md: don't require sync_min to be a multiple of chunk_size.
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 94
dd0fc66f 95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 struct r1bio *r1_bio;
1da177e4 99 struct bio *bio;
da1aab3d 100 int need_pages;
1da177e4
LT
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 104 if (!r1_bio)
1da177e4 105 return NULL;
1da177e4
LT
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
6746557f 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
1da177e4 121 */
d11c171e 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 123 need_pages = pi->raid_disks;
d11c171e 124 else
da1aab3d
N
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
d11c171e 127 bio = r1_bio->bios[j];
a0787606 128 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 129
a0787606 130 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 131 goto out_free_pages;
d11c171e
N
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
da1aab3d
N
145out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
1da177e4 153out_free_bio:
8f19ccb2 154 while (++j < pi->raid_disks)
1da177e4
LT
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162 struct pool_info *pi = data;
d11c171e 163 int i,j;
9f2c9d12 164 struct r1bio *r1bio = __r1_bio;
1da177e4 165
d11c171e
N
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 172 }
1da177e4
LT
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177}
178
e8096360 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
180{
181 int i;
182
8f19ccb2 183 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 184 struct bio **bio = r1_bio->bios + i;
4367af55 185 if (!BIO_SPECIAL(*bio))
1da177e4
LT
186 bio_put(*bio);
187 *bio = NULL;
188 }
189}
190
9f2c9d12 191static void free_r1bio(struct r1bio *r1_bio)
1da177e4 192{
e8096360 193 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 194
1da177e4
LT
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197}
198
9f2c9d12 199static void put_buf(struct r1bio *r1_bio)
1da177e4 200{
e8096360 201 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
202 int i;
203
8f19ccb2 204 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
1da177e4
LT
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
17999be4 212 lower_barrier(conf);
1da177e4
LT
213}
214
9f2c9d12 215static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
216{
217 unsigned long flags;
fd01b88c 218 struct mddev *mddev = r1_bio->mddev;
e8096360 219 struct r1conf *conf = mddev->private;
1da177e4
LT
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 223 conf->nr_queued ++;
1da177e4
LT
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
17999be4 226 wake_up(&conf->wait_barrier);
1da177e4
LT
227 md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
9f2c9d12 235static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
236{
237 struct bio *bio = r1_bio->master_bio;
238 int done;
e8096360 239 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 240 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 241 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
d2eb35ac
N
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
79ef3a8a 265 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
266 }
267}
268
9f2c9d12 269static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
270{
271 struct bio *bio = r1_bio->master_bio;
272
4b6d287f
N
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 279
d2eb35ac 280 call_bio_endio(r1_bio);
4b6d287f 281 }
1da177e4
LT
282 free_r1bio(r1_bio);
283}
284
285/*
286 * Update disk head position estimator based on IRQ completion info.
287 */
9f2c9d12 288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 289{
e8096360 290 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294}
295
ba3ae3be
NK
296/*
297 * Find the disk number which triggered given bio
298 */
9f2c9d12 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
300{
301 int mirror;
30194636
N
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
ba3ae3be 304
8f19ccb2 305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
8f19ccb2 309 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313}
314
6712ecf8 315static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
316{
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 318 struct r1bio *r1_bio = bio->bi_private;
1da177e4 319 int mirror;
e8096360 320 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 321
1da177e4
LT
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
ddaf22ab
N
326 update_head_pos(mirror, r1_bio);
327
dd00a99e
N
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 334 */
dd00a99e
N
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
1da177e4 343
7ad4d4a6 344 if (uptodate) {
1da177e4 345 raid_end_bio_io(r1_bio);
7ad4d4a6
N
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
1da177e4
LT
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
8bda470e
CD
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
