lightnvm: add check after mempool allocation
[deliverable/linux.git] / drivers / lightnvm / rrpc.c
CommitLineData
ae1519ec
MB
1/*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17#include "rrpc.h"
18
19static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20static DECLARE_RWSEM(rrpc_lock);
21
22static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25#define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30{
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48}
49
50static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned len)
52{
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63}
64
65static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67{
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82}
83
84static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85{
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91}
92
93static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94{
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 do {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 schedule();
102 } while (!rqd);
103
104 if (IS_ERR(rqd)) {
105 pr_err("rrpc: unable to acquire inflight IO\n");
106 bio_io_error(bio);
107 return;
108 }
109
110 rrpc_invalidate_range(rrpc, slba, len);
111 rrpc_inflight_laddr_release(rrpc, rqd);
112}
113
114static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115{
116 return (rblk->next_page == rrpc->dev->pgs_per_blk);
117}
118
b7ceb7d5 119static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
ae1519ec
MB
120{
121 struct nvm_block *blk = rblk->parent;
122
123 return blk->id * rrpc->dev->pgs_per_blk;
124}
125
7386af27
MB
126static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
127 struct ppa_addr r)
128{
129 struct ppa_addr l;
130 int secs, pgs, blks, luns;
131 sector_t ppa = r.ppa;
132
133 l.ppa = 0;
134
135 div_u64_rem(ppa, dev->sec_per_pg, &secs);
136 l.g.sec = secs;
137
138 sector_div(ppa, dev->sec_per_pg);
139 div_u64_rem(ppa, dev->sec_per_blk, &pgs);
140 l.g.pg = pgs;
141
142 sector_div(ppa, dev->pgs_per_blk);
143 div_u64_rem(ppa, dev->blks_per_lun, &blks);
144 l.g.blk = blks;
145
146 sector_div(ppa, dev->blks_per_lun);
147 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
148 l.g.lun = luns;
149
150 sector_div(ppa, dev->luns_per_chnl);
151 l.g.ch = ppa;
152
153 return l;
154}
155
b7ceb7d5 156static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
ae1519ec
MB
157{
158 struct ppa_addr paddr;
159
160 paddr.ppa = addr;
7386af27 161 return linear_to_generic_addr(dev, paddr);
ae1519ec
MB
162}
163
164/* requires lun->lock taken */
165static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
166{
167 struct rrpc *rrpc = rlun->rrpc;
168
169 BUG_ON(!rblk);
170
171 if (rlun->cur) {
172 spin_lock(&rlun->cur->lock);
173 WARN_ON(!block_is_full(rrpc, rlun->cur));
174 spin_unlock(&rlun->cur->lock);
175 }
176 rlun->cur = rblk;
177}
178
179static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
180 unsigned long flags)
181{
182 struct nvm_block *blk;
183 struct rrpc_block *rblk;
184
f27a6299 185 blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
ae1519ec
MB
186 if (!blk)
187 return NULL;
188
189 rblk = &rlun->blocks[blk->id];
190 blk->priv = rblk;
191
192 bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
193 rblk->next_page = 0;
194 rblk->nr_invalid_pages = 0;
195 atomic_set(&rblk->data_cmnt_size, 0);
196
197 return rblk;
198}
199
200static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
201{
202 nvm_put_blk(rrpc->dev, rblk->parent);
203}
204
d3d1a438
WT
205static void rrpc_put_blks(struct rrpc *rrpc)
206{
207 struct rrpc_lun *rlun;
208 int i;
209
210 for (i = 0; i < rrpc->nr_luns; i++) {
211 rlun = &rrpc->luns[i];
212 if (rlun->cur)
213 rrpc_put_blk(rrpc, rlun->cur);
214 if (rlun->gc_cur)
215 rrpc_put_blk(rrpc, rlun->gc_cur);
216 }
217}
218
ae1519ec
MB
219static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
220{
221 int next = atomic_inc_return(&rrpc->next_lun);
222
223 return &rrpc->luns[next % rrpc->nr_luns];
224}
225
226static void rrpc_gc_kick(struct rrpc *rrpc)
227{
228 struct rrpc_lun *rlun;
229 unsigned int i;
230
231 for (i = 0; i < rrpc->nr_luns; i++) {
232 rlun = &rrpc->luns[i];
233 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
234 }
235}
236
237/*
238 * timed GC every interval.
