dm: abstract clone_rq
[deliverable/linux.git] / drivers / md / dm.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
784aae73 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
1da177e4
LT
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
51e5b2bd 9#include "dm-uevent.h"
1da177e4
LT
10
11#include <linux/init.h>
12#include <linux/module.h>
48c9c27b 13#include <linux/mutex.h>
1da177e4
LT
14#include <linux/moduleparam.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/buffer_head.h>
18#include <linux/mempool.h>
19#include <linux/slab.h>
20#include <linux/idr.h>
3ac51e74 21#include <linux/hdreg.h>
55782138
LZ
22
23#include <trace/events/block.h>
1da177e4 24
72d94861
AK
25#define DM_MSG_PREFIX "core"
26
60935eb2
MB
27/*
28 * Cookies are numeric values sent with CHANGE and REMOVE
29 * uevents while resuming, removing or renaming the device.
30 */
31#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32#define DM_COOKIE_LENGTH 24
33
1da177e4
LT
34static const char *_name = DM_NAME;
35
36static unsigned int major = 0;
37static unsigned int _major = 0;
38
f32c10b0 39static DEFINE_SPINLOCK(_minor_lock);
1da177e4 40/*
8fbf26ad 41 * For bio-based dm.
1da177e4
LT
42 * One of these is allocated per bio.
43 */
44struct dm_io {
45 struct mapped_device *md;
46 int error;
1da177e4 47 atomic_t io_count;
6ae2fa67 48 struct bio *bio;
3eaf840e 49 unsigned long start_time;
f88fb981 50 spinlock_t endio_lock;
1da177e4
LT
51};
52
53/*
8fbf26ad 54 * For bio-based dm.
1da177e4
LT
55 * One of these is allocated per target within a bio. Hopefully
56 * this will be simplified out one day.
57 */
028867ac 58struct dm_target_io {
1da177e4
LT
59 struct dm_io *io;
60 struct dm_target *ti;
61 union map_info info;
62};
63
8fbf26ad
KU
64/*
65 * For request-based dm.
66 * One of these is allocated per request.
67 */
68struct dm_rq_target_io {
69 struct mapped_device *md;
70 struct dm_target *ti;
71 struct request *orig, clone;
72 int error;
73 union map_info info;
74};
75
76/*
77 * For request-based dm.
78 * One of these is allocated per bio.
79 */
80struct dm_rq_clone_bio_info {
81 struct bio *orig;
cec47e3d 82 struct dm_rq_target_io *tio;
8fbf26ad
KU
83};
84
1da177e4
LT
85union map_info *dm_get_mapinfo(struct bio *bio)
86{
17b2f66f 87 if (bio && bio->bi_private)
028867ac 88 return &((struct dm_target_io *)bio->bi_private)->info;
17b2f66f 89 return NULL;
1da177e4
LT
90}
91
cec47e3d
KU
92union map_info *dm_get_rq_mapinfo(struct request *rq)
93{
94 if (rq && rq->end_io_data)
95 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
96 return NULL;
97}
98EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
99
ba61fdd1
JM
100#define MINOR_ALLOCED ((void *)-1)
101
1da177e4
LT
102/*
103 * Bits for the md->flags field.
104 */
1eb787ec 105#define DMF_BLOCK_IO_FOR_SUSPEND 0
1da177e4 106#define DMF_SUSPENDED 1
aa8d7c2f 107#define DMF_FROZEN 2
fba9f90e 108#define DMF_FREEING 3
5c6bd75d 109#define DMF_DELETING 4
2e93ccc1 110#define DMF_NOFLUSH_SUSPENDING 5
1eb787ec 111#define DMF_QUEUE_IO_TO_THREAD 6
1da177e4 112
304f3f6a
MB
113/*
114 * Work processed by per-device workqueue.
115 */
1da177e4 116struct mapped_device {
2ca3310e 117 struct rw_semaphore io_lock;
e61290a4 118 struct mutex suspend_lock;
1da177e4
LT
119 rwlock_t map_lock;
120 atomic_t holders;
5c6bd75d 121 atomic_t open_count;
1da177e4
LT
122
123 unsigned long flags;
124
165125e1 125 struct request_queue *queue;
1da177e4 126 struct gendisk *disk;
7e51f257 127 char name[16];
1da177e4
LT
128
129 void *interface_ptr;
130
131 /*
132 * A list of ios that arrived while we were suspended.
133 */
316d315b 134 atomic_t pending[2];
1da177e4 135 wait_queue_head_t wait;
53d5914f 136 struct work_struct work;
74859364 137 struct bio_list deferred;
022c2611 138 spinlock_t deferred_lock;
1da177e4 139
af7e466a
MP
140 /*
141 * An error from the barrier request currently being processed.
142 */
143 int barrier_error;
144
304f3f6a
MB
145 /*
146 * Processing queue (flush/barriers)
147 */
148 struct workqueue_struct *wq;
149
1da177e4
LT
150 /*
151 * The current mapping.
152 */
153 struct dm_table *map;
154
155 /*
156 * io objects are allocated from here.
157 */
158 mempool_t *io_pool;
159 mempool_t *tio_pool;
160
9faf400f
SB
161 struct bio_set *bs;
162
1da177e4
LT
163 /*
164 * Event handling.
165 */
166 atomic_t event_nr;
167 wait_queue_head_t eventq;
7a8c3d3b
MA
168 atomic_t uevent_seq;
169 struct list_head uevent_list;
170 spinlock_t uevent_lock; /* Protect access to uevent_list */
1da177e4
LT
171
172 /*
173 * freeze/thaw support require holding onto a super block
174 */
175 struct super_block *frozen_sb;
db8fef4f 176 struct block_device *bdev;
3ac51e74
DW
177
178 /* forced geometry settings */
179 struct hd_geometry geometry;
784aae73 180
cec47e3d
KU
181 /* marker of flush suspend for request-based dm */
182 struct request suspend_rq;
183
184 /* For saving the address of __make_request for request based dm */
185 make_request_fn *saved_make_request_fn;
186
784aae73
MB
187 /* sysfs handle */
188 struct kobject kobj;
52b1fd5a
MP
189
190 /* zero-length barrier that will be cloned and submitted to targets */
191 struct bio barrier_bio;
1da177e4
LT
192};
193
e6ee8c0b
KU
194/*
195 * For mempools pre-allocation at the table loading time.
196 */
197struct dm_md_mempools {
198 mempool_t *io_pool;
199 mempool_t *tio_pool;
200 struct bio_set *bs;
201};
202
1da177e4 203#define MIN_IOS 256
e18b890b
CL
204static struct kmem_cache *_io_cache;
205static struct kmem_cache *_tio_cache;
8fbf26ad
KU
206static struct kmem_cache *_rq_tio_cache;
207static struct kmem_cache *_rq_bio_info_cache;
1da177e4 208
1da177e4
LT
209static int __init local_init(void)
210{
51157b4a 211 int r = -ENOMEM;
1da177e4 212
1da177e4 213 /* allocate a slab for the dm_ios */
028867ac 214 _io_cache = KMEM_CACHE(dm_io, 0);
1da177e4 215 if (!_io_cache)
51157b4a 216 return r;
1da177e4
LT
217
218 /* allocate a slab for the target ios */
028867ac 219 _tio_cache = KMEM_CACHE(dm_target_io, 0);
51157b4a
KU
220 if (!_tio_cache)
221 goto out_free_io_cache;
1da177e4 222
8fbf26ad
KU
223 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
224 if (!_rq_tio_cache)
225 goto out_free_tio_cache;
226
227 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
228 if (!_rq_bio_info_cache)
229 goto out_free_rq_tio_cache;
230
51e5b2bd 231 r = dm_uevent_init();
51157b4a 232 if (r)
8fbf26ad 233 goto out_free_rq_bio_info_cache;
51e5b2bd 234
1da177e4
LT
235 _major = major;
236 r = register_blkdev(_major, _name);
51157b4a
KU
237 if (r < 0)
238 goto out_uevent_exit;
1da177e4
LT
239
240 if (!_major)
241 _major = r;
242
243 return 0;
51157b4a
KU
244
245out_uevent_exit:
246 dm_uevent_exit();
8fbf26ad
KU
247out_free_rq_bio_info_cache:
248 kmem_cache_destroy(_rq_bio_info_cache);
249out_free_rq_tio_cache:
250 kmem_cache_destroy(_rq_tio_cache);
51157b4a
KU
251out_free_tio_cache:
252 kmem_cache_destroy(_tio_cache);
253out_free_io_cache:
254 kmem_cache_destroy(_io_cache);
255
256 return r;
1da177e4
LT
257}
258
259static void local_exit(void)
260{
8fbf26ad
KU
261 kmem_cache_destroy(_rq_bio_info_cache);
262 kmem_cache_destroy(_rq_tio_cache);
1da177e4
LT
263 kmem_cache_destroy(_tio_cache);
264 kmem_cache_destroy(_io_cache);
00d59405 265 unregister_blkdev(_major, _name);
51e5b2bd 266 dm_uevent_exit();
1da177e4
LT
267
268 _major = 0;
269
270 DMINFO("cleaned up");
271}
272
b9249e55 273static int (*_inits[])(void) __initdata = {
1da177e4
LT
274 local_init,
275 dm_target_init,
276 dm_linear_init,
277 dm_stripe_init,
952b3557 278 dm_io_init,
945fa4d2 279 dm_kcopyd_init,
1da177e4
LT
280 dm_interface_init,
281};
282
b9249e55 283static void (*_exits[])(void) = {
1da177e4
LT
284 local_exit,
285 dm_target_exit,
286 dm_linear_exit,
287 dm_stripe_exit,
952b3557 288 dm_io_exit,
945fa4d2 289 dm_kcopyd_exit,
1da177e4
LT
290 dm_interface_exit,
291};
292
293static int __init dm_init(void)
294{
295 const int count = ARRAY_SIZE(_inits);
296
297 int r, i;
298
299 for (i = 0; i < count; i++) {
300 r = _inits[i]();
301 if (r)
302 goto bad;
303 }
304
305 return 0;
306
307 bad:
308 while (i--)
309 _exits[i]();
310
311 return r;
312}
313
314static void __exit dm_exit(void)
315{
316 int i = ARRAY_SIZE(_exits);
317
318 while (i--)
319 _exits[i]();
320}
321
322/*
323 * Block device functions
324 */
fe5f9f2c 325static int dm_blk_open(struct block_device *bdev, fmode_t mode)
1da177e4
LT
326{
327 struct mapped_device *md;
328
fba9f90e
JM
329 spin_lock(&_minor_lock);
330
fe5f9f2c 331 md = bdev->bd_disk->private_data;
fba9f90e
JM
332 if (!md)
333 goto out;
334
5c6bd75d
AK
335 if (test_bit(DMF_FREEING, &md->flags) ||
336 test_bit(DMF_DELETING, &md->flags)) {
fba9f90e
JM
337 md = NULL;
338 goto out;
339 }
340
1da177e4 341 dm_get(md);
5c6bd75d 342 atomic_inc(&md->open_count);
fba9f90e
JM
343
344out:
345 spin_unlock(&_minor_lock);
346
347 return md ? 0 : -ENXIO;
1da177e4
LT
348}
349
fe5f9f2c 350static int dm_blk_close(struct gendisk *disk, fmode_t mode)
1da177e4 351{
fe5f9f2c 352 struct mapped_device *md = disk->private_data;
5c6bd75d 353 atomic_dec(&md->open_count);
1da177e4
LT
354 dm_put(md);
355 return 0;
356}
357
5c6bd75d
AK
358int dm_open_count(struct mapped_device *md)
359{
360 return atomic_read(&md->open_count);
361}
362
363/*
364 * Guarantees nothing is using the device before it's deleted.