d2eb35ac 359 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 360 reschedule_retry(r1_bio);
7ad4d4a6 361 /* don't drop the reference on read_disk yet */
1da177e4 362 }
1da177e4
LT
363}
364
9f2c9d12 365static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
366{
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382}
383
9f2c9d12 384static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 385{
cd5ff9a1
N
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
4367af55
N
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
4e78064f
N
397 }
398}
399
6712ecf8 400static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
401{
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 403 struct r1bio *r1_bio = bio->bi_private;
a9701a30 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 405 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 406 struct bio *to_put = NULL;
1da177e4 407
ba3ae3be 408 mirror = find_bio_disk(r1_bio, bio);
1da177e4 409
e9c7469b
TH
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
e9c7469b 413 if (!uptodate) {
cd5ff9a1
N
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
19d67169
N
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
cd5ff9a1 421 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 422 } else {
1da177e4 423 /*
e9c7469b
TH
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
1da177e4 432 */
4367af55
N
433 sector_t first_bad;
434 int bad_sectors;
435
cd5ff9a1
N
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
3056e3ae
AL
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 449
4367af55
N
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
e9c7469b
TH
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
4f024f37
KO
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 479 call_bio_endio(r1_bio);
4b6d287f
N
480 }
481 }
482 }
4367af55
N
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
e9c7469b 486
1da177e4 487 /*
1da177e4
LT
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
af6d7b76 491 r1_bio_write_done(r1_bio);
c70810b3 492
04b857f7
N
493 if (to_put)
494 bio_put(to_put);
1da177e4
LT
495}
496
1da177e4
LT
497/*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
e8096360 511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 512{
af3a2cd6 513 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
514 int sectors;
515 int best_good_sectors;
9dedf603
SL
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
be4d3280 518 int disk;
76073054 519 sector_t best_dist;
9dedf603 520 unsigned int min_pending;
3cb03002 521 struct md_rdev *rdev;
f3ac8bf7 522 int choose_first;
12cee5a8 523 int choose_next_idle;
1da177e4
LT
524
525 rcu_read_lock();
526 /*
8ddf9efe 527 * Check if we can balance. We can balance on the whole
1da177e4
LT
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
530 */
531 retry:
d2eb35ac 532 sectors = r1_bio->sectors;
76073054 533 best_disk = -1;
9dedf603 534 best_dist_disk = -1;
76073054 535 best_dist = MaxSector;
9dedf603
SL
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
d2eb35ac 538 best_good_sectors = 0;
9dedf603 539 has_nonrot_disk = 0;
12cee5a8 540 choose_next_idle = 0;
d2eb35ac 541
7d49ffcf
GR
542 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543 (mddev_is_clustered(conf->mddev) &&
544 md_cluster_ops->area_resyncing(conf->mddev, this_sector,
545 this_sector + sectors)))
546 choose_first = 1;
547 else
548 choose_first = 0;
1da177e4 549
be4d3280 550 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 551 sector_t dist;
d2eb35ac
N
552 sector_t first_bad;
553 int bad_sectors;
9dedf603 554 unsigned int pending;
12cee5a8 555 bool nonrot;
d2eb35ac 556
f3ac8bf7
N
557 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558 if (r1_bio->bios[disk] == IO_BLOCKED
559 || rdev == NULL
6b740b8d 560 || test_bit(Unmerged, &rdev->flags)
76073054 561 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 562 continue;
76073054
N
563 if (!test_bit(In_sync, &rdev->flags) &&
564 rdev->recovery_offset < this_sector + sectors)
1da177e4 565 continue;
76073054
N
566 if (test_bit(WriteMostly, &rdev->flags)) {
567 /* Don't balance among write-mostly, just
568 * use the first as a last resort */
d1901ef0 569 if (best_dist_disk < 0) {
307729c8
N
570 if (is_badblock(rdev, this_sector, sectors,
571 &first_bad, &bad_sectors)) {
572 if (first_bad < this_sector)
573 /* Cannot use this */
574 continue;
575 best_good_sectors = first_bad - this_sector;
576 } else
577 best_good_sectors = sectors;
d1901ef0
TH
578 best_dist_disk = disk;
579 best_pending_disk = disk;
307729c8 580 }
76073054
N
581 continue;
582 }
583 /* This is a reasonable device to use. It might
584 * even be best.
585 */
d2eb35ac
N
586 if (is_badblock(rdev, this_sector, sectors,
587 &first_bad, &bad_sectors)) {
588 if (best_dist < MaxSector)
589 /* already have a better device */
590 continue;
591 if (first_bad <= this_sector) {
592 /* cannot read here. If this is the 'primary'
593 * device, then we must not read beyond
594 * bad_sectors from another device..
