dm cache policy mq: use list_del_init instead of list_del + INIT_LIST_HEAD
[deliverable/linux.git] / drivers / md / dm-cache-policy-mq.c
CommitLineData
f2836352
JT
1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-cache-policy.h"
8#include "dm.h"
9
10#include <linux/hash.h>
11#include <linux/module.h>
12#include <linux/mutex.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15
16#define DM_MSG_PREFIX "cache-policy-mq"
f2836352
JT
17
18static struct kmem_cache *mq_entry_cache;
19
20/*----------------------------------------------------------------*/
21
22static unsigned next_power(unsigned n, unsigned min)
23{
24 return roundup_pow_of_two(max(n, min));
25}
26
27/*----------------------------------------------------------------*/
28
f2836352
JT
29/*
30 * Large, sequential ios are probably better left on the origin device since
31 * spindles tend to have good bandwidth.
32 *
33 * The io_tracker tries to spot when the io is in one of these sequential
34 * modes.
35 *
36 * Two thresholds to switch between random and sequential io mode are defaulting
37 * as follows and can be adjusted via the constructor and message interfaces.
38 */
39#define RANDOM_THRESHOLD_DEFAULT 4
40#define SEQUENTIAL_THRESHOLD_DEFAULT 512
41
42enum io_pattern {
43 PATTERN_SEQUENTIAL,
44 PATTERN_RANDOM
45};
46
47struct io_tracker {
48 enum io_pattern pattern;
49
50 unsigned nr_seq_samples;
51 unsigned nr_rand_samples;
52 unsigned thresholds[2];
53
54 dm_oblock_t last_end_oblock;
55};
56
57static void iot_init(struct io_tracker *t,
58 int sequential_threshold, int random_threshold)
59{
60 t->pattern = PATTERN_RANDOM;
61 t->nr_seq_samples = 0;
62 t->nr_rand_samples = 0;
63 t->last_end_oblock = 0;
64 t->thresholds[PATTERN_RANDOM] = random_threshold;
65 t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold;
66}
67
68static enum io_pattern iot_pattern(struct io_tracker *t)
69{
70 return t->pattern;
71}
72
73static void iot_update_stats(struct io_tracker *t, struct bio *bio)
74{
75 if (bio->bi_sector == from_oblock(t->last_end_oblock) + 1)
76 t->nr_seq_samples++;
77 else {
78 /*
79 * Just one non-sequential IO is enough to reset the
80 * counters.
81 */
82 if (t->nr_seq_samples) {
83 t->nr_seq_samples = 0;
84 t->nr_rand_samples = 0;
85 }
86
87 t->nr_rand_samples++;
88 }
89
90 t->last_end_oblock = to_oblock(bio->bi_sector + bio_sectors(bio) - 1);
91}
92
93static void iot_check_for_pattern_switch(struct io_tracker *t)
94{
95 switch (t->pattern) {
96 case PATTERN_SEQUENTIAL:
97 if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) {
98 t->pattern = PATTERN_RANDOM;
99 t->nr_seq_samples = t->nr_rand_samples = 0;
100 }
101 break;
102
103 case PATTERN_RANDOM:
104 if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) {
105 t->pattern = PATTERN_SEQUENTIAL;
106 t->nr_seq_samples = t->nr_rand_samples = 0;
107 }
108 break;
109 }
110}
111
112static void iot_examine_bio(struct io_tracker *t, struct bio *bio)
113{
114 iot_update_stats(t, bio);
115 iot_check_for_pattern_switch(t);
116}
117
118/*----------------------------------------------------------------*/
119
120
121/*
122 * This queue is divided up into different levels. Allowing us to push
123 * entries to the back of any of the levels. Think of it as a partially
124 * sorted queue.
125 */
126#define NR_QUEUE_LEVELS 16u
127
128struct queue {
129 struct list_head qs[NR_QUEUE_LEVELS];
130};
131
132static void queue_init(struct queue *q)
133{
134 unsigned i;
135
136 for (i = 0; i < NR_QUEUE_LEVELS; i++)
137 INIT_LIST_HEAD(q->qs + i);
138}
139
c86c3070
JT
140/*
141 * Checks to see if the queue is empty.
142 * FIXME: reduce cpu usage.
143 */
144static bool queue_empty(struct queue *q)
145{
146 unsigned i;
147
148 for (i = 0; i < NR_QUEUE_LEVELS; i++)
149 if (!list_empty(q->qs + i))
150 return false;
151
152 return true;
153}
154
f2836352
JT
155/*
156 * Insert an entry to the back of the given level.
157 */
158static void queue_push(struct queue *q, unsigned level, struct list_head *elt)
159{
160 list_add_tail(elt, q->qs + level);
161}
162
163static void queue_remove(struct list_head *elt)
164{
165 list_del(elt);
166}
167
168/*
169 * Shifts all regions down one level. This has no effect on the order of
170 * the queue.
171 */
172static void queue_shift_down(struct queue *q)
173{
174 unsigned level;
175
176 for (level = 1; level < NR_QUEUE_LEVELS; level++)
177 list_splice_init(q->qs + level, q->qs + level - 1);
178}
179
180/*
181 * Gives us the oldest entry of the lowest popoulated level. If the first
182 * level is emptied then we shift down one level.