365 */
366int dm_lock_for_deletion(struct mapped_device *md)
367{
368 int r = 0;
369
370 spin_lock(&_minor_lock);
371
372 if (dm_open_count(md))
373 r = -EBUSY;
374 else
375 set_bit(DMF_DELETING, &md->flags);
376
377 spin_unlock(&_minor_lock);
378
379 return r;
380}
381
3ac51e74
DW
382static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
383{
384 struct mapped_device *md = bdev->bd_disk->private_data;
385
386 return dm_get_geometry(md, geo);
387}
388
fe5f9f2c 389static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
aa129a22
MB
390 unsigned int cmd, unsigned long arg)
391{
fe5f9f2c
AV
392 struct mapped_device *md = bdev->bd_disk->private_data;
393 struct dm_table *map = dm_get_table(md);
aa129a22
MB
394 struct dm_target *tgt;
395 int r = -ENOTTY;
396
aa129a22
MB
397 if (!map || !dm_table_get_size(map))
398 goto out;
399
400 /* We only support devices that have a single target */
401 if (dm_table_get_num_targets(map) != 1)
402 goto out;
403
404 tgt = dm_table_get_target(map, 0);
405
406 if (dm_suspended(md)) {
407 r = -EAGAIN;
408 goto out;
409 }
410
411 if (tgt->type->ioctl)
647b3d00 412 r = tgt->type->ioctl(tgt, cmd, arg);
aa129a22
MB
413
414out:
415 dm_table_put(map);
416
aa129a22
MB
417 return r;
418}
419
028867ac 420static struct dm_io *alloc_io(struct mapped_device *md)
1da177e4
LT
421{
422 return mempool_alloc(md->io_pool, GFP_NOIO);
423}
424
028867ac 425static void free_io(struct mapped_device *md, struct dm_io *io)
1da177e4
LT
426{
427 mempool_free(io, md->io_pool);
428}
429
028867ac 430static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
1da177e4
LT
431{
432 mempool_free(tio, md->tio_pool);
433}
434
08885643
KU
435static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
436 gfp_t gfp_mask)
cec47e3d 437{
08885643 438 return mempool_alloc(md->tio_pool, gfp_mask);
cec47e3d
KU
439}
440
441static void free_rq_tio(struct dm_rq_target_io *tio)
442{
443 mempool_free(tio, tio->md->tio_pool);
444}
445
446static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
447{
448 return mempool_alloc(md->io_pool, GFP_ATOMIC);
449}
450
451static void free_bio_info(struct dm_rq_clone_bio_info *info)
452{
453 mempool_free(info, info->tio->md->io_pool);
454}
455
90abb8c4
KU
456static int md_in_flight(struct mapped_device *md)
457{
458 return atomic_read(&md->pending[READ]) +
459 atomic_read(&md->pending[WRITE]);
460}
461
3eaf840e
JNN
462static void start_io_acct(struct dm_io *io)
463{
464 struct mapped_device *md = io->md;
c9959059 465 int cpu;
316d315b 466 int rw = bio_data_dir(io->bio);
3eaf840e
JNN
467
468 io->start_time = jiffies;
469
074a7aca
TH
470 cpu = part_stat_lock();
471 part_round_stats(cpu, &dm_disk(md)->part0);
472 part_stat_unlock();
316d315b 473 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
3eaf840e
JNN
474}
475
d221d2e7 476static void end_io_acct(struct dm_io *io)
3eaf840e
JNN
477{
478 struct mapped_device *md = io->md;
479 struct bio *bio = io->bio;
480 unsigned long duration = jiffies - io->start_time;
c9959059 481 int pending, cpu;
3eaf840e
JNN
482 int rw = bio_data_dir(bio);
483
074a7aca
TH
484 cpu = part_stat_lock();
485 part_round_stats(cpu, &dm_disk(md)->part0);
486 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
487 part_stat_unlock();
3eaf840e 488
af7e466a
MP
489 /*
490 * After this is decremented the bio must not be touched if it is
491 * a barrier.
492 */
316d315b
NK
493 dm_disk(md)->part0.in_flight[rw] = pending =
494 atomic_dec_return(&md->pending[rw]);
495 pending += atomic_read(&md->pending[rw^0x1]);
3eaf840e 496
d221d2e7
MP
497 /* nudge anyone waiting on suspend queue */
498 if (!pending)
499 wake_up(&md->wait);
3eaf840e
JNN
500}
501
1da177e4
LT
502/*
503 * Add the bio to the list of deferred io.
504 */
92c63902 505static void queue_io(struct mapped_device *md, struct bio *bio)
1da177e4 506{
2ca3310e 507 down_write(&md->io_lock);
1da177e4 508
022c2611 509 spin_lock_irq(&md->deferred_lock);
1da177e4 510 bio_list_add(&md->deferred, bio);
022c2611 511 spin_unlock_irq(&md->deferred_lock);
1da177e4 512
92c63902
MP
513 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
514 queue_work(md->wq, &md->work);
515
2ca3310e 516 up_write(&md->io_lock);
1da177e4
LT
517}
518
519/*
520 * Everyone (including functions in this file), should use this
521 * function to access the md->map field, and make sure they call
522 * dm_table_put() when finished.
523 */
524struct dm_table *dm_get_table(struct mapped_device *md)
525{
526 struct dm_table *t;
523d9297 527 unsigned long flags;
1da177e4 528
523d9297 529 read_lock_irqsave(&md->map_lock, flags);
1da177e4
LT
530 t = md->map;
531 if (t)
532 dm_table_get(t);
523d9297 533 read_unlock_irqrestore(&md->map_lock, flags);
1da177e4
LT
534
535 return t;
536}
537
3ac51e74
DW
538/*
539 * Get the geometry associated with a dm device
540 */
541int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
542{
543 *geo = md->geometry;
544
545 return 0;
546}
547
548/*
549 * Set the geometry of a device.
550 */
551int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
552{
553 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
554
555 if (geo->start > sz) {
556 DMWARN("Start sector is beyond the geometry limits.");
557 return -EINVAL;
558 }
559
560 md->geometry = *geo;
561
562 return 0;
563}
564
1da177e4
LT
565/*-----------------------------------------------------------------
566 * CRUD START:
567 * A more elegant soln is in the works that uses the queue
568 * merge fn, unfortunately there are a couple of changes to
569 * the block layer that I want to make for this. So in the
570 * interests of getting something for people to use I give
571 * you this clearly demarcated crap.
572 *---------------------------------------------------------------*/
573
2e93ccc1
KU
574static int __noflush_suspending(struct mapped_device *md)
575{
576 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
577}
578
1da177e4
LT
579/*
580 * Decrements the number of outstanding ios that a bio has been
581 * cloned into, completing the original io if necc.
582 */
858119e1 583static void dec_pending(struct dm_io *io, int error)
1da177e4 584{
2e93ccc1 585 unsigned long flags;
b35f8caa
MB
586 int io_error;
587 struct bio *bio;
588 struct mapped_device *md = io->md;
2e93ccc1
KU
589
590 /* Push-back supersedes any I/O errors */
f88fb981
KU
591 if (unlikely(error)) {
592 spin_lock_irqsave(&io->endio_lock, flags);
593 if (!(io->error > 0 && __noflush_suspending(md)))
594 io->error = error;
595 spin_unlock_irqrestore(&io->endio_lock, flags);
596 }
1da177e4
LT
597
598 if (atomic_dec_and_test(&io->io_count)) {
2e93ccc1
KU
599 if (io->error == DM_ENDIO_REQUEUE) {
600 /*
601 * Target requested pushing back the I/O.
2e93ccc1 602 */
022c2611 603 spin_lock_irqsave(&md->deferred_lock, flags);
2761e95f 604 if (__noflush_suspending(md)) {
1f98a13f 605 if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER))
2761e95f
MP
606 bio_list_add_head(&md->deferred,
607 io->bio);
608 } else
2e93ccc1
KU
609 /* noflush suspend was interrupted. */
610 io->error = -EIO;
022c2611 611 spin_unlock_irqrestore(&md->deferred_lock, flags);
2e93ccc1
KU
612 }
613
b35f8caa
MB
614 io_error = io->error;
615 bio = io->bio;
2e93ccc1 616
1f98a13f 617 if (bio_rw_flagged(bio, BIO_RW_BARRIER)) {
af7e466a
MP
618 /*
619 * There can be just one barrier request so we use
620 * a per-device variable for error reporting.
621 * Note that you can't touch the bio after end_io_acct
622 */
fdb9572b 623 if (!md->barrier_error && io_error != -EOPNOTSUPP)
5aa2781d 624 md->barrier_error = io_error;
af7e466a
MP
625 end_io_acct(io);
626 } else {
627 end_io_acct(io);
b35f8caa 628
af7e466a
MP
629 if (io_error != DM_ENDIO_REQUEUE) {
630 trace_block_bio_complete(md->queue, bio);
2056a782 631
af7e466a
MP
632 bio_endio(bio, io_error);
633 }
b35f8caa 634 }
af7e466a
MP
635
636 free_io(md, io);
1da177e4
LT
637 }
638}
639
6712ecf8 640static void clone_endio(struct bio *bio, int error)
1da177e4
LT
641{
642 int r = 0;
028867ac 643 struct dm_target_io *tio = bio->bi_private;
b35f8caa 644 struct dm_io *io = tio->io;
9faf400f 645 struct mapped_device *md = tio->io->md;
1da177e4
LT
646 dm_endio_fn endio = tio->ti->type->end_io;
647
1da177e4
LT
648 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
649 error = -EIO;
650
651 if (endio) {
652 r = endio(tio->ti, bio, error, &tio->info);
2e93ccc1
KU
653 if (r < 0 || r == DM_ENDIO_REQUEUE)
654 /*
655 * error and requeue request are handled
656 * in dec_pending().
657 */
1da177e4 658 error = r;
45cbcd79
KU
659 else if (r == DM_ENDIO_INCOMPLETE)
660 /* The target will handle the io */
6712ecf8 661 return;
45cbcd79
KU
662 else if (r) {
663 DMWARN("unimplemented target endio return value: %d", r);
664 BUG();
665 }
1da177e4
LT
666 }
667
9faf400f
SB
668 /*
669 * Store md for cleanup instead of tio which is about to get freed.
670 */
671 bio->bi_private = md->bs;
672
9faf400f 673 free_tio(md, tio);
b35f8caa
MB
674 bio_put(bio);
675 dec_pending(io, error);
1da177e4
LT
676}
677
cec47e3d
KU
678/*
679 * Partial completion handling for request-based dm
680 */
681static void end_clone_bio(struct bio *clone, int error)
682{
683 struct dm_rq_clone_bio_info *info = clone->bi_private;
684 struct dm_rq_target_io *tio = info->tio;
685 struct bio *bio = info->orig;
686 unsigned int nr_bytes = info->orig->bi_size;
687
688 bio_put(clone);
689
690 if (tio->error)
691 /*
692 * An error has already been detected on the request.
693 * Once error occurred, just let clone->end_io() handle
694 * the remainder.
695 */
696 return;
697 else if (error) {
698 /*
699 * Don't notice the error to the upper layer yet.
700 * The error handling decision is made by the target driver,
701 * when the request is completed.
702 */
703 tio->error = error;
704 return;
705 }
706
707 /*
708 * I/O for the bio successfully completed.
709 * Notice the data completion to the upper layer.