595 */
596 bad_sectors -= (this_sector - first_bad);
597 if (choose_first && sectors > bad_sectors)
598 sectors = bad_sectors;
599 if (best_good_sectors > sectors)
600 best_good_sectors = sectors;
601
602 } else {
603 sector_t good_sectors = first_bad - this_sector;
604 if (good_sectors > best_good_sectors) {
605 best_good_sectors = good_sectors;
606 best_disk = disk;
607 }
608 if (choose_first)
609 break;
610 }
611 continue;
612 } else
613 best_good_sectors = sectors;
614
12cee5a8
SL
615 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
616 has_nonrot_disk |= nonrot;
9dedf603 617 pending = atomic_read(&rdev->nr_pending);
76073054 618 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 619 if (choose_first) {
76073054 620 best_disk = disk;
1da177e4
LT
621 break;
622 }
12cee5a8
SL
623 /* Don't change to another disk for sequential reads */
624 if (conf->mirrors[disk].next_seq_sect == this_sector
625 || dist == 0) {
626 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
627 struct raid1_info *mirror = &conf->mirrors[disk];
628
629 best_disk = disk;
630 /*
631 * If buffered sequential IO size exceeds optimal
632 * iosize, check if there is idle disk. If yes, choose
633 * the idle disk. read_balance could already choose an
634 * idle disk before noticing it's a sequential IO in
635 * this disk. This doesn't matter because this disk
636 * will idle, next time it will be utilized after the
637 * first disk has IO size exceeds optimal iosize. In
638 * this way, iosize of the first disk will be optimal
639 * iosize at least. iosize of the second disk might be
640 * small, but not a big deal since when the second disk
641 * starts IO, the first disk is likely still busy.
642 */
643 if (nonrot && opt_iosize > 0 &&
644 mirror->seq_start != MaxSector &&
645 mirror->next_seq_sect > opt_iosize &&
646 mirror->next_seq_sect - opt_iosize >=
647 mirror->seq_start) {
648 choose_next_idle = 1;
649 continue;
650 }
651 break;
652 }
653 /* If device is idle, use it */
654 if (pending == 0) {
655 best_disk = disk;
656 break;
657 }
658
659 if (choose_next_idle)
660 continue;
9dedf603
SL
661
662 if (min_pending > pending) {
663 min_pending = pending;
664 best_pending_disk = disk;
665 }
666
76073054
N
667 if (dist < best_dist) {
668 best_dist = dist;
9dedf603 669 best_dist_disk = disk;
1da177e4 670 }
f3ac8bf7 671 }
1da177e4 672
9dedf603
SL
673 /*
674 * If all disks are rotational, choose the closest disk. If any disk is
675 * non-rotational, choose the disk with less pending request even the
676 * disk is rotational, which might/might not be optimal for raids with
677 * mixed ratation/non-rotational disks depending on workload.
678 */
679 if (best_disk == -1) {
680 if (has_nonrot_disk)
681 best_disk = best_pending_disk;
682 else
683 best_disk = best_dist_disk;
684 }
685
76073054
N
686 if (best_disk >= 0) {
687 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
688 if (!rdev)
689 goto retry;
690 atomic_inc(&rdev->nr_pending);
76073054 691 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
692 /* cannot risk returning a device that failed
693 * before we inc'ed nr_pending
694 */
03c902e1 695 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
696 goto retry;
697 }
d2eb35ac 698 sectors = best_good_sectors;
12cee5a8
SL
699
700 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
701 conf->mirrors[best_disk].seq_start = this_sector;
702
be4d3280 703 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
704 }
705 rcu_read_unlock();
d2eb35ac 706 *max_sectors = sectors;
1da177e4 707
76073054 708 return best_disk;
1da177e4
LT
709}
710
64590f45 711static int raid1_mergeable_bvec(struct mddev *mddev,
6b740b8d
N
712 struct bvec_merge_data *bvm,
713 struct bio_vec *biovec)
714{
6b740b8d
N
715 struct r1conf *conf = mddev->private;
716 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
717 int max = biovec->bv_len;
718
719 if (mddev->merge_check_needed) {
720 int disk;
721 rcu_read_lock();
722 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
723 struct md_rdev *rdev = rcu_dereference(
724 conf->mirrors[disk].rdev);
725 if (rdev && !test_bit(Faulty, &rdev->flags)) {
726 struct request_queue *q =
727 bdev_get_queue(rdev->bdev);
728 if (q->merge_bvec_fn) {
729 bvm->bi_sector = sector +
730 rdev->data_offset;
731 bvm->bi_bdev = rdev->bdev;
732 max = min(max, q->merge_bvec_fn(
733 q, bvm, biovec));
734 }
735 }
736 }
737 rcu_read_unlock();
738 }
739 return max;
740
741}
742
5c675f83 743static int raid1_congested(struct mddev *mddev, int bits)
0d129228 744{
e8096360 745 struct r1conf *conf = mddev->private;
0d129228
N
746 int i, ret = 0;
747
34db0cd6
N
748 if ((bits & (1 << BDI_async_congested)) &&
749 conf->pending_count >= max_queued_requests)
750 return 1;
751
0d129228 752 rcu_read_lock();
f53e29fc 753 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 754 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 755 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 756 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 757
1ed7242e
JB
758 BUG_ON(!q);
759
0d129228
N
760 /* Note the '|| 1' - when read_balance prefers
761 * non-congested targets, it can be removed
762 */
91a9e99d 763 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
764 ret |= bdi_congested(&q->backing_dev_info, bits);
765 else
766 ret &= bdi_congested(&q->backing_dev_info, bits);
767 }
768 }
769 rcu_read_unlock();
770 return ret;
771}
0d129228 772
e8096360 773static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
774{
775 /* Any writes that have been queued but are awaiting
776 * bitmap updates get flushed here.
