iommu/amd: Split enable_iommus() routine
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
17f5b569 34#include <asm/msidef.h>
b6c02715 35#include <asm/proto.h>
46a7fa27 36#include <asm/iommu.h>
1d9b16d1 37#include <asm/gart.h>
27c2127a 38#include <asm/dma.h>
403f81d8
JR
39
40#include "amd_iommu_proto.h"
41#include "amd_iommu_types.h"
b6c02715
JR
42
43#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44
815b33fd 45#define LOOP_TIMEOUT 100000
136f78a1 46
aa3de9c0
OBC
47/*
48 * This bitmap is used to advertise the page sizes our hardware support
49 * to the IOMMU core, which will then use this information to split
50 * physically contiguous memory regions it is mapping into page sizes
51 * that we support.
52 *
53 * Traditionally the IOMMU core just handed us the mappings directly,
54 * after making sure the size is an order of a 4KiB page and that the
55 * mapping has natural alignment.
56 *
57 * To retain this behavior, we currently advertise that we support
58 * all page sizes that are an order of 4KiB.
59 *
60 * If at some point we'd like to utilize the IOMMU core's new behavior,
61 * we could change this to advertise the real page sizes we support.
62 */
63#define AMD_IOMMU_PGSIZES (~0xFFFUL)
64
b6c02715
JR
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
bd60b735
JR
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
8fa5f802
JR
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
0feae533
JR
75/*
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
78 */
79static struct protection_domain *pt_domain;
80
26961efe 81static struct iommu_ops amd_iommu_ops;
26961efe 82
72e1dcc4 83static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 84int amd_iommu_max_glx_val = -1;
72e1dcc4 85
ac1534a5
JR
86static struct dma_map_ops amd_iommu_dma_ops;
87
431b2a20
JR
88/*
89 * general struct to manage commands send to an IOMMU
90 */
d6449536 91struct iommu_cmd {
b6c02715
JR
92 u32 data[4];
93};
94
04bfdd84 95static void update_domain(struct protection_domain *domain);
5abcdba4 96static int __init alloc_passthrough_domain(void);
c1eee67b 97
15898bbc
JR
98/****************************************************************************
99 *
100 * Helper functions
101 *
102 ****************************************************************************/
103
f62dda66 104static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
105{
106 struct iommu_dev_data *dev_data;
107 unsigned long flags;
108
109 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
110 if (!dev_data)
111 return NULL;
112
f62dda66 113 dev_data->devid = devid;
8fa5f802
JR
114 atomic_set(&dev_data->bind, 0);
115
116 spin_lock_irqsave(&dev_data_list_lock, flags);
117 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
118 spin_unlock_irqrestore(&dev_data_list_lock, flags);
119
120 return dev_data;
121}
122
123static void free_dev_data(struct iommu_dev_data *dev_data)
124{
125 unsigned long flags;
126
127 spin_lock_irqsave(&dev_data_list_lock, flags);
128 list_del(&dev_data->dev_data_list);
129 spin_unlock_irqrestore(&dev_data_list_lock, flags);
130
131 kfree(dev_data);
132}
133
3b03bb74
JR
134static struct iommu_dev_data *search_dev_data(u16 devid)
135{
136 struct iommu_dev_data *dev_data;
137 unsigned long flags;
138
139 spin_lock_irqsave(&dev_data_list_lock, flags);
140 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
141 if (dev_data->devid == devid)
142 goto out_unlock;
143 }
144
145 dev_data = NULL;
146
147out_unlock:
148 spin_unlock_irqrestore(&dev_data_list_lock, flags);
149
150 return dev_data;
151}
152
153static struct iommu_dev_data *find_dev_data(u16 devid)
154{
155 struct iommu_dev_data *dev_data;
156
157 dev_data = search_dev_data(devid);
158
159 if (dev_data == NULL)
160 dev_data = alloc_dev_data(devid);
161
162 return dev_data;
163}
164
15898bbc
JR
165static inline u16 get_device_id(struct device *dev)
166{
167 struct pci_dev *pdev = to_pci_dev(dev);
168
169 return calc_devid(pdev->bus->number, pdev->devfn);
170}
171
657cbb6b
JR
172static struct iommu_dev_data *get_dev_data(struct device *dev)
173{
174 return dev->archdata.iommu;
175}
176
5abcdba4
JR
177static bool pci_iommuv2_capable(struct pci_dev *pdev)
178{
179 static const int caps[] = {
180 PCI_EXT_CAP_ID_ATS,
46277b75
JR
181 PCI_EXT_CAP_ID_PRI,
182 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
183 };
184 int i, pos;
185
186 for (i = 0; i < 3; ++i) {
187 pos = pci_find_ext_capability(pdev, caps[i]);
188 if (pos == 0)
189 return false;
190 }
191
192 return true;
193}
194
6a113ddc
JR
195static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
196{
197 struct iommu_dev_data *dev_data;
198
199 dev_data = get_dev_data(&pdev->dev);
200
201 return dev_data->errata & (1 << erratum) ? true : false;
202}
203
71c70984
JR
204/*
205 * In this function the list of preallocated protection domains is traversed to
206 * find the domain for a specific device
207 */
208static struct dma_ops_domain *find_protection_domain(u16 devid)
209{
210 struct dma_ops_domain *entry, *ret = NULL;
211 unsigned long flags;
212 u16 alias = amd_iommu_alias_table[devid];
213
214 if (list_empty(&iommu_pd_list))
215 return NULL;
216
217 spin_lock_irqsave(&iommu_pd_list_lock, flags);
218
219 list_for_each_entry(entry, &iommu_pd_list, list) {
220 if (entry->target_dev == devid ||
221 entry->target_dev == alias) {
222 ret = entry;
223 break;
224 }
225 }
226
227 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
228
229 return ret;
230}
231
98fc5a69
JR
232/*
233 * This function checks if the driver got a valid device from the caller to
234 * avoid dereferencing invalid pointers.
235 */
236static bool check_device(struct device *dev)
237{
238 u16 devid;
239
240 if (!dev || !dev->dma_mask)
241 return false;
242
243 /* No device or no PCI device */
339d3261 244 if (dev->bus != &pci_bus_type)
98fc5a69
JR
245 return false;
246
247 devid = get_device_id(dev);
248
249 /* Out of our scope? */
250 if (devid > amd_iommu_last_bdf)
251 return false;
252
253 if (amd_iommu_rlookup_table[devid] == NULL)
254 return false;
255
256 return true;
257}
258
657cbb6b
JR
259static int iommu_init_device(struct device *dev)
260{
5abcdba4 261 struct pci_dev *pdev = to_pci_dev(dev);
657cbb6b 262 struct iommu_dev_data *dev_data;
8fa5f802 263 u16 alias;
657cbb6b
JR
264
265 if (dev->archdata.iommu)
266 return 0;
267
3b03bb74 268 dev_data = find_dev_data(get_device_id(dev));
657cbb6b
JR
269 if (!dev_data)
270 return -ENOMEM;
271
f62dda66 272 alias = amd_iommu_alias_table[dev_data->devid];
2b02b091 273 if (alias != dev_data->devid) {
71f77580 274 struct iommu_dev_data *alias_data;
b00d3bcf 275
71f77580
JR
276 alias_data = find_dev_data(alias);
277 if (alias_data == NULL) {
278 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
279 dev_name(dev));
2b02b091
JR
280 free_dev_data(dev_data);
281 return -ENOTSUPP;
282 }
71f77580 283 dev_data->alias_data = alias_data;
26018874 284 }
657cbb6b 285
5abcdba4
JR
286 if (pci_iommuv2_capable(pdev)) {
287 struct amd_iommu *iommu;
288
289 iommu = amd_iommu_rlookup_table[dev_data->devid];
290 dev_data->iommu_v2 = iommu->is_iommu_v2;
291 }
292
657cbb6b
JR
293 dev->archdata.iommu = dev_data;
294
657cbb6b
JR
295 return 0;
296}
297
26018874
JR
298static void iommu_ignore_device(struct device *dev)
299{
300 u16 devid, alias;
301
302 devid = get_device_id(dev);
303 alias = amd_iommu_alias_table[devid];
304
305 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
306 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
307
308 amd_iommu_rlookup_table[devid] = NULL;
309 amd_iommu_rlookup_table[alias] = NULL;
310}
311
657cbb6b
JR
312static void iommu_uninit_device(struct device *dev)
313{
8fa5f802
JR
314 /*
315 * Nothing to do here - we keep dev_data around for unplugged devices
316 * and reuse it when the device is re-plugged - not doing so would
317 * introduce a ton of races.
318 */
657cbb6b 319}
b7cc9554
JR
320
321void __init amd_iommu_uninit_devices(void)
322{
8fa5f802 323 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
324 struct pci_dev *pdev = NULL;
325
326 for_each_pci_dev(pdev) {
327
328 if (!check_device(&pdev->dev))
329 continue;
330
331 iommu_uninit_device(&pdev->dev);
332 }
8fa5f802
JR
333
334 /* Free all of our dev_data structures */
335 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
336 free_dev_data(dev_data);
b7cc9554
JR
337}
338
339int __init amd_iommu_init_devices(void)
340{
341 struct pci_dev *pdev = NULL;
342 int ret = 0;
343
344 for_each_pci_dev(pdev) {
345
346 if (!check_device(&pdev->dev))
347 continue;
348
349 ret = iommu_init_device(&pdev->dev);
26018874
JR
350 if (ret == -ENOTSUPP)
351 iommu_ignore_device(&pdev->dev);
352 else if (ret)
b7cc9554
JR
353 goto out_free;
354 }
355
356 return 0;
357
358out_free:
359
360 amd_iommu_uninit_devices();
361
362 return ret;
363}
7f26508b
JR
364#ifdef CONFIG_AMD_IOMMU_STATS
365
366/*
367 * Initialization code for statistics collection
368 */
369
da49f6df 370DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 371DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 372DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 373DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 374DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 375DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 376DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 377DECLARE_STATS_COUNTER(cross_page);
f57d98ae 378DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 379DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 380DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 381DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
382DECLARE_STATS_COUNTER(complete_ppr);
383DECLARE_STATS_COUNTER(invalidate_iotlb);
384DECLARE_STATS_COUNTER(invalidate_iotlb_all);
385DECLARE_STATS_COUNTER(pri_requests);
386
7f26508b 387static struct dentry *stats_dir;
7f26508b
JR
388static struct dentry *de_fflush;
389
390static void amd_iommu_stats_add(struct __iommu_counter *cnt)
391{
392 if (stats_dir == NULL)
393 return;
394
395 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
396 &cnt->value);
397}
398
399static void amd_iommu_stats_init(void)
400{
401 stats_dir = debugfs_create_dir("amd-iommu", NULL);
402 if (stats_dir == NULL)
403 return;
404
7f26508b 405 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 406 &amd_iommu_unmap_flush);
da49f6df
JR
407
408 amd_iommu_stats_add(&compl_wait);
0f2a86f2 409 amd_iommu_stats_add(&cnt_map_single);
146a6917 410 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 411 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 412 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 413 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 414 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 415 amd_iommu_stats_add(&cross_page);
f57d98ae 416 amd_iommu_stats_add(&domain_flush_single);
18811f55 417 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 418 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 419 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
420 amd_iommu_stats_add(&complete_ppr);
421 amd_iommu_stats_add(&invalidate_iotlb);
422 amd_iommu_stats_add(&invalidate_iotlb_all);
423 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
424}
425
426#endif
427
a80dc3e0
JR
428/****************************************************************************
429 *
430 * Interrupt handling functions
431 *
432 ****************************************************************************/
433
e3e59876
JR
434static void dump_dte_entry(u16 devid)
435{
436 int i;
437
ee6c2868
JR
438 for (i = 0; i < 4; ++i)
439 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
440 amd_iommu_dev_table[devid].data[i]);
441}
442
945b4ac4
JR
443static void dump_command(unsigned long phys_addr)
444{
445 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
446 int i;
447
448 for (i = 0; i < 4; ++i)
449 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
450}
451
a345b23b 452static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 453{
3d06fca8
JR
454 int type, devid, domid, flags;
455 volatile u32 *event = __evt;
456 int count = 0;
457 u64 address;
458
459retry:
460 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
461 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
462 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
463 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
464 address = (u64)(((u64)event[3]) << 32) | event[2];
465
466 if (type == 0) {
467 /* Did we hit the erratum? */
468 if (++count == LOOP_TIMEOUT) {
469 pr_err("AMD-Vi: No event written to event log\n");
470 return;
471 }
472 udelay(1);
473 goto retry;
474 }
90008ee4 475
4c6f40d4 476 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
477
478 switch (type) {
479 case EVENT_TYPE_ILL_DEV:
480 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
481 "address=0x%016llx flags=0x%04x]\n",
482 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
483 address, flags);
e3e59876 484 dump_dte_entry(devid);
90008ee4
JR
485 break;
486 case EVENT_TYPE_IO_FAULT:
487 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
488 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
489 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
490 domid, address, flags);
491 break;
492 case EVENT_TYPE_DEV_TAB_ERR:
493 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
494 "address=0x%016llx flags=0x%04x]\n",
495 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
496 address, flags);
497 break;
498 case EVENT_TYPE_PAGE_TAB_ERR:
499 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
500 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
501 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
502 domid, address, flags);
503 break;
504 case EVENT_TYPE_ILL_CMD:
505 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 506 dump_command(address);
90008ee4
JR
507 break;
508 case EVENT_TYPE_CMD_HARD_ERR:
509 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
510 "flags=0x%04x]\n", address, flags);
511 break;
512 case EVENT_TYPE_IOTLB_INV_TO:
513 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
514 "address=0x%016llx]\n",
515 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
516 address);
517 break;
518 case EVENT_TYPE_INV_DEV_REQ:
519 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
520 "address=0x%016llx flags=0x%04x]\n",
521 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
522 address, flags);
523 break;
524 default:
525 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
526 }
3d06fca8
JR
527
528 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
529}
530
531static void iommu_poll_events(struct amd_iommu *iommu)
532{
533 u32 head, tail;
534 unsigned long flags;
535
536 spin_lock_irqsave(&iommu->lock, flags);
537
538 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
539 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
540
541 while (head != tail) {
a345b23b 542 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
543 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
544 }
545
546 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
547
548 spin_unlock_irqrestore(&iommu->lock, flags);
549}
550
eee53537 551static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
552{
553 struct amd_iommu_fault fault;
72e1dcc4 554
399be2f5
JR
555 INC_STATS_COUNTER(pri_requests);
556
72e1dcc4
JR
557 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
558 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
559 return;
560 }
561
562 fault.address = raw[1];
563 fault.pasid = PPR_PASID(raw[0]);
564 fault.device_id = PPR_DEVID(raw[0]);
565 fault.tag = PPR_TAG(raw[0]);
566 fault.flags = PPR_FLAGS(raw[0]);
567
72e1dcc4
JR
568 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
569}
570
571static void iommu_poll_ppr_log(struct amd_iommu *iommu)
572{
573 unsigned long flags;
574 u32 head, tail;
575
576 if (iommu->ppr_log == NULL)
577 return;
578
eee53537
JR
579 /* enable ppr interrupts again */
580 writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
581
72e1dcc4
JR
582 spin_lock_irqsave(&iommu->lock, flags);
583
584 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
585 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
586
587 while (head != tail) {
eee53537
JR
588 volatile u64 *raw;
589 u64 entry[2];
590 int i;
591
592 raw = (u64 *)(iommu->ppr_log + head);
593
594 /*
595 * Hardware bug: Interrupt may arrive before the entry is
596 * written to memory. If this happens we need to wait for the
597 * entry to arrive.
