dm: relax ordering of bio-based flush implementation
[deliverable/linux.git] / drivers / md / dm.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
784aae73 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
1da177e4
LT
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
51e5b2bd 9#include "dm-uevent.h"
1da177e4
LT
10
11#include <linux/init.h>
12#include <linux/module.h>
48c9c27b 13#include <linux/mutex.h>
1da177e4
LT
14#include <linux/moduleparam.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/buffer_head.h>
6e9624b8 18#include <linux/smp_lock.h>
1da177e4
LT
19#include <linux/mempool.h>
20#include <linux/slab.h>
21#include <linux/idr.h>
3ac51e74 22#include <linux/hdreg.h>
3f77316d 23#include <linux/delay.h>
55782138
LZ
24
25#include <trace/events/block.h>
1da177e4 26
72d94861
AK
27#define DM_MSG_PREFIX "core"
28
60935eb2
MB
29/*
30 * Cookies are numeric values sent with CHANGE and REMOVE
31 * uevents while resuming, removing or renaming the device.
32 */
33#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
34#define DM_COOKIE_LENGTH 24
35
1da177e4
LT
36static const char *_name = DM_NAME;
37
38static unsigned int major = 0;
39static unsigned int _major = 0;
40
f32c10b0 41static DEFINE_SPINLOCK(_minor_lock);
1da177e4 42/*
8fbf26ad 43 * For bio-based dm.
1da177e4
LT
44 * One of these is allocated per bio.
45 */
46struct dm_io {
47 struct mapped_device *md;
48 int error;
1da177e4 49 atomic_t io_count;
6ae2fa67 50 struct bio *bio;
3eaf840e 51 unsigned long start_time;
f88fb981 52 spinlock_t endio_lock;
1da177e4
LT
53};
54
55/*
8fbf26ad 56 * For bio-based dm.
1da177e4
LT
57 * One of these is allocated per target within a bio. Hopefully
58 * this will be simplified out one day.
59 */
028867ac 60struct dm_target_io {
1da177e4
LT
61 struct dm_io *io;
62 struct dm_target *ti;
63 union map_info info;
64};
65
8fbf26ad
KU
66/*
67 * For request-based dm.
68 * One of these is allocated per request.
69 */
70struct dm_rq_target_io {
71 struct mapped_device *md;
72 struct dm_target *ti;
73 struct request *orig, clone;
74 int error;
75 union map_info info;
76};
77
78/*
79 * For request-based dm.
80 * One of these is allocated per bio.
81 */
82struct dm_rq_clone_bio_info {
83 struct bio *orig;
cec47e3d 84 struct dm_rq_target_io *tio;
8fbf26ad
KU
85};
86
1da177e4
LT
87union map_info *dm_get_mapinfo(struct bio *bio)
88{
17b2f66f 89 if (bio && bio->bi_private)
028867ac 90 return &((struct dm_target_io *)bio->bi_private)->info;
17b2f66f 91 return NULL;
1da177e4
LT
92}
93
cec47e3d
KU
94union map_info *dm_get_rq_mapinfo(struct request *rq)
95{
96 if (rq && rq->end_io_data)
97 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
98 return NULL;
99}
100EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
101
ba61fdd1
JM
102#define MINOR_ALLOCED ((void *)-1)
103
1da177e4
LT
104/*
105 * Bits for the md->flags field.
106 */
1eb787ec 107#define DMF_BLOCK_IO_FOR_SUSPEND 0
1da177e4 108#define DMF_SUSPENDED 1
aa8d7c2f 109#define DMF_FROZEN 2
fba9f90e 110#define DMF_FREEING 3
5c6bd75d 111#define DMF_DELETING 4
2e93ccc1 112#define DMF_NOFLUSH_SUSPENDING 5
1da177e4 113
304f3f6a
MB
114/*
115 * Work processed by per-device workqueue.
116 */
1da177e4 117struct mapped_device {
2ca3310e 118 struct rw_semaphore io_lock;
e61290a4 119 struct mutex suspend_lock;
1da177e4
LT
120 rwlock_t map_lock;
121 atomic_t holders;
5c6bd75d 122 atomic_t open_count;
1da177e4
LT
123
124 unsigned long flags;
125
165125e1 126 struct request_queue *queue;
a5664dad 127 unsigned type;
4a0b4ddf 128 /* Protect queue and type against concurrent access. */
a5664dad
MS
129 struct mutex type_lock;
130
1da177e4 131 struct gendisk *disk;
7e51f257 132 char name[16];
1da177e4
LT
133
134 void *interface_ptr;
135
136 /*
137 * A list of ios that arrived while we were suspended.
138 */
316d315b 139 atomic_t pending[2];
1da177e4 140 wait_queue_head_t wait;
53d5914f 141 struct work_struct work;
74859364 142 struct bio_list deferred;
022c2611 143 spinlock_t deferred_lock;
1da177e4 144
d0bcb878 145 /*
29e4013d 146 * Processing queue (flush)
304f3f6a
MB
147 */
148 struct workqueue_struct *wq;
149
1da177e4
LT
150 /*
151 * The current mapping.
152 */
153 struct dm_table *map;
154
155 /*
156 * io objects are allocated from here.
157 */
158 mempool_t *io_pool;
159 mempool_t *tio_pool;
160
9faf400f
SB
161 struct bio_set *bs;
162
1da177e4
LT
163 /*
164 * Event handling.
165 */
166 atomic_t event_nr;
167 wait_queue_head_t eventq;
7a8c3d3b
MA
168 atomic_t uevent_seq;
169 struct list_head uevent_list;
170 spinlock_t uevent_lock; /* Protect access to uevent_list */
1da177e4
LT
171
172 /*
173 * freeze/thaw support require holding onto a super block
174 */
175 struct super_block *frozen_sb;
db8fef4f 176 struct block_device *bdev;
3ac51e74
DW
177
178 /* forced geometry settings */
179 struct hd_geometry geometry;
784aae73 180
cec47e3d
KU
181 /* For saving the address of __make_request for request based dm */
182 make_request_fn *saved_make_request_fn;
183
784aae73
MB
184 /* sysfs handle */
185 struct kobject kobj;
52b1fd5a 186
d87f4c14
TH
187 /* zero-length flush that will be cloned and submitted to targets */
188 struct bio flush_bio;
1da177e4
LT
189};
190
e6ee8c0b
KU
191/*
192 * For mempools pre-allocation at the table loading time.
193 */
194struct dm_md_mempools {
195 mempool_t *io_pool;
196 mempool_t *tio_pool;
197 struct bio_set *bs;
198};
199
1da177e4 200#define MIN_IOS 256
e18b890b
CL
201static struct kmem_cache *_io_cache;
202static struct kmem_cache *_tio_cache;
8fbf26ad
KU
203static struct kmem_cache *_rq_tio_cache;
204static struct kmem_cache *_rq_bio_info_cache;
1da177e4 205
1da177e4
LT
206static int __init local_init(void)
207{
51157b4a 208 int r = -ENOMEM;
1da177e4 209
1da177e4 210 /* allocate a slab for the dm_ios */
028867ac 211 _io_cache = KMEM_CACHE(dm_io, 0);
1da177e4 212 if (!_io_cache)
51157b4a 213 return r;
1da177e4
LT
214
215 /* allocate a slab for the target ios */
028867ac 216 _tio_cache = KMEM_CACHE(dm_target_io, 0);
51157b4a
KU
217 if (!_tio_cache)
218 goto out_free_io_cache;
1da177e4 219
8fbf26ad
KU
220 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
221 if (!_rq_tio_cache)
222 goto out_free_tio_cache;
223
224 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
225 if (!_rq_bio_info_cache)
226 goto out_free_rq_tio_cache;
227
51e5b2bd 228 r = dm_uevent_init();
51157b4a 229 if (r)
8fbf26ad 230 goto out_free_rq_bio_info_cache;
51e5b2bd 231
1da177e4
LT
232 _major = major;
233 r = register_blkdev(_major, _name);
51157b4a
KU
234 if (r < 0)
235 goto out_uevent_exit;
1da177e4
LT
236
237 if (!_major)
238 _major = r;
239
240 return 0;
51157b4a
KU
241
242out_uevent_exit:
243 dm_uevent_exit();
8fbf26ad
KU
244out_free_rq_bio_info_cache:
245 kmem_cache_destroy(_rq_bio_info_cache);
246out_free_rq_tio_cache:
247 kmem_cache_destroy(_rq_tio_cache);
51157b4a
KU
248out_free_tio_cache:
249 kmem_cache_destroy(_tio_cache);
250out_free_io_cache:
251 kmem_cache_destroy(_io_cache);
252
253 return r;
1da177e4
LT
254}
255
256static void local_exit(void)
257{
8fbf26ad
KU
258 kmem_cache_destroy(_rq_bio_info_cache);
259 kmem_cache_destroy(_rq_tio_cache);
1da177e4
LT
260 kmem_cache_destroy(_tio_cache);
261 kmem_cache_destroy(_io_cache);
00d59405 262 unregister_blkdev(_major, _name);
51e5b2bd 263 dm_uevent_exit();
1da177e4
LT
264
265 _major = 0;
266
267 DMINFO("cleaned up");
268}
269
b9249e55 270static int (*_inits[])(void) __initdata = {
1da177e4
LT
271 local_init,
272 dm_target_init,
273 dm_linear_init,
274 dm_stripe_init,
952b3557 275 dm_io_init,
945fa4d2 276 dm_kcopyd_init,
1da177e4
LT
277 dm_interface_init,
278};
279
b9249e55 280static void (*_exits[])(void) = {
1da177e4
LT
281 local_exit,
282 dm_target_exit,
283 dm_linear_exit,
284 dm_stripe_exit,
952b3557 285 dm_io_exit,
945fa4d2 286 dm_kcopyd_exit,
1da177e4
LT
287 dm_interface_exit,
288};
289
290static int __init dm_init(void)
291{
292 const int count = ARRAY_SIZE(_inits);
293
294 int r, i;
295
296 for (i = 0; i < count; i++) {
297 r = _inits[i]();
298 if (r)
299 goto bad;
300 }
301
302 return 0;
303
304 bad:
305 while (i--)
306 _exits[i]();
307
308 return r;
309}
310
311static void __exit dm_exit(void)
312{
313 int i = ARRAY_SIZE(_exits);
314
315 while (i--)
316 _exits[i]();
317}
318
319/*
320 * Block device functions
321 */
432a212c
MA
322int dm_deleting_md(struct mapped_device *md)
323{
324 return test_bit(DMF_DELETING, &md->flags);
325}
326
fe5f9f2c 327static int dm_blk_open(struct block_device *bdev, fmode_t mode)
1da177e4
LT
328{
329 struct mapped_device *md;
330
6e9624b8 331 lock_kernel();
fba9f90e
JM
332 spin_lock(&_minor_lock);
333
fe5f9f2c 334 md = bdev->bd_disk->private_data;
fba9f90e
JM
335 if (!md)
336 goto out;
337
5c6bd75d 338 if (test_bit(DMF_FREEING, &md->flags) ||
432a212c 339 dm_deleting_md(md)) {
fba9f90e
JM
340 md = NULL;
341 goto out;
342 }
343
1da177e4 344 dm_get(md);
5c6bd75d 345 atomic_inc(&md->open_count);
fba9f90e
JM
346
347out:
348 spin_unlock(&_minor_lock);
6e9624b8 349 unlock_kernel();
fba9f90e
JM
350
351 return md ? 0 : -ENXIO;
1da177e4
LT
352}
353
fe5f9f2c 354static int dm_blk_close(struct gendisk *disk, fmode_t mode)
1da177e4 355{
fe5f9f2c 356 struct mapped_device *md = disk->private_data;
6e9624b8
AB
357
358 lock_kernel();
5c6bd75d 359 atomic_dec(&md->open_count);
1da177e4 360 dm_put(md);
6e9624b8
AB
361 unlock_kernel();
362
1da177e4
LT
363 return 0;
364}
365
5c6bd75d
AK
366int dm_open_count(struct mapped_device *md)
367{
368 return atomic_read(&md->open_count);
369}
370
371/*
372 * Guarantees nothing is using the device before it's deleted.
