iommu/amd: Return the pte page-size in fetch_pte
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
63ce3ae8 3 * Author: Joerg Roedel <jroedel@suse.de>
b6c02715
JR
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
3b839a57 36#include <linux/dma-contiguous.h>
2b324506
JR
37#include <asm/irq_remapping.h>
38#include <asm/io_apic.h>
39#include <asm/apic.h>
40#include <asm/hw_irq.h>
17f5b569 41#include <asm/msidef.h>
b6c02715 42#include <asm/proto.h>
46a7fa27 43#include <asm/iommu.h>
1d9b16d1 44#include <asm/gart.h>
27c2127a 45#include <asm/dma.h>
403f81d8
JR
46
47#include "amd_iommu_proto.h"
48#include "amd_iommu_types.h"
6b474b82 49#include "irq_remapping.h"
b6c02715
JR
50
51#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52
815b33fd 53#define LOOP_TIMEOUT 100000
136f78a1 54
aa3de9c0
OBC
55/*
56 * This bitmap is used to advertise the page sizes our hardware support
57 * to the IOMMU core, which will then use this information to split
58 * physically contiguous memory regions it is mapping into page sizes
59 * that we support.
60 *
954e3dd8 61 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 62 */
954e3dd8 63#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 64
b6c02715
JR
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
bd60b735
JR
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
8fa5f802
JR
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
6efed63b
JR
75LIST_HEAD(ioapic_map);
76LIST_HEAD(hpet_map);
77
0feae533
JR
78/*
79 * Domain for untranslated devices - only allocated
80 * if iommu=pt passed on kernel cmd line.
81 */
82static struct protection_domain *pt_domain;
83
b22f6434 84static const struct iommu_ops amd_iommu_ops;
26961efe 85
72e1dcc4 86static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 87int amd_iommu_max_glx_val = -1;
72e1dcc4 88
ac1534a5
JR
89static struct dma_map_ops amd_iommu_dma_ops;
90
50917e26
JR
91/*
92 * This struct contains device specific data for the IOMMU
93 */
94struct iommu_dev_data {
95 struct list_head list; /* For domain->dev_list */
96 struct list_head dev_data_list; /* For global dev_data_list */
f251e187 97 struct list_head alias_list; /* Link alias-groups together */
50917e26
JR
98 struct iommu_dev_data *alias_data;/* The alias dev_data */
99 struct protection_domain *domain; /* Domain the device is bound to */
50917e26
JR
100 u16 devid; /* PCI Device ID */
101 bool iommu_v2; /* Device can make use of IOMMUv2 */
102 bool passthrough; /* Default for device is pt_domain */
103 struct {
104 bool enabled;
105 int qdep;
106 } ats; /* ATS state */
107 bool pri_tlp; /* PASID TLB required for
108 PPR completions */
109 u32 errata; /* Bitmap for errata to apply */
110};
111
431b2a20
JR
112/*
113 * general struct to manage commands send to an IOMMU
114 */
d6449536 115struct iommu_cmd {
b6c02715
JR
116 u32 data[4];
117};
118
05152a04
JR
119struct kmem_cache *amd_iommu_irq_cache;
120
04bfdd84 121static void update_domain(struct protection_domain *domain);
5abcdba4 122static int __init alloc_passthrough_domain(void);
c1eee67b 123
15898bbc
JR
124/****************************************************************************
125 *
126 * Helper functions
127 *
128 ****************************************************************************/
129
f62dda66 130static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
131{
132 struct iommu_dev_data *dev_data;
133 unsigned long flags;
134
135 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
136 if (!dev_data)
137 return NULL;
138
f251e187
JR
139 INIT_LIST_HEAD(&dev_data->alias_list);
140
f62dda66 141 dev_data->devid = devid;
8fa5f802
JR
142
143 spin_lock_irqsave(&dev_data_list_lock, flags);
144 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
145 spin_unlock_irqrestore(&dev_data_list_lock, flags);
146
147 return dev_data;
148}
149
150static void free_dev_data(struct iommu_dev_data *dev_data)
151{
152 unsigned long flags;
153
154 spin_lock_irqsave(&dev_data_list_lock, flags);
155 list_del(&dev_data->dev_data_list);
156 spin_unlock_irqrestore(&dev_data_list_lock, flags);
157
158 kfree(dev_data);
159}
160
3b03bb74
JR
161static struct iommu_dev_data *search_dev_data(u16 devid)
162{
163 struct iommu_dev_data *dev_data;
164 unsigned long flags;
165
166 spin_lock_irqsave(&dev_data_list_lock, flags);
167 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
168 if (dev_data->devid == devid)
169 goto out_unlock;
170 }
171
172 dev_data = NULL;
173
174out_unlock:
175 spin_unlock_irqrestore(&dev_data_list_lock, flags);
176
177 return dev_data;
178}
179
180static struct iommu_dev_data *find_dev_data(u16 devid)
181{
182 struct iommu_dev_data *dev_data;
183
184 dev_data = search_dev_data(devid);
185
186 if (dev_data == NULL)
187 dev_data = alloc_dev_data(devid);
188
189 return dev_data;
190}
191
15898bbc
JR
192static inline u16 get_device_id(struct device *dev)
193{
194 struct pci_dev *pdev = to_pci_dev(dev);
195
6f2729ba 196 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
197}
198
657cbb6b
JR
199static struct iommu_dev_data *get_dev_data(struct device *dev)
200{
201 return dev->archdata.iommu;
202}
203
5abcdba4
JR
204static bool pci_iommuv2_capable(struct pci_dev *pdev)
205{
206 static const int caps[] = {
207 PCI_EXT_CAP_ID_ATS,
46277b75
JR
208 PCI_EXT_CAP_ID_PRI,
209 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
210 };
211 int i, pos;
212
213 for (i = 0; i < 3; ++i) {
214 pos = pci_find_ext_capability(pdev, caps[i]);
215 if (pos == 0)
216 return false;
217 }
218
219 return true;
220}
221
6a113ddc
JR
222static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
223{
224 struct iommu_dev_data *dev_data;
225
226 dev_data = get_dev_data(&pdev->dev);
227
228 return dev_data->errata & (1 << erratum) ? true : false;
229}
230
71c70984
JR
231/*
232 * In this function the list of preallocated protection domains is traversed to
233 * find the domain for a specific device
234 */
235static struct dma_ops_domain *find_protection_domain(u16 devid)
236{
237 struct dma_ops_domain *entry, *ret = NULL;
238 unsigned long flags;
239 u16 alias = amd_iommu_alias_table[devid];
240
241 if (list_empty(&iommu_pd_list))
242 return NULL;
243
244 spin_lock_irqsave(&iommu_pd_list_lock, flags);
245
246 list_for_each_entry(entry, &iommu_pd_list, list) {
247 if (entry->target_dev == devid ||
248 entry->target_dev == alias) {
249 ret = entry;
250 break;
251 }
252 }
253
254 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
255
256 return ret;
257}
258
98fc5a69
JR
259/*
260 * This function checks if the driver got a valid device from the caller to
261 * avoid dereferencing invalid pointers.
262 */
263static bool check_device(struct device *dev)
264{
265 u16 devid;
266
267 if (!dev || !dev->dma_mask)
268 return false;
269
b82a2272
YW
270 /* No PCI device */
271 if (!dev_is_pci(dev))
98fc5a69
JR
272 return false;
273
274 devid = get_device_id(dev);
275
276 /* Out of our scope? */
277 if (devid > amd_iommu_last_bdf)
278 return false;
279
280 if (amd_iommu_rlookup_table[devid] == NULL)
281 return false;
282
283 return true;
284}
285
25b11ce2 286static void init_iommu_group(struct device *dev)
2851db21 287{
2851db21 288 struct iommu_group *group;
2851db21 289
65d5352f 290 group = iommu_group_get_for_dev(dev);
25b11ce2
AW
291 if (!IS_ERR(group))
292 iommu_group_put(group);
eb9c9527
AW
293}
294
c1931090
AW
295static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
296{
297 *(u16 *)data = alias;
298 return 0;
299}
300
301static u16 get_alias(struct device *dev)
302{
303 struct pci_dev *pdev = to_pci_dev(dev);
304 u16 devid, ivrs_alias, pci_alias;
305
306 devid = get_device_id(dev);
307 ivrs_alias = amd_iommu_alias_table[devid];
308 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
309
310 if (ivrs_alias == pci_alias)
311 return ivrs_alias;
312
313 /*
314 * DMA alias showdown
315 *
316 * The IVRS is fairly reliable in telling us about aliases, but it
317 * can't know about every screwy device. If we don't have an IVRS
318 * reported alias, use the PCI reported alias. In that case we may
319 * still need to initialize the rlookup and dev_table entries if the
320 * alias is to a non-existent device.
321 */
322 if (ivrs_alias == devid) {
323 if (!amd_iommu_rlookup_table[pci_alias]) {
324 amd_iommu_rlookup_table[pci_alias] =
325 amd_iommu_rlookup_table[devid];
326 memcpy(amd_iommu_dev_table[pci_alias].data,
327 amd_iommu_dev_table[devid].data,
328 sizeof(amd_iommu_dev_table[pci_alias].data));
329 }
330
331 return pci_alias;
332 }
333
334 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
335 "for device %s[%04x:%04x], kernel reported alias "
336 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
337 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
338 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
339 PCI_FUNC(pci_alias));
340
341 /*
342 * If we don't have a PCI DMA alias and the IVRS alias is on the same
343 * bus, then the IVRS table may know about a quirk that we don't.
344 */
345 if (pci_alias == devid &&
346 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
347 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
348 pdev->dma_alias_devfn = ivrs_alias & 0xff;
349 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
350 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
351 dev_name(dev));
352 }
353
354 return ivrs_alias;
355}
356
eb9c9527
AW
357static int iommu_init_device(struct device *dev)
358{
359 struct pci_dev *pdev = to_pci_dev(dev);
360 struct iommu_dev_data *dev_data;
361 u16 alias;
eb9c9527
AW
362
363 if (dev->archdata.iommu)
364 return 0;
365
366 dev_data = find_dev_data(get_device_id(dev));
367 if (!dev_data)
368 return -ENOMEM;
369
c1931090
AW
370 alias = get_alias(dev);
371
eb9c9527
AW
372 if (alias != dev_data->devid) {
373 struct iommu_dev_data *alias_data;
374
375 alias_data = find_dev_data(alias);
376 if (alias_data == NULL) {
377 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
378 dev_name(dev));
379 free_dev_data(dev_data);
380 return -ENOTSUPP;
381 }
382 dev_data->alias_data = alias_data;
eb9c9527 383
f251e187
JR
384 /* Add device to the alias_list */
385 list_add(&dev_data->alias_list, &alias_data->alias_list);
e644a013 386 }
9dcd6130 387
5abcdba4
JR
388 if (pci_iommuv2_capable(pdev)) {
389 struct amd_iommu *iommu;
390
391 iommu = amd_iommu_rlookup_table[dev_data->devid];
392 dev_data->iommu_v2 = iommu->is_iommu_v2;
393 }
394
657cbb6b
JR
395 dev->archdata.iommu = dev_data;
396
066f2e98
AW
397 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
398 dev);
399
657cbb6b
JR
400 return 0;
401}
402
26018874
JR
403static void iommu_ignore_device(struct device *dev)
404{
405 u16 devid, alias;
406
407 devid = get_device_id(dev);
408 alias = amd_iommu_alias_table[devid];
409
410 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
411 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
412
413 amd_iommu_rlookup_table[devid] = NULL;
414 amd_iommu_rlookup_table[alias] = NULL;
415}
416
657cbb6b
JR
417static void iommu_uninit_device(struct device *dev)
418{
c1931090
AW
419 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
420
421 if (!dev_data)
422 return;
423
066f2e98
AW
424 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
425 dev);
426
9dcd6130
AW
427 iommu_group_remove_device(dev);
428
c1931090
AW
429 /* Unlink from alias, it may change if another device is re-plugged */
430 dev_data->alias_data = NULL;
431
8fa5f802 432 /*
c1931090
AW
433 * We keep dev_data around for unplugged devices and reuse it when the
434 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 435 */
657cbb6b 436}
b7cc9554
JR
437
438void __init amd_iommu_uninit_devices(void)
439{
8fa5f802 440 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
441 struct pci_dev *pdev = NULL;
442
443 for_each_pci_dev(pdev) {
444
445 if (!check_device(&pdev->dev))
446 continue;
447
448 iommu_uninit_device(&pdev->dev);
449 }
8fa5f802
JR
450
451 /* Free all of our dev_data structures */
452 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
453 free_dev_data(dev_data);
b7cc9554
JR
454}
455
456int __init amd_iommu_init_devices(void)
457{
458 struct pci_dev *pdev = NULL;
459 int ret = 0;
460
461 for_each_pci_dev(pdev) {
462
463 if (!check_device(&pdev->dev))
464 continue;
465
466 ret = iommu_init_device(&pdev->dev);
26018874
JR
467 if (ret == -ENOTSUPP)
468 iommu_ignore_device(&pdev->dev);
469 else if (ret)
b7cc9554
JR
470 goto out_free;
471 }
472
25b11ce2
AW
473 /*
474 * Initialize IOMMU groups only after iommu_init_device() has
475 * had a chance to populate any IVRS defined aliases.
476 */
477 for_each_pci_dev(pdev) {
478 if (check_device(&pdev->dev))
479 init_iommu_group(&pdev->dev);
480 }
481
b7cc9554
JR
482 return 0;
483
484out_free:
485
486 amd_iommu_uninit_devices();
487
488 return ret;
489}
7f26508b
JR
490#ifdef CONFIG_AMD_IOMMU_STATS
491
492/*
493 * Initialization code for statistics collection
494 */
495
da49f6df 496DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 497DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 498DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 499DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 500DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 501DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 502DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 503DECLARE_STATS_COUNTER(cross_page);
f57d98ae 504DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 505DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 506DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 507DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
508DECLARE_STATS_COUNTER(complete_ppr);
509DECLARE_STATS_COUNTER(invalidate_iotlb);
510DECLARE_STATS_COUNTER(invalidate_iotlb_all);
511DECLARE_STATS_COUNTER(pri_requests);
512
7f26508b 513static struct dentry *stats_dir;
7f26508b
JR
514static struct dentry *de_fflush;
515
516static void amd_iommu_stats_add(struct __iommu_counter *cnt)
517{
518 if (stats_dir == NULL)
519 return;
520
521 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
522 &cnt->value);
523}
524
525static void amd_iommu_stats_init(void)
526{
527 stats_dir = debugfs_create_dir("amd-iommu", NULL);
528 if (stats_dir == NULL)
529 return;
530
7f26508b 531 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 532 &amd_iommu_unmap_flush);
da49f6df
JR
533
534 amd_iommu_stats_add(&compl_wait);
0f2a86f2 535 amd_iommu_stats_add(&cnt_map_single);
146a6917 536 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 537 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 538 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 539 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 540 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 541 amd_iommu_stats_add(&cross_page);
f57d98ae 542 amd_iommu_stats_add(&domain_flush_single);
18811f55 543 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 544 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 545 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
546 amd_iommu_stats_add(&complete_ppr);
547 amd_iommu_stats_add(&invalidate_iotlb);
548 amd_iommu_stats_add(&invalidate_iotlb_all);
549 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
550}
551
552#endif
553
a80dc3e0
JR
554/****************************************************************************
555 *
556 * Interrupt handling functions
557 *
558 ****************************************************************************/
559
e3e59876
JR
560static void dump_dte_entry(u16 devid)
561{
562 int i;
563
ee6c2868
JR
564 for (i = 0; i < 4; ++i)
565 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
566 amd_iommu_dev_table[devid].data[i]);
567}
568
945b4ac4
JR
569static void dump_command(unsigned long phys_addr)
570{
571 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
572 int i;
573
574 for (i = 0; i < 4; ++i)
575 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
576}
577
a345b23b 578static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 579{
3d06fca8
JR
580 int type, devid, domid, flags;
581 volatile u32 *event = __evt;
582 int count = 0;
583 u64 address;
584
585retry:
586 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
587 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
588 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
589 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
590 address = (u64)(((u64)event[3]) << 32) | event[2];
591
592 if (type == 0) {
593 /* Did we hit the erratum? */
594 if (++count == LOOP_TIMEOUT) {
595 pr_err("AMD-Vi: No event written to event log\n");
596 return;
597 }
598 udelay(1);
599 goto retry;
600 }
90008ee4 601
4c6f40d4 602 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
603
604 switch (type) {
605 case EVENT_TYPE_ILL_DEV:
606 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
607 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 608 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 609 address, flags);
e3e59876 610 dump_dte_entry(devid);
90008ee4
JR
611 break;
612 case EVENT_TYPE_IO_FAULT:
613 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
614 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 615 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
616 domid, address, flags);
617 break;
618 case EVENT_TYPE_DEV_TAB_ERR:
619 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
620 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 621 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
622 address, flags);
623 break;
624 case EVENT_TYPE_PAGE_TAB_ERR:
625 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
626 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 627 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
628 domid, address, flags);
629 break;
630 case EVENT_TYPE_ILL_CMD:
631 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 632 dump_command(address);
90008ee4
JR
633 break;
634 case EVENT_TYPE_CMD_HARD_ERR:
635 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
636 "flags=0x%04x]\n", address, flags);
637 break;
638 case EVENT_TYPE_IOTLB_INV_TO:
639 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
640 "address=0x%016llx]\n",
c5081cd7 641 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
642 address);
643 break;
644 case EVENT_TYPE_INV_DEV_REQ:
645 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
646 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 647 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
648 address, flags);
649 break;
650 default:
651 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
652 }
3d06fca8
JR
653
654 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
655}
656
657static void iommu_poll_events(struct amd_iommu *iommu)
658{
659 u32 head, tail;
90008ee4
JR
660
661 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
662 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
663
664 while (head != tail) {
a345b23b 665 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
666 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
667 }
668
669 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
670}
671
eee53537 672static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
673{
674 struct amd_iommu_fault fault;
72e1dcc4 675
399be2f5
JR
676 INC_STATS_COUNTER(pri_requests);
677
72e1dcc4
JR
678 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
679 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
680 return;
681 }
682
683 fault.address = raw[1];
684 fault.pasid = PPR_PASID(raw[0]);
685 fault.device_id = PPR_DEVID(raw[0]);
686 fault.tag = PPR_TAG(raw[0]);
687 fault.flags = PPR_FLAGS(raw[0]);
688
72e1dcc4
JR
689 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
690}
691
692static void iommu_poll_ppr_log(struct amd_iommu *iommu)
693{
72e1dcc4
JR
694 u32 head, tail;
695
696 if (iommu->ppr_log == NULL)
697 return;
698
72e1dcc4
JR
699 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
700 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
701
702 while (head != tail) {
eee53537
JR
703 volatile u64 *raw;
704 u64 entry[2];
705 int i;
706
707 raw = (u64 *)(iommu->ppr_log + head);
708
709 /*
710 * Hardware bug: Interrupt may arrive before the entry is
711 * written to memory. If this happens we need to wait for the
712 * entry to arrive.