239 */
240static void rrpc_gc_timer(unsigned long data)
241{
242 struct rrpc *rrpc = (struct rrpc *)data;
243
244 rrpc_gc_kick(rrpc);
245 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
246}
247
248static void rrpc_end_sync_bio(struct bio *bio)
249{
250 struct completion *waiting = bio->bi_private;
251
252 if (bio->bi_error)
253 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
254
255 complete(waiting);
256}
257
258/*
259 * rrpc_move_valid_pages -- migrate live data off the block
260 * @rrpc: the 'rrpc' structure
261 * @block: the block from which to migrate live pages
262 *
263 * Description:
264 * GC algorithms may call this function to migrate remaining live
265 * pages off the block prior to erasing it. This function blocks
266 * further execution until the operation is complete.
267 */
268static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
269{
270 struct request_queue *q = rrpc->dev->q;
271 struct rrpc_rev_addr *rev;
272 struct nvm_rq *rqd;
273 struct bio *bio;
274 struct page *page;
275 int slot;
276 int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
b7ceb7d5 277 u64 phys_addr;
ae1519ec
MB
278 DECLARE_COMPLETION_ONSTACK(wait);
279
280 if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
281 return 0;
282
283 bio = bio_alloc(GFP_NOIO, 1);
284 if (!bio) {
285 pr_err("nvm: could not alloc bio to gc\n");
286 return -ENOMEM;
287 }
288
289 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
3bfbc6ad
JG
290 if (!page)
291 return -ENOMEM;
ae1519ec
MB
292
293 while ((slot = find_first_zero_bit(rblk->invalid_pages,
294 nr_pgs_per_blk)) < nr_pgs_per_blk) {
295
296 /* Lock laddr */
297 phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
298
299try:
300 spin_lock(&rrpc->rev_lock);
301 /* Get logical address from physical to logical table */
302 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
303 /* already updated by previous regular write */
304 if (rev->addr == ADDR_EMPTY) {
305 spin_unlock(&rrpc->rev_lock);
306 continue;
307 }
308
309 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
310 if (IS_ERR_OR_NULL(rqd)) {
311 spin_unlock(&rrpc->rev_lock);
312 schedule();
313 goto try;
314 }
315
316 spin_unlock(&rrpc->rev_lock);
317
318 /* Perform read to do GC */
319 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
320 bio->bi_rw = READ;
321 bio->bi_private = &wait;
322 bio->bi_end_io = rrpc_end_sync_bio;
323
324 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
325 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
326
327 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
328 pr_err("rrpc: gc read failed.\n");
329 rrpc_inflight_laddr_release(rrpc, rqd);
330 goto finished;
331 }
332 wait_for_completion_io(&wait);
333
334 bio_reset(bio);
335 reinit_completion(&wait);
336
337 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
338 bio->bi_rw = WRITE;
339 bio->bi_private = &wait;
340 bio->bi_end_io = rrpc_end_sync_bio;
341
342 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
343
344 /* turn the command around and write the data back to a new
345 * address
346 */
347 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
348 pr_err("rrpc: gc write failed.\n");
349 rrpc_inflight_laddr_release(rrpc, rqd);
350 goto finished;
351 }
352 wait_for_completion_io(&wait);
353
354 rrpc_inflight_laddr_release(rrpc, rqd);
355
356 bio_reset(bio);
357 }
358
359finished:
360 mempool_free(page, rrpc->page_pool);
361 bio_put(bio);
362
363 if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
364 pr_err("nvm: failed to garbage collect block\n");
365 return -EIO;
366 }
367
368 return 0;
369}
370
371static void rrpc_block_gc(struct work_struct *work)
372{
373 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
374 ws_gc);
375 struct rrpc *rrpc = gcb->rrpc;
376 struct rrpc_block *rblk = gcb->rblk;
377 struct nvm_dev *dev = rrpc->dev;
378
379 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
380
381 if (rrpc_move_valid_pages(rrpc, rblk))
382 goto done;
383
384 nvm_erase_blk(dev, rblk->parent);
385 rrpc_put_blk(rrpc, rblk);
386done:
387 mempool_free(gcb, rrpc->gcb_pool);
388}
389
390/* the block with highest number of invalid pages, will be in the beginning
391 * of the list
392 */
393static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
394 struct rrpc_block *rb)
395{
396 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