373 */
374int dm_lock_for_deletion(struct mapped_device *md)
375{
376 int r = 0;
377
378 spin_lock(&_minor_lock);
379
380 if (dm_open_count(md))
381 r = -EBUSY;
382 else
383 set_bit(DMF_DELETING, &md->flags);
384
385 spin_unlock(&_minor_lock);
386
387 return r;
388}
389
3ac51e74
DW
390static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391{
392 struct mapped_device *md = bdev->bd_disk->private_data;
393
394 return dm_get_geometry(md, geo);
395}
396
fe5f9f2c 397static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
aa129a22
MB
398 unsigned int cmd, unsigned long arg)
399{
fe5f9f2c 400 struct mapped_device *md = bdev->bd_disk->private_data;
7c666411 401 struct dm_table *map = dm_get_live_table(md);
aa129a22
MB
402 struct dm_target *tgt;
403 int r = -ENOTTY;
404
aa129a22
MB
405 if (!map || !dm_table_get_size(map))
406 goto out;
407
408 /* We only support devices that have a single target */
409 if (dm_table_get_num_targets(map) != 1)
410 goto out;
411
412 tgt = dm_table_get_target(map, 0);
413
4f186f8b 414 if (dm_suspended_md(md)) {
aa129a22
MB
415 r = -EAGAIN;
416 goto out;
417 }
418
419 if (tgt->type->ioctl)
647b3d00 420 r = tgt->type->ioctl(tgt, cmd, arg);
aa129a22
MB
421
422out:
423 dm_table_put(map);
424
aa129a22
MB
425 return r;
426}
427
028867ac 428static struct dm_io *alloc_io(struct mapped_device *md)
1da177e4
LT
429{
430 return mempool_alloc(md->io_pool, GFP_NOIO);
431}
432
028867ac 433static void free_io(struct mapped_device *md, struct dm_io *io)
1da177e4
LT
434{
435 mempool_free(io, md->io_pool);
436}
437
028867ac 438static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
1da177e4
LT
439{
440 mempool_free(tio, md->tio_pool);
441}
442
08885643
KU
443static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
444 gfp_t gfp_mask)
cec47e3d 445{
08885643 446 return mempool_alloc(md->tio_pool, gfp_mask);
cec47e3d
KU
447}
448
449static void free_rq_tio(struct dm_rq_target_io *tio)
450{
451 mempool_free(tio, tio->md->tio_pool);
452}
453
454static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
455{
456 return mempool_alloc(md->io_pool, GFP_ATOMIC);
457}
458
459static void free_bio_info(struct dm_rq_clone_bio_info *info)
460{
461 mempool_free(info, info->tio->md->io_pool);
462}
463
90abb8c4
KU
464static int md_in_flight(struct mapped_device *md)
465{
466 return atomic_read(&md->pending[READ]) +
467 atomic_read(&md->pending[WRITE]);
468}
469
3eaf840e
JNN
470static void start_io_acct(struct dm_io *io)
471{
472 struct mapped_device *md = io->md;
c9959059 473 int cpu;
316d315b 474 int rw = bio_data_dir(io->bio);
3eaf840e
JNN
475
476 io->start_time = jiffies;
477
074a7aca
TH
478 cpu = part_stat_lock();
479 part_round_stats(cpu, &dm_disk(md)->part0);
480 part_stat_unlock();
316d315b 481 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
3eaf840e
JNN
482}
483
d221d2e7 484static void end_io_acct(struct dm_io *io)
3eaf840e
JNN
485{
486 struct mapped_device *md = io->md;
487 struct bio *bio = io->bio;
488 unsigned long duration = jiffies - io->start_time;
c9959059 489 int pending, cpu;
3eaf840e
JNN
490 int rw = bio_data_dir(bio);
491
074a7aca
TH
492 cpu = part_stat_lock();
493 part_round_stats(cpu, &dm_disk(md)->part0);
494 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
495 part_stat_unlock();
3eaf840e 496
af7e466a
MP
497 /*
498 * After this is decremented the bio must not be touched if it is
d87f4c14 499 * a flush.
af7e466a 500 */
316d315b
NK
501 dm_disk(md)->part0.in_flight[rw] = pending =
502 atomic_dec_return(&md->pending[rw]);
503 pending += atomic_read(&md->pending[rw^0x1]);
3eaf840e 504
d221d2e7
MP
505 /* nudge anyone waiting on suspend queue */
506 if (!pending)
507 wake_up(&md->wait);
3eaf840e
JNN
508}
509
1da177e4
LT
510/*
511 * Add the bio to the list of deferred io.
512 */
92c63902 513static void queue_io(struct mapped_device *md, struct bio *bio)
1da177e4 514{
022c2611 515 spin_lock_irq(&md->deferred_lock);
1da177e4 516 bio_list_add(&md->deferred, bio);
022c2611 517 spin_unlock_irq(&md->deferred_lock);
6a8736d1 518 queue_work(md->wq, &md->work);
1da177e4
LT
519}
520
521/*
522 * Everyone (including functions in this file), should use this
523 * function to access the md->map field, and make sure they call
524 * dm_table_put() when finished.
525 */
7c666411 526struct dm_table *dm_get_live_table(struct mapped_device *md)
1da177e4
LT
527{
528 struct dm_table *t;
523d9297 529 unsigned long flags;
1da177e4 530
523d9297 531 read_lock_irqsave(&md->map_lock, flags);
1da177e4
LT
532 t = md->map;
533 if (t)
534 dm_table_get(t);
523d9297 535 read_unlock_irqrestore(&md->map_lock, flags);
1da177e4
LT
536
537 return t;
538}
539
3ac51e74
DW
540/*
541 * Get the geometry associated with a dm device
542 */
543int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
544{
545 *geo = md->geometry;
546
547 return 0;
548}
549
550/*
551 * Set the geometry of a device.
552 */
553int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
554{
555 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
556
557 if (geo->start > sz) {
558 DMWARN("Start sector is beyond the geometry limits.");
559 return -EINVAL;
560 }
561
562 md->geometry = *geo;
563
564 return 0;
565}
566
1da177e4
LT
567/*-----------------------------------------------------------------
568 * CRUD START:
569 * A more elegant soln is in the works that uses the queue
570 * merge fn, unfortunately there are a couple of changes to
571 * the block layer that I want to make for this. So in the
572 * interests of getting something for people to use I give
573 * you this clearly demarcated crap.
574 *---------------------------------------------------------------*/
575
2e93ccc1
KU
576static int __noflush_suspending(struct mapped_device *md)
577{
578 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
579}
580
1da177e4
LT
581/*
582 * Decrements the number of outstanding ios that a bio has been
583 * cloned into, completing the original io if necc.
584 */
858119e1 585static void dec_pending(struct dm_io *io, int error)
1da177e4 586{
2e93ccc1 587 unsigned long flags;
b35f8caa
MB
588 int io_error;
589 struct bio *bio;
590 struct mapped_device *md = io->md;
2e93ccc1
KU
591
592 /* Push-back supersedes any I/O errors */
f88fb981
KU
593 if (unlikely(error)) {
594 spin_lock_irqsave(&io->endio_lock, flags);
595 if (!(io->error > 0 && __noflush_suspending(md)))
596 io->error = error;
597 spin_unlock_irqrestore(&io->endio_lock, flags);
598 }
1da177e4
LT
599
600 if (atomic_dec_and_test(&io->io_count)) {
2e93ccc1
KU
601 if (io->error == DM_ENDIO_REQUEUE) {
602 /*
603 * Target requested pushing back the I/O.
2e93ccc1 604 */
022c2611 605 spin_lock_irqsave(&md->deferred_lock, flags);
6a8736d1
TH
606 if (__noflush_suspending(md))
607 bio_list_add_head(&md->deferred, io->bio);
608 else
2e93ccc1
KU
609 /* noflush suspend was interrupted. */
610 io->error = -EIO;
022c2611 611 spin_unlock_irqrestore(&md->deferred_lock, flags);
2e93ccc1
KU
612 }
613
b35f8caa
MB
614 io_error = io->error;
615 bio = io->bio;
6a8736d1
TH
616 end_io_acct(io);
617 free_io(md, io);
618
619 if (io_error == DM_ENDIO_REQUEUE)
620 return;
2e93ccc1 621
6a8736d1
TH
622 if (!(bio->bi_rw & REQ_FLUSH) || !bio->bi_size) {
623 trace_block_bio_complete(md->queue, bio);
624 bio_endio(bio, io_error);
625 } else {
af7e466a 626 /*
6a8736d1
TH
627 * Preflush done for flush with data, reissue
628 * without REQ_FLUSH.
af7e466a 629 */
6a8736d1
TH
630 bio->bi_rw &= ~REQ_FLUSH;
631 queue_io(md, bio);
b35f8caa 632 }
1da177e4
LT
633 }
634}
635
6712ecf8 636static void clone_endio(struct bio *bio, int error)
1da177e4
LT
637{
638 int r = 0;
028867ac 639 struct dm_target_io *tio = bio->bi_private;
b35f8caa 640 struct dm_io *io = tio->io;
9faf400f 641 struct mapped_device *md = tio->io->md;
1da177e4
LT
642 dm_endio_fn endio = tio->ti->type->end_io;
643
1da177e4
LT
644 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
645 error = -EIO;
646
647 if (endio) {
648 r = endio(tio->ti, bio, error, &tio->info);
2e93ccc1
KU
649 if (r < 0 || r == DM_ENDIO_REQUEUE)
650 /*
651 * error and requeue request are handled
652 * in dec_pending().
653 */
1da177e4 654 error = r;
45cbcd79
KU
655 else if (r == DM_ENDIO_INCOMPLETE)
656 /* The target will handle the io */
6712ecf8 657 return;
45cbcd79
KU
658 else if (r) {
659 DMWARN("unimplemented target endio return value: %d", r);
660 BUG();
661 }
1da177e4
LT
662 }
663
9faf400f
SB
664 /*
665 * Store md for cleanup instead of tio which is about to get freed.
666 */
667 bio->bi_private = md->bs;
668
9faf400f 669 free_tio(md, tio);
b35f8caa
MB
670 bio_put(bio);
671 dec_pending(io, error);
1da177e4
LT
672}
673
cec47e3d
KU
674/*
675 * Partial completion handling for request-based dm
676 */
677static void end_clone_bio(struct bio *clone, int error)
678{
679 struct dm_rq_clone_bio_info *info = clone->bi_private;
680 struct dm_rq_target_io *tio = info->tio;
681 struct bio *bio = info->orig;
682 unsigned int nr_bytes = info->orig->bi_size;
683
684 bio_put(clone);
685
686 if (tio->error)
687 /*
688 * An error has already been detected on the request.
689 * Once error occurred, just let clone->end_io() handle
690 * the remainder.
691 */
692 return;
693 else if (error) {
694 /*
695 * Don't notice the error to the upper layer yet.
696 * The error handling decision is made by the target driver,
697 * when the request is completed.
698 */
699 tio->error = error;
700 return;
701 }
702
703 /*
704 * I/O for the bio successfully completed.
705 * Notice the data completion to the upper layer.
706 */
707
708 /*
709 * bios are processed from the head of the list.
710 * So the completing bio should always be rq->bio.
711 * If it's not, something wrong is happening.
712 */
713 if (tio->orig->bio != bio)
714 DMERR("bio completion is going in the middle of the request");
715
716 /*
717 * Update the original request.
