dm raid: add raid level takeover support
[deliverable/linux.git] / drivers / md / dm-raid.c
CommitLineData
9d09e663
N
1/*
2 * Copyright (C) 2010-2011 Neil Brown
702108d1 3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
9d09e663
N
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/slab.h>
056075c7 9#include <linux/module.h>
9d09e663
N
10
11#include "md.h"
32737279 12#include "raid1.h"
9d09e663 13#include "raid5.h"
63f33b8d 14#include "raid10.h"
9d09e663
N
15#include "bitmap.h"
16
3e8dbb7f
AK
17#include <linux/device-mapper.h>
18
9d09e663 19#define DM_MSG_PREFIX "raid"
92c83d79 20#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
9d09e663 21
48cf06bc
HM
22static bool devices_handle_discard_safely = false;
23
9d09e663 24/*
b12d437b
JB
25 * The following flags are used by dm-raid.c to set up the array state.
26 * They must be cleared before md_run is called.
9d09e663 27 */
b12d437b 28#define FirstUse 10 /* rdev flag */
9d09e663
N
29
30struct raid_dev {
31 /*
32 * Two DM devices, one to hold metadata and one to hold the
33 * actual data/parity. The reason for this is to not confuse
34 * ti->len and give more flexibility in altering size and
35 * characteristics.
36 *
37 * While it is possible for this device to be associated
38 * with a different physical device than the data_dev, it
39 * is intended for it to be the same.
40 * |--------- Physical Device ---------|
41 * |- meta_dev -|------ data_dev ------|
42 */
43 struct dm_dev *meta_dev;
44 struct dm_dev *data_dev;
3cb03002 45 struct md_rdev rdev;
9d09e663
N
46};
47
48/*
c76d53f4 49 * Flags for rs->ctr_flags field.
702108d1
HM
50 *
51 * 1 = no flag value
52 * 2 = flag with value
9d09e663 53 */
702108d1
HM
54#define CTR_FLAG_SYNC 0x1 /* 1 */ /* Not with raid0! */
55#define CTR_FLAG_NOSYNC 0x2 /* 1 */ /* Not with raid0! */
56#define CTR_FLAG_REBUILD 0x4 /* 2 */ /* Not with raid0! */
57#define CTR_FLAG_DAEMON_SLEEP 0x8 /* 2 */ /* Not with raid0! */
58#define CTR_FLAG_MIN_RECOVERY_RATE 0x10 /* 2 */ /* Not with raid0! */
59#define CTR_FLAG_MAX_RECOVERY_RATE 0x20 /* 2 */ /* Not with raid0! */
60#define CTR_FLAG_MAX_WRITE_BEHIND 0x40 /* 2 */ /* Only with raid1! */
61#define CTR_FLAG_WRITE_MOSTLY 0x80 /* 2 */ /* Only with raid1! */
62#define CTR_FLAG_STRIPE_CACHE 0x100 /* 2 */ /* Only with raid4/5/6! */
63#define CTR_FLAG_REGION_SIZE 0x200 /* 2 */ /* Not with raid0! */
64#define CTR_FLAG_RAID10_COPIES 0x400 /* 2 */ /* Only with raid10 */
65#define CTR_FLAG_RAID10_FORMAT 0x800 /* 2 */ /* Only with raid10 */
33e53f06
HM
66/* New for v1.8.0 */
67#define CTR_FLAG_DELTA_DISKS 0x1000 /* 2 */ /* Only with reshapable raid4/5/6/10! */
68#define CTR_FLAG_DATA_OFFSET 0x2000 /* 2 */ /* Only with reshapable raid4/5/6/10! */
69#define CTR_FLAG_RAID10_USE_NEAR_SETS 0x4000 /* 2 */ /* Only with raid10! */
63f33b8d 70
f090279e
HM
71/*
72 * Definitions of various constructor flags to
73 * be used in checks of valid / invalid flags
74 * per raid level.
75 */
76/* Define all any sync flags */
77#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
78
79/* Define flags for options without argument (e.g. 'nosync') */
33e53f06
HM
80#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
81 CTR_FLAG_RAID10_USE_NEAR_SETS)
f090279e
HM
82
83/* Define flags for options with one argument (e.g. 'delta_disks +2') */
84#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
85 CTR_FLAG_WRITE_MOSTLY | \
86 CTR_FLAG_DAEMON_SLEEP | \
87 CTR_FLAG_MIN_RECOVERY_RATE | \
88 CTR_FLAG_MAX_RECOVERY_RATE | \
89 CTR_FLAG_MAX_WRITE_BEHIND | \
90 CTR_FLAG_STRIPE_CACHE | \
91 CTR_FLAG_REGION_SIZE | \
92 CTR_FLAG_RAID10_COPIES | \
33e53f06
HM
93 CTR_FLAG_RAID10_FORMAT | \
94 CTR_FLAG_DELTA_DISKS | \
95 CTR_FLAG_DATA_OFFSET)
f090279e
HM
96
97/* All ctr optional arguments */
98#define ALL_CTR_FLAGS (CTR_FLAG_OPTIONS_NO_ARGS | \
99 CTR_FLAG_OPTIONS_ONE_ARG)
100
ecbfb9f1
HM
101/*
102 * All flags which cause a recovery unfreeze once they got stored in the raid metadata
103 */
104#define ALL_FREEZE_FLAGS (ALL_CTR_FLAGS & ~(CTR_FLAG_REGION_SIZE | CTR_FLAGS_ANY_SYNC | \
105 CTR_FLAG_RAID10_FORMAT | CTR_FLAG_RAID10_COPIES | \
106 CTR_FLAG_RAID10_USE_NEAR_SETS))
107
f090279e
HM
108/* Invalid options definitions per raid level... */
109
110/* "raid0" does not accept any options */
111#define RAID0_INVALID_FLAGS ALL_CTR_FLAGS
112
113/* "raid1" does not accept stripe cache or any raid10 options */
114#define RAID1_INVALID_FLAGS (CTR_FLAG_STRIPE_CACHE | \
115 CTR_FLAG_RAID10_COPIES | \
33e53f06
HM
116 CTR_FLAG_RAID10_FORMAT | \
117 CTR_FLAG_DELTA_DISKS | \
118 CTR_FLAG_DATA_OFFSET)
f090279e
HM
119
120/* "raid10" does not accept any raid1 or stripe cache options */
121#define RAID10_INVALID_FLAGS (CTR_FLAG_WRITE_MOSTLY | \
122 CTR_FLAG_MAX_WRITE_BEHIND | \
123 CTR_FLAG_STRIPE_CACHE)
124/*
125 * "raid4/5/6" do not accept any raid1 or raid10 specific options
126 *
127 * "raid6" does not accept "nosync", because it is not guaranteed
128 * that both parity and q-syndrome are being written properly with
129 * any writes
130 */
131#define RAID45_INVALID_FLAGS (CTR_FLAG_WRITE_MOSTLY | \
132 CTR_FLAG_MAX_WRITE_BEHIND | \
133 CTR_FLAG_RAID10_FORMAT | \
33e53f06
HM
134 CTR_FLAG_RAID10_COPIES | \
135 CTR_FLAG_RAID10_USE_NEAR_SETS)
f090279e
HM
136#define RAID6_INVALID_FLAGS (CTR_FLAG_NOSYNC | RAID45_INVALID_FLAGS)
137/* ...invalid options definitions per raid level */
138
ecbfb9f1
HM
139/*
140 * Flags for rs->runtime_flags field
141 * (RT_FLAG prefix meaning "runtime flag")
142 *
143 * These are all internal and used to define runtime state,
144 * e.g. to prevent another resume from preresume processing
145 * the raid set all over again.
146 */
147#define RT_FLAG_RS_PRERESUMED 0x1
148#define RT_FLAG_RS_RESUMED 0x2
149#define RT_FLAG_RS_BITMAP_LOADED 0x4
150#define RT_FLAG_UPDATE_SBS 0x8
151
33e53f06
HM
152/* Array elements of 64 bit needed for rebuild/write_mostly bits */
153#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
154
ecbfb9f1
HM
155/*
156 * raid set level, layout and chunk sectors backup/restore
157 */
158struct rs_layout {
159 int new_level;
160 int new_layout;
161 int new_chunk_sectors;
162};
163
9d09e663
N
164struct raid_set {
165 struct dm_target *ti;
166
34f8ac6d 167 uint32_t bitmap_loaded;
c76d53f4 168 uint32_t ctr_flags;
ecbfb9f1
HM
169 uint32_t runtime_flags;
170
171 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
9d09e663 172
33e53f06
HM
173 int raid_disks;
174 int delta_disks;
4763e543 175 int data_offset;
33e53f06
HM
176 int raid10_copies;
177
fd01b88c 178 struct mddev md;
9d09e663
N
179 struct raid_type *raid_type;
180 struct dm_target_callbacks callbacks;
ecbfb9f1 181 struct rs_layout rs_layout;
9d09e663
N
182
183 struct raid_dev dev[0];
184};
185
ecbfb9f1
HM
186/* Backup/restore raid set configuration helpers */
187static void _rs_config_backup(struct raid_set *rs, struct rs_layout *l)
188{
189 struct mddev *mddev = &rs->md;
190
191 l->new_level = mddev->new_level;
192 l->new_layout = mddev->new_layout;
193 l->new_chunk_sectors = mddev->new_chunk_sectors;
194}
195
196static void rs_config_backup(struct raid_set *rs)
197{
198 return _rs_config_backup(rs, &rs->rs_layout);
199}
200
201static void _rs_config_restore(struct raid_set *rs, struct rs_layout *l)
202{
203 struct mddev *mddev = &rs->md;
204
205 mddev->new_level = l->new_level;
206 mddev->new_layout = l->new_layout;
207 mddev->new_chunk_sectors = l->new_chunk_sectors;
208}
209
210static void rs_config_restore(struct raid_set *rs)
211{
212 return _rs_config_restore(rs, &rs->rs_layout);
213}
214/* END: backup/restore raid set configuration helpers */
215
33e53f06
HM
216/* raid10 algorithms (i.e. formats) */
217#define ALGORITHM_RAID10_DEFAULT 0
218#define ALGORITHM_RAID10_NEAR 1
219#define ALGORITHM_RAID10_OFFSET 2
220#define ALGORITHM_RAID10_FAR 3
221
9d09e663
N
222/* Supported raid types and properties. */
223static struct raid_type {
224 const char *name; /* RAID algorithm. */
225 const char *descr; /* Descriptor text for logging. */
226 const unsigned parity_devs; /* # of parity devices. */
227 const unsigned minimal_devs; /* minimal # of devices in set. */
228 const unsigned level; /* RAID level. */
229 const unsigned algorithm; /* RAID algorithm. */
230} raid_types[] = {
33e53f06
HM
231 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
232 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
233 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
234 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
235 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
236 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
237 {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
238 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
239 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
240 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
241 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
242 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
243 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
244 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
245 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
246 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
247 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
248 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
249 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
250 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
9d09e663
N
251};
252
92c83d79
HM
253/* True, if @v is in inclusive range [@min, @max] */
254static bool _in_range(long v, long min, long max)
255{
256 return v >= min && v <= max;
257}
258
702108d1
HM
259/* ctr flag bit manipulation... */
260/* Set single @flag in @flags */
261static void _set_flag(uint32_t flag, uint32_t *flags)
262{
263 WARN_ON_ONCE(hweight32(flag) != 1);
264 *flags |= flag;
265}
266
ecbfb9f1
HM
267/* Clear single @flag in @flags */
268static void _clear_flag(uint32_t flag, uint32_t *flags)
269{
270 WARN_ON_ONCE(hweight32(flag) != 1);
271 *flags &= ~flag;
272}
273
702108d1
HM
274/* Test single @flag in @flags */
275static bool _test_flag(uint32_t flag, uint32_t flags)
276{
277 WARN_ON_ONCE(hweight32(flag) != 1);
278 return (flag & flags) ? true : false;
279}
280
ad51d7f1
HM
281/* Test multiple @flags in @all_flags */
282static bool _test_flags(uint32_t flags, uint32_t all_flags)
283{
284 return (flags & all_flags) ? true : false;
285}
286
7b34df74
HM
287/* Clear (multiple) @flags in @all_flags */
288static void _clear_flags(uint32_t flags, uint32_t *all_flags)
289{
290 *all_flags &= ~flags;
291}
292
702108d1
HM
293/* Return true if single @flag is set in @*flags, else set it and return false */
294static bool _test_and_set_flag(uint32_t flag, uint32_t *flags)
295{
296 if (_test_flag(flag, *flags))
297 return true;
298
299 _set_flag(flag, flags);
300 return false;
301}
ecbfb9f1
HM
302
303/* Return true if single @flag is set in @*flags and clear it, else return false */
304static bool _test_and_clear_flag(uint32_t flag, uint32_t *flags)
305{
306 if (_test_flag(flag, *flags)) {
307 _clear_flag(flag, flags);
308 return true;
309 }
310
311 return false;
312}
702108d1
HM
313/* ...ctr and runtime flag bit manipulation */
314
315/* All table line arguments are defined here */
316static struct arg_name_flag {
317 const uint32_t flag;
318 const char *name;
319} _arg_name_flags[] = {
320 { CTR_FLAG_SYNC, "sync"},
321 { CTR_FLAG_NOSYNC, "nosync"},
322 { CTR_FLAG_REBUILD, "rebuild"},
323 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
324 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
325 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
326 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
327 { CTR_FLAG_WRITE_MOSTLY, "writemostly"},
328 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
329 { CTR_FLAG_REGION_SIZE, "region_size"},
330 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
331 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
4763e543
HM
332 { CTR_FLAG_DATA_OFFSET, "data_offset"},
333 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
334 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
702108d1
HM
335};
336
337/* Return argument name string for given @flag */
338static const char *_argname_by_flag(const uint32_t flag)
339{
340 if (hweight32(flag) == 1) {
341 struct arg_name_flag *anf = _arg_name_flags + ARRAY_SIZE(_arg_name_flags);
342
343 while (anf-- > _arg_name_flags)
344 if (_test_flag(flag, anf->flag))
345 return anf->name;
346
347 } else
348 DMERR("%s called with more than one flag!", __func__);
349
350 return NULL;
351}
352
33e53f06
HM
353/*
354 * bool helpers to test for various raid levels of a raid set,
355 * is. it's level as reported by the superblock rather than
356 * the requested raid_type passed to the constructor.