713 */
714 for (i = 0; i < LOOP_TIMEOUT; ++i) {
715 if (PPR_REQ_TYPE(raw[0]) != 0)
716 break;
717 udelay(1);
718 }
72e1dcc4 719
eee53537
JR
720 /* Avoid memcpy function-call overhead */
721 entry[0] = raw[0];
722 entry[1] = raw[1];
72e1dcc4 723
eee53537
JR
724 /*
725 * To detect the hardware bug we need to clear the entry
726 * back to zero.
727 */
728 raw[0] = raw[1] = 0UL;
729
730 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
731 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
732 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 733
eee53537
JR
734 /* Handle PPR entry */
735 iommu_handle_ppr_entry(iommu, entry);
736
eee53537
JR
737 /* Refresh ring-buffer information */
738 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
739 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
740 }
72e1dcc4
JR
741}
742
72fe00f0 743irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 744{
3f398bc7
SS
745 struct amd_iommu *iommu = (struct amd_iommu *) data;
746 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 747
3f398bc7
SS
748 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
749 /* Enable EVT and PPR interrupts again */
750 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
751 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 752
3f398bc7
SS
753 if (status & MMIO_STATUS_EVT_INT_MASK) {
754 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
755 iommu_poll_events(iommu);
756 }
90008ee4 757
3f398bc7
SS
758 if (status & MMIO_STATUS_PPR_INT_MASK) {
759 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
760 iommu_poll_ppr_log(iommu);
761 }
90008ee4 762
3f398bc7
SS
763 /*
764 * Hardware bug: ERBT1312
765 * When re-enabling interrupt (by writing 1
766 * to clear the bit), the hardware might also try to set
767 * the interrupt bit in the event status register.
768 * In this scenario, the bit will be set, and disable
769 * subsequent interrupts.
770 *
771 * Workaround: The IOMMU driver should read back the
772 * status register and check if the interrupt bits are cleared.
773 * If not, driver will need to go through the interrupt handler
774 * again and re-clear the bits
775 */
776 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
777 }
90008ee4 778 return IRQ_HANDLED;
a80dc3e0
JR
779}
780
72fe00f0
JR
781irqreturn_t amd_iommu_int_handler(int irq, void *data)
782{
783 return IRQ_WAKE_THREAD;
784}
785
431b2a20
JR
786/****************************************************************************
787 *
788 * IOMMU command queuing functions
789 *
790 ****************************************************************************/
791
ac0ea6e9
JR
792static int wait_on_sem(volatile u64 *sem)
793{
794 int i = 0;
795
796 while (*sem == 0 && i < LOOP_TIMEOUT) {
797 udelay(1);
798 i += 1;
799 }
800
801 if (i == LOOP_TIMEOUT) {
802 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
803 return -EIO;
804 }
805
806 return 0;
807}
808
809static void copy_cmd_to_buffer(struct amd_iommu *iommu,
810 struct iommu_cmd *cmd,
811 u32 tail)
a19ae1ec 812{
a19ae1ec
JR
813 u8 *target;
814
8a7c5ef3 815 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
816 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
817
818 /* Copy command to buffer */
819 memcpy(target, cmd, sizeof(*cmd));
820
821 /* Tell the IOMMU about it */
a19ae1ec 822 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 823}
a19ae1ec 824
815b33fd 825static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 826{
815b33fd
JR
827 WARN_ON(address & 0x7ULL);
828
ded46737 829 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
830 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
831 cmd->data[1] = upper_32_bits(__pa(address));
832 cmd->data[2] = 1;
ded46737
JR
833 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
834}
835
94fe79e2
JR
836static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
837{
838 memset(cmd, 0, sizeof(*cmd));
839 cmd->data[0] = devid;
840 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
841}
842
11b6402c
JR
843static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
844 size_t size, u16 domid, int pde)
845{
846 u64 pages;
ae0cbbb1 847 bool s;
11b6402c
JR
848
849 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 850 s = false;
11b6402c
JR
851
852 if (pages > 1) {
853 /*
854 * If we have to flush more than one page, flush all
855 * TLB entries for this domain
856 */
857 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 858 s = true;
11b6402c
JR
859 }
860
861 address &= PAGE_MASK;
862
863 memset(cmd, 0, sizeof(*cmd));
864 cmd->data[1] |= domid;
865 cmd->data[2] = lower_32_bits(address);
866 cmd->data[3] = upper_32_bits(address);
867 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
868 if (s) /* size bit - we flush more than one 4kb page */
869 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 870 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
871 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
872}
873
cb41ed85
JR
874static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
875 u64 address, size_t size)
876{
877 u64 pages;
ae0cbbb1 878 bool s;
cb41ed85
JR
879
880 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 881 s = false;
cb41ed85
JR
882
883 if (pages > 1) {
884 /*
885 * If we have to flush more than one page, flush all
886 * TLB entries for this domain
887 */
888 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 889 s = true;
cb41ed85
JR
890 }
891
892 address &= PAGE_MASK;
893
894 memset(cmd, 0, sizeof(*cmd));
895 cmd->data[0] = devid;
896 cmd->data[0] |= (qdep & 0xff) << 24;
897 cmd->data[1] = devid;
898 cmd->data[2] = lower_32_bits(address);
899 cmd->data[3] = upper_32_bits(address);
900 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
901 if (s)
902 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
903}
904
22e266c7
JR
905static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
906 u64 address, bool size)
907{
908 memset(cmd, 0, sizeof(*cmd));
909
910 address &= ~(0xfffULL);
911
a919a018 912 cmd->data[0] = pasid;
22e266c7
JR
913 cmd->data[1] = domid;
914 cmd->data[2] = lower_32_bits(address);
915 cmd->data[3] = upper_32_bits(address);
916 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
917 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
918 if (size)
919 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
920 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
921}
922
923static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
924 int qdep, u64 address, bool size)
925{
926 memset(cmd, 0, sizeof(*cmd));
927
928 address &= ~(0xfffULL);
929
930 cmd->data[0] = devid;
e8d2d82d 931 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
932 cmd->data[0] |= (qdep & 0xff) << 24;
933 cmd->data[1] = devid;
e8d2d82d 934 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
935 cmd->data[2] = lower_32_bits(address);
936 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
937 cmd->data[3] = upper_32_bits(address);
938 if (size)
939 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
940 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
941}
942
c99afa25
JR
943static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
944 int status, int tag, bool gn)
945{
946 memset(cmd, 0, sizeof(*cmd));
947
948 cmd->data[0] = devid;
949 if (gn) {
a919a018 950 cmd->data[1] = pasid;
c99afa25
JR
951 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
952 }
953 cmd->data[3] = tag & 0x1ff;
954 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
955
956 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
957}
958
58fc7f14
JR
959static void build_inv_all(struct iommu_cmd *cmd)
960{
961 memset(cmd, 0, sizeof(*cmd));
962 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
963}
964
7ef2798d
JR
965static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
966{
967 memset(cmd, 0, sizeof(*cmd));
968 cmd->data[0] = devid;
969 CMD_SET_TYPE(cmd, CMD_INV_IRT);
970}
971
431b2a20 972/*
431b2a20 973 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 974 * hardware about the new command.
431b2a20 975 */
f1ca1512
JR
976static int iommu_queue_command_sync(struct amd_iommu *iommu,
977 struct iommu_cmd *cmd,
978 bool sync)
a19ae1ec 979{
ac0ea6e9 980 u32 left, tail, head, next_tail;
a19ae1ec 981 unsigned long flags;
a19ae1ec 982
549c90dc 983 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
984
985again:
a19ae1ec 986 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 987
ac0ea6e9
JR
988 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
989 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
990 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
991 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 992
ac0ea6e9
JR
993 if (left <= 2) {
994 struct iommu_cmd sync_cmd;
995 volatile u64 sem = 0;
996 int ret;
8d201968 997
ac0ea6e9
JR
998 build_completion_wait(&sync_cmd, (u64)&sem);
999 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 1000
ac0ea6e9
JR
1001 spin_unlock_irqrestore(&iommu->lock, flags);
1002
1003 if ((ret = wait_on_sem(&sem)) != 0)
1004 return ret;
1005
1006 goto again;
8d201968
JR
1007 }
1008
ac0ea6e9
JR
1009 copy_cmd_to_buffer(iommu, cmd, tail);
1010
1011 /* We need to sync now to make sure all commands are processed */
f1ca1512 1012 iommu->need_sync = sync;
ac0ea6e9 1013
a19ae1ec 1014 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 1015
815b33fd 1016 return 0;
8d201968
JR
1017}
1018
f1ca1512
JR
1019static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1020{
1021 return iommu_queue_command_sync(iommu, cmd, true);
1022}
1023
8d201968
JR
1024/*
1025 * This function queues a completion wait command into the command
1026 * buffer of an IOMMU
1027 */
a19ae1ec 1028static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
1029{
1030 struct iommu_cmd cmd;
815b33fd 1031 volatile u64 sem = 0;
ac0ea6e9 1032 int ret;
8d201968 1033
09ee17eb 1034 if (!iommu->need_sync)
815b33fd 1035 return 0;
09ee17eb 1036
815b33fd 1037 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 1038
f1ca1512 1039 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 1040 if (ret)
815b33fd 1041 return ret;
8d201968 1042
ac0ea6e9 1043 return wait_on_sem(&sem);
8d201968
JR
1044}
1045
d8c13085 1046static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 1047{
d8c13085 1048 struct iommu_cmd cmd;
a19ae1ec 1049
d8c13085 1050 build_inv_dte(&cmd, devid);
7e4f88da 1051
d8c13085
JR
1052 return iommu_queue_command(iommu, &cmd);
1053}
09ee17eb 1054
7d0c5cc5
JR
1055static void iommu_flush_dte_all(struct amd_iommu *iommu)
1056{
1057 u32 devid;
09ee17eb 1058
7d0c5cc5
JR
1059 for (devid = 0; devid <= 0xffff; ++devid)
1060 iommu_flush_dte(iommu, devid);
a19ae1ec 1061
7d0c5cc5
JR
1062 iommu_completion_wait(iommu);
1063}
84df8175 1064
7d0c5cc5
JR
1065/*
1066 * This function uses heavy locking and may disable irqs for some time. But
1067 * this is no issue because it is only called during resume.
1068 */
1069static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1070{
1071 u32 dom_id;
a19ae1ec 1072
7d0c5cc5
JR
1073 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1074 struct iommu_cmd cmd;
1075 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1076 dom_id, 1);
1077 iommu_queue_command(iommu, &cmd);
1078 }
8eed9833 1079
7d0c5cc5 1080 iommu_completion_wait(iommu);
a19ae1ec
JR
1081}
1082
58fc7f14 1083static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 1084{
58fc7f14 1085 struct iommu_cmd cmd;
0518a3a4 1086
58fc7f14 1087 build_inv_all(&cmd);
0518a3a4 1088
58fc7f14
JR
1089 iommu_queue_command(iommu, &cmd);
1090 iommu_completion_wait(iommu);
1091}
1092
7ef2798d
JR
1093static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1094{
1095 struct iommu_cmd cmd;
1096
1097 build_inv_irt(&cmd, devid);
1098
1099 iommu_queue_command(iommu, &cmd);
1100}
1101
1102static void iommu_flush_irt_all(struct amd_iommu *iommu)
1103{
1104 u32 devid;
1105
1106 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1107 iommu_flush_irt(iommu, devid);
1108
1109 iommu_completion_wait(iommu);
1110}
1111
7d0c5cc5
JR
1112void iommu_flush_all_caches(struct amd_iommu *iommu)
1113{
58fc7f14
JR
1114 if (iommu_feature(iommu, FEATURE_IA)) {
1115 iommu_flush_all(iommu);
1116 } else {
1117 iommu_flush_dte_all(iommu);
7ef2798d 1118 iommu_flush_irt_all(iommu);
58fc7f14 1119 iommu_flush_tlb_all(iommu);
0518a3a4
JR
1120 }
1121}
1122
431b2a20 1123/*
cb41ed85 1124 * Command send function for flushing on-device TLB
431b2a20 1125 */
6c542047
JR
1126static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1127 u64 address, size_t size)
3fa43655
JR
1128{
1129 struct amd_iommu *iommu;
b00d3bcf 1130 struct iommu_cmd cmd;
cb41ed85 1131 int qdep;
3fa43655 1132
ea61cddb
JR
1133 qdep = dev_data->ats.qdep;
1134 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1135
ea61cddb 1136 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1137
1138 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1139}
1140
431b2a20 1141/*
431b2a20 1142 * Command send function for invalidating a device table entry
431b2a20 1143 */
6c542047 1144static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1145{
3fa43655 1146 struct amd_iommu *iommu;
ee2fa743 1147 int ret;
a19ae1ec 1148
6c542047 1149 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 1150
f62dda66 1151 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
1152 if (ret)
1153 return ret;
1154
ea61cddb 1155 if (dev_data->ats.enabled)
6c542047 1156 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1157
ee2fa743 1158 return ret;
a19ae1ec
JR
1159}
1160
431b2a20
JR
1161/*
1162 * TLB invalidation function which is called from the mapping functions.
1163 * It invalidates a single PTE if the range to flush is within a single
1164 * page. Otherwise it flushes the whole TLB of the IOMMU.
