_free() callback.
1469 */
1470static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1471 struct srpt_send_ioctx *ioctx,
1472 enum srpt_opcode opcode)
1473{
1474 WARN_ON(ioctx->n_rdma <= 0);
1475 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1476
1477 if (opcode == SRPT_RDMA_READ_LAST) {
1478 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1479 SRPT_STATE_DATA_IN))
1480 transport_generic_handle_data(&ioctx->cmd);
1481 else
1482 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1483 __LINE__, srpt_get_cmd_state(ioctx));
1484 } else if (opcode == SRPT_RDMA_ABORT) {
1485 ioctx->rdma_aborted = true;
1486 } else {
1487 WARN(true, "unexpected opcode %d\n", opcode);
1488 }
1489}
1490
1491/**
1492 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1493 */
1494static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1495 struct srpt_send_ioctx *ioctx,
1496 enum srpt_opcode opcode)
1497{
1498 struct se_cmd *cmd;
1499 enum srpt_command_state state;
7d680f3b 1500 unsigned long flags;
a42d985b
BVA
1501
1502 cmd = &ioctx->cmd;
1503 state = srpt_get_cmd_state(ioctx);
1504 switch (opcode) {
1505 case SRPT_RDMA_READ_LAST:
1506 if (ioctx->n_rdma <= 0) {
1507 printk(KERN_ERR "Received invalid RDMA read"
1508 " error completion with idx %d\n",
1509 ioctx->ioctx.index);
1510 break;
1511 }
1512 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1513 if (state == SRPT_STATE_NEED_DATA)
1514 srpt_abort_cmd(ioctx);
1515 else
1516 printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1517 __func__, __LINE__, state);
1518 break;
1519 case SRPT_RDMA_WRITE_LAST:
7d680f3b
CH
1520 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1521 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1522 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
a42d985b
BVA
1523 break;
1524 default:
1525 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1526 __LINE__, opcode);
1527 break;
1528 }
1529}
1530
1531/**
1532 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1533 * @ch: RDMA channel through which the request has been received.
1534 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1535 * be built in the buffer ioctx->buf points at and hence this function will
1536 * overwrite the request data.
1537 * @tag: tag of the request for which this response is being generated.
1538 * @status: value for the STATUS field of the SRP_RSP information unit.
1539 *
1540 * Returns the size in bytes of the SRP_RSP response.
1541 *
1542 * An SRP_RSP response contains a SCSI status or service response. See also
1543 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1544 * response. See also SPC-2 for more information about sense data.
1545 */
1546static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1547 struct srpt_send_ioctx *ioctx, u64 tag,
1548 int status)
1549{
1550 struct srp_rsp *srp_rsp;
1551 const u8 *sense_data;
1552 int sense_data_len, max_sense_len;
1553
1554 /*
1555 * The lowest bit of all SAM-3 status codes is zero (see also
1556 * paragraph 5.3 in SAM-3).
1557 */
1558 WARN_ON(status & 1);
1559
1560 srp_rsp = ioctx->ioctx.buf;
1561 BUG_ON(!srp_rsp);
1562
1563 sense_data = ioctx->sense_data;
1564 sense_data_len = ioctx->cmd.scsi_sense_length;
1565 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1566
1567 memset(srp_rsp, 0, sizeof *srp_rsp);
1568 srp_rsp->opcode = SRP_RSP;
1569 srp_rsp->req_lim_delta =
1570 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1571 srp_rsp->tag = tag;
1572 srp_rsp->status = status;
1573
1574 if (sense_data_len) {
1575 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1576 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1577 if (sense_data_len > max_sense_len) {
1578 printk(KERN_WARNING "truncated sense data from %d to %d"
1579 " bytes\n", sense_data_len, max_sense_len);
1580 sense_data_len = max_sense_len;
1581 }
1582
1583 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1584 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1585 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1586 }
1587
1588 return sizeof(*srp_rsp) + sense_data_len;
1589}
1590
1591/**
1592 * srpt_build_tskmgmt_rsp() - Build a task management response.
1593 * @ch: RDMA channel through which the request has been received.
1594 * @ioctx: I/O context in which the SRP_RSP response will be built.
1595 * @rsp_code: RSP_CODE that will be stored in the response.
1596 * @tag: Tag of the request for which this response is being generated.
1597 *
1598 * Returns the size in bytes of the SRP_RSP response.
1599 *
1600 * An SRP_RSP response contains a SCSI status or service response. See also
1601 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1602 * response.
1603 */
1604static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1605 struct srpt_send_ioctx *ioctx,
1606 u8 rsp_code, u64 tag)
1607{
1608 struct srp_rsp *srp_rsp;
1609 int resp_data_len;
1610 int resp_len;
1611
1612 resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4;
1613 resp_len = sizeof(*srp_rsp) + resp_data_len;
1614
1615 srp_rsp = ioctx->ioctx.buf;
1616 BUG_ON(!srp_rsp);
1617 memset(srp_rsp, 0, sizeof *srp_rsp);
1618
1619 srp_rsp->opcode = SRP_RSP;
1620 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1621 + atomic_xchg(&ch->req_lim_delta, 0));
1622 srp_rsp->tag = tag;
1623
1624 if (rsp_code != SRP_TSK_MGMT_SUCCESS) {
1625 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1626 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1627 srp_rsp->data[3] = rsp_code;
1628 }
1629
1630 return resp_len;
1631}
1632
1633#define NO_SUCH_LUN ((uint64_t)-1LL)
1634
1635/*
1636 * SCSI LUN addressing method. See also SAM-2 and the section about
1637 * eight byte LUNs.
1638 */
1639enum scsi_lun_addr_method {
1640 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1641 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1642 SCSI_LUN_ADDR_METHOD_LUN = 2,
1643 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1644};
1645
1646/*
1647 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1648 *
1649 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1650 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1651 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1652 */
1653static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1654{
1655 uint64_t res = NO_SUCH_LUN;
1656 int addressing_method;
1657
1658 if (unlikely(len < 2)) {
1659 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1660 "more", len);
1661 goto out;
1662 }
1663
1664 switch (len) {
1665 case 8:
1666 if ((*((__be64 *)lun) &
1667 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1668 goto out_err;
1669 break;
1670 case 4:
1671 if (*((__be16 *)&lun[2]) != 0)
1672 goto out_err;
1673 break;
1674 case 6:
1675 if (*((__be32 *)&lun[2]) != 0)
1676 goto out_err;
1677 break;
1678 case 2:
1679 break;
1680 default:
1681 goto out_err;
1682 }
1683
1684 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1685 switch (addressing_method) {
1686 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1687 case SCSI_LUN_ADDR_METHOD_FLAT:
1688 case SCSI_LUN_ADDR_METHOD_LUN:
1689 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1690 break;
1691
1692 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1693 default:
1694 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1695 addressing_method);
1696 break;
1697 }
1698
1699out:
1700 return res;
1701
1702out_err:
1703 printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1704 " implemented");
1705 goto out;
1706}
1707
1708static int srpt_check_stop_free(struct se_cmd *cmd)
1709{
1710 struct srpt_send_ioctx *ioctx;
1711
1712 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
1713 return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1714}
1715
1716/**
1717 * srpt_handle_cmd() - Process SRP_CMD.
1718 */
1719static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1720 struct srpt_recv_ioctx *recv_ioctx,
1721 struct srpt_send_ioctx *send_ioctx)
1722{
1723 struct se_cmd *cmd;
1724 struct srp_cmd *srp_cmd;
1725 uint64_t unpacked_lun;
1726 u64 data_len;
1727 enum dma_data_direction dir;
1728 int ret;
1729
1730 BUG_ON(!send_ioctx);
1731
1732 srp_cmd = recv_ioctx->ioctx.buf;
1733 kref_get(&send_ioctx->kref);
1734 cmd = &send_ioctx->cmd;
1735 send_ioctx->tag = srp_cmd->tag;
1736
1737 switch (srp_cmd->task_attr) {
1738 case SRP_CMD_SIMPLE_Q:
1739 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1740 break;
1741 case SRP_CMD_ORDERED_Q:
1742 default:
1743 cmd->sam_task_attr = MSG_ORDERED_TAG;
1744 break;
1745 case SRP_CMD_HEAD_OF_Q:
1746 cmd->sam_task_attr = MSG_HEAD_TAG;
1747 break;
1748 case SRP_CMD_ACA:
1749 cmd->sam_task_attr = MSG_ACA_TAG;
1750 break;
1751 }
1752
1753 ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len);
1754 if (ret) {
1755 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1756 srp_cmd->tag);
1757 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1758 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
187e70a5 1759 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
a42d985b
BVA
1760 goto send_sense;
1761 }
1762
1763 cmd->data_length = data_len;
1764 cmd->data_direction = dir;
1765 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1766 sizeof(srp_cmd->lun));
187e70a5
NB
1767 if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0) {
1768 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
a42d985b 1769 goto send_sense;
187e70a5 1770 }
a12f41f8 1771 ret = target_setup_cmd_from_cdb(cmd, srp_cmd->cdb);
187e70a5
NB
1772 if (ret < 0) {
1773 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
1774 if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT) {
1775 srpt_queue_status(cmd);
1776 return 0;
1777 } else
1778 goto send_sense;
1779 }
a42d985b
BVA
1780
1781 transport_handle_cdb_direct(cmd);
1782 return 0;
1783
1784send_sense:
1785 transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason,
1786 0);
1787 return -1;
1788}
1789
1790/**
1791 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1792 * @ch: RDMA channel of the task management request.