598 */
599 for (i = 0; i < LOOP_TIMEOUT; ++i) {
600 if (PPR_REQ_TYPE(raw[0]) != 0)
601 break;
602 udelay(1);
603 }
72e1dcc4 604
eee53537
JR
605 /* Avoid memcpy function-call overhead */
606 entry[0] = raw[0];
607 entry[1] = raw[1];
72e1dcc4 608
eee53537
JR
609 /*
610 * To detect the hardware bug we need to clear the entry
611 * back to zero.
612 */
613 raw[0] = raw[1] = 0UL;
614
615 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
616 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
617 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537
JR
618
619 /*
620 * Release iommu->lock because ppr-handling might need to
621 * re-aquire it
622 */
623 spin_unlock_irqrestore(&iommu->lock, flags);
624
625 /* Handle PPR entry */
626 iommu_handle_ppr_entry(iommu, entry);
627
628 spin_lock_irqsave(&iommu->lock, flags);
629
630 /* Refresh ring-buffer information */
631 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
632 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
633 }
634
72e1dcc4
JR
635 spin_unlock_irqrestore(&iommu->lock, flags);
636}
637
72fe00f0 638irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 639{
90008ee4
JR
640 struct amd_iommu *iommu;
641
72e1dcc4 642 for_each_iommu(iommu) {
90008ee4 643 iommu_poll_events(iommu);
72e1dcc4
JR
644 iommu_poll_ppr_log(iommu);
645 }
90008ee4
JR
646
647 return IRQ_HANDLED;
a80dc3e0
JR
648}
649
72fe00f0
JR
650irqreturn_t amd_iommu_int_handler(int irq, void *data)
651{
652 return IRQ_WAKE_THREAD;
653}
654
431b2a20
JR
655/****************************************************************************
656 *
657 * IOMMU command queuing functions
658 *
659 ****************************************************************************/
660
ac0ea6e9
JR
661static int wait_on_sem(volatile u64 *sem)
662{
663 int i = 0;
664
665 while (*sem == 0 && i < LOOP_TIMEOUT) {
666 udelay(1);
667 i += 1;
668 }
669
670 if (i == LOOP_TIMEOUT) {
671 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
672 return -EIO;
673 }
674
675 return 0;
676}
677
678static void copy_cmd_to_buffer(struct amd_iommu *iommu,
679 struct iommu_cmd *cmd,
680 u32 tail)
a19ae1ec 681{
a19ae1ec
JR
682 u8 *target;
683
8a7c5ef3 684 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
685 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
686
687 /* Copy command to buffer */
688 memcpy(target, cmd, sizeof(*cmd));
689
690 /* Tell the IOMMU about it */
a19ae1ec 691 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 692}
a19ae1ec 693
815b33fd 694static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 695{
815b33fd
JR
696 WARN_ON(address & 0x7ULL);
697
ded46737 698 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
699 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
700 cmd->data[1] = upper_32_bits(__pa(address));
701 cmd->data[2] = 1;
ded46737
JR
702 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
703}
704
94fe79e2
JR
705static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
706{
707 memset(cmd, 0, sizeof(*cmd));
708 cmd->data[0] = devid;
709 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
710}
711
11b6402c
JR
712static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
713 size_t size, u16 domid, int pde)
714{
715 u64 pages;
716 int s;
717
718 pages = iommu_num_pages(address, size, PAGE_SIZE);
719 s = 0;
720
721 if (pages > 1) {
722 /*
723 * If we have to flush more than one page, flush all
724 * TLB entries for this domain
725 */
726 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
727 s = 1;
728 }
729
730 address &= PAGE_MASK;
731
732 memset(cmd, 0, sizeof(*cmd));
733 cmd->data[1] |= domid;
734 cmd->data[2] = lower_32_bits(address);
735 cmd->data[3] = upper_32_bits(address);
736 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
737 if (s) /* size bit - we flush more than one 4kb page */
738 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
739 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
740 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
741}
742
cb41ed85
JR
743static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
744 u64 address, size_t size)
745{
746 u64 pages;
747 int s;
748
749 pages = iommu_num_pages(address, size, PAGE_SIZE);
750 s = 0;
751
752 if (pages > 1) {
753 /*
754 * If we have to flush more than one page, flush all
755 * TLB entries for this domain
756 */
757 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
758 s = 1;
759 }
760
761 address &= PAGE_MASK;
762
763 memset(cmd, 0, sizeof(*cmd));
764 cmd->data[0] = devid;
765 cmd->data[0] |= (qdep & 0xff) << 24;
766 cmd->data[1] = devid;
767 cmd->data[2] = lower_32_bits(address);
768 cmd->data[3] = upper_32_bits(address);
769 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
770 if (s)
771 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
772}
773
22e266c7
JR
774static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
775 u64 address, bool size)
776{
777 memset(cmd, 0, sizeof(*cmd));
778
779 address &= ~(0xfffULL);
780
781 cmd->data[0] = pasid & PASID_MASK;
782 cmd->data[1] = domid;
783 cmd->data[2] = lower_32_bits(address);
784 cmd->data[3] = upper_32_bits(address);
785 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
786 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
787 if (size)
788 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
789 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
790}
791
792static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
793 int qdep, u64 address, bool size)
794{
795 memset(cmd, 0, sizeof(*cmd));
796
797 address &= ~(0xfffULL);
798
799 cmd->data[0] = devid;
800 cmd->data[0] |= (pasid & 0xff) << 16;
801 cmd->data[0] |= (qdep & 0xff) << 24;
802 cmd->data[1] = devid;
803 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
804 cmd->data[2] = lower_32_bits(address);
805 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
806 cmd->data[3] = upper_32_bits(address);
807 if (size)
808 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
809 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
810}
811
c99afa25
JR
812static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
813 int status, int tag, bool gn)
814{
815 memset(cmd, 0, sizeof(*cmd));
816
817 cmd->data[0] = devid;
818 if (gn) {
819 cmd->data[1] = pasid & PASID_MASK;
820 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
821 }
822 cmd->data[3] = tag & 0x1ff;
823 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
824
825 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
826}
827
58fc7f14
JR
828static void build_inv_all(struct iommu_cmd *cmd)
829{
830 memset(cmd, 0, sizeof(*cmd));
831 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
832}
833
431b2a20 834/*
431b2a20 835 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 836 * hardware about the new command.
431b2a20 837 */
f1ca1512
JR
838static int iommu_queue_command_sync(struct amd_iommu *iommu,
839 struct iommu_cmd *cmd,
840 bool sync)
a19ae1ec 841{
ac0ea6e9 842 u32 left, tail, head, next_tail;
a19ae1ec 843 unsigned long flags;
a19ae1ec 844
549c90dc 845 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
846
847again:
a19ae1ec 848 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 849
ac0ea6e9
JR
850 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
851 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
852 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
853 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 854
ac0ea6e9
JR
855 if (left <= 2) {
856 struct iommu_cmd sync_cmd;
857 volatile u64 sem = 0;
858 int ret;
8d201968 859
ac0ea6e9
JR
860 build_completion_wait(&sync_cmd, (u64)&sem);
861 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 862
ac0ea6e9
JR
863 spin_unlock_irqrestore(&iommu->lock, flags);
864
865 if ((ret = wait_on_sem(&sem)) != 0)
866 return ret;
867
868 goto again;
8d201968
JR
869 }
870
ac0ea6e9
JR
871 copy_cmd_to_buffer(iommu, cmd, tail);
872
873 /* We need to sync now to make sure all commands are processed */
f1ca1512 874 iommu->need_sync = sync;
ac0ea6e9 875
a19ae1ec 876 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 877
815b33fd 878 return 0;
8d201968
JR
879}
880
f1ca1512
JR
881static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
882{
883 return iommu_queue_command_sync(iommu, cmd, true);
884}
885
8d201968
JR
886/*
887 * This function queues a completion wait command into the command
888 * buffer of an IOMMU
889 */
a19ae1ec 890static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
891{
892 struct iommu_cmd cmd;
815b33fd 893 volatile u64 sem = 0;
ac0ea6e9 894 int ret;
8d201968 895
09ee17eb 896 if (!iommu->need_sync)
815b33fd 897 return 0;
09ee17eb 898
815b33fd 899 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 900
f1ca1512 901 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 902 if (ret)
815b33fd 903 return ret;
8d201968 904
ac0ea6e9 905 return wait_on_sem(&sem);
8d201968
JR
906}
907
d8c13085 908static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 909{
d8c13085 910 struct iommu_cmd cmd;
a19ae1ec 911
d8c13085 912 build_inv_dte(&cmd, devid);
7e4f88da 913
d8c13085
JR
914 return iommu_queue_command(iommu, &cmd);
915}
09ee17eb 916
7d0c5cc5
JR
917static void iommu_flush_dte_all(struct amd_iommu *iommu)
918{
919 u32 devid;
09ee17eb 920
7d0c5cc5
JR
921 for (devid = 0; devid <= 0xffff; ++devid)
922 iommu_flush_dte(iommu, devid);
a19ae1ec 923
7d0c5cc5
JR
924 iommu_completion_wait(iommu);
925}
84df8175 926
7d0c5cc5
JR
927/*
928 * This function uses heavy locking and may disable irqs for some time. But
929 * this is no issue because it is only called during resume.
930 */
931static void iommu_flush_tlb_all(struct amd_iommu *iommu)
932{
933 u32 dom_id;
a19ae1ec 934
7d0c5cc5
JR
935 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
936 struct iommu_cmd cmd;
937 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
938 dom_id, 1);
939 iommu_queue_command(iommu, &cmd);
940 }
8eed9833 941
7d0c5cc5 942 iommu_completion_wait(iommu);
a19ae1ec
JR
943}
944
58fc7f14 945static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 946{
58fc7f14 947 struct iommu_cmd cmd;
0518a3a4 948
58fc7f14 949 build_inv_all(&cmd);
0518a3a4 950
58fc7f14
JR
951 iommu_queue_command(iommu, &cmd);
952 iommu_completion_wait(iommu);
953}
954
7d0c5cc5
JR
955void iommu_flush_all_caches(struct amd_iommu *iommu)
956{
58fc7f14
JR
957 if (iommu_feature(iommu, FEATURE_IA)) {
958 iommu_flush_all(iommu);
959 } else {
960 iommu_flush_dte_all(iommu);
961 iommu_flush_tlb_all(iommu);
0518a3a4
JR
962 }
963}
964
431b2a20 965/*
cb41ed85 966 * Command send function for flushing on-device TLB
431b2a20 967 */
6c542047
JR
968static int device_flush_iotlb(struct iommu_dev_data *dev_data,
969 u64 address, size_t size)
3fa43655
JR
970{
971 struct amd_iommu *iommu;
b00d3bcf 972 struct iommu_cmd cmd;
cb41ed85 973 int qdep;
3fa43655 974
ea61cddb
JR
975 qdep = dev_data->ats.qdep;
976 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 977
ea61cddb 978 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
979
980 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
981}
982
431b2a20 983/*
431b2a20 984 * Command send function for invalidating a device table entry
431b2a20 985 */
6c542047 986static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 987{
3fa43655 988 struct amd_iommu *iommu;
ee2fa743 989 int ret;
a19ae1ec 990
6c542047 991 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 992
f62dda66 993 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
994 if (ret)
995 return ret;
996
ea61cddb 997 if (dev_data->ats.enabled)
6c542047 998 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 999
ee2fa743 1000 return ret;
a19ae1ec
JR
1001}
1002
431b2a20
JR
1003/*
1004 * TLB invalidation function which is called from the mapping functions.
1005 * It invalidates a single PTE if the range to flush is within a single
1006 * page. Otherwise it flushes the whole TLB of the IOMMU.
