KVM: MMU: Fold fix_read_pf() into set_pte_common()
[deliverable/linux.git] / drivers / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19#include <linux/types.h>
20#include <linux/string.h>
21#include <asm/page.h>
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/module.h>
25
26#include "vmx.h"
27#include "kvm.h"
28
37a7d8b0
AK
29#undef MMU_DEBUG
30
31#undef AUDIT
32
33#ifdef AUDIT
34static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
35#else
36static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
37#endif
38
39#ifdef MMU_DEBUG
40
41#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
43
44#else
45
46#define pgprintk(x...) do { } while (0)
47#define rmap_printk(x...) do { } while (0)
48
49#endif
50
51#if defined(MMU_DEBUG) || defined(AUDIT)
52static int dbg = 1;
53#endif
6aa8b732 54
d6c69ee9
YD
55#ifndef MMU_DEBUG
56#define ASSERT(x) do { } while (0)
57#else
6aa8b732
AK
58#define ASSERT(x) \
59 if (!(x)) { \
60 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
61 __FILE__, __LINE__, #x); \
62 }
d6c69ee9 63#endif
6aa8b732 64
cea0f0e7
AK
65#define PT64_PT_BITS 9
66#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
67#define PT32_PT_BITS 10
68#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
6aa8b732
AK
69
70#define PT_WRITABLE_SHIFT 1
71
72#define PT_PRESENT_MASK (1ULL << 0)
73#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
74#define PT_USER_MASK (1ULL << 2)
75#define PT_PWT_MASK (1ULL << 3)
76#define PT_PCD_MASK (1ULL << 4)
77#define PT_ACCESSED_MASK (1ULL << 5)
78#define PT_DIRTY_MASK (1ULL << 6)
79#define PT_PAGE_SIZE_MASK (1ULL << 7)
80#define PT_PAT_MASK (1ULL << 7)
81#define PT_GLOBAL_MASK (1ULL << 8)
82#define PT64_NX_MASK (1ULL << 63)
83
84#define PT_PAT_SHIFT 7
85#define PT_DIR_PAT_SHIFT 12
86#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
87
88#define PT32_DIR_PSE36_SIZE 4
89#define PT32_DIR_PSE36_SHIFT 13
90#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
91
92
93#define PT32_PTE_COPY_MASK \
8c7bb723 94 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
6aa8b732 95
8c7bb723 96#define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
6aa8b732
AK
97
98#define PT_FIRST_AVAIL_BITS_SHIFT 9
99#define PT64_SECOND_AVAIL_BITS_SHIFT 52
100
101#define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
102#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
103
104#define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
105#define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
106
107#define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
108#define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
109
110#define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
111
112#define VALID_PAGE(x) ((x) != INVALID_PAGE)
113
114#define PT64_LEVEL_BITS 9
115
116#define PT64_LEVEL_SHIFT(level) \
117 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
118
119#define PT64_LEVEL_MASK(level) \
120 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
121
122#define PT64_INDEX(address, level)\
123 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
124
125
126#define PT32_LEVEL_BITS 10
127
128#define PT32_LEVEL_SHIFT(level) \
129 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
130
131#define PT32_LEVEL_MASK(level) \
132 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
133
134#define PT32_INDEX(address, level)\
135 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
136
137
27aba766 138#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
139#define PT64_DIR_BASE_ADDR_MASK \
140 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
141
142#define PT32_BASE_ADDR_MASK PAGE_MASK
143#define PT32_DIR_BASE_ADDR_MASK \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
145
146
147#define PFERR_PRESENT_MASK (1U << 0)
148#define PFERR_WRITE_MASK (1U << 1)
149#define PFERR_USER_MASK (1U << 2)
73b1087e 150#define PFERR_FETCH_MASK (1U << 4)
6aa8b732
AK
151
152#define PT64_ROOT_LEVEL 4
153#define PT32_ROOT_LEVEL 2
154#define PT32E_ROOT_LEVEL 3
155
156#define PT_DIRECTORY_LEVEL 2
157#define PT_PAGE_TABLE_LEVEL 1
158
cd4a4e53
AK
159#define RMAP_EXT 4
160
161struct kvm_rmap_desc {
162 u64 *shadow_ptes[RMAP_EXT];
163 struct kvm_rmap_desc *more;
164};
165
b5a33a75
AK
166static struct kmem_cache *pte_chain_cache;
167static struct kmem_cache *rmap_desc_cache;
d3d25b04
AK
168static struct kmem_cache *mmu_page_cache;
169static struct kmem_cache *mmu_page_header_cache;
b5a33a75 170
6aa8b732
AK
171static int is_write_protection(struct kvm_vcpu *vcpu)
172{
173 return vcpu->cr0 & CR0_WP_MASK;
174}
175
176static int is_cpuid_PSE36(void)
177{
178 return 1;
179}
180
73b1087e
AK
181static int is_nx(struct kvm_vcpu *vcpu)
182{
183 return vcpu->shadow_efer & EFER_NX;
184}
185
6aa8b732
AK
186static int is_present_pte(unsigned long pte)
187{
188 return pte & PT_PRESENT_MASK;
189}
190
191static int is_writeble_pte(unsigned long pte)
192{
193 return pte & PT_WRITABLE_MASK;
194}
195
196static int is_io_pte(unsigned long pte)
197{
198 return pte & PT_SHADOW_IO_MARK;
199}
200
cd4a4e53
AK
201static int is_rmap_pte(u64 pte)
202{
203 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
204 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
205}
206
e2dec939 207static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
8c438502
AK
208 struct kmem_cache *base_cache, int min,
209 gfp_t gfp_flags)
714b93da
AK
210{
211 void *obj;
212
213 if (cache->nobjs >= min)
e2dec939 214 return 0;
714b93da 215 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
8c438502 216 obj = kmem_cache_zalloc(base_cache, gfp_flags);
714b93da 217 if (!obj)
e2dec939 218 return -ENOMEM;
714b93da
AK