183 */
184static struct list_head *queue_pop(struct queue *q)
185{
186 unsigned level;
187 struct list_head *r;
188
189 for (level = 0; level < NR_QUEUE_LEVELS; level++)
190 if (!list_empty(q->qs + level)) {
191 r = q->qs[level].next;
192 list_del(r);
193
194 /* have we just emptied the bottom level? */
195 if (level == 0 && list_empty(q->qs))
196 queue_shift_down(q);
197
198 return r;
199 }
200
201 return NULL;
202}
203
204static struct list_head *list_pop(struct list_head *lh)
205{
206 struct list_head *r = lh->next;
207
208 BUG_ON(!r);
209 list_del_init(r);
210
211 return r;
212}
213
214/*----------------------------------------------------------------*/
215
216/*
217 * Describes a cache entry. Used in both the cache and the pre_cache.
218 */
219struct entry {
220 struct hlist_node hlist;
221 struct list_head list;
222 dm_oblock_t oblock;
f2836352
JT
223
224 /*
225 * FIXME: pack these better
226 */
01911c19 227 bool dirty:1;
f2836352
JT
228 unsigned hit_count;
229 unsigned generation;
230 unsigned tick;
231};
232
633618e3
JT
233/*
234 * Rather than storing the cblock in an entry, we allocate all entries in
235 * an array, and infer the cblock from the entry position.
236 *
237 * Free entries are linked together into a list.
238 */
239struct entry_pool {
240 struct entry *entries, *entries_end;
241 struct list_head free;
242 unsigned nr_allocated;
243};
244
245static int epool_init(struct entry_pool *ep, unsigned nr_entries)
246{
247 unsigned i;
248
249 ep->entries = vzalloc(sizeof(struct entry) * nr_entries);
250 if (!ep->entries)
251 return -ENOMEM;
252
253 ep->entries_end = ep->entries + nr_entries;
254
255 INIT_LIST_HEAD(&ep->free);
256 for (i = 0; i < nr_entries; i++)
257 list_add(&ep->entries[i].list, &ep->free);
258
259 ep->nr_allocated = 0;
260
261 return 0;
262}
263
264static void epool_exit(struct entry_pool *ep)
265{
266 vfree(ep->entries);
267}
268
269static struct entry *alloc_entry(struct entry_pool *ep)
270{
271 struct entry *e;
272
273 if (list_empty(&ep->free))
274 return NULL;
275
276 e = list_entry(list_pop(&ep->free), struct entry, list);
277 INIT_LIST_HEAD(&e->list);
278 INIT_HLIST_NODE(&e->hlist);
279 ep->nr_allocated++;
280
281 return e;
282}
283
284/*
285 * This assumes the cblock hasn't already been allocated.
286 */
287static struct entry *alloc_particular_entry(struct entry_pool *ep, dm_cblock_t cblock)
288{
289 struct entry *e = ep->entries + from_cblock(cblock);
633618e3 290
b8158051 291 list_del_init(&e->list);
633618e3
JT
292 INIT_HLIST_NODE(&e->hlist);
293 ep->nr_allocated++;
294
295 return e;
296}
297
298static void free_entry(struct entry_pool *ep, struct entry *e)
299{
300 BUG_ON(!ep->nr_allocated);
301 ep->nr_allocated--;
302 INIT_HLIST_NODE(&e->hlist);
303 list_add(&e->list, &ep->free);
304}
305
532906aa
JT
306/*
307 * Returns NULL if the entry is free.
308 */
309static struct entry *epool_find(struct entry_pool *ep, dm_cblock_t cblock)
310{
311 struct entry *e = ep->entries + from_cblock(cblock);
7b6b2bc9 312 return !hlist_unhashed(&e->hlist) ? e : NULL;
532906aa
JT
313}
314
633618e3
JT
315static bool epool_empty(struct entry_pool *ep)
316{
317 return list_empty(&ep->free);
318}
319
320static bool in_pool(struct entry_pool *ep, struct entry *e)
321{
322 return e >= ep->entries && e < ep->entries_end;
323}
324
325static dm_cblock_t infer_cblock(struct entry_pool *ep, struct entry *e)
326{
327 return to_cblock(e - ep->entries);
328}
329
330/*----------------------------------------------------------------*/
331
f2836352
JT
332struct mq_policy {
333 struct dm_cache_policy policy;
334
335 /* protects everything */
336 struct mutex lock;
337 dm_cblock_t cache_size;
338 struct io_tracker tracker;
339
633618e3
JT
340 /*
341 * Entries come from two pools, one of pre-cache entries, and one
342 * for the cache proper.
343 */
344 struct entry_pool pre_cache_pool;
345 struct entry_pool cache_pool;
346
f2836352 347 /*
01911c19
JT
348 * We maintain three queues of entries. The cache proper,
349 * consisting of a clean and dirty queue, contains the currently
350 * active mappings. Whereas the pre_cache tracks blocks that
351 * are being hit frequently and potential candidates for promotion
352 * to the cache.
f2836352
JT
353 */
354 struct queue pre_cache;
01911c19
JT
355 struct queue cache_clean;
356 struct queue cache_dirty;
f2836352
JT
357
358 /*
359 * Keeps track of time, incremented by the core. We use this to
360 * avoid attributing multiple hits within the same tick.