397 return ra;
398
399 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
400}
401
402/* linearly find the block with highest number of invalid pages
403 * requires lun->lock
404 */
405static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
406{
407 struct list_head *prio_list = &rlun->prio_list;
408 struct rrpc_block *rblock, *max;
409
410 BUG_ON(list_empty(prio_list));
411
412 max = list_first_entry(prio_list, struct rrpc_block, prio);
413 list_for_each_entry(rblock, prio_list, prio)
414 max = rblock_max_invalid(max, rblock);
415
416 return max;
417}
418
419static void rrpc_lun_gc(struct work_struct *work)
420{
421 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
422 struct rrpc *rrpc = rlun->rrpc;
423 struct nvm_lun *lun = rlun->parent;
424 struct rrpc_block_gc *gcb;
425 unsigned int nr_blocks_need;
426
427 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
428
429 if (nr_blocks_need < rrpc->nr_luns)
430 nr_blocks_need = rrpc->nr_luns;
431
432 spin_lock(&lun->lock);
433 while (nr_blocks_need > lun->nr_free_blocks &&
434 !list_empty(&rlun->prio_list)) {
435 struct rrpc_block *rblock = block_prio_find_max(rlun);
436 struct nvm_block *block = rblock->parent;
437
438 if (!rblock->nr_invalid_pages)
439 break;
440
441 list_del_init(&rblock->prio);
442
443 BUG_ON(!block_is_full(rrpc, rblock));
444
445 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
446
447 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
448 if (!gcb)
449 break;
450
451 gcb->rrpc = rrpc;
452 gcb->rblk = rblock;
453 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
454
455 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
456
457 nr_blocks_need--;
458 }
459 spin_unlock(&lun->lock);
460
461 /* TODO: Hint that request queue can be started again */
462}
463
464static void rrpc_gc_queue(struct work_struct *work)
465{
466 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
467 ws_gc);
468 struct rrpc *rrpc = gcb->rrpc;
469 struct rrpc_block *rblk = gcb->rblk;
470 struct nvm_lun *lun = rblk->parent->lun;
471 struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
472
473 spin_lock(&rlun->lock);
474 list_add_tail(&rblk->prio, &rlun->prio_list);
475 spin_unlock(&rlun->lock);
476
477 mempool_free(gcb, rrpc->gcb_pool);
478 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
479 rblk->parent->id);
480}
481
482static const struct block_device_operations rrpc_fops = {
483 .owner = THIS_MODULE,
484};
485
486static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
487{
488 unsigned int i;
489 struct rrpc_lun *rlun, *max_free;
490
491 if (!is_gc)
492 return get_next_lun(rrpc);
493
494 /* during GC, we don't care about RR, instead we want to make
495 * sure that we maintain evenness between the block luns.
496 */
497 max_free = &rrpc->luns[0];
498 /* prevent GC-ing lun from devouring pages of a lun with
499 * little free blocks. We don't take the lock as we only need an
500 * estimate.
501 */
502 rrpc_for_each_lun(rrpc, rlun, i) {
503 if (rlun->parent->nr_free_blocks >
504 max_free->parent->nr_free_blocks)
505 max_free = rlun;
506 }
507
508 return max_free;
509}
510
511static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
b7ceb7d5 512 struct rrpc_block *rblk, u64 paddr)
ae1519ec
MB
513{
514 struct rrpc_addr *gp;
515 struct rrpc_rev_addr *rev;
516
517 BUG_ON(laddr >= rrpc->nr_pages);
518
519 gp = &rrpc->trans_map[laddr];
520 spin_lock(&rrpc->rev_lock);
521 if (gp->rblk)
522 rrpc_page_invalidate(rrpc, gp);
523
524 gp->addr = paddr;
525 gp->rblk = rblk;
526
527 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
528 rev->addr = laddr;
529 spin_unlock(&rrpc->rev_lock);
530
531 return gp;
532}
533
b7ceb7d5 534static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
ae1519ec 535{
b7ceb7d5 536 u64 addr = ADDR_EMPTY;
ae1519ec
MB
537
538 spin_lock(&rblk->lock);
539 if (block_is_full(rrpc, rblk))
540 goto out;
541
542 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
543
544 rblk->next_page++;
545out:
546 spin_unlock(&rblk->lock);
547 return addr;
548}
549
550/* Simple round-robin Logical to physical address translation.
551 *
552 * Retrieve the mapping using the active append point. Then update the ap for
553 * the next write to the disk.
554 *
555 * Returns rrpc_addr with the physical address and block. Remember to return to
556 * rrpc->addr_cache when request is finished.