1007 */
17b124bf
JR
1008static void __domain_flush_pages(struct protection_domain *domain,
1009 u64 address, size_t size, int pde)
a19ae1ec 1010{
cb41ed85 1011 struct iommu_dev_data *dev_data;
11b6402c
JR
1012 struct iommu_cmd cmd;
1013 int ret = 0, i;
a19ae1ec 1014
11b6402c 1015 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1016
6de8ad9b
JR
1017 for (i = 0; i < amd_iommus_present; ++i) {
1018 if (!domain->dev_iommu[i])
1019 continue;
1020
1021 /*
1022 * Devices of this domain are behind this IOMMU
1023 * We need a TLB flush
1024 */
11b6402c 1025 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1026 }
1027
cb41ed85 1028 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1029
ea61cddb 1030 if (!dev_data->ats.enabled)
cb41ed85
JR
1031 continue;
1032
6c542047 1033 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1034 }
1035
11b6402c 1036 WARN_ON(ret);
6de8ad9b
JR
1037}
1038
17b124bf
JR
1039static void domain_flush_pages(struct protection_domain *domain,
1040 u64 address, size_t size)
6de8ad9b 1041{
17b124bf 1042 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1043}
b6c02715 1044
1c655773 1045/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1046static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1047{
17b124bf 1048 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1049}
1050
42a49f96 1051/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1052static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1053{
17b124bf 1054 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1055}
1056
17b124bf 1057static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1058{
17b124bf 1059 int i;
18811f55 1060
17b124bf
JR
1061 for (i = 0; i < amd_iommus_present; ++i) {
1062 if (!domain->dev_iommu[i])
1063 continue;
bfd1be18 1064
17b124bf
JR
1065 /*
1066 * Devices of this domain are behind this IOMMU
1067 * We need to wait for completion of all commands.
1068 */
1069 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1070 }
e394d72a
JR
1071}
1072
b00d3bcf 1073
09b42804 1074/*
b00d3bcf 1075 * This function flushes the DTEs for all devices in domain
09b42804 1076 */
17b124bf 1077static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1078{
b00d3bcf 1079 struct iommu_dev_data *dev_data;
b26e81b8 1080
b00d3bcf 1081 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1082 device_flush_dte(dev_data);
a345b23b
JR
1083}
1084
431b2a20
JR
1085/****************************************************************************
1086 *
1087 * The functions below are used the create the page table mappings for
1088 * unity mapped regions.
1089 *
1090 ****************************************************************************/
1091
308973d3
JR
1092/*
1093 * This function is used to add another level to an IO page table. Adding
1094 * another level increases the size of the address space by 9 bits to a size up
1095 * to 64 bits.
1096 */
1097static bool increase_address_space(struct protection_domain *domain,
1098 gfp_t gfp)
1099{
1100 u64 *pte;
1101
1102 if (domain->mode == PAGE_MODE_6_LEVEL)
1103 /* address space already 64 bit large */
1104 return false;
1105
1106 pte = (void *)get_zeroed_page(gfp);
1107 if (!pte)
1108 return false;
1109
1110 *pte = PM_LEVEL_PDE(domain->mode,
1111 virt_to_phys(domain->pt_root));
1112 domain->pt_root = pte;
1113 domain->mode += 1;
1114 domain->updated = true;
1115
1116 return true;
1117}
1118
1119static u64 *alloc_pte(struct protection_domain *domain,
1120 unsigned long address,
cbb9d729 1121 unsigned long page_size,
308973d3
JR
1122 u64 **pte_page,
1123 gfp_t gfp)
1124{
cbb9d729 1125 int level, end_lvl;
308973d3 1126 u64 *pte, *page;
cbb9d729
JR
1127
1128 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1129
1130 while (address > PM_LEVEL_SIZE(domain->mode))
1131 increase_address_space(domain, gfp);
1132
cbb9d729
JR
1133 level = domain->mode - 1;
1134 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1135 address = PAGE_SIZE_ALIGN(address, page_size);
1136 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1137
1138 while (level > end_lvl) {
1139 if (!IOMMU_PTE_PRESENT(*pte)) {
1140 page = (u64 *)get_zeroed_page(gfp);
1141 if (!page)
1142 return NULL;
1143 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1144 }
1145
cbb9d729
JR
1146 /* No level skipping support yet */
1147 if (PM_PTE_LEVEL(*pte) != level)
1148 return NULL;
1149
308973d3
JR
1150 level -= 1;
1151
1152 pte = IOMMU_PTE_PAGE(*pte);
1153
1154 if (pte_page && level == end_lvl)
1155 *pte_page = pte;
1156
1157 pte = &pte[PM_LEVEL_INDEX(level, address)];
1158 }
1159
1160 return pte;
1161}
1162
1163/*
1164 * This function checks if there is a PTE for a given dma address. If
1165 * there is one, it returns the pointer to it.
1166 */
24cd7723 1167static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1168{
1169 int level;
1170 u64 *pte;
1171
24cd7723
JR
1172 if (address > PM_LEVEL_SIZE(domain->mode))
1173 return NULL;
1174
1175 level = domain->mode - 1;
1176 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1177
24cd7723
JR
1178 while (level > 0) {
1179
1180 /* Not Present */
308973d3
JR
1181 if (!IOMMU_PTE_PRESENT(*pte))
1182 return NULL;
1183
24cd7723
JR
1184 /* Large PTE */
1185 if (PM_PTE_LEVEL(*pte) == 0x07) {
1186 unsigned long pte_mask, __pte;
1187
1188 /*
1189 * If we have a series of large PTEs, make
1190 * sure to return a pointer to the first one.
1191 */
1192 pte_mask = PTE_PAGE_SIZE(*pte);
1193 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1194 __pte = ((unsigned long)pte) & pte_mask;
1195
1196 return (u64 *)__pte;
1197 }
1198
1199 /* No level skipping support yet */
1200 if (PM_PTE_LEVEL(*pte) != level)
1201 return NULL;
1202
308973d3
JR
1203 level -= 1;
1204
24cd7723 1205 /* Walk to the next level */
308973d3
JR
1206 pte = IOMMU_PTE_PAGE(*pte);
1207 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1208 }
1209
1210 return pte;
1211}
1212
431b2a20
JR
1213/*
1214 * Generic mapping functions. It maps a physical address into a DMA
1215 * address space. It allocates the page table pages if necessary.
1216 * In the future it can be extended to a generic mapping function
1217 * supporting all features of AMD IOMMU page tables like level skipping
1218 * and full 64 bit address spaces.
1219 */
38e817fe
JR
1220static int iommu_map_page(struct protection_domain *dom,
1221 unsigned long bus_addr,
1222 unsigned long phys_addr,
abdc5eb3 1223 int prot,
cbb9d729 1224 unsigned long page_size)
bd0e5211 1225{
8bda3092 1226 u64 __pte, *pte;
cbb9d729 1227 int i, count;
abdc5eb3 1228
bad1cac2 1229 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1230 return -EINVAL;
1231
cbb9d729
JR
1232 bus_addr = PAGE_ALIGN(bus_addr);
1233 phys_addr = PAGE_ALIGN(phys_addr);
1234 count = PAGE_SIZE_PTE_COUNT(page_size);
1235 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1236
1237 for (i = 0; i < count; ++i)
1238 if (IOMMU_PTE_PRESENT(pte[i]))
1239 return -EBUSY;
bd0e5211 1240
cbb9d729
JR
1241 if (page_size > PAGE_SIZE) {
1242 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1243 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1244 } else
1245 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1246
bd0e5211
JR
1247 if (prot & IOMMU_PROT_IR)
1248 __pte |= IOMMU_PTE_IR;
1249 if (prot & IOMMU_PROT_IW)
1250 __pte |= IOMMU_PTE_IW;
1251
cbb9d729
JR
1252 for (i = 0; i < count; ++i)
1253 pte[i] = __pte;
bd0e5211 1254
04bfdd84
JR
1255 update_domain(dom);
1256
bd0e5211
JR
1257 return 0;
1258}
1259
24cd7723
JR
1260static unsigned long iommu_unmap_page(struct protection_domain *dom,
1261 unsigned long bus_addr,
1262 unsigned long page_size)
eb74ff6c 1263{
24cd7723
JR
1264 unsigned long long unmap_size, unmapped;
1265 u64 *pte;
1266
1267 BUG_ON(!is_power_of_2(page_size));
1268
1269 unmapped = 0;
eb74ff6c 1270
24cd7723
JR
1271 while (unmapped < page_size) {
1272
1273 pte = fetch_pte(dom, bus_addr);
1274
1275 if (!pte) {
1276 /*
1277 * No PTE for this address
1278 * move forward in 4kb steps
1279 */
1280 unmap_size = PAGE_SIZE;
1281 } else if (PM_PTE_LEVEL(*pte) == 0) {
1282 /* 4kb PTE found for this address */
1283 unmap_size = PAGE_SIZE;
1284 *pte = 0ULL;
1285 } else {
1286 int count, i;
1287
1288 /* Large PTE found which maps this address */
1289 unmap_size = PTE_PAGE_SIZE(*pte);
1290 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1291 for (i = 0; i < count; i++)
1292 pte[i] = 0ULL;
1293 }
1294
1295 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1296 unmapped += unmap_size;
1297 }
1298
1299 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 1300
24cd7723 1301 return unmapped;
eb74ff6c 1302}
eb74ff6c 1303
431b2a20
JR
1304/*
1305 * This function checks if a specific unity mapping entry is needed for
1306 * this specific IOMMU.
1307 */
bd0e5211
JR
1308static int iommu_for_unity_map(struct amd_iommu *iommu,
1309 struct unity_map_entry *entry)
1310{
1311 u16 bdf, i;
1312
1313 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1314 bdf = amd_iommu_alias_table[i];
1315 if (amd_iommu_rlookup_table[bdf] == iommu)
1316 return 1;
1317 }
1318
1319 return 0;
1320}
1321
431b2a20
JR
1322/*
1323 * This function actually applies the mapping to the page table of the
1324 * dma_ops domain.
1325 */
bd0e5211
JR
1326static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1327 struct unity_map_entry *e)
1328{
1329 u64 addr;
1330 int ret;
1331
1332 for (addr = e->address_start; addr < e->address_end;
1333 addr += PAGE_SIZE) {
abdc5eb3 1334 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1335 PAGE_SIZE);
bd0e5211
JR
1336 if (ret)
1337 return ret;
1338 /*
1339 * if unity mapping is in aperture range mark the page
1340 * as allocated in the aperture
1341 */
1342 if (addr < dma_dom->aperture_size)
c3239567 1343 __set_bit(addr >> PAGE_SHIFT,
384de729 1344 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1345 }
1346
1347 return 0;
1348}
1349
171e7b37
JR
1350/*
1351 * Init the unity mappings for a specific IOMMU in the system
1352 *
1353 * Basically iterates over all unity mapping entries and applies them to
1354 * the default domain DMA of that IOMMU if necessary.
1355 */
1356static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1357{
1358 struct unity_map_entry *entry;
1359 int ret;
1360
1361 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1362 if (!iommu_for_unity_map(iommu, entry))
1363 continue;
1364 ret = dma_ops_unity_map(iommu->default_dom, entry);
1365 if (ret)
1366 return ret;
1367 }
1368
1369 return 0;
1370}
1371
431b2a20
JR
1372/*
1373 * Inits the unity mappings required for a specific device
1374 */
bd0e5211
JR
1375static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1376 u16 devid)
1377{
1378 struct unity_map_entry *e;
1379 int ret;
1380
1381 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1382 if (!(devid >= e->devid_start && devid <= e->devid_end))
1383 continue;
1384 ret = dma_ops_unity_map(dma_dom, e);
1385 if (ret)
1386 return ret;
1387 }
1388
1389 return 0;
1390}
1391
431b2a20
JR
1392/****************************************************************************
1393 *
1394 * The next functions belong to the address allocator for the dma_ops
1395 * interface functions. They work like the allocators in the other IOMMU
1396 * drivers. Its basically a bitmap which marks the allocated pages in
1397 * the aperture. Maybe it could be enhanced in the future to a more
1398 * efficient allocator.
1399 *
1400 ****************************************************************************/
d3086444 1401
431b2a20 1402/*
384de729 1403 * The address allocator core functions.
431b2a20
JR
1404 *
1405 * called with domain->lock held
1406 */
384de729 1407
171e7b37
JR
1408/*
1409 * Used to reserve address ranges in the aperture (e.g. for exclusion
1410 * ranges.
1411 */
1412static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1413 unsigned long start_page,
1414 unsigned int pages)
1415{
1416 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1417
1418 if (start_page + pages > last_page)
1419 pages = last_page - start_page;
1420
1421 for (i = start_page; i < start_page + pages; ++i) {
1422 int index = i / APERTURE_RANGE_PAGES;
1423 int page = i % APERTURE_RANGE_PAGES;
1424 __set_bit(page, dom->aperture[index]->bitmap);
1425 }
1426}
1427
9cabe89b
JR
1428/*
1429 * This function is used to add a new aperture range to an existing
1430 * aperture in case of dma_ops domain allocation or address allocation
1431 * failure.