718 * Do not use blk_end_request() here, because it may complete
719 * the original request before the clone, and break the ordering.
720 */
721 blk_update_request(tio->orig, 0, nr_bytes);
722}
723
724/*
725 * Don't touch any member of the md after calling this function because
726 * the md may be freed in dm_put() at the end of this function.
727 * Or do dm_get() before calling this function and dm_put() later.
728 */
b4324fee 729static void rq_completed(struct mapped_device *md, int rw, int run_queue)
cec47e3d 730{
b4324fee 731 atomic_dec(&md->pending[rw]);
cec47e3d
KU
732
733 /* nudge anyone waiting on suspend queue */
b4324fee 734 if (!md_in_flight(md))
cec47e3d
KU
735 wake_up(&md->wait);
736
737 if (run_queue)
b4324fee 738 blk_run_queue(md->queue);
cec47e3d
KU
739
740 /*
741 * dm_put() must be at the end of this function. See the comment above
742 */
743 dm_put(md);
744}
745
a77e28c7
KU
746static void free_rq_clone(struct request *clone)
747{
748 struct dm_rq_target_io *tio = clone->end_io_data;
749
750 blk_rq_unprep_clone(clone);
751 free_rq_tio(tio);
752}
753
980691e5
KU
754/*
755 * Complete the clone and the original request.
756 * Must be called without queue lock.
757 */
758static void dm_end_request(struct request *clone, int error)
759{
760 int rw = rq_data_dir(clone);
761 struct dm_rq_target_io *tio = clone->end_io_data;
762 struct mapped_device *md = tio->md;
763 struct request *rq = tio->orig;
764
29e4013d 765 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
980691e5
KU
766 rq->errors = clone->errors;
767 rq->resid_len = clone->resid_len;
768
769 if (rq->sense)
770 /*
771 * We are using the sense buffer of the original
772 * request.
773 * So setting the length of the sense data is enough.
774 */
775 rq->sense_len = clone->sense_len;
776 }
777
778 free_rq_clone(clone);
29e4013d
TH
779 blk_end_request_all(rq, error);
780 rq_completed(md, rw, true);
980691e5
KU
781}
782
cec47e3d
KU
783static void dm_unprep_request(struct request *rq)
784{
785 struct request *clone = rq->special;
cec47e3d
KU
786
787 rq->special = NULL;
788 rq->cmd_flags &= ~REQ_DONTPREP;
789
a77e28c7 790 free_rq_clone(clone);
cec47e3d
KU
791}
792
793/*
794 * Requeue the original request of a clone.
795 */
796void dm_requeue_unmapped_request(struct request *clone)
797{
b4324fee 798 int rw = rq_data_dir(clone);
cec47e3d
KU
799 struct dm_rq_target_io *tio = clone->end_io_data;
800 struct mapped_device *md = tio->md;
801 struct request *rq = tio->orig;
802 struct request_queue *q = rq->q;
803 unsigned long flags;
804
805 dm_unprep_request(rq);
806
807 spin_lock_irqsave(q->queue_lock, flags);
808 if (elv_queue_empty(q))
809 blk_plug_device(q);
810 blk_requeue_request(q, rq);
811 spin_unlock_irqrestore(q->queue_lock, flags);
812
b4324fee 813 rq_completed(md, rw, 0);
cec47e3d
KU
814}
815EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
816
817static void __stop_queue(struct request_queue *q)
818{
819 blk_stop_queue(q);
820}
821
822static void stop_queue(struct request_queue *q)
823{
824 unsigned long flags;
825
826 spin_lock_irqsave(q->queue_lock, flags);
827 __stop_queue(q);
828 spin_unlock_irqrestore(q->queue_lock, flags);
829}
830
831static void __start_queue(struct request_queue *q)
832{
833 if (blk_queue_stopped(q))
834 blk_start_queue(q);
835}
836
837static void start_queue(struct request_queue *q)
838{
839 unsigned long flags;
840
841 spin_lock_irqsave(q->queue_lock, flags);
842 __start_queue(q);
843 spin_unlock_irqrestore(q->queue_lock, flags);
844}
845
11a68244 846static void dm_done(struct request *clone, int error, bool mapped)
cec47e3d 847{
11a68244 848 int r = error;
cec47e3d
KU
849 struct dm_rq_target_io *tio = clone->end_io_data;
850 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
cec47e3d 851
11a68244
KU
852 if (mapped && rq_end_io)
853 r = rq_end_io(tio->ti, clone, error, &tio->info);
cec47e3d 854
11a68244 855 if (r <= 0)
cec47e3d 856 /* The target wants to complete the I/O */
11a68244
KU
857 dm_end_request(clone, r);
858 else if (r == DM_ENDIO_INCOMPLETE)
cec47e3d
KU
859 /* The target will handle the I/O */
860 return;
11a68244 861 else if (r == DM_ENDIO_REQUEUE)
cec47e3d
KU
862 /* The target wants to requeue the I/O */
863 dm_requeue_unmapped_request(clone);
864 else {
11a68244 865 DMWARN("unimplemented target endio return value: %d", r);
cec47e3d
KU
866 BUG();
867 }
868}
869
11a68244
KU
870/*
871 * Request completion handler for request-based dm
872 */
873static void dm_softirq_done(struct request *rq)
874{
875 bool mapped = true;
876 struct request *clone = rq->completion_data;
877 struct dm_rq_target_io *tio = clone->end_io_data;
878
879 if (rq->cmd_flags & REQ_FAILED)
880 mapped = false;
881
882 dm_done(clone, tio->error, mapped);
883}
884
cec47e3d
KU
885/*
886 * Complete the clone and the original request with the error status
887 * through softirq context.
888 */
889static void dm_complete_request(struct request *clone, int error)
890{
891 struct dm_rq_target_io *tio = clone->end_io_data;
892 struct request *rq = tio->orig;
893
894 tio->error = error;
895 rq->completion_data = clone;
896 blk_complete_request(rq);
897}
898
899/*
900 * Complete the not-mapped clone and the original request with the error status
901 * through softirq context.
902 * Target's rq_end_io() function isn't called.
903 * This may be used when the target's map_rq() function fails.
904 */
905void dm_kill_unmapped_request(struct request *clone, int error)
906{
907 struct dm_rq_target_io *tio = clone->end_io_data;
908 struct request *rq = tio->orig;
909
910 rq->cmd_flags |= REQ_FAILED;
911 dm_complete_request(clone, error);
912}
913EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
914
915/*
916 * Called with the queue lock held
917 */
918static void end_clone_request(struct request *clone, int error)
919{
920 /*
921 * For just cleaning up the information of the queue in which
922 * the clone was dispatched.
923 * The clone is *NOT* freed actually here because it is alloced from
924 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
925 */
926 __blk_put_request(clone->q, clone);
927
928 /*
929 * Actual request completion is done in a softirq context which doesn't
930 * hold the queue lock. Otherwise, deadlock could occur because:
931 * - another request may be submitted by the upper level driver
932 * of the stacking during the completion
933 * - the submission which requires queue lock may be done
934 * against this queue
935 */
936 dm_complete_request(clone, error);
937}
938
56a67df7
MS
939/*
940 * Return maximum size of I/O possible at the supplied sector up to the current
941 * target boundary.
942 */
943static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
944{
945 sector_t target_offset = dm_target_offset(ti, sector);
946
947 return ti->len - target_offset;
948}
949
950static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1da177e4 951{
56a67df7 952 sector_t len = max_io_len_target_boundary(sector, ti);
1da177e4
LT
953
954 /*
955 * Does the target need to split even further ?
956 */
957 if (ti->split_io) {
958 sector_t boundary;
56a67df7 959 sector_t offset = dm_target_offset(ti, sector);
1da177e4
LT
960 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
961 - offset;
962 if (len > boundary)
963 len = boundary;
964 }
965
966 return len;
967}
968
969static void __map_bio(struct dm_target *ti, struct bio *clone,
028867ac 970 struct dm_target_io *tio)
1da177e4
LT
971{
972 int r;
2056a782 973 sector_t sector;
9faf400f 974 struct mapped_device *md;
1da177e4 975
1da177e4
LT
976 clone->bi_end_io = clone_endio;
977 clone->bi_private = tio;
978
979 /*
980 * Map the clone. If r == 0 we don't need to do
981 * anything, the target has assumed ownership of
982 * this io.
983 */
984 atomic_inc(&tio->io->io_count);
2056a782 985 sector = clone->bi_sector;
1da177e4 986 r = ti->type->map(ti, clone, &tio->info);
45cbcd79 987 if (r == DM_MAPIO_REMAPPED) {
1da177e4 988 /* the bio has been remapped so dispatch it */
2056a782 989
5f3ea37c 990 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
22a7c31a 991 tio->io->bio->bi_bdev->bd_dev, sector);
2056a782 992
1da177e4 993 generic_make_request(clone);
2e93ccc1
KU
994 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
995 /* error the io and bail out, or requeue it if needed */
9faf400f
SB
996 md = tio->io->md;
997 dec_pending(tio->io, r);
998 /*
999 * Store bio_set for cleanup.
1000 */
1001 clone->bi_private = md->bs;
1da177e4 1002 bio_put(clone);
9faf400f 1003 free_tio(md, tio);
45cbcd79
KU
1004 } else if (r) {
1005 DMWARN("unimplemented target map return value: %d", r);
1006 BUG();
1da177e4
LT
1007 }
1008}
1009
1010struct clone_info {
1011 struct mapped_device *md;
1012 struct dm_table *map;
1013 struct bio *bio;
1014 struct dm_io *io;
1015 sector_t sector;
1016 sector_t sector_count;
1017 unsigned short idx;
1018};
1019
3676347a
PO
1020static void dm_bio_destructor(struct bio *bio)
1021{
9faf400f
SB
1022 struct bio_set *bs = bio->bi_private;
1023
1024 bio_free(bio, bs);
3676347a
PO
1025}
1026
1da177e4 1027/*
d87f4c14 1028 * Creates a little bio that just does part of a bvec.
1da177e4
LT
1029 */
1030static struct bio *split_bvec(struct bio *bio, sector_t sector,
1031 unsigned short idx, unsigned int offset,
9faf400f 1032 unsigned int len, struct bio_set *bs)
1da177e4
LT
1033{
1034 struct bio *clone;
1035 struct bio_vec *bv = bio->bi_io_vec + idx;
1036
9faf400f 1037 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
3676347a 1038 clone->bi_destructor = dm_bio_destructor;
1da177e4
LT
1039 *clone->bi_io_vec = *bv;
1040
1041 clone->bi_sector = sector;
1042 clone->bi_bdev = bio->bi_bdev;
d87f4c14 1043 clone->bi_rw = bio->bi_rw;
1da177e4
LT
1044 clone->bi_vcnt = 1;
1045 clone->bi_size = to_bytes(len);
1046 clone->bi_io_vec->bv_offset = offset;
1047 clone->bi_io_vec->bv_len = clone->bi_size;
f3e1d26e 1048 clone->bi_flags |= 1 << BIO_CLONED;
1da177e4 1049
9c47008d 1050 if (bio_integrity(bio)) {
7878cba9 1051 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
9c47008d
MP
1052 bio_integrity_trim(clone,
1053 bio_sector_offset(bio, idx, offset), len);
1054 }
1055
1da177e4
LT
1056 return clone;
1057}
1058
1059/*
1060 * Creates a bio that consists of range of complete bvecs.