a35e63ef 777 */
a35e63ef
N
778 spin_lock_irq(&conf->device_lock);
779
780 if (conf->pending_bio_list.head) {
781 struct bio *bio;
782 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 783 conf->pending_count = 0;
a35e63ef
N
784 spin_unlock_irq(&conf->device_lock);
785 /* flush any pending bitmap writes to
786 * disk before proceeding w/ I/O */
787 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 788 wake_up(&conf->wait_barrier);
a35e63ef
N
789
790 while (bio) { /* submit pending writes */
791 struct bio *next = bio->bi_next;
792 bio->bi_next = NULL;
2ff8cc2c
SL
793 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
794 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
795 /* Just ignore it */
796 bio_endio(bio, 0);
797 else
798 generic_make_request(bio);
a35e63ef
N
799 bio = next;
800 }
a35e63ef
N
801 } else
802 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
803}
804
17999be4
N
805/* Barriers....
806 * Sometimes we need to suspend IO while we do something else,
807 * either some resync/recovery, or reconfigure the array.
808 * To do this we raise a 'barrier'.
809 * The 'barrier' is a counter that can be raised multiple times
810 * to count how many activities are happening which preclude
811 * normal IO.
812 * We can only raise the barrier if there is no pending IO.
813 * i.e. if nr_pending == 0.
814 * We choose only to raise the barrier if no-one is waiting for the
815 * barrier to go down. This means that as soon as an IO request
816 * is ready, no other operations which require a barrier will start
817 * until the IO request has had a chance.
818 *
819 * So: regular IO calls 'wait_barrier'. When that returns there
820 * is no backgroup IO happening, It must arrange to call
821 * allow_barrier when it has finished its IO.
822 * backgroup IO calls must call raise_barrier. Once that returns
823 * there is no normal IO happeing. It must arrange to call
824 * lower_barrier when the particular background IO completes.
1da177e4 825 */
c2fd4c94 826static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
827{
828 spin_lock_irq(&conf->resync_lock);
17999be4
N
829
830 /* Wait until no block IO is waiting */
831 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 832 conf->resync_lock);
17999be4
N
833
834 /* block any new IO from starting */
835 conf->barrier++;
c2fd4c94 836 conf->next_resync = sector_nr;
17999be4 837
79ef3a8a 838 /* For these conditions we must wait:
839 * A: while the array is in frozen state
840 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
841 * the max count which allowed.
842 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
843 * next resync will reach to the window which normal bios are
844 * handling.
2f73d3c5 845 * D: while there are any active requests in the current window.