219 cache->objects[cache->nobjs++] = obj;
220 }
e2dec939 221 return 0;
714b93da
AK
222}
223
224static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
225{
226 while (mc->nobjs)
227 kfree(mc->objects[--mc->nobjs]);
228}
229
8c438502 230static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
714b93da 231{
e2dec939
AK
232 int r;
233
234 r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
8c438502 235 pte_chain_cache, 4, gfp_flags);
e2dec939
AK
236 if (r)
237 goto out;
238 r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
8c438502 239 rmap_desc_cache, 1, gfp_flags);
d3d25b04
AK
240 if (r)
241 goto out;
242 r = mmu_topup_memory_cache(&vcpu->mmu_page_cache,
243 mmu_page_cache, 4, gfp_flags);
244 if (r)
245 goto out;
246 r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
247 mmu_page_header_cache, 4, gfp_flags);
e2dec939
AK
248out:
249 return r;
714b93da
AK
250}
251
8c438502
AK
252static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
253{
254 int r;
255
256 r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
257 if (r < 0) {
258 spin_unlock(&vcpu->kvm->lock);
259 kvm_arch_ops->vcpu_put(vcpu);
260 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
261 kvm_arch_ops->vcpu_load(vcpu);
262 spin_lock(&vcpu->kvm->lock);
263 }
264 return r;
265}
266
714b93da
AK
267static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
268{
269 mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
270 mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
d3d25b04
AK
271 mmu_free_memory_cache(&vcpu->mmu_page_cache);
272 mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
714b93da
AK
273}
274
275static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
276 size_t size)
277{
278 void *p;
279
280 BUG_ON(!mc->nobjs);
281 p = mc->objects[--mc->nobjs];
282 memset(p, 0, size);
283 return p;
284}
285
286static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
287{
288 if (mc->nobjs < KVM_NR_MEM_OBJS)
289 mc->objects[mc->nobjs++] = obj;
290 else
291 kfree(obj);
292}
293
294static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
295{
296 return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
297 sizeof(struct kvm_pte_chain));
298}
299
300static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
301 struct kvm_pte_chain *pc)
302{
303 mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
304}
305
306static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
307{
308 return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
309 sizeof(struct kvm_rmap_desc));
310}
311
312static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
313 struct kvm_rmap_desc *rd)
314{
315 mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
316}
317
cd4a4e53
AK
318/*
319 * Reverse mapping data structures:
320 *
321 * If page->private bit zero is zero, then page->private points to the
322 * shadow page table entry that points to page_address(page).
323 *
324 * If page->private bit zero is one, (then page->private & ~1) points
325 * to a struct kvm_rmap_desc containing more mappings.
326 */
714b93da 327static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
cd4a4e53
AK
328{
329 struct page *page;
330 struct kvm_rmap_desc *desc;
331 int i;
332
333 if (!is_rmap_pte(*spte))
334 return;
335 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
5972e953 336 if (!page_private(page)) {
cd4a4e53 337 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
5972e953
MR
338 set_page_private(page,(unsigned long)spte);
339 } else if (!(page_private(page) & 1)) {
cd4a4e53 340 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
714b93da 341 desc = mmu_alloc_rmap_desc(vcpu);
5972e953 342 desc->shadow_ptes[0] = (u64 *)page_private(page);
cd4a4e53 343 desc->shadow_ptes[1] = spte;
5972e953 344 set_page_private(page,(unsigned long)desc | 1);
cd4a4e53
AK
345 } else {
346 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
5972e953 347 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
cd4a4e53
AK
348 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
349 desc = desc->more;
350 if (desc->shadow_ptes[RMAP_EXT-1]) {
714b93da 351 desc->more = mmu_alloc_rmap_desc(vcpu);
cd4a4e53
AK
352 desc = desc->more;
353 }
354 for (i = 0; desc->shadow_ptes[i]; ++i)
355 ;
356 desc->shadow_ptes[i] = spte;
357 }
358}
359
714b93da
AK
360static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
361 struct page *page,
cd4a4e53
AK
362 struct kvm_rmap_desc *desc,
363 int i,
364 struct kvm_rmap_desc *prev_desc)
365{
366 int j;
367
368 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
369 ;
370 desc->shadow_ptes[i] = desc->shadow_ptes[j];
11718b4d 371 desc->shadow_ptes[j] = NULL;
cd4a4e53
AK
372 if (j != 0)
373 return;
374 if (!prev_desc && !desc->more)
5972e953 375 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
cd4a4e53
AK
376 else
377 if (prev_desc)
378 prev_desc->more = desc->more;
379 else
5972e953 380 set_page_private(page,(unsigned long)desc->more | 1);
714b93da 381 mmu_free_rmap_desc(vcpu, desc);
cd4a4e53
AK
382}
383
714b93da 384static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
cd4a4e53
AK
385{
386 struct page *page;
387 struct kvm_rmap_desc *desc;
388 struct kvm_rmap_desc *prev_desc;
389 int i;
390
391 if (!is_rmap_pte(*spte))
392 return;
393 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
5972e953 394 if (!page_private(page)) {
cd4a4e53
AK
395 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
396 BUG();
5972e953 397 } else if (!(page_private(page) & 1)) {
cd4a4e53 398 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
5972e953 399 if ((u64 *)page_private(page) != spte) {
cd4a4e53
AK
400 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