557 */
558static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
559 int is_gc)
560{
561 struct rrpc_lun *rlun;
562 struct rrpc_block *rblk;
563 struct nvm_lun *lun;
b7ceb7d5 564 u64 paddr;
ae1519ec
MB
565
566 rlun = rrpc_get_lun_rr(rrpc, is_gc);
567 lun = rlun->parent;
568
569 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
570 return NULL;
571
572 spin_lock(&rlun->lock);
573
574 rblk = rlun->cur;
575retry:
576 paddr = rrpc_alloc_addr(rrpc, rblk);
577
578 if (paddr == ADDR_EMPTY) {
579 rblk = rrpc_get_blk(rrpc, rlun, 0);
580 if (rblk) {
581 rrpc_set_lun_cur(rlun, rblk);
582 goto retry;
583 }
584
585 if (is_gc) {
586 /* retry from emergency gc block */
587 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
588 if (paddr == ADDR_EMPTY) {
589 rblk = rrpc_get_blk(rrpc, rlun, 1);
590 if (!rblk) {
591 pr_err("rrpc: no more blocks");
592 goto err;
593 }
594
595 rlun->gc_cur = rblk;
596 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
597 }
598 rblk = rlun->gc_cur;
599 }
600 }
601
602 spin_unlock(&rlun->lock);
603 return rrpc_update_map(rrpc, laddr, rblk, paddr);
604err:
605 spin_unlock(&rlun->lock);
606 return NULL;
607}
608
609static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
610{
611 struct rrpc_block_gc *gcb;
612
613 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
614 if (!gcb) {
615 pr_err("rrpc: unable to queue block for gc.");
616 return;
617 }
618
619 gcb->rrpc = rrpc;
620 gcb->rblk = rblk;
621
622 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
623 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
624}
625
626static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
627 sector_t laddr, uint8_t npages)
628{
629 struct rrpc_addr *p;
630 struct rrpc_block *rblk;
631 struct nvm_lun *lun;
632 int cmnt_size, i;
633
634 for (i = 0; i < npages; i++) {
635 p = &rrpc->trans_map[laddr + i];
636 rblk = p->rblk;
637 lun = rblk->parent->lun;
638
639 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
640 if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk))
641 rrpc_run_gc(rrpc, rblk);
642 }
643}
644
645static int rrpc_end_io(struct nvm_rq *rqd, int error)
646{
647 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
648 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
649 uint8_t npages = rqd->nr_pages;
650 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
651
652 if (bio_data_dir(rqd->bio) == WRITE)
653 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
654
3cd485b1
WT
655 bio_put(rqd->bio);
656
ae1519ec
MB
657 if (rrqd->flags & NVM_IOTYPE_GC)
658 return 0;
659
660 rrpc_unlock_rq(rrpc, rqd);
ae1519ec
MB
661
662 if (npages > 1)
663 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
664 if (rqd->metadata)
665 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
666
667 mempool_free(rqd, rrpc->rq_pool);
668
669 return 0;
670}
671
672static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
673 struct nvm_rq *rqd, unsigned long flags, int npages)
674{
675 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
676 struct rrpc_addr *gp;
677 sector_t laddr = rrpc_get_laddr(bio);
678 int is_gc = flags & NVM_IOTYPE_GC;
679 int i;
680
681 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
682 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
683 return NVM_IO_REQUEUE;
684 }
685
686 for (i = 0; i < npages; i++) {
687 /* We assume that mapping occurs at 4KB granularity */
688 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
689 gp = &rrpc->trans_map[laddr + i];
690
691 if (gp->rblk) {
692 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
693 gp->addr);
694 } else {
695 BUG_ON(is_gc);
696 rrpc_unlock_laddr(rrpc, r);
697 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
698 rqd->dma_ppa_list);
699 return NVM_IO_DONE;
700 }
701 }
702
703 rqd->opcode = NVM_OP_HBREAD;
704
705 return NVM_IO_OK;
706}
707
708static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
709 unsigned long flags)
710{
711 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
712 int is_gc = flags & NVM_IOTYPE_GC;
713 sector_t laddr = rrpc_get_laddr(bio);