1793 * @fn: Task management function to perform.
1794 * @req_tag: Tag of the SRP task management request.
1795 * @mgmt_ioctx: I/O context of the task management request.
1796 *
1797 * Returns zero if the target core will process the task management
1798 * request asynchronously.
1799 *
1800 * Note: It is assumed that the initiator serializes tag-based task management
1801 * requests.
1802 */
1803static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1804{
1805 struct srpt_device *sdev;
1806 struct srpt_rdma_ch *ch;
1807 struct srpt_send_ioctx *target;
1808 int ret, i;
1809
1810 ret = -EINVAL;
1811 ch = ioctx->ch;
1812 BUG_ON(!ch);
1813 BUG_ON(!ch->sport);
1814 sdev = ch->sport->sdev;
1815 BUG_ON(!sdev);
1816 spin_lock_irq(&sdev->spinlock);
1817 for (i = 0; i < ch->rq_size; ++i) {
1818 target = ch->ioctx_ring[i];
1819 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1820 target->tag == tag &&
1821 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1822 ret = 0;
1823 /* now let the target core abort &target->cmd; */
1824 break;
1825 }
1826 }
1827 spin_unlock_irq(&sdev->spinlock);
1828 return ret;
1829}
1830
1831static int srp_tmr_to_tcm(int fn)
1832{
1833 switch (fn) {
1834 case SRP_TSK_ABORT_TASK:
1835 return TMR_ABORT_TASK;
1836 case SRP_TSK_ABORT_TASK_SET:
1837 return TMR_ABORT_TASK_SET;
1838 case SRP_TSK_CLEAR_TASK_SET:
1839 return TMR_CLEAR_TASK_SET;
1840 case SRP_TSK_LUN_RESET:
1841 return TMR_LUN_RESET;
1842 case SRP_TSK_CLEAR_ACA:
1843 return TMR_CLEAR_ACA;
1844 default:
1845 return -1;
1846 }
1847}
1848
1849/**
1850 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1851 *
1852 * Returns 0 if and only if the request will be processed by the target core.
1853 *
1854 * For more information about SRP_TSK_MGMT information units, see also section
1855 * 6.7 in the SRP r16a document.
1856 */
1857static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1858 struct srpt_recv_ioctx *recv_ioctx,
1859 struct srpt_send_ioctx *send_ioctx)
1860{
1861 struct srp_tsk_mgmt *srp_tsk;
1862 struct se_cmd *cmd;
1863 uint64_t unpacked_lun;
1864 int tcm_tmr;
1865 int res;
1866
1867 BUG_ON(!send_ioctx);
1868
1869 srp_tsk = recv_ioctx->ioctx.buf;
1870 cmd = &send_ioctx->cmd;
1871
1872 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1873 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1874 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1875
1876 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1877 send_ioctx->tag = srp_tsk->tag;
1878 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1879 if (tcm_tmr < 0) {
1880 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1881 send_ioctx->cmd.se_tmr_req->response =
1882 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1883 goto process_tmr;
1884 }
c8e31f26
AG
1885 res = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL);
1886 if (res < 0) {
a42d985b
BVA
1887 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1888 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1889 goto process_tmr;
1890 }
1891
1892 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1893 sizeof(srp_tsk->lun));
1894 res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun);
1895 if (res) {
1896 pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun);
1897 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1898 send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1899 goto process_tmr;
1900 }
1901
1902 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK)
1903 srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1904
1905process_tmr:
1906 kref_get(&send_ioctx->kref);
1907 if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION))
1908 transport_generic_handle_tmr(&send_ioctx->cmd);
1909 else
1910 transport_send_check_condition_and_sense(cmd,
1911 cmd->scsi_sense_reason, 0);
1912
1913}
1914
1915/**
1916 * srpt_handle_new_iu() - Process a newly received information unit.
1917 * @ch: RDMA channel through which the information unit has been received.
1918 * @ioctx: SRPT I/O context associated with the information unit.
1919 */
1920static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1921 struct srpt_recv_ioctx *recv_ioctx,
1922 struct srpt_send_ioctx *send_ioctx)
1923{
1924 struct srp_cmd *srp_cmd;
1925 enum rdma_ch_state ch_state;
1926
1927 BUG_ON(!ch);
1928 BUG_ON(!recv_ioctx);
1929
1930 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1931 recv_ioctx->ioctx.dma, srp_max_req_size,
1932 DMA_FROM_DEVICE);
1933
1934 ch_state = srpt_get_ch_state(ch);
1935 if (unlikely(ch_state == CH_CONNECTING)) {
1936 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1937 goto out;
1938 }
1939
1940 if (unlikely(ch_state != CH_LIVE))
1941 goto out;
1942
1943 srp_cmd = recv_ioctx->ioctx.buf;
1944 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1945 if (!send_ioctx)
1946 send_ioctx = srpt_get_send_ioctx(ch);
1947 if (unlikely(!send_ioctx)) {
1948 list_add_tail(&recv_ioctx->wait_list,
1949 &ch->cmd_wait_list);
1950 goto out;
1951 }
1952 }
1953
1954 transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess,
1955 0, DMA_NONE, MSG_SIMPLE_TAG,
1956 send_ioctx->sense_data);
1957
1958 switch (srp_cmd->opcode) {
1959 case SRP_CMD:
1960 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1961 break;
1962 case SRP_TSK_MGMT:
1963 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1964 break;
1965 case SRP_I_LOGOUT:
1966 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1967 break;
1968 case SRP_CRED_RSP:
1969 pr_debug("received SRP_CRED_RSP\n");
1970 break;
1971 case SRP_AER_RSP:
1972 pr_debug("received SRP_AER_RSP\n");
1973 break;
1974 case SRP_RSP:
1975 printk(KERN_ERR "Received SRP_RSP\n");
1976 break;
1977 default:
1978 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1979 srp_cmd->opcode);
1980 break;
1981 }
1982
1983 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1984out:
1985 return;
1986}
1987
1988static void srpt_process_rcv_completion(struct ib_cq *cq,
1989 struct srpt_rdma_ch *ch,
1990 struct ib_wc *wc)
1991{
1992 struct srpt_device *sdev = ch->sport->sdev;
1993 struct srpt_recv_ioctx *ioctx;
1994 u32 index;
1995
1996 index = idx_from_wr_id(wc->wr_id);
1997 if (wc->status == IB_WC_SUCCESS) {
1998 int req_lim;
1999
2000 req_lim = atomic_dec_return(&ch->req_lim);
2001 if (unlikely(req_lim < 0))
2002 printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
2003 ioctx = sdev->ioctx_ring[index];
2004 srpt_handle_new_iu(ch, ioctx, NULL);
2005 } else {
2006 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
2007 index, wc->status);
2008 }
2009}
2010
2011/**
2012 * srpt_process_send_completion() - Process an IB send completion.
2013 *
2014 * Note: Although this has not yet been observed during tests, at least in
2015 * theory it is possible that the srpt_get_send_ioctx() call invoked by
2016 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
2017 * value in each response is set to one, and it is possible that this response
2018 * makes the initiator send a new request before the send completion for that
2019 * response has been processed. This could e.g. happen if the call to
2020 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
2021 * if IB retransmission causes generation of the send completion to be
2022 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
2023 * are queued on cmd_wait_list. The code below processes these delayed
2024 * requests one at a time.
2025 */
2026static void srpt_process_send_completion(struct ib_cq *cq,
2027 struct srpt_rdma_ch *ch,
2028 struct ib_wc *wc)
2029{
2030 struct srpt_send_ioctx *send_ioctx;
2031 uint32_t index;
2032 enum srpt_opcode opcode;
2033
2034 index = idx_from_wr_id(wc->wr_id);
2035 opcode = opcode_from_wr_id(wc->wr_id);
2036 send_ioctx = ch->ioctx_ring[index];
2037 if (wc->status == IB_WC_SUCCESS) {
2038 if (opcode == SRPT_SEND)
2039 srpt_handle_send_comp(ch, send_ioctx);
2040 else {
2041 WARN_ON(opcode != SRPT_RDMA_ABORT &&
2042 wc->opcode != IB_WC_RDMA_READ);
2043 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
2044 }
2045 } else {
2046 if (opcode == SRPT_SEND) {
2047 printk(KERN_INFO "sending response for idx %u failed"
2048 " with status %d\n", index, wc->status);
2049 srpt_handle_send_err_comp(ch, wc->wr_id);
2050 } else if (opcode != SRPT_RDMA_MID) {
2051 printk(KERN_INFO "RDMA t %d for idx %u failed with"
2052 " status %d", opcode, index, wc->status);
2053 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2054 }
2055 }
2056
2057 while (unlikely(opcode == SRPT_SEND
2058 && !list_empty(&ch->cmd_wait_list)
2059 && srpt_get_ch_state(ch) == CH_LIVE
2060 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2061 struct srpt_recv_ioctx *recv_ioctx;
2062
2063 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2064 struct srpt_recv_ioctx,
2065 wait_list);
2066 list_del(&recv_ioctx->wait_list);
2067 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2068 }
2069}
2070
2071static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2072{
2073 struct ib_wc *const wc = ch->wc;
2074 int i, n;
2075
2076 WARN_ON(cq != ch->cq);
2077
2078 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2079 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2080 for (i = 0; i < n; i++) {
2081 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2082 srpt_process_rcv_completion(cq, ch, &wc[i]);
2083 else
2084 srpt_process_send_completion(cq, ch, &wc[i]);
2085 }
2086 }
2087}
2088
2089/**
2090 * srpt_completion() - IB completion queue callback function.