357 */
358/* Return true, if raid set in @rs is raid0 */
359static bool rs_is_raid0(struct raid_set *rs)
360{
361 return !rs->md.level;
362}
363
364/* Return true, if raid set in @rs is raid10 */
365static bool rs_is_raid10(struct raid_set *rs)
366{
367 return rs->md.level == 10;
368}
369
f090279e
HM
370/*
371 * bool helpers to test for various raid levels of a raid type
372 */
373
374/* Return true, if raid type in @rt is raid0 */
375static bool rt_is_raid0(struct raid_type *rt)
376{
377 return !rt->level;
378}
379
380/* Return true, if raid type in @rt is raid1 */
381static bool rt_is_raid1(struct raid_type *rt)
382{
383 return rt->level == 1;
384}
385
386/* Return true, if raid type in @rt is raid10 */
387static bool rt_is_raid10(struct raid_type *rt)
388{
389 return rt->level == 10;
390}
391
392/* Return true, if raid type in @rt is raid4/5 */
393static bool rt_is_raid45(struct raid_type *rt)
394{
395 return _in_range(rt->level, 4, 5);
396}
397
398/* Return true, if raid type in @rt is raid6 */
399static bool rt_is_raid6(struct raid_type *rt)
400{
401 return rt->level == 6;
402}
676fa5ad
HM
403
404/* Return true, if raid type in @rt is raid4/5/6 */
405static bool rt_is_raid456(struct raid_type *rt)
406{
407 return _in_range(rt->level, 4, 6);
408}
f090279e
HM
409/* END: raid level bools */
410
702108d1
HM
411/*
412 * Convenience functions to set ti->error to @errmsg and
413 * return @r in order to shorten code in a lot of places
414 */
415static int ti_error_ret(struct dm_target *ti, const char *errmsg, int r)
416{
417 ti->error = (char *) errmsg;
418 return r;
419}
420
421static int ti_error_einval(struct dm_target *ti, const char *errmsg)
422{
423 return ti_error_ret(ti, errmsg, -EINVAL);
424}
425/* END: convenience functions to set ti->error to @errmsg... */
426
f090279e
HM
427/* Return invalid ctr flags for the raid level of @rs */
428static uint32_t _invalid_flags(struct raid_set *rs)
429{
430 if (rt_is_raid0(rs->raid_type))
431 return RAID0_INVALID_FLAGS;
432 else if (rt_is_raid1(rs->raid_type))
433 return RAID1_INVALID_FLAGS;
434 else if (rt_is_raid10(rs->raid_type))
435 return RAID10_INVALID_FLAGS;
436 else if (rt_is_raid45(rs->raid_type))
437 return RAID45_INVALID_FLAGS;
438 else if (rt_is_raid6(rs->raid_type))
439 return RAID6_INVALID_FLAGS;
440
441 return ~0;
442}
443
444/*
445 * Check for any invalid flags set on @rs defined by bitset @invalid_flags
446 *
447 * Has to be called after parsing of the ctr flags!
448 */
449static int rs_check_for_invalid_flags(struct raid_set *rs)
450{
ad51d7f1
HM
451 if (_test_flags(rs->ctr_flags, _invalid_flags(rs)))
452 return ti_error_einval(rs->ti, "Invalid flag combined");
f090279e
HM
453
454 return 0;
455}
456
33e53f06
HM
457
458/* MD raid10 bit definitions and helpers */
459#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
460#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
461#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
462#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
463
464/* Return md raid10 near copies for @layout */
465static unsigned int _raid10_near_copies(int layout)
466{
467 return layout & 0xFF;
468}
469
470/* Return md raid10 far copies for @layout */
471static unsigned int _raid10_far_copies(int layout)
472{
473 return _raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
474}
475
476/* Return true if md raid10 offset for @layout */
477static unsigned int _is_raid10_offset(int layout)
478{
479 return layout & RAID10_OFFSET;
480}
481
482/* Return true if md raid10 near for @layout */
483static unsigned int _is_raid10_near(int layout)
484{
485 return !_is_raid10_offset(layout) && _raid10_near_copies(layout) > 1;
486}
487
488/* Return true if md raid10 far for @layout */
489static unsigned int _is_raid10_far(int layout)
490{
491 return !_is_raid10_offset(layout) && _raid10_far_copies(layout) > 1;
492}
493
494/* Return md raid10 layout string for @layout */
495static const char *raid10_md_layout_to_format(int layout)
fe5d2f4a
JB
496{
497 /*
33e53f06
HM
498 * Bit 16 stands for "offset"
499 * (i.e. adjacent stripes hold copies)
500 *
fe5d2f4a
JB
501 * Refer to MD's raid10.c for details
502 */
33e53f06 503 if (_is_raid10_offset(layout))
fe5d2f4a
JB
504 return "offset";
505
33e53f06 506 if (_raid10_near_copies(layout) > 1)
fe5d2f4a
JB
507 return "near";
508
33e53f06
HM
509 WARN_ON(_raid10_far_copies(layout) < 2);
510
fe5d2f4a
JB
511 return "far";
512}
513
33e53f06
HM
514/* Return md raid10 algorithm for @name */
515static const int raid10_name_to_format(const char *name)
516{
517 if (!strcasecmp(name, "near"))
518 return ALGORITHM_RAID10_NEAR;
519 else if (!strcasecmp(name, "offset"))
520 return ALGORITHM_RAID10_OFFSET;
521 else if (!strcasecmp(name, "far"))
522 return ALGORITHM_RAID10_FAR;
523
524 return -EINVAL;
525}
526
527
528/* Return md raid10 copies for @layout */
529static unsigned int raid10_md_layout_to_copies(int layout)
63f33b8d 530{
33e53f06
HM
531 return _raid10_near_copies(layout) > 1 ?
532 _raid10_near_copies(layout) : _raid10_far_copies(layout);
63f33b8d
JB
533}
534
33e53f06
HM
535/* Return md raid10 format id for @format string */
536static int raid10_format_to_md_layout(struct raid_set *rs,
537 unsigned int algorithm,
538 unsigned int copies)
63f33b8d 539{
33e53f06 540 unsigned int n = 1, f = 1, r = 0;
fe5d2f4a 541
33e53f06
HM
542 /*
543 * MD resilienece flaw:
544 *
545 * enabling use_far_sets for far/offset formats causes copies
546 * to be colocated on the same devs together with their origins!
547 *
548 * -> disable it for now in the definition above
549 */
550 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
551 algorithm == ALGORITHM_RAID10_NEAR)
fe5d2f4a 552 n = copies;
33e53f06
HM
553
554 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
555 f = copies;
556 r = RAID10_OFFSET;
557 if (!_test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags))
558 r |= RAID10_USE_FAR_SETS;
559
560 } else if (algorithm == ALGORITHM_RAID10_FAR) {
fe5d2f4a 561 f = copies;
33e53f06
HM
562 r = !RAID10_OFFSET;
563 if (!_test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags))
564 r |= RAID10_USE_FAR_SETS;
fe5d2f4a 565
33e53f06
HM
566 } else
567 return -EINVAL;
568
569 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
570}
571/* END: MD raid10 bit definitions and helpers */
fe5d2f4a 572
33e53f06
HM
573/* Check for any of the raid10 algorithms */
574static int _got_raid10(struct raid_type *rtp, const int layout)
575{
576 if (rtp->level == 10) {
577 switch (rtp->algorithm) {
578 case ALGORITHM_RAID10_DEFAULT:
579 case ALGORITHM_RAID10_NEAR:
580 return _is_raid10_near(layout);
581 case ALGORITHM_RAID10_OFFSET:
582 return _is_raid10_offset(layout);
583 case ALGORITHM_RAID10_FAR:
584 return _is_raid10_far(layout);
585 default:
586 break;
587 }
588 }
fe5d2f4a 589
33e53f06 590 return 0;
63f33b8d
JB
591}
592
33e53f06 593/* Return raid_type for @name */
92c83d79 594static struct raid_type *get_raid_type(const char *name)
9d09e663 595{
33e53f06 596 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
9d09e663 597
33e53f06
HM
598 while (rtp-- > raid_types)
599 if (!strcasecmp(rtp->name, name))
600 return rtp;
9d09e663
N
601
602 return NULL;
603}
604
33e53f06
HM
605/* Return raid_type for @name based derived from @level and @layout */
606static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
607{
608 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
609
610 while (rtp-- > raid_types) {
611 /* RAID10 special checks based on @layout flags/properties */
612 if (rtp->level == level &&
613 (_got_raid10(rtp, layout) || rtp->algorithm == layout))
614 return rtp;
615 }
616
617 return NULL;
618}
619
620/*
621 * Set the mddev properties in @rs to the new
622 * ones requested by the ctr
623 */
624static void rs_set_new(struct raid_set *rs)
625{
626 struct mddev *mddev = &rs->md;
627
628 mddev->level = mddev->new_level;
629 mddev->layout = mddev->new_layout;
630 mddev->chunk_sectors = mddev->new_chunk_sectors;
631 mddev->delta_disks = 0;
632}
633
634
9d09e663
N
635static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
636{
637 unsigned i;
638 struct raid_set *rs;
9d09e663 639
702108d1
HM
640 if (raid_devs <= raid_type->parity_devs)
641 return ERR_PTR(ti_error_einval(ti, "Insufficient number of devices"));
9d09e663 642
9d09e663 643 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
702108d1
HM
644 if (!rs)
645 return ERR_PTR(ti_error_ret(ti, "Cannot allocate raid context", -ENOMEM));
9d09e663
N
646
647 mddev_init(&rs->md);
648
33e53f06
HM
649 rs->raid_disks = raid_devs;
650 rs->delta_disks = 0;
651
9d09e663
N
652 rs->ti = ti;
653 rs->raid_type = raid_type;
654 rs->md.raid_disks = raid_devs;
655 rs->md.level = raid_type->level;
656 rs->md.new_level = rs->md.level;
9d09e663
N
657 rs->md.layout = raid_type->algorithm;
658 rs->md.new_layout = rs->md.layout;
659 rs->md.delta_disks = 0;
ecbfb9f1 660 rs->md.recovery_cp = rs_is_raid0(rs) ? MaxSector : 0;
9d09e663
N
661
662 for (i = 0; i < raid_devs; i++)
663 md_rdev_init(&rs->dev[i].rdev);
664
665 /*
666 * Remaining items to be initialized by further RAID params:
667 * rs->md.persistent
668 * rs->md.external
669 * rs->md.chunk_sectors
670 * rs->md.new_chunk_sectors
c039c332 671 * rs->md.dev_sectors
9d09e663
N
672 */
673
674 return rs;
675}
676
677static void context_free(struct raid_set *rs)
678{
679 int i;
680
b12d437b
JB
681 for (i = 0; i < rs->md.raid_disks; i++) {
682 if (rs->dev[i].meta_dev)
683 dm_put_device(rs->ti, rs->dev[i].meta_dev);
545c8795 684 md_rdev_clear(&rs->dev[i].rdev);
9d09e663
N
685 if (rs->dev[i].data_dev)
686 dm_put_device(rs->ti, rs->dev[i].data_dev);
b12d437b 687 }
9d09e663
N
688
689 kfree(rs);
690}
691
692/*
693 * For every device we have two words
694 * <meta_dev>: meta device name or '-' if missing
695 * <data_dev>: data device name or '-' if missing
696 *
b12d437b
JB
697 * The following are permitted:
698 * - -
699 * - <data_dev>
700 * <meta_dev> <data_dev>
701 *
702 * The following is not allowed:
703 * <meta_dev> -
704 *
705 * This code parses those words. If there is a failure,
706 * the caller must use context_free to unwind the operations.