361 *
362 * Access to tick_protected should be done with the spin lock held.
363 * It's copied to tick at the start of the map function (within the
364 * mutex).
365 */
366 spinlock_t tick_lock;
367 unsigned tick_protected;
368 unsigned tick;
369
370 /*
371 * A count of the number of times the map function has been called
372 * and found an entry in the pre_cache or cache. Currently used to
373 * calculate the generation.
374 */
375 unsigned hit_count;
376
377 /*
378 * A generation is a longish period that is used to trigger some
379 * book keeping effects. eg, decrementing hit counts on entries.
380 * This is needed to allow the cache to evolve as io patterns
381 * change.
382 */
383 unsigned generation;
384 unsigned generation_period; /* in lookups (will probably change) */
385
386 /*
387 * Entries in the pre_cache whose hit count passes the promotion
388 * threshold move to the cache proper. Working out the correct
389 * value for the promotion_threshold is crucial to this policy.
390 */
391 unsigned promote_threshold;
392
f2836352
JT
393 /*
394 * The hash table allows us to quickly find an entry by origin
395 * block. Both pre_cache and cache entries are in here.
396 */
397 unsigned nr_buckets;
398 dm_block_t hash_bits;
399 struct hlist_head *table;
400};
401
f2836352
JT
402/*----------------------------------------------------------------*/
403
404/*
405 * Simple hash table implementation. Should replace with the standard hash
406 * table that's making its way upstream.
407 */
408static void hash_insert(struct mq_policy *mq, struct entry *e)
409{
410 unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits);
411
412 hlist_add_head(&e->hlist, mq->table + h);
413}
414
415static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock)
416{
417 unsigned h = hash_64(from_oblock(oblock), mq->hash_bits);
418 struct hlist_head *bucket = mq->table + h;
419 struct entry *e;
420
421 hlist_for_each_entry(e, bucket, hlist)
422 if (e->oblock == oblock) {
423 hlist_del(&e->hlist);
424 hlist_add_head(&e->hlist, bucket);
425 return e;
426 }
427
428 return NULL;
429}
430
431static void hash_remove(struct entry *e)
432{
433 hlist_del(&e->hlist);
434}
435
436/*----------------------------------------------------------------*/
437
f2836352
JT
438static bool any_free_cblocks(struct mq_policy *mq)
439{
633618e3 440 return !epool_empty(&mq->cache_pool);
f2836352
JT
441}
442
c86c3070
JT
443static bool any_clean_cblocks(struct mq_policy *mq)
444{
445 return !queue_empty(&mq->cache_clean);
446}
447
f2836352
JT
448/*----------------------------------------------------------------*/
449
450/*
451 * Now we get to the meat of the policy. This section deals with deciding
452 * when to to add entries to the pre_cache and cache, and move between
453 * them.
454 */
455
456/*
457 * The queue level is based on the log2 of the hit count.
458 */
459static unsigned queue_level(struct entry *e)
460{
461 return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u);
462}
463
633618e3
JT
464static bool in_cache(struct mq_policy *mq, struct entry *e)
465{
466 return in_pool(&mq->cache_pool, e);
467}
468
f2836352
JT
469/*
470 * Inserts the entry into the pre_cache or the cache. Ensures the cache
633618e3
JT
471 * block is marked as allocated if necc. Inserts into the hash table.
472 * Sets the tick which records when the entry was last moved about.
f2836352
JT
473 */
474static void push(struct mq_policy *mq, struct entry *e)
475{
476 e->tick = mq->tick;
477 hash_insert(mq, e);
478
633618e3 479 if (in_cache(mq, e))
01911c19
JT
480 queue_push(e->dirty ? &mq->cache_dirty : &mq->cache_clean,
481 queue_level(e), &e->list);
633618e3 482 else
f2836352
JT
483 queue_push(&mq->pre_cache, queue_level(e), &e->list);
484}
485
486/*
487 * Removes an entry from pre_cache or cache. Removes from the hash table.
f2836352
JT
488 */
489static void del(struct mq_policy *mq, struct entry *e)
490{
491 queue_remove(&e->list);
492 hash_remove(e);
f2836352
JT
493}
494
495/*
496 * Like del, except it removes the first entry in the queue (ie. the least
497 * recently used).
498 */
499static struct entry *pop(struct mq_policy *mq, struct queue *q)
500{
0184b44e
JT
501 struct entry *e;
502 struct list_head *h = queue_pop(q);
f2836352 503
0184b44e
JT
504 if (!h)
505 return NULL;
f2836352 506
0184b44e
JT
507 e = container_of(h, struct entry, list);
508 hash_remove(e);
f2836352
JT
509
510 return e;
511}
512
513/*
514 * Has this entry already been updated?
515 */
516static bool updated_this_tick(struct mq_policy *mq, struct entry *e)
517{
518 return mq->tick == e->tick;
519}
520
521/*
522 * The promotion threshold is adjusted every generation. As are the counts
523 * of the entries.
524 *
525 * At the moment the threshold is taken by averaging the hit counts of some
01911c19
JT
526 * of the entries in the cache (the first 20 entries across all levels in
527 * ascending order, giving preference to the clean entries at each level).
f2836352
JT
528 *
529 * We can be much cleverer than this though. For example, each promotion
530 * could bump up the threshold helping to prevent churn. Much more to do
531 * here.
