[PATCH] KVM: MMU: Make the shadow page tables also special-case pae
[deliverable/linux.git] / drivers / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19#include <linux/types.h>
20#include <linux/string.h>
21#include <asm/page.h>
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/module.h>
25
26#include "vmx.h"
27#include "kvm.h"
28
29#define pgprintk(x...) do { } while (0)
cd4a4e53 30#define rmap_printk(x...) do { } while (0)
6aa8b732
AK
31
32#define ASSERT(x) \
33 if (!(x)) { \
34 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
35 __FILE__, __LINE__, #x); \
36 }
37
38#define PT64_ENT_PER_PAGE 512
39#define PT32_ENT_PER_PAGE 1024
40
41#define PT_WRITABLE_SHIFT 1
42
43#define PT_PRESENT_MASK (1ULL << 0)
44#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
45#define PT_USER_MASK (1ULL << 2)
46#define PT_PWT_MASK (1ULL << 3)
47#define PT_PCD_MASK (1ULL << 4)
48#define PT_ACCESSED_MASK (1ULL << 5)
49#define PT_DIRTY_MASK (1ULL << 6)
50#define PT_PAGE_SIZE_MASK (1ULL << 7)
51#define PT_PAT_MASK (1ULL << 7)
52#define PT_GLOBAL_MASK (1ULL << 8)
53#define PT64_NX_MASK (1ULL << 63)
54
55#define PT_PAT_SHIFT 7
56#define PT_DIR_PAT_SHIFT 12
57#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
58
59#define PT32_DIR_PSE36_SIZE 4
60#define PT32_DIR_PSE36_SHIFT 13
61#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
62
63
64#define PT32_PTE_COPY_MASK \
8c7bb723 65 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
6aa8b732 66
8c7bb723 67#define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
6aa8b732
AK
68
69#define PT_FIRST_AVAIL_BITS_SHIFT 9
70#define PT64_SECOND_AVAIL_BITS_SHIFT 52
71
72#define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
73#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
74
75#define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
76#define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
77
78#define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
79#define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
80
81#define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
82
83#define VALID_PAGE(x) ((x) != INVALID_PAGE)
84
85#define PT64_LEVEL_BITS 9
86
87#define PT64_LEVEL_SHIFT(level) \
88 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
89
90#define PT64_LEVEL_MASK(level) \
91 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
92
93#define PT64_INDEX(address, level)\
94 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97#define PT32_LEVEL_BITS 10
98
99#define PT32_LEVEL_SHIFT(level) \
100 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
101
102#define PT32_LEVEL_MASK(level) \
103 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
104
105#define PT32_INDEX(address, level)\
106 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
107
108
109#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
110#define PT64_DIR_BASE_ADDR_MASK \
111 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
112
113#define PT32_BASE_ADDR_MASK PAGE_MASK
114#define PT32_DIR_BASE_ADDR_MASK \
115 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
116
117
118#define PFERR_PRESENT_MASK (1U << 0)
119#define PFERR_WRITE_MASK (1U << 1)
120#define PFERR_USER_MASK (1U << 2)
121
122#define PT64_ROOT_LEVEL 4
123#define PT32_ROOT_LEVEL 2
124#define PT32E_ROOT_LEVEL 3
125
126#define PT_DIRECTORY_LEVEL 2
127#define PT_PAGE_TABLE_LEVEL 1
128
cd4a4e53
AK
129#define RMAP_EXT 4
130
131struct kvm_rmap_desc {
132 u64 *shadow_ptes[RMAP_EXT];
133 struct kvm_rmap_desc *more;
134};
135
6aa8b732
AK
136static int is_write_protection(struct kvm_vcpu *vcpu)
137{
138 return vcpu->cr0 & CR0_WP_MASK;
139}
140
141static int is_cpuid_PSE36(void)
142{
143 return 1;
144}
145
146static int is_present_pte(unsigned long pte)
147{
148 return pte & PT_PRESENT_MASK;
149}
150
151static int is_writeble_pte(unsigned long pte)
152{
153 return pte & PT_WRITABLE_MASK;
154}
155
156static int is_io_pte(unsigned long pte)
157{
158 return pte & PT_SHADOW_IO_MARK;
159}
160
cd4a4e53
AK
161static int is_rmap_pte(u64 pte)
162{
163 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
164 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
165}
166
167/*
168 * Reverse mapping data structures:
169 *
170 * If page->private bit zero is zero, then page->private points to the
171 * shadow page table entry that points to page_address(page).