9d09e663 707 */
702108d1 708static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
9d09e663
N
709{
710 int i;
711 int rebuild = 0;
712 int metadata_available = 0;
73c6f239 713 int r = 0;
92c83d79 714 const char *arg;
9d09e663 715
92c83d79
HM
716 /* Put off the number of raid devices argument to get to dev pairs */
717 arg = dm_shift_arg(as);
718 if (!arg)
719 return -EINVAL;
720
721 for (i = 0; i < rs->md.raid_disks; i++) {
9d09e663
N
722 rs->dev[i].rdev.raid_disk = i;
723
724 rs->dev[i].meta_dev = NULL;
725 rs->dev[i].data_dev = NULL;
726
727 /*
728 * There are no offsets, since there is a separate device
729 * for data and metadata.
730 */
731 rs->dev[i].rdev.data_offset = 0;
732 rs->dev[i].rdev.mddev = &rs->md;
733
92c83d79
HM
734 arg = dm_shift_arg(as);
735 if (!arg)
736 return -EINVAL;
737
738 if (strcmp(arg, "-")) {
739 r = dm_get_device(rs->ti, arg,
b12d437b
JB
740 dm_table_get_mode(rs->ti->table),
741 &rs->dev[i].meta_dev);
73c6f239 742 if (r)
702108d1 743 return ti_error_ret(rs->ti, "RAID metadata device lookup failure", r);
b12d437b
JB
744
745 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
746 if (!rs->dev[i].rdev.sb_page)
702108d1 747 return ti_error_ret(rs->ti, "Failed to allocate superblock page", -ENOMEM);
9d09e663
N
748 }
749
92c83d79
HM
750 arg = dm_shift_arg(as);
751 if (!arg)
752 return -EINVAL;
753
754 if (!strcmp(arg, "-")) {
9d09e663 755 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
702108d1
HM
756 (!rs->dev[i].rdev.recovery_offset))
757 return ti_error_einval(rs->ti, "Drive designated for rebuild not specified");
9d09e663 758
b12d437b 759 if (rs->dev[i].meta_dev)
702108d1 760 return ti_error_einval(rs->ti, "No data device supplied with metadata device");
b12d437b 761
9d09e663
N
762 continue;
763 }
764
92c83d79 765 r = dm_get_device(rs->ti, arg,
9d09e663
N
766 dm_table_get_mode(rs->ti->table),
767 &rs->dev[i].data_dev);
702108d1
HM
768 if (r)
769 return ti_error_ret(rs->ti, "RAID device lookup failure", r);
9d09e663 770
b12d437b
JB
771 if (rs->dev[i].meta_dev) {
772 metadata_available = 1;
773 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
774 }
9d09e663
N
775 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
776 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
777 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
778 rebuild++;
779 }
780
781 if (metadata_available) {
782 rs->md.external = 0;
783 rs->md.persistent = 1;
784 rs->md.major_version = 2;
785 } else if (rebuild && !rs->md.recovery_cp) {
786 /*
787 * Without metadata, we will not be able to tell if the array
788 * is in-sync or not - we must assume it is not. Therefore,
789 * it is impossible to rebuild a drive.
790 *
791 * Even if there is metadata, the on-disk information may
792 * indicate that the array is not in-sync and it will then
793 * fail at that time.
794 *
795 * User could specify 'nosync' option if desperate.
796 */
797 DMERR("Unable to rebuild drive while array is not in-sync");
702108d1 798 return ti_error_einval(rs->ti, "Unable to rebuild drive while array is not in-sync");
9d09e663
N
799 }
800
801 return 0;
802}
803
c1084561
JB
804/*
805 * validate_region_size
806 * @rs
807 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
808 *
809 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
810 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
811 *
812 * Returns: 0 on success, -EINVAL on failure.
813 */
814static int validate_region_size(struct raid_set *rs, unsigned long region_size)
815{
816 unsigned long min_region_size = rs->ti->len / (1 << 21);
817
818 if (!region_size) {
819 /*
820 * Choose a reasonable default. All figures in sectors.
821 */
822 if (min_region_size > (1 << 13)) {
3a0f9aae 823 /* If not a power of 2, make it the next power of 2 */
042745ee 824 region_size = roundup_pow_of_two(min_region_size);
c1084561
JB
825 DMINFO("Choosing default region size of %lu sectors",
826 region_size);
c1084561
JB
827 } else {
828 DMINFO("Choosing default region size of 4MiB");
829 region_size = 1 << 13; /* sectors */
830 }
831 } else {
832 /*
833 * Validate user-supplied value.
834 */
702108d1
HM
835 if (region_size > rs->ti->len)
836 return ti_error_einval(rs->ti, "Supplied region size is too large");
c1084561
JB
837
838 if (region_size < min_region_size) {
839 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
840 region_size, min_region_size);
702108d1 841 return ti_error_einval(rs->ti, "Supplied region size is too small");
c1084561
JB
842 }
843
702108d1
HM
844 if (!is_power_of_2(region_size))
845 return ti_error_einval(rs->ti, "Region size is not a power of 2");
c1084561 846
702108d1
HM
847 if (region_size < rs->md.chunk_sectors)
848 return ti_error_einval(rs->ti, "Region size is smaller than the chunk size");
c1084561
JB
849 }
850
851 /*
852 * Convert sectors to bytes.
853 */
854 rs->md.bitmap_info.chunksize = (region_size << 9);
855
856 return 0;
857}
858
eb649123 859/*
55ebbb59 860 * validate_raid_redundancy
eb649123
JB
861 * @rs
862 *
55ebbb59
JB
863 * Determine if there are enough devices in the array that haven't
864 * failed (or are being rebuilt) to form a usable array.
eb649123
JB
865 *
866 * Returns: 0 on success, -EINVAL on failure.
867 */
55ebbb59 868static int validate_raid_redundancy(struct raid_set *rs)
eb649123
JB
869{
870 unsigned i, rebuild_cnt = 0;
3f6bbd3f 871 unsigned rebuilds_per_group = 0, copies, d;
fe5d2f4a 872 unsigned group_size, last_group_start;
eb649123 873
eb649123 874 for (i = 0; i < rs->md.raid_disks; i++)
55ebbb59
JB
875 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
876 !rs->dev[i].rdev.sb_page)
eb649123
JB
877 rebuild_cnt++;
878
879 switch (rs->raid_type->level) {
880 case 1:
881 if (rebuild_cnt >= rs->md.raid_disks)
882 goto too_many;
883 break;
884 case 4:
885 case 5:
886 case 6:
887 if (rebuild_cnt > rs->raid_type->parity_devs)
888 goto too_many;
889 break;
890 case 10:
4ec1e369
JB
891 copies = raid10_md_layout_to_copies(rs->md.layout);
892 if (rebuild_cnt < copies)
893 break;
894
895 /*
896 * It is possible to have a higher rebuild count for RAID10,
897 * as long as the failed devices occur in different mirror
898 * groups (i.e. different stripes).
899 *
4ec1e369
JB
900 * When checking "near" format, make sure no adjacent devices
901 * have failed beyond what can be handled. In addition to the
902 * simple case where the number of devices is a multiple of the
903 * number of copies, we must also handle cases where the number
904 * of devices is not a multiple of the number of copies.
905 * E.g. dev1 dev2 dev3 dev4 dev5
906 * A A B B C
907 * C D D E E
908 */
fe5d2f4a
JB
909 if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
910 for (i = 0; i < rs->md.raid_disks * copies; i++) {
911 if (!(i % copies))
912 rebuilds_per_group = 0;
913 d = i % rs->md.raid_disks;
914 if ((!rs->dev[d].rdev.sb_page ||
915 !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
916 (++rebuilds_per_group >= copies))
917 goto too_many;
918 }
919 break;
920 }
921
922 /*
923 * When checking "far" and "offset" formats, we need to ensure
924 * that the device that holds its copy is not also dead or
925 * being rebuilt. (Note that "far" and "offset" formats only
926 * support two copies right now. These formats also only ever
927 * use the 'use_far_sets' variant.)
928 *
929 * This check is somewhat complicated by the need to account
930 * for arrays that are not a multiple of (far) copies. This
931 * results in the need to treat the last (potentially larger)
932 * set differently.
933 */
934 group_size = (rs->md.raid_disks / copies);
935 last_group_start = (rs->md.raid_disks / group_size) - 1;
936 last_group_start *= group_size;
937 for (i = 0; i < rs->md.raid_disks; i++) {
938 if (!(i % copies) && !(i > last_group_start))
55ebbb59 939 rebuilds_per_group = 0;
fe5d2f4a
JB
940 if ((!rs->dev[i].rdev.sb_page ||
941 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
4ec1e369 942 (++rebuilds_per_group >= copies))
fe5d2f4a 943 goto too_many;
4ec1e369
JB
944 }
945 break;
eb649123 946 default:
55ebbb59
JB
947 if (rebuild_cnt)
948 return -EINVAL;
eb649123
JB
949 }
950
951 return 0;
952
953too_many:
eb649123
JB
954 return -EINVAL;
955}
956
9d09e663
N
957/*
958 * Possible arguments are...
9d09e663
N
959 * <chunk_size> [optional_args]
960 *
32737279
JB
961 * Argument definitions
962 * <chunk_size> The number of sectors per disk that
963 * will form the "stripe"
964 * [[no]sync] Force or prevent recovery of the
965 * entire array
9d09e663 966 * [rebuild <idx>] Rebuild the drive indicated by the index
32737279
JB
967 * [daemon_sleep <ms>] Time between bitmap daemon work to
968 * clear bits
9d09e663
N
969 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
970 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
46bed2b5 971 * [write_mostly <idx>] Indicate a write mostly drive via index
9d09e663
N
972 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
973 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
c1084561 974 * [region_size <sectors>] Defines granularity of bitmap
63f33b8d
JB
975 *
976 * RAID10-only options:
977 * [raid10_copies <# copies>] Number of copies. (Default: 2)
fe5d2f4a 978 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
9d09e663 979 */
92c83d79 980static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
9d09e663
N
981 unsigned num_raid_params)
982{
33e53f06 983 int raid10_format = ALGORITHM_RAID10_DEFAULT;
63f33b8d 984 unsigned raid10_copies = 2;
eb649123 985 unsigned i;
92c83d79 986 unsigned value, region_size = 0;
c039c332 987 sector_t sectors_per_dev = rs->ti->len;
542f9038 988 sector_t max_io_len;
92c83d79 989 const char *arg, *key;
702108d1 990 struct raid_dev *rd;
33e53f06 991 struct raid_type *rt = rs->raid_type;
92c83d79
HM
992
993 arg = dm_shift_arg(as);
994 num_raid_params--; /* Account for chunk_size argument */
995
702108d1
HM
996 if (kstrtouint(arg, 10, &value) < 0)
997 return ti_error_einval(rs->ti, "Bad numerical argument given for chunk_size");
9d09e663
N
998
999 /*
1000 * First, parse the in-order required arguments
32737279 1001 * "chunk_size" is the only argument of this type.
9d09e663 1002 */
33e53f06 1003 if (rt_is_raid1(rt)) {
32737279
JB
1004 if (value)
1005 DMERR("Ignoring chunk size parameter for RAID 1");
1006 value = 0;
702108d1
HM
1007 } else if (!is_power_of_2(value))
1008 return ti_error_einval(rs->ti, "Chunk size must be a power of 2");
1009 else if (value < 8)
1010 return ti_error_einval(rs->ti, "Chunk size value is too small");
9d09e663
N
1011
1012 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
9d09e663
N
1013
1014 /*
b12d437b
JB
1015 * We set each individual device as In_sync with a completed
1016 * 'recovery_offset'. If there has been a device failure or
1017 * replacement then one of the following cases applies:
1018 *
1019 * 1) User specifies 'rebuild'.
1020 * - Device is reset when param is read.
1021 * 2) A new device is supplied.
1022 * - No matching superblock found, resets device.
1023 * 3) Device failure was transient and returns on reload.
1024 * - Failure noticed, resets device for bitmap replay.
1025 * 4) Device hadn't completed recovery after previous failure.
1026 * - Superblock is read and overrides recovery_offset.
1027 *
1028 * What is found in the superblocks of the devices is always
1029 * authoritative, unless 'rebuild' or '[no]sync' was specified.
9d09e663 1030 */
b12d437b 1031 for (i = 0; i < rs->md.raid_disks; i++) {
9d09e663 1032 set_bit(In_sync, &rs->dev[i].rdev.flags);
b12d437b
JB
1033 rs->dev[i].rdev.recovery_offset = MaxSector;
1034 }
9d09e663 1035
b12d437b
JB
1036 /*
1037 * Second, parse the unordered optional arguments
1038 */
9d09e663 1039 for (i = 0; i < num_raid_params; i++) {
4763e543
HM
1040 key = dm_shift_arg(as);
1041 if (!key)
702108d1 1042 return ti_error_einval(rs->ti, "Not enough raid parameters given");
92c83d79 1043
4763e543
HM
1044 if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_NOSYNC))) {
1045 if (_test_and_set_flag(CTR_FLAG_NOSYNC, &rs->ctr_flags))
1046 return ti_error_einval(rs->ti, "Only one 'nosync' argument allowed");
9d09e663 1047 rs->md.recovery_cp = MaxSector;
9d09e663
N
1048 continue;
1049 }
4763e543
HM
1050 if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_SYNC))) {
1051 if (_test_and_set_flag(CTR_FLAG_SYNC, &rs->ctr_flags))
1052 return ti_error_einval(rs->ti, "Only one 'sync' argument allowed");
9d09e663 1053 rs->md.recovery_cp = 0;
4763e543
HM
1054 continue;
1055 }
1056 if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1057 if (_test_and_set_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
1058 return ti_error_einval(rs->ti, "Only one 'raid10_use_new_sets' argument allowed");
9d09e663
N
1059 continue;
1060 }
1061
92c83d79
HM
1062 arg = dm_shift_arg(as);
1063 i++; /* Account for the argument pairs */
702108d1
HM
1064 if (!arg)
1065 return ti_error_einval(rs->ti, "Wrong number of raid parameters given");
63f33b8d 1066
702108d1
HM
1067 /*
1068 * Parameters that take a string value are checked here.