1432 */
576175c2 1433static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1434 bool populate, gfp_t gfp)
1435{
1436 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1437 struct amd_iommu *iommu;
17f5b569 1438 unsigned long i, old_size;
9cabe89b 1439
f5e9705c
JR
1440#ifdef CONFIG_IOMMU_STRESS
1441 populate = false;
1442#endif
1443
9cabe89b
JR
1444 if (index >= APERTURE_MAX_RANGES)
1445 return -ENOMEM;
1446
1447 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1448 if (!dma_dom->aperture[index])
1449 return -ENOMEM;
1450
1451 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1452 if (!dma_dom->aperture[index]->bitmap)
1453 goto out_free;
1454
1455 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1456
1457 if (populate) {
1458 unsigned long address = dma_dom->aperture_size;
1459 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1460 u64 *pte, *pte_page;
1461
1462 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1463 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1464 &pte_page, gfp);
1465 if (!pte)
1466 goto out_free;
1467
1468 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1469
1470 address += APERTURE_RANGE_SIZE / 64;
1471 }
1472 }
1473
17f5b569 1474 old_size = dma_dom->aperture_size;
9cabe89b
JR
1475 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1476
17f5b569
JR
1477 /* Reserve address range used for MSI messages */
1478 if (old_size < MSI_ADDR_BASE_LO &&
1479 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1480 unsigned long spage;
1481 int pages;
1482
1483 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1484 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1485
1486 dma_ops_reserve_addresses(dma_dom, spage, pages);
1487 }
1488
b595076a 1489 /* Initialize the exclusion range if necessary */
576175c2
JR
1490 for_each_iommu(iommu) {
1491 if (iommu->exclusion_start &&
1492 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1493 && iommu->exclusion_start < dma_dom->aperture_size) {
1494 unsigned long startpage;
1495 int pages = iommu_num_pages(iommu->exclusion_start,
1496 iommu->exclusion_length,
1497 PAGE_SIZE);
1498 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1499 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1500 }
00cd122a
JR
1501 }
1502
1503 /*
1504 * Check for areas already mapped as present in the new aperture
1505 * range and mark those pages as reserved in the allocator. Such
1506 * mappings may already exist as a result of requested unity
1507 * mappings for devices.
1508 */
1509 for (i = dma_dom->aperture[index]->offset;
1510 i < dma_dom->aperture_size;
1511 i += PAGE_SIZE) {
24cd7723 1512 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1513 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1514 continue;
1515
fcd0861d 1516 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1517 }
1518
04bfdd84
JR
1519 update_domain(&dma_dom->domain);
1520
9cabe89b
JR
1521 return 0;
1522
1523out_free:
04bfdd84
JR
1524 update_domain(&dma_dom->domain);
1525
9cabe89b
JR
1526 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1527
1528 kfree(dma_dom->aperture[index]);
1529 dma_dom->aperture[index] = NULL;
1530
1531 return -ENOMEM;
1532}
1533
384de729
JR
1534static unsigned long dma_ops_area_alloc(struct device *dev,
1535 struct dma_ops_domain *dom,
1536 unsigned int pages,
1537 unsigned long align_mask,
1538 u64 dma_mask,
1539 unsigned long start)
1540{
803b8cb4 1541 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1542 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1543 int i = start >> APERTURE_RANGE_SHIFT;
1544 unsigned long boundary_size;
1545 unsigned long address = -1;
1546 unsigned long limit;
1547
803b8cb4
JR
1548 next_bit >>= PAGE_SHIFT;
1549
384de729
JR
1550 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1551 PAGE_SIZE) >> PAGE_SHIFT;
1552
1553 for (;i < max_index; ++i) {
1554 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1555
1556 if (dom->aperture[i]->offset >= dma_mask)
1557 break;
1558
1559 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1560 dma_mask >> PAGE_SHIFT);
1561
1562 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1563 limit, next_bit, pages, 0,
1564 boundary_size, align_mask);
1565 if (address != -1) {
1566 address = dom->aperture[i]->offset +
1567 (address << PAGE_SHIFT);
803b8cb4 1568 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1569 break;
1570 }
1571
1572 next_bit = 0;
1573 }
1574
1575 return address;
1576}
1577
d3086444
JR
1578static unsigned long dma_ops_alloc_addresses(struct device *dev,
1579 struct dma_ops_domain *dom,
6d4f343f 1580 unsigned int pages,
832a90c3
JR
1581 unsigned long align_mask,
1582 u64 dma_mask)
d3086444 1583{
d3086444 1584 unsigned long address;
d3086444 1585
fe16f088
JR
1586#ifdef CONFIG_IOMMU_STRESS
1587 dom->next_address = 0;
1588 dom->need_flush = true;
1589#endif
d3086444 1590
384de729 1591 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1592 dma_mask, dom->next_address);
d3086444 1593
1c655773 1594 if (address == -1) {
803b8cb4 1595 dom->next_address = 0;
384de729
JR
1596 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1597 dma_mask, 0);
1c655773
JR
1598 dom->need_flush = true;
1599 }
d3086444 1600
384de729 1601 if (unlikely(address == -1))
8fd524b3 1602 address = DMA_ERROR_CODE;
d3086444
JR
1603
1604 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1605
1606 return address;
1607}
1608
431b2a20
JR
1609/*
1610 * The address free function.
1611 *
1612 * called with domain->lock held
1613 */
d3086444
JR
1614static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1615 unsigned long address,
1616 unsigned int pages)
1617{
384de729
JR
1618 unsigned i = address >> APERTURE_RANGE_SHIFT;
1619 struct aperture_range *range = dom->aperture[i];
80be308d 1620
384de729
JR
1621 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1622
47bccd6b
JR
1623#ifdef CONFIG_IOMMU_STRESS
1624 if (i < 4)
1625 return;
1626#endif
80be308d 1627
803b8cb4 1628 if (address >= dom->next_address)
80be308d 1629 dom->need_flush = true;
384de729
JR
1630
1631 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1632
a66022c4 1633 bitmap_clear(range->bitmap, address, pages);
384de729 1634
d3086444
JR
1635}
1636
431b2a20
JR
1637/****************************************************************************
1638 *
1639 * The next functions belong to the domain allocation. A domain is
1640 * allocated for every IOMMU as the default domain. If device isolation
1641 * is enabled, every device get its own domain. The most important thing
1642 * about domains is the page table mapping the DMA address space they
1643 * contain.
1644 *
1645 ****************************************************************************/
1646
aeb26f55
JR
1647/*
1648 * This function adds a protection domain to the global protection domain list
1649 */
1650static void add_domain_to_list(struct protection_domain *domain)
1651{
1652 unsigned long flags;
1653
1654 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1655 list_add(&domain->list, &amd_iommu_pd_list);
1656 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1657}
1658
1659/*
1660 * This function removes a protection domain to the global
1661 * protection domain list
1662 */
1663static void del_domain_from_list(struct protection_domain *domain)
1664{
1665 unsigned long flags;
1666
1667 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1668 list_del(&domain->list);
1669 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1670}
1671
ec487d1a
JR
1672static u16 domain_id_alloc(void)
1673{
1674 unsigned long flags;
1675 int id;
1676
1677 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1678 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1679 BUG_ON(id == 0);
1680 if (id > 0 && id < MAX_DOMAIN_ID)
1681 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1682 else
1683 id = 0;
1684 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1685
1686 return id;
1687}
1688
a2acfb75
JR
1689static void domain_id_free(int id)
1690{
1691 unsigned long flags;
1692
1693 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1694 if (id > 0 && id < MAX_DOMAIN_ID)
1695 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1696 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1697}
a2acfb75 1698
86db2e5d 1699static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1700{
1701 int i, j;
1702 u64 *p1, *p2, *p3;
1703
86db2e5d 1704 p1 = domain->pt_root;
ec487d1a
JR
1705
1706 if (!p1)
1707 return;
1708
1709 for (i = 0; i < 512; ++i) {
1710 if (!IOMMU_PTE_PRESENT(p1[i]))
1711 continue;
1712
1713 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1714 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1715 if (!IOMMU_PTE_PRESENT(p2[j]))
1716 continue;
1717 p3 = IOMMU_PTE_PAGE(p2[j]);
1718 free_page((unsigned long)p3);
1719 }
1720
1721 free_page((unsigned long)p2);
1722 }
1723
1724 free_page((unsigned long)p1);
86db2e5d
JR
1725
1726 domain->pt_root = NULL;
ec487d1a
JR
1727}
1728
b16137b1
JR
1729static void free_gcr3_tbl_level1(u64 *tbl)
1730{
1731 u64 *ptr;
1732 int i;
1733
1734 for (i = 0; i < 512; ++i) {
1735 if (!(tbl[i] & GCR3_VALID))
1736 continue;
1737
1738 ptr = __va(tbl[i] & PAGE_MASK);
1739
1740 free_page((unsigned long)ptr);
1741 }
1742}
1743
1744static void free_gcr3_tbl_level2(u64 *tbl)
1745{
1746 u64 *ptr;
1747 int i;
1748
1749 for (i = 0; i < 512; ++i) {
1750 if (!(tbl[i] & GCR3_VALID))
1751 continue;
1752
1753 ptr = __va(tbl[i] & PAGE_MASK);
1754
1755 free_gcr3_tbl_level1(ptr);
1756 }
1757}
1758
52815b75
JR
1759static void free_gcr3_table(struct protection_domain *domain)
1760{
b16137b1
JR
1761 if (domain->glx == 2)
1762 free_gcr3_tbl_level2(domain->gcr3_tbl);
1763 else if (domain->glx == 1)
1764 free_gcr3_tbl_level1(domain->gcr3_tbl);
1765 else if (domain->glx != 0)
1766 BUG();
1767
52815b75
JR
1768 free_page((unsigned long)domain->gcr3_tbl);
1769}
1770
431b2a20
JR
1771/*
1772 * Free a domain, only used if something went wrong in the
1773 * allocation path and we need to free an already allocated page table
1774 */
ec487d1a
JR
1775static void dma_ops_domain_free(struct dma_ops_domain *dom)
1776{
384de729
JR
1777 int i;
1778
ec487d1a
JR
1779 if (!dom)
1780 return;
1781
aeb26f55
JR
1782 del_domain_from_list(&dom->domain);
1783
86db2e5d 1784 free_pagetable(&dom->domain);
ec487d1a 1785
384de729
JR
1786 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1787 if (!dom->aperture[i])
1788 continue;
1789 free_page((unsigned long)dom->aperture[i]->bitmap);
1790 kfree(dom->aperture[i]);
1791 }
ec487d1a
JR
1792
1793 kfree(dom);
1794}
1795
431b2a20
JR
1796/*
1797 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1798 * It also initializes the page table and the address allocator data
431b2a20
JR
1799 * structures required for the dma_ops interface
1800 */
87a64d52 1801static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1802{
1803 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1804
1805 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1806 if (!dma_dom)
1807 return NULL;
1808
1809 spin_lock_init(&dma_dom->domain.lock);
1810
1811 dma_dom->domain.id = domain_id_alloc();
1812 if (dma_dom->domain.id == 0)
1813 goto free_dma_dom;
7c392cbe 1814 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1815 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1816 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1817 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1818 dma_dom->domain.priv = dma_dom;
1819 if (!dma_dom->domain.pt_root)
1820 goto free_dma_dom;
ec487d1a 1821
1c655773 1822 dma_dom->need_flush = false;
bd60b735 1823 dma_dom->target_dev = 0xffff;
1c655773 1824
aeb26f55
JR
1825 add_domain_to_list(&dma_dom->domain);
1826
576175c2 1827 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1828 goto free_dma_dom;
ec487d1a 1829
431b2a20 1830 /*
ec487d1a
JR
1831 * mark the first page as allocated so we never return 0 as
1832 * a valid dma-address. So we can use 0 as error value
431b2a20 1833 */
384de729 1834 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1835 dma_dom->next_address = 0;
ec487d1a 1836
ec487d1a
JR
1837
1838 return dma_dom;
1839
1840free_dma_dom:
1841 dma_ops_domain_free(dma_dom);
1842
1843 return NULL;
1844}
1845
5b28df6f
JR
1846/*
1847 * little helper function to check whether a given protection domain is a
1848 * dma_ops domain
1849 */
1850static bool dma_ops_domain(struct protection_domain *domain)
1851{
1852 return domain->flags & PD_DMA_OPS_MASK;
1853}
1854
fd7b5535 1855static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 1856{
132bd68f 1857 u64 pte_root = 0;
ee6c2868 1858 u64 flags = 0;
863c74eb 1859
132bd68f
JR
1860 if (domain->mode != PAGE_MODE_NONE)
1861 pte_root = virt_to_phys(domain->pt_root);
1862
38ddf41b
JR
1863 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1864 << DEV_ENTRY_MODE_SHIFT;
1865 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1866
ee6c2868
JR
1867 flags = amd_iommu_dev_table[devid].data[1];
1868
fd7b5535
JR
1869 if (ats)
1870 flags |= DTE_FLAG_IOTLB;
1871
52815b75
JR
1872 if (domain->flags & PD_IOMMUV2_MASK) {
1873 u64 gcr3 = __pa(domain->gcr3_tbl);
1874 u64 glx = domain->glx;
1875 u64 tmp;
1876
1877 pte_root |= DTE_FLAG_GV;
1878 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1879
1880 /* First mask out possible old values for GCR3 table */