2091 *
2092 * Notes:
2093 * - It is guaranteed that a completion handler will never be invoked
2094 * concurrently on two different CPUs for the same completion queue. See also
2095 * Documentation/infiniband/core_locking.txt and the implementation of
2096 * handle_edge_irq() in kernel/irq/chip.c.
2097 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2098 * context instead of interrupt context.
2099 */
2100static void srpt_completion(struct ib_cq *cq, void *ctx)
2101{
2102 struct srpt_rdma_ch *ch = ctx;
2103
2104 wake_up_interruptible(&ch->wait_queue);
2105}
2106
2107static int srpt_compl_thread(void *arg)
2108{
2109 struct srpt_rdma_ch *ch;
2110
2111 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2112 current->flags |= PF_NOFREEZE;
2113
2114 ch = arg;
2115 BUG_ON(!ch);
2116 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2117 ch->sess_name, ch->thread->comm, current->pid);
2118 while (!kthread_should_stop()) {
2119 wait_event_interruptible(ch->wait_queue,
2120 (srpt_process_completion(ch->cq, ch),
2121 kthread_should_stop()));
2122 }
2123 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2124 ch->sess_name, ch->thread->comm, current->pid);
2125 return 0;
2126}
2127
2128/**
2129 * srpt_create_ch_ib() - Create receive and send completion queues.
2130 */
2131static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2132{
2133 struct ib_qp_init_attr *qp_init;
2134 struct srpt_port *sport = ch->sport;
2135 struct srpt_device *sdev = sport->sdev;
2136 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2137 int ret;
2138
2139 WARN_ON(ch->rq_size < 1);
2140
2141 ret = -ENOMEM;
2142 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2143 if (!qp_init)
2144 goto out;
2145
2146 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2147 ch->rq_size + srp_sq_size, 0);
2148 if (IS_ERR(ch->cq)) {
2149 ret = PTR_ERR(ch->cq);
2150 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2151 ch->rq_size + srp_sq_size, ret);
2152 goto out;
2153 }
2154
2155 qp_init->qp_context = (void *)ch;
2156 qp_init->event_handler
2157 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2158 qp_init->send_cq = ch->cq;
2159 qp_init->recv_cq = ch->cq;
2160 qp_init->srq = sdev->srq;
2161 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2162 qp_init->qp_type = IB_QPT_RC;
2163 qp_init->cap.max_send_wr = srp_sq_size;
2164 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2165
2166 ch->qp = ib_create_qp(sdev->pd, qp_init);
2167 if (IS_ERR(ch->qp)) {
2168 ret = PTR_ERR(ch->qp);
2169 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2170 goto err_destroy_cq;
2171 }
2172
2173 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2174
2175 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2176 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2177 qp_init->cap.max_send_wr, ch->cm_id);
2178
2179 ret = srpt_init_ch_qp(ch, ch->qp);
2180 if (ret)
2181 goto err_destroy_qp;
2182
2183 init_waitqueue_head(&ch->wait_queue);
2184
2185 pr_debug("creating thread for session %s\n", ch->sess_name);
2186
2187 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2188 if (IS_ERR(ch->thread)) {
2189 printk(KERN_ERR "failed to create kernel thread %ld\n",
2190 PTR_ERR(ch->thread));
2191 ch->thread = NULL;
2192 goto err_destroy_qp;
2193 }
2194
2195out:
2196 kfree(qp_init);
2197 return ret;
2198
2199err_destroy_qp:
2200 ib_destroy_qp(ch->qp);
2201err_destroy_cq:
2202 ib_destroy_cq(ch->cq);
2203 goto out;
2204}
2205
2206static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2207{
2208 if (ch->thread)
2209 kthread_stop(ch->thread);
2210
2211 ib_destroy_qp(ch->qp);
2212 ib_destroy_cq(ch->cq);
2213}
2214
2215/**
2216 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2217 *
2218 * Reset the QP and make sure all resources associated with the channel will
2219 * be deallocated at an appropriate time.
2220 *
2221 * Note: The caller must hold ch->sport->sdev->spinlock.
2222 */
2223static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2224{
2225 struct srpt_device *sdev;
2226 enum rdma_ch_state prev_state;
2227 unsigned long flags;
2228
2229 sdev = ch->sport->sdev;
2230
2231 spin_lock_irqsave(&ch->spinlock, flags);
2232 prev_state = ch->state;
2233 switch (prev_state) {
2234 case CH_CONNECTING:
2235 case CH_LIVE:
2236 ch->state = CH_DISCONNECTING;
2237 break;
2238 default:
2239 break;
2240 }
2241 spin_unlock_irqrestore(&ch->spinlock, flags);
2242
2243 switch (prev_state) {
2244 case CH_CONNECTING:
2245 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2246 NULL, 0);
2247 /* fall through */
2248 case CH_LIVE:
2249 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2250 printk(KERN_ERR "sending CM DREQ failed.\n");
2251 break;
2252 case CH_DISCONNECTING:
2253 break;
2254 case CH_DRAINING:
2255 case CH_RELEASING:
2256 break;
2257 }
2258}
2259
2260/**
2261 * srpt_close_ch() - Close an RDMA channel.
2262 */
2263static void srpt_close_ch(struct srpt_rdma_ch *ch)
2264{
2265 struct srpt_device *sdev;
2266
2267 sdev = ch->sport->sdev;
2268 spin_lock_irq(&sdev->spinlock);
2269 __srpt_close_ch(ch);
2270 spin_unlock_irq(&sdev->spinlock);
2271}
2272
2273/**
2274 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2275 * @cm_id: Pointer to the CM ID of the channel to be drained.
2276 *
2277 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2278 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2279 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2280 * waits until all target sessions for the associated IB device have been
2281 * unregistered and target session registration involves a call to
2282 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2283 * this function has finished).
2284 */
2285static void srpt_drain_channel(struct ib_cm_id *cm_id)
2286{
2287 struct srpt_device *sdev;
2288 struct srpt_rdma_ch *ch;
2289 int ret;
2290 bool do_reset = false;
2291
2292 WARN_ON_ONCE(irqs_disabled());
2293
2294 sdev = cm_id->context;
2295 BUG_ON(!sdev);
2296 spin_lock_irq(&sdev->spinlock);
2297 list_for_each_entry(ch, &sdev->rch_list, list) {
2298 if (ch->cm_id == cm_id) {
2299 do_reset = srpt_test_and_set_ch_state(ch,
2300 CH_CONNECTING, CH_DRAINING) ||
2301 srpt_test_and_set_ch_state(ch,
2302 CH_LIVE, CH_DRAINING) ||
2303 srpt_test_and_set_ch_state(ch,
2304 CH_DISCONNECTING, CH_DRAINING);
2305 break;
2306 }
2307 }
2308 spin_unlock_irq(&sdev->spinlock);
2309
2310 if (do_reset) {
2311 ret = srpt_ch_qp_err(ch);
2312 if (ret < 0)
2313 printk(KERN_ERR "Setting queue pair in error state"
2314 " failed: %d\n", ret);
2315 }
2316}
2317
2318/**
2319 * srpt_find_channel() - Look up an RDMA channel.
2320 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2321 *
2322 * Return NULL if no matching RDMA channel has been found.
2323 */
2324static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2325 struct ib_cm_id *cm_id)
2326{
2327 struct srpt_rdma_ch *ch;
2328 bool found;
2329
2330 WARN_ON_ONCE(irqs_disabled());
2331 BUG_ON(!sdev);
2332
2333 found = false;
2334 spin_lock_irq(&sdev->spinlock);
2335 list_for_each_entry(ch, &sdev->rch_list, list) {
2336 if (ch->cm_id == cm_id) {
2337 found = true;
2338 break;
2339 }
2340 }
2341 spin_unlock_irq(&sdev->spinlock);
2342
2343 return found ? ch : NULL;
2344}
2345
2346/**
2347 * srpt_release_channel() - Release channel resources.
2348 *
2349 * Schedules the actual release because:
2350 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2351 * trigger a deadlock.
2352 * - It is not safe to call TCM transport_* functions from interrupt context.