714 struct rrpc_addr *gp;
715
716 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
717 return NVM_IO_REQUEUE;
718
719 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
720 gp = &rrpc->trans_map[laddr];
721
722 if (gp->rblk) {
723 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
724 } else {
725 BUG_ON(is_gc);
726 rrpc_unlock_rq(rrpc, rqd);
727 return NVM_IO_DONE;
728 }
729
730 rqd->opcode = NVM_OP_HBREAD;
731 rrqd->addr = gp;
732
733 return NVM_IO_OK;
734}
735
736static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
737 struct nvm_rq *rqd, unsigned long flags, int npages)
738{
739 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
740 struct rrpc_addr *p;
741 sector_t laddr = rrpc_get_laddr(bio);
742 int is_gc = flags & NVM_IOTYPE_GC;
743 int i;
744
745 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
746 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
747 return NVM_IO_REQUEUE;
748 }
749
750 for (i = 0; i < npages; i++) {
751 /* We assume that mapping occurs at 4KB granularity */
752 p = rrpc_map_page(rrpc, laddr + i, is_gc);
753 if (!p) {
754 BUG_ON(is_gc);
755 rrpc_unlock_laddr(rrpc, r);
756 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
757 rqd->dma_ppa_list);
758 rrpc_gc_kick(rrpc);
759 return NVM_IO_REQUEUE;
760 }
761
762 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
763 p->addr);
764 }
765
766 rqd->opcode = NVM_OP_HBWRITE;
767
768 return NVM_IO_OK;
769}
770
771static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
772 struct nvm_rq *rqd, unsigned long flags)
773{
774 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
775 struct rrpc_addr *p;
776 int is_gc = flags & NVM_IOTYPE_GC;
777 sector_t laddr = rrpc_get_laddr(bio);
778
779 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
780 return NVM_IO_REQUEUE;
781
782 p = rrpc_map_page(rrpc, laddr, is_gc);
783 if (!p) {
784 BUG_ON(is_gc);
785 rrpc_unlock_rq(rrpc, rqd);
786 rrpc_gc_kick(rrpc);
787 return NVM_IO_REQUEUE;
788 }
789
790 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
791 rqd->opcode = NVM_OP_HBWRITE;
792 rrqd->addr = p;
793
794 return NVM_IO_OK;
795}
796
797static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
798 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
799{
800 if (npages > 1) {
801 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
802 &rqd->dma_ppa_list);
803 if (!rqd->ppa_list) {
804 pr_err("rrpc: not able to allocate ppa list\n");
805 return NVM_IO_ERR;
806 }
807
808 if (bio_rw(bio) == WRITE)
809 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
810 npages);
811
812 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
813 }
814
815 if (bio_rw(bio) == WRITE)
816 return rrpc_write_rq(rrpc, bio, rqd, flags);
817
818 return rrpc_read_rq(rrpc, bio, rqd, flags);
819}
820
821static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
822 struct nvm_rq *rqd, unsigned long flags)
823{
824 int err;
825 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
826 uint8_t nr_pages = rrpc_get_pages(bio);
827 int bio_size = bio_sectors(bio) << 9;
828
829 if (bio_size < rrpc->dev->sec_size)
830 return NVM_IO_ERR;
831 else if (bio_size > rrpc->dev->max_rq_size)
832 return NVM_IO_ERR;
833
834 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
835 if (err)
836 return err;
837
838 bio_get(bio);
839 rqd->bio = bio;
840 rqd->ins = &rrpc->instance;
841 rqd->nr_pages = nr_pages;
842 rrq->flags = flags;
843
844 err = nvm_submit_io(rrpc->dev, rqd);
845 if (err) {
846 pr_err("rrpc: I/O submission failed: %d\n", err);
3cd485b1 847 bio_put(bio);
ae1519ec
MB
848 return NVM_IO_ERR;
849 }
850
851 return NVM_IO_OK;
852}
853
dece1635 854static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
ae1519ec
MB
855{
856 struct rrpc *rrpc = q->queuedata;
857 struct nvm_rq *rqd;
858 int err;
859
860 if (bio->bi_rw & REQ_DISCARD) {
861 rrpc_discard(rrpc, bio);
dece1635 862 return BLK_QC_T_NONE;
ae1519ec
MB
863 }
864
865 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
866 if (!rqd) {
867 pr_err_ratelimited("rrpc: not able to queue bio.");