1069 */
1070
1071 if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1072 if (_test_and_set_flag(CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
4763e543 1073 return ti_error_einval(rs->ti, "Only one 'raid10_format' argument pair allowed");
33e53f06 1074 if (!rt_is_raid10(rt))
702108d1 1075 return ti_error_einval(rs->ti, "'raid10_format' is an invalid parameter for this RAID type");
33e53f06
HM
1076 raid10_format = raid10_name_to_format(arg);
1077 if (raid10_format < 0)
1078 return ti_error_ret(rs->ti, "Invalid 'raid10_format' value given", raid10_format);
63f33b8d
JB
1079 continue;
1080 }
1081
702108d1
HM
1082 if (kstrtouint(arg, 10, &value) < 0)
1083 return ti_error_einval(rs->ti, "Bad numerical argument given in raid params");
1084
1085 if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_REBUILD))) {
1086 /*
1087 * "rebuild" is being passed in by userspace to provide
1088 * indexes of replaced devices and to set up additional
1089 * devices on raid level takeover.
1090 */
ecbfb9f1 1091 if (!_in_range(value, 0, rs->raid_disks - 1))
702108d1
HM
1092 return ti_error_einval(rs->ti, "Invalid rebuild index given");
1093
ecbfb9f1
HM
1094 if (test_and_set_bit(value, (void *) rs->rebuild_disks))
1095 return ti_error_einval(rs->ti, "rebuild for this index already given");
1096
702108d1
HM
1097 rd = rs->dev + value;
1098 clear_bit(In_sync, &rd->rdev.flags);
1099 clear_bit(Faulty, &rd->rdev.flags);
1100 rd->rdev.recovery_offset = 0;
1101 _set_flag(CTR_FLAG_REBUILD, &rs->ctr_flags);
1102 } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
33e53f06 1103 if (!rt_is_raid1(rt))
702108d1
HM
1104 return ti_error_einval(rs->ti, "write_mostly option is only valid for RAID1");
1105
1106 if (!_in_range(value, 0, rs->md.raid_disks - 1))
1107 return ti_error_einval(rs->ti, "Invalid write_mostly index given");
9d09e663 1108
46bed2b5 1109 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
702108d1
HM
1110 _set_flag(CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1111 } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
33e53f06 1112 if (!rt_is_raid1(rt))
702108d1
HM
1113 return ti_error_einval(rs->ti, "max_write_behind option is only valid for RAID1");
1114
1115 if (_test_and_set_flag(CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
1116 return ti_error_einval(rs->ti, "Only one max_write_behind argument pair allowed");
9d09e663
N
1117
1118 /*
1119 * In device-mapper, we specify things in sectors, but
1120 * MD records this value in kB
1121 */
1122 value /= 2;
702108d1
HM
1123 if (value > COUNTER_MAX)
1124 return ti_error_einval(rs->ti, "Max write-behind limit out of range");
1125
9d09e663 1126 rs->md.bitmap_info.max_write_behind = value;
702108d1
HM
1127 } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1128 if (_test_and_set_flag(CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
1129 return ti_error_einval(rs->ti, "Only one daemon_sleep argument pair allowed");
1130 if (!value || (value > MAX_SCHEDULE_TIMEOUT))
1131 return ti_error_einval(rs->ti, "daemon sleep period out of range");
9d09e663 1132 rs->md.bitmap_info.daemon_sleep = value;
4763e543
HM
1133 } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_DATA_OFFSET))) {
1134 /* Userspace passes new data_offset after having extended the the data image LV */
1135 if (_test_and_set_flag(CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
1136 return ti_error_einval(rs->ti, "Only one data_offset argument pair allowed");
1137
1138 /* Ensure sensible data offset */
1139 if (value < 0)
1140 return ti_error_einval(rs->ti, "Bogus data_offset value");
1141
1142 rs->data_offset = value;
1143 } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_DELTA_DISKS))) {
1144 /* Define the +/-# of disks to add to/remove from the given raid set */
1145 if (_test_and_set_flag(CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
1146 return ti_error_einval(rs->ti, "Only one delta_disks argument pair allowed");
1147
1148 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1149 if (!_in_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs))
1150 return ti_error_einval(rs->ti, "Too many delta_disk requested");
1151
1152 rs->delta_disks = value;
702108d1
HM
1153 } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1154 if (_test_and_set_flag(CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
1155 return ti_error_einval(rs->ti, "Only one stripe_cache argument pair allowed");
9d09e663
N
1156 /*
1157 * In device-mapper, we specify things in sectors, but
1158 * MD records this value in kB
1159 */
1160 value /= 2;
1161
33e53f06 1162 if (!rt_is_raid456(rt))
702108d1
HM
1163 return ti_error_einval(rs->ti, "Inappropriate argument: stripe_cache");
1164 if (raid5_set_cache_size(&rs->md, (int)value))
1165 return ti_error_einval(rs->ti, "Bad stripe_cache size");
1166
1167 } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1168 if (_test_and_set_flag(CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
1169 return ti_error_einval(rs->ti, "Only one min_recovery_rate argument pair allowed");
1170 if (value > INT_MAX)
1171 return ti_error_einval(rs->ti, "min_recovery_rate out of range");
9d09e663 1172 rs->md.sync_speed_min = (int)value;
702108d1
HM
1173 } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1174 if (_test_and_set_flag(CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
1175 return ti_error_einval(rs->ti, "Only one max_recovery_rate argument pair allowed");
1176 if (value > INT_MAX)
1177 return ti_error_einval(rs->ti, "max_recovery_rate out of range");
9d09e663 1178 rs->md.sync_speed_max = (int)value;
702108d1
HM
1179 } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_REGION_SIZE))) {
1180 if (_test_and_set_flag(CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
1181 return ti_error_einval(rs->ti, "Only one region_size argument pair allowed");
1182
c1084561 1183 region_size = value;
702108d1
HM
1184 } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_RAID10_COPIES))) {
1185 if (_test_and_set_flag(CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
1186 return ti_error_einval(rs->ti, "Only one raid10_copies argument pair allowed");
1187
1188 if (!_in_range(value, 2, rs->md.raid_disks))
1189 return ti_error_einval(rs->ti, "Bad value for 'raid10_copies'");
1190
63f33b8d 1191 raid10_copies = value;
9d09e663
N
1192 } else {
1193 DMERR("Unable to parse RAID parameter: %s", key);
702108d1 1194 return ti_error_einval(rs->ti, "Unable to parse RAID parameters");
9d09e663
N
1195 }
1196 }
1197
c1084561
JB
1198 if (validate_region_size(rs, region_size))
1199 return -EINVAL;
1200
1201 if (rs->md.chunk_sectors)
542f9038 1202 max_io_len = rs->md.chunk_sectors;
c1084561 1203 else
542f9038 1204 max_io_len = region_size;
c1084561 1205
542f9038
MS
1206 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1207 return -EINVAL;
32737279 1208
33e53f06 1209 if (rt_is_raid10(rt)) {
702108d1
HM
1210 if (raid10_copies > rs->md.raid_disks)
1211 return ti_error_einval(rs->ti, "Not enough devices to satisfy specification");
63f33b8d 1212
33e53f06
HM
1213 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1214 if (rs->md.new_layout < 0)
1215 return ti_error_ret(rs->ti, "Error getting raid10 format", rs->md.new_layout);
1216
1217 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1218 if (!rt)
1219 return ti_error_einval(rs->ti, "Failed to recognize new raid10 layout");
1220
1221 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1222 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1223 _test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags))
4763e543 1224 return ti_error_einval(rs->ti, "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible");
fe5d2f4a 1225
63f33b8d
JB
1226 /* (Len * #mirrors) / #devices */
1227 sectors_per_dev = rs->ti->len * raid10_copies;
1228 sector_div(sectors_per_dev, rs->md.raid_disks);
1229
33e53f06 1230 rs->md.layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
63f33b8d 1231 rs->md.new_layout = rs->md.layout;
33e53f06 1232 } else if (!rt_is_raid1(rt) &&
63f33b8d 1233 sector_div(sectors_per_dev,
33e53f06 1234 (rs->md.raid_disks - rt->parity_devs)))
702108d1
HM
1235 return ti_error_einval(rs->ti, "Target length not divisible by number of data devices");
1236
33e53f06 1237 rs->raid10_copies = raid10_copies;
c039c332
JB
1238 rs->md.dev_sectors = sectors_per_dev;
1239
9d09e663
N
1240 /* Assume there are no metadata devices until the drives are parsed */
1241 rs->md.persistent = 0;
1242 rs->md.external = 1;
1243
f090279e
HM
1244 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1245 return rs_check_for_invalid_flags(rs);
9d09e663
N
1246}
1247
1248static void do_table_event(struct work_struct *ws)
1249{
1250 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1251
1252 dm_table_event(rs->ti->table);
1253}
1254
1255static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1256{
1257 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1258
5c675f83 1259 return mddev_congested(&rs->md, bits);
9d09e663
N
1260}
1261
ecbfb9f1
HM
1262/*
1263 * Make sure a valid takover (level switch) is being requested on @rs
1264 *
1265 * Conversions of raid sets from one MD personality to another
1266 * have to conform to restrictions which are enforced here.
1267 *
1268 * Degration is already checked for in rs_check_conversion() below.
1269 */
1270static int rs_check_takeover(struct raid_set *rs)
1271{
1272 struct mddev *mddev = &rs->md;
1273 unsigned int near_copies;
1274
1275 switch (mddev->level) {
1276 case 0:
1277 /* raid0 -> raid1/5 with one disk */
1278 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1279 mddev->raid_disks == 1)
1280 return 0;
1281
1282 /* raid0 -> raid10 */
1283 if (mddev->new_level == 10 &&
1284 !(rs->raid_disks % 2))
1285 return 0;
1286
1287 /* raid0 with multiple disks -> raid4/5/6 */
1288 if (_in_range(mddev->new_level, 4, 6) &&
1289 mddev->new_layout == ALGORITHM_PARITY_N &&
1290 mddev->raid_disks > 1)
1291 return 0;
1292
1293 break;
1294
1295 case 10:
1296 /* Can't takeover raid10_offset! */
1297 if (_is_raid10_offset(mddev->layout))
1298 break;
1299
1300 near_copies = _raid10_near_copies(mddev->layout);
1301
1302 /* raid10* -> raid0 */
1303 if (mddev->new_level == 0) {
1304 /* Can takeover raid10_near with raid disks divisable by data copies! */
1305 if (near_copies > 1 &&
1306 !(mddev->raid_disks % near_copies)) {
1307 mddev->raid_disks /= near_copies;
1308 mddev->delta_disks = mddev->raid_disks;
1309 return 0;
1310 }
1311
1312 /* Can takeover raid10_far */
1313 if (near_copies == 1 &&
1314 _raid10_far_copies(mddev->layout) > 1)
1315 return 0;
1316
1317 break;
1318 }
1319
1320 /* raid10_{near,far} -> raid1 */
1321 if (mddev->new_level == 1 &&
1322 max(near_copies, _raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1323 return 0;
1324
1325 /* raid10_{near,far} with 2 disks -> raid4/5 */
1326 if (_in_range(mddev->new_level, 4, 5) &&
1327 mddev->raid_disks == 2)
1328 return 0;
1329 break;
1330
1331 case 1:
1332 /* raid1 with 2 disks -> raid4/5 */
1333 if (_in_range(mddev->new_level, 4, 5) &&
1334 mddev->raid_disks == 2) {
1335 mddev->degraded = 1;
1336 return 0;
1337 }
1338
1339 /* raid1 -> raid0 */
1340 if (mddev->new_level == 0 &&
1341 mddev->raid_disks == 1)
1342 return 0;
1343
1344 /* raid1 -> raid10 */
1345 if (mddev->new_level == 10)
1346 return 0;
1347
1348 break;
1349
1350 case 4:
1351 /* raid4 -> raid0 */
1352 if (mddev->new_level == 0)
1353 return 0;
1354
1355 /* raid4 -> raid1/5 with 2 disks */
1356 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1357 mddev->raid_disks == 2)
1358 return 0;
1359
1360 /* raid4 -> raid5/6 with parity N */
1361 if (_in_range(mddev->new_level, 5, 6) &&
1362 mddev->layout == ALGORITHM_PARITY_N)
1363 return 0;
1364 break;
1365
1366 case 5:
1367 /* raid5 with parity N -> raid0 */
1368 if (mddev->new_level == 0 &&
1369 mddev->layout == ALGORITHM_PARITY_N)
1370 return 0;
1371
1372 /* raid5 with parity N -> raid4 */
1373 if (mddev->new_level == 4 &&
1374 mddev->layout == ALGORITHM_PARITY_N)
1375 return 0;
1376
1377 /* raid5 with 2 disks -> raid1/4/10 */
1378 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1379 mddev->raid_disks == 2)
1380 return 0;
1381
1382 /* raid5 with parity N -> raid6 with parity N */
1383 if (mddev->new_level == 6 &&
1384 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1385 _in_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1386 return 0;
1387 break;
1388
1389 case 6:
1390 /* raid6 with parity N -> raid0 */
1391 if (mddev->new_level == 0 &&
1392 mddev->layout == ALGORITHM_PARITY_N)
1393 return 0;
1394
1395 /* raid6 with parity N -> raid4 */
1396 if (mddev->new_level == 4 &&
1397 mddev->layout == ALGORITHM_PARITY_N)
1398 return 0;
1399
1400 /* raid6_*_n with parity N -> raid5_* */
1401 if (mddev->new_level == 5 &&
1402 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1403 _in_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1404 return 0;
1405
1406 default:
1407 break;
1408 }
1409
1410 return ti_error_einval(rs->ti, "takeover not possible");
1411}
1412
1413/* True if @rs requested to be taken over */
1414static bool rs_takeover_requested(struct raid_set *rs)
1415{
1416 return rs->md.new_level != rs->md.level;
1417}
1418
33e53f06 1419/* Features */
ecbfb9f1
HM
1420#define FEATURE_FLAG_SUPPORTS_V180 0x1 /* Supports v1.8.0 extended superblock */
1421#define FEATURE_FLAG_SUPPORTS_RESHAPE 0x2 /* Supports v1.8.0 reshaping functionality */
33e53f06
HM
1422
1423/* State flags for sb->flags */
1424#define SB_FLAG_RESHAPE_ACTIVE 0x1
1425#define SB_FLAG_RESHAPE_BACKWARDS 0x2
1426
b12d437b
JB
1427/*
1428 * This structure is never routinely used by userspace, unlike md superblocks.