2353 */
2354static void srpt_release_channel(struct srpt_rdma_ch *ch)
2355{
2356 schedule_work(&ch->release_work);
2357}
2358
2359static void srpt_release_channel_work(struct work_struct *w)
2360{
2361 struct srpt_rdma_ch *ch;
2362 struct srpt_device *sdev;
2363
2364 ch = container_of(w, struct srpt_rdma_ch, release_work);
2365 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2366 ch->release_done);
2367
2368 sdev = ch->sport->sdev;
2369 BUG_ON(!sdev);
2370
2371 transport_deregister_session_configfs(ch->sess);
2372 transport_deregister_session(ch->sess);
2373 ch->sess = NULL;
2374
2375 srpt_destroy_ch_ib(ch);
2376
2377 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2378 ch->sport->sdev, ch->rq_size,
2379 ch->rsp_size, DMA_TO_DEVICE);
2380
2381 spin_lock_irq(&sdev->spinlock);
2382 list_del(&ch->list);
2383 spin_unlock_irq(&sdev->spinlock);
2384
2385 ib_destroy_cm_id(ch->cm_id);
2386
2387 if (ch->release_done)
2388 complete(ch->release_done);
2389
2390 wake_up(&sdev->ch_releaseQ);
2391
2392 kfree(ch);
2393}
2394
2395static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2396 u8 i_port_id[16])
2397{
2398 struct srpt_node_acl *nacl;
2399
2400 list_for_each_entry(nacl, &sport->port_acl_list, list)
2401 if (memcmp(nacl->i_port_id, i_port_id,
2402 sizeof(nacl->i_port_id)) == 0)
2403 return nacl;
2404
2405 return NULL;
2406}
2407
2408static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2409 u8 i_port_id[16])
2410{
2411 struct srpt_node_acl *nacl;
2412
2413 spin_lock_irq(&sport->port_acl_lock);
2414 nacl = __srpt_lookup_acl(sport, i_port_id);
2415 spin_unlock_irq(&sport->port_acl_lock);
2416
2417 return nacl;
2418}
2419
2420/**
2421 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2422 *
2423 * Ownership of the cm_id is transferred to the target session if this
2424 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2425 */
2426static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2427 struct ib_cm_req_event_param *param,
2428 void *private_data)
2429{
2430 struct srpt_device *sdev = cm_id->context;
2431 struct srpt_port *sport = &sdev->port[param->port - 1];
2432 struct srp_login_req *req;
2433 struct srp_login_rsp *rsp;
2434 struct srp_login_rej *rej;
2435 struct ib_cm_rep_param *rep_param;
2436 struct srpt_rdma_ch *ch, *tmp_ch;
2437 struct srpt_node_acl *nacl;
2438 u32 it_iu_len;
2439 int i;
2440 int ret = 0;
2441
2442 WARN_ON_ONCE(irqs_disabled());
2443
2444 if (WARN_ON(!sdev || !private_data))
2445 return -EINVAL;
2446
2447 req = (struct srp_login_req *)private_data;
2448
2449 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2450
2451 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2452 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2453 " (guid=0x%llx:0x%llx)\n",
2454 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2455 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2456 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2457 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2458 it_iu_len,
2459 param->port,
2460 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2461 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2462
2463 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2464 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2465 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2466
2467 if (!rsp || !rej || !rep_param) {
2468 ret = -ENOMEM;
2469 goto out;
2470 }
2471
2472 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2473 rej->reason = __constant_cpu_to_be32(
2474 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2475 ret = -EINVAL;
2476 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2477 " length (%d bytes) is out of range (%d .. %d)\n",
2478 it_iu_len, 64, srp_max_req_size);
2479 goto reject;
2480 }
2481
2482 if (!sport->enabled) {
2483 rej->reason = __constant_cpu_to_be32(
2484 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2485 ret = -EINVAL;
2486 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2487 " has not yet been enabled\n");
2488 goto reject;
2489 }
2490
2491 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2492 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2493
2494 spin_lock_irq(&sdev->spinlock);
2495
2496 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2497 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2498 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2499 && param->port == ch->sport->port
2500 && param->listen_id == ch->sport->sdev->cm_id
2501 && ch->cm_id) {
2502 enum rdma_ch_state ch_state;
2503
2504 ch_state = srpt_get_ch_state(ch);
2505 if (ch_state != CH_CONNECTING
2506 && ch_state != CH_LIVE)
2507 continue;
2508
2509 /* found an existing channel */
2510 pr_debug("Found existing channel %s"
2511 " cm_id= %p state= %d\n",
2512 ch->sess_name, ch->cm_id, ch_state);
2513
2514 __srpt_close_ch(ch);
2515
2516 rsp->rsp_flags =
2517 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2518 }
2519 }
2520
2521 spin_unlock_irq(&sdev->spinlock);
2522
2523 } else
2524 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2525
2526 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2527 || *(__be64 *)(req->target_port_id + 8) !=
2528 cpu_to_be64(srpt_service_guid)) {
2529 rej->reason = __constant_cpu_to_be32(
2530 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2531 ret = -ENOMEM;
2532 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2533 " has an invalid target port identifier.\n");
2534 goto reject;
2535 }
2536
2537 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2538 if (!ch) {
2539 rej->reason = __constant_cpu_to_be32(
2540 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2541 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2542 ret = -ENOMEM;
2543 goto reject;
2544 }
2545
2546 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2547 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2548 memcpy(ch->t_port_id, req->target_port_id, 16);
2549 ch->sport = &sdev->port[param->port - 1];
2550 ch->cm_id = cm_id;
2551 /*
2552 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2553 * for the SRP protocol to the command queue size.
2554 */
2555 ch->rq_size = SRPT_RQ_SIZE;
2556 spin_lock_init(&ch->spinlock);
2557 ch->state = CH_CONNECTING;
2558 INIT_LIST_HEAD(&ch->cmd_wait_list);
2559 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2560
2561 ch->ioctx_ring = (struct srpt_send_ioctx **)
2562 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2563 sizeof(*ch->ioctx_ring[0]),
2564 ch->rsp_size, DMA_TO_DEVICE);
2565 if (!ch->ioctx_ring)
2566 goto free_ch;
2567
2568 INIT_LIST_HEAD(&ch->free_list);
2569 for (i = 0; i < ch->rq_size; i++) {
2570 ch->ioctx_ring[i]->ch = ch;
2571 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2572 }
2573
2574 ret = srpt_create_ch_ib(ch);
2575 if (ret) {
2576 rej->reason = __constant_cpu_to_be32(
2577 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2578 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2579 " a new RDMA channel failed.\n");
2580 goto free_ring;
2581 }
2582
2583 ret = srpt_ch_qp_rtr(ch, ch->qp);
2584 if (ret) {
2585 rej->reason = __constant_cpu_to_be32(
2586 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2587 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2588 " RTR failed (error code = %d)\n", ret);
2589 goto destroy_ib;
2590 }
2591 /*
2592 * Use the initator port identifier as the session name.
2593 */
2594 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2595 be64_to_cpu(*(__be64 *)ch->i_port_id),
2596 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2597
2598 pr_debug("registering session %s\n", ch->sess_name);
2599
2600 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2601 if (!nacl) {
2602 printk(KERN_INFO "Rejected login because no ACL has been"
2603 " configured yet for initiator %s.\n", ch->sess_name);
2604 rej->reason = __constant_cpu_to_be32(
2605 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2606 goto destroy_ib;
2607 }
2608
2609 ch->sess = transport_init_session();
3af33637 2610 if (IS_ERR(ch->sess)) {
a42d985b
BVA
2611 rej->reason = __constant_cpu_to_be32(
2612 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2613 pr_debug("Failed to create session\n");
2614 goto deregister_session;
2615 }
2616 ch->sess->se_node_acl = &nacl->nacl;
2617 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2618
2619 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2620 ch->sess_name, ch->cm_id);
2621
2622 /* create srp_login_response */
2623 rsp->opcode = SRP_LOGIN_RSP;
2624 rsp->tag = req->tag;
2625 rsp->max_it_iu_len = req->req_it_iu_len;
2626 rsp->max_ti_iu_len = req->req_it_iu_len;
2627 ch->max_ti_iu_len = it_iu_len;
2628 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2629 | SRP_BUF_FORMAT_INDIRECT);
2630 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2631 atomic_set(&ch->req_lim, ch->rq_size);
2632 atomic_set(&ch->req_lim_delta, 0);
2633
2634 /* create cm reply */
2635 rep_param->qp_num = ch->qp->qp_num;
2636 rep_param->private_data = (void *)rsp;
2637 rep_param->private_data_len = sizeof *rsp;
2638 rep_param->rnr_retry_count = 7;
2639 rep_param->flow_control = 1;
2640 rep_param->failover_accepted = 0;
2641 rep_param->srq = 1;
2642 rep_param->responder_resources = 4;
2643 rep_param->initiator_depth = 4;
2644
2645 ret = ib_send_cm_rep(cm_id, rep_param);
2646 if (ret) {
2647 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2648 " (error code = %d)\n", ret);
2649 goto release_channel;
2650 }
2651
2652 spin_lock_irq(&sdev->spinlock);
2653 list_add_tail(&ch->list, &sdev->rch_list);
2654 spin_unlock_irq(&sdev->spinlock);
2655
2656 goto out;
2657
2658release_channel:
2659 srpt_set_ch_state(ch, CH_RELEASING);
2660 transport_deregister_session_configfs(ch->sess);
2661
2662deregister_session:
2663 transport_deregister_session(ch->sess);
2664 ch->sess = NULL;
2665
2666destroy_ib:
2667 srpt_destroy_ch_ib(ch);
2668
2669free_ring:
2670 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2671 ch->sport->sdev, ch->rq_size,
2672 ch->rsp_size, DMA_TO_DEVICE);
2673free_ch:
2674 kfree(ch);
2675
2676reject:
2677 rej->opcode = SRP_LOGIN_REJ;
2678 rej->tag = req->tag;
2679 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2680 | SRP_BUF_FORMAT_INDIRECT);
2681
2682 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2683 (void *)rej, sizeof *rej);
2684
2685out:
2686 kfree(rep_param);
2687 kfree(rsp);
2688 kfree(rej);
2689
2690 return ret;
2691}
2692
2693static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2694{
2695 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2696 srpt_drain_channel(cm_id);
2697}
2698
2699/**
2700 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2701 *
2702 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2703 * and that the recipient may begin transmitting (RTU = ready to use).