1165 */
17b124bf
JR
1166static void __domain_flush_pages(struct protection_domain *domain,
1167 u64 address, size_t size, int pde)
a19ae1ec 1168{
cb41ed85 1169 struct iommu_dev_data *dev_data;
11b6402c
JR
1170 struct iommu_cmd cmd;
1171 int ret = 0, i;
a19ae1ec 1172
11b6402c 1173 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1174
6de8ad9b
JR
1175 for (i = 0; i < amd_iommus_present; ++i) {
1176 if (!domain->dev_iommu[i])
1177 continue;
1178
1179 /*
1180 * Devices of this domain are behind this IOMMU
1181 * We need a TLB flush
1182 */
11b6402c 1183 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1184 }
1185
cb41ed85 1186 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1187
ea61cddb 1188 if (!dev_data->ats.enabled)
cb41ed85
JR
1189 continue;
1190
6c542047 1191 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1192 }
1193
11b6402c 1194 WARN_ON(ret);
6de8ad9b
JR
1195}
1196
17b124bf
JR
1197static void domain_flush_pages(struct protection_domain *domain,
1198 u64 address, size_t size)
6de8ad9b 1199{
17b124bf 1200 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1201}
b6c02715 1202
1c655773 1203/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1204static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1205{
17b124bf 1206 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1207}
1208
42a49f96 1209/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1210static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1211{
17b124bf 1212 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1213}
1214
17b124bf 1215static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1216{
17b124bf 1217 int i;
18811f55 1218
17b124bf
JR
1219 for (i = 0; i < amd_iommus_present; ++i) {
1220 if (!domain->dev_iommu[i])
1221 continue;
bfd1be18 1222
17b124bf
JR
1223 /*
1224 * Devices of this domain are behind this IOMMU
1225 * We need to wait for completion of all commands.
1226 */
1227 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1228 }
e394d72a
JR
1229}
1230
b00d3bcf 1231
09b42804 1232/*
b00d3bcf 1233 * This function flushes the DTEs for all devices in domain
09b42804 1234 */
17b124bf 1235static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1236{
b00d3bcf 1237 struct iommu_dev_data *dev_data;
b26e81b8 1238
b00d3bcf 1239 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1240 device_flush_dte(dev_data);
a345b23b
JR
1241}
1242
431b2a20
JR
1243/****************************************************************************
1244 *
1245 * The functions below are used the create the page table mappings for
1246 * unity mapped regions.
1247 *
1248 ****************************************************************************/
1249
308973d3
JR
1250/*
1251 * This function is used to add another level to an IO page table. Adding
1252 * another level increases the size of the address space by 9 bits to a size up
1253 * to 64 bits.
1254 */
1255static bool increase_address_space(struct protection_domain *domain,
1256 gfp_t gfp)
1257{
1258 u64 *pte;
1259
1260 if (domain->mode == PAGE_MODE_6_LEVEL)
1261 /* address space already 64 bit large */
1262 return false;
1263
1264 pte = (void *)get_zeroed_page(gfp);
1265 if (!pte)
1266 return false;
1267
1268 *pte = PM_LEVEL_PDE(domain->mode,
1269 virt_to_phys(domain->pt_root));
1270 domain->pt_root = pte;
1271 domain->mode += 1;
1272 domain->updated = true;
1273
1274 return true;
1275}
1276
1277static u64 *alloc_pte(struct protection_domain *domain,
1278 unsigned long address,
cbb9d729 1279 unsigned long page_size,
308973d3
JR
1280 u64 **pte_page,
1281 gfp_t gfp)
1282{
cbb9d729 1283 int level, end_lvl;
308973d3 1284 u64 *pte, *page;
cbb9d729
JR
1285
1286 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1287
1288 while (address > PM_LEVEL_SIZE(domain->mode))
1289 increase_address_space(domain, gfp);
1290
cbb9d729
JR
1291 level = domain->mode - 1;
1292 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1293 address = PAGE_SIZE_ALIGN(address, page_size);
1294 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1295
1296 while (level > end_lvl) {
1297 if (!IOMMU_PTE_PRESENT(*pte)) {
1298 page = (u64 *)get_zeroed_page(gfp);
1299 if (!page)
1300 return NULL;
1301 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1302 }
1303
cbb9d729
JR
1304 /* No level skipping support yet */
1305 if (PM_PTE_LEVEL(*pte) != level)
1306 return NULL;
1307
308973d3
JR
1308 level -= 1;
1309
1310 pte = IOMMU_PTE_PAGE(*pte);
1311
1312 if (pte_page && level == end_lvl)
1313 *pte_page = pte;
1314
1315 pte = &pte[PM_LEVEL_INDEX(level, address)];
1316 }
1317
1318 return pte;
1319}
1320
1321/*
1322 * This function checks if there is a PTE for a given dma address. If
1323 * there is one, it returns the pointer to it.
1324 */
3039ca1b
JR
1325static u64 *fetch_pte(struct protection_domain *domain,
1326 unsigned long address,
1327 unsigned long *page_size)
308973d3
JR
1328{
1329 int level;
1330 u64 *pte;
1331
24cd7723
JR
1332 if (address > PM_LEVEL_SIZE(domain->mode))
1333 return NULL;
1334
3039ca1b
JR
1335 level = domain->mode - 1;
1336 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1337 *page_size = PTE_LEVEL_PAGE_SIZE(level);
308973d3 1338
24cd7723
JR
1339 while (level > 0) {
1340
1341 /* Not Present */
308973d3
JR
1342 if (!IOMMU_PTE_PRESENT(*pte))
1343 return NULL;
1344
24cd7723 1345 /* Large PTE */
3039ca1b
JR
1346 if (PM_PTE_LEVEL(*pte) == 7 ||
1347 PM_PTE_LEVEL(*pte) == 0)
1348 break;
24cd7723
JR
1349
1350 /* No level skipping support yet */
1351 if (PM_PTE_LEVEL(*pte) != level)
1352 return NULL;
1353
308973d3
JR
1354 level -= 1;
1355
24cd7723 1356 /* Walk to the next level */
3039ca1b
JR
1357 pte = IOMMU_PTE_PAGE(*pte);
1358 pte = &pte[PM_LEVEL_INDEX(level, address)];
1359 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1360 }
1361
1362 if (PM_PTE_LEVEL(*pte) == 0x07) {
1363 unsigned long pte_mask;
1364
1365 /*
1366 * If we have a series of large PTEs, make
1367 * sure to return a pointer to the first one.
1368 */
1369 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1370 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1371 pte = (u64 *)(((unsigned long)pte) & pte_mask);
308973d3
JR
1372 }
1373
1374 return pte;
1375}
1376
431b2a20
JR
1377/*
1378 * Generic mapping functions. It maps a physical address into a DMA
1379 * address space. It allocates the page table pages if necessary.
1380 * In the future it can be extended to a generic mapping function
1381 * supporting all features of AMD IOMMU page tables like level skipping
1382 * and full 64 bit address spaces.
1383 */
38e817fe
JR
1384static int iommu_map_page(struct protection_domain *dom,
1385 unsigned long bus_addr,
1386 unsigned long phys_addr,
abdc5eb3 1387 int prot,
cbb9d729 1388 unsigned long page_size)
bd0e5211 1389{
8bda3092 1390 u64 __pte, *pte;
cbb9d729 1391 int i, count;
abdc5eb3 1392
bad1cac2 1393 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1394 return -EINVAL;
1395
cbb9d729
JR
1396 bus_addr = PAGE_ALIGN(bus_addr);
1397 phys_addr = PAGE_ALIGN(phys_addr);
1398 count = PAGE_SIZE_PTE_COUNT(page_size);
1399 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1400
63eaa75e
ML
1401 if (!pte)
1402 return -ENOMEM;
1403
cbb9d729
JR
1404 for (i = 0; i < count; ++i)
1405 if (IOMMU_PTE_PRESENT(pte[i]))
1406 return -EBUSY;
bd0e5211 1407
cbb9d729
JR
1408 if (page_size > PAGE_SIZE) {
1409 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1410 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1411 } else
1412 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1413
bd0e5211
JR
1414 if (prot & IOMMU_PROT_IR)
1415 __pte |= IOMMU_PTE_IR;
1416 if (prot & IOMMU_PROT_IW)
1417 __pte |= IOMMU_PTE_IW;
1418
cbb9d729
JR
1419 for (i = 0; i < count; ++i)
1420 pte[i] = __pte;
bd0e5211 1421
04bfdd84
JR
1422 update_domain(dom);
1423
bd0e5211
JR
1424 return 0;
1425}
1426
24cd7723
JR
1427static unsigned long iommu_unmap_page(struct protection_domain *dom,
1428 unsigned long bus_addr,
1429 unsigned long page_size)
eb74ff6c 1430{
24cd7723 1431 unsigned long long unmap_size, unmapped;
3039ca1b 1432 unsigned long pte_pgsize;
24cd7723
JR
1433 u64 *pte;
1434
1435 BUG_ON(!is_power_of_2(page_size));
1436
1437 unmapped = 0;
eb74ff6c 1438
24cd7723
JR
1439 while (unmapped < page_size) {
1440
3039ca1b 1441 pte = fetch_pte(dom, bus_addr, &pte_pgsize);
24cd7723
JR
1442
1443 if (!pte) {
1444 /*
1445 * No PTE for this address
1446 * move forward in 4kb steps
1447 */
1448 unmap_size = PAGE_SIZE;
1449 } else if (PM_PTE_LEVEL(*pte) == 0) {
1450 /* 4kb PTE found for this address */
1451 unmap_size = PAGE_SIZE;
1452 *pte = 0ULL;
1453 } else {
1454 int count, i;
1455
1456 /* Large PTE found which maps this address */
1457 unmap_size = PTE_PAGE_SIZE(*pte);
60d0ca3c
AW
1458
1459 /* Only unmap from the first pte in the page */
1460 if ((unmap_size - 1) & bus_addr)
1461 break;
24cd7723
JR
1462 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1463 for (i = 0; i < count; i++)
1464 pte[i] = 0ULL;
1465 }
1466
1467 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1468 unmapped += unmap_size;
1469 }
1470
60d0ca3c 1471 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1472
24cd7723 1473 return unmapped;
eb74ff6c 1474}
eb74ff6c 1475
431b2a20
JR
1476/*
1477 * This function checks if a specific unity mapping entry is needed for
1478 * this specific IOMMU.
1479 */
bd0e5211
JR
1480static int iommu_for_unity_map(struct amd_iommu *iommu,
1481 struct unity_map_entry *entry)
1482{
1483 u16 bdf, i;
1484
1485 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1486 bdf = amd_iommu_alias_table[i];
1487 if (amd_iommu_rlookup_table[bdf] == iommu)
1488 return 1;
1489 }
1490
1491 return 0;
1492}
1493
431b2a20
JR
1494/*
1495 * This function actually applies the mapping to the page table of the
1496 * dma_ops domain.
1497 */
bd0e5211
JR
1498static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1499 struct unity_map_entry *e)
1500{
1501 u64 addr;
1502 int ret;
1503
1504 for (addr = e->address_start; addr < e->address_end;
1505 addr += PAGE_SIZE) {
abdc5eb3 1506 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1507 PAGE_SIZE);
bd0e5211
JR
1508 if (ret)
1509 return ret;
1510 /*
1511 * if unity mapping is in aperture range mark the page
1512 * as allocated in the aperture
1513 */
1514 if (addr < dma_dom->aperture_size)
c3239567 1515 __set_bit(addr >> PAGE_SHIFT,
384de729 1516 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1517 }
1518
1519 return 0;
1520}
1521
171e7b37
JR
1522/*
1523 * Init the unity mappings for a specific IOMMU in the system
1524 *
1525 * Basically iterates over all unity mapping entries and applies them to
1526 * the default domain DMA of that IOMMU if necessary.
1527 */
1528static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1529{
1530 struct unity_map_entry *entry;
1531 int ret;
1532
1533 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1534 if (!iommu_for_unity_map(iommu, entry))
1535 continue;
1536 ret = dma_ops_unity_map(iommu->default_dom, entry);
1537 if (ret)
1538 return ret;
1539 }
1540
1541 return 0;
1542}
1543
431b2a20
JR
1544/*
1545 * Inits the unity mappings required for a specific device
1546 */
bd0e5211
JR
1547static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1548 u16 devid)
1549{
1550 struct unity_map_entry *e;
1551 int ret;
1552
1553 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1554 if (!(devid >= e->devid_start && devid <= e->devid_end))
1555 continue;
1556 ret = dma_ops_unity_map(dma_dom, e);
1557 if (ret)
1558 return ret;
1559 }
1560
1561 return 0;
1562}
1563
431b2a20
JR
1564/****************************************************************************
1565 *
1566 * The next functions belong to the address allocator for the dma_ops
1567 * interface functions. They work like the allocators in the other IOMMU
1568 * drivers. Its basically a bitmap which marks the allocated pages in
1569 * the aperture. Maybe it could be enhanced in the future to a more
1570 * efficient allocator.
1571 *
1572 ****************************************************************************/
d3086444 1573
431b2a20 1574/*
384de729 1575 * The address allocator core functions.
431b2a20
JR
1576 *
1577 * called with domain->lock held
1578 */
384de729 1579
171e7b37
JR
1580/*
1581 * Used to reserve address ranges in the aperture (e.g. for exclusion
1582 * ranges.
1583 */
1584static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1585 unsigned long start_page,
1586 unsigned int pages)
1587{
1588 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1589
1590 if (start_page + pages > last_page)
1591 pages = last_page - start_page;
1592
1593 for (i = start_page; i < start_page + pages; ++i) {
1594 int index = i / APERTURE_RANGE_PAGES;
1595 int page = i % APERTURE_RANGE_PAGES;
1596 __set_bit(page, dom->aperture[index]->bitmap);
1597 }
1598}
1599
9cabe89b
JR
1600/*
1601 * This function is used to add a new aperture range to an existing
1602 * aperture in case of dma_ops domain allocation or address allocation
1603 * failure.
1604 */
576175c2 1605static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1606 bool populate, gfp_t gfp)
1607{
1608 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1609 struct amd_iommu *iommu;
17f5b569 1610 unsigned long i, old_size;
9cabe89b 1611
f5e9705c
JR
1612#ifdef CONFIG_IOMMU_STRESS
1613 populate = false;
1614#endif
1615
9cabe89b
JR
1616 if (index >= APERTURE_MAX_RANGES)
1617 return -ENOMEM;
1618
1619 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1620 if (!dma_dom->aperture[index])
1621 return -ENOMEM;
1622
1623 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1624 if (!dma_dom->aperture[index]->bitmap)
1625 goto out_free;
1626
1627 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1628
1629 if (populate) {
1630 unsigned long address = dma_dom->aperture_size;
1631 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1632 u64 *pte, *pte_page;
1633
1634 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1635 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1636 &pte_page, gfp);
1637 if (!pte)
1638 goto out_free;
1639
1640 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1641
1642 address += APERTURE_RANGE_SIZE / 64;
1643 }
1644 }
1645
17f5b569 1646 old_size = dma_dom->aperture_size;
9cabe89b
JR
1647 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1648
17f5b569
JR
1649 /* Reserve address range used for MSI messages */
1650 if (old_size < MSI_ADDR_BASE_LO &&
1651 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1652 unsigned long spage;
1653 int pages;
1654
1655 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1656 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1657
1658 dma_ops_reserve_addresses(dma_dom, spage, pages);
1659 }
1660
b595076a 1661 /* Initialize the exclusion range if necessary */
576175c2
JR
1662 for_each_iommu(iommu) {
1663 if (iommu->exclusion_start &&
1664 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1665 && iommu->exclusion_start < dma_dom->aperture_size) {
1666 unsigned long startpage;
1667 int pages = iommu_num_pages(iommu->exclusion_start,
1668 iommu->exclusion_length,
1669 PAGE_SIZE);
1670 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1671 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1672 }
00cd122a
JR
1673 }
1674
1675 /*
1676 * Check for areas already mapped as present in the new aperture
1677 * range and mark those pages as reserved in the allocator. Such
1678 * mappings may already exist as a result of requested unity
1679 * mappings for devices.