710 */
711
712 /*
713 * bios are processed from the head of the list.
714 * So the completing bio should always be rq->bio.
715 * If it's not, something wrong is happening.
716 */
717 if (tio->orig->bio != bio)
718 DMERR("bio completion is going in the middle of the request");
719
720 /*
721 * Update the original request.
722 * Do not use blk_end_request() here, because it may complete
723 * the original request before the clone, and break the ordering.
724 */
725 blk_update_request(tio->orig, 0, nr_bytes);
726}
727
728/*
729 * Don't touch any member of the md after calling this function because
730 * the md may be freed in dm_put() at the end of this function.
731 * Or do dm_get() before calling this function and dm_put() later.
732 */
733static void rq_completed(struct mapped_device *md, int run_queue)
734{
735 int wakeup_waiters = 0;
736 struct request_queue *q = md->queue;
737 unsigned long flags;
738
739 spin_lock_irqsave(q->queue_lock, flags);
740 if (!queue_in_flight(q))
741 wakeup_waiters = 1;
742 spin_unlock_irqrestore(q->queue_lock, flags);
743
744 /* nudge anyone waiting on suspend queue */
745 if (wakeup_waiters)
746 wake_up(&md->wait);
747
748 if (run_queue)
749 blk_run_queue(q);
750
751 /*
752 * dm_put() must be at the end of this function. See the comment above
753 */
754 dm_put(md);
755}
756
a77e28c7
KU
757static void free_rq_clone(struct request *clone)
758{
759 struct dm_rq_target_io *tio = clone->end_io_data;
760
761 blk_rq_unprep_clone(clone);
762 free_rq_tio(tio);
763}
764
cec47e3d
KU
765static void dm_unprep_request(struct request *rq)
766{
767 struct request *clone = rq->special;
cec47e3d
KU
768
769 rq->special = NULL;
770 rq->cmd_flags &= ~REQ_DONTPREP;
771
a77e28c7 772 free_rq_clone(clone);
cec47e3d
KU
773}
774
775/*
776 * Requeue the original request of a clone.
777 */
778void dm_requeue_unmapped_request(struct request *clone)
779{
780 struct dm_rq_target_io *tio = clone->end_io_data;
781 struct mapped_device *md = tio->md;
782 struct request *rq = tio->orig;
783 struct request_queue *q = rq->q;
784 unsigned long flags;
785
786 dm_unprep_request(rq);
787
788 spin_lock_irqsave(q->queue_lock, flags);
789 if (elv_queue_empty(q))
790 blk_plug_device(q);
791 blk_requeue_request(q, rq);
792 spin_unlock_irqrestore(q->queue_lock, flags);
793
794 rq_completed(md, 0);
795}
796EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
797
798static void __stop_queue(struct request_queue *q)
799{
800 blk_stop_queue(q);
801}
802
803static void stop_queue(struct request_queue *q)
804{
805 unsigned long flags;
806
807 spin_lock_irqsave(q->queue_lock, flags);
808 __stop_queue(q);
809 spin_unlock_irqrestore(q->queue_lock, flags);
810}
811
812static void __start_queue(struct request_queue *q)
813{
814 if (blk_queue_stopped(q))
815 blk_start_queue(q);
816}
817
818static void start_queue(struct request_queue *q)
819{
820 unsigned long flags;
821
822 spin_lock_irqsave(q->queue_lock, flags);
823 __start_queue(q);
824 spin_unlock_irqrestore(q->queue_lock, flags);
825}
826
827/*
828 * Complete the clone and the original request.
829 * Must be called without queue lock.
830 */
831static void dm_end_request(struct request *clone, int error)
832{
833 struct dm_rq_target_io *tio = clone->end_io_data;
834 struct mapped_device *md = tio->md;
835 struct request *rq = tio->orig;
836
837 if (blk_pc_request(rq)) {
838 rq->errors = clone->errors;
839 rq->resid_len = clone->resid_len;
840
841 if (rq->sense)
842 /*
843 * We are using the sense buffer of the original
844 * request.
845 * So setting the length of the sense data is enough.
846 */
847 rq->sense_len = clone->sense_len;
848 }
849
a77e28c7 850 free_rq_clone(clone);
cec47e3d
KU
851
852 blk_end_request_all(rq, error);
853
854 rq_completed(md, 1);
855}
856
857/*
858 * Request completion handler for request-based dm
859 */
860static void dm_softirq_done(struct request *rq)
861{
862 struct request *clone = rq->completion_data;
863 struct dm_rq_target_io *tio = clone->end_io_data;
864 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
865 int error = tio->error;
866
867 if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io)
868 error = rq_end_io(tio->ti, clone, error, &tio->info);
869
870 if (error <= 0)
871 /* The target wants to complete the I/O */
872 dm_end_request(clone, error);
873 else if (error == DM_ENDIO_INCOMPLETE)
874 /* The target will handle the I/O */
875 return;
876 else if (error == DM_ENDIO_REQUEUE)
877 /* The target wants to requeue the I/O */
878 dm_requeue_unmapped_request(clone);
879 else {
880 DMWARN("unimplemented target endio return value: %d", error);
881 BUG();
882 }
883}
884
885/*
886 * Complete the clone and the original request with the error status
887 * through softirq context.
888 */
889static void dm_complete_request(struct request *clone, int error)
890{
891 struct dm_rq_target_io *tio = clone->end_io_data;
892 struct request *rq = tio->orig;
893
894 tio->error = error;
895 rq->completion_data = clone;
896 blk_complete_request(rq);
897}
898
899/*
900 * Complete the not-mapped clone and the original request with the error status
901 * through softirq context.
902 * Target's rq_end_io() function isn't called.
903 * This may be used when the target's map_rq() function fails.
904 */
905void dm_kill_unmapped_request(struct request *clone, int error)
906{
907 struct dm_rq_target_io *tio = clone->end_io_data;
908 struct request *rq = tio->orig;
909
910 rq->cmd_flags |= REQ_FAILED;
911 dm_complete_request(clone, error);
912}
913EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
914
915/*
916 * Called with the queue lock held
917 */
918static void end_clone_request(struct request *clone, int error)
919{
920 /*
921 * For just cleaning up the information of the queue in which
922 * the clone was dispatched.
923 * The clone is *NOT* freed actually here because it is alloced from
924 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
925 */
926 __blk_put_request(clone->q, clone);
927
928 /*
929 * Actual request completion is done in a softirq context which doesn't
930 * hold the queue lock. Otherwise, deadlock could occur because:
931 * - another request may be submitted by the upper level driver
932 * of the stacking during the completion
933 * - the submission which requires queue lock may be done
934 * against this queue
935 */
936 dm_complete_request(clone, error);
937}
938
1da177e4
LT
939static sector_t max_io_len(struct mapped_device *md,
940 sector_t sector, struct dm_target *ti)
941{
942 sector_t offset = sector - ti->begin;
943 sector_t len = ti->len - offset;
944
945 /*
946 * Does the target need to split even further ?
947 */
948 if (ti->split_io) {
949 sector_t boundary;
950 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
951 - offset;
952 if (len > boundary)
953 len = boundary;
954 }
955
956 return len;
957}
958
959static void __map_bio(struct dm_target *ti, struct bio *clone,
028867ac 960 struct dm_target_io *tio)
1da177e4
LT
961{
962 int r;
2056a782 963 sector_t sector;
9faf400f 964 struct mapped_device *md;
1da177e4 965
1da177e4
LT
966 clone->bi_end_io = clone_endio;
967 clone->bi_private = tio;
968
969 /*
970 * Map the clone. If r == 0 we don't need to do
971 * anything, the target has assumed ownership of
972 * this io.
973 */
974 atomic_inc(&tio->io->io_count);
2056a782 975 sector = clone->bi_sector;
1da177e4 976 r = ti->type->map(ti, clone, &tio->info);
45cbcd79 977 if (r == DM_MAPIO_REMAPPED) {
1da177e4 978 /* the bio has been remapped so dispatch it */
2056a782 979
5f3ea37c 980 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
22a7c31a 981 tio->io->bio->bi_bdev->bd_dev, sector);
2056a782 982
1da177e4 983 generic_make_request(clone);
2e93ccc1
KU
984 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
985 /* error the io and bail out, or requeue it if needed */
9faf400f
SB
986 md = tio->io->md;
987 dec_pending(tio->io, r);
988 /*
989 * Store bio_set for cleanup.
990 */
991 clone->bi_private = md->bs;
1da177e4 992 bio_put(clone);
9faf400f 993 free_tio(md, tio);
45cbcd79
KU
994 } else if (r) {
995 DMWARN("unimplemented target map return value: %d", r);
996 BUG();
1da177e4
LT
997 }
998}
999
1000struct clone_info {
1001 struct mapped_device *md;
1002 struct dm_table *map;
1003 struct bio *bio;
1004 struct dm_io *io;
1005 sector_t sector;
1006 sector_t sector_count;
1007 unsigned short idx;
1008};
1009
3676347a
PO
1010static void dm_bio_destructor(struct bio *bio)
1011{
9faf400f
SB
1012 struct bio_set *bs = bio->bi_private;
1013
1014 bio_free(bio, bs);
3676347a
PO
1015}
1016
1da177e4
LT
1017/*
1018 * Creates a little bio that is just does part of a bvec.
1019 */
1020static struct bio *split_bvec(struct bio *bio, sector_t sector,
1021 unsigned short idx, unsigned int offset,
9faf400f 1022 unsigned int len, struct bio_set *bs)
1da177e4
LT
1023{
1024 struct bio *clone;
1025 struct bio_vec *bv = bio->bi_io_vec + idx;
1026
9faf400f 1027 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
3676347a 1028 clone->bi_destructor = dm_bio_destructor;
1da177e4
LT
1029 *clone->bi_io_vec = *bv;
1030
1031 clone->bi_sector = sector;
1032 clone->bi_bdev = bio->bi_bdev;
af7e466a 1033 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1da177e4
LT
1034 clone->bi_vcnt = 1;
1035 clone->bi_size = to_bytes(len);
1036 clone->bi_io_vec->bv_offset = offset;
1037 clone->bi_io_vec->bv_len = clone->bi_size;
f3e1d26e 1038 clone->bi_flags |= 1 << BIO_CLONED;
1da177e4 1039
9c47008d 1040 if (bio_integrity(bio)) {
7878cba9 1041 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
9c47008d
MP
1042 bio_integrity_trim(clone,
1043 bio_sector_offset(bio, idx, offset), len);
1044 }
1045
1da177e4
LT
1046 return clone;
1047}
1048
1049/*
1050 * Creates a bio that consists of range of complete bvecs.