1881 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1882 flags &= ~tmp;
1883
1884 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1885 flags &= ~tmp;
1886
1887 /* Encode GCR3 table into DTE */
1888 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1889 pte_root |= tmp;
1890
1891 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1892 flags |= tmp;
1893
1894 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1895 flags |= tmp;
1896 }
1897
ee6c2868
JR
1898 flags &= ~(0xffffUL);
1899 flags |= domain->id;
1900
1901 amd_iommu_dev_table[devid].data[1] = flags;
1902 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
1903}
1904
1905static void clear_dte_entry(u16 devid)
1906{
15898bbc
JR
1907 /* remove entry from the device table seen by the hardware */
1908 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1909 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
1910
1911 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1912}
1913
ec9e79ef
JR
1914static void do_attach(struct iommu_dev_data *dev_data,
1915 struct protection_domain *domain)
7f760ddd 1916{
7f760ddd 1917 struct amd_iommu *iommu;
ec9e79ef 1918 bool ats;
fd7b5535 1919
ec9e79ef
JR
1920 iommu = amd_iommu_rlookup_table[dev_data->devid];
1921 ats = dev_data->ats.enabled;
7f760ddd
JR
1922
1923 /* Update data structures */
1924 dev_data->domain = domain;
1925 list_add(&dev_data->list, &domain->dev_list);
f62dda66 1926 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
1927
1928 /* Do reference counting */
1929 domain->dev_iommu[iommu->index] += 1;
1930 domain->dev_cnt += 1;
1931
1932 /* Flush the DTE entry */
6c542047 1933 device_flush_dte(dev_data);
7f760ddd
JR
1934}
1935
ec9e79ef 1936static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 1937{
7f760ddd 1938 struct amd_iommu *iommu;
7f760ddd 1939
ec9e79ef 1940 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
1941
1942 /* decrease reference counters */
7f760ddd
JR
1943 dev_data->domain->dev_iommu[iommu->index] -= 1;
1944 dev_data->domain->dev_cnt -= 1;
1945
1946 /* Update data structures */
1947 dev_data->domain = NULL;
1948 list_del(&dev_data->list);
f62dda66 1949 clear_dte_entry(dev_data->devid);
15898bbc 1950
7f760ddd 1951 /* Flush the DTE entry */
6c542047 1952 device_flush_dte(dev_data);
2b681faf
JR
1953}
1954
1955/*
1956 * If a device is not yet associated with a domain, this function does
1957 * assigns it visible for the hardware
1958 */
ec9e79ef 1959static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 1960 struct protection_domain *domain)
2b681faf 1961{
84fe6c19 1962 int ret;
657cbb6b 1963
2b681faf
JR
1964 /* lock domain */
1965 spin_lock(&domain->lock);
1966
71f77580
JR
1967 if (dev_data->alias_data != NULL) {
1968 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 1969
2b02b091
JR
1970 /* Some sanity checks */
1971 ret = -EBUSY;
1972 if (alias_data->domain != NULL &&
1973 alias_data->domain != domain)
1974 goto out_unlock;
eba6ac60 1975
2b02b091
JR
1976 if (dev_data->domain != NULL &&
1977 dev_data->domain != domain)
1978 goto out_unlock;
15898bbc 1979
2b02b091 1980 /* Do real assignment */
7f760ddd 1981 if (alias_data->domain == NULL)
ec9e79ef 1982 do_attach(alias_data, domain);
24100055
JR
1983
1984 atomic_inc(&alias_data->bind);
657cbb6b 1985 }
15898bbc 1986
7f760ddd 1987 if (dev_data->domain == NULL)
ec9e79ef 1988 do_attach(dev_data, domain);
eba6ac60 1989
24100055
JR
1990 atomic_inc(&dev_data->bind);
1991
84fe6c19
JL
1992 ret = 0;
1993
1994out_unlock:
1995
eba6ac60
JR
1996 /* ready */
1997 spin_unlock(&domain->lock);
15898bbc 1998
84fe6c19 1999 return ret;
0feae533 2000}
b20ac0d4 2001
52815b75
JR
2002
2003static void pdev_iommuv2_disable(struct pci_dev *pdev)
2004{
2005 pci_disable_ats(pdev);
2006 pci_disable_pri(pdev);
2007 pci_disable_pasid(pdev);
2008}
2009
6a113ddc
JR
2010/* FIXME: Change generic reset-function to do the same */
2011static int pri_reset_while_enabled(struct pci_dev *pdev)
2012{
2013 u16 control;
2014 int pos;
2015
46277b75 2016 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2017 if (!pos)
2018 return -EINVAL;
2019
46277b75
JR
2020 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2021 control |= PCI_PRI_CTRL_RESET;
2022 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2023
2024 return 0;
2025}
2026
52815b75
JR
2027static int pdev_iommuv2_enable(struct pci_dev *pdev)
2028{
6a113ddc
JR
2029 bool reset_enable;
2030 int reqs, ret;
2031
2032 /* FIXME: Hardcode number of outstanding requests for now */
2033 reqs = 32;
2034 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2035 reqs = 1;
2036 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2037
2038 /* Only allow access to user-accessible pages */
2039 ret = pci_enable_pasid(pdev, 0);
2040 if (ret)
2041 goto out_err;
2042
2043 /* First reset the PRI state of the device */
2044 ret = pci_reset_pri(pdev);
2045 if (ret)
2046 goto out_err;
2047
6a113ddc
JR
2048 /* Enable PRI */
2049 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2050 if (ret)
2051 goto out_err;
2052
6a113ddc
JR
2053 if (reset_enable) {
2054 ret = pri_reset_while_enabled(pdev);
2055 if (ret)
2056 goto out_err;
2057 }
2058
52815b75
JR
2059 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2060 if (ret)
2061 goto out_err;
2062
2063 return 0;
2064
2065out_err:
2066 pci_disable_pri(pdev);
2067 pci_disable_pasid(pdev);
2068
2069 return ret;
2070}
2071
c99afa25 2072/* FIXME: Move this to PCI code */
a3b93121 2073#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2074
98f1ad25 2075static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2076{
a3b93121 2077 u16 status;
c99afa25
JR
2078 int pos;
2079
46277b75 2080 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2081 if (!pos)
2082 return false;
2083
a3b93121 2084 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2085
a3b93121 2086 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2087}
2088
407d733e
JR
2089/*
2090 * If a device is not yet associated with a domain, this function does
2091 * assigns it visible for the hardware
2092 */
15898bbc
JR
2093static int attach_device(struct device *dev,
2094 struct protection_domain *domain)
0feae533 2095{
fd7b5535 2096 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2097 struct iommu_dev_data *dev_data;
eba6ac60 2098 unsigned long flags;
15898bbc 2099 int ret;
eba6ac60 2100
ea61cddb
JR
2101 dev_data = get_dev_data(dev);
2102
52815b75
JR
2103 if (domain->flags & PD_IOMMUV2_MASK) {
2104 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2105 return -EINVAL;
2106
2107 if (pdev_iommuv2_enable(pdev) != 0)
2108 return -EINVAL;
2109
2110 dev_data->ats.enabled = true;
2111 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2112 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2113 } else if (amd_iommu_iotlb_sup &&
2114 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2115 dev_data->ats.enabled = true;
2116 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2117 }
fd7b5535 2118
eba6ac60 2119 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2120 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2121 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2122
0feae533
JR
2123 /*
2124 * We might boot into a crash-kernel here. The crashed kernel
2125 * left the caches in the IOMMU dirty. So we have to flush
2126 * here to evict all dirty stuff.
2127 */
17b124bf 2128 domain_flush_tlb_pde(domain);
15898bbc
JR
2129
2130 return ret;
b20ac0d4
JR
2131}
2132
355bf553
JR
2133/*
2134 * Removes a device from a protection domain (unlocked)
2135 */
ec9e79ef 2136static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2137{
2ca76279 2138 struct protection_domain *domain;
7c392cbe 2139 unsigned long flags;
c4596114 2140
7f760ddd 2141 BUG_ON(!dev_data->domain);
355bf553 2142
2ca76279
JR
2143 domain = dev_data->domain;
2144
2145 spin_lock_irqsave(&domain->lock, flags);
24100055 2146
71f77580
JR
2147 if (dev_data->alias_data != NULL) {
2148 struct iommu_dev_data *alias_data = dev_data->alias_data;
2149
7f760ddd 2150 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 2151 do_detach(alias_data);
24100055
JR
2152 }
2153
7f760ddd 2154 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 2155 do_detach(dev_data);
7f760ddd 2156
2ca76279 2157 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2158
2159 /*
2160 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2161 * passthrough domain if it is detached from any other domain.
2162 * Make sure we can deassign from the pt_domain itself.
21129f78 2163 */
5abcdba4 2164 if (dev_data->passthrough &&
d3ad9373 2165 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2166 __attach_device(dev_data, pt_domain);
355bf553
JR
2167}
2168
2169/*
2170 * Removes a device from a protection domain (with devtable_lock held)
2171 */
15898bbc 2172static void detach_device(struct device *dev)
355bf553 2173{
52815b75 2174 struct protection_domain *domain;
ea61cddb 2175 struct iommu_dev_data *dev_data;
355bf553
JR
2176 unsigned long flags;
2177
ec9e79ef 2178 dev_data = get_dev_data(dev);
52815b75 2179 domain = dev_data->domain;
ec9e79ef 2180
355bf553
JR
2181 /* lock device table */
2182 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2183 __detach_device(dev_data);
355bf553 2184 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2185
52815b75
JR
2186 if (domain->flags & PD_IOMMUV2_MASK)
2187 pdev_iommuv2_disable(to_pci_dev(dev));
2188 else if (dev_data->ats.enabled)
ea61cddb 2189 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2190
2191 dev_data->ats.enabled = false;
355bf553 2192}
e275a2a0 2193
15898bbc
JR
2194/*
2195 * Find out the protection domain structure for a given PCI device. This
2196 * will give us the pointer to the page table root for example.
2197 */
2198static struct protection_domain *domain_for_device(struct device *dev)
2199{
71f77580 2200 struct iommu_dev_data *dev_data;
2b02b091 2201 struct protection_domain *dom = NULL;
15898bbc 2202 unsigned long flags;
15898bbc 2203
657cbb6b 2204 dev_data = get_dev_data(dev);
15898bbc 2205
2b02b091
JR
2206 if (dev_data->domain)
2207 return dev_data->domain;
15898bbc 2208
71f77580
JR
2209 if (dev_data->alias_data != NULL) {
2210 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2211
2212 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2213 if (alias_data->domain != NULL) {
2214 __attach_device(dev_data, alias_data->domain);
2215 dom = alias_data->domain;
2216 }
2217 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2218 }
15898bbc
JR
2219
2220 return dom;
2221}
2222
e275a2a0
JR
2223static int device_change_notifier(struct notifier_block *nb,
2224 unsigned long action, void *data)
2225{
e275a2a0 2226 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2227 struct protection_domain *domain;
2228 struct iommu_dev_data *dev_data;
2229 struct device *dev = data;
e275a2a0 2230 struct amd_iommu *iommu;
1ac4cbbc 2231 unsigned long flags;
5abcdba4 2232 u16 devid;
e275a2a0 2233
98fc5a69
JR
2234 if (!check_device(dev))
2235 return 0;
e275a2a0 2236
5abcdba4
JR
2237 devid = get_device_id(dev);
2238 iommu = amd_iommu_rlookup_table[devid];
2239 dev_data = get_dev_data(dev);
e275a2a0
JR
2240
2241 switch (action) {
c1eee67b 2242 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
2243
2244 domain = domain_for_device(dev);
2245
e275a2a0
JR
2246 if (!domain)
2247 goto out;
5abcdba4 2248 if (dev_data->passthrough)
a1ca331c 2249 break;
15898bbc 2250 detach_device(dev);
1ac4cbbc
JR
2251 break;
2252 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2253
2254 iommu_init_device(dev);
2255
2256 domain = domain_for_device(dev);
2257
1ac4cbbc
JR
2258 /* allocate a protection domain if a device is added */
2259 dma_domain = find_protection_domain(devid);
2260 if (dma_domain)
2261 goto out;
87a64d52 2262 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
2263 if (!dma_domain)
2264 goto out;
2265 dma_domain->target_dev = devid;
2266
2267 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2268 list_add_tail(&dma_domain->list, &iommu_pd_list);
2269 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2270
ac1534a5
JR
2271 dev_data = get_dev_data(dev);
2272
2273 if (!dev_data->passthrough)
2274 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2275 else
2276 dev->archdata.dma_ops = &nommu_dma_ops;
2277
e275a2a0 2278 break;
657cbb6b
JR
2279 case BUS_NOTIFY_DEL_DEVICE:
2280
2281 iommu_uninit_device(dev);
2282
e275a2a0
JR
2283 default:
2284 goto out;
2285 }
2286
e275a2a0
JR
2287 iommu_completion_wait(iommu);
2288
2289out:
2290 return 0;
2291}
2292
b25ae679 2293static struct notifier_block device_nb = {
e275a2a0
JR
2294 .notifier_call = device_change_notifier,
2295};
355bf553 2296
8638c491
JR
2297void amd_iommu_init_notifier(void)
2298{
2299 bus_register_notifier(&pci_bus_type, &device_nb);
2300}
2301
431b2a20
JR
2302/*****************************************************************************
2303 *
2304 * The next functions belong to the dma_ops mapping/unmapping code.
2305 *
2306 *****************************************************************************/
2307
2308/*
2309 * In the dma_ops path we only have the struct device. This function
2310 * finds the corresponding IOMMU, the protection domain and the
2311 * requestor id for a given device.
2312 * If the device is not yet associated with a domain this is also done
2313 * in this function.