1680 */
1681 for (i = dma_dom->aperture[index]->offset;
1682 i < dma_dom->aperture_size;
1683 i += PAGE_SIZE) {
3039ca1b
JR
1684 unsigned long pte_pgsize;
1685 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
00cd122a
JR
1686 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1687 continue;
1688
fcd0861d 1689 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1690 }
1691
04bfdd84
JR
1692 update_domain(&dma_dom->domain);
1693
9cabe89b
JR
1694 return 0;
1695
1696out_free:
04bfdd84
JR
1697 update_domain(&dma_dom->domain);
1698
9cabe89b
JR
1699 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1700
1701 kfree(dma_dom->aperture[index]);
1702 dma_dom->aperture[index] = NULL;
1703
1704 return -ENOMEM;
1705}
1706
384de729
JR
1707static unsigned long dma_ops_area_alloc(struct device *dev,
1708 struct dma_ops_domain *dom,
1709 unsigned int pages,
1710 unsigned long align_mask,
1711 u64 dma_mask,
1712 unsigned long start)
1713{
803b8cb4 1714 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1715 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1716 int i = start >> APERTURE_RANGE_SHIFT;
1717 unsigned long boundary_size;
1718 unsigned long address = -1;
1719 unsigned long limit;
1720
803b8cb4
JR
1721 next_bit >>= PAGE_SHIFT;
1722
384de729
JR
1723 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1724 PAGE_SIZE) >> PAGE_SHIFT;
1725
1726 for (;i < max_index; ++i) {
1727 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1728
1729 if (dom->aperture[i]->offset >= dma_mask)
1730 break;
1731
1732 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1733 dma_mask >> PAGE_SHIFT);
1734
1735 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1736 limit, next_bit, pages, 0,
1737 boundary_size, align_mask);
1738 if (address != -1) {
1739 address = dom->aperture[i]->offset +
1740 (address << PAGE_SHIFT);
803b8cb4 1741 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1742 break;
1743 }
1744
1745 next_bit = 0;
1746 }
1747
1748 return address;
1749}
1750
d3086444
JR
1751static unsigned long dma_ops_alloc_addresses(struct device *dev,
1752 struct dma_ops_domain *dom,
6d4f343f 1753 unsigned int pages,
832a90c3
JR
1754 unsigned long align_mask,
1755 u64 dma_mask)
d3086444 1756{
d3086444 1757 unsigned long address;
d3086444 1758
fe16f088
JR
1759#ifdef CONFIG_IOMMU_STRESS
1760 dom->next_address = 0;
1761 dom->need_flush = true;
1762#endif
d3086444 1763
384de729 1764 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1765 dma_mask, dom->next_address);
d3086444 1766
1c655773 1767 if (address == -1) {
803b8cb4 1768 dom->next_address = 0;
384de729
JR
1769 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1770 dma_mask, 0);
1c655773
JR
1771 dom->need_flush = true;
1772 }
d3086444 1773
384de729 1774 if (unlikely(address == -1))
8fd524b3 1775 address = DMA_ERROR_CODE;
d3086444
JR
1776
1777 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1778
1779 return address;
1780}
1781
431b2a20
JR
1782/*
1783 * The address free function.
1784 *
1785 * called with domain->lock held
1786 */
d3086444
JR
1787static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1788 unsigned long address,
1789 unsigned int pages)
1790{
384de729
JR
1791 unsigned i = address >> APERTURE_RANGE_SHIFT;
1792 struct aperture_range *range = dom->aperture[i];
80be308d 1793
384de729
JR
1794 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1795
47bccd6b
JR
1796#ifdef CONFIG_IOMMU_STRESS
1797 if (i < 4)
1798 return;
1799#endif
80be308d 1800
803b8cb4 1801 if (address >= dom->next_address)
80be308d 1802 dom->need_flush = true;
384de729
JR
1803
1804 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1805
a66022c4 1806 bitmap_clear(range->bitmap, address, pages);
384de729 1807
d3086444
JR
1808}
1809
431b2a20
JR
1810/****************************************************************************
1811 *
1812 * The next functions belong to the domain allocation. A domain is
1813 * allocated for every IOMMU as the default domain. If device isolation
1814 * is enabled, every device get its own domain. The most important thing
1815 * about domains is the page table mapping the DMA address space they
1816 * contain.
1817 *
1818 ****************************************************************************/
1819
aeb26f55
JR
1820/*
1821 * This function adds a protection domain to the global protection domain list
1822 */
1823static void add_domain_to_list(struct protection_domain *domain)
1824{
1825 unsigned long flags;
1826
1827 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1828 list_add(&domain->list, &amd_iommu_pd_list);
1829 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1830}
1831
1832/*
1833 * This function removes a protection domain to the global
1834 * protection domain list
1835 */
1836static void del_domain_from_list(struct protection_domain *domain)
1837{
1838 unsigned long flags;
1839
1840 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1841 list_del(&domain->list);
1842 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1843}
1844
ec487d1a
JR
1845static u16 domain_id_alloc(void)
1846{
1847 unsigned long flags;
1848 int id;
1849
1850 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1851 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1852 BUG_ON(id == 0);
1853 if (id > 0 && id < MAX_DOMAIN_ID)
1854 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1855 else
1856 id = 0;
1857 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1858
1859 return id;
1860}
1861
a2acfb75
JR
1862static void domain_id_free(int id)
1863{
1864 unsigned long flags;
1865
1866 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1867 if (id > 0 && id < MAX_DOMAIN_ID)
1868 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1869 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1870}
a2acfb75 1871
5c34c403
JR
1872#define DEFINE_FREE_PT_FN(LVL, FN) \
1873static void free_pt_##LVL (unsigned long __pt) \
1874{ \
1875 unsigned long p; \
1876 u64 *pt; \
1877 int i; \
1878 \
1879 pt = (u64 *)__pt; \
1880 \
1881 for (i = 0; i < 512; ++i) { \
1882 if (!IOMMU_PTE_PRESENT(pt[i])) \
1883 continue; \
1884 \
1885 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1886 FN(p); \
1887 } \
1888 free_page((unsigned long)pt); \
1889}
1890
1891DEFINE_FREE_PT_FN(l2, free_page)
1892DEFINE_FREE_PT_FN(l3, free_pt_l2)
1893DEFINE_FREE_PT_FN(l4, free_pt_l3)
1894DEFINE_FREE_PT_FN(l5, free_pt_l4)
1895DEFINE_FREE_PT_FN(l6, free_pt_l5)
1896
86db2e5d 1897static void free_pagetable(struct protection_domain *domain)
ec487d1a 1898{
5c34c403 1899 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1900
5c34c403
JR
1901 switch (domain->mode) {
1902 case PAGE_MODE_NONE:
1903 break;
1904 case PAGE_MODE_1_LEVEL:
1905 free_page(root);
1906 break;
1907 case PAGE_MODE_2_LEVEL:
1908 free_pt_l2(root);
1909 break;
1910 case PAGE_MODE_3_LEVEL:
1911 free_pt_l3(root);
1912 break;
1913 case PAGE_MODE_4_LEVEL:
1914 free_pt_l4(root);
1915 break;
1916 case PAGE_MODE_5_LEVEL:
1917 free_pt_l5(root);
1918 break;
1919 case PAGE_MODE_6_LEVEL:
1920 free_pt_l6(root);
1921 break;
1922 default:
1923 BUG();
ec487d1a 1924 }
ec487d1a
JR
1925}
1926
b16137b1
JR
1927static void free_gcr3_tbl_level1(u64 *tbl)
1928{
1929 u64 *ptr;
1930 int i;
1931
1932 for (i = 0; i < 512; ++i) {
1933 if (!(tbl[i] & GCR3_VALID))
1934 continue;
1935
1936 ptr = __va(tbl[i] & PAGE_MASK);
1937
1938 free_page((unsigned long)ptr);
1939 }
1940}
1941
1942static void free_gcr3_tbl_level2(u64 *tbl)
1943{
1944 u64 *ptr;
1945 int i;
1946
1947 for (i = 0; i < 512; ++i) {
1948 if (!(tbl[i] & GCR3_VALID))
1949 continue;
1950
1951 ptr = __va(tbl[i] & PAGE_MASK);
1952
1953 free_gcr3_tbl_level1(ptr);
1954 }
1955}
1956
52815b75
JR
1957static void free_gcr3_table(struct protection_domain *domain)
1958{
b16137b1
JR
1959 if (domain->glx == 2)
1960 free_gcr3_tbl_level2(domain->gcr3_tbl);
1961 else if (domain->glx == 1)
1962 free_gcr3_tbl_level1(domain->gcr3_tbl);
1963 else if (domain->glx != 0)
1964 BUG();
1965
52815b75
JR
1966 free_page((unsigned long)domain->gcr3_tbl);
1967}
1968
431b2a20
JR
1969/*
1970 * Free a domain, only used if something went wrong in the
1971 * allocation path and we need to free an already allocated page table
1972 */
ec487d1a
JR
1973static void dma_ops_domain_free(struct dma_ops_domain *dom)
1974{
384de729
JR
1975 int i;
1976
ec487d1a
JR
1977 if (!dom)
1978 return;
1979
aeb26f55
JR
1980 del_domain_from_list(&dom->domain);
1981
86db2e5d 1982 free_pagetable(&dom->domain);
ec487d1a 1983
384de729
JR
1984 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1985 if (!dom->aperture[i])
1986 continue;
1987 free_page((unsigned long)dom->aperture[i]->bitmap);
1988 kfree(dom->aperture[i]);
1989 }
ec487d1a
JR
1990
1991 kfree(dom);
1992}
1993
431b2a20
JR
1994/*
1995 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1996 * It also initializes the page table and the address allocator data
431b2a20
JR
1997 * structures required for the dma_ops interface
1998 */
87a64d52 1999static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
2000{
2001 struct dma_ops_domain *dma_dom;
ec487d1a
JR
2002
2003 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2004 if (!dma_dom)
2005 return NULL;
2006
2007 spin_lock_init(&dma_dom->domain.lock);
2008
2009 dma_dom->domain.id = domain_id_alloc();
2010 if (dma_dom->domain.id == 0)
2011 goto free_dma_dom;
7c392cbe 2012 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 2013 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 2014 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 2015 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
2016 dma_dom->domain.priv = dma_dom;
2017 if (!dma_dom->domain.pt_root)
2018 goto free_dma_dom;
ec487d1a 2019
1c655773 2020 dma_dom->need_flush = false;
bd60b735 2021 dma_dom->target_dev = 0xffff;
1c655773 2022
aeb26f55
JR
2023 add_domain_to_list(&dma_dom->domain);
2024
576175c2 2025 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 2026 goto free_dma_dom;
ec487d1a 2027
431b2a20 2028 /*
ec487d1a
JR
2029 * mark the first page as allocated so we never return 0 as
2030 * a valid dma-address. So we can use 0 as error value
431b2a20 2031 */
384de729 2032 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 2033 dma_dom->next_address = 0;
ec487d1a 2034
ec487d1a
JR
2035
2036 return dma_dom;
2037
2038free_dma_dom:
2039 dma_ops_domain_free(dma_dom);
2040
2041 return NULL;
2042}
2043
5b28df6f
JR
2044/*
2045 * little helper function to check whether a given protection domain is a
2046 * dma_ops domain
2047 */
2048static bool dma_ops_domain(struct protection_domain *domain)
2049{
2050 return domain->flags & PD_DMA_OPS_MASK;
2051}
2052
fd7b5535 2053static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 2054{
132bd68f 2055 u64 pte_root = 0;
ee6c2868 2056 u64 flags = 0;
863c74eb 2057
132bd68f
JR
2058 if (domain->mode != PAGE_MODE_NONE)
2059 pte_root = virt_to_phys(domain->pt_root);
2060
38ddf41b
JR
2061 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2062 << DEV_ENTRY_MODE_SHIFT;
2063 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 2064
ee6c2868
JR
2065 flags = amd_iommu_dev_table[devid].data[1];
2066
fd7b5535
JR
2067 if (ats)
2068 flags |= DTE_FLAG_IOTLB;
2069
52815b75
JR
2070 if (domain->flags & PD_IOMMUV2_MASK) {
2071 u64 gcr3 = __pa(domain->gcr3_tbl);
2072 u64 glx = domain->glx;
2073 u64 tmp;
2074
2075 pte_root |= DTE_FLAG_GV;
2076 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2077
2078 /* First mask out possible old values for GCR3 table */
2079 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2080 flags &= ~tmp;
2081
2082 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2083 flags &= ~tmp;
2084
2085 /* Encode GCR3 table into DTE */
2086 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2087 pte_root |= tmp;
2088
2089 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2090 flags |= tmp;
2091
2092 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2093 flags |= tmp;
2094 }
2095
ee6c2868
JR
2096 flags &= ~(0xffffUL);
2097 flags |= domain->id;
2098
2099 amd_iommu_dev_table[devid].data[1] = flags;
2100 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
2101}
2102
2103static void clear_dte_entry(u16 devid)
2104{
15898bbc
JR
2105 /* remove entry from the device table seen by the hardware */
2106 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2107 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
2108
2109 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
2110}
2111
ec9e79ef
JR
2112static void do_attach(struct iommu_dev_data *dev_data,
2113 struct protection_domain *domain)
7f760ddd 2114{
7f760ddd 2115 struct amd_iommu *iommu;
ec9e79ef 2116 bool ats;
fd7b5535 2117
ec9e79ef
JR
2118 iommu = amd_iommu_rlookup_table[dev_data->devid];
2119 ats = dev_data->ats.enabled;
7f760ddd
JR
2120
2121 /* Update data structures */
2122 dev_data->domain = domain;
2123 list_add(&dev_data->list, &domain->dev_list);
f62dda66 2124 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
2125
2126 /* Do reference counting */
2127 domain->dev_iommu[iommu->index] += 1;
2128 domain->dev_cnt += 1;
2129
2130 /* Flush the DTE entry */
6c542047 2131 device_flush_dte(dev_data);
7f760ddd
JR
2132}
2133
ec9e79ef 2134static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 2135{
7f760ddd 2136 struct amd_iommu *iommu;
7f760ddd 2137
ec9e79ef 2138 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
2139
2140 /* decrease reference counters */
7f760ddd
JR
2141 dev_data->domain->dev_iommu[iommu->index] -= 1;
2142 dev_data->domain->dev_cnt -= 1;
2143
2144 /* Update data structures */
2145 dev_data->domain = NULL;
2146 list_del(&dev_data->list);
f62dda66 2147 clear_dte_entry(dev_data->devid);
15898bbc 2148
7f760ddd 2149 /* Flush the DTE entry */
6c542047 2150 device_flush_dte(dev_data);
2b681faf
JR
2151}
2152
2153/*
2154 * If a device is not yet associated with a domain, this function does
2155 * assigns it visible for the hardware
2156 */
ec9e79ef 2157static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 2158 struct protection_domain *domain)
2b681faf 2159{
397111ab 2160 struct iommu_dev_data *head, *entry;
84fe6c19 2161 int ret;
657cbb6b 2162
2b681faf
JR
2163 /* lock domain */
2164 spin_lock(&domain->lock);
2165
397111ab 2166 head = dev_data;
15898bbc 2167
397111ab
JR
2168 if (head->alias_data != NULL)
2169 head = head->alias_data;
eba6ac60 2170
397111ab 2171 /* Now we have the root of the alias group, if any */
15898bbc 2172
397111ab
JR
2173 ret = -EBUSY;
2174 if (head->domain != NULL)
2175 goto out_unlock;
15898bbc 2176
397111ab
JR
2177 /* Attach alias group root */
2178 do_attach(head, domain);
eba6ac60 2179
397111ab
JR
2180 /* Attach other devices in the alias group */
2181 list_for_each_entry(entry, &head->alias_list, alias_list)
2182 do_attach(entry, domain);
24100055 2183
84fe6c19
JL
2184 ret = 0;
2185
2186out_unlock:
2187
eba6ac60
JR
2188 /* ready */
2189 spin_unlock(&domain->lock);
15898bbc 2190
84fe6c19 2191 return ret;
0feae533 2192}
b20ac0d4 2193
52815b75
JR
2194
2195static void pdev_iommuv2_disable(struct pci_dev *pdev)
2196{
2197 pci_disable_ats(pdev);
2198 pci_disable_pri(pdev);
2199 pci_disable_pasid(pdev);
2200}
2201
6a113ddc
JR
2202/* FIXME: Change generic reset-function to do the same */
2203static int pri_reset_while_enabled(struct pci_dev *pdev)
2204{
2205 u16 control;
2206 int pos;
2207
46277b75 2208 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
2209 if (!pos)
2210 return -EINVAL;
2211
46277b75
JR
2212 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2213 control |= PCI_PRI_CTRL_RESET;
2214 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2215
2216 return 0;
2217}
2218
52815b75
JR
2219static int pdev_iommuv2_enable(struct pci_dev *pdev)
2220{
6a113ddc
JR
2221 bool reset_enable;
2222 int reqs, ret;
2223
2224 /* FIXME: Hardcode number of outstanding requests for now */
2225 reqs = 32;
2226 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2227 reqs = 1;
2228 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2229
2230 /* Only allow access to user-accessible pages */
2231 ret = pci_enable_pasid(pdev, 0);
2232 if (ret)
2233 goto out_err;
2234
2235 /* First reset the PRI state of the device */
2236 ret = pci_reset_pri(pdev);
2237 if (ret)
2238 goto out_err;
2239
6a113ddc
JR
2240 /* Enable PRI */
2241 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2242 if (ret)
2243 goto out_err;
2244
6a113ddc
JR
2245 if (reset_enable) {
2246 ret = pri_reset_while_enabled(pdev);
2247 if (ret)
2248 goto out_err;
2249 }
2250
52815b75
JR
2251 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2252 if (ret)
2253 goto out_err;
2254
2255 return 0;
2256
2257out_err:
2258 pci_disable_pri(pdev);
2259 pci_disable_pasid(pdev);
2260
2261 return ret;
2262}
2263
c99afa25 2264/* FIXME: Move this to PCI code */
a3b93121 2265#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2266
98f1ad25 2267static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2268{
a3b93121 2269 u16 status;
c99afa25
JR
2270 int pos;
2271
46277b75 2272 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2273 if (!pos)
2274 return false;
2275
a3b93121 2276 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2277
a3b93121 2278 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2279}
2280
407d733e 2281/*
df805abb 2282 * If a device is not yet associated with a domain, this function
407d733e
JR
2283 * assigns it visible for the hardware
2284 */
15898bbc
JR
2285static int attach_device(struct device *dev,
2286 struct protection_domain *domain)
0feae533 2287{
fd7b5535 2288 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2289 struct iommu_dev_data *dev_data;
eba6ac60 2290 unsigned long flags;
15898bbc 2291 int ret;
eba6ac60 2292
ea61cddb
JR
2293 dev_data = get_dev_data(dev);
2294
52815b75
JR
2295 if (domain->flags & PD_IOMMUV2_MASK) {
2296 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2297 return -EINVAL;
2298
2299 if (pdev_iommuv2_enable(pdev) != 0)
2300 return -EINVAL;
2301
2302 dev_data->ats.enabled = true;
2303 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
c99afa25 2304 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
52815b75
JR
2305 } else if (amd_iommu_iotlb_sup &&
2306 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2307 dev_data->ats.enabled = true;
2308 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2309 }
fd7b5535 2310
eba6ac60 2311 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2312 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2313 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2314
0feae533
JR
2315 /*
2316 * We might boot into a crash-kernel here. The crashed kernel
2317 * left the caches in the IOMMU dirty. So we have to flush
2318 * here to evict all dirty stuff.