401 spte, *spte);
402 BUG();
403 }
5972e953 404 set_page_private(page,0);
cd4a4e53
AK
405 } else {
406 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
5972e953 407 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
cd4a4e53
AK
408 prev_desc = NULL;
409 while (desc) {
410 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
411 if (desc->shadow_ptes[i] == spte) {
714b93da
AK
412 rmap_desc_remove_entry(vcpu, page,
413 desc, i,
cd4a4e53
AK
414 prev_desc);
415 return;
416 }
417 prev_desc = desc;
418 desc = desc->more;
419 }
420 BUG();
421 }
422}
423
714b93da 424static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
374cbac0 425{
714b93da 426 struct kvm *kvm = vcpu->kvm;
374cbac0 427 struct page *page;
374cbac0
AK
428 struct kvm_rmap_desc *desc;
429 u64 *spte;
430
954bbbc2
AK
431 page = gfn_to_page(kvm, gfn);
432 BUG_ON(!page);
374cbac0 433
5972e953
MR
434 while (page_private(page)) {
435 if (!(page_private(page) & 1))
436 spte = (u64 *)page_private(page);
374cbac0 437 else {
5972e953 438 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
374cbac0
AK
439 spte = desc->shadow_ptes[0];
440 }
441 BUG_ON(!spte);
27aba766
AK
442 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
443 != page_to_pfn(page));
374cbac0
AK
444 BUG_ON(!(*spte & PT_PRESENT_MASK));
445 BUG_ON(!(*spte & PT_WRITABLE_MASK));
446 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
714b93da 447 rmap_remove(vcpu, spte);
40907d57 448 kvm_arch_ops->tlb_flush(vcpu);
374cbac0
AK
449 *spte &= ~(u64)PT_WRITABLE_MASK;
450 }
451}
452
d6c69ee9 453#ifdef MMU_DEBUG
47ad8e68 454static int is_empty_shadow_page(u64 *spt)
6aa8b732 455{
139bdb2d
AK
456 u64 *pos;
457 u64 *end;
458
47ad8e68 459 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
139bdb2d
AK
460 if (*pos != 0) {
461 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
462 pos, *pos);
6aa8b732 463 return 0;
139bdb2d 464 }
6aa8b732
AK
465 return 1;
466}
d6c69ee9 467#endif
6aa8b732 468
4b02d6da
AK
469static void kvm_mmu_free_page(struct kvm_vcpu *vcpu,
470 struct kvm_mmu_page *page_head)
260746c0 471{
47ad8e68 472 ASSERT(is_empty_shadow_page(page_head->spt));
d3d25b04
AK
473 list_del(&page_head->link);
474 mmu_memory_cache_free(&vcpu->mmu_page_cache, page_head->spt);
475 mmu_memory_cache_free(&vcpu->mmu_page_header_cache, page_head);
260746c0
AK
476 ++vcpu->kvm->n_free_mmu_pages;
477}
478
cea0f0e7
AK
479static unsigned kvm_page_table_hashfn(gfn_t gfn)
480{
481 return gfn;
482}
483
25c0de2c
AK
484static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
485 u64 *parent_pte)
6aa8b732
AK
486{
487 struct kvm_mmu_page *page;
488
d3d25b04 489 if (!vcpu->kvm->n_free_mmu_pages)
25c0de2c 490 return NULL;
6aa8b732 491
d3d25b04
AK
492 page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
493 sizeof *page);
494 page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
495 set_page_private(virt_to_page(page->spt), (unsigned long)page);
496 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
47ad8e68 497 ASSERT(is_empty_shadow_page(page->spt));
6aa8b732 498 page->slot_bitmap = 0;
cea0f0e7 499 page->multimapped = 0;
6aa8b732 500 page->parent_pte = parent_pte;
ebeace86 501 --vcpu->kvm->n_free_mmu_pages;
25c0de2c 502 return page;
6aa8b732
AK
503}
504
714b93da
AK
505static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
506 struct kvm_mmu_page *page, u64 *parent_pte)
cea0f0e7
AK
507{
508 struct kvm_pte_chain *pte_chain;
509 struct hlist_node *node;
510 int i;
511
512 if (!parent_pte)
513 return;
514 if (!page->multimapped) {
515 u64 *old = page->parent_pte;
516
517 if (!old) {
518 page->parent_pte = parent_pte;
519 return;
520 }
521 page->multimapped = 1;
714b93da 522 pte_chain = mmu_alloc_pte_chain(vcpu);
cea0f0e7
AK
523 INIT_HLIST_HEAD(&page->parent_ptes);
524 hlist_add_head(&pte_chain->link, &page->parent_ptes);
525 pte_chain->parent_ptes[0] = old;
526 }
527 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
528 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
529 continue;
530 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
531 if (!pte_chain->parent_ptes[i]) {
532 pte_chain->parent_ptes[i] = parent_pte;
533 return;
534 }
535 }
714b93da 536 pte_chain = mmu_alloc_pte_chain(vcpu);
cea0f0e7
AK
537 BUG_ON(!pte_chain);
538 hlist_add_head(&pte_chain->link, &page->parent_ptes);
539 pte_chain->parent_ptes[0] = parent_pte;
540}
541
714b93da
AK
542static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
543 struct kvm_mmu_page *page,
cea0f0e7
AK
544 u64 *parent_pte)
545{
546 struct kvm_pte_chain *pte_chain;
547 struct hlist_node *node;
548 int i;
549
550 if (!page->multimapped) {
551 BUG_ON(page->parent_pte != parent_pte);
552 page->parent_pte = NULL;
553 return;
554 }
555 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
556 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
557 if (!pte_chain->parent_ptes[i])
558 break;
559 if (pte_chain->parent_ptes[i] != parent_pte)
560 continue;
697fe2e2
AK
561 while (i + 1 < NR_PTE_CHAIN_ENTRIES
562 && pte_chain->parent_ptes[i + 1]) {
cea0f0e7
AK
563 pte_chain->parent_ptes[i]
564 = pte_chain->parent_ptes[i + 1];
565 ++i;
566 }
567 pte_chain->parent_ptes[i] = NULL;
697fe2e2
AK
568 if (i == 0) {
569 hlist_del(&pte_chain->link);
714b93da 570 mmu_free_pte_chain(vcpu, pte_chain);
697fe2e2
AK
571 if (hlist_empty(&page->parent_ptes)) {
572 page->multimapped = 0;
573 page->parent_pte = NULL;
574 }
575 }
cea0f0e7
AK
576 return;
577 }
578 BUG();
579}
580
581static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
582 gfn_t gfn)
583{
584 unsigned index;
585 struct hlist_head *bucket;
586 struct kvm_mmu_page *page;
587 struct hlist_node *node;
588