2314 */
94f6d190 2315static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2316{
94f6d190 2317 struct protection_domain *domain;
b20ac0d4 2318 struct dma_ops_domain *dma_dom;
94f6d190 2319 u16 devid = get_device_id(dev);
b20ac0d4 2320
f99c0f1c 2321 if (!check_device(dev))
94f6d190 2322 return ERR_PTR(-EINVAL);
b20ac0d4 2323
94f6d190
JR
2324 domain = domain_for_device(dev);
2325 if (domain != NULL && !dma_ops_domain(domain))
2326 return ERR_PTR(-EBUSY);
f99c0f1c 2327
94f6d190
JR
2328 if (domain != NULL)
2329 return domain;
b20ac0d4 2330
15898bbc 2331 /* Device not bount yet - bind it */
94f6d190 2332 dma_dom = find_protection_domain(devid);
15898bbc 2333 if (!dma_dom)
94f6d190
JR
2334 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2335 attach_device(dev, &dma_dom->domain);
15898bbc 2336 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2337 dma_dom->domain.id, dev_name(dev));
f91ba190 2338
94f6d190 2339 return &dma_dom->domain;
b20ac0d4
JR
2340}
2341
04bfdd84
JR
2342static void update_device_table(struct protection_domain *domain)
2343{
492667da 2344 struct iommu_dev_data *dev_data;
04bfdd84 2345
ea61cddb
JR
2346 list_for_each_entry(dev_data, &domain->dev_list, list)
2347 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2348}
2349
2350static void update_domain(struct protection_domain *domain)
2351{
2352 if (!domain->updated)
2353 return;
2354
2355 update_device_table(domain);
17b124bf
JR
2356
2357 domain_flush_devices(domain);
2358 domain_flush_tlb_pde(domain);
04bfdd84
JR
2359
2360 domain->updated = false;
2361}
2362
8bda3092
JR
2363/*
2364 * This function fetches the PTE for a given address in the aperture
2365 */
2366static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2367 unsigned long address)
2368{
384de729 2369 struct aperture_range *aperture;
8bda3092
JR
2370 u64 *pte, *pte_page;
2371
384de729
JR
2372 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2373 if (!aperture)
2374 return NULL;
2375
2376 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2377 if (!pte) {
cbb9d729 2378 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2379 GFP_ATOMIC);
384de729
JR
2380 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2381 } else
8c8c143c 2382 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2383
04bfdd84 2384 update_domain(&dom->domain);
8bda3092
JR
2385
2386 return pte;
2387}
2388
431b2a20
JR
2389/*
2390 * This is the generic map function. It maps one 4kb page at paddr to
2391 * the given address in the DMA address space for the domain.
2392 */
680525e0 2393static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2394 unsigned long address,
2395 phys_addr_t paddr,
2396 int direction)
2397{
2398 u64 *pte, __pte;
2399
2400 WARN_ON(address > dom->aperture_size);
2401
2402 paddr &= PAGE_MASK;
2403
8bda3092 2404 pte = dma_ops_get_pte(dom, address);
53812c11 2405 if (!pte)
8fd524b3 2406 return DMA_ERROR_CODE;
cb76c322
JR
2407
2408 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2409
2410 if (direction == DMA_TO_DEVICE)
2411 __pte |= IOMMU_PTE_IR;
2412 else if (direction == DMA_FROM_DEVICE)
2413 __pte |= IOMMU_PTE_IW;
2414 else if (direction == DMA_BIDIRECTIONAL)
2415 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2416
2417 WARN_ON(*pte);
2418
2419 *pte = __pte;
2420
2421 return (dma_addr_t)address;
2422}
2423
431b2a20
JR
2424/*
2425 * The generic unmapping function for on page in the DMA address space.
2426 */
680525e0 2427static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2428 unsigned long address)
2429{
384de729 2430 struct aperture_range *aperture;
cb76c322
JR
2431 u64 *pte;
2432
2433 if (address >= dom->aperture_size)
2434 return;
2435
384de729
JR
2436 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2437 if (!aperture)
2438 return;
2439
2440 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2441 if (!pte)
2442 return;
cb76c322 2443
8c8c143c 2444 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2445
2446 WARN_ON(!*pte);
2447
2448 *pte = 0ULL;
2449}
2450
431b2a20
JR
2451/*
2452 * This function contains common code for mapping of a physically
24f81160
JR
2453 * contiguous memory region into DMA address space. It is used by all
2454 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2455 * Must be called with the domain lock held.
2456 */
cb76c322 2457static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2458 struct dma_ops_domain *dma_dom,
2459 phys_addr_t paddr,
2460 size_t size,
6d4f343f 2461 int dir,
832a90c3
JR
2462 bool align,
2463 u64 dma_mask)
cb76c322
JR
2464{
2465 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2466 dma_addr_t address, start, ret;
cb76c322 2467 unsigned int pages;
6d4f343f 2468 unsigned long align_mask = 0;
cb76c322
JR
2469 int i;
2470
e3c449f5 2471 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2472 paddr &= PAGE_MASK;
2473
8ecaf8f1
JR
2474 INC_STATS_COUNTER(total_map_requests);
2475
c1858976
JR
2476 if (pages > 1)
2477 INC_STATS_COUNTER(cross_page);
2478
6d4f343f
JR
2479 if (align)
2480 align_mask = (1UL << get_order(size)) - 1;
2481
11b83888 2482retry:
832a90c3
JR
2483 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2484 dma_mask);
8fd524b3 2485 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2486 /*
2487 * setting next_address here will let the address
2488 * allocator only scan the new allocated range in the
2489 * first run. This is a small optimization.
2490 */
2491 dma_dom->next_address = dma_dom->aperture_size;
2492
576175c2 2493 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2494 goto out;
2495
2496 /*
af901ca1 2497 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2498 * allocation again
2499 */
2500 goto retry;
2501 }
cb76c322
JR
2502
2503 start = address;
2504 for (i = 0; i < pages; ++i) {
680525e0 2505 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2506 if (ret == DMA_ERROR_CODE)
53812c11
JR
2507 goto out_unmap;
2508
cb76c322
JR
2509 paddr += PAGE_SIZE;
2510 start += PAGE_SIZE;
2511 }
2512 address += offset;
2513
5774f7c5
JR
2514 ADD_STATS_COUNTER(alloced_io_mem, size);
2515
afa9fdc2 2516 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2517 domain_flush_tlb(&dma_dom->domain);
1c655773 2518 dma_dom->need_flush = false;
318afd41 2519 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2520 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2521
cb76c322
JR
2522out:
2523 return address;
53812c11
JR
2524
2525out_unmap:
2526
2527 for (--i; i >= 0; --i) {
2528 start -= PAGE_SIZE;
680525e0 2529 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2530 }
2531
2532 dma_ops_free_addresses(dma_dom, address, pages);
2533
8fd524b3 2534 return DMA_ERROR_CODE;
cb76c322
JR
2535}
2536
431b2a20
JR
2537/*
2538 * Does the reverse of the __map_single function. Must be called with
2539 * the domain lock held too
2540 */
cd8c82e8 2541static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2542 dma_addr_t dma_addr,
2543 size_t size,
2544 int dir)
2545{
04e0463e 2546 dma_addr_t flush_addr;
cb76c322
JR
2547 dma_addr_t i, start;
2548 unsigned int pages;
2549
8fd524b3 2550 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2551 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2552 return;
2553
04e0463e 2554 flush_addr = dma_addr;
e3c449f5 2555 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2556 dma_addr &= PAGE_MASK;
2557 start = dma_addr;
2558
2559 for (i = 0; i < pages; ++i) {
680525e0 2560 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2561 start += PAGE_SIZE;
2562 }
2563
5774f7c5
JR
2564 SUB_STATS_COUNTER(alloced_io_mem, size);
2565
cb76c322 2566 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2567
80be308d 2568 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2569 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2570 dma_dom->need_flush = false;
2571 }
cb76c322
JR
2572}
2573
431b2a20
JR
2574/*
2575 * The exported map_single function for dma_ops.
2576 */
51491367
FT
2577static dma_addr_t map_page(struct device *dev, struct page *page,
2578 unsigned long offset, size_t size,
2579 enum dma_data_direction dir,
2580 struct dma_attrs *attrs)
4da70b9e
JR
2581{
2582 unsigned long flags;
4da70b9e 2583 struct protection_domain *domain;
4da70b9e 2584 dma_addr_t addr;
832a90c3 2585 u64 dma_mask;
51491367 2586 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2587
0f2a86f2
JR
2588 INC_STATS_COUNTER(cnt_map_single);
2589
94f6d190
JR
2590 domain = get_domain(dev);
2591 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2592 return (dma_addr_t)paddr;
94f6d190
JR
2593 else if (IS_ERR(domain))
2594 return DMA_ERROR_CODE;
4da70b9e 2595
f99c0f1c
JR
2596 dma_mask = *dev->dma_mask;
2597
4da70b9e 2598 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2599
cd8c82e8 2600 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2601 dma_mask);
8fd524b3 2602 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2603 goto out;
2604
17b124bf 2605 domain_flush_complete(domain);
4da70b9e
JR
2606
2607out:
2608 spin_unlock_irqrestore(&domain->lock, flags);
2609
2610 return addr;
2611}
2612
431b2a20
JR
2613/*
2614 * The exported unmap_single function for dma_ops.
2615 */
51491367
FT
2616static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2617 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2618{
2619 unsigned long flags;
4da70b9e 2620 struct protection_domain *domain;
4da70b9e 2621
146a6917
JR
2622 INC_STATS_COUNTER(cnt_unmap_single);
2623
94f6d190
JR
2624 domain = get_domain(dev);
2625 if (IS_ERR(domain))
5b28df6f
JR
2626 return;
2627
4da70b9e
JR
2628 spin_lock_irqsave(&domain->lock, flags);
2629
cd8c82e8 2630 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2631
17b124bf 2632 domain_flush_complete(domain);
4da70b9e
JR
2633
2634 spin_unlock_irqrestore(&domain->lock, flags);
2635}
2636
431b2a20
JR
2637/*
2638 * This is a special map_sg function which is used if we should map a
2639 * device which is not handled by an AMD IOMMU in the system.
2640 */
65b050ad
JR
2641static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2642 int nelems, int dir)
2643{
2644 struct scatterlist *s;
2645 int i;
2646
2647 for_each_sg(sglist, s, nelems, i) {
2648 s->dma_address = (dma_addr_t)sg_phys(s);
2649 s->dma_length = s->length;
2650 }
2651
2652 return nelems;
2653}
2654
431b2a20
JR
2655/*
2656 * The exported map_sg function for dma_ops (handles scatter-gather
2657 * lists).
2658 */
65b050ad 2659static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2660 int nelems, enum dma_data_direction dir,
2661 struct dma_attrs *attrs)
65b050ad
JR
2662{
2663 unsigned long flags;
65b050ad 2664 struct protection_domain *domain;
65b050ad
JR
2665 int i;
2666 struct scatterlist *s;
2667 phys_addr_t paddr;
2668 int mapped_elems = 0;
832a90c3 2669 u64 dma_mask;
65b050ad 2670
d03f067a
JR
2671 INC_STATS_COUNTER(cnt_map_sg);
2672
94f6d190
JR
2673 domain = get_domain(dev);
2674 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2675 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2676 else if (IS_ERR(domain))
2677 return 0;
dbcc112e 2678
832a90c3 2679 dma_mask = *dev->dma_mask;
65b050ad 2680
65b050ad
JR
2681 spin_lock_irqsave(&domain->lock, flags);
2682
2683 for_each_sg(sglist, s, nelems, i) {
2684 paddr = sg_phys(s);
2685
cd8c82e8 2686 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2687 paddr, s->length, dir, false,
2688 dma_mask);
65b050ad
JR
2689
2690 if (s->dma_address) {
2691 s->dma_length = s->length;
2692 mapped_elems++;
2693 } else
2694 goto unmap;
65b050ad
JR
2695 }
2696
17b124bf 2697 domain_flush_complete(domain);
65b050ad
JR
2698
2699out:
2700 spin_unlock_irqrestore(&domain->lock, flags);
2701
2702 return mapped_elems;
2703unmap:
2704 for_each_sg(sglist, s, mapped_elems, i) {
2705 if (s->dma_address)
cd8c82e8 2706 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2707 s->dma_length, dir);
2708 s->dma_address = s->dma_length = 0;
2709 }
2710
2711 mapped_elems = 0;
2712
2713 goto out;
2714}
2715
431b2a20
JR
2716/*
2717 * The exported map_sg function for dma_ops (handles scatter-gather
2718 * lists).
2719 */
65b050ad 2720static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2721 int nelems, enum dma_data_direction dir,
2722 struct dma_attrs *attrs)
65b050ad
JR
2723{
2724 unsigned long flags;
65b050ad
JR
2725 struct protection_domain *domain;
2726 struct scatterlist *s;
65b050ad
JR
2727 int i;
2728
55877a6b
JR
2729 INC_STATS_COUNTER(cnt_unmap_sg);
2730
94f6d190
JR
2731 domain = get_domain(dev);
2732 if (IS_ERR(domain))
5b28df6f
JR
2733 return;
2734
65b050ad
JR
2735 spin_lock_irqsave(&domain->lock, flags);
2736
2737 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2738 __unmap_single(domain->priv, s->dma_address,
65b050ad 2739 s->dma_length, dir);
65b050ad
JR
2740 s->dma_address = s->dma_length = 0;
2741 }
2742
17b124bf 2743 domain_flush_complete(domain);
65b050ad
JR
2744
2745 spin_unlock_irqrestore(&domain->lock, flags);
2746}
2747
431b2a20
JR
2748/*
2749 * The exported alloc_coherent function for dma_ops.