2319 */
17b124bf 2320 domain_flush_tlb_pde(domain);
15898bbc
JR
2321
2322 return ret;
b20ac0d4
JR
2323}
2324
355bf553
JR
2325/*
2326 * Removes a device from a protection domain (unlocked)
2327 */
ec9e79ef 2328static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2329{
397111ab 2330 struct iommu_dev_data *head, *entry;
2ca76279 2331 struct protection_domain *domain;
7c392cbe 2332 unsigned long flags;
c4596114 2333
7f760ddd 2334 BUG_ON(!dev_data->domain);
355bf553 2335
2ca76279
JR
2336 domain = dev_data->domain;
2337
2338 spin_lock_irqsave(&domain->lock, flags);
24100055 2339
397111ab
JR
2340 head = dev_data;
2341 if (head->alias_data != NULL)
2342 head = head->alias_data;
71f77580 2343
397111ab
JR
2344 list_for_each_entry(entry, &head->alias_list, alias_list)
2345 do_detach(entry);
24100055 2346
397111ab 2347 do_detach(head);
7f760ddd 2348
2ca76279 2349 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
2350
2351 /*
2352 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
2353 * passthrough domain if it is detached from any other domain.
2354 * Make sure we can deassign from the pt_domain itself.
21129f78 2355 */
5abcdba4 2356 if (dev_data->passthrough &&
d3ad9373 2357 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 2358 __attach_device(dev_data, pt_domain);
355bf553
JR
2359}
2360
2361/*
2362 * Removes a device from a protection domain (with devtable_lock held)
2363 */
15898bbc 2364static void detach_device(struct device *dev)
355bf553 2365{
52815b75 2366 struct protection_domain *domain;
ea61cddb 2367 struct iommu_dev_data *dev_data;
355bf553
JR
2368 unsigned long flags;
2369
ec9e79ef 2370 dev_data = get_dev_data(dev);
52815b75 2371 domain = dev_data->domain;
ec9e79ef 2372
355bf553
JR
2373 /* lock device table */
2374 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2375 __detach_device(dev_data);
355bf553 2376 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2377
52815b75
JR
2378 if (domain->flags & PD_IOMMUV2_MASK)
2379 pdev_iommuv2_disable(to_pci_dev(dev));
2380 else if (dev_data->ats.enabled)
ea61cddb 2381 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2382
2383 dev_data->ats.enabled = false;
355bf553 2384}
e275a2a0 2385
15898bbc
JR
2386/*
2387 * Find out the protection domain structure for a given PCI device. This
2388 * will give us the pointer to the page table root for example.
2389 */
2390static struct protection_domain *domain_for_device(struct device *dev)
2391{
71f77580 2392 struct iommu_dev_data *dev_data;
2b02b091 2393 struct protection_domain *dom = NULL;
15898bbc 2394 unsigned long flags;
15898bbc 2395
657cbb6b 2396 dev_data = get_dev_data(dev);
15898bbc 2397
2b02b091
JR
2398 if (dev_data->domain)
2399 return dev_data->domain;
15898bbc 2400
71f77580
JR
2401 if (dev_data->alias_data != NULL) {
2402 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
2403
2404 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2405 if (alias_data->domain != NULL) {
2406 __attach_device(dev_data, alias_data->domain);
2407 dom = alias_data->domain;
2408 }
2409 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2410 }
15898bbc
JR
2411
2412 return dom;
2413}
2414
e275a2a0
JR
2415static int device_change_notifier(struct notifier_block *nb,
2416 unsigned long action, void *data)
2417{
e275a2a0 2418 struct dma_ops_domain *dma_domain;
5abcdba4
JR
2419 struct protection_domain *domain;
2420 struct iommu_dev_data *dev_data;
2421 struct device *dev = data;
e275a2a0 2422 struct amd_iommu *iommu;
1ac4cbbc 2423 unsigned long flags;
5abcdba4 2424 u16 devid;
e275a2a0 2425
98fc5a69
JR
2426 if (!check_device(dev))
2427 return 0;
e275a2a0 2428
5abcdba4
JR
2429 devid = get_device_id(dev);
2430 iommu = amd_iommu_rlookup_table[devid];
2431 dev_data = get_dev_data(dev);
e275a2a0
JR
2432
2433 switch (action) {
1ac4cbbc 2434 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
2435
2436 iommu_init_device(dev);
25b11ce2 2437 init_iommu_group(dev);
657cbb6b 2438
2c9195e9
JR
2439 /*
2440 * dev_data is still NULL and
2441 * got initialized in iommu_init_device
2442 */
2443 dev_data = get_dev_data(dev);
2444
2445 if (iommu_pass_through || dev_data->iommu_v2) {
2446 dev_data->passthrough = true;
2447 attach_device(dev, pt_domain);
2448 break;
2449 }
2450
657cbb6b
JR
2451 domain = domain_for_device(dev);
2452
1ac4cbbc
JR
2453 /* allocate a protection domain if a device is added */
2454 dma_domain = find_protection_domain(devid);
c2a2876e
JR
2455 if (!dma_domain) {
2456 dma_domain = dma_ops_domain_alloc();
2457 if (!dma_domain)
2458 goto out;
2459 dma_domain->target_dev = devid;
2460
2461 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2462 list_add_tail(&dma_domain->list, &iommu_pd_list);
2463 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2464 }
ac1534a5 2465
2c9195e9 2466 dev->archdata.dma_ops = &amd_iommu_dma_ops;
ac1534a5 2467
e275a2a0 2468 break;
6c5cc801 2469 case BUS_NOTIFY_REMOVED_DEVICE:
657cbb6b
JR
2470
2471 iommu_uninit_device(dev);
2472
e275a2a0
JR
2473 default:
2474 goto out;
2475 }
2476
e275a2a0
JR
2477 iommu_completion_wait(iommu);
2478
2479out:
2480 return 0;
2481}
2482
b25ae679 2483static struct notifier_block device_nb = {
e275a2a0
JR
2484 .notifier_call = device_change_notifier,
2485};
355bf553 2486
8638c491
JR
2487void amd_iommu_init_notifier(void)
2488{
2489 bus_register_notifier(&pci_bus_type, &device_nb);
2490}
2491
431b2a20
JR
2492/*****************************************************************************
2493 *
2494 * The next functions belong to the dma_ops mapping/unmapping code.
2495 *
2496 *****************************************************************************/
2497
2498/*
2499 * In the dma_ops path we only have the struct device. This function
2500 * finds the corresponding IOMMU, the protection domain and the
2501 * requestor id for a given device.
2502 * If the device is not yet associated with a domain this is also done
2503 * in this function.
2504 */
94f6d190 2505static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2506{
94f6d190 2507 struct protection_domain *domain;
b20ac0d4 2508 struct dma_ops_domain *dma_dom;
94f6d190 2509 u16 devid = get_device_id(dev);
b20ac0d4 2510
f99c0f1c 2511 if (!check_device(dev))
94f6d190 2512 return ERR_PTR(-EINVAL);
b20ac0d4 2513
94f6d190
JR
2514 domain = domain_for_device(dev);
2515 if (domain != NULL && !dma_ops_domain(domain))
2516 return ERR_PTR(-EBUSY);
f99c0f1c 2517
94f6d190
JR
2518 if (domain != NULL)
2519 return domain;
b20ac0d4 2520
df805abb 2521 /* Device not bound yet - bind it */
94f6d190 2522 dma_dom = find_protection_domain(devid);
15898bbc 2523 if (!dma_dom)
94f6d190
JR
2524 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2525 attach_device(dev, &dma_dom->domain);
15898bbc 2526 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2527 dma_dom->domain.id, dev_name(dev));
f91ba190 2528
94f6d190 2529 return &dma_dom->domain;
b20ac0d4
JR
2530}
2531
04bfdd84
JR
2532static void update_device_table(struct protection_domain *domain)
2533{
492667da 2534 struct iommu_dev_data *dev_data;
04bfdd84 2535
ea61cddb
JR
2536 list_for_each_entry(dev_data, &domain->dev_list, list)
2537 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2538}
2539
2540static void update_domain(struct protection_domain *domain)
2541{
2542 if (!domain->updated)
2543 return;
2544
2545 update_device_table(domain);
17b124bf
JR
2546
2547 domain_flush_devices(domain);
2548 domain_flush_tlb_pde(domain);
04bfdd84
JR
2549
2550 domain->updated = false;
2551}
2552
8bda3092
JR
2553/*
2554 * This function fetches the PTE for a given address in the aperture
2555 */
2556static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2557 unsigned long address)
2558{
384de729 2559 struct aperture_range *aperture;
8bda3092
JR
2560 u64 *pte, *pte_page;
2561
384de729
JR
2562 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2563 if (!aperture)
2564 return NULL;
2565
2566 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2567 if (!pte) {
cbb9d729 2568 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2569 GFP_ATOMIC);
384de729
JR
2570 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2571 } else
8c8c143c 2572 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2573
04bfdd84 2574 update_domain(&dom->domain);
8bda3092
JR
2575
2576 return pte;
2577}
2578
431b2a20
JR
2579/*
2580 * This is the generic map function. It maps one 4kb page at paddr to
2581 * the given address in the DMA address space for the domain.
2582 */
680525e0 2583static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2584 unsigned long address,
2585 phys_addr_t paddr,
2586 int direction)
2587{
2588 u64 *pte, __pte;
2589
2590 WARN_ON(address > dom->aperture_size);
2591
2592 paddr &= PAGE_MASK;
2593
8bda3092 2594 pte = dma_ops_get_pte(dom, address);
53812c11 2595 if (!pte)
8fd524b3 2596 return DMA_ERROR_CODE;
cb76c322
JR
2597
2598 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2599
2600 if (direction == DMA_TO_DEVICE)
2601 __pte |= IOMMU_PTE_IR;
2602 else if (direction == DMA_FROM_DEVICE)
2603 __pte |= IOMMU_PTE_IW;
2604 else if (direction == DMA_BIDIRECTIONAL)
2605 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2606
2607 WARN_ON(*pte);
2608
2609 *pte = __pte;
2610
2611 return (dma_addr_t)address;
2612}
2613
431b2a20
JR
2614/*
2615 * The generic unmapping function for on page in the DMA address space.
2616 */
680525e0 2617static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2618 unsigned long address)
2619{
384de729 2620 struct aperture_range *aperture;
cb76c322
JR
2621 u64 *pte;
2622
2623 if (address >= dom->aperture_size)
2624 return;
2625
384de729
JR
2626 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2627 if (!aperture)
2628 return;
2629
2630 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2631 if (!pte)
2632 return;
cb76c322 2633
8c8c143c 2634 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2635
2636 WARN_ON(!*pte);
2637
2638 *pte = 0ULL;
2639}
2640
431b2a20
JR
2641/*
2642 * This function contains common code for mapping of a physically
24f81160
JR
2643 * contiguous memory region into DMA address space. It is used by all
2644 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2645 * Must be called with the domain lock held.
2646 */
cb76c322 2647static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2648 struct dma_ops_domain *dma_dom,
2649 phys_addr_t paddr,
2650 size_t size,
6d4f343f 2651 int dir,
832a90c3
JR
2652 bool align,
2653 u64 dma_mask)
cb76c322
JR
2654{
2655 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2656 dma_addr_t address, start, ret;
cb76c322 2657 unsigned int pages;
6d4f343f 2658 unsigned long align_mask = 0;
cb76c322
JR
2659 int i;
2660
e3c449f5 2661 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2662 paddr &= PAGE_MASK;
2663
8ecaf8f1
JR
2664 INC_STATS_COUNTER(total_map_requests);
2665
c1858976
JR
2666 if (pages > 1)
2667 INC_STATS_COUNTER(cross_page);
2668
6d4f343f
JR
2669 if (align)
2670 align_mask = (1UL << get_order(size)) - 1;
2671
11b83888 2672retry:
832a90c3
JR
2673 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2674 dma_mask);
8fd524b3 2675 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2676 /*
2677 * setting next_address here will let the address
2678 * allocator only scan the new allocated range in the
2679 * first run. This is a small optimization.
2680 */
2681 dma_dom->next_address = dma_dom->aperture_size;
2682
576175c2 2683 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2684 goto out;
2685
2686 /*
af901ca1 2687 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2688 * allocation again
2689 */
2690 goto retry;
2691 }
cb76c322
JR
2692
2693 start = address;
2694 for (i = 0; i < pages; ++i) {
680525e0 2695 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2696 if (ret == DMA_ERROR_CODE)
53812c11
JR
2697 goto out_unmap;
2698
cb76c322
JR
2699 paddr += PAGE_SIZE;
2700 start += PAGE_SIZE;
2701 }
2702 address += offset;
2703
5774f7c5
JR
2704 ADD_STATS_COUNTER(alloced_io_mem, size);
2705
afa9fdc2 2706 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2707 domain_flush_tlb(&dma_dom->domain);
1c655773 2708 dma_dom->need_flush = false;
318afd41 2709 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2710 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2711
cb76c322
JR
2712out:
2713 return address;
53812c11
JR
2714
2715out_unmap:
2716
2717 for (--i; i >= 0; --i) {
2718 start -= PAGE_SIZE;
680525e0 2719 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2720 }
2721
2722 dma_ops_free_addresses(dma_dom, address, pages);
2723
8fd524b3 2724 return DMA_ERROR_CODE;
cb76c322
JR
2725}
2726
431b2a20
JR
2727/*
2728 * Does the reverse of the __map_single function. Must be called with
2729 * the domain lock held too
2730 */
cd8c82e8 2731static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2732 dma_addr_t dma_addr,
2733 size_t size,
2734 int dir)
2735{
04e0463e 2736 dma_addr_t flush_addr;
cb76c322
JR
2737 dma_addr_t i, start;
2738 unsigned int pages;
2739
8fd524b3 2740 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2741 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2742 return;
2743
04e0463e 2744 flush_addr = dma_addr;
e3c449f5 2745 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2746 dma_addr &= PAGE_MASK;
2747 start = dma_addr;
2748
2749 for (i = 0; i < pages; ++i) {
680525e0 2750 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2751 start += PAGE_SIZE;
2752 }
2753
5774f7c5
JR
2754 SUB_STATS_COUNTER(alloced_io_mem, size);
2755
cb76c322 2756 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2757
80be308d 2758 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2759 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2760 dma_dom->need_flush = false;
2761 }
cb76c322
JR
2762}
2763
431b2a20
JR
2764/*
2765 * The exported map_single function for dma_ops.