532 */
533
534#define MAX_TO_AVERAGE 20
535
536static void check_generation(struct mq_policy *mq)
537{
538 unsigned total = 0, nr = 0, count = 0, level;
539 struct list_head *head;
540 struct entry *e;
541
633618e3 542 if ((mq->hit_count >= mq->generation_period) && (epool_empty(&mq->cache_pool))) {
f2836352
JT
543 mq->hit_count = 0;
544 mq->generation++;
545
546 for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) {
01911c19
JT
547 head = mq->cache_clean.qs + level;
548 list_for_each_entry(e, head, list) {
549 nr++;
550 total += e->hit_count;
551
552 if (++count >= MAX_TO_AVERAGE)
553 break;
554 }
555
556 head = mq->cache_dirty.qs + level;
f2836352
JT
557 list_for_each_entry(e, head, list) {
558 nr++;
559 total += e->hit_count;
560
561 if (++count >= MAX_TO_AVERAGE)
562 break;
563 }
564 }
565
566 mq->promote_threshold = nr ? total / nr : 1;
567 if (mq->promote_threshold * nr < total)
568 mq->promote_threshold++;
569 }
570}
571
572/*
573 * Whenever we use an entry we bump up it's hit counter, and push it to the
574 * back to it's current level.
575 */
576static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e)
577{
578 if (updated_this_tick(mq, e))
579 return;
580
581 e->hit_count++;
582 mq->hit_count++;
583 check_generation(mq);
584
585 /* generation adjustment, to stop the counts increasing forever. */
586 /* FIXME: divide? */
587 /* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */
588 e->generation = mq->generation;
589
590 del(mq, e);
591 push(mq, e);
592}
593
594/*
595 * Demote the least recently used entry from the cache to the pre_cache.
596 * Returns the new cache entry to use, and the old origin block it was
597 * mapped to.
598 *
599 * We drop the hit count on the demoted entry back to 1 to stop it bouncing
600 * straight back into the cache if it's subsequently hit. There are
601 * various options here, and more experimentation would be good:
602 *
603 * - just forget about the demoted entry completely (ie. don't insert it
604 into the pre_cache).
605 * - divide the hit count rather that setting to some hard coded value.
606 * - set the hit count to a hard coded value other than 1, eg, is it better
607 * if it goes in at level 2?
608 */
633618e3 609static int demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock)
f2836352 610{
01911c19 611 struct entry *demoted = pop(mq, &mq->cache_clean);
f2836352 612
01911c19
JT
613 if (!demoted)
614 /*
615 * We could get a block from mq->cache_dirty, but that
616 * would add extra latency to the triggering bio as it
617 * waits for the writeback. Better to not promote this
618 * time and hope there's a clean block next time this block
619 * is hit.
620 */
621 return -ENOSPC;
622
f2836352 623 *oblock = demoted->oblock;
633618e3
JT
624 free_entry(&mq->cache_pool, demoted);
625
626 /*
627 * We used to put the demoted block into the pre-cache, but I think
628 * it's simpler to just let it work it's way up from zero again.
629 * Stops blocks flickering in and out of the cache.
630 */
f2836352 631
01911c19 632 return 0;
f2836352
JT
633}
634
635/*
636 * We modify the basic promotion_threshold depending on the specific io.
637 *
638 * If the origin block has been discarded then there's no cost to copy it
639 * to the cache.
640 *
641 * We bias towards reads, since they can be demoted at no cost if they
642 * haven't been dirtied.
643 */
644#define DISCARDED_PROMOTE_THRESHOLD 1
645#define READ_PROMOTE_THRESHOLD 4
646#define WRITE_PROMOTE_THRESHOLD 8
647
648static unsigned adjusted_promote_threshold(struct mq_policy *mq,
649 bool discarded_oblock, int data_dir)
650{
c86c3070
JT
651 if (data_dir == READ)
652 return mq->promote_threshold + READ_PROMOTE_THRESHOLD;
653
654 if (discarded_oblock && (any_free_cblocks(mq) || any_clean_cblocks(mq))) {
f2836352
JT
655 /*
656 * We don't need to do any copying at all, so give this a
c86c3070 657 * very low threshold.
f2836352
JT
658 */
659 return DISCARDED_PROMOTE_THRESHOLD;
c86c3070 660 }
f2836352 661
c86c3070 662 return mq->promote_threshold + WRITE_PROMOTE_THRESHOLD;
f2836352
JT
663}
664
665static bool should_promote(struct mq_policy *mq, struct entry *e,
666 bool discarded_oblock, int data_dir)
667{
668 return e->hit_count >=
669 adjusted_promote_threshold(mq, discarded_oblock, data_dir);
670}
671
672static int cache_entry_found(struct mq_policy *mq,
673 struct entry *e,
674 struct policy_result *result)
675{
676 requeue_and_update_tick(mq, e);
677
633618e3 678 if (in_cache(mq, e)) {
f2836352 679 result->op = POLICY_HIT;
633618e3 680 result->cblock = infer_cblock(&mq->cache_pool, e);
f2836352
JT
681 }
682
683 return 0;
684}
685
686/*
0184b44e 687 * Moves an entry from the pre_cache to the cache. The main work is
f2836352
JT
688 * finding which cache block to use.