2750 */
5d8b53cf 2751static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2752 dma_addr_t *dma_addr, gfp_t flag,
2753 struct dma_attrs *attrs)
5d8b53cf
JR
2754{
2755 unsigned long flags;
2756 void *virt_addr;
5d8b53cf 2757 struct protection_domain *domain;
5d8b53cf 2758 phys_addr_t paddr;
832a90c3 2759 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2760
c8f0fb36
JR
2761 INC_STATS_COUNTER(cnt_alloc_coherent);
2762
94f6d190
JR
2763 domain = get_domain(dev);
2764 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2765 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2766 *dma_addr = __pa(virt_addr);
2767 return virt_addr;
94f6d190
JR
2768 } else if (IS_ERR(domain))
2769 return NULL;
5d8b53cf 2770
f99c0f1c
JR
2771 dma_mask = dev->coherent_dma_mask;
2772 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2773 flag |= __GFP_ZERO;
5d8b53cf
JR
2774
2775 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2776 if (!virt_addr)
b25ae679 2777 return NULL;
5d8b53cf 2778
5d8b53cf
JR
2779 paddr = virt_to_phys(virt_addr);
2780
832a90c3
JR
2781 if (!dma_mask)
2782 dma_mask = *dev->dma_mask;
2783
5d8b53cf
JR
2784 spin_lock_irqsave(&domain->lock, flags);
2785
cd8c82e8 2786 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2787 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2788
8fd524b3 2789 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2790 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2791 goto out_free;
367d04c4 2792 }
5d8b53cf 2793
17b124bf 2794 domain_flush_complete(domain);
5d8b53cf 2795
5d8b53cf
JR
2796 spin_unlock_irqrestore(&domain->lock, flags);
2797
2798 return virt_addr;
5b28df6f
JR
2799
2800out_free:
2801
2802 free_pages((unsigned long)virt_addr, get_order(size));
2803
2804 return NULL;
5d8b53cf
JR
2805}
2806
431b2a20
JR
2807/*
2808 * The exported free_coherent function for dma_ops.
431b2a20 2809 */
5d8b53cf 2810static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2811 void *virt_addr, dma_addr_t dma_addr,
2812 struct dma_attrs *attrs)
5d8b53cf
JR
2813{
2814 unsigned long flags;
5d8b53cf 2815 struct protection_domain *domain;
5d8b53cf 2816
5d31ee7e
JR
2817 INC_STATS_COUNTER(cnt_free_coherent);
2818
94f6d190
JR
2819 domain = get_domain(dev);
2820 if (IS_ERR(domain))
5b28df6f
JR
2821 goto free_mem;
2822
5d8b53cf
JR
2823 spin_lock_irqsave(&domain->lock, flags);
2824
cd8c82e8 2825 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2826
17b124bf 2827 domain_flush_complete(domain);
5d8b53cf
JR
2828
2829 spin_unlock_irqrestore(&domain->lock, flags);
2830
2831free_mem:
2832 free_pages((unsigned long)virt_addr, get_order(size));
2833}
2834
b39ba6ad
JR
2835/*
2836 * This function is called by the DMA layer to find out if we can handle a
2837 * particular device. It is part of the dma_ops.
2838 */
2839static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2840{
420aef8a 2841 return check_device(dev);
b39ba6ad
JR
2842}
2843
c432f3df 2844/*
431b2a20
JR
2845 * The function for pre-allocating protection domains.
2846 *
c432f3df
JR
2847 * If the driver core informs the DMA layer if a driver grabs a device
2848 * we don't need to preallocate the protection domains anymore.
2849 * For now we have to.
2850 */
943bc7e1 2851static void __init prealloc_protection_domains(void)
c432f3df 2852{
5abcdba4 2853 struct iommu_dev_data *dev_data;
c432f3df 2854 struct dma_ops_domain *dma_dom;
5abcdba4 2855 struct pci_dev *dev = NULL;
98fc5a69 2856 u16 devid;
c432f3df 2857
d18c69d3 2858 for_each_pci_dev(dev) {
98fc5a69
JR
2859
2860 /* Do we handle this device? */
2861 if (!check_device(&dev->dev))
c432f3df 2862 continue;
98fc5a69 2863
5abcdba4
JR
2864 dev_data = get_dev_data(&dev->dev);
2865 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2866 /* Make sure passthrough domain is allocated */
2867 alloc_passthrough_domain();
2868 dev_data->passthrough = true;
2869 attach_device(&dev->dev, pt_domain);
2870 pr_info("AMD-Vi: Using passthough domain for device %s\n",
2871 dev_name(&dev->dev));
2872 }
2873
98fc5a69 2874 /* Is there already any domain for it? */
15898bbc 2875 if (domain_for_device(&dev->dev))
c432f3df 2876 continue;
98fc5a69
JR
2877
2878 devid = get_device_id(&dev->dev);
2879
87a64d52 2880 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2881 if (!dma_dom)
2882 continue;
2883 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2884 dma_dom->target_dev = devid;
2885
15898bbc 2886 attach_device(&dev->dev, &dma_dom->domain);
be831297 2887
bd60b735 2888 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2889 }
2890}
2891
160c1d8e 2892static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
2893 .alloc = alloc_coherent,
2894 .free = free_coherent,
51491367
FT
2895 .map_page = map_page,
2896 .unmap_page = unmap_page,
6631ee9d
JR
2897 .map_sg = map_sg,
2898 .unmap_sg = unmap_sg,
b39ba6ad 2899 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2900};
2901
27c2127a
JR
2902static unsigned device_dma_ops_init(void)
2903{
5abcdba4 2904 struct iommu_dev_data *dev_data;
27c2127a
JR
2905 struct pci_dev *pdev = NULL;
2906 unsigned unhandled = 0;
2907
2908 for_each_pci_dev(pdev) {
2909 if (!check_device(&pdev->dev)) {
af1be049
JR
2910
2911 iommu_ignore_device(&pdev->dev);
2912
27c2127a
JR
2913 unhandled += 1;
2914 continue;
2915 }
2916
5abcdba4
JR
2917 dev_data = get_dev_data(&pdev->dev);
2918
2919 if (!dev_data->passthrough)
2920 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2921 else
2922 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
2923 }
2924
2925 return unhandled;
2926}
2927
431b2a20
JR
2928/*
2929 * The function which clues the AMD IOMMU driver into dma_ops.
2930 */
f5325094
JR
2931
2932void __init amd_iommu_init_api(void)
2933{
2cc21c42 2934 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
2935}
2936
6631ee9d
JR
2937int __init amd_iommu_init_dma_ops(void)
2938{
2939 struct amd_iommu *iommu;
27c2127a 2940 int ret, unhandled;
6631ee9d 2941
431b2a20
JR
2942 /*
2943 * first allocate a default protection domain for every IOMMU we
2944 * found in the system. Devices not assigned to any other
2945 * protection domain will be assigned to the default one.
2946 */
3bd22172 2947 for_each_iommu(iommu) {
87a64d52 2948 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2949 if (iommu->default_dom == NULL)
2950 return -ENOMEM;
e2dc14a2 2951 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2952 ret = iommu_init_unity_mappings(iommu);
2953 if (ret)
2954 goto free_domains;
2955 }
2956
431b2a20 2957 /*
8793abeb 2958 * Pre-allocate the protection domains for each device.
431b2a20 2959 */
8793abeb 2960 prealloc_protection_domains();
6631ee9d
JR
2961
2962 iommu_detected = 1;
75f1cdf1 2963 swiotlb = 0;
6631ee9d 2964
431b2a20 2965 /* Make the driver finally visible to the drivers */
27c2127a
JR
2966 unhandled = device_dma_ops_init();
2967 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2968 /* There are unhandled devices - initialize swiotlb for them */
2969 swiotlb = 1;
2970 }
6631ee9d 2971
7f26508b
JR
2972 amd_iommu_stats_init();
2973
6631ee9d
JR
2974 return 0;
2975
2976free_domains:
2977
3bd22172 2978 for_each_iommu(iommu) {
6631ee9d
JR
2979 if (iommu->default_dom)
2980 dma_ops_domain_free(iommu->default_dom);
2981 }
2982
2983 return ret;
2984}
6d98cd80
JR
2985
2986/*****************************************************************************
2987 *
2988 * The following functions belong to the exported interface of AMD IOMMU
2989 *
2990 * This interface allows access to lower level functions of the IOMMU
2991 * like protection domain handling and assignement of devices to domains
2992 * which is not possible with the dma_ops interface.
2993 *
2994 *****************************************************************************/
2995
6d98cd80
JR
2996static void cleanup_domain(struct protection_domain *domain)
2997{
492667da 2998 struct iommu_dev_data *dev_data, *next;
6d98cd80 2999 unsigned long flags;
6d98cd80
JR
3000
3001 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3002
492667da 3003 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
ec9e79ef 3004 __detach_device(dev_data);
492667da
JR
3005 atomic_set(&dev_data->bind, 0);
3006 }
6d98cd80
JR
3007
3008 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3009}
3010
2650815f
JR
3011static void protection_domain_free(struct protection_domain *domain)
3012{
3013 if (!domain)
3014 return;
3015
aeb26f55
JR
3016 del_domain_from_list(domain);
3017
2650815f
JR
3018 if (domain->id)
3019 domain_id_free(domain->id);
3020
3021 kfree(domain);
3022}
3023
3024static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3025{
3026 struct protection_domain *domain;
3027
3028 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3029 if (!domain)
2650815f 3030 return NULL;
c156e347
JR
3031
3032 spin_lock_init(&domain->lock);
5d214fe6 3033 mutex_init(&domain->api_lock);
c156e347
JR
3034 domain->id = domain_id_alloc();
3035 if (!domain->id)
2650815f 3036 goto out_err;
7c392cbe 3037 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3038
aeb26f55
JR
3039 add_domain_to_list(domain);
3040
2650815f
JR
3041 return domain;
3042
3043out_err:
3044 kfree(domain);
3045
3046 return NULL;
3047}
3048
5abcdba4
JR
3049static int __init alloc_passthrough_domain(void)
3050{
3051 if (pt_domain != NULL)
3052 return 0;
3053
3054 /* allocate passthrough domain */
3055 pt_domain = protection_domain_alloc();
3056 if (!pt_domain)
3057 return -ENOMEM;
3058
3059 pt_domain->mode = PAGE_MODE_NONE;
3060
3061 return 0;
3062}
2650815f
JR
3063static int amd_iommu_domain_init(struct iommu_domain *dom)
3064{
3065 struct protection_domain *domain;
3066
3067 domain = protection_domain_alloc();
3068 if (!domain)
c156e347 3069 goto out_free;
2650815f
JR
3070
3071 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3072 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3073 if (!domain->pt_root)
3074 goto out_free;
3075
f3572db8
JR
3076 domain->iommu_domain = dom;
3077
c156e347
JR
3078 dom->priv = domain;
3079
3080 return 0;
3081
3082out_free:
2650815f 3083 protection_domain_free(domain);
c156e347
JR
3084
3085 return -ENOMEM;
3086}
3087
98383fc3
JR
3088static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3089{
3090 struct protection_domain *domain = dom->priv;
3091
3092 if (!domain)
3093 return;
3094
3095 if (domain->dev_cnt > 0)
3096 cleanup_domain(domain);
3097
3098 BUG_ON(domain->dev_cnt != 0);
3099
132bd68f
JR
3100 if (domain->mode != PAGE_MODE_NONE)
3101 free_pagetable(domain);
98383fc3 3102
52815b75
JR
3103 if (domain->flags & PD_IOMMUV2_MASK)
3104 free_gcr3_table(domain);
3105
8b408fe4 3106 protection_domain_free(domain);
98383fc3
JR
3107
3108 dom->priv = NULL;
3109}
3110
684f2888
JR
3111static void amd_iommu_detach_device(struct iommu_domain *dom,
3112 struct device *dev)
3113{
657cbb6b 3114 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3115 struct amd_iommu *iommu;
684f2888
JR
3116 u16 devid;
3117
98fc5a69 3118 if (!check_device(dev))
684f2888
JR
3119 return;
3120
98fc5a69 3121 devid = get_device_id(dev);
684f2888 3122
657cbb6b 3123 if (dev_data->domain != NULL)
15898bbc 3124 detach_device(dev);
684f2888
JR
3125
3126 iommu = amd_iommu_rlookup_table[devid];
3127 if (!iommu)
3128 return;
3129
684f2888
JR
3130 iommu_completion_wait(iommu);
3131}
3132
01106066
JR
3133static int amd_iommu_attach_device(struct iommu_domain *dom,
3134 struct device *dev)
3135{
3136 struct protection_domain *domain = dom->priv;
657cbb6b 3137 struct iommu_dev_data *dev_data;
01106066 3138 struct amd_iommu *iommu;
15898bbc 3139 int ret;
01106066 3140
98fc5a69 3141 if (!check_device(dev))
01106066
JR
3142 return -EINVAL;
3143
657cbb6b
JR
3144 dev_data = dev->archdata.iommu;
3145
f62dda66 3146 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3147 if (!iommu)
3148 return -EINVAL;
3149
657cbb6b 3150 if (dev_data->domain)
15898bbc 3151 detach_device(dev);
01106066 3152
15898bbc 3153 ret = attach_device(dev, domain);
01106066
JR
3154
3155 iommu_completion_wait(iommu);
3156
15898bbc 3157 return ret;
01106066
JR
3158}
3159
468e2366 3160static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3161 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3162{
3163 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3164 int prot = 0;
3165 int ret;
3166
132bd68f
JR
3167 if (domain->mode == PAGE_MODE_NONE)
3168 return -EINVAL;
3169
c6229ca6
JR
3170 if (iommu_prot & IOMMU_READ)
3171 prot |= IOMMU_PROT_IR;
3172 if (iommu_prot & IOMMU_WRITE)
3173 prot |= IOMMU_PROT_IW;
3174
5d214fe6 3175 mutex_lock(&domain->api_lock);
795e74f7 3176 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3177 mutex_unlock(&domain->api_lock);
3178
795e74f7 3179 return ret;
c6229ca6
JR
3180}
3181
5009065d
OBC
3182static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3183 size_t page_size)
eb74ff6c 3184{
eb74ff6c 3185 struct protection_domain *domain = dom->priv;
5009065d 3186 size_t unmap_size;
eb74ff6c 3187
132bd68f
JR
3188 if (domain->mode == PAGE_MODE_NONE)
3189 return -EINVAL;
3190
5d214fe6 3191 mutex_lock(&domain->api_lock);
468e2366 3192 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3193 mutex_unlock(&domain->api_lock);
eb74ff6c 3194
17b124bf 3195 domain_flush_tlb_pde(domain);
5d214fe6 3196
5009065d 3197 return unmap_size;
eb74ff6c
JR
3198}
3199
645c4c8d
JR
3200static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3201 unsigned long iova)
3202{
3203 struct protection_domain *domain = dom->priv;
f03152bb 3204 unsigned long offset_mask;
645c4c8d 3205 phys_addr_t paddr;
f03152bb 3206 u64 *pte, __pte;
645c4c8d 3207
132bd68f
JR
3208 if (domain->mode == PAGE_MODE_NONE)
3209 return iova;
3210
24cd7723 3211 pte = fetch_pte(domain, iova);
645c4c8d 3212
a6d41a40 3213 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3214 return 0;
3215
f03152bb
JR
3216 if (PM_PTE_LEVEL(*pte) == 0)
3217 offset_mask = PAGE_SIZE - 1;
3218 else
3219 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3220
3221 __pte = *pte & PM_ADDR_MASK;
3222 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3223
3224 return paddr;
3225}
3226
dbb9fd86
SY
3227static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3228 unsigned long cap)
3229{
80a506b8
JR
3230 switch (cap) {
3231 case IOMMU_CAP_CACHE_COHERENCY:
3232 return 1;
3233 }
3234
dbb9fd86
SY
3235 return 0;
3236}
3237
8fbdce65
AW
3238static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
3239{
3240 struct iommu_dev_data *dev_data = dev->archdata.iommu;
bcb71abe
AW
3241 struct pci_dev *pdev = to_pci_dev(dev);
3242 u16 devid;
8fbdce65
AW
3243
3244 if (!dev_data)
3245 return -ENODEV;
3246
bcb71abe
AW
3247 if (pdev->is_virtfn || !iommu_group_mf)
3248 devid = dev_data->devid;
3249 else
3250 devid = calc_devid(pdev->bus->number,
3251 PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));
3252
3253 *groupid = amd_iommu_alias_table[devid];
8fbdce65
AW
3254
3255 return 0;
3256}
3257
26961efe
JR
3258static struct iommu_ops amd_iommu_ops = {
3259 .domain_init = amd_iommu_domain_init,
3260 .domain_destroy = amd_iommu_domain_destroy,
3261 .attach_dev = amd_iommu_attach_device,
3262 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3263 .map = amd_iommu_map,
3264 .unmap = amd_iommu_unmap,
26961efe 3265 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 3266 .domain_has_cap = amd_iommu_domain_has_cap,
8fbdce65 3267 .device_group = amd_iommu_device_group,
aa3de9c0 3268 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3269};
3270
0feae533
JR
3271/*****************************************************************************
3272 *
3273 * The next functions do a basic initialization of IOMMU for pass through
3274 * mode
3275 *
3276 * In passthrough mode the IOMMU is initialized and enabled but not used for
3277 * DMA-API translation.