79ef3a8a 846 */
17999be4 847 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 848 !conf->array_frozen &&
79ef3a8a 849 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 850 conf->current_window_requests == 0 &&
79ef3a8a 851 (conf->start_next_window >=
852 conf->next_resync + RESYNC_SECTORS),
eed8c02e 853 conf->resync_lock);
17999be4 854
34e97f17 855 conf->nr_pending++;
17999be4
N
856 spin_unlock_irq(&conf->resync_lock);
857}
858
e8096360 859static void lower_barrier(struct r1conf *conf)
17999be4
N
860{
861 unsigned long flags;
709ae487 862 BUG_ON(conf->barrier <= 0);
17999be4
N
863 spin_lock_irqsave(&conf->resync_lock, flags);
864 conf->barrier--;
34e97f17 865 conf->nr_pending--;
17999be4
N
866 spin_unlock_irqrestore(&conf->resync_lock, flags);
867 wake_up(&conf->wait_barrier);
868}
869
79ef3a8a 870static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 871{
79ef3a8a 872 bool wait = false;
873
874 if (conf->array_frozen || !bio)
875 wait = true;
876 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
877 if ((conf->mddev->curr_resync_completed
878 >= bio_end_sector(bio)) ||
879 (conf->next_resync + NEXT_NORMALIO_DISTANCE
880 <= bio->bi_iter.bi_sector))
79ef3a8a 881 wait = false;
882 else
883 wait = true;
884 }
885
886 return wait;
887}
888
889static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
890{
891 sector_t sector = 0;
892
17999be4 893 spin_lock_irq(&conf->resync_lock);
79ef3a8a 894 if (need_to_wait_for_sync(conf, bio)) {
17999be4 895 conf->nr_waiting++;
d6b42dcb
N
896 /* Wait for the barrier to drop.
897 * However if there are already pending
898 * requests (preventing the barrier from
899 * rising completely), and the
5965b642 900 * per-process bio queue isn't empty,
d6b42dcb 901 * then don't wait, as we need to empty
5965b642
N
902 * that queue to allow conf->start_next_window
903 * to increase.
d6b42dcb
N
904 */
905 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 906 !conf->array_frozen &&
907 (!conf->barrier ||
5965b642
N
908 ((conf->start_next_window <
909 conf->next_resync + RESYNC_SECTORS) &&
910 current->bio_list &&
911 !bio_list_empty(current->bio_list))),
eed8c02e 912 conf->resync_lock);
17999be4 913 conf->nr_waiting--;
1da177e4 914 }
79ef3a8a 915
916 if (bio && bio_data_dir(bio) == WRITE) {
2f73d3c5 917 if (bio->bi_iter.bi_sector >=
23554960 918 conf->mddev->curr_resync_completed) {
79ef3a8a 919 if (conf->start_next_window == MaxSector)
920 conf->start_next_window =
921 conf->next_resync +
922 NEXT_NORMALIO_DISTANCE;
923
924 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 925 <= bio->bi_iter.bi_sector)
79ef3a8a 926 conf->next_window_requests++;
927 else
928 conf->current_window_requests++;
79ef3a8a 929 sector = conf->start_next_window;
41a336e0 930 }
79ef3a8a 931 }
932
17999be4 933 conf->nr_pending++;
1da177e4 934 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 935 return sector;
1da177e4
LT
936}
937
79ef3a8a 938static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
939 sector_t bi_sector)
17999be4
N
940{
941 unsigned long flags;
79ef3a8a 942
17999be4
N
943 spin_lock_irqsave(&conf->resync_lock, flags);
944 conf->nr_pending--;
79ef3a8a 945 if (start_next_window) {
946 if (start_next_window == conf->start_next_window) {
947 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
948 <= bi_sector)
949 conf->next_window_requests--;
950 else
951 conf->current_window_requests--;
952 } else
953 conf->current_window_requests--;
954
955 if (!conf->current_window_requests) {
956 if (conf->next_window_requests) {
957 conf->current_window_requests =
958 conf->next_window_requests;
959 conf->next_window_requests = 0;
960 conf->start_next_window +=
961 NEXT_NORMALIO_DISTANCE;
962 } else
963 conf->start_next_window = MaxSector;
964 }
965 }
17999be4
N
966 spin_unlock_irqrestore(&conf->resync_lock, flags);
967 wake_up(&conf->wait_barrier);
968}
969
e2d59925 970static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
971{
972 /* stop syncio and normal IO and wait for everything to
973 * go quite.
b364e3d0 974 * We wait until nr_pending match nr_queued+extra
1c830532
N
975 * This is called in the context of one normal IO request
976 * that has failed. Thus any sync request that might be pending
977 * will be blocked by nr_pending, and we need to wait for
978 * pending IO requests to complete or be queued for re-try.
e2d59925 979 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
980 * must match the number of pending IOs (nr_pending) before
981 * we continue.