2704 */
2705static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2706{
2707 struct srpt_rdma_ch *ch;
2708 int ret;
2709
2710 ch = srpt_find_channel(cm_id->context, cm_id);
2711 BUG_ON(!ch);
2712
2713 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2714 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2715
2716 ret = srpt_ch_qp_rts(ch, ch->qp);
2717
2718 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2719 wait_list) {
2720 list_del(&ioctx->wait_list);
2721 srpt_handle_new_iu(ch, ioctx, NULL);
2722 }
2723 if (ret)
2724 srpt_close_ch(ch);
2725 }
2726}
2727
2728static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2729{
2730 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2731 srpt_drain_channel(cm_id);
2732}
2733
2734static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2735{
2736 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2737 srpt_drain_channel(cm_id);
2738}
2739
2740/**
2741 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2742 */
2743static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2744{
2745 struct srpt_rdma_ch *ch;
2746 unsigned long flags;
2747 bool send_drep = false;
2748
2749 ch = srpt_find_channel(cm_id->context, cm_id);
2750 BUG_ON(!ch);
2751
2752 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2753
2754 spin_lock_irqsave(&ch->spinlock, flags);
2755 switch (ch->state) {
2756 case CH_CONNECTING:
2757 case CH_LIVE:
2758 send_drep = true;
2759 ch->state = CH_DISCONNECTING;
2760 break;
2761 case CH_DISCONNECTING:
2762 case CH_DRAINING:
2763 case CH_RELEASING:
2764 WARN(true, "unexpected channel state %d\n", ch->state);
2765 break;
2766 }
2767 spin_unlock_irqrestore(&ch->spinlock, flags);
2768
2769 if (send_drep) {
2770 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2771 printk(KERN_ERR "Sending IB DREP failed.\n");
2772 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2773 ch->sess_name);
2774 }
2775}
2776
2777/**
2778 * srpt_cm_drep_recv() - Process reception of a DREP message.
2779 */
2780static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2781{
2782 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2783 cm_id);
2784 srpt_drain_channel(cm_id);
2785}
2786
2787/**
2788 * srpt_cm_handler() - IB connection manager callback function.
2789 *
2790 * A non-zero return value will cause the caller destroy the CM ID.
2791 *
2792 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2793 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2794 * a non-zero value in any other case will trigger a race with the
2795 * ib_destroy_cm_id() call in srpt_release_channel().
2796 */
2797static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2798{
2799 int ret;
2800
2801 ret = 0;
2802 switch (event->event) {
2803 case IB_CM_REQ_RECEIVED:
2804 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2805 event->private_data);
2806 break;
2807 case IB_CM_REJ_RECEIVED:
2808 srpt_cm_rej_recv(cm_id);
2809 break;
2810 case IB_CM_RTU_RECEIVED:
2811 case IB_CM_USER_ESTABLISHED:
2812 srpt_cm_rtu_recv(cm_id);
2813 break;
2814 case IB_CM_DREQ_RECEIVED:
2815 srpt_cm_dreq_recv(cm_id);
2816 break;
2817 case IB_CM_DREP_RECEIVED:
2818 srpt_cm_drep_recv(cm_id);
2819 break;
2820 case IB_CM_TIMEWAIT_EXIT:
2821 srpt_cm_timewait_exit(cm_id);
2822 break;
2823 case IB_CM_REP_ERROR:
2824 srpt_cm_rep_error(cm_id);
2825 break;
2826 case IB_CM_DREQ_ERROR:
2827 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2828 break;
2829 case IB_CM_MRA_RECEIVED:
2830 printk(KERN_INFO "Received IB MRA event\n");
2831 break;
2832 default:
2833 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2834 event->event);
2835 break;
2836 }
2837
2838 return ret;
2839}
2840
2841/**
2842 * srpt_perform_rdmas() - Perform IB RDMA.
2843 *
2844 * Returns zero upon success or a negative number upon failure.
2845 */
2846static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2847 struct srpt_send_ioctx *ioctx)
2848{
2849 struct ib_send_wr wr;
2850 struct ib_send_wr *bad_wr;
2851 struct rdma_iu *riu;
2852 int i;
2853 int ret;
2854 int sq_wr_avail;
2855 enum dma_data_direction dir;
2856 const int n_rdma = ioctx->n_rdma;
2857
2858 dir = ioctx->cmd.data_direction;
2859 if (dir == DMA_TO_DEVICE) {
2860 /* write */
2861 ret = -ENOMEM;
2862 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2863 if (sq_wr_avail < 0) {
2864 printk(KERN_WARNING "IB send queue full (needed %d)\n",
2865 n_rdma);
2866 goto out;
2867 }
2868 }
2869
2870 ioctx->rdma_aborted = false;
2871 ret = 0;
2872 riu = ioctx->rdma_ius;
2873 memset(&wr, 0, sizeof wr);
2874
2875 for (i = 0; i < n_rdma; ++i, ++riu) {
2876 if (dir == DMA_FROM_DEVICE) {
2877 wr.opcode = IB_WR_RDMA_WRITE;
2878 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2879 SRPT_RDMA_WRITE_LAST :
2880 SRPT_RDMA_MID,
2881 ioctx->ioctx.index);
2882 } else {
2883 wr.opcode = IB_WR_RDMA_READ;
2884 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2885 SRPT_RDMA_READ_LAST :
2886 SRPT_RDMA_MID,
2887 ioctx->ioctx.index);
2888 }
2889 wr.next = NULL;
2890 wr.wr.rdma.remote_addr = riu->raddr;
2891 wr.wr.rdma.rkey = riu->rkey;
2892 wr.num_sge = riu->sge_cnt;
2893 wr.sg_list = riu->sge;
2894
2895 /* only get completion event for the last rdma write */
2896 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2897 wr.send_flags = IB_SEND_SIGNALED;
2898
2899 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2900 if (ret)
2901 break;
2902 }
2903
2904 if (ret)
2905 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2906 __func__, __LINE__, ret, i, n_rdma);
2907 if (ret && i > 0) {
2908 wr.num_sge = 0;
2909 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2910 wr.send_flags = IB_SEND_SIGNALED;
2911 while (ch->state == CH_LIVE &&
2912 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2913 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2914 ioctx->ioctx.index);
2915 msleep(1000);
2916 }
2917 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2918 printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2919 ioctx->ioctx.index);
2920 msleep(1000);
2921 }
2922 }
2923out:
2924 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2925 atomic_add(n_rdma, &ch->sq_wr_avail);
2926 return ret;
2927}
2928
2929/**
2930 * srpt_xfer_data() - Start data transfer from initiator to target.
2931 */
2932static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2933 struct srpt_send_ioctx *ioctx)
2934{
2935 int ret;
2936
2937 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2938 if (ret) {
2939 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2940 goto out;
2941 }
2942
2943 ret = srpt_perform_rdmas(ch, ioctx);
2944 if (ret) {
2945 if (ret == -EAGAIN || ret == -ENOMEM)
2946 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2947 __func__, __LINE__, ret);
2948 else
2949 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2950 __func__, __LINE__, ret);
2951 goto out_unmap;
2952 }
2953
2954out:
2955 return ret;
2956out_unmap:
2957 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2958 goto out;
2959}
2960
2961static int srpt_write_pending_status(struct se_cmd *se_cmd)
2962{
2963 struct srpt_send_ioctx *ioctx;
2964
2965 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2966 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2967}
2968
2969/*
2970 * srpt_write_pending() - Start data transfer from initiator to target (write).
2971 */
2972static int srpt_write_pending(struct se_cmd *se_cmd)
2973{
2974 struct srpt_rdma_ch *ch;
2975 struct srpt_send_ioctx *ioctx;
2976 enum srpt_command_state new_state;
2977 enum rdma_ch_state ch_state;
2978 int ret;
2979
2980 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2981
2982 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2983 WARN_ON(new_state == SRPT_STATE_DONE);
2984
2985 ch = ioctx->ch;
2986 BUG_ON(!ch);
2987
2988 ch_state = srpt_get_ch_state(ch);
2989 switch (ch_state) {
2990 case CH_CONNECTING:
2991 WARN(true, "unexpected channel state %d\n", ch_state);
2992 ret = -EINVAL;
2993 goto out;
2994 case CH_LIVE:
2995 break;
2996 case CH_DISCONNECTING:
2997 case CH_DRAINING:
2998 case CH_RELEASING:
2999 pr_debug("cmd with tag %lld: channel disconnecting\n",
3000 ioctx->tag);
3001 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
3002 ret = -EINVAL;
3003 goto out;
3004 }
3005 ret = srpt_xfer_data(ch, ioctx);
3006
3007out:
3008 return ret;
3009}
3010
3011static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
3012{
3013 switch (tcm_mgmt_status) {
3014 case TMR_FUNCTION_COMPLETE:
3015 return SRP_TSK_MGMT_SUCCESS;
3016 case TMR_FUNCTION_REJECTED:
3017 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3018 }
3019 return SRP_TSK_MGMT_FAILED;
3020}
3021
3022/**
3023 * srpt_queue_response() - Transmits the response to a SCSI command.
3024 *
3025 * Callback function called by the TCM core. Must not block since it can be
3026 * invoked on the context of the IB completion handler.