868 bio_io_error(bio);
dece1635 869 return BLK_QC_T_NONE;
ae1519ec
MB
870 }
871 memset(rqd, 0, sizeof(struct nvm_rq));
872
873 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
874 switch (err) {
875 case NVM_IO_OK:
dece1635 876 return BLK_QC_T_NONE;
ae1519ec
MB
877 case NVM_IO_ERR:
878 bio_io_error(bio);
879 break;
880 case NVM_IO_DONE:
881 bio_endio(bio);
882 break;
883 case NVM_IO_REQUEUE:
884 spin_lock(&rrpc->bio_lock);
885 bio_list_add(&rrpc->requeue_bios, bio);
886 spin_unlock(&rrpc->bio_lock);
887 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
888 break;
889 }
890
891 mempool_free(rqd, rrpc->rq_pool);
dece1635 892 return BLK_QC_T_NONE;
ae1519ec
MB
893}
894
895static void rrpc_requeue(struct work_struct *work)
896{
897 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
898 struct bio_list bios;
899 struct bio *bio;
900
901 bio_list_init(&bios);
902
903 spin_lock(&rrpc->bio_lock);
904 bio_list_merge(&bios, &rrpc->requeue_bios);
905 bio_list_init(&rrpc->requeue_bios);
906 spin_unlock(&rrpc->bio_lock);
907
908 while ((bio = bio_list_pop(&bios)))
909 rrpc_make_rq(rrpc->disk->queue, bio);
910}
911
912static void rrpc_gc_free(struct rrpc *rrpc)
913{
914 struct rrpc_lun *rlun;
915 int i;
916
917 if (rrpc->krqd_wq)
918 destroy_workqueue(rrpc->krqd_wq);
919
920 if (rrpc->kgc_wq)
921 destroy_workqueue(rrpc->kgc_wq);
922
923 if (!rrpc->luns)
924 return;
925
926 for (i = 0; i < rrpc->nr_luns; i++) {
927 rlun = &rrpc->luns[i];
928
929 if (!rlun->blocks)
930 break;
931 vfree(rlun->blocks);
932 }
933}
934
935static int rrpc_gc_init(struct rrpc *rrpc)
936{
937 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
938 rrpc->nr_luns);
939 if (!rrpc->krqd_wq)
940 return -ENOMEM;
941
942 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
943 if (!rrpc->kgc_wq)
944 return -ENOMEM;
945
946 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
947
948 return 0;
949}
950
951static void rrpc_map_free(struct rrpc *rrpc)
952{
953 vfree(rrpc->rev_trans_map);
954 vfree(rrpc->trans_map);
955}
956
957static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
958{
959 struct rrpc *rrpc = (struct rrpc *)private;
960 struct nvm_dev *dev = rrpc->dev;
961 struct rrpc_addr *addr = rrpc->trans_map + slba;
962 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
963 sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
964 u64 elba = slba + nlb;
965 u64 i;
966
967 if (unlikely(elba > dev->total_pages)) {
968 pr_err("nvm: L2P data from device is out of bounds!\n");
969 return -EINVAL;
970 }
971
972 for (i = 0; i < nlb; i++) {
973 u64 pba = le64_to_cpu(entries[i]);
974 /* LNVM treats address-spaces as silos, LBA and PBA are
975 * equally large and zero-indexed.
976 */
977 if (unlikely(pba >= max_pages && pba != U64_MAX)) {
978 pr_err("nvm: L2P data entry is out of bounds!\n");
979 return -EINVAL;
980 }
981
982 /* Address zero is a special one. The first page on a disk is
983 * protected. As it often holds internal device boot
984 * information.
985 */
986 if (!pba)
987 continue;
988
989 addr[i].addr = pba;
990 raddr[pba].addr = slba + i;
991 }
992
993 return 0;
994}
995
996static int rrpc_map_init(struct rrpc *rrpc)
997{
998 struct nvm_dev *dev = rrpc->dev;
999 sector_t i;
1000 int ret;
1001
1002 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
1003 if (!rrpc->trans_map)
1004 return -ENOMEM;
1005
1006 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1007 * rrpc->nr_pages);
1008 if (!rrpc->rev_trans_map)
1009 return -ENOMEM;
1010
1011 for (i = 0; i < rrpc->nr_pages; i++) {
1012 struct rrpc_addr *p = &rrpc->trans_map[i];
1013 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1014
1015 p->addr = ADDR_EMPTY;
1016 r->addr = ADDR_EMPTY;
1017 }
1018
1019 if (!dev->ops->get_l2p_tbl)
1020 return 0;
1021
1022 /* Bring up the mapping table from device */
16f26c3a 1023 ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_pages,
ae1519ec
MB
1024 rrpc_l2p_update, rrpc);
1025 if (ret) {
1026 pr_err("nvm: rrpc: could not read L2P table.\n");
1027 return -EINVAL;
1028 }
1029