689 */
690static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e,
691 struct policy_result *result)
692{
01911c19 693 int r;
633618e3 694 struct entry *new_e;
f2836352 695
633618e3
JT
696 /* Ensure there's a free cblock in the cache */
697 if (epool_empty(&mq->cache_pool)) {
f2836352 698 result->op = POLICY_REPLACE;
633618e3 699 r = demote_cblock(mq, &result->old_oblock);
01911c19
JT
700 if (r) {
701 result->op = POLICY_MISS;
702 return 0;
703 }
f2836352
JT
704 } else
705 result->op = POLICY_NEW;
706
633618e3
JT
707 new_e = alloc_entry(&mq->cache_pool);
708 BUG_ON(!new_e);
709
710 new_e->oblock = e->oblock;
711 new_e->dirty = false;
712 new_e->hit_count = e->hit_count;
713 new_e->generation = e->generation;
714 new_e->tick = e->tick;
f2836352
JT
715
716 del(mq, e);
633618e3
JT
717 free_entry(&mq->pre_cache_pool, e);
718 push(mq, new_e);
719
720 result->cblock = infer_cblock(&mq->cache_pool, new_e);
f2836352
JT
721
722 return 0;
723}
724
725static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e,
726 bool can_migrate, bool discarded_oblock,
727 int data_dir, struct policy_result *result)
728{
729 int r = 0;
730 bool updated = updated_this_tick(mq, e);
731
f2836352 732 if ((!discarded_oblock && updated) ||
af95e7a6
JT
733 !should_promote(mq, e, discarded_oblock, data_dir)) {
734 requeue_and_update_tick(mq, e);
f2836352 735 result->op = POLICY_MISS;
af95e7a6
JT
736
737 } else if (!can_migrate)
f2836352 738 r = -EWOULDBLOCK;
af95e7a6
JT
739
740 else {
741 requeue_and_update_tick(mq, e);
f2836352 742 r = pre_cache_to_cache(mq, e, result);
af95e7a6 743 }
f2836352
JT
744
745 return r;
746}
747
748static void insert_in_pre_cache(struct mq_policy *mq,
749 dm_oblock_t oblock)
750{
633618e3 751 struct entry *e = alloc_entry(&mq->pre_cache_pool);
f2836352
JT
752
753 if (!e)
754 /*
755 * There's no spare entry structure, so we grab the least
756 * used one from the pre_cache.
757 */
758 e = pop(mq, &mq->pre_cache);
759
760 if (unlikely(!e)) {
761 DMWARN("couldn't pop from pre cache");
762 return;
763 }
764
633618e3
JT
765 e->dirty = false;
766 e->oblock = oblock;
767 e->hit_count = 1;
768 e->generation = mq->generation;
769 push(mq, e);
f2836352
JT
770}
771
772static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock,
773 struct policy_result *result)
774{
c86c3070 775 int r;
f2836352 776 struct entry *e;
f2836352 777
633618e3
JT
778 if (epool_empty(&mq->cache_pool)) {
779 result->op = POLICY_REPLACE;
780 r = demote_cblock(mq, &result->old_oblock);
c86c3070
JT
781 if (unlikely(r)) {
782 result->op = POLICY_MISS;
783 insert_in_pre_cache(mq, oblock);
784 return;
785 }
f2836352 786
c86c3070
JT
787 /*
788 * This will always succeed, since we've just demoted.
789 */
633618e3
JT
790 e = alloc_entry(&mq->cache_pool);
791 BUG_ON(!e);
c86c3070
JT
792
793 } else {
633618e3 794 e = alloc_entry(&mq->cache_pool);
c86c3070 795 result->op = POLICY_NEW;
f2836352
JT
796 }
797
798 e->oblock = oblock;
01911c19 799 e->dirty = false;
f2836352
JT
800 e->hit_count = 1;
801 e->generation = mq->generation;
802 push(mq, e);
803
633618e3 804 result->cblock = infer_cblock(&mq->cache_pool, e);
f2836352
JT
805}
806
807static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock,
808 bool can_migrate, bool discarded_oblock,
809 int data_dir, struct policy_result *result)
810{
811 if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) == 1) {
812 if (can_migrate)
813 insert_in_cache(mq, oblock, result);
814 else
815 return -EWOULDBLOCK;
816 } else {
817 insert_in_pre_cache(mq, oblock);
818 result->op = POLICY_MISS;
819 }
820
821 return 0;
822}
823
824/*
825 * Looks the oblock up in the hash table, then decides whether to put in
826 * pre_cache, or cache etc.
827 */
828static int map(struct mq_policy *mq, dm_oblock_t oblock,
829 bool can_migrate, bool discarded_oblock,
830 int data_dir, struct policy_result *result)
831{
832 int r = 0;
833 struct entry *e = hash_lookup(mq, oblock);
834
633618e3 835 if (e && in_cache(mq, e))
f2836352 836 r = cache_entry_found(mq, e, result);
633618e3 837
f2836352
JT
838 else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL)
839 result->op = POLICY_MISS;
633618e3 840
f2836352
JT
841 else if (e)
842 r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock,
843 data_dir, result);
633618e3 844
f2836352
JT
845 else
846 r = no_entry_found(mq, oblock, can_migrate, discarded_oblock,
847 data_dir, result);
848
849 if (r == -EWOULDBLOCK)
850 result->op = POLICY_MISS;
851
852 return r;
853}
854
855/*----------------------------------------------------------------*/
856
857/*
858 * Public interface, via the policy struct. See dm-cache-policy.h for a
859 * description of these.