172 *
173 * If page->private bit zero is one, (then page->private & ~1) points
174 * to a struct kvm_rmap_desc containing more mappings.
175 */
176static void rmap_add(struct kvm *kvm, u64 *spte)
177{
178 struct page *page;
179 struct kvm_rmap_desc *desc;
180 int i;
181
182 if (!is_rmap_pte(*spte))
183 return;
184 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
185 if (!page->private) {
186 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
187 page->private = (unsigned long)spte;
188 } else if (!(page->private & 1)) {
189 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
190 desc = kzalloc(sizeof *desc, GFP_NOWAIT);
191 if (!desc)
192 BUG(); /* FIXME: return error */
193 desc->shadow_ptes[0] = (u64 *)page->private;
194 desc->shadow_ptes[1] = spte;
195 page->private = (unsigned long)desc | 1;
196 } else {
197 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
198 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
199 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
200 desc = desc->more;
201 if (desc->shadow_ptes[RMAP_EXT-1]) {
202 desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
203 if (!desc->more)
204 BUG(); /* FIXME: return error */
205 desc = desc->more;
206 }
207 for (i = 0; desc->shadow_ptes[i]; ++i)
208 ;
209 desc->shadow_ptes[i] = spte;
210 }
211}
212
213static void rmap_desc_remove_entry(struct page *page,
214 struct kvm_rmap_desc *desc,
215 int i,
216 struct kvm_rmap_desc *prev_desc)
217{
218 int j;
219
220 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
221 ;
222 desc->shadow_ptes[i] = desc->shadow_ptes[j];
223 desc->shadow_ptes[j] = 0;
224 if (j != 0)
225 return;
226 if (!prev_desc && !desc->more)
227 page->private = (unsigned long)desc->shadow_ptes[0];
228 else
229 if (prev_desc)
230 prev_desc->more = desc->more;
231 else
232 page->private = (unsigned long)desc->more | 1;
233 kfree(desc);
234}
235
236static void rmap_remove(struct kvm *kvm, u64 *spte)
237{
238 struct page *page;
239 struct kvm_rmap_desc *desc;
240 struct kvm_rmap_desc *prev_desc;
241 int i;
242
243 if (!is_rmap_pte(*spte))
244 return;
245 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
246 if (!page->private) {
247 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
248 BUG();
249 } else if (!(page->private & 1)) {
250 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
251 if ((u64 *)page->private != spte) {
252 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
253 spte, *spte);
254 BUG();
255 }
256 page->private = 0;
257 } else {
258 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
259 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
260 prev_desc = NULL;
261 while (desc) {
262 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
263 if (desc->shadow_ptes[i] == spte) {
264 rmap_desc_remove_entry(page, desc, i,
265 prev_desc);
266 return;
267 }
268 prev_desc = desc;
269 desc = desc->more;
270 }
271 BUG();
272 }
273}
274
6aa8b732
AK
275static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
276{
277 struct kvm_mmu_page *page_head = page_header(page_hpa);
278
279 list_del(&page_head->link);
280 page_head->page_hpa = page_hpa;
281 list_add(&page_head->link, &vcpu->free_pages);
282}
283
284static int is_empty_shadow_page(hpa_t page_hpa)
285{
286 u32 *pos;
287 u32 *end;
288 for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
289 pos != end; pos++)
290 if (*pos != 0)
291 return 0;
292 return 1;
293}
294
295static hpa_t kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, u64 *parent_pte)
296{
297 struct kvm_mmu_page *page;
298
299 if (list_empty(&vcpu->free_pages))
300 return INVALID_PAGE;
301
302 page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
303 list_del(&page->link);
304 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
305 ASSERT(is_empty_shadow_page(page->page_hpa));
306 page->slot_bitmap = 0;
307 page->global = 1;
308 page->parent_pte = parent_pte;
309 return page->page_hpa;
310}
311