589 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
590 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
591 bucket = &vcpu->kvm->mmu_page_hash[index];
592 hlist_for_each_entry(page, node, bucket, hash_link)
593 if (page->gfn == gfn && !page->role.metaphysical) {
594 pgprintk("%s: found role %x\n",
595 __FUNCTION__, page->role.word);
596 return page;
597 }
598 return NULL;
599}
600
601static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
602 gfn_t gfn,
603 gva_t gaddr,
604 unsigned level,
605 int metaphysical,
d28c6cfb 606 unsigned hugepage_access,
cea0f0e7
AK
607 u64 *parent_pte)
608{
609 union kvm_mmu_page_role role;
610 unsigned index;
611 unsigned quadrant;
612 struct hlist_head *bucket;
613 struct kvm_mmu_page *page;
614 struct hlist_node *node;
615
616 role.word = 0;
617 role.glevels = vcpu->mmu.root_level;
618 role.level = level;
619 role.metaphysical = metaphysical;
d28c6cfb 620 role.hugepage_access = hugepage_access;
cea0f0e7
AK
621 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
622 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
623 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
624 role.quadrant = quadrant;
625 }
626 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
627 gfn, role.word);
628 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
629 bucket = &vcpu->kvm->mmu_page_hash[index];
630 hlist_for_each_entry(page, node, bucket, hash_link)
631 if (page->gfn == gfn && page->role.word == role.word) {
714b93da 632 mmu_page_add_parent_pte(vcpu, page, parent_pte);
cea0f0e7
AK
633 pgprintk("%s: found\n", __FUNCTION__);
634 return page;
635 }
636 page = kvm_mmu_alloc_page(vcpu, parent_pte);
637 if (!page)
638 return page;
639 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
640 page->gfn = gfn;
641 page->role = role;
642 hlist_add_head(&page->hash_link, bucket);
374cbac0 643 if (!metaphysical)
714b93da 644 rmap_write_protect(vcpu, gfn);
cea0f0e7
AK
645 return page;
646}
647
a436036b
AK
648static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
649 struct kvm_mmu_page *page)
650{
697fe2e2
AK
651 unsigned i;
652 u64 *pt;
653 u64 ent;
654
47ad8e68 655 pt = page->spt;
697fe2e2
AK
656
657 if (page->role.level == PT_PAGE_TABLE_LEVEL) {
658 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
659 if (pt[i] & PT_PRESENT_MASK)
714b93da 660 rmap_remove(vcpu, &pt[i]);
697fe2e2
AK
661 pt[i] = 0;
662 }
40907d57 663 kvm_arch_ops->tlb_flush(vcpu);
697fe2e2
AK
664 return;
665 }
666
667 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
668 ent = pt[i];
669
670 pt[i] = 0;
671 if (!(ent & PT_PRESENT_MASK))
672 continue;
673 ent &= PT64_BASE_ADDR_MASK;
714b93da 674 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
697fe2e2 675 }
a436036b
AK
676}
677
cea0f0e7
AK
678static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
679 struct kvm_mmu_page *page,
680 u64 *parent_pte)
681{
714b93da 682 mmu_page_remove_parent_pte(vcpu, page, parent_pte);
a436036b
AK
683}
684
685static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
686 struct kvm_mmu_page *page)
687{
688 u64 *parent_pte;
689
690 while (page->multimapped || page->parent_pte) {
691 if (!page->multimapped)
692 parent_pte = page->parent_pte;
693 else {
694 struct kvm_pte_chain *chain;
695
696 chain = container_of(page->parent_ptes.first,
697 struct kvm_pte_chain, link);
698 parent_pte = chain->parent_ptes[0];
699 }
697fe2e2 700 BUG_ON(!parent_pte);
a436036b
AK
701 kvm_mmu_put_page(vcpu, page, parent_pte);
702 *parent_pte = 0;
703 }
cc4529ef 704 kvm_mmu_page_unlink_children(vcpu, page);
3bb65a22
AK
705 if (!page->root_count) {
706 hlist_del(&page->hash_link);
4b02d6da 707 kvm_mmu_free_page(vcpu, page);
36868f7b
AK
708 } else
709 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
a436036b
AK
710}
711
712static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
713{
714 unsigned index;
715 struct hlist_head *bucket;
716 struct kvm_mmu_page *page;
717 struct hlist_node *node, *n;
718 int r;
719
720 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
721 r = 0;
722 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
723 bucket = &vcpu->kvm->mmu_page_hash[index];
724 hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
725 if (page->gfn == gfn && !page->role.metaphysical) {
697fe2e2
AK
726 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
727 page->role.word);
a436036b
AK
728 kvm_mmu_zap_page(vcpu, page);
729 r = 1;
730 }
731 return r;
cea0f0e7
AK
732}
733
6aa8b732
AK
734static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
735{
736 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
737 struct kvm_mmu_page *page_head = page_header(__pa(pte));
738
739 __set_bit(slot, &page_head->slot_bitmap);
740}
741
742hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
743{
744 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
745
746 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
747}
748
749hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
750{
6aa8b732
AK
751 struct page *page;
752
753 ASSERT((gpa & HPA_ERR_MASK) == 0);
954bbbc2
AK
754 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
755 if (!page)
6aa8b732 756 return gpa | HPA_ERR_MASK;
6aa8b732
AK
757 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
758 | (gpa & (PAGE_SIZE-1));
759}
760
761hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
762{
763 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
764
765 if (gpa == UNMAPPED_GVA)
766 return UNMAPPED_GVA;
767 return gpa_to_hpa(vcpu, gpa);
768}
769
039576c0
AK
770struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
771{
772 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
773
774 if (gpa == UNMAPPED_GVA)