1051 */
1052static struct bio *clone_bio(struct bio *bio, sector_t sector,
1053 unsigned short idx, unsigned short bv_count,
9faf400f 1054 unsigned int len, struct bio_set *bs)
1da177e4
LT
1055{
1056 struct bio *clone;
1057
9faf400f
SB
1058 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1059 __bio_clone(clone, bio);
af7e466a 1060 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
9faf400f 1061 clone->bi_destructor = dm_bio_destructor;
1da177e4
LT
1062 clone->bi_sector = sector;
1063 clone->bi_idx = idx;
1064 clone->bi_vcnt = idx + bv_count;
1065 clone->bi_size = to_bytes(len);
1066 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1067
9c47008d 1068 if (bio_integrity(bio)) {
7878cba9 1069 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
9c47008d
MP
1070
1071 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1072 bio_integrity_trim(clone,
1073 bio_sector_offset(bio, idx, 0), len);
1074 }
1075
1da177e4
LT
1076 return clone;
1077}
1078
9015df24
AK
1079static struct dm_target_io *alloc_tio(struct clone_info *ci,
1080 struct dm_target *ti)
f9ab94ce 1081{
9015df24 1082 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
f9ab94ce
MP
1083
1084 tio->io = ci->io;
1085 tio->ti = ti;
f9ab94ce 1086 memset(&tio->info, 0, sizeof(tio->info));
9015df24
AK
1087
1088 return tio;
1089}
1090
1091static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1092 unsigned flush_nr)
1093{
1094 struct dm_target_io *tio = alloc_tio(ci, ti);
1095 struct bio *clone;
1096
f9ab94ce
MP
1097 tio->info.flush_request = flush_nr;
1098
1099 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1100 __bio_clone(clone, ci->bio);
1101 clone->bi_destructor = dm_bio_destructor;
1102
1103 __map_bio(ti, clone, tio);
1104}
1105
1106static int __clone_and_map_empty_barrier(struct clone_info *ci)
1107{
1108 unsigned target_nr = 0, flush_nr;
1109 struct dm_target *ti;
1110
1111 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1112 for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1113 flush_nr++)
1114 __flush_target(ci, ti, flush_nr);
1115
1116 ci->sector_count = 0;
1117
1118 return 0;
1119}
1120
512875bd 1121static int __clone_and_map(struct clone_info *ci)
1da177e4
LT
1122{
1123 struct bio *clone, *bio = ci->bio;
512875bd
JN
1124 struct dm_target *ti;
1125 sector_t len = 0, max;
028867ac 1126 struct dm_target_io *tio;
1da177e4 1127
f9ab94ce
MP
1128 if (unlikely(bio_empty_barrier(bio)))
1129 return __clone_and_map_empty_barrier(ci);
1130
512875bd
JN
1131 ti = dm_table_find_target(ci->map, ci->sector);
1132 if (!dm_target_is_valid(ti))
1133 return -EIO;
1134
1135 max = max_io_len(ci->md, ci->sector, ti);
1136
1da177e4
LT
1137 /*
1138 * Allocate a target io object.
1139 */
9015df24 1140 tio = alloc_tio(ci, ti);
1da177e4
LT
1141
1142 if (ci->sector_count <= max) {
1143 /*
1144 * Optimise for the simple case where we can do all of
1145 * the remaining io with a single clone.
1146 */
1147 clone = clone_bio(bio, ci->sector, ci->idx,
9faf400f
SB
1148 bio->bi_vcnt - ci->idx, ci->sector_count,
1149 ci->md->bs);
1da177e4
LT
1150 __map_bio(ti, clone, tio);
1151 ci->sector_count = 0;
1152
1153 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1154 /*
1155 * There are some bvecs that don't span targets.
1156 * Do as many of these as possible.
1157 */
1158 int i;
1159 sector_t remaining = max;
1160 sector_t bv_len;
1161
1162 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1163 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1164
1165 if (bv_len > remaining)
1166 break;
1167
1168 remaining -= bv_len;
1169 len += bv_len;
1170 }
1171
9faf400f
SB
1172 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1173 ci->md->bs);
1da177e4
LT
1174 __map_bio(ti, clone, tio);
1175
1176 ci->sector += len;
1177 ci->sector_count -= len;
1178 ci->idx = i;
1179
1180 } else {
1181 /*
d2044a94 1182 * Handle a bvec that must be split between two or more targets.
1da177e4
LT
1183 */
1184 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
d2044a94
AK
1185 sector_t remaining = to_sector(bv->bv_len);
1186 unsigned int offset = 0;
1da177e4 1187
d2044a94
AK
1188 do {
1189 if (offset) {
1190 ti = dm_table_find_target(ci->map, ci->sector);
512875bd
JN
1191 if (!dm_target_is_valid(ti))
1192 return -EIO;
1193
d2044a94 1194 max = max_io_len(ci->md, ci->sector, ti);
1da177e4 1195
9015df24 1196 tio = alloc_tio(ci, ti);
d2044a94
AK
1197 }
1198
1199 len = min(remaining, max);
1200
1201 clone = split_bvec(bio, ci->sector, ci->idx,
9faf400f
SB
1202 bv->bv_offset + offset, len,
1203 ci->md->bs);
d2044a94
AK
1204
1205 __map_bio(ti, clone, tio);
1206
1207 ci->sector += len;
1208 ci->sector_count -= len;
1209 offset += to_bytes(len);
1210 } while (remaining -= len);
1da177e4 1211
1da177e4
LT
1212 ci->idx++;
1213 }
512875bd
JN
1214
1215 return 0;
1da177e4
LT
1216}
1217
1218/*
8a53c28d 1219 * Split the bio into several clones and submit it to targets.
1da177e4 1220 */
f0b9a450 1221static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1da177e4
LT
1222{
1223 struct clone_info ci;
512875bd 1224 int error = 0;
1da177e4
LT
1225
1226 ci.map = dm_get_table(md);
f0b9a450 1227 if (unlikely(!ci.map)) {
1f98a13f 1228 if (!bio_rw_flagged(bio, BIO_RW_BARRIER))
af7e466a
MP
1229 bio_io_error(bio);
1230 else
5aa2781d
MP
1231 if (!md->barrier_error)
1232 md->barrier_error = -EIO;
f0b9a450
MP
1233 return;
1234 }
692d0eb9 1235
1da177e4
LT
1236 ci.md = md;
1237 ci.bio = bio;
1238 ci.io = alloc_io(md);
1239 ci.io->error = 0;
1240 atomic_set(&ci.io->io_count, 1);
1241 ci.io->bio = bio;
1242 ci.io->md = md;
f88fb981 1243 spin_lock_init(&ci.io->endio_lock);
1da177e4
LT
1244 ci.sector = bio->bi_sector;
1245 ci.sector_count = bio_sectors(bio);
f9ab94ce
MP
1246 if (unlikely(bio_empty_barrier(bio)))
1247 ci.sector_count = 1;
1da177e4
LT
1248 ci.idx = bio->bi_idx;
1249
3eaf840e 1250 start_io_acct(ci.io);
512875bd
JN
1251 while (ci.sector_count && !error)
1252 error = __clone_and_map(&ci);
1da177e4
LT
1253
1254 /* drop the extra reference count */
512875bd 1255 dec_pending(ci.io, error);
1da177e4
LT
1256 dm_table_put(ci.map);
1257}
1258/*-----------------------------------------------------------------
1259 * CRUD END
1260 *---------------------------------------------------------------*/
1261
f6fccb12
MB
1262static int dm_merge_bvec(struct request_queue *q,
1263 struct bvec_merge_data *bvm,
1264 struct bio_vec *biovec)
1265{
1266 struct mapped_device *md = q->queuedata;
1267 struct dm_table *map = dm_get_table(md);
1268 struct dm_target *ti;
1269 sector_t max_sectors;
5037108a 1270 int max_size = 0;
f6fccb12
MB
1271
1272 if (unlikely(!map))
5037108a 1273 goto out;
f6fccb12
MB
1274
1275 ti = dm_table_find_target(map, bvm->bi_sector);
b01cd5ac
MP
1276 if (!dm_target_is_valid(ti))
1277 goto out_table;
f6fccb12
MB
1278
1279 /*
1280 * Find maximum amount of I/O that won't need splitting
1281 */
1282 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1283 (sector_t) BIO_MAX_SECTORS);
1284 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1285 if (max_size < 0)
1286 max_size = 0;
1287
1288 /*
1289 * merge_bvec_fn() returns number of bytes
1290 * it can accept at this offset
1291 * max is precomputed maximal io size
1292 */
1293 if (max_size && ti->type->merge)
1294 max_size = ti->type->merge(ti, bvm, biovec, max_size);
8cbeb67a
MP
1295 /*
1296 * If the target doesn't support merge method and some of the devices
1297 * provided their merge_bvec method (we know this by looking at
1298 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1299 * entries. So always set max_size to 0, and the code below allows
1300 * just one page.
1301 */
1302 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1303
1304 max_size = 0;
f6fccb12 1305
b01cd5ac 1306out_table:
5037108a
MP
1307 dm_table_put(map);
1308
1309out:
f6fccb12
MB
1310 /*
1311 * Always allow an entire first page
1312 */
1313 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1314 max_size = biovec->bv_len;
1315
f6fccb12
MB
1316 return max_size;
1317}
1318
1da177e4
LT
1319/*
1320 * The request function that just remaps the bio built up by
1321 * dm_merge_bvec.
1322 */
cec47e3d 1323static int _dm_request(struct request_queue *q, struct bio *bio)
1da177e4 1324{
12f03a49 1325 int rw = bio_data_dir(bio);
1da177e4 1326 struct mapped_device *md = q->queuedata;
c9959059 1327 int cpu;
1da177e4 1328
2ca3310e 1329 down_read(&md->io_lock);
1da177e4 1330
074a7aca
TH
1331 cpu = part_stat_lock();
1332 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1333 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1334 part_stat_unlock();
12f03a49 1335
1da177e4 1336 /*
1eb787ec
AK
1337 * If we're suspended or the thread is processing barriers
1338 * we have to queue this io for later.
1da177e4 1339 */
af7e466a 1340 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1f98a13f 1341 unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
2ca3310e 1342 up_read(&md->io_lock);
1da177e4 1343
54d9a1b4
AK
1344 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1345 bio_rw(bio) == READA) {
1346 bio_io_error(bio);
1347 return 0;
1348 }
1da177e4 1349
92c63902 1350 queue_io(md, bio);
1da177e4 1351
92c63902 1352 return 0;
1da177e4
LT
1353 }
1354
f0b9a450 1355 __split_and_process_bio(md, bio);
2ca3310e 1356 up_read(&md->io_lock);
f0b9a450 1357 return 0;
1da177e4
LT
1358}
1359
cec47e3d
KU
1360static int dm_make_request(struct request_queue *q, struct bio *bio)
1361{
1362 struct mapped_device *md = q->queuedata;
1363
1f98a13f 1364 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
cec47e3d
KU
1365 bio_endio(bio, -EOPNOTSUPP);
1366 return 0;
1367 }
1368
1369 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1370}
1371
1372static int dm_request_based(struct mapped_device *md)
1373{
1374 return blk_queue_stackable(md->queue);
1375}
1376
1377static int dm_request(struct request_queue *q, struct bio *bio)
1378{
1379 struct mapped_device *md = q->queuedata;
1380
1381 if (dm_request_based(md))
1382 return dm_make_request(q, bio);
1383
1384 return _dm_request(q, bio);
1385}
1386
1387void dm_dispatch_request(struct request *rq)
1388{
1389 int r;
1390
1391 if (blk_queue_io_stat(rq->q))
1392 rq->cmd_flags |= REQ_IO_STAT;
1393
1394 rq->start_time = jiffies;
1395 r = blk_insert_cloned_request(rq->q, rq);
1396 if (r)
1397 dm_complete_request(rq, r);
1398}
1399EXPORT_SYMBOL_GPL(dm_dispatch_request);
1400
1401static void dm_rq_bio_destructor(struct bio *bio)
1402{
1403 struct dm_rq_clone_bio_info *info = bio->bi_private;
1404 struct mapped_device *md = info->tio->md;
1405
1406 free_bio_info(info);
1407 bio_free(bio, md->bs);
1408}
1409
1410static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1411 void *data)
1412{
1413 struct dm_rq_target_io *tio = data;
1414 struct mapped_device *md = tio->md;
1415 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1416
1417 if (!info)
1418 return -ENOMEM;
1419
1420 info->orig = bio_orig;
1421 info->tio = tio;
1422 bio->bi_end_io = end_clone_bio;
1423 bio->bi_private = info;
1424 bio->bi_destructor = dm_rq_bio_destructor;
1425
1426 return 0;
1427}
1428
1429static int setup_clone(struct request *clone, struct request *rq,
1430 struct dm_rq_target_io *tio)
1431{
1432 int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1433 dm_rq_bio_constructor, tio);
1434
1435 if (r)
1436 return r;
1437
1438 clone->cmd = rq->cmd;
1439 clone->cmd_len = rq->cmd_len;
1440 clone->sense = rq->sense;
1441 clone->buffer = rq->buffer;
1442 clone->end_io = end_clone_request;
1443 clone->end_io_data = tio;
1444
1445 return 0;
1446}
1447
6facdaff
KU
1448static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1449 gfp_t gfp_mask)
1450{
1451 struct request *clone;
1452 struct dm_rq_target_io *tio;
1453
1454 tio = alloc_rq_tio(md, gfp_mask);
1455 if (!tio)
1456 return NULL;
1457
1458 tio->md = md;
1459 tio->ti = NULL;
1460 tio->orig = rq;
1461 tio->error = 0;
1462 memset(&tio->info, 0, sizeof(tio->info));
1463
1464 clone = &tio->clone;
1465 if (setup_clone(clone, rq, tio)) {
1466 /* -ENOMEM */
1467 free_rq_tio(tio);
1468 return NULL;
1469 }
1470
1471 return clone;
1472}
1473
cec47e3d
KU
1474static int dm_rq_flush_suspending(struct mapped_device *md)
1475{
1476 return !md->suspend_rq.special;
1477}
1478
1479/*
1480 * Called with the queue lock held.