312static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
313{
314 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
315 struct kvm_mmu_page *page_head = page_header(__pa(pte));
316
317 __set_bit(slot, &page_head->slot_bitmap);
318}
319
320hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
321{
322 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
323
324 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
325}
326
327hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
328{
329 struct kvm_memory_slot *slot;
330 struct page *page;
331
332 ASSERT((gpa & HPA_ERR_MASK) == 0);
333 slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
334 if (!slot)
335 return gpa | HPA_ERR_MASK;
336 page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
337 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
338 | (gpa & (PAGE_SIZE-1));
339}
340
341hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
342{
343 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
344
345 if (gpa == UNMAPPED_GVA)
346 return UNMAPPED_GVA;
347 return gpa_to_hpa(vcpu, gpa);
348}
349
350
351static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
352 int level)
353{
cd4a4e53
AK
354 u64 *pos;
355 u64 *end;
356
6aa8b732
AK
357 ASSERT(vcpu);
358 ASSERT(VALID_PAGE(page_hpa));
359 ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
360
cd4a4e53
AK
361 for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
362 pos != end; pos++) {
363 u64 current_ent = *pos;
6aa8b732 364
cd4a4e53
AK
365 if (is_present_pte(current_ent)) {
366 if (level != 1)
6aa8b732
AK
367 release_pt_page_64(vcpu,
368 current_ent &
369 PT64_BASE_ADDR_MASK,
370 level - 1);
cd4a4e53
AK
371 else
372 rmap_remove(vcpu->kvm, pos);
6aa8b732 373 }
cd4a4e53 374 *pos = 0;
6aa8b732
AK
375 }
376 kvm_mmu_free_page(vcpu, page_hpa);
377}
378
379static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
380{
381}
382
383static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
384{
385 int level = PT32E_ROOT_LEVEL;
386 hpa_t table_addr = vcpu->mmu.root_hpa;
387
388 for (; ; level--) {
389 u32 index = PT64_INDEX(v, level);
390 u64 *table;
391
392 ASSERT(VALID_PAGE(table_addr));
393 table = __va(table_addr);
394
395 if (level == 1) {
396 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
397 page_header_update_slot(vcpu->kvm, table, v);
398 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
399 PT_USER_MASK;
cd4a4e53 400 rmap_add(vcpu->kvm, &table[index]);
6aa8b732
AK
401 return 0;
402 }
403
404 if (table[index] == 0) {
405 hpa_t new_table = kvm_mmu_alloc_page(vcpu,
406 &table[index]);
407
408 if (!VALID_PAGE(new_table)) {
409 pgprintk("nonpaging_map: ENOMEM\n");
410 return -ENOMEM;
411 }
412
413 if (level == PT32E_ROOT_LEVEL)
414 table[index] = new_table | PT_PRESENT_MASK;
415 else
416 table[index] = new_table | PT_PRESENT_MASK |
417 PT_WRITABLE_MASK | PT_USER_MASK;
418 }
419 table_addr = table[index] & PT64_BASE_ADDR_MASK;
420 }
421}
422
17ac10ad
AK
423static void mmu_free_roots(struct kvm_vcpu *vcpu)
424{
425 int i;
426
427#ifdef CONFIG_X86_64
428 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
429 hpa_t root = vcpu->mmu.root_hpa;
430
431 ASSERT(VALID_PAGE(root));
432 release_pt_page_64(vcpu, root, PT64_ROOT_LEVEL);
433 vcpu->mmu.root_hpa = INVALID_PAGE;
434 return;
435 }
436#endif
437 for (i = 0; i < 4; ++i) {
438 hpa_t root = vcpu->mmu.pae_root[i];
439
440 ASSERT(VALID_PAGE(root));
441 root &= PT64_BASE_ADDR_MASK;
442 release_pt_page_64(vcpu, root, PT32E_ROOT_LEVEL - 1);
443 vcpu->mmu.pae_root[i] = INVALID_PAGE;
444 }
445 vcpu->mmu.root_hpa = INVALID_PAGE;
446}
447
448static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
449{
450 int i;
451
452#ifdef CONFIG_X86_64
453 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
454 hpa_t root = vcpu->mmu.root_hpa;
455
456 ASSERT(!VALID_PAGE(root));
457 root = kvm_mmu_alloc_page(vcpu, NULL);
458 vcpu->mmu.root_hpa = root;
459 return;
460 }
461#endif
462 for (i = 0; i < 4; ++i) {