3278 *
3279 *****************************************************************************/
3280
3281int __init amd_iommu_init_passthrough(void)
3282{
5abcdba4 3283 struct iommu_dev_data *dev_data;
0feae533 3284 struct pci_dev *dev = NULL;
5abcdba4 3285 struct amd_iommu *iommu;
15898bbc 3286 u16 devid;
5abcdba4 3287 int ret;
0feae533 3288
5abcdba4
JR
3289 ret = alloc_passthrough_domain();
3290 if (ret)
3291 return ret;
0feae533 3292
6c54aabd 3293 for_each_pci_dev(dev) {
98fc5a69 3294 if (!check_device(&dev->dev))
0feae533
JR
3295 continue;
3296
5abcdba4
JR
3297 dev_data = get_dev_data(&dev->dev);
3298 dev_data->passthrough = true;
3299
98fc5a69
JR
3300 devid = get_device_id(&dev->dev);
3301
15898bbc 3302 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
3303 if (!iommu)
3304 continue;
3305
15898bbc 3306 attach_device(&dev->dev, pt_domain);
0feae533
JR
3307 }
3308
2655d7a2
JR
3309 amd_iommu_stats_init();
3310
0feae533
JR
3311 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3312
3313 return 0;
3314}
72e1dcc4
JR
3315
3316/* IOMMUv2 specific functions */
3317int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3318{
3319 return atomic_notifier_chain_register(&ppr_notifier, nb);
3320}
3321EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3322
3323int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3324{
3325 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3326}
3327EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3328
3329void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3330{
3331 struct protection_domain *domain = dom->priv;
3332 unsigned long flags;
3333
3334 spin_lock_irqsave(&domain->lock, flags);
3335
3336 /* Update data structure */
3337 domain->mode = PAGE_MODE_NONE;
3338 domain->updated = true;
3339
3340 /* Make changes visible to IOMMUs */
3341 update_domain(domain);
3342
3343 /* Page-table is not visible to IOMMU anymore, so free it */
3344 free_pagetable(domain);
3345
3346 spin_unlock_irqrestore(&domain->lock, flags);
3347}
3348EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3349
3350int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3351{
3352 struct protection_domain *domain = dom->priv;
3353 unsigned long flags;
3354 int levels, ret;
3355
3356 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3357 return -EINVAL;
3358
3359 /* Number of GCR3 table levels required */
3360 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3361 levels += 1;
3362
3363 if (levels > amd_iommu_max_glx_val)
3364 return -EINVAL;
3365
3366 spin_lock_irqsave(&domain->lock, flags);
3367
3368 /*
3369 * Save us all sanity checks whether devices already in the
3370 * domain support IOMMUv2. Just force that the domain has no
3371 * devices attached when it is switched into IOMMUv2 mode.
3372 */
3373 ret = -EBUSY;
3374 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3375 goto out;
3376
3377 ret = -ENOMEM;
3378 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3379 if (domain->gcr3_tbl == NULL)
3380 goto out;
3381
3382 domain->glx = levels;
3383 domain->flags |= PD_IOMMUV2_MASK;
3384 domain->updated = true;
3385
3386 update_domain(domain);
3387
3388 ret = 0;
3389
3390out:
3391 spin_unlock_irqrestore(&domain->lock, flags);
3392
3393 return ret;
3394}
3395EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3396
3397static int __flush_pasid(struct protection_domain *domain, int pasid,
3398 u64 address, bool size)
3399{
3400 struct iommu_dev_data *dev_data;
3401 struct iommu_cmd cmd;
3402 int i, ret;
3403
3404 if (!(domain->flags & PD_IOMMUV2_MASK))
3405 return -EINVAL;
3406
3407 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3408
3409 /*
3410 * IOMMU TLB needs to be flushed before Device TLB to
3411 * prevent device TLB refill from IOMMU TLB
3412 */
3413 for (i = 0; i < amd_iommus_present; ++i) {
3414 if (domain->dev_iommu[i] == 0)
3415 continue;
3416
3417 ret = iommu_queue_command(amd_iommus[i], &cmd);
3418 if (ret != 0)
3419 goto out;
3420 }
3421
3422 /* Wait until IOMMU TLB flushes are complete */
3423 domain_flush_complete(domain);
3424
3425 /* Now flush device TLBs */
3426 list_for_each_entry(dev_data, &domain->dev_list, list) {
3427 struct amd_iommu *iommu;
3428 int qdep;
3429
3430 BUG_ON(!dev_data->ats.enabled);
3431
3432 qdep = dev_data->ats.qdep;
3433 iommu = amd_iommu_rlookup_table[dev_data->devid];
3434
3435 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3436 qdep, address, size);
3437
3438 ret = iommu_queue_command(iommu, &cmd);
3439 if (ret != 0)
3440 goto out;
3441 }
3442
3443 /* Wait until all device TLBs are flushed */
3444 domain_flush_complete(domain);
3445
3446 ret = 0;
3447
3448out:
3449
3450 return ret;
3451}
3452
3453static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3454 u64 address)
3455{
399be2f5
JR
3456 INC_STATS_COUNTER(invalidate_iotlb);
3457
22e266c7
JR
3458 return __flush_pasid(domain, pasid, address, false);
3459}
3460
3461int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3462 u64 address)
3463{
3464 struct protection_domain *domain = dom->priv;
3465 unsigned long flags;
3466 int ret;
3467
3468 spin_lock_irqsave(&domain->lock, flags);
3469 ret = __amd_iommu_flush_page(domain, pasid, address);
3470 spin_unlock_irqrestore(&domain->lock, flags);
3471
3472 return ret;
3473}
3474EXPORT_SYMBOL(amd_iommu_flush_page);
3475
3476static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3477{
399be2f5
JR
3478 INC_STATS_COUNTER(invalidate_iotlb_all);
3479
22e266c7
JR
3480 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3481 true);
3482}
3483
3484int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3485{
3486 struct protection_domain *domain = dom->priv;
3487 unsigned long flags;
3488 int ret;
3489
3490 spin_lock_irqsave(&domain->lock, flags);
3491 ret = __amd_iommu_flush_tlb(domain, pasid);
3492 spin_unlock_irqrestore(&domain->lock, flags);
3493
3494 return ret;
3495}
3496EXPORT_SYMBOL(amd_iommu_flush_tlb);
3497
b16137b1
JR
3498static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3499{
3500 int index;
3501 u64 *pte;
3502
3503 while (true) {
3504
3505 index = (pasid >> (9 * level)) & 0x1ff;
3506 pte = &root[index];
3507
3508 if (level == 0)
3509 break;
3510
3511 if (!(*pte & GCR3_VALID)) {
3512 if (!alloc)
3513 return NULL;
3514
3515 root = (void *)get_zeroed_page(GFP_ATOMIC);
3516 if (root == NULL)
3517 return NULL;
3518
3519 *pte = __pa(root) | GCR3_VALID;
3520 }
3521
3522 root = __va(*pte & PAGE_MASK);
3523
3524 level -= 1;
3525 }
3526
3527 return pte;
3528}
3529
3530static int __set_gcr3(struct protection_domain *domain, int pasid,
3531 unsigned long cr3)
3532{
3533 u64 *pte;
3534
3535 if (domain->mode != PAGE_MODE_NONE)
3536 return -EINVAL;
3537
3538 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3539 if (pte == NULL)
3540 return -ENOMEM;
3541
3542 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3543
3544 return __amd_iommu_flush_tlb(domain, pasid);
3545}
3546
3547static int __clear_gcr3(struct protection_domain *domain, int pasid)
3548{
3549 u64 *pte;
3550
3551 if (domain->mode != PAGE_MODE_NONE)
3552 return -EINVAL;
3553
3554 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3555 if (pte == NULL)
3556 return 0;
3557
3558 *pte = 0;
3559
3560 return __amd_iommu_flush_tlb(domain, pasid);
3561}
3562
3563int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3564 unsigned long cr3)
3565{
3566 struct protection_domain *domain = dom->priv;
3567 unsigned long flags;
3568 int ret;
3569
3570 spin_lock_irqsave(&domain->lock, flags);
3571 ret = __set_gcr3(domain, pasid, cr3);
3572 spin_unlock_irqrestore(&domain->lock, flags);
3573
3574 return ret;
3575}
3576EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3577
3578int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3579{
3580 struct protection_domain *domain = dom->priv;
3581 unsigned long flags;
3582 int ret;
3583
3584 spin_lock_irqsave(&domain->lock, flags);
3585 ret = __clear_gcr3(domain, pasid);
3586 spin_unlock_irqrestore(&domain->lock, flags);
3587
3588 return ret;
3589}
3590EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3591
3592int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3593 int status, int tag)
3594{
3595 struct iommu_dev_data *dev_data;
3596 struct amd_iommu *iommu;
3597 struct iommu_cmd cmd;
3598
399be2f5
JR
3599 INC_STATS_COUNTER(complete_ppr);
3600
c99afa25
JR
3601 dev_data = get_dev_data(&pdev->dev);
3602 iommu = amd_iommu_rlookup_table[dev_data->devid];
3603
3604 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3605 tag, dev_data->pri_tlp);
3606
3607 return iommu_queue_command(iommu, &cmd);
3608}
3609EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3610
3611struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3612{
3613 struct protection_domain *domain;
3614
3615 domain = get_domain(&pdev->dev);
3616 if (IS_ERR(domain))
3617 return NULL;
3618
3619 /* Only return IOMMUv2 domains */
3620 if (!(domain->flags & PD_IOMMUV2_MASK))
3621 return NULL;
3622
3623 return domain->iommu_domain;
3624}
3625EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3626
3627void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3628{
3629 struct iommu_dev_data *dev_data;
3630
3631 if (!amd_iommu_v2_supported())
3632 return;
3633
3634 dev_data = get_dev_data(&pdev->dev);
3635 dev_data->errata |= (1 << erratum);
3636}
3637EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3638
3639int amd_iommu_device_info(struct pci_dev *pdev,
3640 struct amd_iommu_device_info *info)
3641{
3642 int max_pasids;
3643 int pos;
3644
3645 if (pdev == NULL || info == NULL)
3646 return -EINVAL;
3647
3648 if (!amd_iommu_v2_supported())
3649 return -EINVAL;
3650
3651 memset(info, 0, sizeof(*info));
3652
3653 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3654 if (pos)
3655 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3656
3657 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3658 if (pos)
3659 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3660
3661 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3662 if (pos) {
3663 int features;
3664
3665 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3666 max_pasids = min(max_pasids, (1 << 20));
3667
3668 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3669 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3670
3671 features = pci_pasid_features(pdev);
3672 if (features & PCI_PASID_CAP_EXEC)
3673 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3674 if (features & PCI_PASID_CAP_PRIV)
3675 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3676 }
3677
3678 return 0;
3679}
3680EXPORT_SYMBOL(amd_iommu_device_info);
This page took 0.656949 seconds and 5 git commands to generate.