1481 */
1482static int dm_prep_fn(struct request_queue *q, struct request *rq)
1483{
1484 struct mapped_device *md = q->queuedata;
cec47e3d
KU
1485 struct request *clone;
1486
1487 if (unlikely(rq == &md->suspend_rq)) {
1488 if (dm_rq_flush_suspending(md))
1489 return BLKPREP_OK;
1490 else
1491 /* The flush suspend was interrupted */
1492 return BLKPREP_KILL;
1493 }
1494
1495 if (unlikely(rq->special)) {
1496 DMWARN("Already has something in rq->special.");
1497 return BLKPREP_KILL;
1498 }
1499
6facdaff
KU
1500 clone = clone_rq(rq, md, GFP_ATOMIC);
1501 if (!clone)
cec47e3d 1502 return BLKPREP_DEFER;
cec47e3d
KU
1503
1504 rq->special = clone;
1505 rq->cmd_flags |= REQ_DONTPREP;
1506
1507 return BLKPREP_OK;
1508}
1509
598de409 1510static void map_request(struct dm_target *ti, struct request *clone,
cec47e3d
KU
1511 struct mapped_device *md)
1512{
1513 int r;
cec47e3d
KU
1514 struct dm_rq_target_io *tio = clone->end_io_data;
1515
1516 /*
1517 * Hold the md reference here for the in-flight I/O.
1518 * We can't rely on the reference count by device opener,
1519 * because the device may be closed during the request completion
1520 * when all bios are completed.
1521 * See the comment in rq_completed() too.
1522 */
1523 dm_get(md);
1524
1525 tio->ti = ti;
1526 r = ti->type->map_rq(ti, clone, &tio->info);
1527 switch (r) {
1528 case DM_MAPIO_SUBMITTED:
1529 /* The target has taken the I/O to submit by itself later */
1530 break;
1531 case DM_MAPIO_REMAPPED:
1532 /* The target has remapped the I/O so dispatch it */
1533 dm_dispatch_request(clone);
1534 break;
1535 case DM_MAPIO_REQUEUE:
1536 /* The target wants to requeue the I/O */
1537 dm_requeue_unmapped_request(clone);
1538 break;
1539 default:
1540 if (r > 0) {
1541 DMWARN("unimplemented target map return value: %d", r);
1542 BUG();
1543 }
1544
1545 /* The target wants to complete the I/O */
1546 dm_kill_unmapped_request(clone, r);
1547 break;
1548 }
1549}
1550
1551/*
1552 * q->request_fn for request-based dm.
1553 * Called with the queue lock held.
1554 */
1555static void dm_request_fn(struct request_queue *q)
1556{
1557 struct mapped_device *md = q->queuedata;
1558 struct dm_table *map = dm_get_table(md);
1559 struct dm_target *ti;
1560 struct request *rq;
1561
1562 /*
1563 * For noflush suspend, check blk_queue_stopped() to immediately
1564 * quit I/O dispatching.
1565 */
1566 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1567 rq = blk_peek_request(q);
1568 if (!rq)
1569 goto plug_and_out;
1570
1571 if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */
1572 if (queue_in_flight(q))
1573 /* Not quiet yet. Wait more */
1574 goto plug_and_out;
1575
1576 /* This device should be quiet now */
1577 __stop_queue(q);
1578 blk_start_request(rq);
1579 __blk_end_request_all(rq, 0);
1580 wake_up(&md->wait);
1581 goto out;
1582 }
1583
1584 ti = dm_table_find_target(map, blk_rq_pos(rq));
1585 if (ti->type->busy && ti->type->busy(ti))
1586 goto plug_and_out;
1587
1588 blk_start_request(rq);
1589 spin_unlock(q->queue_lock);
598de409 1590 map_request(ti, rq->special, md);
cec47e3d
KU
1591 spin_lock_irq(q->queue_lock);
1592 }
1593
1594 goto out;
1595
1596plug_and_out:
1597 if (!elv_queue_empty(q))
1598 /* Some requests still remain, retry later */
1599 blk_plug_device(q);
1600
1601out:
1602 dm_table_put(map);
1603
1604 return;
1605}
1606
1607int dm_underlying_device_busy(struct request_queue *q)
1608{
1609 return blk_lld_busy(q);
1610}
1611EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1612
1613static int dm_lld_busy(struct request_queue *q)
1614{
1615 int r;
1616 struct mapped_device *md = q->queuedata;
1617 struct dm_table *map = dm_get_table(md);
1618
1619 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1620 r = 1;
1621 else
1622 r = dm_table_any_busy_target(map);
1623
1624 dm_table_put(map);
1625
1626 return r;
1627}
1628
165125e1 1629static void dm_unplug_all(struct request_queue *q)
1da177e4
LT
1630{
1631 struct mapped_device *md = q->queuedata;
1632 struct dm_table *map = dm_get_table(md);
1633
1634 if (map) {
cec47e3d
KU
1635 if (dm_request_based(md))
1636 generic_unplug_device(q);
1637
1da177e4
LT
1638 dm_table_unplug_all(map);
1639 dm_table_put(map);
1640 }
1641}
1642
1643static int dm_any_congested(void *congested_data, int bdi_bits)
1644{
8a57dfc6
CS
1645 int r = bdi_bits;
1646 struct mapped_device *md = congested_data;
1647 struct dm_table *map;
1da177e4 1648
1eb787ec 1649 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
8a57dfc6
CS
1650 map = dm_get_table(md);
1651 if (map) {
cec47e3d
KU
1652 /*
1653 * Request-based dm cares about only own queue for
1654 * the query about congestion status of request_queue
1655 */
1656 if (dm_request_based(md))
1657 r = md->queue->backing_dev_info.state &
1658 bdi_bits;
1659 else
1660 r = dm_table_any_congested(map, bdi_bits);
1661
8a57dfc6
CS
1662 dm_table_put(map);
1663 }
1664 }
1665
1da177e4
LT
1666 return r;
1667}
1668
1669/*-----------------------------------------------------------------
1670 * An IDR is used to keep track of allocated minor numbers.
1671 *---------------------------------------------------------------*/
1da177e4
LT
1672static DEFINE_IDR(_minor_idr);
1673
2b06cfff 1674static void free_minor(int minor)
1da177e4 1675{
f32c10b0 1676 spin_lock(&_minor_lock);
1da177e4 1677 idr_remove(&_minor_idr, minor);
f32c10b0 1678 spin_unlock(&_minor_lock);
1da177e4
LT
1679}
1680
1681/*
1682 * See if the device with a specific minor # is free.
1683 */
cf13ab8e 1684static int specific_minor(int minor)
1da177e4
LT
1685{
1686 int r, m;
1687
1688 if (minor >= (1 << MINORBITS))
1689 return -EINVAL;
1690
62f75c2f
JM
1691 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1692 if (!r)
1693 return -ENOMEM;
1694
f32c10b0 1695 spin_lock(&_minor_lock);
1da177e4
LT
1696
1697 if (idr_find(&_minor_idr, minor)) {
1698 r = -EBUSY;
1699 goto out;
1700 }
1701
ba61fdd1 1702 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
62f75c2f 1703 if (r)
1da177e4 1704 goto out;
1da177e4
LT
1705
1706 if (m != minor) {
1707 idr_remove(&_minor_idr, m);
1708 r = -EBUSY;
1709 goto out;
1710 }
1711
1712out:
f32c10b0 1713 spin_unlock(&_minor_lock);
1da177e4
LT
1714 return r;
1715}
1716
cf13ab8e 1717static int next_free_minor(int *minor)
1da177e4 1718{
2b06cfff 1719 int r, m;
1da177e4 1720
1da177e4 1721 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
62f75c2f
JM
1722 if (!r)
1723 return -ENOMEM;
1724
f32c10b0 1725 spin_lock(&_minor_lock);
1da177e4 1726
ba61fdd1 1727 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
cf13ab8e 1728 if (r)
1da177e4 1729 goto out;
1da177e4
LT
1730
1731 if (m >= (1 << MINORBITS)) {
1732 idr_remove(&_minor_idr, m);
1733 r = -ENOSPC;
1734 goto out;
1735 }
1736
1737 *minor = m;
1738
1739out:
f32c10b0 1740 spin_unlock(&_minor_lock);
1da177e4
LT
1741 return r;
1742}
1743
83d5cde4 1744static const struct block_device_operations dm_blk_dops;
1da177e4 1745
53d5914f
MP
1746static void dm_wq_work(struct work_struct *work);
1747
1da177e4
LT
1748/*
1749 * Allocate and initialise a blank device with a given minor.
1750 */
2b06cfff 1751static struct mapped_device *alloc_dev(int minor)
1da177e4
LT
1752{
1753 int r;
cf13ab8e 1754 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
ba61fdd1 1755 void *old_md;
1da177e4
LT
1756
1757 if (!md) {
1758 DMWARN("unable to allocate device, out of memory.");
1759 return NULL;
1760 }
1761
10da4f79 1762 if (!try_module_get(THIS_MODULE))
6ed7ade8 1763 goto bad_module_get;
10da4f79 1764
1da177e4 1765 /* get a minor number for the dev */
2b06cfff 1766 if (minor == DM_ANY_MINOR)
cf13ab8e 1767 r = next_free_minor(&minor);
2b06cfff 1768 else
cf13ab8e 1769 r = specific_minor(minor);
1da177e4 1770 if (r < 0)
6ed7ade8 1771 goto bad_minor;
1da177e4 1772
2ca3310e 1773 init_rwsem(&md->io_lock);
e61290a4 1774 mutex_init(&md->suspend_lock);
022c2611 1775 spin_lock_init(&md->deferred_lock);
1da177e4
LT
1776 rwlock_init(&md->map_lock);
1777 atomic_set(&md->holders, 1);
5c6bd75d 1778 atomic_set(&md->open_count, 0);
1da177e4 1779 atomic_set(&md->event_nr, 0);
7a8c3d3b
MA
1780 atomic_set(&md->uevent_seq, 0);
1781 INIT_LIST_HEAD(&md->uevent_list);
1782 spin_lock_init(&md->uevent_lock);
1da177e4 1783
e6ee8c0b 1784 md->queue = blk_init_queue(dm_request_fn, NULL);
1da177e4 1785 if (!md->queue)
6ed7ade8 1786 goto bad_queue;
1da177e4 1787
e6ee8c0b
KU
1788 /*
1789 * Request-based dm devices cannot be stacked on top of bio-based dm
1790 * devices. The type of this dm device has not been decided yet,
1791 * although we initialized the queue using blk_init_queue().