463 hpa_t root = vcpu->mmu.pae_root[i];
464
465 ASSERT(!VALID_PAGE(root));
466 root = kvm_mmu_alloc_page(vcpu, NULL);
467 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
468 }
469 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
470}
471
6aa8b732
AK
472static void nonpaging_flush(struct kvm_vcpu *vcpu)
473{
474 hpa_t root = vcpu->mmu.root_hpa;
475
476 ++kvm_stat.tlb_flush;
477 pgprintk("nonpaging_flush\n");
17ac10ad
AK
478 mmu_free_roots(vcpu);
479 mmu_alloc_roots(vcpu);
6aa8b732
AK
480 kvm_arch_ops->set_cr3(vcpu, root);
481 kvm_arch_ops->tlb_flush(vcpu);
482}
483
484static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
485{
486 return vaddr;
487}
488
489static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
490 u32 error_code)
491{
492 int ret;
493 gpa_t addr = gva;
494
495 ASSERT(vcpu);
496 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
497
498 for (;;) {
499 hpa_t paddr;
500
501 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
502
503 if (is_error_hpa(paddr))
504 return 1;
505
506 ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
507 if (ret) {
508 nonpaging_flush(vcpu);
509 continue;
510 }
511 break;
512 }
513 return ret;
514}
515
516static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
517{
518}
519
520static void nonpaging_free(struct kvm_vcpu *vcpu)
521{
17ac10ad 522 mmu_free_roots(vcpu);
6aa8b732
AK
523}
524
525static int nonpaging_init_context(struct kvm_vcpu *vcpu)
526{
527 struct kvm_mmu *context = &vcpu->mmu;
528
529 context->new_cr3 = nonpaging_new_cr3;
530 context->page_fault = nonpaging_page_fault;
531 context->inval_page = nonpaging_inval_page;
532 context->gva_to_gpa = nonpaging_gva_to_gpa;
533 context->free = nonpaging_free;
534 context->root_level = PT32E_ROOT_LEVEL;
535 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 536 mmu_alloc_roots(vcpu);
6aa8b732
AK
537 ASSERT(VALID_PAGE(context->root_hpa));
538 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
539 return 0;
540}
541
542
543static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
544{
545 struct kvm_mmu_page *page, *npage;
546
547 list_for_each_entry_safe(page, npage, &vcpu->kvm->active_mmu_pages,
548 link) {
549 if (page->global)
550 continue;
551
552 if (!page->parent_pte)
553 continue;
554
555 *page->parent_pte = 0;
556 release_pt_page_64(vcpu, page->page_hpa, 1);
557 }
558 ++kvm_stat.tlb_flush;
559 kvm_arch_ops->tlb_flush(vcpu);
560}
561
562static void paging_new_cr3(struct kvm_vcpu *vcpu)
563{
564 kvm_mmu_flush_tlb(vcpu);
565}
566
567static void mark_pagetable_nonglobal(void *shadow_pte)
568{
569 page_header(__pa(shadow_pte))->global = 0;
570}
571
572static inline void set_pte_common(struct kvm_vcpu *vcpu,
573 u64 *shadow_pte,
574 gpa_t gaddr,
575 int dirty,
576 u64 access_bits)
577{
578 hpa_t paddr;
579
580 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
581 if (!dirty)
582 access_bits &= ~PT_WRITABLE_MASK;
583
584 if (access_bits & PT_WRITABLE_MASK)
585 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
586
587 *shadow_pte |= access_bits;
588
589 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
590
591 if (!(*shadow_pte & PT_GLOBAL_MASK))
592 mark_pagetable_nonglobal(shadow_pte);
593
594 if (is_error_hpa(paddr)) {
595 *shadow_pte |= gaddr;
596 *shadow_pte |= PT_SHADOW_IO_MARK;
597 *shadow_pte &= ~PT_PRESENT_MASK;
598 } else {
599 *shadow_pte |= paddr;
600 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
cd4a4e53 601 rmap_add(vcpu->kvm, shadow_pte);
6aa8b732
AK
602 }
603}
604
605static void inject_page_fault(struct kvm_vcpu *vcpu,
606 u64 addr,
607 u32 err_code)
608{
609 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
610}
611
612static inline int fix_read_pf(u64 *shadow_ent)
613{
614 if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
615 !(*shadow_ent & PT_USER_MASK)) {
616 /*
617 * If supervisor write protect is disabled, we shadow kernel
618 * pages as user pages so we can trap the write access.