1429 * Devices with this superblock should only ever be accessed via device-mapper.
1430 */
1431#define DM_RAID_MAGIC 0x64526D44
1432struct dm_raid_superblock {
1433 __le32 magic; /* "DmRd" */
33e53f06 1434 __le32 compat_features; /* Used to indicate compatible features (like 1.8.0 ondisk metadata extension) */
b12d437b 1435
33e53f06
HM
1436 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1437 __le32 array_position; /* The position of this drive in the raid set */
b12d437b
JB
1438
1439 __le64 events; /* Incremented by md when superblock updated */
33e53f06
HM
1440 __le64 failed_devices; /* Pre 1.8.0 part of bit field of devices to */
1441 /* indicate failures (see extension below) */
b12d437b
JB
1442
1443 /*
1444 * This offset tracks the progress of the repair or replacement of
1445 * an individual drive.
1446 */
1447 __le64 disk_recovery_offset;
1448
1449 /*
33e53f06 1450 * This offset tracks the progress of the initial raid set
b12d437b
JB
1451 * synchronisation/parity calculation.
1452 */
1453 __le64 array_resync_offset;
1454
1455 /*
33e53f06 1456 * raid characteristics
b12d437b
JB
1457 */
1458 __le32 level;
1459 __le32 layout;
1460 __le32 stripe_sectors;
1461
33e53f06
HM
1462 /********************************************************************
1463 * BELOW FOLLOW V1.8.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1464 *
ecbfb9f1 1465 * FEATURE_FLAG_SUPPORTS_V180 in the features member indicates that those exist
33e53f06
HM
1466 */
1467
1468 __le32 flags; /* Flags defining array states for reshaping */
1469
1470 /*
1471 * This offset tracks the progress of a raid
1472 * set reshape in order to be able to restart it
1473 */
1474 __le64 reshape_position;
1475
1476 /*
1477 * These define the properties of the array in case of an interrupted reshape
1478 */
1479 __le32 new_level;
1480 __le32 new_layout;
1481 __le32 new_stripe_sectors;
1482 __le32 delta_disks;
1483
1484 __le64 array_sectors; /* Array size in sectors */
1485
1486 /*
1487 * Sector offsets to data on devices (reshaping).
1488 * Needed to support out of place reshaping, thus
1489 * not writing over any stripes whilst converting
1490 * them from old to new layout
1491 */
1492 __le64 data_offset;
1493 __le64 new_data_offset;
1494
1495 __le64 sectors; /* Used device size in sectors */
1496
1497 /*
1498 * Additonal Bit field of devices indicating failures to support
1499 * up to 256 devices with the 1.8.0 on-disk metadata format
1500 */
1501 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1502
1503 __le32 incompat_features; /* Used to indicate any incompatible features */
1504
1505 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
b12d437b
JB
1506} __packed;
1507
3cb03002 1508static int read_disk_sb(struct md_rdev *rdev, int size)
b12d437b
JB
1509{
1510 BUG_ON(!rdev->sb_page);
1511
1512 if (rdev->sb_loaded)
1513 return 0;
1514
796a5cf0 1515 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, 1)) {
0447568f
JB
1516 DMERR("Failed to read superblock of device at position %d",
1517 rdev->raid_disk);
c32fb9e7 1518 md_error(rdev->mddev, rdev);
b12d437b
JB
1519 return -EINVAL;
1520 }
1521
1522 rdev->sb_loaded = 1;
1523
1524 return 0;
1525}
1526
33e53f06
HM
1527static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1528{
1529 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1530 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1531
ecbfb9f1 1532 if (_test_flag(FEATURE_FLAG_SUPPORTS_V180, le32_to_cpu(sb->compat_features))) {
33e53f06
HM
1533 int i = ARRAY_SIZE(sb->extended_failed_devices);
1534
1535 while (i--)
1536 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1537 }
1538}
1539
7b34df74
HM
1540static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1541{
1542 int i = ARRAY_SIZE(sb->extended_failed_devices);
1543
1544 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1545 while (i--)
1546 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1547}
1548
1549/*
1550 * Synchronize the superblock members with the raid set properties
1551 *
1552 * All superblock data is little endian.
1553 */
fd01b88c 1554static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
b12d437b 1555{
7b34df74
HM
1556 bool update_failed_devices = false;
1557 unsigned int i;
1558 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
b12d437b 1559 struct dm_raid_superblock *sb;
81f382f9 1560 struct raid_set *rs = container_of(mddev, struct raid_set, md);
b12d437b 1561
7b34df74
HM
1562 /* No metadata device, no superblock */
1563 if (!rdev->meta_bdev)
1564 return;
1565
1566 BUG_ON(!rdev->sb_page);
1567
b12d437b 1568 sb = page_address(rdev->sb_page);
b12d437b 1569
7b34df74 1570 sb_retrieve_failed_devices(sb, failed_devices);
b12d437b 1571
7b34df74
HM
1572 for (i = 0; i < rs->raid_disks; i++)
1573 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1574 update_failed_devices = true;
1575 set_bit(i, (void *) failed_devices);
1576 }
1577
1578 if (update_failed_devices)
1579 sb_update_failed_devices(sb, failed_devices);
b12d437b
JB
1580
1581 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
ecbfb9f1 1582 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V180); /* Don't set reshape flag yet */
b12d437b
JB
1583
1584 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1585 sb->array_position = cpu_to_le32(rdev->raid_disk);
1586
1587 sb->events = cpu_to_le64(mddev->events);
b12d437b
JB
1588
1589 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1590 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1591
1592 sb->level = cpu_to_le32(mddev->level);
1593 sb->layout = cpu_to_le32(mddev->layout);
1594 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
7b34df74
HM
1595
1596 sb->new_level = cpu_to_le32(mddev->new_level);
1597 sb->new_layout = cpu_to_le32(mddev->new_layout);
1598 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1599
1600 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1601
1602 smp_rmb(); /* Make sure we access most recent reshape position */
1603 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1604 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1605 /* Flag ongoing reshape */
1606 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1607
1608 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1609 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1610 } else
1611 /* Flag no reshape */
1612 _clear_flags(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS), &sb->flags);
1613
1614 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1615 sb->data_offset = cpu_to_le64(rdev->data_offset);
1616 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1617 sb->sectors = cpu_to_le64(rdev->sectors);
1618
1619 /* Zero out the rest of the payload after the size of the superblock */
1620 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
b12d437b
JB
1621}
1622
1623/*
1624 * super_load
1625 *
1626 * This function creates a superblock if one is not found on the device
1627 * and will decide which superblock to use if there's a choice.
1628 *
1629 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1630 */
3cb03002 1631static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
b12d437b 1632{
73c6f239 1633 int r;
b12d437b
JB
1634 struct dm_raid_superblock *sb;
1635 struct dm_raid_superblock *refsb;
1636 uint64_t events_sb, events_refsb;
1637
1638 rdev->sb_start = 0;
40d43c4b
HM
1639 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1640 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1641 DMERR("superblock size of a logical block is no longer valid");
1642 return -EINVAL;
1643 }
b12d437b 1644
73c6f239
HM
1645 r = read_disk_sb(rdev, rdev->sb_size);
1646 if (r)
1647 return r;
b12d437b
JB
1648
1649 sb = page_address(rdev->sb_page);
3aa3b2b2
JB
1650
1651 /*
1652 * Two cases that we want to write new superblocks and rebuild:
1653 * 1) New device (no matching magic number)
1654 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1655 */
1656 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1657 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
b12d437b
JB
1658 super_sync(rdev->mddev, rdev);
1659
1660 set_bit(FirstUse, &rdev->flags);
ecbfb9f1 1661 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V180); /* Don't set reshape flag yet */
b12d437b
JB
1662
1663 /* Force writing of superblocks to disk */
1664 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1665
1666 /* Any superblock is better than none, choose that if given */
1667 return refdev ? 0 : 1;
1668 }
1669
1670 if (!refdev)
1671 return 1;
1672
1673 events_sb = le64_to_cpu(sb->events);
1674
1675 refsb = page_address(refdev->sb_page);
1676 events_refsb = le64_to_cpu(refsb->events);
1677
1678 return (events_sb > events_refsb) ? 1 : 0;
1679}
1680
33e53f06 1681static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
b12d437b
JB
1682{
1683 int role;
33e53f06
HM
1684 unsigned int d;
1685 struct mddev *mddev = &rs->md;
b12d437b 1686 uint64_t events_sb;
33e53f06 1687 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
b12d437b 1688 struct dm_raid_superblock *sb;
33e53f06 1689 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
dafb20fa 1690 struct md_rdev *r;
b12d437b
JB
1691 struct dm_raid_superblock *sb2;
1692
1693 sb = page_address(rdev->sb_page);
1694 events_sb = le64_to_cpu(sb->events);
b12d437b
JB
1695
1696 /*
1697 * Initialise to 1 if this is a new superblock.
1698 */
1699 mddev->events = events_sb ? : 1;
1700
33e53f06
HM
1701 mddev->reshape_position = MaxSector;
1702
b12d437b 1703 /*
33e53f06
HM
1704 * Reshaping is supported, e.g. reshape_position is valid
1705 * in superblock and superblock content is authoritative.
b12d437b 1706 */
ecbfb9f1 1707 if (_test_flag(FEATURE_FLAG_SUPPORTS_V180, le32_to_cpu(sb->compat_features))) {
33e53f06
HM
1708 /* Superblock is authoritative wrt given raid set layout! */
1709 mddev->raid_disks = le32_to_cpu(sb->num_devices);
1710 mddev->level = le32_to_cpu(sb->level);
1711 mddev->layout = le32_to_cpu(sb->layout);
1712 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
1713 mddev->new_level = le32_to_cpu(sb->new_level);
1714 mddev->new_layout = le32_to_cpu(sb->new_layout);
1715 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
1716 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1717 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
1718
1719 /* raid was reshaping and got interrupted */
1720 if (_test_flag(SB_FLAG_RESHAPE_ACTIVE, le32_to_cpu(sb->flags))) {
1721 if (_test_flag(CTR_FLAG_DELTA_DISKS, rs->ctr_flags)) {
1722 DMERR("Reshape requested but raid set is still reshaping");
1723 return -EINVAL;
1724 }
b12d437b 1725
33e53f06
HM
1726 if (mddev->delta_disks < 0 ||
1727 (!mddev->delta_disks && _test_flag(SB_FLAG_RESHAPE_BACKWARDS, le32_to_cpu(sb->flags))))
1728 mddev->reshape_backwards = 1;
1729 else
1730 mddev->reshape_backwards = 0;
1731
1732 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1733 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
1734 }
1735
1736 } else {
1737 /*
1738 * Reshaping is not allowed, because we don't have the appropriate metadata
1739 */
1740 if (le32_to_cpu(sb->level) != mddev->level) {
1741 DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
1742 return -EINVAL;
1743 }
1744 if (le32_to_cpu(sb->layout) != mddev->layout) {
1745 DMERR("Reshaping raid sets not yet supported. (raid layout change)");
1746 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
1747 DMERR(" Old layout: %s w/ %d copies",
1748 raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
1749 raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
1750 DMERR(" New layout: %s w/ %d copies",
1751 raid10_md_layout_to_format(mddev->layout),
1752 raid10_md_layout_to_copies(mddev->layout));
1753 return -EINVAL;
1754 }
1755 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
1756 DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
1757 return -EINVAL;
1758 }
1759
1760 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
1761 if (!rt_is_raid1(rs->raid_type) &&
1762 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
1763 DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
1764 sb->num_devices, mddev->raid_disks);
1765 return -EINVAL;
1766 }
1767
1768 /* Table line is checked vs. authoritative superblock */
1769 rs_set_new(rs);
b12d437b
JB
1770 }
1771
33e53f06 1772 if (!_test_flag(CTR_FLAG_NOSYNC, rs->ctr_flags))
b12d437b
JB
1773 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
1774
1775 /*
1776 * During load, we set FirstUse if a new superblock was written.