1061 */
1062static struct bio *clone_bio(struct bio *bio, sector_t sector,
1063 unsigned short idx, unsigned short bv_count,
9faf400f 1064 unsigned int len, struct bio_set *bs)
1da177e4
LT
1065{
1066 struct bio *clone;
1067
9faf400f
SB
1068 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1069 __bio_clone(clone, bio);
1070 clone->bi_destructor = dm_bio_destructor;
1da177e4
LT
1071 clone->bi_sector = sector;
1072 clone->bi_idx = idx;
1073 clone->bi_vcnt = idx + bv_count;
1074 clone->bi_size = to_bytes(len);
1075 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1076
9c47008d 1077 if (bio_integrity(bio)) {
7878cba9 1078 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
9c47008d
MP
1079
1080 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1081 bio_integrity_trim(clone,
1082 bio_sector_offset(bio, idx, 0), len);
1083 }
1084
1da177e4
LT
1085 return clone;
1086}
1087
9015df24
AK
1088static struct dm_target_io *alloc_tio(struct clone_info *ci,
1089 struct dm_target *ti)
f9ab94ce 1090{
9015df24 1091 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
f9ab94ce
MP
1092
1093 tio->io = ci->io;
1094 tio->ti = ti;
f9ab94ce 1095 memset(&tio->info, 0, sizeof(tio->info));
9015df24
AK
1096
1097 return tio;
1098}
1099
06a426ce 1100static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
a79245b3 1101 unsigned request_nr, sector_t len)
9015df24
AK
1102{
1103 struct dm_target_io *tio = alloc_tio(ci, ti);
1104 struct bio *clone;
1105
57cba5d3 1106 tio->info.target_request_nr = request_nr;
f9ab94ce 1107
06a426ce
MS
1108 /*
1109 * Discard requests require the bio's inline iovecs be initialized.
1110 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1111 * and discard, so no need for concern about wasted bvec allocations.
1112 */
1113 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
f9ab94ce
MP
1114 __bio_clone(clone, ci->bio);
1115 clone->bi_destructor = dm_bio_destructor;
a79245b3
MS
1116 if (len) {
1117 clone->bi_sector = ci->sector;
1118 clone->bi_size = to_bytes(len);
1119 }
f9ab94ce
MP
1120
1121 __map_bio(ti, clone, tio);
1122}
1123
06a426ce 1124static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
a79245b3 1125 unsigned num_requests, sector_t len)
06a426ce
MS
1126{
1127 unsigned request_nr;
1128
1129 for (request_nr = 0; request_nr < num_requests; request_nr++)
a79245b3 1130 __issue_target_request(ci, ti, request_nr, len);
06a426ce
MS
1131}
1132
d87f4c14 1133static int __clone_and_map_flush(struct clone_info *ci)
f9ab94ce 1134{
06a426ce 1135 unsigned target_nr = 0;
f9ab94ce
MP
1136 struct dm_target *ti;
1137
1138 while ((ti = dm_table_get_target(ci->map, target_nr++)))
a79245b3 1139 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
f9ab94ce
MP
1140
1141 ci->sector_count = 0;
1142
1143 return 0;
1144}
1145
5ae89a87
MS
1146/*
1147 * Perform all io with a single clone.
1148 */
1149static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1150{
1151 struct bio *clone, *bio = ci->bio;
1152 struct dm_target_io *tio;
1153
1154 tio = alloc_tio(ci, ti);
1155 clone = clone_bio(bio, ci->sector, ci->idx,
1156 bio->bi_vcnt - ci->idx, ci->sector_count,
1157 ci->md->bs);
1158 __map_bio(ti, clone, tio);
1159 ci->sector_count = 0;
1160}
1161
1162static int __clone_and_map_discard(struct clone_info *ci)
1163{
1164 struct dm_target *ti;
a79245b3 1165 sector_t len;
5ae89a87 1166
a79245b3
MS
1167 do {
1168 ti = dm_table_find_target(ci->map, ci->sector);
1169 if (!dm_target_is_valid(ti))
1170 return -EIO;
5ae89a87 1171
5ae89a87 1172 /*
a79245b3
MS
1173 * Even though the device advertised discard support,
1174 * reconfiguration might have changed that since the
1175 * check was performed.
5ae89a87 1176 */
a79245b3
MS
1177 if (!ti->num_discard_requests)
1178 return -EOPNOTSUPP;
5ae89a87 1179
a79245b3 1180 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
06a426ce 1181
a79245b3
MS
1182 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1183
1184 ci->sector += len;
1185 } while (ci->sector_count -= len);
5ae89a87
MS
1186
1187 return 0;
1188}
1189
512875bd 1190static int __clone_and_map(struct clone_info *ci)
1da177e4
LT
1191{
1192 struct bio *clone, *bio = ci->bio;
512875bd
JN
1193 struct dm_target *ti;
1194 sector_t len = 0, max;
028867ac 1195 struct dm_target_io *tio;
1da177e4 1196
5ae89a87
MS
1197 if (unlikely(bio->bi_rw & REQ_DISCARD))
1198 return __clone_and_map_discard(ci);
1199
512875bd
JN
1200 ti = dm_table_find_target(ci->map, ci->sector);
1201 if (!dm_target_is_valid(ti))
1202 return -EIO;
1203
56a67df7 1204 max = max_io_len(ci->sector, ti);
512875bd 1205
1da177e4
LT
1206 if (ci->sector_count <= max) {
1207 /*
1208 * Optimise for the simple case where we can do all of
1209 * the remaining io with a single clone.
1210 */
5ae89a87 1211 __clone_and_map_simple(ci, ti);
1da177e4
LT
1212
1213 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1214 /*
1215 * There are some bvecs that don't span targets.
1216 * Do as many of these as possible.
1217 */
1218 int i;
1219 sector_t remaining = max;
1220 sector_t bv_len;
1221
1222 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1223 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1224
1225 if (bv_len > remaining)
1226 break;
1227
1228 remaining -= bv_len;
1229 len += bv_len;
1230 }
1231
5ae89a87 1232 tio = alloc_tio(ci, ti);
9faf400f
SB
1233 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1234 ci->md->bs);
1da177e4
LT
1235 __map_bio(ti, clone, tio);
1236
1237 ci->sector += len;
1238 ci->sector_count -= len;
1239 ci->idx = i;
1240
1241 } else {
1242 /*
d2044a94 1243 * Handle a bvec that must be split between two or more targets.
1da177e4
LT
1244 */
1245 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
d2044a94
AK
1246 sector_t remaining = to_sector(bv->bv_len);
1247 unsigned int offset = 0;
1da177e4 1248
d2044a94
AK
1249 do {
1250 if (offset) {
1251 ti = dm_table_find_target(ci->map, ci->sector);
512875bd
JN
1252 if (!dm_target_is_valid(ti))
1253 return -EIO;
1254
56a67df7 1255 max = max_io_len(ci->sector, ti);
d2044a94
AK
1256 }
1257
1258 len = min(remaining, max);
1259
5ae89a87 1260 tio = alloc_tio(ci, ti);
d2044a94 1261 clone = split_bvec(bio, ci->sector, ci->idx,
9faf400f
SB
1262 bv->bv_offset + offset, len,
1263 ci->md->bs);
d2044a94
AK
1264
1265 __map_bio(ti, clone, tio);
1266
1267 ci->sector += len;
1268 ci->sector_count -= len;
1269 offset += to_bytes(len);
1270 } while (remaining -= len);
1da177e4 1271
1da177e4
LT
1272 ci->idx++;
1273 }
512875bd
JN
1274
1275 return 0;
1da177e4
LT
1276}
1277
1278/*
8a53c28d 1279 * Split the bio into several clones and submit it to targets.
1da177e4 1280 */
f0b9a450 1281static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1da177e4 1282{
6a8736d1 1283 bool is_flush = bio->bi_rw & REQ_FLUSH;
1da177e4 1284 struct clone_info ci;
512875bd 1285 int error = 0;
1da177e4 1286
7c666411 1287 ci.map = dm_get_live_table(md);
f0b9a450 1288 if (unlikely(!ci.map)) {
6a8736d1 1289 bio_io_error(bio);
f0b9a450
MP
1290 return;
1291 }
692d0eb9 1292
1da177e4 1293 ci.md = md;
1da177e4
LT
1294 ci.io = alloc_io(md);
1295 ci.io->error = 0;
1296 atomic_set(&ci.io->io_count, 1);
1297 ci.io->bio = bio;
1298 ci.io->md = md;
f88fb981 1299 spin_lock_init(&ci.io->endio_lock);
1da177e4 1300 ci.sector = bio->bi_sector;
6a8736d1
TH
1301 ci.idx = bio->bi_idx;
1302
1303 if (!is_flush) {
1304 ci.bio = bio;
d87f4c14 1305 ci.sector_count = bio_sectors(bio);
6a8736d1
TH
1306 } else {
1307 ci.bio = &ci.md->flush_bio;
f9ab94ce 1308 ci.sector_count = 1;
d87f4c14 1309 }
1da177e4 1310
3eaf840e 1311 start_io_acct(ci.io);
d87f4c14 1312 while (ci.sector_count && !error) {
6a8736d1 1313 if (!is_flush)
d87f4c14
TH
1314 error = __clone_and_map(&ci);
1315 else
1316 error = __clone_and_map_flush(&ci);
1317 }
1da177e4
LT
1318
1319 /* drop the extra reference count */
512875bd 1320 dec_pending(ci.io, error);
1da177e4
LT
1321 dm_table_put(ci.map);
1322}
1323/*-----------------------------------------------------------------
1324 * CRUD END
1325 *---------------------------------------------------------------*/
1326
f6fccb12
MB
1327static int dm_merge_bvec(struct request_queue *q,
1328 struct bvec_merge_data *bvm,
1329 struct bio_vec *biovec)
1330{
1331 struct mapped_device *md = q->queuedata;
7c666411 1332 struct dm_table *map = dm_get_live_table(md);
f6fccb12
MB
1333 struct dm_target *ti;
1334 sector_t max_sectors;
5037108a 1335 int max_size = 0;
f6fccb12
MB
1336
1337 if (unlikely(!map))
5037108a 1338 goto out;
f6fccb12
MB
1339
1340 ti = dm_table_find_target(map, bvm->bi_sector);
b01cd5ac
MP
1341 if (!dm_target_is_valid(ti))
1342 goto out_table;
f6fccb12
MB
1343
1344 /*
1345 * Find maximum amount of I/O that won't need splitting
1346 */
56a67df7 1347 max_sectors = min(max_io_len(bvm->bi_sector, ti),
f6fccb12
MB
1348 (sector_t) BIO_MAX_SECTORS);
1349 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1350 if (max_size < 0)
1351 max_size = 0;
1352
1353 /*
1354 * merge_bvec_fn() returns number of bytes
1355 * it can accept at this offset
1356 * max is precomputed maximal io size
1357 */
1358 if (max_size && ti->type->merge)
1359 max_size = ti->type->merge(ti, bvm, biovec, max_size);
8cbeb67a
MP
1360 /*
1361 * If the target doesn't support merge method and some of the devices
1362 * provided their merge_bvec method (we know this by looking at
1363 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1364 * entries. So always set max_size to 0, and the code below allows
1365 * just one page.
1366 */
1367 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1368
1369 max_size = 0;
f6fccb12 1370
b01cd5ac 1371out_table:
5037108a
MP
1372 dm_table_put(map);
1373
1374out:
f6fccb12
MB
1375 /*
1376 * Always allow an entire first page
1377 */
1378 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1379 max_size = biovec->bv_len;
1380
f6fccb12
MB
1381 return max_size;
1382}
1383
1da177e4
LT
1384/*
1385 * The request function that just remaps the bio built up by
1386 * dm_merge_bvec.