775 return NULL;
776 return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
777}
778
6aa8b732
AK
779static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
780{
781}
782
783static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
784{
785 int level = PT32E_ROOT_LEVEL;
786 hpa_t table_addr = vcpu->mmu.root_hpa;
787
788 for (; ; level--) {
789 u32 index = PT64_INDEX(v, level);
790 u64 *table;
cea0f0e7 791 u64 pte;
6aa8b732
AK
792
793 ASSERT(VALID_PAGE(table_addr));
794 table = __va(table_addr);
795
796 if (level == 1) {
cea0f0e7
AK
797 pte = table[index];
798 if (is_present_pte(pte) && is_writeble_pte(pte))
799 return 0;
6aa8b732
AK
800 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
801 page_header_update_slot(vcpu->kvm, table, v);
802 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
803 PT_USER_MASK;
714b93da 804 rmap_add(vcpu, &table[index]);
6aa8b732
AK
805 return 0;
806 }
807
808 if (table[index] == 0) {
25c0de2c 809 struct kvm_mmu_page *new_table;
cea0f0e7 810 gfn_t pseudo_gfn;
6aa8b732 811
cea0f0e7
AK
812 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
813 >> PAGE_SHIFT;
814 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
815 v, level - 1,
d28c6cfb 816 1, 0, &table[index]);
25c0de2c 817 if (!new_table) {
6aa8b732
AK
818 pgprintk("nonpaging_map: ENOMEM\n");
819 return -ENOMEM;
820 }
821
47ad8e68 822 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
25c0de2c 823 | PT_WRITABLE_MASK | PT_USER_MASK;
6aa8b732
AK
824 }
825 table_addr = table[index] & PT64_BASE_ADDR_MASK;
826 }
827}
828
17ac10ad
AK
829static void mmu_free_roots(struct kvm_vcpu *vcpu)
830{
831 int i;
3bb65a22 832 struct kvm_mmu_page *page;
17ac10ad
AK
833
834#ifdef CONFIG_X86_64
835 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
836 hpa_t root = vcpu->mmu.root_hpa;
837
838 ASSERT(VALID_PAGE(root));
3bb65a22
AK
839 page = page_header(root);
840 --page->root_count;
17ac10ad
AK
841 vcpu->mmu.root_hpa = INVALID_PAGE;
842 return;
843 }
844#endif
845 for (i = 0; i < 4; ++i) {
846 hpa_t root = vcpu->mmu.pae_root[i];
847
417726a3
AK
848 if (root) {
849 ASSERT(VALID_PAGE(root));
850 root &= PT64_BASE_ADDR_MASK;
851 page = page_header(root);
852 --page->root_count;
853 }
17ac10ad
AK
854 vcpu->mmu.pae_root[i] = INVALID_PAGE;
855 }
856 vcpu->mmu.root_hpa = INVALID_PAGE;
857}
858
859static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
860{
861 int i;
cea0f0e7 862 gfn_t root_gfn;
3bb65a22
AK
863 struct kvm_mmu_page *page;
864
cea0f0e7 865 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
17ac10ad
AK
866
867#ifdef CONFIG_X86_64
868 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
869 hpa_t root = vcpu->mmu.root_hpa;
870
871 ASSERT(!VALID_PAGE(root));
68a99f6d 872 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
d28c6cfb 873 PT64_ROOT_LEVEL, 0, 0, NULL);
47ad8e68 874 root = __pa(page->spt);
3bb65a22 875 ++page->root_count;
17ac10ad
AK
876 vcpu->mmu.root_hpa = root;
877 return;
878 }
879#endif
880 for (i = 0; i < 4; ++i) {
881 hpa_t root = vcpu->mmu.pae_root[i];
882
883 ASSERT(!VALID_PAGE(root));
417726a3
AK
884 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
885 if (!is_present_pte(vcpu->pdptrs[i])) {
886 vcpu->mmu.pae_root[i] = 0;
887 continue;
888 }
cea0f0e7 889 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
417726a3 890 } else if (vcpu->mmu.root_level == 0)
cea0f0e7 891 root_gfn = 0;
68a99f6d 892 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
cea0f0e7 893 PT32_ROOT_LEVEL, !is_paging(vcpu),
d28c6cfb 894 0, NULL);
47ad8e68 895 root = __pa(page->spt);
3bb65a22 896 ++page->root_count;
17ac10ad
AK
897 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
898 }
899 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
900}
901
6aa8b732
AK
902static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
903{
904 return vaddr;
905}
906
907static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
908 u32 error_code)
909{
6aa8b732 910 gpa_t addr = gva;
ebeace86 911 hpa_t paddr;
e2dec939 912 int r;
6aa8b732 913
e2dec939
AK
914 r = mmu_topup_memory_caches(vcpu);
915 if (r)
916 return r;
714b93da 917
6aa8b732
AK
918 ASSERT(vcpu);
919 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
920
6aa8b732 921
ebeace86 922 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
6aa8b732 923
ebeace86
AK
924 if (is_error_hpa(paddr))
925 return 1;
6aa8b732 926
ebeace86 927 return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
6aa8b732
AK
928}
929
6aa8b732
AK
930static void nonpaging_free(struct kvm_vcpu *vcpu)
931{
17ac10ad 932 mmu_free_roots(vcpu);
6aa8b732
AK
933}
934
935static int nonpaging_init_context(struct kvm_vcpu *vcpu)
936{
937 struct kvm_mmu *context = &vcpu->mmu;
938
939 context->new_cr3 = nonpaging_new_cr3;
940 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
941 context->gva_to_gpa = nonpaging_gva_to_gpa;
942 context->free = nonpaging_free;
cea0f0e7 943 context->root_level = 0;
6aa8b732 944 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 945 mmu_alloc_roots(vcpu);
6aa8b732
AK
946 ASSERT(VALID_PAGE(context->root_hpa));
947 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
948 return 0;
949}
950
6aa8b732
AK
951static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
952{
1165f5fe 953 ++vcpu->stat.tlb_flush;
6aa8b732
AK
954 kvm_arch_ops->tlb_flush(vcpu);
955}
956
957static void paging_new_cr3(struct kvm_vcpu *vcpu)
958{
374cbac0 959 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
cea0f0e7 960 mmu_free_roots(vcpu);
7f7417d6
IM
961 if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
962 kvm_mmu_free_some_pages(vcpu);
cea0f0e7 963 mmu_alloc_roots(vcpu);