2766 */
51491367
FT
2767static dma_addr_t map_page(struct device *dev, struct page *page,
2768 unsigned long offset, size_t size,
2769 enum dma_data_direction dir,
2770 struct dma_attrs *attrs)
4da70b9e
JR
2771{
2772 unsigned long flags;
4da70b9e 2773 struct protection_domain *domain;
4da70b9e 2774 dma_addr_t addr;
832a90c3 2775 u64 dma_mask;
51491367 2776 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2777
0f2a86f2
JR
2778 INC_STATS_COUNTER(cnt_map_single);
2779
94f6d190
JR
2780 domain = get_domain(dev);
2781 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2782 return (dma_addr_t)paddr;
94f6d190
JR
2783 else if (IS_ERR(domain))
2784 return DMA_ERROR_CODE;
4da70b9e 2785
f99c0f1c
JR
2786 dma_mask = *dev->dma_mask;
2787
4da70b9e 2788 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2789
cd8c82e8 2790 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2791 dma_mask);
8fd524b3 2792 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2793 goto out;
2794
17b124bf 2795 domain_flush_complete(domain);
4da70b9e
JR
2796
2797out:
2798 spin_unlock_irqrestore(&domain->lock, flags);
2799
2800 return addr;
2801}
2802
431b2a20
JR
2803/*
2804 * The exported unmap_single function for dma_ops.
2805 */
51491367
FT
2806static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2807 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2808{
2809 unsigned long flags;
4da70b9e 2810 struct protection_domain *domain;
4da70b9e 2811
146a6917
JR
2812 INC_STATS_COUNTER(cnt_unmap_single);
2813
94f6d190
JR
2814 domain = get_domain(dev);
2815 if (IS_ERR(domain))
5b28df6f
JR
2816 return;
2817
4da70b9e
JR
2818 spin_lock_irqsave(&domain->lock, flags);
2819
cd8c82e8 2820 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2821
17b124bf 2822 domain_flush_complete(domain);
4da70b9e
JR
2823
2824 spin_unlock_irqrestore(&domain->lock, flags);
2825}
2826
431b2a20
JR
2827/*
2828 * The exported map_sg function for dma_ops (handles scatter-gather
2829 * lists).
2830 */
65b050ad 2831static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2832 int nelems, enum dma_data_direction dir,
2833 struct dma_attrs *attrs)
65b050ad
JR
2834{
2835 unsigned long flags;
65b050ad 2836 struct protection_domain *domain;
65b050ad
JR
2837 int i;
2838 struct scatterlist *s;
2839 phys_addr_t paddr;
2840 int mapped_elems = 0;
832a90c3 2841 u64 dma_mask;
65b050ad 2842
d03f067a
JR
2843 INC_STATS_COUNTER(cnt_map_sg);
2844
94f6d190 2845 domain = get_domain(dev);
a0e191b2 2846 if (IS_ERR(domain))
94f6d190 2847 return 0;
dbcc112e 2848
832a90c3 2849 dma_mask = *dev->dma_mask;
65b050ad 2850
65b050ad
JR
2851 spin_lock_irqsave(&domain->lock, flags);
2852
2853 for_each_sg(sglist, s, nelems, i) {
2854 paddr = sg_phys(s);
2855
cd8c82e8 2856 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2857 paddr, s->length, dir, false,
2858 dma_mask);
65b050ad
JR
2859
2860 if (s->dma_address) {
2861 s->dma_length = s->length;
2862 mapped_elems++;
2863 } else
2864 goto unmap;
65b050ad
JR
2865 }
2866
17b124bf 2867 domain_flush_complete(domain);
65b050ad
JR
2868
2869out:
2870 spin_unlock_irqrestore(&domain->lock, flags);
2871
2872 return mapped_elems;
2873unmap:
2874 for_each_sg(sglist, s, mapped_elems, i) {
2875 if (s->dma_address)
cd8c82e8 2876 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2877 s->dma_length, dir);
2878 s->dma_address = s->dma_length = 0;
2879 }
2880
2881 mapped_elems = 0;
2882
2883 goto out;
2884}
2885
431b2a20
JR
2886/*
2887 * The exported map_sg function for dma_ops (handles scatter-gather
2888 * lists).
2889 */
65b050ad 2890static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2891 int nelems, enum dma_data_direction dir,
2892 struct dma_attrs *attrs)
65b050ad
JR
2893{
2894 unsigned long flags;
65b050ad
JR
2895 struct protection_domain *domain;
2896 struct scatterlist *s;
65b050ad
JR
2897 int i;
2898
55877a6b
JR
2899 INC_STATS_COUNTER(cnt_unmap_sg);
2900
94f6d190
JR
2901 domain = get_domain(dev);
2902 if (IS_ERR(domain))
5b28df6f
JR
2903 return;
2904
65b050ad
JR
2905 spin_lock_irqsave(&domain->lock, flags);
2906
2907 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2908 __unmap_single(domain->priv, s->dma_address,
65b050ad 2909 s->dma_length, dir);
65b050ad
JR
2910 s->dma_address = s->dma_length = 0;
2911 }
2912
17b124bf 2913 domain_flush_complete(domain);
65b050ad
JR
2914
2915 spin_unlock_irqrestore(&domain->lock, flags);
2916}
2917
431b2a20
JR
2918/*
2919 * The exported alloc_coherent function for dma_ops.
2920 */
5d8b53cf 2921static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2922 dma_addr_t *dma_addr, gfp_t flag,
2923 struct dma_attrs *attrs)
5d8b53cf 2924{
832a90c3 2925 u64 dma_mask = dev->coherent_dma_mask;
3b839a57
JR
2926 struct protection_domain *domain;
2927 unsigned long flags;
2928 struct page *page;
5d8b53cf 2929
c8f0fb36
JR
2930 INC_STATS_COUNTER(cnt_alloc_coherent);
2931
94f6d190
JR
2932 domain = get_domain(dev);
2933 if (PTR_ERR(domain) == -EINVAL) {
3b839a57
JR
2934 page = alloc_pages(flag, get_order(size));
2935 *dma_addr = page_to_phys(page);
2936 return page_address(page);
94f6d190
JR
2937 } else if (IS_ERR(domain))
2938 return NULL;
5d8b53cf 2939
3b839a57 2940 size = PAGE_ALIGN(size);
f99c0f1c
JR
2941 dma_mask = dev->coherent_dma_mask;
2942 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 2943
3b839a57
JR
2944 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2945 if (!page) {
2946 if (!(flag & __GFP_WAIT))
2947 return NULL;
5d8b53cf 2948
3b839a57
JR
2949 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2950 get_order(size));
2951 if (!page)
2952 return NULL;
2953 }
5d8b53cf 2954
832a90c3
JR
2955 if (!dma_mask)
2956 dma_mask = *dev->dma_mask;
2957
5d8b53cf
JR
2958 spin_lock_irqsave(&domain->lock, flags);
2959
3b839a57 2960 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
832a90c3 2961 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2962
8fd524b3 2963 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2964 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2965 goto out_free;
367d04c4 2966 }
5d8b53cf 2967
17b124bf 2968 domain_flush_complete(domain);
5d8b53cf 2969
5d8b53cf
JR
2970 spin_unlock_irqrestore(&domain->lock, flags);
2971
3b839a57 2972 return page_address(page);
5b28df6f
JR
2973
2974out_free:
2975
3b839a57
JR
2976 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2977 __free_pages(page, get_order(size));
5b28df6f
JR
2978
2979 return NULL;
5d8b53cf
JR
2980}
2981
431b2a20
JR
2982/*
2983 * The exported free_coherent function for dma_ops.
431b2a20 2984 */
5d8b53cf 2985static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2986 void *virt_addr, dma_addr_t dma_addr,
2987 struct dma_attrs *attrs)
5d8b53cf 2988{
5d8b53cf 2989 struct protection_domain *domain;
3b839a57
JR
2990 unsigned long flags;
2991 struct page *page;
5d8b53cf 2992
5d31ee7e
JR
2993 INC_STATS_COUNTER(cnt_free_coherent);
2994
3b839a57
JR
2995 page = virt_to_page(virt_addr);
2996 size = PAGE_ALIGN(size);
2997
94f6d190
JR
2998 domain = get_domain(dev);
2999 if (IS_ERR(domain))
5b28df6f
JR
3000 goto free_mem;
3001
5d8b53cf
JR
3002 spin_lock_irqsave(&domain->lock, flags);
3003
cd8c82e8 3004 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 3005
17b124bf 3006 domain_flush_complete(domain);
5d8b53cf
JR
3007
3008 spin_unlock_irqrestore(&domain->lock, flags);
3009
3010free_mem:
3b839a57
JR
3011 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3012 __free_pages(page, get_order(size));
5d8b53cf
JR
3013}
3014
b39ba6ad
JR
3015/*
3016 * This function is called by the DMA layer to find out if we can handle a
3017 * particular device. It is part of the dma_ops.
3018 */
3019static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3020{
420aef8a 3021 return check_device(dev);
b39ba6ad
JR
3022}
3023
c432f3df 3024/*
431b2a20
JR
3025 * The function for pre-allocating protection domains.
3026 *
c432f3df
JR
3027 * If the driver core informs the DMA layer if a driver grabs a device
3028 * we don't need to preallocate the protection domains anymore.
3029 * For now we have to.
3030 */
943bc7e1 3031static void __init prealloc_protection_domains(void)
c432f3df 3032{
5abcdba4 3033 struct iommu_dev_data *dev_data;
c432f3df 3034 struct dma_ops_domain *dma_dom;
5abcdba4 3035 struct pci_dev *dev = NULL;
98fc5a69 3036 u16 devid;
c432f3df 3037
d18c69d3 3038 for_each_pci_dev(dev) {
98fc5a69
JR
3039
3040 /* Do we handle this device? */
3041 if (!check_device(&dev->dev))
c432f3df 3042 continue;
98fc5a69 3043
5abcdba4
JR
3044 dev_data = get_dev_data(&dev->dev);
3045 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3046 /* Make sure passthrough domain is allocated */
3047 alloc_passthrough_domain();
3048 dev_data->passthrough = true;
3049 attach_device(&dev->dev, pt_domain);
df805abb 3050 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
5abcdba4
JR
3051 dev_name(&dev->dev));
3052 }
3053
98fc5a69 3054 /* Is there already any domain for it? */
15898bbc 3055 if (domain_for_device(&dev->dev))
c432f3df 3056 continue;
98fc5a69
JR
3057
3058 devid = get_device_id(&dev->dev);
3059
87a64d52 3060 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
3061 if (!dma_dom)
3062 continue;
3063 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
3064 dma_dom->target_dev = devid;
3065
15898bbc 3066 attach_device(&dev->dev, &dma_dom->domain);
be831297 3067
bd60b735 3068 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
3069 }
3070}
3071
160c1d8e 3072static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
3073 .alloc = alloc_coherent,
3074 .free = free_coherent,
51491367
FT
3075 .map_page = map_page,
3076 .unmap_page = unmap_page,
6631ee9d
JR
3077 .map_sg = map_sg,
3078 .unmap_sg = unmap_sg,
b39ba6ad 3079 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
3080};
3081
27c2127a
JR
3082static unsigned device_dma_ops_init(void)
3083{
5abcdba4 3084 struct iommu_dev_data *dev_data;
27c2127a
JR
3085 struct pci_dev *pdev = NULL;
3086 unsigned unhandled = 0;
3087
3088 for_each_pci_dev(pdev) {
3089 if (!check_device(&pdev->dev)) {
af1be049
JR
3090
3091 iommu_ignore_device(&pdev->dev);
3092
27c2127a
JR
3093 unhandled += 1;
3094 continue;
3095 }
3096
5abcdba4
JR
3097 dev_data = get_dev_data(&pdev->dev);
3098
3099 if (!dev_data->passthrough)
3100 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3101 else
3102 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
3103 }
3104
3105 return unhandled;
3106}
3107
431b2a20
JR
3108/*
3109 * The function which clues the AMD IOMMU driver into dma_ops.
3110 */
f5325094
JR
3111
3112void __init amd_iommu_init_api(void)
3113{
2cc21c42 3114 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
3115}
3116
6631ee9d
JR
3117int __init amd_iommu_init_dma_ops(void)
3118{
3119 struct amd_iommu *iommu;
27c2127a 3120 int ret, unhandled;
6631ee9d 3121
431b2a20
JR
3122 /*
3123 * first allocate a default protection domain for every IOMMU we
3124 * found in the system. Devices not assigned to any other
3125 * protection domain will be assigned to the default one.
3126 */
3bd22172 3127 for_each_iommu(iommu) {
87a64d52 3128 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
3129 if (iommu->default_dom == NULL)
3130 return -ENOMEM;
e2dc14a2 3131 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
3132 ret = iommu_init_unity_mappings(iommu);
3133 if (ret)
3134 goto free_domains;
3135 }
3136
431b2a20 3137 /*
8793abeb 3138 * Pre-allocate the protection domains for each device.
431b2a20 3139 */
8793abeb 3140 prealloc_protection_domains();
6631ee9d
JR
3141
3142 iommu_detected = 1;
75f1cdf1 3143 swiotlb = 0;
6631ee9d 3144
431b2a20 3145 /* Make the driver finally visible to the drivers */
27c2127a
JR
3146 unhandled = device_dma_ops_init();
3147 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3148 /* There are unhandled devices - initialize swiotlb for them */
3149 swiotlb = 1;
3150 }
6631ee9d 3151
7f26508b
JR
3152 amd_iommu_stats_init();
3153
62410eeb
JR
3154 if (amd_iommu_unmap_flush)
3155 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3156 else
3157 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3158
6631ee9d
JR
3159 return 0;
3160
3161free_domains:
3162
3bd22172 3163 for_each_iommu(iommu) {
91457df7 3164 dma_ops_domain_free(iommu->default_dom);
6631ee9d
JR
3165 }
3166
3167 return ret;
3168}
6d98cd80
JR
3169
3170/*****************************************************************************
3171 *
3172 * The following functions belong to the exported interface of AMD IOMMU
3173 *
3174 * This interface allows access to lower level functions of the IOMMU
3175 * like protection domain handling and assignement of devices to domains
3176 * which is not possible with the dma_ops interface.