1387 */
cec47e3d 1388static int _dm_request(struct request_queue *q, struct bio *bio)
1da177e4 1389{
12f03a49 1390 int rw = bio_data_dir(bio);
1da177e4 1391 struct mapped_device *md = q->queuedata;
c9959059 1392 int cpu;
1da177e4 1393
2ca3310e 1394 down_read(&md->io_lock);
1da177e4 1395
074a7aca
TH
1396 cpu = part_stat_lock();
1397 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1398 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1399 part_stat_unlock();
12f03a49 1400
6a8736d1
TH
1401 /* if we're suspended, we have to queue this io for later */
1402 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2ca3310e 1403 up_read(&md->io_lock);
1da177e4 1404
6a8736d1
TH
1405 if (bio_rw(bio) != READA)
1406 queue_io(md, bio);
1407 else
54d9a1b4 1408 bio_io_error(bio);
92c63902 1409 return 0;
1da177e4
LT
1410 }
1411
f0b9a450 1412 __split_and_process_bio(md, bio);
2ca3310e 1413 up_read(&md->io_lock);
f0b9a450 1414 return 0;
1da177e4
LT
1415}
1416
cec47e3d
KU
1417static int dm_make_request(struct request_queue *q, struct bio *bio)
1418{
1419 struct mapped_device *md = q->queuedata;
1420
cec47e3d
KU
1421 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1422}
1423
1424static int dm_request_based(struct mapped_device *md)
1425{
1426 return blk_queue_stackable(md->queue);
1427}
1428
1429static int dm_request(struct request_queue *q, struct bio *bio)
1430{
1431 struct mapped_device *md = q->queuedata;
1432
1433 if (dm_request_based(md))
1434 return dm_make_request(q, bio);
1435
1436 return _dm_request(q, bio);
1437}
1438
1439void dm_dispatch_request(struct request *rq)
1440{
1441 int r;
1442
1443 if (blk_queue_io_stat(rq->q))
1444 rq->cmd_flags |= REQ_IO_STAT;
1445
1446 rq->start_time = jiffies;
1447 r = blk_insert_cloned_request(rq->q, rq);
1448 if (r)
1449 dm_complete_request(rq, r);
1450}
1451EXPORT_SYMBOL_GPL(dm_dispatch_request);
1452
1453static void dm_rq_bio_destructor(struct bio *bio)
1454{
1455 struct dm_rq_clone_bio_info *info = bio->bi_private;
1456 struct mapped_device *md = info->tio->md;
1457
1458 free_bio_info(info);
1459 bio_free(bio, md->bs);
1460}
1461
1462static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1463 void *data)
1464{
1465 struct dm_rq_target_io *tio = data;
1466 struct mapped_device *md = tio->md;
1467 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1468
1469 if (!info)
1470 return -ENOMEM;
1471
1472 info->orig = bio_orig;
1473 info->tio = tio;
1474 bio->bi_end_io = end_clone_bio;
1475 bio->bi_private = info;
1476 bio->bi_destructor = dm_rq_bio_destructor;
1477
1478 return 0;
1479}
1480
1481static int setup_clone(struct request *clone, struct request *rq,
1482 struct dm_rq_target_io *tio)
1483{
d0bcb878 1484 int r;
cec47e3d 1485
29e4013d
TH
1486 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1487 dm_rq_bio_constructor, tio);
1488 if (r)
1489 return r;
cec47e3d 1490
29e4013d
TH
1491 clone->cmd = rq->cmd;
1492 clone->cmd_len = rq->cmd_len;
1493 clone->sense = rq->sense;
1494 clone->buffer = rq->buffer;
cec47e3d
KU
1495 clone->end_io = end_clone_request;
1496 clone->end_io_data = tio;
1497
1498 return 0;
1499}
1500
6facdaff
KU
1501static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1502 gfp_t gfp_mask)
1503{
1504 struct request *clone;
1505 struct dm_rq_target_io *tio;
1506
1507 tio = alloc_rq_tio(md, gfp_mask);
1508 if (!tio)
1509 return NULL;
1510
1511 tio->md = md;
1512 tio->ti = NULL;
1513 tio->orig = rq;
1514 tio->error = 0;
1515 memset(&tio->info, 0, sizeof(tio->info));
1516
1517 clone = &tio->clone;
1518 if (setup_clone(clone, rq, tio)) {
1519 /* -ENOMEM */
1520 free_rq_tio(tio);
1521 return NULL;
1522 }
1523
1524 return clone;
1525}
1526
cec47e3d
KU
1527/*
1528 * Called with the queue lock held.
1529 */
1530static int dm_prep_fn(struct request_queue *q, struct request *rq)
1531{
1532 struct mapped_device *md = q->queuedata;
cec47e3d
KU
1533 struct request *clone;
1534
cec47e3d
KU
1535 if (unlikely(rq->special)) {
1536 DMWARN("Already has something in rq->special.");
1537 return BLKPREP_KILL;
1538 }
1539
6facdaff
KU
1540 clone = clone_rq(rq, md, GFP_ATOMIC);
1541 if (!clone)
cec47e3d 1542 return BLKPREP_DEFER;
cec47e3d
KU
1543
1544 rq->special = clone;
1545 rq->cmd_flags |= REQ_DONTPREP;
1546
1547 return BLKPREP_OK;
1548}
1549
9eef87da
KU
1550/*
1551 * Returns:
1552 * 0 : the request has been processed (not requeued)
1553 * !0 : the request has been requeued
1554 */
1555static int map_request(struct dm_target *ti, struct request *clone,
1556 struct mapped_device *md)
cec47e3d 1557{
9eef87da 1558 int r, requeued = 0;
cec47e3d
KU
1559 struct dm_rq_target_io *tio = clone->end_io_data;
1560
1561 /*
1562 * Hold the md reference here for the in-flight I/O.
1563 * We can't rely on the reference count by device opener,
1564 * because the device may be closed during the request completion
1565 * when all bios are completed.
1566 * See the comment in rq_completed() too.
1567 */
1568 dm_get(md);
1569
1570 tio->ti = ti;
1571 r = ti->type->map_rq(ti, clone, &tio->info);
1572 switch (r) {
1573 case DM_MAPIO_SUBMITTED:
1574 /* The target has taken the I/O to submit by itself later */
1575 break;
1576 case DM_MAPIO_REMAPPED:
1577 /* The target has remapped the I/O so dispatch it */
6db4ccd6
JN
1578 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1579 blk_rq_pos(tio->orig));
cec47e3d
KU
1580 dm_dispatch_request(clone);
1581 break;
1582 case DM_MAPIO_REQUEUE:
1583 /* The target wants to requeue the I/O */
1584 dm_requeue_unmapped_request(clone);
9eef87da 1585 requeued = 1;
cec47e3d
KU
1586 break;
1587 default:
1588 if (r > 0) {
1589 DMWARN("unimplemented target map return value: %d", r);
1590 BUG();
1591 }
1592
1593 /* The target wants to complete the I/O */
1594 dm_kill_unmapped_request(clone, r);
1595 break;
1596 }
9eef87da
KU
1597
1598 return requeued;
cec47e3d
KU
1599}
1600
1601/*
1602 * q->request_fn for request-based dm.
1603 * Called with the queue lock held.
1604 */
1605static void dm_request_fn(struct request_queue *q)
1606{
1607 struct mapped_device *md = q->queuedata;
7c666411 1608 struct dm_table *map = dm_get_live_table(md);
cec47e3d 1609 struct dm_target *ti;
b4324fee 1610 struct request *rq, *clone;
29e4013d 1611 sector_t pos;
cec47e3d
KU
1612
1613 /*
b4324fee
KU
1614 * For suspend, check blk_queue_stopped() and increment
1615 * ->pending within a single queue_lock not to increment the
1616 * number of in-flight I/Os after the queue is stopped in
1617 * dm_suspend().
cec47e3d
KU
1618 */
1619 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1620 rq = blk_peek_request(q);
1621 if (!rq)
1622 goto plug_and_out;
1623
29e4013d
TH
1624 /* always use block 0 to find the target for flushes for now */
1625 pos = 0;
1626 if (!(rq->cmd_flags & REQ_FLUSH))
1627 pos = blk_rq_pos(rq);
1628
1629 ti = dm_table_find_target(map, pos);
1630 BUG_ON(!dm_target_is_valid(ti));
d0bcb878 1631
cec47e3d
KU
1632 if (ti->type->busy && ti->type->busy(ti))
1633 goto plug_and_out;
1634
1635 blk_start_request(rq);
b4324fee
KU
1636 clone = rq->special;
1637 atomic_inc(&md->pending[rq_data_dir(clone)]);
1638
cec47e3d 1639 spin_unlock(q->queue_lock);
9eef87da
KU
1640 if (map_request(ti, clone, md))
1641 goto requeued;
1642
cec47e3d
KU
1643 spin_lock_irq(q->queue_lock);
1644 }
1645
1646 goto out;
1647
9eef87da
KU
1648requeued:
1649 spin_lock_irq(q->queue_lock);
1650
cec47e3d
KU
1651plug_and_out:
1652 if (!elv_queue_empty(q))
1653 /* Some requests still remain, retry later */
1654 blk_plug_device(q);
1655
1656out:
1657 dm_table_put(map);
1658
1659 return;
1660}
1661
1662int dm_underlying_device_busy(struct request_queue *q)
1663{
1664 return blk_lld_busy(q);
1665}
1666EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1667
1668static int dm_lld_busy(struct request_queue *q)
1669{
1670 int r;
1671 struct mapped_device *md = q->queuedata;
7c666411 1672 struct dm_table *map = dm_get_live_table(md);
cec47e3d
KU
1673
1674 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1675 r = 1;
1676 else
1677 r = dm_table_any_busy_target(map);
1678
1679 dm_table_put(map);
1680
1681 return r;
1682}
1683
165125e1 1684static void dm_unplug_all(struct request_queue *q)
1da177e4
LT
1685{
1686 struct mapped_device *md = q->queuedata;
7c666411 1687 struct dm_table *map = dm_get_live_table(md);
1da177e4
LT
1688
1689 if (map) {
cec47e3d
KU
1690 if (dm_request_based(md))
1691 generic_unplug_device(q);
1692
1da177e4
LT
1693 dm_table_unplug_all(map);
1694 dm_table_put(map);
1695 }
1696}
1697
1698static int dm_any_congested(void *congested_data, int bdi_bits)
1699{
8a57dfc6
CS
1700 int r = bdi_bits;
1701 struct mapped_device *md = congested_data;
1702 struct dm_table *map;
1da177e4 1703
1eb787ec 1704 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
7c666411 1705 map = dm_get_live_table(md);
8a57dfc6 1706 if (map) {
cec47e3d
KU
1707 /*
1708 * Request-based dm cares about only own queue for
1709 * the query about congestion status of request_queue
1710 */
1711 if (dm_request_based(md))
1712 r = md->queue->backing_dev_info.state &
1713 bdi_bits;
1714 else
1715 r = dm_table_any_congested(map, bdi_bits);
1716
8a57dfc6
CS
1717 dm_table_put(map);
1718 }
1719 }
1720
1da177e4
LT
1721 return r;
1722}
1723
1724/*-----------------------------------------------------------------
1725 * An IDR is used to keep track of allocated minor numbers.
1726 *---------------------------------------------------------------*/
1da177e4
LT
1727static DEFINE_IDR(_minor_idr);
1728
2b06cfff 1729static void free_minor(int minor)
1da177e4 1730{
f32c10b0 1731 spin_lock(&_minor_lock);
1da177e4 1732 idr_remove(&_minor_idr, minor);
f32c10b0 1733 spin_unlock(&_minor_lock);
1da177e4
LT
1734}
1735
1736/*
1737 * See if the device with a specific minor # is free.