1792 * The type is decided at the first table loading time.
1793 * To prevent problematic device stacking, clear the queue flag
1794 * for request stacking support until then.
1795 *
1796 * This queue is new, so no concurrency on the queue_flags.
1797 */
1798 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1799 md->saved_make_request_fn = md->queue->make_request_fn;
1da177e4
LT
1800 md->queue->queuedata = md;
1801 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1802 md->queue->backing_dev_info.congested_data = md;
1803 blk_queue_make_request(md->queue, dm_request);
daef265f 1804 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1da177e4 1805 md->queue->unplug_fn = dm_unplug_all;
f6fccb12 1806 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
e6ee8c0b
KU
1807 blk_queue_softirq_done(md->queue, dm_softirq_done);
1808 blk_queue_prep_rq(md->queue, dm_prep_fn);
1809 blk_queue_lld_busy(md->queue, dm_lld_busy);
9faf400f 1810
1da177e4
LT
1811 md->disk = alloc_disk(1);
1812 if (!md->disk)
6ed7ade8 1813 goto bad_disk;
1da177e4 1814
316d315b
NK
1815 atomic_set(&md->pending[0], 0);
1816 atomic_set(&md->pending[1], 0);
f0b04115 1817 init_waitqueue_head(&md->wait);
53d5914f 1818 INIT_WORK(&md->work, dm_wq_work);
f0b04115
JM
1819 init_waitqueue_head(&md->eventq);
1820
1da177e4
LT
1821 md->disk->major = _major;
1822 md->disk->first_minor = minor;
1823 md->disk->fops = &dm_blk_dops;
1824 md->disk->queue = md->queue;
1825 md->disk->private_data = md;
1826 sprintf(md->disk->disk_name, "dm-%d", minor);
1827 add_disk(md->disk);
7e51f257 1828 format_dev_t(md->name, MKDEV(_major, minor));
1da177e4 1829
304f3f6a
MB
1830 md->wq = create_singlethread_workqueue("kdmflush");
1831 if (!md->wq)
1832 goto bad_thread;
1833
32a926da
MP
1834 md->bdev = bdget_disk(md->disk, 0);
1835 if (!md->bdev)
1836 goto bad_bdev;
1837
ba61fdd1 1838 /* Populate the mapping, nobody knows we exist yet */
f32c10b0 1839 spin_lock(&_minor_lock);
ba61fdd1 1840 old_md = idr_replace(&_minor_idr, md, minor);
f32c10b0 1841 spin_unlock(&_minor_lock);
ba61fdd1
JM
1842
1843 BUG_ON(old_md != MINOR_ALLOCED);
1844
1da177e4
LT
1845 return md;
1846
32a926da
MP
1847bad_bdev:
1848 destroy_workqueue(md->wq);
304f3f6a 1849bad_thread:
03022c54 1850 del_gendisk(md->disk);
304f3f6a 1851 put_disk(md->disk);
6ed7ade8 1852bad_disk:
1312f40e 1853 blk_cleanup_queue(md->queue);
6ed7ade8 1854bad_queue:
1da177e4 1855 free_minor(minor);
6ed7ade8 1856bad_minor:
10da4f79 1857 module_put(THIS_MODULE);
6ed7ade8 1858bad_module_get:
1da177e4
LT
1859 kfree(md);
1860 return NULL;
1861}
1862
ae9da83f
JN
1863static void unlock_fs(struct mapped_device *md);
1864
1da177e4
LT
1865static void free_dev(struct mapped_device *md)
1866{
f331c029 1867 int minor = MINOR(disk_devt(md->disk));
63d94e48 1868
32a926da
MP
1869 unlock_fs(md);
1870 bdput(md->bdev);
304f3f6a 1871 destroy_workqueue(md->wq);
e6ee8c0b
KU
1872 if (md->tio_pool)
1873 mempool_destroy(md->tio_pool);
1874 if (md->io_pool)
1875 mempool_destroy(md->io_pool);
1876 if (md->bs)
1877 bioset_free(md->bs);
9c47008d 1878 blk_integrity_unregister(md->disk);
1da177e4 1879 del_gendisk(md->disk);
63d94e48 1880 free_minor(minor);
fba9f90e
JM
1881
1882 spin_lock(&_minor_lock);
1883 md->disk->private_data = NULL;
1884 spin_unlock(&_minor_lock);
1885
1da177e4 1886 put_disk(md->disk);
1312f40e 1887 blk_cleanup_queue(md->queue);
10da4f79 1888 module_put(THIS_MODULE);
1da177e4
LT
1889 kfree(md);
1890}
1891
e6ee8c0b
KU
1892static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1893{
1894 struct dm_md_mempools *p;
1895
1896 if (md->io_pool && md->tio_pool && md->bs)
1897 /* the md already has necessary mempools */
1898 goto out;
1899
1900 p = dm_table_get_md_mempools(t);
1901 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1902
1903 md->io_pool = p->io_pool;
1904 p->io_pool = NULL;
1905 md->tio_pool = p->tio_pool;
1906 p->tio_pool = NULL;
1907 md->bs = p->bs;
1908 p->bs = NULL;
1909
1910out:
1911 /* mempool bind completed, now no need any mempools in the table */
1912 dm_table_free_md_mempools(t);
1913}
1914
1da177e4
LT
1915/*
1916 * Bind a table to the device.
1917 */
1918static void event_callback(void *context)
1919{
7a8c3d3b
MA
1920 unsigned long flags;
1921 LIST_HEAD(uevents);
1da177e4
LT
1922 struct mapped_device *md = (struct mapped_device *) context;
1923
7a8c3d3b
MA
1924 spin_lock_irqsave(&md->uevent_lock, flags);
1925 list_splice_init(&md->uevent_list, &uevents);
1926 spin_unlock_irqrestore(&md->uevent_lock, flags);
1927
ed9e1982 1928 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
7a8c3d3b 1929
1da177e4
LT
1930 atomic_inc(&md->event_nr);
1931 wake_up(&md->eventq);
1932}
1933
4e90188b 1934static void __set_size(struct mapped_device *md, sector_t size)
1da177e4 1935{
4e90188b 1936 set_capacity(md->disk, size);
1da177e4 1937
db8fef4f
MP
1938 mutex_lock(&md->bdev->bd_inode->i_mutex);
1939 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1940 mutex_unlock(&md->bdev->bd_inode->i_mutex);
1da177e4
LT
1941}
1942
754c5fc7
MS
1943static int __bind(struct mapped_device *md, struct dm_table *t,
1944 struct queue_limits *limits)
1da177e4 1945{
165125e1 1946 struct request_queue *q = md->queue;
1da177e4 1947 sector_t size;
523d9297 1948 unsigned long flags;
1da177e4
LT
1949
1950 size = dm_table_get_size(t);
3ac51e74
DW
1951
1952 /*
1953 * Wipe any geometry if the size of the table changed.
1954 */
1955 if (size != get_capacity(md->disk))
1956 memset(&md->geometry, 0, sizeof(md->geometry));
1957
32a926da 1958 __set_size(md, size);
d5816876
MP
1959
1960 if (!size) {
1961 dm_table_destroy(t);
1da177e4 1962 return 0;
d5816876 1963 }
1da177e4 1964
2ca3310e
AK
1965 dm_table_event_callback(t, event_callback, md);
1966
e6ee8c0b
KU
1967 /*
1968 * The queue hasn't been stopped yet, if the old table type wasn't
1969 * for request-based during suspension. So stop it to prevent
1970 * I/O mapping before resume.
1971 * This must be done before setting the queue restrictions,
1972 * because request-based dm may be run just after the setting.
1973 */
1974 if (dm_table_request_based(t) && !blk_queue_stopped(q))
1975 stop_queue(q);
1976
1977 __bind_mempools(md, t);
1978
523d9297 1979 write_lock_irqsave(&md->map_lock, flags);
1da177e4 1980 md->map = t;
754c5fc7 1981 dm_table_set_restrictions(t, q, limits);
523d9297 1982 write_unlock_irqrestore(&md->map_lock, flags);
1da177e4 1983
1da177e4
LT
1984 return 0;
1985}
1986
1987static void __unbind(struct mapped_device *md)
1988{
1989 struct dm_table *map = md->map;
523d9297 1990 unsigned long flags;
1da177e4
LT
1991
1992 if (!map)
1993 return;
1994
1995 dm_table_event_callback(map, NULL, NULL);
523d9297 1996 write_lock_irqsave(&md->map_lock, flags);
1da177e4 1997 md->map = NULL;
523d9297 1998 write_unlock_irqrestore(&md->map_lock, flags);
d5816876 1999 dm_table_destroy(map);
1da177e4
LT
2000}
2001
2002/*
2003 * Constructor for a new device.