860 */
861
862static struct mq_policy *to_mq_policy(struct dm_cache_policy *p)
863{
864 return container_of(p, struct mq_policy, policy);
865}
866
867static void mq_destroy(struct dm_cache_policy *p)
868{
869 struct mq_policy *mq = to_mq_policy(p);
870
f2836352 871 kfree(mq->table);
633618e3
JT
872 epool_exit(&mq->cache_pool);
873 epool_exit(&mq->pre_cache_pool);
f2836352
JT
874 kfree(mq);
875}
876
877static void copy_tick(struct mq_policy *mq)
878{
879 unsigned long flags;
880
881 spin_lock_irqsave(&mq->tick_lock, flags);
882 mq->tick = mq->tick_protected;
883 spin_unlock_irqrestore(&mq->tick_lock, flags);
884}
885
886static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
887 bool can_block, bool can_migrate, bool discarded_oblock,
888 struct bio *bio, struct policy_result *result)
889{
890 int r;
891 struct mq_policy *mq = to_mq_policy(p);
892
893 result->op = POLICY_MISS;
894
895 if (can_block)
896 mutex_lock(&mq->lock);
897 else if (!mutex_trylock(&mq->lock))
898 return -EWOULDBLOCK;
899
900 copy_tick(mq);
901
902 iot_examine_bio(&mq->tracker, bio);
903 r = map(mq, oblock, can_migrate, discarded_oblock,
904 bio_data_dir(bio), result);
905
906 mutex_unlock(&mq->lock);
907
908 return r;
909}
910
911static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
912{
913 int r;
914 struct mq_policy *mq = to_mq_policy(p);
915 struct entry *e;
916
917 if (!mutex_trylock(&mq->lock))
918 return -EWOULDBLOCK;
919
920 e = hash_lookup(mq, oblock);
633618e3
JT
921 if (e && in_cache(mq, e)) {
922 *cblock = infer_cblock(&mq->cache_pool, e);
f2836352
JT
923 r = 0;
924 } else
925 r = -ENOENT;
926
927 mutex_unlock(&mq->lock);
928
929 return r;
930}
931
633618e3 932static void __mq_set_clear_dirty(struct mq_policy *mq, dm_oblock_t oblock, bool set)
01911c19 933{
01911c19
JT
934 struct entry *e;
935
01911c19 936 e = hash_lookup(mq, oblock);
633618e3 937 BUG_ON(!e || !in_cache(mq, e));
01911c19 938
633618e3
JT
939 del(mq, e);
940 e->dirty = set;
941 push(mq, e);
01911c19
JT
942}
943
944static void mq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
945{
633618e3
JT
946 struct mq_policy *mq = to_mq_policy(p);
947
948 mutex_lock(&mq->lock);
949 __mq_set_clear_dirty(mq, oblock, true);
950 mutex_unlock(&mq->lock);
01911c19
JT
951}
952
953static void mq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
954{
633618e3
JT
955 struct mq_policy *mq = to_mq_policy(p);
956
957 mutex_lock(&mq->lock);
958 __mq_set_clear_dirty(mq, oblock, false);
959 mutex_unlock(&mq->lock);
01911c19
JT
960}
961
f2836352
JT
962static int mq_load_mapping(struct dm_cache_policy *p,
963 dm_oblock_t oblock, dm_cblock_t cblock,
964 uint32_t hint, bool hint_valid)
965{
966 struct mq_policy *mq = to_mq_policy(p);
967 struct entry *e;
968
633618e3 969 e = alloc_particular_entry(&mq->cache_pool, cblock);
f2836352 970 e->oblock = oblock;
01911c19 971 e->dirty = false; /* this gets corrected in a minute */
f2836352
JT
972 e->hit_count = hint_valid ? hint : 1;
973 e->generation = mq->generation;
974 push(mq, e);
975
976 return 0;
977}
978
633618e3
JT
979static int mq_save_hints(struct mq_policy *mq, struct queue *q,
980 policy_walk_fn fn, void *context)
981{
982 int r;
983 unsigned level;
984 struct entry *e;
985
986 for (level = 0; level < NR_QUEUE_LEVELS; level++)
987 list_for_each_entry(e, q->qs + level, list) {
988 r = fn(context, infer_cblock(&mq->cache_pool, e),
989 e->oblock, e->hit_count);
990 if (r)
991 return r;
992 }
993
994 return 0;
995}
996
f2836352
JT
997static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
998 void *context)
999{
1000 struct mq_policy *mq = to_mq_policy(p);
1001 int r = 0;
f2836352
JT
1002
1003 mutex_lock(&mq->lock);
1004
633618e3
JT
1005 r = mq_save_hints(mq, &mq->cache_clean, fn, context);
1006 if (!r)
1007 r = mq_save_hints(mq, &mq->cache_dirty, fn, context);
f2836352 1008
f2836352
JT
1009 mutex_unlock(&mq->lock);
1010
1011 return r;
1012}
1013
633618e3 1014static void __remove_mapping(struct mq_policy *mq, dm_oblock_t oblock)
f2836352 1015{
b936bf8b
GU
1016 struct entry *e;
1017
b936bf8b 1018 e = hash_lookup(mq, oblock);