3027 */
3028static int srpt_queue_response(struct se_cmd *cmd)
3029{
3030 struct srpt_rdma_ch *ch;
3031 struct srpt_send_ioctx *ioctx;
3032 enum srpt_command_state state;
3033 unsigned long flags;
3034 int ret;
3035 enum dma_data_direction dir;
3036 int resp_len;
3037 u8 srp_tm_status;
3038
3039 ret = 0;
3040
3041 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3042 ch = ioctx->ch;
3043 BUG_ON(!ch);
3044
3045 spin_lock_irqsave(&ioctx->spinlock, flags);
3046 state = ioctx->state;
3047 switch (state) {
3048 case SRPT_STATE_NEW:
3049 case SRPT_STATE_DATA_IN:
3050 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3051 break;
3052 case SRPT_STATE_MGMT:
3053 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3054 break;
3055 default:
3056 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3057 ch, ioctx->ioctx.index, ioctx->state);
3058 break;
3059 }
3060 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3061
3062 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3063 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3064 atomic_inc(&ch->req_lim_delta);
3065 srpt_abort_cmd(ioctx);
3066 goto out;
3067 }
3068
3069 dir = ioctx->cmd.data_direction;
3070
3071 /* For read commands, transfer the data to the initiator. */
3072 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3073 !ioctx->queue_status_only) {
3074 ret = srpt_xfer_data(ch, ioctx);
3075 if (ret) {
3076 printk(KERN_ERR "xfer_data failed for tag %llu\n",
3077 ioctx->tag);
3078 goto out;
3079 }
3080 }
3081
3082 if (state != SRPT_STATE_MGMT)
3083 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3084 cmd->scsi_status);
3085 else {
3086 srp_tm_status
3087 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3088 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3089 ioctx->tag);
3090 }
3091 ret = srpt_post_send(ch, ioctx, resp_len);
3092 if (ret) {
3093 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3094 ioctx->tag);
3095 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3096 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3097 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
3098 }
3099
3100out:
3101 return ret;
3102}
3103
3104static int srpt_queue_status(struct se_cmd *cmd)
3105{
3106 struct srpt_send_ioctx *ioctx;
3107
3108 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3109 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3110 if (cmd->se_cmd_flags &
3111 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3112 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3113 ioctx->queue_status_only = true;
3114 return srpt_queue_response(cmd);
3115}
3116
3117static void srpt_refresh_port_work(struct work_struct *work)
3118{
3119 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3120
3121 srpt_refresh_port(sport);
3122}
3123
3124static int srpt_ch_list_empty(struct srpt_device *sdev)
3125{
3126 int res;
3127
3128 spin_lock_irq(&sdev->spinlock);
3129 res = list_empty(&sdev->rch_list);
3130 spin_unlock_irq(&sdev->spinlock);
3131
3132 return res;
3133}
3134
3135/**
3136 * srpt_release_sdev() - Free the channel resources associated with a target.
3137 */
3138static int srpt_release_sdev(struct srpt_device *sdev)
3139{
3140 struct srpt_rdma_ch *ch, *tmp_ch;
3141 int res;
3142
3143 WARN_ON_ONCE(irqs_disabled());
3144
3145 BUG_ON(!sdev);
3146
3147 spin_lock_irq(&sdev->spinlock);
3148 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3149 __srpt_close_ch(ch);
3150 spin_unlock_irq(&sdev->spinlock);
3151
3152 res = wait_event_interruptible(sdev->ch_releaseQ,
3153 srpt_ch_list_empty(sdev));
3154 if (res)
3155 printk(KERN_ERR "%s: interrupted.\n", __func__);
3156
3157 return 0;
3158}
3159
3160static struct srpt_port *__srpt_lookup_port(const char *name)
3161{
3162 struct ib_device *dev;
3163 struct srpt_device *sdev;
3164 struct srpt_port *sport;
3165 int i;
3166
3167 list_for_each_entry(sdev, &srpt_dev_list, list) {
3168 dev = sdev->device;
3169 if (!dev)
3170 continue;
3171
3172 for (i = 0; i < dev->phys_port_cnt; i++) {
3173 sport = &sdev->port[i];
3174
3175 if (!strcmp(sport->port_guid, name))
3176 return sport;
3177 }
3178 }
3179
3180 return NULL;
3181}
3182
3183static struct srpt_port *srpt_lookup_port(const char *name)
3184{
3185 struct srpt_port *sport;
3186
3187 spin_lock(&srpt_dev_lock);
3188 sport = __srpt_lookup_port(name);
3189 spin_unlock(&srpt_dev_lock);
3190
3191 return sport;
3192}
3193
3194/**
3195 * srpt_add_one() - Infiniband device addition callback function.
3196 */
3197static void srpt_add_one(struct ib_device *device)
3198{
3199 struct srpt_device *sdev;
3200 struct srpt_port *sport;
3201 struct ib_srq_init_attr srq_attr;
3202 int i;
3203
3204 pr_debug("device = %p, device->dma_ops = %p\n", device,
3205 device->dma_ops);
3206
3207 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3208 if (!sdev)
3209 goto err;
3210
3211 sdev->device = device;
3212 INIT_LIST_HEAD(&sdev->rch_list);
3213 init_waitqueue_head(&sdev->ch_releaseQ);
3214 spin_lock_init(&sdev->spinlock);
3215
3216 if (ib_query_device(device, &sdev->dev_attr))
3217 goto free_dev;
3218
3219 sdev->pd = ib_alloc_pd(device);
3220 if (IS_ERR(sdev->pd))
3221 goto free_dev;
3222
3223 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3224 if (IS_ERR(sdev->mr))
3225 goto err_pd;
3226
3227 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3228
3229 srq_attr.event_handler = srpt_srq_event;
3230 srq_attr.srq_context = (void *)sdev;
3231 srq_attr.attr.max_wr = sdev->srq_size;
3232 srq_attr.attr.max_sge = 1;
3233 srq_attr.attr.srq_limit = 0;
6f360336 3234 srq_attr.srq_type = IB_SRQT_BASIC;
a42d985b
BVA
3235
3236 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3237 if (IS_ERR(sdev->srq))
3238 goto err_mr;
3239
3240 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3241 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3242 device->name);
3243
3244 if (!srpt_service_guid)
3245 srpt_service_guid = be64_to_cpu(device->node_guid);
3246
3247 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3248 if (IS_ERR(sdev->cm_id))
3249 goto err_srq;
3250
3251 /* print out target login information */
3252 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3253 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3254 srpt_service_guid, srpt_service_guid);
3255
3256 /*
3257 * We do not have a consistent service_id (ie. also id_ext of target_id)
3258 * to identify this target. We currently use the guid of the first HCA
3259 * in the system as service_id; therefore, the target_id will change
3260 * if this HCA is gone bad and replaced by different HCA
3261 */
3262 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3263 goto err_cm;
3264
3265 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3266 srpt_event_handler);
3267 if (ib_register_event_handler(&sdev->event_handler))
3268 goto err_cm;
3269
3270 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3271 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3272 sizeof(*sdev->ioctx_ring[0]),
3273 srp_max_req_size, DMA_FROM_DEVICE);
3274 if (!sdev->ioctx_ring)
3275 goto err_event;
3276
3277 for (i = 0; i < sdev->srq_size; ++i)
3278 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3279
f225066b 3280 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
a42d985b
BVA
3281
3282 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3283 sport = &sdev->port[i - 1];
3284 sport->sdev = sdev;
3285 sport->port = i;
3286 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3287 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3288 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3289 INIT_WORK(&sport->work, srpt_refresh_port_work);
3290 INIT_LIST_HEAD(&sport->port_acl_list);
3291 spin_lock_init(&sport->port_acl_lock);
3292
3293 if (srpt_refresh_port(sport)) {
3294 printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3295 srpt_sdev_name(sdev), i);
3296 goto err_ring;
3297 }
3298 snprintf(sport->port_guid, sizeof(sport->port_guid),
3299 "0x%016llx%016llx",
3300 be64_to_cpu(sport->gid.global.subnet_prefix),
3301 be64_to_cpu(sport->gid.global.interface_id));
3302 }
3303
3304 spin_lock(&srpt_dev_lock);
3305 list_add_tail(&sdev->list, &srpt_dev_list);
3306 spin_unlock(&srpt_dev_lock);
3307
3308out:
3309 ib_set_client_data(device, &srpt_client, sdev);
3310 pr_debug("added %s.\n", device->name);
3311 return;
3312
3313err_ring:
3314 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3315 sdev->srq_size, srp_max_req_size,
3316 DMA_FROM_DEVICE);
3317err_event:
3318 ib_unregister_event_handler(&sdev->event_handler);
3319err_cm:
3320 ib_destroy_cm_id(sdev->cm_id);
3321err_srq:
3322 ib_destroy_srq(sdev->srq);
3323err_mr:
3324 ib_dereg_mr(sdev->mr);
3325err_pd:
3326 ib_dealloc_pd(sdev->pd);
3327free_dev:
3328 kfree(sdev);
3329err:
3330 sdev = NULL;
3331 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3332 goto out;
3333}
3334
3335/**
3336 * srpt_remove_one() - InfiniBand device removal callback function.
3337 */
3338static void srpt_remove_one(struct ib_device *device)
3339{
3340 struct srpt_device *sdev;
3341 int i;
3342
3343 sdev = ib_get_client_data(device, &srpt_client);
3344 if (!sdev) {
3345 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3346 device->name);
3347 return;
3348 }
3349
3350 srpt_unregister_mad_agent(sdev);
3351
3352 ib_unregister_event_handler(&sdev->event_handler);
3353
3354 /* Cancel any work queued by the just unregistered IB event handler. */
3355 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3356 cancel_work_sync(&sdev->port[i].work);
3357
3358 ib_destroy_cm_id(sdev->cm_id);
3359
3360 /*
3361 * Unregistering a target must happen after destroying sdev->cm_id
3362 * such that no new SRP_LOGIN_REQ information units can arrive while
3363 * destroying the target.