1738 */
cf13ab8e 1739static int specific_minor(int minor)
1da177e4
LT
1740{
1741 int r, m;
1742
1743 if (minor >= (1 << MINORBITS))
1744 return -EINVAL;
1745
62f75c2f
JM
1746 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1747 if (!r)
1748 return -ENOMEM;
1749
f32c10b0 1750 spin_lock(&_minor_lock);
1da177e4
LT
1751
1752 if (idr_find(&_minor_idr, minor)) {
1753 r = -EBUSY;
1754 goto out;
1755 }
1756
ba61fdd1 1757 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
62f75c2f 1758 if (r)
1da177e4 1759 goto out;
1da177e4
LT
1760
1761 if (m != minor) {
1762 idr_remove(&_minor_idr, m);
1763 r = -EBUSY;
1764 goto out;
1765 }
1766
1767out:
f32c10b0 1768 spin_unlock(&_minor_lock);
1da177e4
LT
1769 return r;
1770}
1771
cf13ab8e 1772static int next_free_minor(int *minor)
1da177e4 1773{
2b06cfff 1774 int r, m;
1da177e4 1775
1da177e4 1776 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
62f75c2f
JM
1777 if (!r)
1778 return -ENOMEM;
1779
f32c10b0 1780 spin_lock(&_minor_lock);
1da177e4 1781
ba61fdd1 1782 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
cf13ab8e 1783 if (r)
1da177e4 1784 goto out;
1da177e4
LT
1785
1786 if (m >= (1 << MINORBITS)) {
1787 idr_remove(&_minor_idr, m);
1788 r = -ENOSPC;
1789 goto out;
1790 }
1791
1792 *minor = m;
1793
1794out:
f32c10b0 1795 spin_unlock(&_minor_lock);
1da177e4
LT
1796 return r;
1797}
1798
83d5cde4 1799static const struct block_device_operations dm_blk_dops;
1da177e4 1800
53d5914f
MP
1801static void dm_wq_work(struct work_struct *work);
1802
4a0b4ddf
MS
1803static void dm_init_md_queue(struct mapped_device *md)
1804{
1805 /*
1806 * Request-based dm devices cannot be stacked on top of bio-based dm
1807 * devices. The type of this dm device has not been decided yet.
1808 * The type is decided at the first table loading time.
1809 * To prevent problematic device stacking, clear the queue flag
1810 * for request stacking support until then.
1811 *
1812 * This queue is new, so no concurrency on the queue_flags.
1813 */
1814 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1815
1816 md->queue->queuedata = md;
1817 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1818 md->queue->backing_dev_info.congested_data = md;
1819 blk_queue_make_request(md->queue, dm_request);
1820 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1821 md->queue->unplug_fn = dm_unplug_all;
1822 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
d87f4c14 1823 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
4a0b4ddf
MS
1824}
1825
1da177e4
LT
1826/*
1827 * Allocate and initialise a blank device with a given minor.
1828 */
2b06cfff 1829static struct mapped_device *alloc_dev(int minor)
1da177e4
LT
1830{
1831 int r;
cf13ab8e 1832 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
ba61fdd1 1833 void *old_md;
1da177e4
LT
1834
1835 if (!md) {
1836 DMWARN("unable to allocate device, out of memory.");
1837 return NULL;
1838 }
1839
10da4f79 1840 if (!try_module_get(THIS_MODULE))
6ed7ade8 1841 goto bad_module_get;
10da4f79 1842
1da177e4 1843 /* get a minor number for the dev */
2b06cfff 1844 if (minor == DM_ANY_MINOR)
cf13ab8e 1845 r = next_free_minor(&minor);
2b06cfff 1846 else
cf13ab8e 1847 r = specific_minor(minor);
1da177e4 1848 if (r < 0)
6ed7ade8 1849 goto bad_minor;
1da177e4 1850
a5664dad 1851 md->type = DM_TYPE_NONE;
2ca3310e 1852 init_rwsem(&md->io_lock);
e61290a4 1853 mutex_init(&md->suspend_lock);
a5664dad 1854 mutex_init(&md->type_lock);
022c2611 1855 spin_lock_init(&md->deferred_lock);
1da177e4
LT
1856 rwlock_init(&md->map_lock);
1857 atomic_set(&md->holders, 1);
5c6bd75d 1858 atomic_set(&md->open_count, 0);
1da177e4 1859 atomic_set(&md->event_nr, 0);
7a8c3d3b
MA
1860 atomic_set(&md->uevent_seq, 0);
1861 INIT_LIST_HEAD(&md->uevent_list);
1862 spin_lock_init(&md->uevent_lock);
1da177e4 1863
4a0b4ddf 1864 md->queue = blk_alloc_queue(GFP_KERNEL);
1da177e4 1865 if (!md->queue)
6ed7ade8 1866 goto bad_queue;
1da177e4 1867
4a0b4ddf 1868 dm_init_md_queue(md);
9faf400f 1869
1da177e4
LT
1870 md->disk = alloc_disk(1);
1871 if (!md->disk)
6ed7ade8 1872 goto bad_disk;
1da177e4 1873
316d315b
NK
1874 atomic_set(&md->pending[0], 0);
1875 atomic_set(&md->pending[1], 0);
f0b04115 1876 init_waitqueue_head(&md->wait);
53d5914f 1877 INIT_WORK(&md->work, dm_wq_work);
f0b04115
JM
1878 init_waitqueue_head(&md->eventq);
1879
1da177e4
LT
1880 md->disk->major = _major;
1881 md->disk->first_minor = minor;
1882 md->disk->fops = &dm_blk_dops;
1883 md->disk->queue = md->queue;
1884 md->disk->private_data = md;
1885 sprintf(md->disk->disk_name, "dm-%d", minor);
1886 add_disk(md->disk);
7e51f257 1887 format_dev_t(md->name, MKDEV(_major, minor));
1da177e4 1888
304f3f6a
MB
1889 md->wq = create_singlethread_workqueue("kdmflush");
1890 if (!md->wq)
1891 goto bad_thread;
1892
32a926da
MP
1893 md->bdev = bdget_disk(md->disk, 0);
1894 if (!md->bdev)
1895 goto bad_bdev;
1896
6a8736d1
TH
1897 bio_init(&md->flush_bio);
1898 md->flush_bio.bi_bdev = md->bdev;
1899 md->flush_bio.bi_rw = WRITE_FLUSH;
1900
ba61fdd1 1901 /* Populate the mapping, nobody knows we exist yet */
f32c10b0 1902 spin_lock(&_minor_lock);
ba61fdd1 1903 old_md = idr_replace(&_minor_idr, md, minor);
f32c10b0 1904 spin_unlock(&_minor_lock);
ba61fdd1
JM
1905
1906 BUG_ON(old_md != MINOR_ALLOCED);
1907
1da177e4
LT
1908 return md;
1909
32a926da
MP
1910bad_bdev:
1911 destroy_workqueue(md->wq);
304f3f6a 1912bad_thread:
03022c54 1913 del_gendisk(md->disk);
304f3f6a 1914 put_disk(md->disk);
6ed7ade8 1915bad_disk:
1312f40e 1916 blk_cleanup_queue(md->queue);
6ed7ade8 1917bad_queue:
1da177e4 1918 free_minor(minor);
6ed7ade8 1919bad_minor:
10da4f79 1920 module_put(THIS_MODULE);
6ed7ade8 1921bad_module_get:
1da177e4
LT
1922 kfree(md);
1923 return NULL;
1924}
1925
ae9da83f
JN
1926static void unlock_fs(struct mapped_device *md);
1927
1da177e4
LT
1928static void free_dev(struct mapped_device *md)
1929{
f331c029 1930 int minor = MINOR(disk_devt(md->disk));
63d94e48 1931
32a926da
MP
1932 unlock_fs(md);
1933 bdput(md->bdev);
304f3f6a 1934 destroy_workqueue(md->wq);
e6ee8c0b
KU
1935 if (md->tio_pool)
1936 mempool_destroy(md->tio_pool);
1937 if (md->io_pool)
1938 mempool_destroy(md->io_pool);
1939 if (md->bs)
1940 bioset_free(md->bs);
9c47008d 1941 blk_integrity_unregister(md->disk);
1da177e4 1942 del_gendisk(md->disk);
63d94e48 1943 free_minor(minor);
fba9f90e
JM
1944
1945 spin_lock(&_minor_lock);
1946 md->disk->private_data = NULL;
1947 spin_unlock(&_minor_lock);
1948
1da177e4 1949 put_disk(md->disk);
1312f40e 1950 blk_cleanup_queue(md->queue);
10da4f79 1951 module_put(THIS_MODULE);
1da177e4
LT
1952 kfree(md);
1953}
1954
e6ee8c0b
KU
1955static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1956{
1957 struct dm_md_mempools *p;
1958
1959 if (md->io_pool && md->tio_pool && md->bs)
1960 /* the md already has necessary mempools */
1961 goto out;
1962
1963 p = dm_table_get_md_mempools(t);
1964 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1965
1966 md->io_pool = p->io_pool;
1967 p->io_pool = NULL;
1968 md->tio_pool = p->tio_pool;
1969 p->tio_pool = NULL;
1970 md->bs = p->bs;
1971 p->bs = NULL;
1972
1973out:
1974 /* mempool bind completed, now no need any mempools in the table */
1975 dm_table_free_md_mempools(t);
1976}
1977
1da177e4
LT
1978/*
1979 * Bind a table to the device.
1980 */
1981static void event_callback(void *context)
1982{
7a8c3d3b
MA
1983 unsigned long flags;
1984 LIST_HEAD(uevents);
1da177e4
LT
1985 struct mapped_device *md = (struct mapped_device *) context;
1986
7a8c3d3b
MA
1987 spin_lock_irqsave(&md->uevent_lock, flags);
1988 list_splice_init(&md->uevent_list, &uevents);
1989 spin_unlock_irqrestore(&md->uevent_lock, flags);
1990
ed9e1982 1991 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
7a8c3d3b 1992
1da177e4
LT
1993 atomic_inc(&md->event_nr);
1994 wake_up(&md->eventq);
1995}
1996
4e90188b 1997static void __set_size(struct mapped_device *md, sector_t size)
1da177e4 1998{
4e90188b 1999 set_capacity(md->disk, size);
1da177e4 2000
db8fef4f
MP
2001 mutex_lock(&md->bdev->bd_inode->i_mutex);
2002 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2003 mutex_unlock(&md->bdev->bd_inode->i_mutex);
1da177e4
LT
2004}
2005
042d2a9b
AK
2006/*
2007 * Returns old map, which caller must destroy.
2008 */
2009static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2010 struct queue_limits *limits)
1da177e4 2011{
042d2a9b 2012 struct dm_table *old_map;
165125e1 2013 struct request_queue *q = md->queue;
1da177e4 2014 sector_t size;
523d9297 2015 unsigned long flags;
1da177e4
LT
2016
2017 size = dm_table_get_size(t);
3ac51e74
DW
2018
2019 /*
2020 * Wipe any geometry if the size of the table changed.
2021 */
2022 if (size != get_capacity(md->disk))
2023 memset(&md->geometry, 0, sizeof(md->geometry));
2024
32a926da 2025 __set_size(md, size);
d5816876 2026
2ca3310e
AK
2027 dm_table_event_callback(t, event_callback, md);
2028
e6ee8c0b
KU
2029 /*
2030 * The queue hasn't been stopped yet, if the old table type wasn't
2031 * for request-based during suspension. So stop it to prevent
2032 * I/O mapping before resume.
2033 * This must be done before setting the queue restrictions,
2034 * because request-based dm may be run just after the setting.
2035 */
2036 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2037 stop_queue(q);
2038
2039 __bind_mempools(md, t);
2040
523d9297 2041 write_lock_irqsave(&md->map_lock, flags);
042d2a9b 2042 old_map = md->map;
1da177e4 2043 md->map = t;
754c5fc7 2044 dm_table_set_restrictions(t, q, limits);
523d9297 2045 write_unlock_irqrestore(&md->map_lock, flags);
1da177e4 2046
042d2a9b 2047 return old_map;
1da177e4
LT
2048}
2049
a7940155
AK
2050/*
2051 * Returns unbound table for the caller to free.