2004 */
2b06cfff 2005int dm_create(int minor, struct mapped_device **result)
1da177e4
LT
2006{
2007 struct mapped_device *md;
2008
2b06cfff 2009 md = alloc_dev(minor);
1da177e4
LT
2010 if (!md)
2011 return -ENXIO;
2012
784aae73
MB
2013 dm_sysfs_init(md);
2014
1da177e4
LT
2015 *result = md;
2016 return 0;
2017}
2018
637842cf 2019static struct mapped_device *dm_find_md(dev_t dev)
1da177e4
LT
2020{
2021 struct mapped_device *md;
1da177e4
LT
2022 unsigned minor = MINOR(dev);
2023
2024 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2025 return NULL;
2026
f32c10b0 2027 spin_lock(&_minor_lock);
1da177e4
LT
2028
2029 md = idr_find(&_minor_idr, minor);
fba9f90e 2030 if (md && (md == MINOR_ALLOCED ||
f331c029 2031 (MINOR(disk_devt(dm_disk(md))) != minor) ||
17b2f66f 2032 test_bit(DMF_FREEING, &md->flags))) {
637842cf 2033 md = NULL;
fba9f90e
JM
2034 goto out;
2035 }
1da177e4 2036
fba9f90e 2037out:
f32c10b0 2038 spin_unlock(&_minor_lock);
1da177e4 2039
637842cf
DT
2040 return md;
2041}
2042
d229a958
DT
2043struct mapped_device *dm_get_md(dev_t dev)
2044{
2045 struct mapped_device *md = dm_find_md(dev);
2046
2047 if (md)
2048 dm_get(md);
2049
2050 return md;
2051}
2052
9ade92a9 2053void *dm_get_mdptr(struct mapped_device *md)
637842cf 2054{
9ade92a9 2055 return md->interface_ptr;
1da177e4
LT
2056}
2057
2058void dm_set_mdptr(struct mapped_device *md, void *ptr)
2059{
2060 md->interface_ptr = ptr;
2061}
2062
2063void dm_get(struct mapped_device *md)
2064{
2065 atomic_inc(&md->holders);
2066}
2067
72d94861
AK
2068const char *dm_device_name(struct mapped_device *md)
2069{
2070 return md->name;
2071}
2072EXPORT_SYMBOL_GPL(dm_device_name);
2073
1da177e4
LT
2074void dm_put(struct mapped_device *md)
2075{
1134e5ae 2076 struct dm_table *map;
1da177e4 2077
fba9f90e
JM
2078 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2079
f32c10b0 2080 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1134e5ae 2081 map = dm_get_table(md);
f331c029
TH
2082 idr_replace(&_minor_idr, MINOR_ALLOCED,
2083 MINOR(disk_devt(dm_disk(md))));
fba9f90e 2084 set_bit(DMF_FREEING, &md->flags);
f32c10b0 2085 spin_unlock(&_minor_lock);
cf222b37 2086 if (!dm_suspended(md)) {
1da177e4
LT
2087 dm_table_presuspend_targets(map);
2088 dm_table_postsuspend_targets(map);
2089 }
784aae73 2090 dm_sysfs_exit(md);
1134e5ae 2091 dm_table_put(map);
a1b51e98 2092 __unbind(md);
1da177e4
LT
2093 free_dev(md);
2094 }
1da177e4 2095}
79eb885c 2096EXPORT_SYMBOL_GPL(dm_put);
1da177e4 2097
401600df 2098static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
46125c1c
MB
2099{
2100 int r = 0;
b44ebeb0 2101 DECLARE_WAITQUEUE(wait, current);
cec47e3d
KU
2102 struct request_queue *q = md->queue;
2103 unsigned long flags;
b44ebeb0
MP
2104
2105 dm_unplug_all(md->queue);
2106
2107 add_wait_queue(&md->wait, &wait);
46125c1c
MB
2108
2109 while (1) {
401600df 2110 set_current_state(interruptible);
46125c1c
MB
2111
2112 smp_mb();
cec47e3d
KU
2113 if (dm_request_based(md)) {
2114 spin_lock_irqsave(q->queue_lock, flags);
2115 if (!queue_in_flight(q) && blk_queue_stopped(q)) {
2116 spin_unlock_irqrestore(q->queue_lock, flags);
2117 break;
2118 }
2119 spin_unlock_irqrestore(q->queue_lock, flags);
90abb8c4 2120 } else if (!md_in_flight(md))
46125c1c
MB
2121 break;
2122
401600df
MP
2123 if (interruptible == TASK_INTERRUPTIBLE &&
2124 signal_pending(current)) {
46125c1c
MB
2125 r = -EINTR;
2126 break;
2127 }
2128
2129 io_schedule();
2130 }
2131 set_current_state(TASK_RUNNING);
2132
b44ebeb0
MP
2133 remove_wait_queue(&md->wait, &wait);
2134
46125c1c
MB
2135 return r;
2136}
2137
531fe963 2138static void dm_flush(struct mapped_device *md)
af7e466a
MP
2139{
2140 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
52b1fd5a
MP
2141
2142 bio_init(&md->barrier_bio);
2143 md->barrier_bio.bi_bdev = md->bdev;
2144 md->barrier_bio.bi_rw = WRITE_BARRIER;
2145 __split_and_process_bio(md, &md->barrier_bio);
2146
2147 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
af7e466a
MP
2148}
2149
2150static void process_barrier(struct mapped_device *md, struct bio *bio)
2151{
5aa2781d
MP
2152 md->barrier_error = 0;
2153
531fe963 2154 dm_flush(md);
af7e466a 2155
5aa2781d
MP
2156 if (!bio_empty_barrier(bio)) {
2157 __split_and_process_bio(md, bio);
2158 dm_flush(md);
af7e466a
MP
2159 }
2160
af7e466a 2161 if (md->barrier_error != DM_ENDIO_REQUEUE)
531fe963 2162 bio_endio(bio, md->barrier_error);
2761e95f
MP
2163 else {
2164 spin_lock_irq(&md->deferred_lock);
2165 bio_list_add_head(&md->deferred, bio);
2166 spin_unlock_irq(&md->deferred_lock);
2167 }
af7e466a
MP
2168}
2169
1da177e4
LT
2170/*
2171 * Process the deferred bios
2172 */
ef208587 2173static void dm_wq_work(struct work_struct *work)
1da177e4 2174{
ef208587
MP
2175 struct mapped_device *md = container_of(work, struct mapped_device,
2176 work);
6d6f10df 2177 struct bio *c;
1da177e4 2178
ef208587
MP
2179 down_write(&md->io_lock);
2180
3b00b203 2181 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
df12ee99
AK
2182 spin_lock_irq(&md->deferred_lock);
2183 c = bio_list_pop(&md->deferred);
2184 spin_unlock_irq(&md->deferred_lock);
2185
2186 if (!c) {
1eb787ec 2187 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
df12ee99
AK
2188 break;
2189 }
022c2611 2190
3b00b203
MP
2191 up_write(&md->io_lock);
2192
e6ee8c0b
KU
2193 if (dm_request_based(md))
2194 generic_make_request(c);
2195 else {
1f98a13f 2196 if (bio_rw_flagged(c, BIO_RW_BARRIER))
e6ee8c0b
KU
2197 process_barrier(md, c);
2198 else
2199 __split_and_process_bio(md, c);
2200 }
3b00b203
MP
2201
2202 down_write(&md->io_lock);
022c2611 2203 }
73d410c0 2204
ef208587 2205 up_write(&md->io_lock);
1da177e4
LT
2206}
2207
9a1fb464 2208static void dm_queue_flush(struct mapped_device *md)
304f3f6a 2209{
3b00b203
MP
2210 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2211 smp_mb__after_clear_bit();
53d5914f 2212 queue_work(md->wq, &md->work);
304f3f6a
MB
2213}
2214
1da177e4
LT
2215/*
2216 * Swap in a new table (destroying old one).
2217 */
2218int dm_swap_table(struct mapped_device *md, struct dm_table *table)
2219{
754c5fc7 2220 struct queue_limits limits;
93c534ae 2221 int r = -EINVAL;
1da177e4 2222
e61290a4 2223 mutex_lock(&md->suspend_lock);
1da177e4
LT
2224
2225 /* device must be suspended */
cf222b37 2226 if (!dm_suspended(md))
93c534ae 2227 goto out;
1da177e4 2228
754c5fc7
MS
2229 r = dm_calculate_queue_limits(table, &limits);
2230 if (r)
2231 goto out;
2232
e6ee8c0b
KU
2233 /* cannot change the device type, once a table is bound */
2234 if (md->map &&
2235 (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2236 DMWARN("can't change the device type after a table is bound");
2237 goto out;
2238 }
2239
1da177e4 2240 __unbind(md);
754c5fc7 2241 r = __bind(md, table, &limits);
1da177e4 2242
93c534ae 2243out:
e61290a4 2244 mutex_unlock(&md->suspend_lock);
93c534ae 2245 return r;
1da177e4
LT
2246}
2247
cec47e3d
KU
2248static void dm_rq_invalidate_suspend_marker(struct mapped_device *md)
2249{
2250 md->suspend_rq.special = (void *)0x1;
2251}
2252
2253static void dm_rq_abort_suspend(struct mapped_device *md, int noflush)
2254{
2255 struct request_queue *q = md->queue;
2256 unsigned long flags;
2257
2258 spin_lock_irqsave(q->queue_lock, flags);
2259 if (!noflush)
2260 dm_rq_invalidate_suspend_marker(md);
2261 __start_queue(q);
2262 spin_unlock_irqrestore(q->queue_lock, flags);
2263}
2264
2265static void dm_rq_start_suspend(struct mapped_device *md, int noflush)
2266{
2267 struct request *rq = &md->suspend_rq;
2268 struct request_queue *q = md->queue;
2269
2270 if (noflush)
2271 stop_queue(q);
2272 else {
2273 blk_rq_init(q, rq);
2274 blk_insert_request(q, rq, 0, NULL);
2275 }
2276}
2277
2278static int dm_rq_suspend_available(struct mapped_device *md, int noflush)
2279{
2280 int r = 1;
2281 struct request *rq = &md->suspend_rq;
2282 struct request_queue *q = md->queue;
2283 unsigned long flags;
2284
2285 if (noflush)
2286 return r;
2287
2288 /* The marker must be protected by queue lock if it is in use */
2289 spin_lock_irqsave(q->queue_lock, flags);
2290 if (unlikely(rq->ref_count)) {
2291 /*
2292 * This can happen, when the previous flush suspend was
2293 * interrupted, the marker is still in the queue and
2294 * this flush suspend has been invoked, because we don't
2295 * remove the marker at the time of suspend interruption.
2296 * We have only one marker per mapped_device, so we can't
2297 * start another flush suspend while it is in use.
2298 */
2299 BUG_ON(!rq->special); /* The marker should be invalidated */
2300 DMWARN("Invalidating the previous flush suspend is still in"
2301 " progress. Please retry later.");
2302 r = 0;
2303 }
2304 spin_unlock_irqrestore(q->queue_lock, flags);
2305
2306 return r;
2307}
2308
1da177e4
LT
2309/*
2310 * Functions to lock and unlock any filesystem running on the
2311 * device.
2312 */
2ca3310e 2313static int lock_fs(struct mapped_device *md)
1da177e4 2314{
e39e2e95 2315 int r;
1da177e4
LT
2316
2317 WARN_ON(md->frozen_sb);
dfbe03f6 2318
db8fef4f 2319 md->frozen_sb = freeze_bdev(md->bdev);
dfbe03f6 2320 if (IS_ERR(md->frozen_sb)) {
cf222b37 2321 r = PTR_ERR(md->frozen_sb);
e39e2e95
AK
2322 md->frozen_sb = NULL;
2323 return r;
dfbe03f6
AK
2324 }
2325
aa8d7c2f
AK
2326 set_bit(DMF_FROZEN, &md->flags);
2327
1da177e4
LT
2328 return 0;
2329}
2330
2ca3310e 2331static void unlock_fs(struct mapped_device *md)
1da177e4 2332{
aa8d7c2f
AK
2333 if (!test_bit(DMF_FROZEN, &md->flags))
2334 return;
2335
db8fef4f 2336 thaw_bdev(md->bdev, md->frozen_sb);
1da177e4 2337 md->frozen_sb = NULL;
aa8d7c2f 2338 clear_bit(DMF_FROZEN, &md->flags);
1da177e4
LT
2339}
2340
2341/*
2342 * We need to be able to change a mapping table under a mounted
2343 * filesystem. For example we might want to move some data in
2344 * the background. Before the table can be swapped with
2345 * dm_bind_table, dm_suspend must be called to flush any in
2346 * flight bios and ensure that any further io gets deferred.
2347 */
cec47e3d
KU
2348/*
2349 * Suspend mechanism in request-based dm.
2350 *
2351 * After the suspend starts, further incoming requests are kept in
2352 * the request_queue and deferred.
2353 * Remaining requests in the request_queue at the start of suspend are flushed
2354 * if it is flush suspend.
2355 * The suspend completes when the following conditions have been satisfied,
2356 * so wait for it:
2357 * 1. q->in_flight is 0 (which means no in_flight request)
2358 * 2. queue has been stopped (which means no request dispatching)
2359 *
2360 *
2361 * Noflush suspend
2362 * ---------------
2363 * Noflush suspend doesn't need to dispatch remaining requests.
2364 * So stop the queue immediately. Then, wait for all in_flight requests
2365 * to be completed or requeued.
2366 *
2367 * To abort noflush suspend, start the queue.
2368 *
2369 *
2370 * Flush suspend
2371 * -------------
2372 * Flush suspend needs to dispatch remaining requests. So stop the queue
2373 * after the remaining requests are completed. (Requeued request must be also
2374 * re-dispatched and completed. Until then, we can't stop the queue.)