1030 return 0;
1031}
1032
1033
1034/* Minimum pages needed within a lun */
1035#define PAGE_POOL_SIZE 16
1036#define ADDR_POOL_SIZE 64
1037
1038static int rrpc_core_init(struct rrpc *rrpc)
1039{
1040 down_write(&rrpc_lock);
1041 if (!rrpc_gcb_cache) {
1042 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1043 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1044 if (!rrpc_gcb_cache) {
1045 up_write(&rrpc_lock);
1046 return -ENOMEM;
1047 }
1048
1049 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1050 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1051 0, 0, NULL);
1052 if (!rrpc_rq_cache) {
1053 kmem_cache_destroy(rrpc_gcb_cache);
1054 up_write(&rrpc_lock);
1055 return -ENOMEM;
1056 }
1057 }
1058 up_write(&rrpc_lock);
1059
1060 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1061 if (!rrpc->page_pool)
1062 return -ENOMEM;
1063
1064 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1065 rrpc_gcb_cache);
1066 if (!rrpc->gcb_pool)
1067 return -ENOMEM;
1068
1069 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1070 if (!rrpc->rq_pool)
1071 return -ENOMEM;
1072
1073 spin_lock_init(&rrpc->inflights.lock);
1074 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1075
1076 return 0;
1077}
1078
1079static void rrpc_core_free(struct rrpc *rrpc)
1080{
1081 mempool_destroy(rrpc->page_pool);
1082 mempool_destroy(rrpc->gcb_pool);
1083 mempool_destroy(rrpc->rq_pool);
1084}
1085
1086static void rrpc_luns_free(struct rrpc *rrpc)
1087{
1088 kfree(rrpc->luns);
1089}
1090
1091static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1092{
1093 struct nvm_dev *dev = rrpc->dev;
1094 struct rrpc_lun *rlun;
1095 int i, j;
1096
1097 spin_lock_init(&rrpc->rev_lock);
1098
1099 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1100 GFP_KERNEL);
1101 if (!rrpc->luns)
1102 return -ENOMEM;
1103
1104 /* 1:1 mapping */
1105 for (i = 0; i < rrpc->nr_luns; i++) {
1106 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1107
1108 if (dev->pgs_per_blk >
1109 MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1110 pr_err("rrpc: number of pages per block too high.");
1111 goto err;
1112 }
1113
1114 rlun = &rrpc->luns[i];
1115 rlun->rrpc = rrpc;
1116 rlun->parent = lun;
1117 INIT_LIST_HEAD(&rlun->prio_list);
1118 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1119 spin_lock_init(&rlun->lock);
1120
1121 rrpc->total_blocks += dev->blks_per_lun;
1122 rrpc->nr_pages += dev->sec_per_lun;
1123
1124 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1125 rrpc->dev->blks_per_lun);
1126 if (!rlun->blocks)
1127 goto err;
1128
1129 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1130 struct rrpc_block *rblk = &rlun->blocks[j];
1131 struct nvm_block *blk = &lun->blocks[j];
1132
1133 rblk->parent = blk;
1134 INIT_LIST_HEAD(&rblk->prio);
1135 spin_lock_init(&rblk->lock);
1136 }
1137 }
1138
1139 return 0;
1140err:
1141 return -ENOMEM;
1142}
1143
1144static void rrpc_free(struct rrpc *rrpc)
1145{
1146 rrpc_gc_free(rrpc);
1147 rrpc_map_free(rrpc);
1148 rrpc_core_free(rrpc);
1149 rrpc_luns_free(rrpc);
1150
1151 kfree(rrpc);
1152}
1153
1154static void rrpc_exit(void *private)
1155{
1156 struct rrpc *rrpc = private;
1157
1158 del_timer(&rrpc->gc_timer);
1159
1160 flush_workqueue(rrpc->krqd_wq);
1161 flush_workqueue(rrpc->kgc_wq);
1162
1163 rrpc_free(rrpc);
1164}
1165
1166static sector_t rrpc_capacity(void *private)
1167{
1168 struct rrpc *rrpc = private;
1169 struct nvm_dev *dev = rrpc->dev;
1170 sector_t reserved, provisioned;
1171
1172 /* cur, gc, and two emergency blocks for each lun */
1173 reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1174 provisioned = rrpc->nr_pages - reserved;
1175
1176 if (reserved > rrpc->nr_pages) {
1177 pr_err("rrpc: not enough space available to expose storage.\n");
1178 return 0;
1179 }
1180
1181 sector_div(provisioned, 10);
1182 return provisioned * 9 * NR_PHY_IN_LOG;
1183}
1184
1185/*
1186 * Looks up the logical address from reverse trans map and check if its valid by
1187 * comparing the logical to physical address with the physical address.