6aa8b732 964 kvm_mmu_flush_tlb(vcpu);
cea0f0e7 965 kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
6aa8b732
AK
966}
967
6aa8b732
AK
968static void inject_page_fault(struct kvm_vcpu *vcpu,
969 u64 addr,
970 u32 err_code)
971{
972 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
973}
974
6aa8b732
AK
975static void paging_free(struct kvm_vcpu *vcpu)
976{
977 nonpaging_free(vcpu);
978}
979
980#define PTTYPE 64
981#include "paging_tmpl.h"
982#undef PTTYPE
983
984#define PTTYPE 32
985#include "paging_tmpl.h"
986#undef PTTYPE
987
17ac10ad 988static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
6aa8b732
AK
989{
990 struct kvm_mmu *context = &vcpu->mmu;
991
992 ASSERT(is_pae(vcpu));
993 context->new_cr3 = paging_new_cr3;
994 context->page_fault = paging64_page_fault;
6aa8b732
AK
995 context->gva_to_gpa = paging64_gva_to_gpa;
996 context->free = paging_free;
17ac10ad
AK
997 context->root_level = level;
998 context->shadow_root_level = level;
999 mmu_alloc_roots(vcpu);
6aa8b732
AK
1000 ASSERT(VALID_PAGE(context->root_hpa));
1001 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1002 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1003 return 0;
1004}
1005
17ac10ad
AK
1006static int paging64_init_context(struct kvm_vcpu *vcpu)
1007{
1008 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1009}
1010
6aa8b732
AK
1011static int paging32_init_context(struct kvm_vcpu *vcpu)
1012{
1013 struct kvm_mmu *context = &vcpu->mmu;
1014
1015 context->new_cr3 = paging_new_cr3;
1016 context->page_fault = paging32_page_fault;
6aa8b732
AK
1017 context->gva_to_gpa = paging32_gva_to_gpa;
1018 context->free = paging_free;
1019 context->root_level = PT32_ROOT_LEVEL;
1020 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 1021 mmu_alloc_roots(vcpu);
6aa8b732
AK
1022 ASSERT(VALID_PAGE(context->root_hpa));
1023 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1024 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1025 return 0;
1026}
1027
1028static int paging32E_init_context(struct kvm_vcpu *vcpu)
1029{
17ac10ad 1030 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
6aa8b732
AK
1031}
1032
1033static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1034{
1035 ASSERT(vcpu);
1036 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1037
d3d25b04 1038 mmu_topup_memory_caches(vcpu);
6aa8b732
AK
1039 if (!is_paging(vcpu))
1040 return nonpaging_init_context(vcpu);
a9058ecd 1041 else if (is_long_mode(vcpu))
6aa8b732
AK
1042 return paging64_init_context(vcpu);
1043 else if (is_pae(vcpu))
1044 return paging32E_init_context(vcpu);
1045 else
1046 return paging32_init_context(vcpu);
1047}
1048
1049static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1050{
1051 ASSERT(vcpu);
1052 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1053 vcpu->mmu.free(vcpu);
1054 vcpu->mmu.root_hpa = INVALID_PAGE;
1055 }
1056}
1057
1058int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1059{
714b93da
AK
1060 int r;
1061
6aa8b732 1062 destroy_kvm_mmu(vcpu);
714b93da
AK
1063 r = init_kvm_mmu(vcpu);
1064 if (r < 0)
1065 goto out;
e2dec939 1066 r = mmu_topup_memory_caches(vcpu);
714b93da
AK
1067out:
1068 return r;
6aa8b732
AK
1069}
1070
09072daf 1071static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
ac1b714e
AK
1072 struct kvm_mmu_page *page,
1073 u64 *spte)
1074{
1075 u64 pte;
1076 struct kvm_mmu_page *child;
1077
1078 pte = *spte;
1079 if (is_present_pte(pte)) {
1080 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1081 rmap_remove(vcpu, spte);
1082 else {
1083 child = page_header(pte & PT64_BASE_ADDR_MASK);
1084 mmu_page_remove_parent_pte(vcpu, child, spte);
1085 }
1086 }
1087 *spte = 0;
1088}
1089
0028425f
AK
1090static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1091 struct kvm_mmu_page *page,
1092 u64 *spte,
1093 const void *new, int bytes)
1094{
1095 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1096 return;
1097
1098 if (page->role.glevels == PT32_ROOT_LEVEL)
1099 paging32_update_pte(vcpu, page, spte, new, bytes);
1100 else
1101 paging64_update_pte(vcpu, page, spte, new, bytes);
1102}
1103
09072daf
AK
1104void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1105 const u8 *old, const u8 *new, int bytes)
da4a00f0 1106{
9b7a0325
AK
1107 gfn_t gfn = gpa >> PAGE_SHIFT;
1108 struct kvm_mmu_page *page;
0e7bc4b9 1109 struct hlist_node *node, *n;
9b7a0325
AK
1110 struct hlist_head *bucket;
1111 unsigned index;
1112 u64 *spte;
9b7a0325 1113 unsigned offset = offset_in_page(gpa);
0e7bc4b9 1114 unsigned pte_size;
9b7a0325 1115 unsigned page_offset;
0e7bc4b9 1116 unsigned misaligned;
fce0657f 1117 unsigned quadrant;
9b7a0325 1118 int level;
86a5ba02 1119 int flooded = 0;
ac1b714e 1120 int npte;
9b7a0325 1121
da4a00f0 1122 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
86a5ba02
AK
1123 if (gfn == vcpu->last_pt_write_gfn) {
1124 ++vcpu->last_pt_write_count;
1125 if (vcpu->last_pt_write_count >= 3)
1126 flooded = 1;
1127 } else {
1128 vcpu->last_pt_write_gfn = gfn;
1129 vcpu->last_pt_write_count = 1;
1130 }
9b7a0325
AK
1131 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1132 bucket = &vcpu->kvm->mmu_page_hash[index];
0e7bc4b9 1133 hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
9b7a0325
AK
1134 if (page->gfn != gfn || page->role.metaphysical)
1135 continue;
0e7bc4b9
AK
1136 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1137 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
e925c5ba 1138 misaligned |= bytes < 4;
86a5ba02 1139 if (misaligned || flooded) {
0e7bc4b9
AK
1140 /*
1141 * Misaligned accesses are too much trouble to fix
1142 * up; also, they usually indicate a page is not used
1143 * as a page table.