1777 * There are two reasons we might not have a superblock:
33e53f06 1778 * 1) The raid set is brand new - in which case, all of the
b12d437b
JB
1779 * devices must have their In_sync bit set. Also,
1780 * recovery_cp must be 0, unless forced.
33e53f06 1781 * 2) This is a new device being added to an old raid set
b12d437b
JB
1782 * and the new device needs to be rebuilt - in which
1783 * case the In_sync bit will /not/ be set and
1784 * recovery_cp must be MaxSector.
1785 */
33e53f06 1786 d = 0;
dafb20fa 1787 rdev_for_each(r, mddev) {
33e53f06
HM
1788 if (test_bit(FirstUse, &r->flags))
1789 new_devs++;
1790
b12d437b 1791 if (!test_bit(In_sync, &r->flags)) {
33e53f06
HM
1792 DMINFO("Device %d specified for rebuild; clearing superblock",
1793 r->raid_disk);
b12d437b 1794 rebuilds++;
33e53f06
HM
1795
1796 if (test_bit(FirstUse, &r->flags))
1797 rebuild_and_new++;
1798 }
1799
1800 d++;
b12d437b
JB
1801 }
1802
33e53f06
HM
1803 if (new_devs == rs->raid_disks || !rebuilds) {
1804 /* Replace a broken device */
1805 if (new_devs == 1 && !rs->delta_disks)
1806 ;
1807 if (new_devs == rs->raid_disks) {
1808 DMINFO("Superblocks created for new raid set");
b12d437b 1809 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
ecbfb9f1 1810 _set_flag(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
33e53f06
HM
1811 mddev->recovery_cp = 0;
1812 } else if (new_devs && new_devs != rs->raid_disks && !rebuilds) {
1813 DMERR("New device injected into existing raid set without "
1814 "'delta_disks' or 'rebuild' parameter specified");
b12d437b
JB
1815 return -EINVAL;
1816 }
33e53f06
HM
1817 } else if (new_devs && new_devs != rebuilds) {
1818 DMERR("%u 'rebuild' devices cannot be injected into"
1819 " a raid set with %u other first-time devices",
1820 rebuilds, new_devs);
b12d437b 1821 return -EINVAL;
33e53f06
HM
1822 } else if (rebuilds) {
1823 if (rebuild_and_new && rebuilds != rebuild_and_new) {
1824 DMERR("new device%s provided without 'rebuild'",
1825 new_devs > 1 ? "s" : "");
1826 return -EINVAL;
1827 } else if (mddev->recovery_cp != MaxSector) {
1828 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
1829 (unsigned long long) mddev->recovery_cp);
1830 return -EINVAL;
1831 } else if (mddev->reshape_position != MaxSector) {
1832 DMERR("'rebuild' specified while raid set is being reshaped");
1833 return -EINVAL;
1834 }
b12d437b
JB
1835 }
1836
1837 /*
1838 * Now we set the Faulty bit for those devices that are
1839 * recorded in the superblock as failed.
1840 */
33e53f06 1841 sb_retrieve_failed_devices(sb, failed_devices);
dafb20fa 1842 rdev_for_each(r, mddev) {
b12d437b
JB
1843 if (!r->sb_page)
1844 continue;
1845 sb2 = page_address(r->sb_page);
1846 sb2->failed_devices = 0;
33e53f06 1847 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
b12d437b
JB
1848
1849 /*
1850 * Check for any device re-ordering.
1851 */
1852 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
1853 role = le32_to_cpu(sb2->array_position);
33e53f06
HM
1854 if (role < 0)
1855 continue;
1856
b12d437b 1857 if (role != r->raid_disk) {
33e53f06
HM
1858 if (_is_raid10_near(mddev->layout)) {
1859 if (mddev->raid_disks % _raid10_near_copies(mddev->layout) ||
1860 rs->raid_disks % rs->raid10_copies)
1861 return ti_error_einval(rs->ti, "Cannot change raid10 near "
1862 "set to odd # of devices!");
1863
1864 sb2->array_position = cpu_to_le32(r->raid_disk);
1865
1866 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
1867 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
1868 !rt_is_raid1(rs->raid_type))
1869 return ti_error_einval(rs->ti, "Cannot change device positions in raid set");
1870
1871 DMINFO("raid device #%d now at position #%d",
b12d437b
JB
1872 role, r->raid_disk);
1873 }
1874
1875 /*
1876 * Partial recovery is performed on
1877 * returning failed devices.
1878 */
33e53f06 1879 if (test_bit(role, (void *) failed_devices))
b12d437b
JB
1880 set_bit(Faulty, &r->flags);
1881 }
1882 }
1883
1884 return 0;
1885}
1886
0cf45031 1887static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
b12d437b 1888{
0cf45031 1889 struct mddev *mddev = &rs->md;
33e53f06
HM
1890 struct dm_raid_superblock *sb;
1891
1892 if (!rdev->sb_page)
1893 return 0;
1894
1895 sb = page_address(rdev->sb_page);
b12d437b
JB
1896
1897 /*
1898 * If mddev->events is not set, we know we have not yet initialized
1899 * the array.
1900 */
33e53f06 1901 if (!mddev->events && super_init_validation(rs, rdev))
b12d437b
JB
1902 return -EINVAL;
1903
ecbfb9f1
HM
1904 if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V180 ||
1905 sb->incompat_features) {
1906 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
4c9971ca
HM
1907 return -EINVAL;
1908 }
1909
0cf45031 1910 /* Enable bitmap creation for RAID levels != 0 */
676fa5ad 1911 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
0cf45031
HM
1912 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
1913
33e53f06
HM
1914 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
1915 /* Retrieve device size stored in superblock to be prepared for shrink */
1916 rdev->sectors = le64_to_cpu(sb->sectors);
b12d437b 1917 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
33e53f06
HM
1918 if (rdev->recovery_offset == MaxSector)
1919 set_bit(In_sync, &rdev->flags);
1920 /*
1921 * If no reshape in progress -> we're recovering single
1922 * disk(s) and have to set the device(s) to out-of-sync
1923 */
1924 else if (rs->md.reshape_position == MaxSector)
1925 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
b12d437b
JB
1926 }
1927
1928 /*
1929 * If a device comes back, set it as not In_sync and no longer faulty.
1930 */
33e53f06
HM
1931 if (test_and_clear_bit(Faulty, &rdev->flags)) {
1932 rdev->recovery_offset = 0;
b12d437b
JB
1933 clear_bit(In_sync, &rdev->flags);
1934 rdev->saved_raid_disk = rdev->raid_disk;
b12d437b
JB
1935 }
1936
33e53f06
HM
1937 /* Reshape support -> restore repective data offsets */
1938 rdev->data_offset = le64_to_cpu(sb->data_offset);
1939 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
b12d437b
JB
1940
1941 return 0;
1942}
1943
1944/*
1945 * Analyse superblocks and select the freshest.
1946 */
1947static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
1948{
73c6f239 1949 int r;
0447568f 1950 struct raid_dev *dev;
a9ad8526 1951 struct md_rdev *rdev, *tmp, *freshest;
fd01b88c 1952 struct mddev *mddev = &rs->md;
b12d437b
JB
1953
1954 freshest = NULL;
a9ad8526 1955 rdev_for_each_safe(rdev, tmp, mddev) {
761becff 1956 /*
c76d53f4 1957 * Skipping super_load due to CTR_FLAG_SYNC will cause
761becff
JB
1958 * the array to undergo initialization again as
1959 * though it were new. This is the intended effect
1960 * of the "sync" directive.
1961 *
1962 * When reshaping capability is added, we must ensure
1963 * that the "sync" directive is disallowed during the
1964 * reshape.
1965 */
ad51d7f1 1966 if (_test_flag(CTR_FLAG_SYNC, rs->ctr_flags))
761becff
JB
1967 continue;
1968
b12d437b
JB
1969 if (!rdev->meta_bdev)
1970 continue;
1971
73c6f239 1972 r = super_load(rdev, freshest);
b12d437b 1973
73c6f239 1974 switch (r) {
b12d437b
JB
1975 case 1:
1976 freshest = rdev;
1977 break;
1978 case 0:
1979 break;
1980 default:
0447568f 1981 dev = container_of(rdev, struct raid_dev, rdev);
55ebbb59
JB
1982 if (dev->meta_dev)
1983 dm_put_device(ti, dev->meta_dev);
0447568f 1984
55ebbb59
JB
1985 dev->meta_dev = NULL;
1986 rdev->meta_bdev = NULL;
0447568f 1987
55ebbb59
JB
1988 if (rdev->sb_page)
1989 put_page(rdev->sb_page);
0447568f 1990
55ebbb59 1991 rdev->sb_page = NULL;
0447568f 1992
55ebbb59 1993 rdev->sb_loaded = 0;
0447568f 1994
55ebbb59
JB
1995 /*
1996 * We might be able to salvage the data device
1997 * even though the meta device has failed. For
1998 * now, we behave as though '- -' had been
1999 * set for this device in the table.
2000 */
2001 if (dev->data_dev)
2002 dm_put_device(ti, dev->data_dev);
0447568f 2003
55ebbb59
JB
2004 dev->data_dev = NULL;
2005 rdev->bdev = NULL;
0447568f 2006
55ebbb59 2007 list_del(&rdev->same_set);
b12d437b
JB
2008 }
2009 }
2010
2011 if (!freshest)
2012 return 0;
2013
702108d1
HM
2014 if (validate_raid_redundancy(rs))
2015 return ti_error_einval(rs->ti, "Insufficient redundancy to activate array");
55ebbb59 2016
b12d437b
JB
2017 /*
2018 * Validation of the freshest device provides the source of
2019 * validation for the remaining devices.
2020 */
0cf45031 2021 if (super_validate(rs, freshest))
702108d1 2022 return ti_error_einval(rs->ti, "Unable to assemble array: Invalid superblocks");
b12d437b 2023
dafb20fa 2024 rdev_for_each(rdev, mddev)
0cf45031 2025 if ((rdev != freshest) && super_validate(rs, rdev))
b12d437b
JB
2026 return -EINVAL;
2027
2028 return 0;
2029}
2030
ecbfb9f1
HM
2031/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2032static void _reorder_raid_disk_indexes(struct raid_set *rs)
2033{
2034 int i = 0;
2035 struct md_rdev *rdev;
2036
2037 rdev_for_each(rdev, &rs->md) {
2038 rdev->raid_disk = i++;
2039 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2040 }
2041}
2042
2043/*
2044 * Setup @rs for takeover by a different raid level
2045 */
2046static int rs_setup_takeover(struct raid_set *rs)
2047{
2048 struct mddev *mddev = &rs->md;
2049 struct md_rdev *rdev;
2050 unsigned int d = mddev->raid_disks = rs->raid_disks;
2051 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2052
2053 if (rt_is_raid10(rs->raid_type)) {
2054 if (mddev->level == 0) {
2055 /* Userpace reordered disks -> adjust raid_disk indexes */
2056 _reorder_raid_disk_indexes(rs);
2057
2058 /* raid0 -> raid10_far layout */
2059 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2060 rs->raid10_copies);
2061 } else if (mddev->level == 1)
2062 /* raid1 -> raid10_near layout */
2063 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2064 rs->raid_disks);
2065 else
2066 return -EINVAL;
2067
2068 }
2069
2070 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2071 mddev->recovery_cp = MaxSector;
2072
2073 while (d--) {
2074 rdev = &rs->dev[d].rdev;
2075
2076 if (test_bit(d, (void *) rs->rebuild_disks)) {
2077 clear_bit(In_sync, &rdev->flags);
2078 clear_bit(Faulty, &rdev->flags);
2079 mddev->recovery_cp = rdev->recovery_offset = 0;
2080 /* Bitmap has to be created when we do an "up" takeover */
2081 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2082 }
2083
2084 rdev->new_data_offset = new_data_offset;
2085 }
2086
2087 rs_set_new(rs);
2088 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2089
2090 return 0;
2091}
2092
75b8e04b 2093/*
48cf06bc
HM
2094 * Enable/disable discard support on RAID set depending on
2095 * RAID level and discard properties of underlying RAID members.