3364 */
3365 spin_lock(&srpt_dev_lock);
3366 list_del(&sdev->list);
3367 spin_unlock(&srpt_dev_lock);
3368 srpt_release_sdev(sdev);
3369
3370 ib_destroy_srq(sdev->srq);
3371 ib_dereg_mr(sdev->mr);
3372 ib_dealloc_pd(sdev->pd);
3373
3374 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3375 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3376 sdev->ioctx_ring = NULL;
3377 kfree(sdev);
3378}
3379
3380static struct ib_client srpt_client = {
3381 .name = DRV_NAME,
3382 .add = srpt_add_one,
3383 .remove = srpt_remove_one
3384};
3385
3386static int srpt_check_true(struct se_portal_group *se_tpg)
3387{
3388 return 1;
3389}
3390
3391static int srpt_check_false(struct se_portal_group *se_tpg)
3392{
3393 return 0;
3394}
3395
3396static char *srpt_get_fabric_name(void)
3397{
3398 return "srpt";
3399}
3400
3401static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3402{
3403 return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3404}
3405
3406static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3407{
3408 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3409
3410 return sport->port_guid;
3411}
3412
3413static u16 srpt_get_tag(struct se_portal_group *tpg)
3414{
3415 return 1;
3416}
3417
3418static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3419{
3420 return 1;
3421}
3422
3423static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3424 struct se_node_acl *se_nacl,
3425 struct t10_pr_registration *pr_reg,
3426 int *format_code, unsigned char *buf)
3427{
3428 struct srpt_node_acl *nacl;
3429 struct spc_rdma_transport_id *tr_id;
3430
3431 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3432 tr_id = (void *)buf;
3433 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3434 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3435 return sizeof(*tr_id);
3436}
3437
3438static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3439 struct se_node_acl *se_nacl,
3440 struct t10_pr_registration *pr_reg,
3441 int *format_code)
3442{
3443 *format_code = 0;
3444 return sizeof(struct spc_rdma_transport_id);
3445}
3446
3447static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3448 const char *buf, u32 *out_tid_len,
3449 char **port_nexus_ptr)
3450{
3451 struct spc_rdma_transport_id *tr_id;
3452
3453 *port_nexus_ptr = NULL;
3454 *out_tid_len = sizeof(struct spc_rdma_transport_id);
3455 tr_id = (void *)buf;
3456 return (char *)tr_id->i_port_id;
3457}
3458
3459static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3460{
3461 struct srpt_node_acl *nacl;
3462
3463 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3464 if (!nacl) {
7367d99b 3465 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
a42d985b
BVA
3466 return NULL;
3467 }
3468
3469 return &nacl->nacl;
3470}
3471
3472static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3473 struct se_node_acl *se_nacl)
3474{
3475 struct srpt_node_acl *nacl;
3476
3477 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3478 kfree(nacl);
3479}
3480
3481static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3482{
3483 return 1;
3484}
3485
3486static void srpt_release_cmd(struct se_cmd *se_cmd)
3487{
3488}
3489
3490/**
3491 * srpt_shutdown_session() - Whether or not a session may be shut down.
3492 */
3493static int srpt_shutdown_session(struct se_session *se_sess)
3494{
3495 return true;
3496}
3497
3498/**
3499 * srpt_close_session() - Forcibly close a session.
3500 *
3501 * Callback function invoked by the TCM core to clean up sessions associated
3502 * with a node ACL when the user invokes
3503 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3504 */
3505static void srpt_close_session(struct se_session *se_sess)
3506{
3507 DECLARE_COMPLETION_ONSTACK(release_done);
3508 struct srpt_rdma_ch *ch;
3509 struct srpt_device *sdev;
3510 int res;
3511
3512 ch = se_sess->fabric_sess_ptr;
3513 WARN_ON(ch->sess != se_sess);
3514
3515 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3516
3517 sdev = ch->sport->sdev;
3518 spin_lock_irq(&sdev->spinlock);
3519 BUG_ON(ch->release_done);
3520 ch->release_done = &release_done;
3521 __srpt_close_ch(ch);
3522 spin_unlock_irq(&sdev->spinlock);
3523
3524 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3525 WARN_ON(res <= 0);
3526}
3527
a42d985b
BVA
3528/**
3529 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3530 *
3531 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3532 * This object represents an arbitrary integer used to uniquely identify a
3533 * particular attached remote initiator port to a particular SCSI target port
3534 * within a particular SCSI target device within a particular SCSI instance.
3535 */
3536static u32 srpt_sess_get_index(struct se_session *se_sess)
3537{
3538 return 0;
3539}
3540
3541static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3542{
3543}
3544
3545static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3546{
3547 struct srpt_send_ioctx *ioctx;
3548
3549 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3550 return ioctx->tag;
3551}
3552
3553/* Note: only used from inside debug printk's by the TCM core. */
3554static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3555{
3556 struct srpt_send_ioctx *ioctx;
3557
3558 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3559 return srpt_get_cmd_state(ioctx);
3560}
3561
3562static u16 srpt_set_fabric_sense_len(struct se_cmd *cmd, u32 sense_length)
3563{
3564 return 0;
3565}
3566
3567static u16 srpt_get_fabric_sense_len(void)
3568{
3569 return 0;
3570}
3571
a42d985b
BVA
3572/**
3573 * srpt_parse_i_port_id() - Parse an initiator port ID.
3574 * @name: ASCII representation of a 128-bit initiator port ID.
3575 * @i_port_id: Binary 128-bit port ID.
3576 */
3577static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3578{
3579 const char *p;
3580 unsigned len, count, leading_zero_bytes;
3581 int ret, rc;
3582
3583 p = name;
3584 if (strnicmp(p, "0x", 2) == 0)
3585 p += 2;
3586 ret = -EINVAL;
3587 len = strlen(p);
3588 if (len % 2)
3589 goto out;
3590 count = min(len / 2, 16U);
3591 leading_zero_bytes = 16 - count;
3592 memset(i_port_id, 0, leading_zero_bytes);
3593 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3594 if (rc < 0)
3595 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3596 ret = 0;
3597out:
3598 return ret;
3599}
3600
3601/*
3602 * configfs callback function invoked for
3603 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3604 */
3605static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3606 struct config_group *group,
3607 const char *name)
3608{
3609 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3610 struct se_node_acl *se_nacl, *se_nacl_new;
3611 struct srpt_node_acl *nacl;
3612 int ret = 0;
3613 u32 nexus_depth = 1;
3614 u8 i_port_id[16];
3615
3616 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3617 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3618 ret = -EINVAL;
3619 goto err;
3620 }
3621
3622 se_nacl_new = srpt_alloc_fabric_acl(tpg);
3623 if (!se_nacl_new) {
3624 ret = -ENOMEM;
3625 goto err;
3626 }
3627 /*
3628 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3629 * when converting a node ACL from demo mode to explict
3630 */
3631 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3632 nexus_depth);
3633 if (IS_ERR(se_nacl)) {
3634 ret = PTR_ERR(se_nacl);
3635 goto err;
3636 }
3637 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3638 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3639 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3640 nacl->sport = sport;
3641
3642 spin_lock_irq(&sport->port_acl_lock);
3643 list_add_tail(&nacl->list, &sport->port_acl_list);
3644 spin_unlock_irq(&sport->port_acl_lock);
3645
3646 return se_nacl;
3647err:
3648 return ERR_PTR(ret);
3649}
3650
3651/*
3652 * configfs callback function invoked for
3653 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3654 */
3655static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3656{
3657 struct srpt_node_acl *nacl;
3658 struct srpt_device *sdev;
3659 struct srpt_port *sport;
3660
3661 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3662 sport = nacl->sport;
3663 sdev = sport->sdev;
3664 spin_lock_irq(&sport->port_acl_lock);
3665 list_del(&nacl->list);
3666 spin_unlock_irq(&sport->port_acl_lock);
3667 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3668 srpt_release_fabric_acl(NULL, se_nacl);
3669}
3670
3671static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3672 struct se_portal_group *se_tpg,
3673 char *page)
3674{
3675 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3676
3677 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3678}
3679
3680static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3681 struct se_portal_group *se_tpg,
3682 const char *page,
3683 size_t count)
3684{
3685 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3686 unsigned long val;
3687 int ret;
3688
3689 ret = strict_strtoul(page, 0, &val);
3690 if (ret < 0) {
3691 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3692 return -EINVAL;
3693 }
3694 if (val > MAX_SRPT_RDMA_SIZE) {
3695 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3696 MAX_SRPT_RDMA_SIZE);
3697 return -EINVAL;
3698 }
3699 if (val < DEFAULT_MAX_RDMA_SIZE) {
3700 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3701 val, DEFAULT_MAX_RDMA_SIZE);
3702 return -EINVAL;
3703 }
3704 sport->port_attrib.srp_max_rdma_size = val;
3705
3706 return count;
3707}
3708
3709TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3710
3711static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3712 struct se_portal_group *se_tpg,
3713 char *page)
3714{
3715 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3716
3717 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3718}
3719
3720static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3721 struct se_portal_group *se_tpg,
3722 const char *page,
3723 size_t count)
3724{
3725 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3726 unsigned long val;