619 */
620 *shadow_ent |= PT_USER_MASK;
621 *shadow_ent &= ~PT_WRITABLE_MASK;
622
623 return 1;
624
625 }
626 return 0;
627}
628
629static int may_access(u64 pte, int write, int user)
630{
631
632 if (user && !(pte & PT_USER_MASK))
633 return 0;
634 if (write && !(pte & PT_WRITABLE_MASK))
635 return 0;
636 return 1;
637}
638
639/*
640 * Remove a shadow pte.
641 */
642static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
643{
644 hpa_t page_addr = vcpu->mmu.root_hpa;
645 int level = vcpu->mmu.shadow_root_level;
646
647 ++kvm_stat.invlpg;
648
649 for (; ; level--) {
650 u32 index = PT64_INDEX(addr, level);
651 u64 *table = __va(page_addr);
652
653 if (level == PT_PAGE_TABLE_LEVEL ) {
cd4a4e53 654 rmap_remove(vcpu->kvm, &table[index]);
6aa8b732
AK
655 table[index] = 0;
656 return;
657 }
658
659 if (!is_present_pte(table[index]))
660 return;
661
662 page_addr = table[index] & PT64_BASE_ADDR_MASK;
663
664 if (level == PT_DIRECTORY_LEVEL &&
665 (table[index] & PT_SHADOW_PS_MARK)) {
666 table[index] = 0;
667 release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
668
669 kvm_arch_ops->tlb_flush(vcpu);
670 return;
671 }
672 }
673}
674
675static void paging_free(struct kvm_vcpu *vcpu)
676{
677 nonpaging_free(vcpu);
678}
679
680#define PTTYPE 64
681#include "paging_tmpl.h"
682#undef PTTYPE
683
684#define PTTYPE 32
685#include "paging_tmpl.h"
686#undef PTTYPE
687
17ac10ad 688static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
6aa8b732
AK
689{
690 struct kvm_mmu *context = &vcpu->mmu;
691
692 ASSERT(is_pae(vcpu));
693 context->new_cr3 = paging_new_cr3;
694 context->page_fault = paging64_page_fault;
695 context->inval_page = paging_inval_page;
696 context->gva_to_gpa = paging64_gva_to_gpa;
697 context->free = paging_free;
17ac10ad
AK
698 context->root_level = level;
699 context->shadow_root_level = level;
700 mmu_alloc_roots(vcpu);
6aa8b732
AK
701 ASSERT(VALID_PAGE(context->root_hpa));
702 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
703 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
704 return 0;
705}
706
17ac10ad
AK
707static int paging64_init_context(struct kvm_vcpu *vcpu)
708{
709 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
710}
711
6aa8b732
AK
712static int paging32_init_context(struct kvm_vcpu *vcpu)
713{
714 struct kvm_mmu *context = &vcpu->mmu;
715
716 context->new_cr3 = paging_new_cr3;
717 context->page_fault = paging32_page_fault;
718 context->inval_page = paging_inval_page;
719 context->gva_to_gpa = paging32_gva_to_gpa;
720 context->free = paging_free;
721 context->root_level = PT32_ROOT_LEVEL;
722 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 723 mmu_alloc_roots(vcpu);
6aa8b732
AK
724 ASSERT(VALID_PAGE(context->root_hpa));
725 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
726 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
727 return 0;
728}
729
730static int paging32E_init_context(struct kvm_vcpu *vcpu)
731{
17ac10ad 732 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
6aa8b732
AK
733}
734
735static int init_kvm_mmu(struct kvm_vcpu *vcpu)
736{
737 ASSERT(vcpu);
738 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
739
740 if (!is_paging(vcpu))
741 return nonpaging_init_context(vcpu);
a9058ecd 742 else if (is_long_mode(vcpu))
6aa8b732
AK
743 return paging64_init_context(vcpu);