633618e3 1019 BUG_ON(!e || !in_cache(mq, e));
f2836352
JT
1020
1021 del(mq, e);
633618e3
JT
1022 free_entry(&mq->cache_pool, e);
1023}
1024
1025static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1026{
1027 struct mq_policy *mq = to_mq_policy(p);
f2836352 1028
633618e3
JT
1029 mutex_lock(&mq->lock);
1030 __remove_mapping(mq, oblock);
f2836352
JT
1031 mutex_unlock(&mq->lock);
1032}
1033
532906aa
JT
1034static int __remove_cblock(struct mq_policy *mq, dm_cblock_t cblock)
1035{
1036 struct entry *e = epool_find(&mq->cache_pool, cblock);
1037
1038 if (!e)
1039 return -ENODATA;
1040
1041 del(mq, e);
1042 free_entry(&mq->cache_pool, e);
1043
1044 return 0;
1045}
1046
1047static int mq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1048{
1049 int r;
1050 struct mq_policy *mq = to_mq_policy(p);
1051
1052 mutex_lock(&mq->lock);
1053 r = __remove_cblock(mq, cblock);
1054 mutex_unlock(&mq->lock);
1055
1056 return r;
1057}
1058
01911c19
JT
1059static int __mq_writeback_work(struct mq_policy *mq, dm_oblock_t *oblock,
1060 dm_cblock_t *cblock)
1061{
1062 struct entry *e = pop(mq, &mq->cache_dirty);
1063
1064 if (!e)
1065 return -ENODATA;
1066
1067 *oblock = e->oblock;
633618e3 1068 *cblock = infer_cblock(&mq->cache_pool, e);
01911c19
JT
1069 e->dirty = false;
1070 push(mq, e);
1071
1072 return 0;
1073}
1074
1075static int mq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1076 dm_cblock_t *cblock)
1077{
1078 int r;
1079 struct mq_policy *mq = to_mq_policy(p);
1080
1081 mutex_lock(&mq->lock);
1082 r = __mq_writeback_work(mq, oblock, cblock);
1083 mutex_unlock(&mq->lock);
1084
1085 return r;
1086}
1087
633618e3
JT
1088static void __force_mapping(struct mq_policy *mq,
1089 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
f2836352
JT
1090{
1091 struct entry *e = hash_lookup(mq, current_oblock);
1092
633618e3
JT
1093 if (e && in_cache(mq, e)) {
1094 del(mq, e);
1095 e->oblock = new_oblock;
1096 e->dirty = true;
1097 push(mq, e);
1098 }
f2836352
JT
1099}
1100
1101static void mq_force_mapping(struct dm_cache_policy *p,
1102 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1103{
1104 struct mq_policy *mq = to_mq_policy(p);
1105
1106 mutex_lock(&mq->lock);
633618e3 1107 __force_mapping(mq, current_oblock, new_oblock);
f2836352
JT
1108 mutex_unlock(&mq->lock);
1109}
1110
1111static dm_cblock_t mq_residency(struct dm_cache_policy *p)
1112{
99ba2ae4 1113 dm_cblock_t r;
f2836352
JT
1114 struct mq_policy *mq = to_mq_policy(p);
1115
99ba2ae4 1116 mutex_lock(&mq->lock);
633618e3 1117 r = to_cblock(mq->cache_pool.nr_allocated);
99ba2ae4
JT
1118 mutex_unlock(&mq->lock);
1119
1120 return r;
f2836352
JT
1121}
1122
1123static void mq_tick(struct dm_cache_policy *p)
1124{
1125 struct mq_policy *mq = to_mq_policy(p);
1126 unsigned long flags;
1127
1128 spin_lock_irqsave(&mq->tick_lock, flags);
1129 mq->tick_protected++;
1130 spin_unlock_irqrestore(&mq->tick_lock, flags);
1131}
1132
1133static int mq_set_config_value(struct dm_cache_policy *p,
1134 const char *key, const char *value)
1135{
1136 struct mq_policy *mq = to_mq_policy(p);
1137 enum io_pattern pattern;
1138 unsigned long tmp;
1139
1140 if (!strcasecmp(key, "random_threshold"))
1141 pattern = PATTERN_RANDOM;
1142 else if (!strcasecmp(key, "sequential_threshold"))
1143 pattern = PATTERN_SEQUENTIAL;
1144 else
1145 return -EINVAL;
1146
1147 if (kstrtoul(value, 10, &tmp))
1148 return -EINVAL;
1149
1150 mq->tracker.thresholds[pattern] = tmp;
1151
1152 return 0;
1153}
1154
1155static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen)
1156{
1157 ssize_t sz = 0;
1158 struct mq_policy *mq = to_mq_policy(p);
1159
1160 DMEMIT("4 random_threshold %u sequential_threshold %u",
1161 mq->tracker.thresholds[PATTERN_RANDOM],
1162 mq->tracker.thresholds[PATTERN_SEQUENTIAL]);
1163
1164 return 0;
1165}
1166
1167/* Init the policy plugin interface function pointers. */
1168static void init_policy_functions(struct mq_policy *mq)
1169{
1170 mq->policy.destroy = mq_destroy;
1171 mq->policy.map = mq_map;
1172 mq->policy.lookup = mq_lookup;
01911c19
JT
1173 mq->policy.set_dirty = mq_set_dirty;