2375 *
2376 * During flushing the remaining requests, further incoming requests are also
2377 * inserted to the same queue. To distinguish which requests are to be
2378 * flushed, we insert a marker request to the queue at the time of starting
2379 * flush suspend, like a barrier.
2380 * The dispatching is blocked when the marker is found on the top of the queue.
2381 * And the queue is stopped when all in_flight requests are completed, since
2382 * that means the remaining requests are completely flushed.
2383 * Then, the marker is removed from the queue.
2384 *
2385 * To abort flush suspend, we also need to take care of the marker, not only
2386 * starting the queue.
2387 * We don't remove the marker forcibly from the queue since it's against
2388 * the block-layer manner. Instead, we put a invalidated mark on the marker.
2389 * When the invalidated marker is found on the top of the queue, it is
2390 * immediately removed from the queue, so it doesn't block dispatching.
2391 * Because we have only one marker per mapped_device, we can't start another
2392 * flush suspend until the invalidated marker is removed from the queue.
2393 * So fail and return with -EBUSY in such a case.
2394 */
a3d77d35 2395int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1da177e4 2396{
2ca3310e 2397 struct dm_table *map = NULL;
46125c1c 2398 int r = 0;
a3d77d35 2399 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2e93ccc1 2400 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1da177e4 2401
e61290a4 2402 mutex_lock(&md->suspend_lock);
2ca3310e 2403
73d410c0
MB
2404 if (dm_suspended(md)) {
2405 r = -EINVAL;
d287483d 2406 goto out_unlock;
73d410c0 2407 }
1da177e4 2408
cec47e3d
KU
2409 if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) {
2410 r = -EBUSY;
2411 goto out_unlock;
2412 }
2413
1da177e4 2414 map = dm_get_table(md);
1da177e4 2415
2e93ccc1
KU
2416 /*
2417 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2418 * This flag is cleared before dm_suspend returns.
2419 */
2420 if (noflush)
2421 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2422
cf222b37
AK
2423 /* This does not get reverted if there's an error later. */
2424 dm_table_presuspend_targets(map);
2425
32a926da
MP
2426 /*
2427 * Flush I/O to the device. noflush supersedes do_lockfs,
2428 * because lock_fs() needs to flush I/Os.
2429 */
2430 if (!noflush && do_lockfs) {
2431 r = lock_fs(md);
2432 if (r)
f431d966 2433 goto out;
aa8d7c2f 2434 }
1da177e4
LT
2435
2436 /*
3b00b203
MP
2437 * Here we must make sure that no processes are submitting requests
2438 * to target drivers i.e. no one may be executing
2439 * __split_and_process_bio. This is called from dm_request and
2440 * dm_wq_work.
2441 *
2442 * To get all processes out of __split_and_process_bio in dm_request,
2443 * we take the write lock. To prevent any process from reentering
2444 * __split_and_process_bio from dm_request, we set
2445 * DMF_QUEUE_IO_TO_THREAD.
2446 *
2447 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2448 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2449 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2450 * further calls to __split_and_process_bio from dm_wq_work.
1da177e4 2451 */
2ca3310e 2452 down_write(&md->io_lock);
1eb787ec
AK
2453 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2454 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2ca3310e 2455 up_write(&md->io_lock);
1da177e4 2456
3b00b203
MP
2457 flush_workqueue(md->wq);
2458
cec47e3d
KU
2459 if (dm_request_based(md))
2460 dm_rq_start_suspend(md, noflush);
2461
1da177e4 2462 /*
3b00b203
MP
2463 * At this point no more requests are entering target request routines.
2464 * We call dm_wait_for_completion to wait for all existing requests
2465 * to finish.
1da177e4 2466 */
401600df 2467 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1da177e4 2468
2ca3310e 2469 down_write(&md->io_lock);
6d6f10df 2470 if (noflush)
022c2611 2471 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
94d6351e 2472 up_write(&md->io_lock);
2e93ccc1 2473
1da177e4 2474 /* were we interrupted ? */
46125c1c 2475 if (r < 0) {
9a1fb464 2476 dm_queue_flush(md);
73d410c0 2477
cec47e3d
KU
2478 if (dm_request_based(md))
2479 dm_rq_abort_suspend(md, noflush);
2480
2ca3310e 2481 unlock_fs(md);
2e93ccc1 2482 goto out; /* pushback list is already flushed, so skip flush */
2ca3310e 2483 }
1da177e4 2484
3b00b203
MP
2485 /*
2486 * If dm_wait_for_completion returned 0, the device is completely
2487 * quiescent now. There is no request-processing activity. All new
2488 * requests are being added to md->deferred list.
2489 */
2490
cf222b37 2491 dm_table_postsuspend_targets(map);
1da177e4 2492
2ca3310e 2493 set_bit(DMF_SUSPENDED, &md->flags);
b84b0287 2494
2ca3310e
AK
2495out:
2496 dm_table_put(map);
d287483d
AK
2497
2498out_unlock:
e61290a4 2499 mutex_unlock(&md->suspend_lock);
cf222b37 2500 return r;
1da177e4
LT
2501}
2502
2503int dm_resume(struct mapped_device *md)
2504{
cf222b37 2505 int r = -EINVAL;
cf222b37 2506 struct dm_table *map = NULL;
1da177e4 2507
e61290a4 2508 mutex_lock(&md->suspend_lock);
2ca3310e 2509 if (!dm_suspended(md))
cf222b37 2510 goto out;
cf222b37
AK
2511
2512 map = dm_get_table(md);
2ca3310e 2513 if (!map || !dm_table_get_size(map))
cf222b37 2514 goto out;
1da177e4 2515
8757b776
MB
2516 r = dm_table_resume_targets(map);
2517 if (r)
2518 goto out;
2ca3310e 2519
9a1fb464 2520 dm_queue_flush(md);
2ca3310e 2521
cec47e3d
KU
2522 /*
2523 * Flushing deferred I/Os must be done after targets are resumed
2524 * so that mapping of targets can work correctly.
2525 * Request-based dm is queueing the deferred I/Os in its request_queue.
2526 */
2527 if (dm_request_based(md))
2528 start_queue(md->queue);
2529
2ca3310e
AK
2530 unlock_fs(md);
2531
2532 clear_bit(DMF_SUSPENDED, &md->flags);
2533
1da177e4 2534 dm_table_unplug_all(map);
cf222b37
AK
2535 r = 0;
2536out:
2537 dm_table_put(map);
e61290a4 2538 mutex_unlock(&md->suspend_lock);
2ca3310e 2539
cf222b37 2540 return r;
1da177e4
LT
2541}
2542
2543/*-----------------------------------------------------------------
2544 * Event notification.
2545 *---------------------------------------------------------------*/
60935eb2
MB
2546void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2547 unsigned cookie)
69267a30 2548{
60935eb2
MB
2549 char udev_cookie[DM_COOKIE_LENGTH];
2550 char *envp[] = { udev_cookie, NULL };
2551
2552 if (!cookie)
2553 kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2554 else {
2555 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2556 DM_COOKIE_ENV_VAR_NAME, cookie);
2557 kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2558 }
69267a30
AK
2559}
2560
7a8c3d3b
MA
2561uint32_t dm_next_uevent_seq(struct mapped_device *md)
2562{
2563 return atomic_add_return(1, &md->uevent_seq);
2564}
2565
1da177e4
LT
2566uint32_t dm_get_event_nr(struct mapped_device *md)
2567{
2568 return atomic_read(&md->event_nr);
2569}
2570
2571int dm_wait_event(struct mapped_device *md, int event_nr)
2572{
2573 return wait_event_interruptible(md->eventq,
2574 (event_nr != atomic_read(&md->event_nr)));
2575}
2576
7a8c3d3b
MA
2577void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2578{
2579 unsigned long flags;
2580
2581 spin_lock_irqsave(&md->uevent_lock, flags);
2582 list_add(elist, &md->uevent_list);
2583 spin_unlock_irqrestore(&md->uevent_lock, flags);
2584}
2585
1da177e4
LT
2586/*
2587 * The gendisk is only valid as long as you have a reference
2588 * count on 'md'.
2589 */
2590struct gendisk *dm_disk(struct mapped_device *md)
2591{
2592 return md->disk;
2593}
2594
784aae73
MB
2595struct kobject *dm_kobject(struct mapped_device *md)
2596{
2597 return &md->kobj;
2598}
2599
2600/*
2601 * struct mapped_device should not be exported outside of dm.c
2602 * so use this check to verify that kobj is part of md structure
2603 */
2604struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2605{
2606 struct mapped_device *md;
2607
2608 md = container_of(kobj, struct mapped_device, kobj);
2609 if (&md->kobj != kobj)
2610 return NULL;
2611
4d89b7b4
MB
2612 if (test_bit(DMF_FREEING, &md->flags) ||
2613 test_bit(DMF_DELETING, &md->flags))
2614 return NULL;
2615
784aae73
MB
2616 dm_get(md);
2617 return md;
2618}
2619
1da177e4
LT
2620int dm_suspended(struct mapped_device *md)
2621{
2622 return test_bit(DMF_SUSPENDED, &md->flags);
2623}
2624
2e93ccc1
KU
2625int dm_noflush_suspending(struct dm_target *ti)
2626{
2627 struct mapped_device *md = dm_table_get_md(ti->table);
2628 int r = __noflush_suspending(md);
2629
2630 dm_put(md);
2631
2632 return r;
2633}
2634EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2635
e6ee8c0b
KU
2636struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2637{
2638 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2639
2640 if (!pools)
2641 return NULL;
2642
2643 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2644 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2645 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2646 if (!pools->io_pool)
2647 goto free_pools_and_out;
2648
2649 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2650 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2651 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2652 if (!pools->tio_pool)
2653 goto free_io_pool_and_out;
2654
2655 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2656 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2657 if (!pools->bs)
2658 goto free_tio_pool_and_out;
2659
2660 return pools;
2661
2662free_tio_pool_and_out:
2663 mempool_destroy(pools->tio_pool);
2664
2665free_io_pool_and_out:
2666 mempool_destroy(pools->io_pool);
2667
2668free_pools_and_out:
2669 kfree(pools);
2670
2671 return NULL;
2672}
2673
2674void dm_free_md_mempools(struct dm_md_mempools *pools)
2675{
2676 if (!pools)
2677 return;
2678
2679 if (pools->io_pool)
2680 mempool_destroy(pools->io_pool);
2681
2682 if (pools->tio_pool)
2683 mempool_destroy(pools->tio_pool);
2684
2685 if (pools->bs)
2686 bioset_free(pools->bs);
2687
2688 kfree(pools);
2689}
2690
83d5cde4 2691static const struct block_device_operations dm_blk_dops = {
1da177e4
LT
2692 .open = dm_blk_open,
2693 .release = dm_blk_close,
aa129a22 2694 .ioctl = dm_blk_ioctl,
3ac51e74 2695 .getgeo = dm_blk_getgeo,
1da177e4
LT
2696 .owner = THIS_MODULE
2697};
2698
2699EXPORT_SYMBOL(dm_get_mapinfo);
2700
2701/*
2702 * module hooks
2703 */
2704module_init(dm_init);
2705module_exit(dm_exit);
2706
2707module_param(major, uint, 0);
2708MODULE_PARM_DESC(major, "The major number of the device mapper");
2709MODULE_DESCRIPTION(DM_NAME " driver");
2710MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2711MODULE_LICENSE("GPL");
This page took 0.660205 seconds and 5 git commands to generate.