744 else if (is_pae(vcpu))
745 return paging32E_init_context(vcpu);
746 else
747 return paging32_init_context(vcpu);
748}
749
750static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
751{
752 ASSERT(vcpu);
753 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
754 vcpu->mmu.free(vcpu);
755 vcpu->mmu.root_hpa = INVALID_PAGE;
756 }
757}
758
759int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
760{
761 destroy_kvm_mmu(vcpu);
762 return init_kvm_mmu(vcpu);
763}
764
765static void free_mmu_pages(struct kvm_vcpu *vcpu)
766{
767 while (!list_empty(&vcpu->free_pages)) {
768 struct kvm_mmu_page *page;
769
770 page = list_entry(vcpu->free_pages.next,
771 struct kvm_mmu_page, link);
772 list_del(&page->link);
773 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
774 page->page_hpa = INVALID_PAGE;
775 }
17ac10ad 776 free_page((unsigned long)vcpu->mmu.pae_root);
6aa8b732
AK
777}
778
779static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
780{
17ac10ad 781 struct page *page;
6aa8b732
AK
782 int i;
783
784 ASSERT(vcpu);
785
786 for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
6aa8b732
AK
787 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
788
789 INIT_LIST_HEAD(&page_header->link);
17ac10ad 790 if ((page = alloc_page(GFP_KERNEL)) == NULL)
6aa8b732
AK
791 goto error_1;
792 page->private = (unsigned long)page_header;
793 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
794 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
795 list_add(&page_header->link, &vcpu->free_pages);
796 }
17ac10ad
AK
797
798 /*
799 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
800 * Therefore we need to allocate shadow page tables in the first
801 * 4GB of memory, which happens to fit the DMA32 zone.
802 */
803 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
804 if (!page)
805 goto error_1;
806 vcpu->mmu.pae_root = page_address(page);
807 for (i = 0; i < 4; ++i)
808 vcpu->mmu.pae_root[i] = INVALID_PAGE;
809
6aa8b732
AK
810 return 0;
811
812error_1:
813 free_mmu_pages(vcpu);
814 return -ENOMEM;
815}
816
8018c27b 817int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 818{
6aa8b732
AK
819 ASSERT(vcpu);
820 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
821 ASSERT(list_empty(&vcpu->free_pages));
822
8018c27b
IM
823 return alloc_mmu_pages(vcpu);
824}
6aa8b732 825
8018c27b
IM
826int kvm_mmu_setup(struct kvm_vcpu *vcpu)
827{
828 ASSERT(vcpu);
829 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
830 ASSERT(!list_empty(&vcpu->free_pages));
2c264957 831
8018c27b 832 return init_kvm_mmu(vcpu);
6aa8b732
AK
833}
834
835void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
836{
837 ASSERT(vcpu);
838
839 destroy_kvm_mmu(vcpu);
840 free_mmu_pages(vcpu);
841}
842
843void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
844{
845 struct kvm_mmu_page *page;
846
847 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
848 int i;
849 u64 *pt;
850
851 if (!test_bit(slot, &page->slot_bitmap))
852 continue;
853
854 pt = __va(page->page_hpa);
855 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
856 /* avoid RMW */
cd4a4e53
AK
857 if (pt[i] & PT_WRITABLE_MASK) {
858 rmap_remove(kvm, &pt[i]);
6aa8b732 859 pt[i] &= ~PT_WRITABLE_MASK;
cd4a4e53 860 }
6aa8b732
AK
861 }
862}
This page took 0.07464 seconds and 5 git commands to generate.