3177 *
3178 *****************************************************************************/
3179
6d98cd80
JR
3180static void cleanup_domain(struct protection_domain *domain)
3181{
9b29d3c6 3182 struct iommu_dev_data *entry;
6d98cd80 3183 unsigned long flags;
6d98cd80
JR
3184
3185 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3186
9b29d3c6
JR
3187 while (!list_empty(&domain->dev_list)) {
3188 entry = list_first_entry(&domain->dev_list,
3189 struct iommu_dev_data, list);
3190 __detach_device(entry);
492667da 3191 }
6d98cd80
JR
3192
3193 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3194}
3195
2650815f
JR
3196static void protection_domain_free(struct protection_domain *domain)
3197{
3198 if (!domain)
3199 return;
3200
aeb26f55
JR
3201 del_domain_from_list(domain);
3202
2650815f
JR
3203 if (domain->id)
3204 domain_id_free(domain->id);
3205
3206 kfree(domain);
3207}
3208
3209static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
3210{
3211 struct protection_domain *domain;
3212
3213 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3214 if (!domain)
2650815f 3215 return NULL;
c156e347
JR
3216
3217 spin_lock_init(&domain->lock);
5d214fe6 3218 mutex_init(&domain->api_lock);
c156e347
JR
3219 domain->id = domain_id_alloc();
3220 if (!domain->id)
2650815f 3221 goto out_err;
7c392cbe 3222 INIT_LIST_HEAD(&domain->dev_list);
2650815f 3223
aeb26f55
JR
3224 add_domain_to_list(domain);
3225
2650815f
JR
3226 return domain;
3227
3228out_err:
3229 kfree(domain);
3230
3231 return NULL;
3232}
3233
5abcdba4
JR
3234static int __init alloc_passthrough_domain(void)
3235{
3236 if (pt_domain != NULL)
3237 return 0;
3238
3239 /* allocate passthrough domain */
3240 pt_domain = protection_domain_alloc();
3241 if (!pt_domain)
3242 return -ENOMEM;
3243
3244 pt_domain->mode = PAGE_MODE_NONE;
3245
3246 return 0;
3247}
2650815f
JR
3248static int amd_iommu_domain_init(struct iommu_domain *dom)
3249{
3250 struct protection_domain *domain;
3251
3252 domain = protection_domain_alloc();
3253 if (!domain)
c156e347 3254 goto out_free;
2650815f
JR
3255
3256 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
3257 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3258 if (!domain->pt_root)
3259 goto out_free;
3260
f3572db8
JR
3261 domain->iommu_domain = dom;
3262
c156e347
JR
3263 dom->priv = domain;
3264
0ff64f80
JR
3265 dom->geometry.aperture_start = 0;
3266 dom->geometry.aperture_end = ~0ULL;
3267 dom->geometry.force_aperture = true;
3268
c156e347
JR
3269 return 0;
3270
3271out_free:
2650815f 3272 protection_domain_free(domain);
c156e347
JR
3273
3274 return -ENOMEM;
3275}
3276
98383fc3
JR
3277static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3278{
3279 struct protection_domain *domain = dom->priv;
3280
3281 if (!domain)
3282 return;
3283
3284 if (domain->dev_cnt > 0)
3285 cleanup_domain(domain);
3286
3287 BUG_ON(domain->dev_cnt != 0);
3288
132bd68f
JR
3289 if (domain->mode != PAGE_MODE_NONE)
3290 free_pagetable(domain);
98383fc3 3291
52815b75
JR
3292 if (domain->flags & PD_IOMMUV2_MASK)
3293 free_gcr3_table(domain);
3294
8b408fe4 3295 protection_domain_free(domain);
98383fc3
JR
3296
3297 dom->priv = NULL;
3298}
3299
684f2888
JR
3300static void amd_iommu_detach_device(struct iommu_domain *dom,
3301 struct device *dev)
3302{
657cbb6b 3303 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 3304 struct amd_iommu *iommu;
684f2888
JR
3305 u16 devid;
3306
98fc5a69 3307 if (!check_device(dev))
684f2888
JR
3308 return;
3309
98fc5a69 3310 devid = get_device_id(dev);
684f2888 3311
657cbb6b 3312 if (dev_data->domain != NULL)
15898bbc 3313 detach_device(dev);
684f2888
JR
3314
3315 iommu = amd_iommu_rlookup_table[devid];
3316 if (!iommu)
3317 return;
3318
684f2888
JR
3319 iommu_completion_wait(iommu);
3320}
3321
01106066
JR
3322static int amd_iommu_attach_device(struct iommu_domain *dom,
3323 struct device *dev)
3324{
3325 struct protection_domain *domain = dom->priv;
657cbb6b 3326 struct iommu_dev_data *dev_data;
01106066 3327 struct amd_iommu *iommu;
15898bbc 3328 int ret;
01106066 3329
98fc5a69 3330 if (!check_device(dev))
01106066
JR
3331 return -EINVAL;
3332
657cbb6b
JR
3333 dev_data = dev->archdata.iommu;
3334
f62dda66 3335 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
3336 if (!iommu)
3337 return -EINVAL;
3338
657cbb6b 3339 if (dev_data->domain)
15898bbc 3340 detach_device(dev);
01106066 3341
15898bbc 3342 ret = attach_device(dev, domain);
01106066
JR
3343
3344 iommu_completion_wait(iommu);
3345
15898bbc 3346 return ret;
01106066
JR
3347}
3348
468e2366 3349static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 3350 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6
JR
3351{
3352 struct protection_domain *domain = dom->priv;
c6229ca6
JR
3353 int prot = 0;
3354 int ret;
3355
132bd68f
JR
3356 if (domain->mode == PAGE_MODE_NONE)
3357 return -EINVAL;
3358
c6229ca6
JR
3359 if (iommu_prot & IOMMU_READ)
3360 prot |= IOMMU_PROT_IR;
3361 if (iommu_prot & IOMMU_WRITE)
3362 prot |= IOMMU_PROT_IW;
3363
5d214fe6 3364 mutex_lock(&domain->api_lock);
795e74f7 3365 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
3366 mutex_unlock(&domain->api_lock);
3367
795e74f7 3368 return ret;
c6229ca6
JR
3369}
3370
5009065d
OBC
3371static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3372 size_t page_size)
eb74ff6c 3373{
eb74ff6c 3374 struct protection_domain *domain = dom->priv;
5009065d 3375 size_t unmap_size;
eb74ff6c 3376
132bd68f
JR
3377 if (domain->mode == PAGE_MODE_NONE)
3378 return -EINVAL;
3379
5d214fe6 3380 mutex_lock(&domain->api_lock);
468e2366 3381 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3382 mutex_unlock(&domain->api_lock);
eb74ff6c 3383
17b124bf 3384 domain_flush_tlb_pde(domain);
5d214fe6 3385
5009065d 3386 return unmap_size;
eb74ff6c
JR
3387}
3388
645c4c8d 3389static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3390 dma_addr_t iova)
645c4c8d
JR
3391{
3392 struct protection_domain *domain = dom->priv;
3039ca1b 3393 unsigned long offset_mask, pte_pgsize;
645c4c8d 3394 phys_addr_t paddr;
f03152bb 3395 u64 *pte, __pte;
645c4c8d 3396
132bd68f
JR
3397 if (domain->mode == PAGE_MODE_NONE)
3398 return iova;
3399
3039ca1b 3400 pte = fetch_pte(domain, iova, &pte_pgsize);
645c4c8d 3401
a6d41a40 3402 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3403 return 0;
3404
f03152bb
JR
3405 if (PM_PTE_LEVEL(*pte) == 0)
3406 offset_mask = PAGE_SIZE - 1;
3407 else
3408 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3409
3410 __pte = *pte & PM_ADDR_MASK;
3411 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3412
3413 return paddr;
3414}
3415
ab636481 3416static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3417{
80a506b8
JR
3418 switch (cap) {
3419 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3420 return true;
bdddadcb 3421 case IOMMU_CAP_INTR_REMAP:
ab636481 3422 return (irq_remapping_enabled == 1);
cfdeec22
WD
3423 case IOMMU_CAP_NOEXEC:
3424 return false;
80a506b8
JR
3425 }
3426
ab636481 3427 return false;
dbb9fd86
SY
3428}
3429
b22f6434 3430static const struct iommu_ops amd_iommu_ops = {
ab636481 3431 .capable = amd_iommu_capable,
26961efe
JR
3432 .domain_init = amd_iommu_domain_init,
3433 .domain_destroy = amd_iommu_domain_destroy,
3434 .attach_dev = amd_iommu_attach_device,
3435 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3436 .map = amd_iommu_map,
3437 .unmap = amd_iommu_unmap,
315786eb 3438 .map_sg = default_iommu_map_sg,
26961efe 3439 .iova_to_phys = amd_iommu_iova_to_phys,
aa3de9c0 3440 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3441};
3442
0feae533
JR
3443/*****************************************************************************
3444 *
3445 * The next functions do a basic initialization of IOMMU for pass through
3446 * mode
3447 *
3448 * In passthrough mode the IOMMU is initialized and enabled but not used for
3449 * DMA-API translation.
3450 *
3451 *****************************************************************************/
3452
3453int __init amd_iommu_init_passthrough(void)
3454{
5abcdba4 3455 struct iommu_dev_data *dev_data;
0feae533 3456 struct pci_dev *dev = NULL;
5abcdba4 3457 int ret;
0feae533 3458
5abcdba4
JR
3459 ret = alloc_passthrough_domain();
3460 if (ret)
3461 return ret;
0feae533 3462
6c54aabd 3463 for_each_pci_dev(dev) {
98fc5a69 3464 if (!check_device(&dev->dev))
0feae533
JR
3465 continue;
3466
5abcdba4
JR
3467 dev_data = get_dev_data(&dev->dev);
3468 dev_data->passthrough = true;
3469
15898bbc 3470 attach_device(&dev->dev, pt_domain);
0feae533
JR
3471 }
3472
2655d7a2
JR
3473 amd_iommu_stats_init();
3474
0feae533
JR
3475 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3476
3477 return 0;
3478}
72e1dcc4
JR
3479
3480/* IOMMUv2 specific functions */
3481int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3482{
3483 return atomic_notifier_chain_register(&ppr_notifier, nb);
3484}
3485EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3486
3487int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3488{
3489 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3490}
3491EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3492
3493void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3494{
3495 struct protection_domain *domain = dom->priv;
3496 unsigned long flags;
3497
3498 spin_lock_irqsave(&domain->lock, flags);
3499
3500 /* Update data structure */
3501 domain->mode = PAGE_MODE_NONE;
3502 domain->updated = true;
3503
3504 /* Make changes visible to IOMMUs */
3505 update_domain(domain);
3506
3507 /* Page-table is not visible to IOMMU anymore, so free it */
3508 free_pagetable(domain);
3509
3510 spin_unlock_irqrestore(&domain->lock, flags);
3511}
3512EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3513
3514int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3515{
3516 struct protection_domain *domain = dom->priv;
3517 unsigned long flags;
3518 int levels, ret;
3519
3520 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3521 return -EINVAL;
3522
3523 /* Number of GCR3 table levels required */
3524 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3525 levels += 1;
3526
3527 if (levels > amd_iommu_max_glx_val)
3528 return -EINVAL;
3529
3530 spin_lock_irqsave(&domain->lock, flags);
3531
3532 /*
3533 * Save us all sanity checks whether devices already in the
3534 * domain support IOMMUv2. Just force that the domain has no
3535 * devices attached when it is switched into IOMMUv2 mode.
3536 */
3537 ret = -EBUSY;
3538 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3539 goto out;
3540
3541 ret = -ENOMEM;
3542 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3543 if (domain->gcr3_tbl == NULL)
3544 goto out;
3545
3546 domain->glx = levels;
3547 domain->flags |= PD_IOMMUV2_MASK;
3548 domain->updated = true;
3549
3550 update_domain(domain);
3551
3552 ret = 0;
3553
3554out:
3555 spin_unlock_irqrestore(&domain->lock, flags);
3556
3557 return ret;
3558}
3559EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3560
3561static int __flush_pasid(struct protection_domain *domain, int pasid,
3562 u64 address, bool size)
3563{
3564 struct iommu_dev_data *dev_data;
3565 struct iommu_cmd cmd;
3566 int i, ret;
3567
3568 if (!(domain->flags & PD_IOMMUV2_MASK))
3569 return -EINVAL;
3570
3571 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3572
3573 /*
3574 * IOMMU TLB needs to be flushed before Device TLB to
3575 * prevent device TLB refill from IOMMU TLB
3576 */
3577 for (i = 0; i < amd_iommus_present; ++i) {
3578 if (domain->dev_iommu[i] == 0)
3579 continue;
3580
3581 ret = iommu_queue_command(amd_iommus[i], &cmd);
3582 if (ret != 0)
3583 goto out;
3584 }
3585
3586 /* Wait until IOMMU TLB flushes are complete */
3587 domain_flush_complete(domain);
3588
3589 /* Now flush device TLBs */
3590 list_for_each_entry(dev_data, &domain->dev_list, list) {
3591 struct amd_iommu *iommu;
3592 int qdep;
3593
3594 BUG_ON(!dev_data->ats.enabled);
3595
3596 qdep = dev_data->ats.qdep;
3597 iommu = amd_iommu_rlookup_table[dev_data->devid];
3598
3599 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3600 qdep, address, size);
3601
3602 ret = iommu_queue_command(iommu, &cmd);
3603 if (ret != 0)
3604 goto out;
3605 }
3606
3607 /* Wait until all device TLBs are flushed */
3608 domain_flush_complete(domain);
3609
3610 ret = 0;
3611
3612out:
3613
3614 return ret;
3615}
3616
3617static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3618 u64 address)
3619{
399be2f5
JR
3620 INC_STATS_COUNTER(invalidate_iotlb);
3621
22e266c7
JR
3622 return __flush_pasid(domain, pasid, address, false);
3623}
3624
3625int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3626 u64 address)
3627{
3628 struct protection_domain *domain = dom->priv;
3629 unsigned long flags;
3630 int ret;
3631
3632 spin_lock_irqsave(&domain->lock, flags);
3633 ret = __amd_iommu_flush_page(domain, pasid, address);
3634 spin_unlock_irqrestore(&domain->lock, flags);
3635
3636 return ret;
3637}
3638EXPORT_SYMBOL(amd_iommu_flush_page);
3639
3640static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3641{
399be2f5
JR
3642 INC_STATS_COUNTER(invalidate_iotlb_all);
3643
22e266c7
JR
3644 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3645 true);
3646}
3647
3648int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3649{
3650 struct protection_domain *domain = dom->priv;
3651 unsigned long flags;
3652 int ret;
3653
3654 spin_lock_irqsave(&domain->lock, flags);
3655 ret = __amd_iommu_flush_tlb(domain, pasid);
3656 spin_unlock_irqrestore(&domain->lock, flags);
3657
3658 return ret;
3659}
3660EXPORT_SYMBOL(amd_iommu_flush_tlb);
3661
b16137b1
JR
3662static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3663{
3664 int index;
3665 u64 *pte;
3666
3667 while (true) {
3668
3669 index = (pasid >> (9 * level)) & 0x1ff;
3670 pte = &root[index];
3671
3672 if (level == 0)
3673 break;
3674
3675 if (!(*pte & GCR3_VALID)) {
3676 if (!alloc)
3677 return NULL;
3678
3679 root = (void *)get_zeroed_page(GFP_ATOMIC);
3680 if (root == NULL)
3681 return NULL;
3682
3683 *pte = __pa(root) | GCR3_VALID;
3684 }
3685
3686 root = __va(*pte & PAGE_MASK);
3687
3688 level -= 1;
3689 }
3690
3691 return pte;
3692}
3693
3694static int __set_gcr3(struct protection_domain *domain, int pasid,
3695 unsigned long cr3)
3696{
3697 u64 *pte;
3698
3699 if (domain->mode != PAGE_MODE_NONE)
3700 return -EINVAL;
3701
3702 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3703 if (pte == NULL)
3704 return -ENOMEM;
3705
3706 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3707
3708 return __amd_iommu_flush_tlb(domain, pasid);
3709}
3710
3711static int __clear_gcr3(struct protection_domain *domain, int pasid)
3712{
3713 u64 *pte;
3714
3715 if (domain->mode != PAGE_MODE_NONE)
3716 return -EINVAL;
3717
3718 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3719 if (pte == NULL)
3720 return 0;
3721
3722 *pte = 0;
3723
3724 return __amd_iommu_flush_tlb(domain, pasid);
3725}
3726
3727int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3728 unsigned long cr3)
3729{
3730 struct protection_domain *domain = dom->priv;
3731 unsigned long flags;
3732 int ret;