86a5ba02
AK
1144 *
1145 * If we're seeing too many writes to a page,
1146 * it may no longer be a page table, or we may be
1147 * forking, in which case it is better to unmap the
1148 * page.
0e7bc4b9
AK
1149 */
1150 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1151 gpa, bytes, page->role.word);
1152 kvm_mmu_zap_page(vcpu, page);
1153 continue;
1154 }
9b7a0325
AK
1155 page_offset = offset;
1156 level = page->role.level;
ac1b714e 1157 npte = 1;
9b7a0325 1158 if (page->role.glevels == PT32_ROOT_LEVEL) {
ac1b714e
AK
1159 page_offset <<= 1; /* 32->64 */
1160 /*
1161 * A 32-bit pde maps 4MB while the shadow pdes map
1162 * only 2MB. So we need to double the offset again
1163 * and zap two pdes instead of one.
1164 */
1165 if (level == PT32_ROOT_LEVEL) {
6b8d0f9b 1166 page_offset &= ~7; /* kill rounding error */
ac1b714e
AK
1167 page_offset <<= 1;
1168 npte = 2;
1169 }
fce0657f 1170 quadrant = page_offset >> PAGE_SHIFT;
9b7a0325 1171 page_offset &= ~PAGE_MASK;
fce0657f
AK
1172 if (quadrant != page->role.quadrant)
1173 continue;
9b7a0325 1174 }
47ad8e68 1175 spte = &page->spt[page_offset / sizeof(*spte)];
ac1b714e 1176 while (npte--) {
09072daf 1177 mmu_pte_write_zap_pte(vcpu, page, spte);
0028425f 1178 mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
ac1b714e 1179 ++spte;
9b7a0325 1180 }
9b7a0325 1181 }
da4a00f0
AK
1182}
1183
a436036b
AK
1184int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1185{
1186 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1187
1188 return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1189}
1190
ebeace86
AK
1191void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1192{
1193 while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1194 struct kvm_mmu_page *page;
1195
1196 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1197 struct kvm_mmu_page, link);
1198 kvm_mmu_zap_page(vcpu, page);
1199 }
1200}
1201EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1202
6aa8b732
AK
1203static void free_mmu_pages(struct kvm_vcpu *vcpu)
1204{
f51234c2 1205 struct kvm_mmu_page *page;
6aa8b732 1206
f51234c2
AK
1207 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1208 page = container_of(vcpu->kvm->active_mmu_pages.next,
1209 struct kvm_mmu_page, link);
1210 kvm_mmu_zap_page(vcpu, page);
1211 }
17ac10ad 1212 free_page((unsigned long)vcpu->mmu.pae_root);
6aa8b732
AK
1213}
1214
1215static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1216{
17ac10ad 1217 struct page *page;
6aa8b732
AK
1218 int i;
1219
1220 ASSERT(vcpu);
1221
d3d25b04 1222 vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
17ac10ad
AK
1223
1224 /*
1225 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1226 * Therefore we need to allocate shadow page tables in the first
1227 * 4GB of memory, which happens to fit the DMA32 zone.
1228 */
1229 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1230 if (!page)
1231 goto error_1;
1232 vcpu->mmu.pae_root = page_address(page);
1233 for (i = 0; i < 4; ++i)
1234 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1235
6aa8b732
AK
1236 return 0;
1237
1238error_1:
1239 free_mmu_pages(vcpu);
1240 return -ENOMEM;
1241}
1242
8018c27b 1243int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 1244{
6aa8b732
AK
1245 ASSERT(vcpu);
1246 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
6aa8b732 1247
8018c27b
IM
1248 return alloc_mmu_pages(vcpu);
1249}
6aa8b732 1250
8018c27b
IM
1251int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1252{
1253 ASSERT(vcpu);
1254 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
2c264957 1255
8018c27b 1256 return init_kvm_mmu(vcpu);
6aa8b732
AK
1257}
1258
1259void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1260{
1261 ASSERT(vcpu);
1262
1263 destroy_kvm_mmu(vcpu);
1264 free_mmu_pages(vcpu);
714b93da 1265 mmu_free_memory_caches(vcpu);
6aa8b732
AK
1266}
1267
714b93da 1268void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
6aa8b732 1269{
714b93da 1270 struct kvm *kvm = vcpu->kvm;
6aa8b732
AK
1271 struct kvm_mmu_page *page;
1272
1273 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1274 int i;
1275 u64 *pt;
1276
1277 if (!test_bit(slot, &page->slot_bitmap))
1278 continue;
1279
47ad8e68 1280 pt = page->spt;
6aa8b732
AK
1281 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1282 /* avoid RMW */
cd4a4e53 1283 if (pt[i] & PT_WRITABLE_MASK) {
714b93da 1284 rmap_remove(vcpu, &pt[i]);
6aa8b732 1285 pt[i] &= ~PT_WRITABLE_MASK;
cd4a4e53 1286 }
6aa8b732
AK
1287 }
1288}
37a7d8b0 1289
e0fa826f
DL
1290void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
1291{
1292 destroy_kvm_mmu(vcpu);
1293
1294 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1295 struct kvm_mmu_page *page;
1296
1297 page = container_of(vcpu->kvm->active_mmu_pages.next,
1298 struct kvm_mmu_page, link);
1299 kvm_mmu_zap_page(vcpu, page);
1300 }
1301
1302 mmu_free_memory_caches(vcpu);
1303 kvm_arch_ops->tlb_flush(vcpu);
1304 init_kvm_mmu(vcpu);
1305}
1306
b5a33a75
AK
1307void kvm_mmu_module_exit(void)
1308{
1309 if (pte_chain_cache)