2052 */
2053static struct dm_table *__unbind(struct mapped_device *md)
1da177e4
LT
2054{
2055 struct dm_table *map = md->map;
523d9297 2056 unsigned long flags;
1da177e4
LT
2057
2058 if (!map)
a7940155 2059 return NULL;
1da177e4
LT
2060
2061 dm_table_event_callback(map, NULL, NULL);
523d9297 2062 write_lock_irqsave(&md->map_lock, flags);
1da177e4 2063 md->map = NULL;
523d9297 2064 write_unlock_irqrestore(&md->map_lock, flags);
a7940155
AK
2065
2066 return map;
1da177e4
LT
2067}
2068
2069/*
2070 * Constructor for a new device.
2071 */
2b06cfff 2072int dm_create(int minor, struct mapped_device **result)
1da177e4
LT
2073{
2074 struct mapped_device *md;
2075
2b06cfff 2076 md = alloc_dev(minor);
1da177e4
LT
2077 if (!md)
2078 return -ENXIO;
2079
784aae73
MB
2080 dm_sysfs_init(md);
2081
1da177e4
LT
2082 *result = md;
2083 return 0;
2084}
2085
a5664dad
MS
2086/*
2087 * Functions to manage md->type.
2088 * All are required to hold md->type_lock.
2089 */
2090void dm_lock_md_type(struct mapped_device *md)
2091{
2092 mutex_lock(&md->type_lock);
2093}
2094
2095void dm_unlock_md_type(struct mapped_device *md)
2096{
2097 mutex_unlock(&md->type_lock);
2098}
2099
2100void dm_set_md_type(struct mapped_device *md, unsigned type)
2101{
2102 md->type = type;
2103}
2104
2105unsigned dm_get_md_type(struct mapped_device *md)
2106{
2107 return md->type;
2108}
2109
4a0b4ddf
MS
2110/*
2111 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2112 */
2113static int dm_init_request_based_queue(struct mapped_device *md)
2114{
2115 struct request_queue *q = NULL;
2116
2117 if (md->queue->elevator)
2118 return 1;
2119
2120 /* Fully initialize the queue */
2121 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2122 if (!q)
2123 return 0;
2124
2125 md->queue = q;
2126 md->saved_make_request_fn = md->queue->make_request_fn;
2127 dm_init_md_queue(md);
2128 blk_queue_softirq_done(md->queue, dm_softirq_done);
2129 blk_queue_prep_rq(md->queue, dm_prep_fn);
2130 blk_queue_lld_busy(md->queue, dm_lld_busy);
4a0b4ddf
MS
2131
2132 elv_register_queue(md->queue);
2133
2134 return 1;
2135}
2136
2137/*
2138 * Setup the DM device's queue based on md's type
2139 */
2140int dm_setup_md_queue(struct mapped_device *md)
2141{
2142 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2143 !dm_init_request_based_queue(md)) {
2144 DMWARN("Cannot initialize queue for request-based mapped device");
2145 return -EINVAL;
2146 }
2147
2148 return 0;
2149}
2150
637842cf 2151static struct mapped_device *dm_find_md(dev_t dev)
1da177e4
LT
2152{
2153 struct mapped_device *md;
1da177e4
LT
2154 unsigned minor = MINOR(dev);
2155
2156 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2157 return NULL;
2158
f32c10b0 2159 spin_lock(&_minor_lock);
1da177e4
LT
2160
2161 md = idr_find(&_minor_idr, minor);
fba9f90e 2162 if (md && (md == MINOR_ALLOCED ||
f331c029 2163 (MINOR(disk_devt(dm_disk(md))) != minor) ||
abdc568b 2164 dm_deleting_md(md) ||
17b2f66f 2165 test_bit(DMF_FREEING, &md->flags))) {
637842cf 2166 md = NULL;
fba9f90e
JM
2167 goto out;
2168 }
1da177e4 2169
fba9f90e 2170out:
f32c10b0 2171 spin_unlock(&_minor_lock);
1da177e4 2172
637842cf
DT
2173 return md;
2174}
2175
d229a958
DT
2176struct mapped_device *dm_get_md(dev_t dev)
2177{
2178 struct mapped_device *md = dm_find_md(dev);
2179
2180 if (md)
2181 dm_get(md);
2182
2183 return md;
2184}
2185
9ade92a9 2186void *dm_get_mdptr(struct mapped_device *md)
637842cf 2187{
9ade92a9 2188 return md->interface_ptr;
1da177e4
LT
2189}
2190
2191void dm_set_mdptr(struct mapped_device *md, void *ptr)
2192{
2193 md->interface_ptr = ptr;
2194}
2195
2196void dm_get(struct mapped_device *md)
2197{
2198 atomic_inc(&md->holders);
3f77316d 2199 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1da177e4
LT
2200}
2201
72d94861
AK
2202const char *dm_device_name(struct mapped_device *md)
2203{
2204 return md->name;
2205}
2206EXPORT_SYMBOL_GPL(dm_device_name);
2207
3f77316d 2208static void __dm_destroy(struct mapped_device *md, bool wait)
1da177e4 2209{
1134e5ae 2210 struct dm_table *map;
1da177e4 2211
3f77316d 2212 might_sleep();
fba9f90e 2213
3f77316d
KU
2214 spin_lock(&_minor_lock);
2215 map = dm_get_live_table(md);
2216 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2217 set_bit(DMF_FREEING, &md->flags);
2218 spin_unlock(&_minor_lock);
2219
2220 if (!dm_suspended_md(md)) {
2221 dm_table_presuspend_targets(map);
2222 dm_table_postsuspend_targets(map);
1da177e4 2223 }
3f77316d
KU
2224
2225 /*
2226 * Rare, but there may be I/O requests still going to complete,
2227 * for example. Wait for all references to disappear.
2228 * No one should increment the reference count of the mapped_device,
2229 * after the mapped_device state becomes DMF_FREEING.
2230 */
2231 if (wait)
2232 while (atomic_read(&md->holders))
2233 msleep(1);
2234 else if (atomic_read(&md->holders))
2235 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2236 dm_device_name(md), atomic_read(&md->holders));
2237
2238 dm_sysfs_exit(md);
2239 dm_table_put(map);
2240 dm_table_destroy(__unbind(md));
2241 free_dev(md);
2242}
2243
2244void dm_destroy(struct mapped_device *md)
2245{
2246 __dm_destroy(md, true);
2247}
2248
2249void dm_destroy_immediate(struct mapped_device *md)
2250{
2251 __dm_destroy(md, false);
2252}
2253
2254void dm_put(struct mapped_device *md)
2255{
2256 atomic_dec(&md->holders);
1da177e4 2257}
79eb885c 2258EXPORT_SYMBOL_GPL(dm_put);
1da177e4 2259
401600df 2260static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
46125c1c
MB
2261{
2262 int r = 0;
b44ebeb0
MP
2263 DECLARE_WAITQUEUE(wait, current);
2264
2265 dm_unplug_all(md->queue);
2266
2267 add_wait_queue(&md->wait, &wait);
46125c1c
MB
2268
2269 while (1) {
401600df 2270 set_current_state(interruptible);
46125c1c
MB
2271
2272 smp_mb();
b4324fee 2273 if (!md_in_flight(md))
46125c1c
MB
2274 break;
2275
401600df
MP
2276 if (interruptible == TASK_INTERRUPTIBLE &&
2277 signal_pending(current)) {
46125c1c
MB
2278 r = -EINTR;
2279 break;
2280 }
2281
2282 io_schedule();
2283 }
2284 set_current_state(TASK_RUNNING);
2285
b44ebeb0
MP
2286 remove_wait_queue(&md->wait, &wait);
2287
46125c1c
MB
2288 return r;
2289}
2290
1da177e4
LT
2291/*
2292 * Process the deferred bios
2293 */
ef208587 2294static void dm_wq_work(struct work_struct *work)
1da177e4 2295{
ef208587
MP
2296 struct mapped_device *md = container_of(work, struct mapped_device,
2297 work);
6d6f10df 2298 struct bio *c;
1da177e4 2299
6a8736d1 2300 down_read(&md->io_lock);
ef208587 2301
3b00b203 2302 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
df12ee99
AK
2303 spin_lock_irq(&md->deferred_lock);
2304 c = bio_list_pop(&md->deferred);
2305 spin_unlock_irq(&md->deferred_lock);
2306
6a8736d1 2307 if (!c)
df12ee99 2308 break;
022c2611 2309
6a8736d1 2310 up_read(&md->io_lock);
3b00b203 2311
e6ee8c0b
KU
2312 if (dm_request_based(md))
2313 generic_make_request(c);
6a8736d1
TH
2314 else
2315 __split_and_process_bio(md, c);
3b00b203 2316
6a8736d1 2317 down_read(&md->io_lock);
022c2611 2318 }
73d410c0 2319
6a8736d1 2320 up_read(&md->io_lock);
1da177e4
LT
2321}
2322
9a1fb464 2323static void dm_queue_flush(struct mapped_device *md)
304f3f6a 2324{
3b00b203
MP
2325 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2326 smp_mb__after_clear_bit();
53d5914f 2327 queue_work(md->wq, &md->work);
304f3f6a
MB
2328}
2329
1da177e4 2330/*
042d2a9b 2331 * Swap in a new table, returning the old one for the caller to destroy.
1da177e4 2332 */
042d2a9b 2333struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
1da177e4 2334{
042d2a9b 2335 struct dm_table *map = ERR_PTR(-EINVAL);
754c5fc7 2336 struct queue_limits limits;
042d2a9b 2337 int r;
1da177e4 2338
e61290a4 2339 mutex_lock(&md->suspend_lock);
1da177e4
LT
2340
2341 /* device must be suspended */
4f186f8b 2342 if (!dm_suspended_md(md))
93c534ae 2343 goto out;
1da177e4 2344
754c5fc7 2345 r = dm_calculate_queue_limits(table, &limits);
042d2a9b
AK
2346 if (r) {
2347 map = ERR_PTR(r);
754c5fc7 2348 goto out;
042d2a9b 2349 }
754c5fc7 2350
042d2a9b 2351 map = __bind(md, table, &limits);
1da177e4 2352
93c534ae 2353out:
e61290a4 2354 mutex_unlock(&md->suspend_lock);
042d2a9b 2355 return map;
1da177e4
LT
2356}
2357
2358/*
2359 * Functions to lock and unlock any filesystem running on the
2360 * device.
2361 */
2ca3310e 2362static int lock_fs(struct mapped_device *md)
1da177e4 2363{
e39e2e95 2364 int r;
1da177e4
LT
2365
2366 WARN_ON(md->frozen_sb);
dfbe03f6 2367
db8fef4f 2368 md->frozen_sb = freeze_bdev(md->bdev);
dfbe03f6 2369 if (IS_ERR(md->frozen_sb)) {
cf222b37 2370 r = PTR_ERR(md->frozen_sb);
e39e2e95
AK
2371 md->frozen_sb = NULL;
2372 return r;
dfbe03f6
AK
2373 }
2374
aa8d7c2f
AK
2375 set_bit(DMF_FROZEN, &md->flags);
2376
1da177e4
LT
2377 return 0;
2378}
2379
2ca3310e 2380static void unlock_fs(struct mapped_device *md)
1da177e4 2381{
aa8d7c2f
AK
2382 if (!test_bit(DMF_FROZEN, &md->flags))
2383 return;
2384
db8fef4f 2385 thaw_bdev(md->bdev, md->frozen_sb);
1da177e4 2386 md->frozen_sb = NULL;
aa8d7c2f 2387 clear_bit(DMF_FROZEN, &md->flags);
1da177e4
LT
2388}
2389
2390/*
2391 * We need to be able to change a mapping table under a mounted
2392 * filesystem. For example we might want to move some data in
2393 * the background. Before the table can be swapped with
2394 * dm_bind_table, dm_suspend must be called to flush any in
2395 * flight bios and ensure that any further io gets deferred.