1188 * Returns 0 on free, otherwise 1 if in use
1189 */
1190static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1191{
1192 struct nvm_dev *dev = rrpc->dev;
1193 int offset;
1194 struct rrpc_addr *laddr;
b7ceb7d5 1195 u64 paddr, pladdr;
ae1519ec
MB
1196
1197 for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1198 paddr = block_to_addr(rrpc, rblk) + offset;
1199
1200 pladdr = rrpc->rev_trans_map[paddr].addr;
1201 if (pladdr == ADDR_EMPTY)
1202 continue;
1203
1204 laddr = &rrpc->trans_map[pladdr];
1205
1206 if (paddr == laddr->addr) {
1207 laddr->rblk = rblk;
1208 } else {
1209 set_bit(offset, rblk->invalid_pages);
1210 rblk->nr_invalid_pages++;
1211 }
1212 }
1213}
1214
1215static int rrpc_blocks_init(struct rrpc *rrpc)
1216{
1217 struct rrpc_lun *rlun;
1218 struct rrpc_block *rblk;
1219 int lun_iter, blk_iter;
1220
1221 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1222 rlun = &rrpc->luns[lun_iter];
1223
1224 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1225 blk_iter++) {
1226 rblk = &rlun->blocks[blk_iter];
1227 rrpc_block_map_update(rrpc, rblk);
1228 }
1229 }
1230
1231 return 0;
1232}
1233
1234static int rrpc_luns_configure(struct rrpc *rrpc)
1235{
1236 struct rrpc_lun *rlun;
1237 struct rrpc_block *rblk;
1238 int i;
1239
1240 for (i = 0; i < rrpc->nr_luns; i++) {
1241 rlun = &rrpc->luns[i];
1242
1243 rblk = rrpc_get_blk(rrpc, rlun, 0);
1244 if (!rblk)
d3d1a438 1245 goto err;
ae1519ec
MB
1246
1247 rrpc_set_lun_cur(rlun, rblk);
1248
1249 /* Emergency gc block */
1250 rblk = rrpc_get_blk(rrpc, rlun, 1);
1251 if (!rblk)
d3d1a438 1252 goto err;
ae1519ec
MB
1253 rlun->gc_cur = rblk;
1254 }
1255
1256 return 0;
d3d1a438
WT
1257err:
1258 rrpc_put_blks(rrpc);
1259 return -EINVAL;
ae1519ec
MB
1260}
1261
1262static struct nvm_tgt_type tt_rrpc;
1263
1264static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1265 int lun_begin, int lun_end)
1266{
1267 struct request_queue *bqueue = dev->q;
1268 struct request_queue *tqueue = tdisk->queue;
1269 struct rrpc *rrpc;
1270 int ret;
1271
1272 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1273 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1274 dev->identity.dom);
1275 return ERR_PTR(-EINVAL);
1276 }
1277
1278 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1279 if (!rrpc)
1280 return ERR_PTR(-ENOMEM);
1281
1282 rrpc->instance.tt = &tt_rrpc;
1283 rrpc->dev = dev;
1284 rrpc->disk = tdisk;
1285
1286 bio_list_init(&rrpc->requeue_bios);
1287 spin_lock_init(&rrpc->bio_lock);
1288 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1289
1290 rrpc->nr_luns = lun_end - lun_begin + 1;
1291
1292 /* simple round-robin strategy */
1293 atomic_set(&rrpc->next_lun, -1);
1294
1295 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1296 if (ret) {
1297 pr_err("nvm: rrpc: could not initialize luns\n");
1298 goto err;
1299 }
1300
1301 rrpc->poffset = dev->sec_per_lun * lun_begin;
1302 rrpc->lun_offset = lun_begin;
1303
1304 ret = rrpc_core_init(rrpc);
1305 if (ret) {
1306 pr_err("nvm: rrpc: could not initialize core\n");
1307 goto err;
1308 }
1309
1310 ret = rrpc_map_init(rrpc);
1311 if (ret) {
1312 pr_err("nvm: rrpc: could not initialize maps\n");
1313 goto err;
1314 }
1315
1316 ret = rrpc_blocks_init(rrpc);
1317 if (ret) {
1318 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1319 goto err;
1320 }
1321
1322 ret = rrpc_luns_configure(rrpc);
1323 if (ret) {
1324 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1325 goto err;
1326 }
1327
1328 ret = rrpc_gc_init(rrpc);
1329 if (ret) {
1330 pr_err("nvm: rrpc: could not initialize gc\n");
1331 goto err;
1332 }
1333
1334 /* inherit the size from the underlying device */
1335 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1336 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1337
1338 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1339 rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1340
1341 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1342
1343 return rrpc;
1344err:
1345 rrpc_free(rrpc);
1346 return ERR_PTR(ret);
1347}
1348
1349/* round robin, page-based FTL, and cost-based GC */
1350static struct nvm_tgt_type tt_rrpc = {
1351 .name = "rrpc",
1352 .version = {1, 0, 0},
1353
1354 .make_rq = rrpc_make_rq,
1355 .capacity = rrpc_capacity,
1356 .end_io = rrpc_end_io,
1357
1358 .init = rrpc_init,
1359 .exit = rrpc_exit,
1360};
1361
1362static int __init rrpc_module_init(void)
1363{
1364 return nvm_register_target(&tt_rrpc);
1365}
1366
1367static void rrpc_module_exit(void)
1368{
1369 nvm_unregister_target(&tt_rrpc);
1370}
1371
1372module_init(rrpc_module_init);
1373module_exit(rrpc_module_exit);
1374MODULE_LICENSE("GPL v2");
1375MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");
This page took 0.085474 seconds and 5 git commands to generate.