1310 kmem_cache_destroy(pte_chain_cache);
1311 if (rmap_desc_cache)
1312 kmem_cache_destroy(rmap_desc_cache);
d3d25b04
AK
1313 if (mmu_page_cache)
1314 kmem_cache_destroy(mmu_page_cache);
1315 if (mmu_page_header_cache)
1316 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
1317}
1318
1319int kvm_mmu_module_init(void)
1320{
1321 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1322 sizeof(struct kvm_pte_chain),
1323 0, 0, NULL, NULL);
1324 if (!pte_chain_cache)
1325 goto nomem;
1326 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1327 sizeof(struct kvm_rmap_desc),
1328 0, 0, NULL, NULL);
1329 if (!rmap_desc_cache)
1330 goto nomem;
1331
d3d25b04
AK
1332 mmu_page_cache = kmem_cache_create("kvm_mmu_page",
1333 PAGE_SIZE,
1334 PAGE_SIZE, 0, NULL, NULL);
1335 if (!mmu_page_cache)
1336 goto nomem;
1337
1338 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1339 sizeof(struct kvm_mmu_page),
1340 0, 0, NULL, NULL);
1341 if (!mmu_page_header_cache)
1342 goto nomem;
1343
b5a33a75
AK
1344 return 0;
1345
1346nomem:
1347 kvm_mmu_module_exit();
1348 return -ENOMEM;
1349}
1350
37a7d8b0
AK
1351#ifdef AUDIT
1352
1353static const char *audit_msg;
1354
1355static gva_t canonicalize(gva_t gva)
1356{
1357#ifdef CONFIG_X86_64
1358 gva = (long long)(gva << 16) >> 16;
1359#endif
1360 return gva;
1361}
1362
1363static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1364 gva_t va, int level)
1365{
1366 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1367 int i;
1368 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1369
1370 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1371 u64 ent = pt[i];
1372
2807696c 1373 if (!(ent & PT_PRESENT_MASK))
37a7d8b0
AK
1374 continue;
1375
1376 va = canonicalize(va);
1377 if (level > 1)
1378 audit_mappings_page(vcpu, ent, va, level - 1);
1379 else {
1380 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1381 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1382
1383 if ((ent & PT_PRESENT_MASK)
1384 && (ent & PT64_BASE_ADDR_MASK) != hpa)
1385 printk(KERN_ERR "audit error: (%s) levels %d"
1386 " gva %lx gpa %llx hpa %llx ent %llx\n",
1387 audit_msg, vcpu->mmu.root_level,
1388 va, gpa, hpa, ent);
1389 }
1390 }
1391}
1392
1393static void audit_mappings(struct kvm_vcpu *vcpu)
1394{
1ea252af 1395 unsigned i;
37a7d8b0
AK
1396
1397 if (vcpu->mmu.root_level == 4)
1398 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1399 else
1400 for (i = 0; i < 4; ++i)
1401 if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1402 audit_mappings_page(vcpu,
1403 vcpu->mmu.pae_root[i],
1404 i << 30,
1405 2);
1406}
1407
1408static int count_rmaps(struct kvm_vcpu *vcpu)
1409{
1410 int nmaps = 0;
1411 int i, j, k;
1412
1413 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1414 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1415 struct kvm_rmap_desc *d;
1416
1417 for (j = 0; j < m->npages; ++j) {
1418 struct page *page = m->phys_mem[j];
1419
1420 if (!page->private)
1421 continue;
1422 if (!(page->private & 1)) {
1423 ++nmaps;
1424 continue;
1425 }
1426 d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1427 while (d) {
1428 for (k = 0; k < RMAP_EXT; ++k)
1429 if (d->shadow_ptes[k])
1430 ++nmaps;
1431 else
1432 break;
1433 d = d->more;
1434 }
1435 }
1436 }
1437 return nmaps;
1438}
1439
1440static int count_writable_mappings(struct kvm_vcpu *vcpu)
1441{
1442 int nmaps = 0;
1443 struct kvm_mmu_page *page;
1444 int i;
1445
1446 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
47ad8e68 1447 u64 *pt = page->spt;
37a7d8b0
AK
1448
1449 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1450 continue;
1451
1452 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1453 u64 ent = pt[i];
1454
1455 if (!(ent & PT_PRESENT_MASK))
1456 continue;
1457 if (!(ent & PT_WRITABLE_MASK))
1458 continue;
1459 ++nmaps;
1460 }
1461 }
1462 return nmaps;
1463}
1464
1465static void audit_rmap(struct kvm_vcpu *vcpu)
1466{
1467 int n_rmap = count_rmaps(vcpu);
1468 int n_actual = count_writable_mappings(vcpu);
1469
1470 if (n_rmap != n_actual)
1471 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1472 __FUNCTION__, audit_msg, n_rmap, n_actual);
1473}
1474
1475static void audit_write_protection(struct kvm_vcpu *vcpu)
1476{
1477 struct kvm_mmu_page *page;
1478
1479 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1480 hfn_t hfn;
1481 struct page *pg;
1482
1483 if (page->role.metaphysical)
1484 continue;
1485
1486 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1487 >> PAGE_SHIFT;
1488 pg = pfn_to_page(hfn);
1489 if (pg->private)
1490 printk(KERN_ERR "%s: (%s) shadow page has writable"
1491 " mappings: gfn %lx role %x\n",
1492 __FUNCTION__, audit_msg, page->gfn,
1493 page->role.word);
1494 }
1495}
1496
1497static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1498{
1499 int olddbg = dbg;
1500
1501 dbg = 0;
1502 audit_msg = msg;
1503 audit_rmap(vcpu);
1504 audit_write_protection(vcpu);
1505 audit_mappings(vcpu);
1506 dbg = olddbg;
1507}
1508
1509#endif
This page took 0.265099 seconds and 5 git commands to generate.