3733
3734 spin_lock_irqsave(&domain->lock, flags);
3735 ret = __set_gcr3(domain, pasid, cr3);
3736 spin_unlock_irqrestore(&domain->lock, flags);
3737
3738 return ret;
3739}
3740EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3741
3742int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3743{
3744 struct protection_domain *domain = dom->priv;
3745 unsigned long flags;
3746 int ret;
3747
3748 spin_lock_irqsave(&domain->lock, flags);
3749 ret = __clear_gcr3(domain, pasid);
3750 spin_unlock_irqrestore(&domain->lock, flags);
3751
3752 return ret;
3753}
3754EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3755
3756int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3757 int status, int tag)
3758{
3759 struct iommu_dev_data *dev_data;
3760 struct amd_iommu *iommu;
3761 struct iommu_cmd cmd;
3762
399be2f5
JR
3763 INC_STATS_COUNTER(complete_ppr);
3764
c99afa25
JR
3765 dev_data = get_dev_data(&pdev->dev);
3766 iommu = amd_iommu_rlookup_table[dev_data->devid];
3767
3768 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3769 tag, dev_data->pri_tlp);
3770
3771 return iommu_queue_command(iommu, &cmd);
3772}
3773EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3774
3775struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3776{
3777 struct protection_domain *domain;
3778
3779 domain = get_domain(&pdev->dev);
3780 if (IS_ERR(domain))
3781 return NULL;
3782
3783 /* Only return IOMMUv2 domains */
3784 if (!(domain->flags & PD_IOMMUV2_MASK))
3785 return NULL;
3786
3787 return domain->iommu_domain;
3788}
3789EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3790
3791void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3792{
3793 struct iommu_dev_data *dev_data;
3794
3795 if (!amd_iommu_v2_supported())
3796 return;
3797
3798 dev_data = get_dev_data(&pdev->dev);
3799 dev_data->errata |= (1 << erratum);
3800}
3801EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3802
3803int amd_iommu_device_info(struct pci_dev *pdev,
3804 struct amd_iommu_device_info *info)
3805{
3806 int max_pasids;
3807 int pos;
3808
3809 if (pdev == NULL || info == NULL)
3810 return -EINVAL;
3811
3812 if (!amd_iommu_v2_supported())
3813 return -EINVAL;
3814
3815 memset(info, 0, sizeof(*info));
3816
3817 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3818 if (pos)
3819 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3820
3821 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3822 if (pos)
3823 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3824
3825 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3826 if (pos) {
3827 int features;
3828
3829 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3830 max_pasids = min(max_pasids, (1 << 20));
3831
3832 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3833 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3834
3835 features = pci_pasid_features(pdev);
3836 if (features & PCI_PASID_CAP_EXEC)
3837 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3838 if (features & PCI_PASID_CAP_PRIV)
3839 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3840 }
3841
3842 return 0;
3843}
3844EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3845
3846#ifdef CONFIG_IRQ_REMAP
3847
3848/*****************************************************************************
3849 *
3850 * Interrupt Remapping Implementation
3851 *
3852 *****************************************************************************/
3853
3854union irte {
3855 u32 val;
3856 struct {
3857 u32 valid : 1,
3858 no_fault : 1,
3859 int_type : 3,
3860 rq_eoi : 1,
3861 dm : 1,
3862 rsvd_1 : 1,
3863 destination : 8,
3864 vector : 8,
3865 rsvd_2 : 8;
3866 } fields;
3867};
3868
3869#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3870#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3871#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3872#define DTE_IRQ_REMAP_ENABLE 1ULL
3873
3874static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3875{
3876 u64 dte;
3877
3878 dte = amd_iommu_dev_table[devid].data[2];
3879 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3880 dte |= virt_to_phys(table->table);
3881 dte |= DTE_IRQ_REMAP_INTCTL;
3882 dte |= DTE_IRQ_TABLE_LEN;
3883 dte |= DTE_IRQ_REMAP_ENABLE;
3884
3885 amd_iommu_dev_table[devid].data[2] = dte;
3886}
3887
3888#define IRTE_ALLOCATED (~1U)
3889
3890static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3891{
3892 struct irq_remap_table *table = NULL;
3893 struct amd_iommu *iommu;
3894 unsigned long flags;
3895 u16 alias;
3896
3897 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3898
3899 iommu = amd_iommu_rlookup_table[devid];
3900 if (!iommu)
3901 goto out_unlock;
3902
3903 table = irq_lookup_table[devid];
3904 if (table)
3905 goto out;
3906
3907 alias = amd_iommu_alias_table[devid];
3908 table = irq_lookup_table[alias];
3909 if (table) {
3910 irq_lookup_table[devid] = table;
3911 set_dte_irq_entry(devid, table);
3912 iommu_flush_dte(iommu, devid);
3913 goto out;
3914 }
3915
3916 /* Nothing there yet, allocate new irq remapping table */
3917 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3918 if (!table)
3919 goto out;
3920
197887f0
JR
3921 /* Initialize table spin-lock */
3922 spin_lock_init(&table->lock);
3923
2b324506
JR
3924 if (ioapic)
3925 /* Keep the first 32 indexes free for IOAPIC interrupts */
3926 table->min_index = 32;
3927
3928 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3929 if (!table->table) {
3930 kfree(table);
821f0f68 3931 table = NULL;
2b324506
JR
3932 goto out;
3933 }
3934
3935 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3936
3937 if (ioapic) {
3938 int i;
3939
3940 for (i = 0; i < 32; ++i)
3941 table->table[i] = IRTE_ALLOCATED;
3942 }
3943
3944 irq_lookup_table[devid] = table;
3945 set_dte_irq_entry(devid, table);
3946 iommu_flush_dte(iommu, devid);
3947 if (devid != alias) {
3948 irq_lookup_table[alias] = table;
e028a9e6 3949 set_dte_irq_entry(alias, table);
2b324506
JR
3950 iommu_flush_dte(iommu, alias);
3951 }
3952
3953out:
3954 iommu_completion_wait(iommu);
3955
3956out_unlock:
3957 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3958
3959 return table;
3960}
3961
3962static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3963{
3964 struct irq_remap_table *table;
3965 unsigned long flags;
3966 int index, c;
3967
3968 table = get_irq_table(devid, false);
3969 if (!table)
3970 return -ENODEV;
3971
3972 spin_lock_irqsave(&table->lock, flags);
3973
3974 /* Scan table for free entries */
3975 for (c = 0, index = table->min_index;
3976 index < MAX_IRQS_PER_TABLE;
3977 ++index) {
3978 if (table->table[index] == 0)
3979 c += 1;
3980 else
3981 c = 0;
3982
3983 if (c == count) {
0dfedd61 3984 struct irq_2_irte *irte_info;
2b324506
JR
3985
3986 for (; c != 0; --c)
3987 table->table[index - c + 1] = IRTE_ALLOCATED;
3988
3989 index -= count - 1;
3990
9b1b0e42 3991 cfg->remapped = 1;
0dfedd61
JR
3992 irte_info = &cfg->irq_2_irte;
3993 irte_info->devid = devid;
3994 irte_info->index = index;
2b324506
JR
3995
3996 goto out;
3997 }
3998 }
3999
4000 index = -ENOSPC;
4001
4002out:
4003 spin_unlock_irqrestore(&table->lock, flags);
4004
4005 return index;
4006}
4007
4008static int get_irte(u16 devid, int index, union irte *irte)
4009{
4010 struct irq_remap_table *table;
4011 unsigned long flags;
4012
4013 table = get_irq_table(devid, false);
4014 if (!table)
4015 return -ENOMEM;
4016
4017 spin_lock_irqsave(&table->lock, flags);
4018 irte->val = table->table[index];
4019 spin_unlock_irqrestore(&table->lock, flags);
4020
4021 return 0;
4022}
4023
4024static int modify_irte(u16 devid, int index, union irte irte)
4025{
4026 struct irq_remap_table *table;
4027 struct amd_iommu *iommu;
4028 unsigned long flags;
4029
4030 iommu = amd_iommu_rlookup_table[devid];
4031 if (iommu == NULL)
4032 return -EINVAL;
4033
4034 table = get_irq_table(devid, false);
4035 if (!table)
4036 return -ENOMEM;
4037
4038 spin_lock_irqsave(&table->lock, flags);
4039 table->table[index] = irte.val;
4040 spin_unlock_irqrestore(&table->lock, flags);
4041
4042 iommu_flush_irt(iommu, devid);
4043 iommu_completion_wait(iommu);
4044
4045 return 0;
4046}
4047
4048static void free_irte(u16 devid, int index)
4049{
4050 struct irq_remap_table *table;
4051 struct amd_iommu *iommu;
4052 unsigned long flags;
4053
4054 iommu = amd_iommu_rlookup_table[devid];
4055 if (iommu == NULL)
4056 return;
4057
4058 table = get_irq_table(devid, false);
4059 if (!table)
4060 return;
4061
4062 spin_lock_irqsave(&table->lock, flags);
4063 table->table[index] = 0;
4064 spin_unlock_irqrestore(&table->lock, flags);
4065
4066 iommu_flush_irt(iommu, devid);
4067 iommu_completion_wait(iommu);
4068}
4069
5527de74
JR
4070static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4071 unsigned int destination, int vector,
4072 struct io_apic_irq_attr *attr)
4073{
4074 struct irq_remap_table *table;
0dfedd61 4075 struct irq_2_irte *irte_info;
5527de74
JR
4076 struct irq_cfg *cfg;
4077 union irte irte;
4078 int ioapic_id;
4079 int index;
4080 int devid;
4081 int ret;
4082
719b530c 4083 cfg = irq_cfg(irq);
5527de74
JR
4084 if (!cfg)
4085 return -EINVAL;
4086
0dfedd61 4087 irte_info = &cfg->irq_2_irte;
5527de74
JR
4088 ioapic_id = mpc_ioapic_id(attr->ioapic);
4089 devid = get_ioapic_devid(ioapic_id);
4090
4091 if (devid < 0)
4092 return devid;
4093
4094 table = get_irq_table(devid, true);
4095 if (table == NULL)
4096 return -ENOMEM;
4097
4098 index = attr->ioapic_pin;
4099
4100 /* Setup IRQ remapping info */
9b1b0e42 4101 cfg->remapped = 1;
0dfedd61
JR
4102 irte_info->devid = devid;
4103 irte_info->index = index;
5527de74
JR
4104
4105 /* Setup IRTE for IOMMU */
4106 irte.val = 0;
4107 irte.fields.vector = vector;
4108 irte.fields.int_type = apic->irq_delivery_mode;
4109 irte.fields.destination = destination;
4110 irte.fields.dm = apic->irq_dest_mode;
4111 irte.fields.valid = 1;
4112
4113 ret = modify_irte(devid, index, irte);
4114 if (ret)
4115 return ret;
4116
4117 /* Setup IOAPIC entry */
4118 memset(entry, 0, sizeof(*entry));
4119
4120 entry->vector = index;
4121 entry->mask = 0;
4122 entry->trigger = attr->trigger;
4123 entry->polarity = attr->polarity;
4124
4125 /*
4126 * Mask level triggered irqs.
5527de74
JR
4127 */
4128 if (attr->trigger)
4129 entry->mask = 1;
4130
4131 return 0;
4132}
4133
4134static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4135 bool force)
4136{
0dfedd61 4137 struct irq_2_irte *irte_info;
5527de74
JR
4138 unsigned int dest, irq;
4139 struct irq_cfg *cfg;
4140 union irte irte;
4141 int err;
4142
4143 if (!config_enabled(CONFIG_SMP))
4144 return -1;
4145
719b530c 4146 cfg = irqd_cfg(data);
5527de74 4147 irq = data->irq;
0dfedd61 4148 irte_info = &cfg->irq_2_irte;
5527de74
JR
4149
4150 if (!cpumask_intersects(mask, cpu_online_mask))
4151 return -EINVAL;
4152
0dfedd61 4153 if (get_irte(irte_info->devid, irte_info->index, &irte))
5527de74
JR
4154 return -EBUSY;
4155
4156 if (assign_irq_vector(irq, cfg, mask))
4157 return -EBUSY;
4158
4159 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4160 if (err) {
4161 if (assign_irq_vector(irq, cfg, data->affinity))
4162 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4163 return err;
4164 }
4165
4166 irte.fields.vector = cfg->vector;
4167 irte.fields.destination = dest;
4168
0dfedd61 4169 modify_irte(irte_info->devid, irte_info->index, irte);
5527de74
JR
4170
4171 if (cfg->move_in_progress)
4172 send_cleanup_vector(cfg);
4173
4174 cpumask_copy(data->affinity, mask);
4175
4176 return 0;
4177}
4178
4179static int free_irq(int irq)
4180{
0dfedd61 4181 struct irq_2_irte *irte_info;
5527de74
JR
4182 struct irq_cfg *cfg;
4183
719b530c 4184 cfg = irq_cfg(irq);
5527de74
JR
4185 if (!cfg)
4186 return -EINVAL;
4187
0dfedd61 4188 irte_info = &cfg->irq_2_irte;
5527de74 4189
0dfedd61 4190 free_irte(irte_info->devid, irte_info->index);
5527de74
JR
4191
4192 return 0;
4193}
4194
0b4d48cb
JR
4195static void compose_msi_msg(struct pci_dev *pdev,
4196 unsigned int irq, unsigned int dest,
4197 struct msi_msg *msg, u8 hpet_id)
4198{
0dfedd61 4199 struct irq_2_irte *irte_info;
0b4d48cb
JR
4200 struct irq_cfg *cfg;
4201 union irte irte;
4202
719b530c 4203 cfg = irq_cfg(irq);
0b4d48cb
JR
4204 if (!cfg)
4205 return;
4206
0dfedd61 4207 irte_info = &cfg->irq_2_irte;
0b4d48cb
JR
4208
4209 irte.val = 0;
4210 irte.fields.vector = cfg->vector;
4211 irte.fields.int_type = apic->irq_delivery_mode;
4212 irte.fields.destination = dest;
4213 irte.fields.dm = apic->irq_dest_mode;
4214 irte.fields.valid = 1;
4215
0dfedd61 4216 modify_irte(irte_info->devid, irte_info->index, irte);
0b4d48cb
JR
4217
4218 msg->address_hi = MSI_ADDR_BASE_HI;
4219 msg->address_lo = MSI_ADDR_BASE_LO;
0dfedd61 4220 msg->data = irte_info->index;
0b4d48cb
JR
4221}
4222
4223static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4224{
4225 struct irq_cfg *cfg;
4226 int index;
4227 u16 devid;
4228
4229 if (!pdev)
4230 return -EINVAL;
4231
719b530c 4232 cfg = irq_cfg(irq);
0b4d48cb
JR
4233 if (!cfg)
4234 return -EINVAL;
4235
4236 devid = get_device_id(&pdev->dev);
4237 index = alloc_irq_index(cfg, devid, nvec);
4238
4239 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4240}
4241
4242static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4243 int index, int offset)
4244{
0dfedd61 4245 struct irq_2_irte *irte_info;
0b4d48cb
JR
4246 struct irq_cfg *cfg;
4247 u16 devid;
4248
4249 if (!pdev)
4250 return -EINVAL;
4251
719b530c 4252 cfg = irq_cfg(irq);
0b4d48cb
JR
4253 if (!cfg)
4254 return -EINVAL;
4255
4256 if (index >= MAX_IRQS_PER_TABLE)
4257 return 0;
4258
4259 devid = get_device_id(&pdev->dev);
0dfedd61 4260 irte_info = &cfg->irq_2_irte;
0b4d48cb 4261
9b1b0e42 4262 cfg->remapped = 1;
0dfedd61
JR
4263 irte_info->devid = devid;
4264 irte_info->index = index + offset;
0b4d48cb
JR
4265
4266 return 0;
4267}
4268
5fc24d8c 4269static int alloc_hpet_msi(unsigned int irq, unsigned int id)
d976195c 4270{
0dfedd61 4271 struct irq_2_irte *irte_info;
d976195c
JR
4272 struct irq_cfg *cfg;
4273 int index, devid;
4274
719b530c 4275 cfg = irq_cfg(irq);
d976195c
JR
4276 if (!cfg)
4277 return -EINVAL;
4278
0dfedd61 4279 irte_info = &cfg->irq_2_irte;
d976195c
JR
4280 devid = get_hpet_devid(id);
4281 if (devid < 0)
4282 return devid;
4283
4284 index = alloc_irq_index(cfg, devid, 1);
4285 if (index < 0)
4286 return index;
4287
9b1b0e42 4288 cfg->remapped = 1;
0dfedd61
JR
4289 irte_info->devid = devid;
4290 irte_info->index = index;
d976195c
JR
4291
4292 return 0;
4293}
4294
6b474b82 4295struct irq_remap_ops amd_iommu_irq_ops = {
6b474b82
JR
4296 .prepare = amd_iommu_prepare,
4297 .enable = amd_iommu_enable,
4298 .disable = amd_iommu_disable,
4299 .reenable = amd_iommu_reenable,
4300 .enable_faulting = amd_iommu_enable_faulting,
4301 .setup_ioapic_entry = setup_ioapic_entry,
4302 .set_affinity = set_affinity,
4303 .free_irq = free_irq,
4304 .compose_msi_msg = compose_msi_msg,
4305 .msi_alloc_irq = msi_alloc_irq,
4306 .msi_setup_irq = msi_setup_irq,
5fc24d8c 4307 .alloc_hpet_msi = alloc_hpet_msi,
6b474b82 4308};
2b324506 4309#endif
This page took 1.266504 seconds and 5 git commands to generate.