2396 */
cec47e3d
KU
2397/*
2398 * Suspend mechanism in request-based dm.
2399 *
9f518b27
KU
2400 * 1. Flush all I/Os by lock_fs() if needed.
2401 * 2. Stop dispatching any I/O by stopping the request_queue.
2402 * 3. Wait for all in-flight I/Os to be completed or requeued.
cec47e3d 2403 *
9f518b27 2404 * To abort suspend, start the request_queue.
cec47e3d 2405 */
a3d77d35 2406int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1da177e4 2407{
2ca3310e 2408 struct dm_table *map = NULL;
46125c1c 2409 int r = 0;
a3d77d35 2410 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2e93ccc1 2411 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1da177e4 2412
e61290a4 2413 mutex_lock(&md->suspend_lock);
2ca3310e 2414
4f186f8b 2415 if (dm_suspended_md(md)) {
73d410c0 2416 r = -EINVAL;
d287483d 2417 goto out_unlock;
73d410c0 2418 }
1da177e4 2419
7c666411 2420 map = dm_get_live_table(md);
1da177e4 2421
2e93ccc1
KU
2422 /*
2423 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2424 * This flag is cleared before dm_suspend returns.
2425 */
2426 if (noflush)
2427 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2428
cf222b37
AK
2429 /* This does not get reverted if there's an error later. */
2430 dm_table_presuspend_targets(map);
2431
32a926da 2432 /*
9f518b27
KU
2433 * Flush I/O to the device.
2434 * Any I/O submitted after lock_fs() may not be flushed.
2435 * noflush takes precedence over do_lockfs.
2436 * (lock_fs() flushes I/Os and waits for them to complete.)
32a926da
MP
2437 */
2438 if (!noflush && do_lockfs) {
2439 r = lock_fs(md);
2440 if (r)
f431d966 2441 goto out;
aa8d7c2f 2442 }
1da177e4
LT
2443
2444 /*
3b00b203
MP
2445 * Here we must make sure that no processes are submitting requests
2446 * to target drivers i.e. no one may be executing
2447 * __split_and_process_bio. This is called from dm_request and
2448 * dm_wq_work.
2449 *
2450 * To get all processes out of __split_and_process_bio in dm_request,
2451 * we take the write lock. To prevent any process from reentering
6a8736d1
TH
2452 * __split_and_process_bio from dm_request and quiesce the thread
2453 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2454 * flush_workqueue(md->wq).
1da177e4 2455 */
2ca3310e 2456 down_write(&md->io_lock);
1eb787ec 2457 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2ca3310e 2458 up_write(&md->io_lock);
1da177e4 2459
d0bcb878 2460 /*
29e4013d
TH
2461 * Stop md->queue before flushing md->wq in case request-based
2462 * dm defers requests to md->wq from md->queue.
d0bcb878 2463 */
cec47e3d 2464 if (dm_request_based(md))
9f518b27 2465 stop_queue(md->queue);
cec47e3d 2466
d0bcb878
KU
2467 flush_workqueue(md->wq);
2468
1da177e4 2469 /*
3b00b203
MP
2470 * At this point no more requests are entering target request routines.
2471 * We call dm_wait_for_completion to wait for all existing requests
2472 * to finish.
1da177e4 2473 */
401600df 2474 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1da177e4 2475
2ca3310e 2476 down_write(&md->io_lock);
6d6f10df 2477 if (noflush)
022c2611 2478 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
94d6351e 2479 up_write(&md->io_lock);
2e93ccc1 2480
1da177e4 2481 /* were we interrupted ? */
46125c1c 2482 if (r < 0) {
9a1fb464 2483 dm_queue_flush(md);
73d410c0 2484
cec47e3d 2485 if (dm_request_based(md))
9f518b27 2486 start_queue(md->queue);
cec47e3d 2487
2ca3310e 2488 unlock_fs(md);
2e93ccc1 2489 goto out; /* pushback list is already flushed, so skip flush */
2ca3310e 2490 }
1da177e4 2491
3b00b203
MP
2492 /*
2493 * If dm_wait_for_completion returned 0, the device is completely
2494 * quiescent now. There is no request-processing activity. All new
2495 * requests are being added to md->deferred list.
2496 */
2497
2ca3310e 2498 set_bit(DMF_SUSPENDED, &md->flags);
b84b0287 2499
4d4471cb
KU
2500 dm_table_postsuspend_targets(map);
2501
2ca3310e
AK
2502out:
2503 dm_table_put(map);
d287483d
AK
2504
2505out_unlock:
e61290a4 2506 mutex_unlock(&md->suspend_lock);
cf222b37 2507 return r;
1da177e4
LT
2508}
2509
2510int dm_resume(struct mapped_device *md)
2511{
cf222b37 2512 int r = -EINVAL;
cf222b37 2513 struct dm_table *map = NULL;
1da177e4 2514
e61290a4 2515 mutex_lock(&md->suspend_lock);
4f186f8b 2516 if (!dm_suspended_md(md))
cf222b37 2517 goto out;
cf222b37 2518
7c666411 2519 map = dm_get_live_table(md);
2ca3310e 2520 if (!map || !dm_table_get_size(map))
cf222b37 2521 goto out;
1da177e4 2522
8757b776
MB
2523 r = dm_table_resume_targets(map);
2524 if (r)
2525 goto out;
2ca3310e 2526
9a1fb464 2527 dm_queue_flush(md);
2ca3310e 2528
cec47e3d
KU
2529 /*
2530 * Flushing deferred I/Os must be done after targets are resumed
2531 * so that mapping of targets can work correctly.
2532 * Request-based dm is queueing the deferred I/Os in its request_queue.
2533 */
2534 if (dm_request_based(md))
2535 start_queue(md->queue);
2536
2ca3310e
AK
2537 unlock_fs(md);
2538
2539 clear_bit(DMF_SUSPENDED, &md->flags);
2540
1da177e4 2541 dm_table_unplug_all(map);
cf222b37
AK
2542 r = 0;
2543out:
2544 dm_table_put(map);
e61290a4 2545 mutex_unlock(&md->suspend_lock);
2ca3310e 2546
cf222b37 2547 return r;
1da177e4
LT
2548}
2549
2550/*-----------------------------------------------------------------
2551 * Event notification.
2552 *---------------------------------------------------------------*/
3abf85b5 2553int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
60935eb2 2554 unsigned cookie)
69267a30 2555{
60935eb2
MB
2556 char udev_cookie[DM_COOKIE_LENGTH];
2557 char *envp[] = { udev_cookie, NULL };
2558
2559 if (!cookie)
3abf85b5 2560 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
60935eb2
MB
2561 else {
2562 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2563 DM_COOKIE_ENV_VAR_NAME, cookie);
3abf85b5
PR
2564 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2565 action, envp);
60935eb2 2566 }
69267a30
AK
2567}
2568
7a8c3d3b
MA
2569uint32_t dm_next_uevent_seq(struct mapped_device *md)
2570{
2571 return atomic_add_return(1, &md->uevent_seq);
2572}
2573
1da177e4
LT
2574uint32_t dm_get_event_nr(struct mapped_device *md)
2575{
2576 return atomic_read(&md->event_nr);
2577}
2578
2579int dm_wait_event(struct mapped_device *md, int event_nr)
2580{
2581 return wait_event_interruptible(md->eventq,
2582 (event_nr != atomic_read(&md->event_nr)));
2583}
2584
7a8c3d3b
MA
2585void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2586{
2587 unsigned long flags;
2588
2589 spin_lock_irqsave(&md->uevent_lock, flags);
2590 list_add(elist, &md->uevent_list);
2591 spin_unlock_irqrestore(&md->uevent_lock, flags);
2592}
2593
1da177e4
LT
2594/*
2595 * The gendisk is only valid as long as you have a reference
2596 * count on 'md'.
2597 */
2598struct gendisk *dm_disk(struct mapped_device *md)
2599{
2600 return md->disk;
2601}
2602
784aae73
MB
2603struct kobject *dm_kobject(struct mapped_device *md)
2604{
2605 return &md->kobj;
2606}
2607
2608/*
2609 * struct mapped_device should not be exported outside of dm.c
2610 * so use this check to verify that kobj is part of md structure
2611 */
2612struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2613{
2614 struct mapped_device *md;
2615
2616 md = container_of(kobj, struct mapped_device, kobj);
2617 if (&md->kobj != kobj)
2618 return NULL;
2619
4d89b7b4 2620 if (test_bit(DMF_FREEING, &md->flags) ||
432a212c 2621 dm_deleting_md(md))
4d89b7b4
MB
2622 return NULL;
2623
784aae73
MB
2624 dm_get(md);
2625 return md;
2626}
2627
4f186f8b 2628int dm_suspended_md(struct mapped_device *md)
1da177e4
LT
2629{
2630 return test_bit(DMF_SUSPENDED, &md->flags);
2631}
2632
64dbce58
KU
2633int dm_suspended(struct dm_target *ti)
2634{
ecdb2e25 2635 return dm_suspended_md(dm_table_get_md(ti->table));
64dbce58
KU
2636}
2637EXPORT_SYMBOL_GPL(dm_suspended);
2638
2e93ccc1
KU
2639int dm_noflush_suspending(struct dm_target *ti)
2640{
ecdb2e25 2641 return __noflush_suspending(dm_table_get_md(ti->table));
2e93ccc1
KU
2642}
2643EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2644
e6ee8c0b
KU
2645struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2646{
2647 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2648
2649 if (!pools)
2650 return NULL;
2651
2652 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2653 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2654 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2655 if (!pools->io_pool)
2656 goto free_pools_and_out;
2657
2658 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2659 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2660 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2661 if (!pools->tio_pool)
2662 goto free_io_pool_and_out;
2663
2664 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2665 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2666 if (!pools->bs)
2667 goto free_tio_pool_and_out;
2668
2669 return pools;
2670
2671free_tio_pool_and_out:
2672 mempool_destroy(pools->tio_pool);
2673
2674free_io_pool_and_out:
2675 mempool_destroy(pools->io_pool);
2676
2677free_pools_and_out:
2678 kfree(pools);
2679
2680 return NULL;
2681}
2682
2683void dm_free_md_mempools(struct dm_md_mempools *pools)
2684{
2685 if (!pools)
2686 return;
2687
2688 if (pools->io_pool)
2689 mempool_destroy(pools->io_pool);
2690
2691 if (pools->tio_pool)
2692 mempool_destroy(pools->tio_pool);
2693
2694 if (pools->bs)
2695 bioset_free(pools->bs);
2696
2697 kfree(pools);
2698}
2699
83d5cde4 2700static const struct block_device_operations dm_blk_dops = {
1da177e4
LT
2701 .open = dm_blk_open,
2702 .release = dm_blk_close,
aa129a22 2703 .ioctl = dm_blk_ioctl,
3ac51e74 2704 .getgeo = dm_blk_getgeo,
1da177e4
LT
2705 .owner = THIS_MODULE
2706};
2707
2708EXPORT_SYMBOL(dm_get_mapinfo);
2709
2710/*
2711 * module hooks
2712 */
2713module_init(dm_init);
2714module_exit(dm_exit);
2715
2716module_param(major, uint, 0);
2717MODULE_PARM_DESC(major, "The major number of the device mapper");
2718MODULE_DESCRIPTION(DM_NAME " driver");
2719MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2720MODULE_LICENSE("GPL");
This page took 0.747817 seconds and 5 git commands to generate.