75b8e04b 2096 */
ecbfb9f1 2097static void configure_discard_support(struct raid_set *rs)
75b8e04b 2098{
48cf06bc
HM
2099 int i;
2100 bool raid456;
ecbfb9f1 2101 struct dm_target *ti = rs->ti;
48cf06bc 2102
75b8e04b
HM
2103 /* Assume discards not supported until after checks below. */
2104 ti->discards_supported = false;
2105
2106 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
48cf06bc 2107 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
75b8e04b 2108
48cf06bc 2109 for (i = 0; i < rs->md.raid_disks; i++) {
d20c4b08 2110 struct request_queue *q;
48cf06bc 2111
d20c4b08
HM
2112 if (!rs->dev[i].rdev.bdev)
2113 continue;
2114
2115 q = bdev_get_queue(rs->dev[i].rdev.bdev);
48cf06bc
HM
2116 if (!q || !blk_queue_discard(q))
2117 return;
2118
2119 if (raid456) {
2120 if (!q->limits.discard_zeroes_data)
2121 return;
2122 if (!devices_handle_discard_safely) {
2123 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2124 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2125 return;
2126 }
2127 }
2128 }
2129
2130 /* All RAID members properly support discards */
75b8e04b
HM
2131 ti->discards_supported = true;
2132
2133 /*
2134 * RAID1 and RAID10 personalities require bio splitting,
48cf06bc 2135 * RAID0/4/5/6 don't and process large discard bios properly.
75b8e04b 2136 */
48cf06bc 2137 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
75b8e04b
HM
2138 ti->num_discard_bios = 1;
2139}
2140
9d09e663 2141/*
73c6f239 2142 * Construct a RAID0/1/10/4/5/6 mapping:
9d09e663 2143 * Args:
73c6f239
HM
2144 * <raid_type> <#raid_params> <raid_params>{0,} \
2145 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
9d09e663 2146 *
9d09e663
N
2147 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2148 * details on possible <raid_params>.
73c6f239
HM
2149 *
2150 * Userspace is free to initialize the metadata devices, hence the superblocks to
2151 * enforce recreation based on the passed in table parameters.
2152 *
9d09e663
N
2153 */
2154static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2155{
73c6f239 2156 int r;
9d09e663 2157 struct raid_type *rt;
92c83d79 2158 unsigned num_raid_params, num_raid_devs;
9d09e663 2159 struct raid_set *rs = NULL;
92c83d79
HM
2160 const char *arg;
2161 struct dm_arg_set as = { argc, argv }, as_nrd;
2162 struct dm_arg _args[] = {
2163 { 0, as.argc, "Cannot understand number of raid parameters" },
2164 { 1, 254, "Cannot understand number of raid devices parameters" }
2165 };
2166
2167 /* Must have <raid_type> */
2168 arg = dm_shift_arg(&as);
702108d1
HM
2169 if (!arg)
2170 return ti_error_einval(rs->ti, "No arguments");
9d09e663 2171
92c83d79 2172 rt = get_raid_type(arg);
702108d1
HM
2173 if (!rt)
2174 return ti_error_einval(rs->ti, "Unrecognised raid_type");
9d09e663 2175
92c83d79
HM
2176 /* Must have <#raid_params> */
2177 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2178 return -EINVAL;
9d09e663 2179
92c83d79
HM
2180 /* number of raid device tupples <meta_dev data_dev> */
2181 as_nrd = as;
2182 dm_consume_args(&as_nrd, num_raid_params);
2183 _args[1].max = (as_nrd.argc - 1) / 2;
2184 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2185 return -EINVAL;
9d09e663 2186
702108d1
HM
2187 if (!_in_range(num_raid_devs, 1, MAX_RAID_DEVICES))
2188 return ti_error_einval(rs->ti, "Invalid number of supplied raid devices");
3ca5a21a 2189
92c83d79 2190 rs = context_alloc(ti, rt, num_raid_devs);
9d09e663
N
2191 if (IS_ERR(rs))
2192 return PTR_ERR(rs);
2193
92c83d79 2194 r = parse_raid_params(rs, &as, num_raid_params);
73c6f239 2195 if (r)
9d09e663
N
2196 goto bad;
2197
702108d1 2198 r = parse_dev_params(rs, &as);
73c6f239 2199 if (r)
9d09e663
N
2200 goto bad;
2201
b12d437b 2202 rs->md.sync_super = super_sync;
ecbfb9f1
HM
2203
2204 /*
2205 * Backup any new raid set level, layout, ...
2206 * requested to be able to compare to superblock
2207 * members for conversion decisions.
2208 */
2209 rs_config_backup(rs);
2210
73c6f239
HM
2211 r = analyse_superblocks(ti, rs);
2212 if (r)
b12d437b
JB
2213 goto bad;
2214
9d09e663 2215 INIT_WORK(&rs->md.event_work, do_table_event);
9d09e663 2216 ti->private = rs;
55a62eef 2217 ti->num_flush_bios = 1;
9d09e663 2218
ecbfb9f1
HM
2219 /* Restore any requested new layout for conversion decision */
2220 rs_config_restore(rs);
2221
75b8e04b 2222 /*
ecbfb9f1
HM
2223 * If a takeover is needed, just set the level to
2224 * the new requested one and allow the raid set to run.
75b8e04b 2225 */
ecbfb9f1
HM
2226 if (rs_takeover_requested(rs)) {
2227 r = rs_check_takeover(rs);
2228 if (r)
2229 return r;
2230
2231 r = rs_setup_takeover(rs);
2232 if (r)
2233 return r;
2234
2235 _set_flag(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2236 }
2237
2238 /* Start raid set read-only and assumed clean to change in raid_resume() */
2239 rs->md.ro = 1;
2240 rs->md.in_sync = 1;
2241 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
75b8e04b 2242
0cf45031
HM
2243 /* Has to be held on running the array */
2244 mddev_lock_nointr(&rs->md);
73c6f239 2245 r = md_run(&rs->md);
9d09e663 2246 rs->md.in_sync = 0; /* Assume already marked dirty */
0cf45031 2247 mddev_unlock(&rs->md);
9d09e663 2248
73c6f239 2249 if (r) {
9d09e663
N
2250 ti->error = "Fail to run raid array";
2251 goto bad;
2252 }
2253
63f33b8d 2254 if (ti->len != rs->md.array_sectors) {
702108d1 2255 r = ti_error_einval(ti, "Array size does not match requested target length");
63f33b8d
JB
2256 goto size_mismatch;
2257 }
9d09e663 2258 rs->callbacks.congested_fn = raid_is_congested;
9d09e663
N
2259 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2260
32737279 2261 mddev_suspend(&rs->md);
9d09e663
N
2262 return 0;
2263
63f33b8d
JB
2264size_mismatch:
2265 md_stop(&rs->md);
9d09e663
N
2266bad:
2267 context_free(rs);
2268
73c6f239 2269 return r;
9d09e663
N
2270}
2271
2272static void raid_dtr(struct dm_target *ti)
2273{
2274 struct raid_set *rs = ti->private;
2275
2276 list_del_init(&rs->callbacks.list);
2277 md_stop(&rs->md);
2278 context_free(rs);
2279}
2280
7de3ee57 2281static int raid_map(struct dm_target *ti, struct bio *bio)
9d09e663
N
2282{
2283 struct raid_set *rs = ti->private;
fd01b88c 2284 struct mddev *mddev = &rs->md;
9d09e663
N
2285
2286 mddev->pers->make_request(mddev, bio);
2287
2288 return DM_MAPIO_SUBMITTED;
2289}
2290
be83651f
JB
2291static const char *decipher_sync_action(struct mddev *mddev)
2292{
2293 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2294 return "frozen";
2295
2296 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2297 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2298 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2299 return "reshape";
2300
2301 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2302 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2303 return "resync";
2304 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2305 return "check";
2306 return "repair";
2307 }
2308
2309 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2310 return "recover";
2311 }
2312
2313 return "idle";
2314}
2315
fd7c092e
MP
2316static void raid_status(struct dm_target *ti, status_type_t type,
2317 unsigned status_flags, char *result, unsigned maxlen)
9d09e663
N
2318{
2319 struct raid_set *rs = ti->private;
2320 unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
2321 unsigned sz = 0;
2e727c3c 2322 int i, array_in_sync = 0;
9d09e663
N
2323 sector_t sync;
2324
2325 switch (type) {
2326 case STATUSTYPE_INFO:
2327 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
2328
676fa5ad 2329 if (!rt_is_raid0(rs->raid_type)) {
0cf45031
HM
2330 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
2331 sync = rs->md.curr_resync_completed;
2332 else
2333 sync = rs->md.recovery_cp;
2334
2335 if (sync >= rs->md.resync_max_sectors) {
2336 /*
2337 * Sync complete.
2338 */
2339 array_in_sync = 1;
2340 sync = rs->md.resync_max_sectors;
2341 } else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) {
2342 /*
2343 * If "check" or "repair" is occurring, the array has
2344 * undergone and initial sync and the health characters
2345 * should not be 'a' anymore.
2346 */
2347 array_in_sync = 1;
2348 } else {
2349 /*
2350 * The array may be doing an initial sync, or it may
2351 * be rebuilding individual components. If all the
2352 * devices are In_sync, then it is the array that is
2353 * being initialized.
2354 */
2355 for (i = 0; i < rs->md.raid_disks; i++)
2356 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
2357 array_in_sync = 1;
2358 }
2359 } else {
2360 /* RAID0 */
2e727c3c 2361 array_in_sync = 1;
9d09e663 2362 sync = rs->md.resync_max_sectors;
2e727c3c 2363 }
be83651f 2364
2e727c3c
JB
2365 /*
2366 * Status characters:
2367 * 'D' = Dead/Failed device
2368 * 'a' = Alive but not in-sync
2369 * 'A' = Alive and in-sync
2370 */
2371 for (i = 0; i < rs->md.raid_disks; i++) {
2372 if (test_bit(Faulty, &rs->dev[i].rdev.flags))
2373 DMEMIT("D");
2374 else if (!array_in_sync ||
2375 !test_bit(In_sync, &rs->dev[i].rdev.flags))
2376 DMEMIT("a");
2377 else
2378 DMEMIT("A");
2379 }
9d09e663 2380
2e727c3c
JB
2381 /*
2382 * In-sync ratio:
2383 * The in-sync ratio shows the progress of:
2384 * - Initializing the array
2385 * - Rebuilding a subset of devices of the array
2386 * The user can distinguish between the two by referring
2387 * to the status characters.
2388 */
9d09e663
N
2389 DMEMIT(" %llu/%llu",
2390 (unsigned long long) sync,
2391 (unsigned long long) rs->md.resync_max_sectors);
2392
be83651f
JB
2393 /*
2394 * Sync action:
2395 * See Documentation/device-mapper/dm-raid.c for
2396 * information on each of these states.
2397 */
2398 DMEMIT(" %s", decipher_sync_action(&rs->md));
2399
2400 /*
2401 * resync_mismatches/mismatch_cnt
2402 * This field shows the number of discrepancies found when
2403 * performing a "check" of the array.