3727 int ret;
3728
3729 ret = strict_strtoul(page, 0, &val);
3730 if (ret < 0) {
3731 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3732 return -EINVAL;
3733 }
3734 if (val > MAX_SRPT_RSP_SIZE) {
3735 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3736 MAX_SRPT_RSP_SIZE);
3737 return -EINVAL;
3738 }
3739 if (val < MIN_MAX_RSP_SIZE) {
3740 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3741 MIN_MAX_RSP_SIZE);
3742 return -EINVAL;
3743 }
3744 sport->port_attrib.srp_max_rsp_size = val;
3745
3746 return count;
3747}
3748
3749TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3750
3751static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3752 struct se_portal_group *se_tpg,
3753 char *page)
3754{
3755 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3756
3757 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3758}
3759
3760static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3761 struct se_portal_group *se_tpg,
3762 const char *page,
3763 size_t count)
3764{
3765 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3766 unsigned long val;
3767 int ret;
3768
3769 ret = strict_strtoul(page, 0, &val);
3770 if (ret < 0) {
3771 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3772 return -EINVAL;
3773 }
3774 if (val > MAX_SRPT_SRQ_SIZE) {
3775 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3776 MAX_SRPT_SRQ_SIZE);
3777 return -EINVAL;
3778 }
3779 if (val < MIN_SRPT_SRQ_SIZE) {
3780 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3781 MIN_SRPT_SRQ_SIZE);
3782 return -EINVAL;
3783 }
3784 sport->port_attrib.srp_sq_size = val;
3785
3786 return count;
3787}
3788
3789TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3790
3791static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3792 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3793 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3794 &srpt_tpg_attrib_srp_sq_size.attr,
3795 NULL,
3796};
3797
3798static ssize_t srpt_tpg_show_enable(
3799 struct se_portal_group *se_tpg,
3800 char *page)
3801{
3802 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3803
3804 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3805}
3806
3807static ssize_t srpt_tpg_store_enable(
3808 struct se_portal_group *se_tpg,
3809 const char *page,
3810 size_t count)
3811{
3812 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3813 unsigned long tmp;
3814 int ret;
3815
3816 ret = strict_strtoul(page, 0, &tmp);
3817 if (ret < 0) {
3818 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3819 return -EINVAL;
3820 }
3821
3822 if ((tmp != 0) && (tmp != 1)) {
3823 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3824 return -EINVAL;
3825 }
3826 if (tmp == 1)
3827 sport->enabled = true;
3828 else
3829 sport->enabled = false;
3830
3831 return count;
3832}
3833
3834TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3835
3836static struct configfs_attribute *srpt_tpg_attrs[] = {
3837 &srpt_tpg_enable.attr,
3838 NULL,
3839};
3840
3841/**
3842 * configfs callback invoked for
3843 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3844 */
3845static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3846 struct config_group *group,
3847 const char *name)
3848{
3849 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3850 int res;
3851
3852 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3853 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3854 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3855 if (res)
3856 return ERR_PTR(res);
3857
3858 return &sport->port_tpg_1;
3859}
3860
3861/**
3862 * configfs callback invoked for
3863 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3864 */
3865static void srpt_drop_tpg(struct se_portal_group *tpg)
3866{
3867 struct srpt_port *sport = container_of(tpg,
3868 struct srpt_port, port_tpg_1);
3869
3870 sport->enabled = false;
3871 core_tpg_deregister(&sport->port_tpg_1);
3872}
3873
3874/**
3875 * configfs callback invoked for
3876 * mkdir /sys/kernel/config/target/$driver/$port
3877 */
3878static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3879 struct config_group *group,
3880 const char *name)
3881{
3882 struct srpt_port *sport;
3883 int ret;
3884
3885 sport = srpt_lookup_port(name);
3886 pr_debug("make_tport(%s)\n", name);
3887 ret = -EINVAL;
3888 if (!sport)
3889 goto err;
3890
3891 return &sport->port_wwn;
3892
3893err:
3894 return ERR_PTR(ret);
3895}
3896
3897/**
3898 * configfs callback invoked for
3899 * rmdir /sys/kernel/config/target/$driver/$port
3900 */
3901static void srpt_drop_tport(struct se_wwn *wwn)
3902{
3903 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3904
3905 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3906}
3907
3908static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3909 char *buf)
3910{
3911 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3912}
3913
3914TF_WWN_ATTR_RO(srpt, version);
3915
3916static struct configfs_attribute *srpt_wwn_attrs[] = {
3917 &srpt_wwn_version.attr,
3918 NULL,
3919};
3920
3921static struct target_core_fabric_ops srpt_template = {
3922 .get_fabric_name = srpt_get_fabric_name,
3923 .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
3924 .tpg_get_wwn = srpt_get_fabric_wwn,
3925 .tpg_get_tag = srpt_get_tag,
3926 .tpg_get_default_depth = srpt_get_default_depth,
3927 .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
3928 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
3929 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
3930 .tpg_check_demo_mode = srpt_check_false,
3931 .tpg_check_demo_mode_cache = srpt_check_true,
3932 .tpg_check_demo_mode_write_protect = srpt_check_true,
3933 .tpg_check_prod_mode_write_protect = srpt_check_false,
3934 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
3935 .tpg_release_fabric_acl = srpt_release_fabric_acl,
3936 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3937 .release_cmd = srpt_release_cmd,
3938 .check_stop_free = srpt_check_stop_free,
3939 .shutdown_session = srpt_shutdown_session,
3940 .close_session = srpt_close_session,
a42d985b
BVA
3941 .sess_get_index = srpt_sess_get_index,
3942 .sess_get_initiator_sid = NULL,
3943 .write_pending = srpt_write_pending,
3944 .write_pending_status = srpt_write_pending_status,
3945 .set_default_node_attributes = srpt_set_default_node_attrs,
3946 .get_task_tag = srpt_get_task_tag,
3947 .get_cmd_state = srpt_get_tcm_cmd_state,
3948 .queue_data_in = srpt_queue_response,
3949 .queue_status = srpt_queue_status,
3950 .queue_tm_rsp = srpt_queue_response,
3951 .get_fabric_sense_len = srpt_get_fabric_sense_len,
3952 .set_fabric_sense_len = srpt_set_fabric_sense_len,
a42d985b
BVA
3953 /*
3954 * Setup function pointers for generic logic in
3955 * target_core_fabric_configfs.c
3956 */
3957 .fabric_make_wwn = srpt_make_tport,
3958 .fabric_drop_wwn = srpt_drop_tport,
3959 .fabric_make_tpg = srpt_make_tpg,
3960 .fabric_drop_tpg = srpt_drop_tpg,
3961 .fabric_post_link = NULL,
3962 .fabric_pre_unlink = NULL,
3963 .fabric_make_np = NULL,
3964 .fabric_drop_np = NULL,
3965 .fabric_make_nodeacl = srpt_make_nodeacl,
3966 .fabric_drop_nodeacl = srpt_drop_nodeacl,
3967};
3968
3969/**
3970 * srpt_init_module() - Kernel module initialization.
3971 *
3972 * Note: Since ib_register_client() registers callback functions, and since at
3973 * least one of these callback functions (srpt_add_one()) calls target core
3974 * functions, this driver must be registered with the target core before
3975 * ib_register_client() is called.
3976 */
3977static int __init srpt_init_module(void)
3978{
3979 int ret;
3980
3981 ret = -EINVAL;
3982 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3983 printk(KERN_ERR "invalid value %d for kernel module parameter"
3984 " srp_max_req_size -- must be at least %d.\n",
3985 srp_max_req_size, MIN_MAX_REQ_SIZE);
3986 goto out;
3987 }
3988
3989 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3990 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3991 printk(KERN_ERR "invalid value %d for kernel module parameter"
3992 " srpt_srq_size -- must be in the range [%d..%d].\n",
3993 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3994 goto out;
3995 }
3996
a42d985b 3997 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3af33637 3998 if (IS_ERR(srpt_target)) {
a42d985b 3999 printk(KERN_ERR "couldn't register\n");
3af33637 4000 ret = PTR_ERR(srpt_target);
a42d985b
BVA
4001 goto out;
4002 }
4003
4004 srpt_target->tf_ops = srpt_template;
4005
a42d985b
BVA
4006 /*
4007 * Set up default attribute lists.
4008 */
4009 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4010 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4011 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4012 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4013 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4014 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4015 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4016 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4017 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4018
4019 ret = target_fabric_configfs_register(srpt_target);
4020 if (ret < 0) {
4021 printk(KERN_ERR "couldn't register\n");
4022 goto out_free_target;
4023 }
4024
4025 ret = ib_register_client(&srpt_client);
4026 if (ret) {
4027 printk(KERN_ERR "couldn't register IB client\n");
4028 goto out_unregister_target;
4029 }
4030
4031 return 0;
4032
4033out_unregister_target:
4034 target_fabric_configfs_deregister(srpt_target);
4035 srpt_target = NULL;
4036out_free_target:
4037 if (srpt_target)
4038 target_fabric_configfs_free(srpt_target);
4039out:
4040 return ret;
4041}
4042
4043static void __exit srpt_cleanup_module(void)
4044{
4045 ib_unregister_client(&srpt_client);
4046 target_fabric_configfs_deregister(srpt_target);
4047 srpt_target = NULL;
4048}
4049
4050module_init(srpt_init_module);
4051module_exit(srpt_cleanup_module);
This page took 0.354042 seconds and 5 git commands to generate.