1174 mq->policy.clear_dirty = mq_clear_dirty;
f2836352
JT
1175 mq->policy.load_mapping = mq_load_mapping;
1176 mq->policy.walk_mappings = mq_walk_mappings;
1177 mq->policy.remove_mapping = mq_remove_mapping;
532906aa 1178 mq->policy.remove_cblock = mq_remove_cblock;
01911c19 1179 mq->policy.writeback_work = mq_writeback_work;
f2836352
JT
1180 mq->policy.force_mapping = mq_force_mapping;
1181 mq->policy.residency = mq_residency;
1182 mq->policy.tick = mq_tick;
1183 mq->policy.emit_config_values = mq_emit_config_values;
1184 mq->policy.set_config_value = mq_set_config_value;
1185}
1186
1187static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1188 sector_t origin_size,
1189 sector_t cache_block_size)
1190{
f2836352
JT
1191 struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1192
1193 if (!mq)
1194 return NULL;
1195
1196 init_policy_functions(mq);
1197 iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT);
f2836352 1198 mq->cache_size = cache_size;
633618e3
JT
1199
1200 if (epool_init(&mq->pre_cache_pool, from_cblock(cache_size))) {
1201 DMERR("couldn't initialize pool of pre-cache entries");
1202 goto bad_pre_cache_init;
1203 }
1204
1205 if (epool_init(&mq->cache_pool, from_cblock(cache_size))) {
1206 DMERR("couldn't initialize pool of cache entries");
1207 goto bad_cache_init;
1208 }
1209
f2836352
JT
1210 mq->tick_protected = 0;
1211 mq->tick = 0;
1212 mq->hit_count = 0;
1213 mq->generation = 0;
1214 mq->promote_threshold = 0;
1215 mutex_init(&mq->lock);
1216 spin_lock_init(&mq->tick_lock);
f2836352
JT
1217
1218 queue_init(&mq->pre_cache);
01911c19
JT
1219 queue_init(&mq->cache_clean);
1220 queue_init(&mq->cache_dirty);
1221
f2836352
JT
1222 mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U);
1223
f2836352
JT
1224 mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16);
1225 mq->hash_bits = ffs(mq->nr_buckets) - 1;
1226 mq->table = kzalloc(sizeof(*mq->table) * mq->nr_buckets, GFP_KERNEL);
1227 if (!mq->table)
1228 goto bad_alloc_table;
1229
f2836352
JT
1230 return &mq->policy;
1231
f2836352 1232bad_alloc_table:
633618e3
JT
1233 epool_exit(&mq->cache_pool);
1234bad_cache_init:
1235 epool_exit(&mq->pre_cache_pool);
1236bad_pre_cache_init:
f2836352
JT
1237 kfree(mq);
1238
1239 return NULL;
1240}
1241
1242/*----------------------------------------------------------------*/
1243
1244static struct dm_cache_policy_type mq_policy_type = {
1245 .name = "mq",
633618e3 1246 .version = {1, 1, 0},
f2836352
JT
1247 .hint_size = 4,
1248 .owner = THIS_MODULE,
1249 .create = mq_create
1250};
1251
1252static struct dm_cache_policy_type default_policy_type = {
1253 .name = "default",
633618e3 1254 .version = {1, 1, 0},
f2836352
JT
1255 .hint_size = 4,
1256 .owner = THIS_MODULE,
1257 .create = mq_create
1258};
1259
1260static int __init mq_init(void)
1261{
1262 int r;
1263
1264 mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry",
1265 sizeof(struct entry),
1266 __alignof__(struct entry),
1267 0, NULL);
1268 if (!mq_entry_cache)
1269 goto bad;
1270
1271 r = dm_cache_policy_register(&mq_policy_type);
1272 if (r) {
1273 DMERR("register failed %d", r);
1274 goto bad_register_mq;
1275 }
1276
1277 r = dm_cache_policy_register(&default_policy_type);
1278 if (!r) {
4e7f506f
MS
1279 DMINFO("version %u.%u.%u loaded",
1280 mq_policy_type.version[0],
1281 mq_policy_type.version[1],
1282 mq_policy_type.version[2]);
f2836352
JT
1283 return 0;
1284 }
1285
1286 DMERR("register failed (as default) %d", r);
1287
1288 dm_cache_policy_unregister(&mq_policy_type);
1289bad_register_mq:
1290 kmem_cache_destroy(mq_entry_cache);
1291bad:
1292 return -ENOMEM;
1293}
1294
1295static void __exit mq_exit(void)
1296{
1297 dm_cache_policy_unregister(&mq_policy_type);
1298 dm_cache_policy_unregister(&default_policy_type);
1299
1300 kmem_cache_destroy(mq_entry_cache);
1301}
1302
1303module_init(mq_init);
1304module_exit(mq_exit);
1305
1306MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1307MODULE_LICENSE("GPL");
1308MODULE_DESCRIPTION("mq cache policy");
1309
1310MODULE_ALIAS("dm-cache-default");
This page took 0.123148 seconds and 5 git commands to generate.