2404 */
2405 DMEMIT(" %llu",
c4a39551 2406 (strcmp(rs->md.last_sync_action, "check")) ? 0 :
be83651f
JB
2407 (unsigned long long)
2408 atomic64_read(&rs->md.resync_mismatches));
9d09e663
N
2409 break;
2410 case STATUSTYPE_TABLE:
2411 /* The string you would use to construct this array */
46bed2b5 2412 for (i = 0; i < rs->md.raid_disks; i++) {
ad51d7f1 2413 if (_test_flag(CTR_FLAG_REBUILD, rs->ctr_flags) &&
13c87583 2414 rs->dev[i].data_dev &&
9d09e663 2415 !test_bit(In_sync, &rs->dev[i].rdev.flags))
13c87583 2416 raid_param_cnt += 2; /* for rebuilds */
46bed2b5
JB
2417 if (rs->dev[i].data_dev &&
2418 test_bit(WriteMostly, &rs->dev[i].rdev.flags))
2419 raid_param_cnt += 2;
2420 }
9d09e663 2421
c76d53f4
HM
2422 raid_param_cnt += (hweight32(rs->ctr_flags & ~CTR_FLAG_REBUILD) * 2);
2423 if (rs->ctr_flags & (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC))
9d09e663
N
2424 raid_param_cnt--;
2425
2426 DMEMIT("%s %u %u", rs->raid_type->name,
2427 raid_param_cnt, rs->md.chunk_sectors);
2428
ad51d7f1
HM
2429 if (_test_flag(CTR_FLAG_SYNC, rs->ctr_flags) &&
2430 rs->md.recovery_cp == MaxSector)
9d09e663 2431 DMEMIT(" sync");
ad51d7f1 2432 if (_test_flag(CTR_FLAG_NOSYNC, rs->ctr_flags))
9d09e663
N
2433 DMEMIT(" nosync");
2434
2435 for (i = 0; i < rs->md.raid_disks; i++)
ad51d7f1 2436 if (_test_flag(CTR_FLAG_REBUILD, rs->ctr_flags) &&
13c87583 2437 rs->dev[i].data_dev &&
9d09e663
N
2438 !test_bit(In_sync, &rs->dev[i].rdev.flags))
2439 DMEMIT(" rebuild %u", i);
2440
ad51d7f1 2441 if (_test_flag(CTR_FLAG_DAEMON_SLEEP, rs->ctr_flags))
9d09e663
N
2442 DMEMIT(" daemon_sleep %lu",
2443 rs->md.bitmap_info.daemon_sleep);
2444
ad51d7f1 2445 if (_test_flag(CTR_FLAG_MIN_RECOVERY_RATE, rs->ctr_flags))
9d09e663
N
2446 DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
2447
ad51d7f1 2448 if (_test_flag(CTR_FLAG_MAX_RECOVERY_RATE, rs->ctr_flags))
9d09e663
N
2449 DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
2450
46bed2b5
JB
2451 for (i = 0; i < rs->md.raid_disks; i++)
2452 if (rs->dev[i].data_dev &&
2453 test_bit(WriteMostly, &rs->dev[i].rdev.flags))
2454 DMEMIT(" write_mostly %u", i);
2455
ad51d7f1 2456 if (_test_flag(CTR_FLAG_MAX_WRITE_BEHIND, rs->ctr_flags))
9d09e663
N
2457 DMEMIT(" max_write_behind %lu",
2458 rs->md.bitmap_info.max_write_behind);
2459
ad51d7f1 2460 if (_test_flag(CTR_FLAG_STRIPE_CACHE, rs->ctr_flags)) {
d1688a6d 2461 struct r5conf *conf = rs->md.private;
9d09e663
N
2462
2463 /* convert from kiB to sectors */
2464 DMEMIT(" stripe_cache %d",
2465 conf ? conf->max_nr_stripes * 2 : 0);
2466 }
2467
ad51d7f1 2468 if (_test_flag(CTR_FLAG_REGION_SIZE, rs->ctr_flags))
c1084561
JB
2469 DMEMIT(" region_size %lu",
2470 rs->md.bitmap_info.chunksize >> 9);
2471
ad51d7f1 2472 if (_test_flag(CTR_FLAG_RAID10_COPIES, rs->ctr_flags))
63f33b8d
JB
2473 DMEMIT(" raid10_copies %u",
2474 raid10_md_layout_to_copies(rs->md.layout));
2475
ad51d7f1 2476 if (_test_flag(CTR_FLAG_RAID10_FORMAT, rs->ctr_flags))
fe5d2f4a
JB
2477 DMEMIT(" raid10_format %s",
2478 raid10_md_layout_to_format(rs->md.layout));
63f33b8d 2479
9d09e663
N
2480 DMEMIT(" %d", rs->md.raid_disks);
2481 for (i = 0; i < rs->md.raid_disks; i++) {
b12d437b
JB
2482 if (rs->dev[i].meta_dev)
2483 DMEMIT(" %s", rs->dev[i].meta_dev->name);
2484 else
2485 DMEMIT(" -");
9d09e663
N
2486
2487 if (rs->dev[i].data_dev)
2488 DMEMIT(" %s", rs->dev[i].data_dev->name);
2489 else
2490 DMEMIT(" -");
2491 }
2492 }
9d09e663
N
2493}
2494
be83651f
JB
2495static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
2496{
2497 struct raid_set *rs = ti->private;
2498 struct mddev *mddev = &rs->md;
2499
2500 if (!strcasecmp(argv[0], "reshape")) {
2501 DMERR("Reshape not supported.");
2502 return -EINVAL;
2503 }
2504
2505 if (!mddev->pers || !mddev->pers->sync_request)
2506 return -EINVAL;
2507
2508 if (!strcasecmp(argv[0], "frozen"))
2509 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
2510 else
2511 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
2512
2513 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
2514 if (mddev->sync_thread) {
2515 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2516 md_reap_sync_thread(mddev);
2517 }
2518 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2519 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2520 return -EBUSY;
2521 else if (!strcasecmp(argv[0], "resync"))
2522 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2523 else if (!strcasecmp(argv[0], "recover")) {
2524 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2525 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2526 } else {
2527 if (!strcasecmp(argv[0], "check"))
2528 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2529 else if (!!strcasecmp(argv[0], "repair"))
2530 return -EINVAL;
2531 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2532 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2533 }
2534 if (mddev->ro == 2) {
2535 /* A write to sync_action is enough to justify
2536 * canceling read-auto mode
2537 */
2538 mddev->ro = 0;
2539 if (!mddev->suspended)
2540 md_wakeup_thread(mddev->sync_thread);
2541 }
2542 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2543 if (!mddev->suspended)
2544 md_wakeup_thread(mddev->thread);
2545
2546 return 0;
2547}
2548
2549static int raid_iterate_devices(struct dm_target *ti,
2550 iterate_devices_callout_fn fn, void *data)
9d09e663
N
2551{
2552 struct raid_set *rs = ti->private;
2553 unsigned i;
73c6f239 2554 int r = 0;
9d09e663 2555
73c6f239 2556 for (i = 0; !r && i < rs->md.raid_disks; i++)
9d09e663 2557 if (rs->dev[i].data_dev)
73c6f239 2558 r = fn(ti,
9d09e663
N
2559 rs->dev[i].data_dev,
2560 0, /* No offset on data devs */
2561 rs->md.dev_sectors,
2562 data);
2563
73c6f239 2564 return r;
9d09e663
N
2565}
2566
2567static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
2568{
2569 struct raid_set *rs = ti->private;
2570 unsigned chunk_size = rs->md.chunk_sectors << 9;
d1688a6d 2571 struct r5conf *conf = rs->md.private;
9d09e663
N
2572
2573 blk_limits_io_min(limits, chunk_size);
2574 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
2575}
2576
2577static void raid_presuspend(struct dm_target *ti)
2578{
2579 struct raid_set *rs = ti->private;
2580
2581 md_stop_writes(&rs->md);
2582}
2583
2584static void raid_postsuspend(struct dm_target *ti)
2585{
2586 struct raid_set *rs = ti->private;
2587
2588 mddev_suspend(&rs->md);
2589}
2590
f381e71b 2591static void attempt_restore_of_faulty_devices(struct raid_set *rs)
9d09e663 2592{
9092c02d
JB
2593 int i;
2594 uint64_t failed_devices, cleared_failed_devices = 0;
2595 unsigned long flags;
2596 struct dm_raid_superblock *sb;
9092c02d 2597 struct md_rdev *r;
9d09e663 2598
f381e71b
JB
2599 for (i = 0; i < rs->md.raid_disks; i++) {
2600 r = &rs->dev[i].rdev;
2601 if (test_bit(Faulty, &r->flags) && r->sb_page &&
796a5cf0
MC
2602 sync_page_io(r, 0, r->sb_size, r->sb_page, REQ_OP_READ, 0,
2603 1)) {
f381e71b
JB
2604 DMINFO("Faulty %s device #%d has readable super block."
2605 " Attempting to revive it.",
2606 rs->raid_type->name, i);
a4dc163a
JB
2607
2608 /*
2609 * Faulty bit may be set, but sometimes the array can
2610 * be suspended before the personalities can respond
2611 * by removing the device from the array (i.e. calling
2612 * 'hot_remove_disk'). If they haven't yet removed
2613 * the failed device, its 'raid_disk' number will be
2614 * '>= 0' - meaning we must call this function
2615 * ourselves.
2616 */
2617 if ((r->raid_disk >= 0) &&
2618 (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
2619 /* Failed to revive this device, try next */
2620 continue;
2621
f381e71b
JB
2622 r->raid_disk = i;
2623 r->saved_raid_disk = i;
2624 flags = r->flags;
2625 clear_bit(Faulty, &r->flags);
2626 clear_bit(WriteErrorSeen, &r->flags);
2627 clear_bit(In_sync, &r->flags);
2628 if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
2629 r->raid_disk = -1;
2630 r->saved_raid_disk = -1;
2631 r->flags = flags;
2632 } else {
2633 r->recovery_offset = 0;
2634 cleared_failed_devices |= 1 << i;
2635 }
2636 }
2637 }
2638 if (cleared_failed_devices) {
2639 rdev_for_each(r, &rs->md) {
2640 sb = page_address(r->sb_page);
2641 failed_devices = le64_to_cpu(sb->failed_devices);
2642 failed_devices &= ~cleared_failed_devices;
2643 sb->failed_devices = cpu_to_le64(failed_devices);
2644 }
2645 }
2646}
2647
ecbfb9f1
HM
2648/* Load the dirty region bitmap */
2649static int _bitmap_load(struct raid_set *rs)
2650{
2651 int r = 0;
2652
2653 /* Try loading the bitmap unless "raid0", which does not have one */
2654 if (!rs_is_raid0(rs) &&
2655 !_test_and_set_flag(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
2656 r = bitmap_load(&rs->md);
2657 if (r)
2658 DMERR("Failed to load bitmap");
2659 }
2660
2661 return r;
2662}
2663
2664static int raid_preresume(struct dm_target *ti)
2665{
2666 struct raid_set *rs = ti->private;
2667 struct mddev *mddev = &rs->md;
2668
2669 /* This is a resume after a suspend of the set -> it's already started */
2670 if (_test_and_set_flag(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
2671 return 0;
2672
2673 /*
2674 * The superblocks need to be updated on disk if the
2675 * array is new or _bitmap_load will overwrite them
2676 * in core with old data.
2677 *
2678 * In case the array got modified (takeover/reshape/resize)
2679 * or the data offsets on the component devices changed, they
2680 * have to be updated as well.
2681 *
2682 * Have to switch to readwrite and back in order to
2683 * allow for the superblock updates.
2684 */
2685 if (_test_and_clear_flag(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) {
2686 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2687 mddev->ro = 0;
2688 md_update_sb(mddev, 1);
2689 mddev->ro = 1;
2690 }
2691
2692 /*
2693 * Disable/enable discard support on raid set after any
2694 * conversion, because devices can have been added
2695 */
2696 configure_discard_support(rs);
2697
2698 /* Load the bitmap from disk unless raid0 */
2699 return _bitmap_load(rs);
2700}
2701
f381e71b
JB
2702static void raid_resume(struct dm_target *ti)
2703{
2704 struct raid_set *rs = ti->private;
ecbfb9f1 2705 struct mddev *mddev = &rs->md;
f381e71b 2706
ecbfb9f1
HM
2707 if (_test_and_set_flag(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
2708 /*
2709 * A secondary resume while the device is active.
2710 * Take this opportunity to check whether any failed
2711 * devices are reachable again.
2712 */
2713 attempt_restore_of_faulty_devices(rs);
0cf45031 2714
ecbfb9f1
HM
2715 } else {
2716 mddev->in_sync = 0;
0cf45031 2717
ecbfb9f1
HM
2718 /*
2719 * If any of the constructor flags got passed in
2720 * but "region_size" (gets always passed in for
2721 * mappings with bitmap), we expect userspace to
2722 * reset them and reload the mapping anyway.
2723 *
2724 * -> don't unfreeze resynchronization until imminant
2725 * reload of the table w/o theses flags
2726 */
2727 if (!_test_flags(ALL_FREEZE_FLAGS, rs->ctr_flags))
2728 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
47525e59 2729 }
34f8ac6d 2730
ecbfb9f1
HM
2731 mddev->ro = 0;
2732 if (mddev->suspended)
2733 mddev_resume(mddev);
9d09e663
N
2734}
2735
2736static struct target_type raid_target = {
2737 .name = "raid",
702108d1 2738 .version = {1, 8, 1},
9d09e663
N
2739 .module = THIS_MODULE,
2740 .ctr = raid_ctr,
2741 .dtr = raid_dtr,
2742 .map = raid_map,
2743 .status = raid_status,
be83651f 2744 .message = raid_message,
9d09e663
N
2745 .iterate_devices = raid_iterate_devices,
2746 .io_hints = raid_io_hints,
2747 .presuspend = raid_presuspend,
2748 .postsuspend = raid_postsuspend,
ecbfb9f1 2749 .preresume = raid_preresume,
9d09e663
N
2750 .resume = raid_resume,
2751};
2752
2753static int __init dm_raid_init(void)
2754{
fe5d2f4a
JB
2755 DMINFO("Loading target version %u.%u.%u",
2756 raid_target.version[0],
2757 raid_target.version[1],
2758 raid_target.version[2]);
9d09e663
N
2759 return dm_register_target(&raid_target);
2760}
2761
2762static void __exit dm_raid_exit(void)
2763{
2764 dm_unregister_target(&raid_target);
2765}
2766
2767module_init(dm_raid_init);
2768module_exit(dm_raid_exit);
2769
48cf06bc
HM
2770module_param(devices_handle_discard_safely, bool, 0644);
2771MODULE_PARM_DESC(devices_handle_discard_safely,
2772 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
2773
9d09e663 2774MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
63f33b8d
JB
2775MODULE_ALIAS("dm-raid1");
2776MODULE_ALIAS("dm-raid10");
9d09e663
N
2777MODULE_ALIAS("dm-raid4");
2778MODULE_ALIAS("dm-raid5");
2779MODULE_ALIAS("dm-raid6");
2780MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
2781MODULE_LICENSE("GPL");
This page took 0.462286 seconds and 5 git commands to generate.