ddaf22ab
N
982 */
983 spin_lock_irq(&conf->resync_lock);
b364e3d0 984 conf->array_frozen = 1;
eed8c02e 985 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 986 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
987 conf->resync_lock,
988 flush_pending_writes(conf));
ddaf22ab
N
989 spin_unlock_irq(&conf->resync_lock);
990}
e8096360 991static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
992{
993 /* reverse the effect of the freeze */
994 spin_lock_irq(&conf->resync_lock);
b364e3d0 995 conf->array_frozen = 0;
ddaf22ab
N
996 wake_up(&conf->wait_barrier);
997 spin_unlock_irq(&conf->resync_lock);
998}
999
f72ffdd6 1000/* duplicate the data pages for behind I/O
4e78064f 1001 */
9f2c9d12 1002static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
1003{
1004 int i;
1005 struct bio_vec *bvec;
2ca68f5e 1006 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 1007 GFP_NOIO);
2ca68f5e 1008 if (unlikely(!bvecs))
af6d7b76 1009 return;
4b6d287f 1010
cb34e057 1011 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
1012 bvecs[i] = *bvec;
1013 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1014 if (unlikely(!bvecs[i].bv_page))
4b6d287f 1015 goto do_sync_io;
2ca68f5e
N
1016 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1017 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1018 kunmap(bvecs[i].bv_page);
4b6d287f
N
1019 kunmap(bvec->bv_page);
1020 }
2ca68f5e 1021 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
1022 r1_bio->behind_page_count = bio->bi_vcnt;
1023 set_bit(R1BIO_BehindIO, &r1_bio->state);
1024 return;
4b6d287f
N
1025
1026do_sync_io:
af6d7b76 1027 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
1028 if (bvecs[i].bv_page)
1029 put_page(bvecs[i].bv_page);
1030 kfree(bvecs);
4f024f37
KO
1031 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1032 bio->bi_iter.bi_size);
4b6d287f
N
1033}
1034
f54a9d0e
N
1035struct raid1_plug_cb {
1036 struct blk_plug_cb cb;
1037 struct bio_list pending;
1038 int pending_cnt;
1039};
1040
1041static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1042{
1043 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1044 cb);
1045 struct mddev *mddev = plug->cb.data;
1046 struct r1conf *conf = mddev->private;
1047 struct bio *bio;
1048
874807a8 1049 if (from_schedule || current->bio_list) {
f54a9d0e
N
1050 spin_lock_irq(&conf->device_lock);
1051 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1052 conf->pending_count += plug->pending_cnt;
1053 spin_unlock_irq(&conf->device_lock);
ee0b0244 1054 wake_up(&conf->wait_barrier);
f54a9d0e
N
1055 md_wakeup_thread(mddev->thread);
1056 kfree(plug);
1057 return;
1058 }
1059
1060 /* we aren't scheduling, so we can do the write-out directly. */
1061 bio = bio_list_get(&plug->pending);
1062 bitmap_unplug(mddev->bitmap);
1063 wake_up(&conf->wait_barrier);
1064
1065 while (bio) { /* submit pending writes */
1066 struct bio *next = bio->bi_next;
1067 bio->bi_next = NULL;
32f9f570
SL
1068 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1069 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1070 /* Just ignore it */
1071 bio_endio(bio, 0);
1072 else
1073 generic_make_request(bio);
f54a9d0e
N
1074 bio = next;
1075 }
1076 kfree(plug);
1077}
1078
b4fdcb02 1079static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1080{
e8096360 1081 struct r1conf *conf = mddev->private;
0eaf822c 1082 struct raid1_info *mirror;
9f2c9d12 1083 struct r1bio *r1_bio;
1da177e4 1084 struct bio *read_bio;
1f68f0c4 1085 int i, disks;
84255d10 1086 struct bitmap *bitmap;
191ea9b2 1087 unsigned long flags;
a362357b 1088 const int rw = bio_data_dir(bio);
2c7d46ec 1089 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1090 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1091 const unsigned long do_discard = (bio->bi_rw
1092 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1093 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1094 struct md_rdev *blocked_rdev;
f54a9d0e
N
1095 struct blk_plug_cb *cb;
1096 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1097 int first_clone;
1098 int sectors_handled;
1099 int max_sectors;
79ef3a8a 1100 sector_t start_next_window;
191ea9b2 1101
1da177e4
LT
1102 /*
1103 * Register the new request and wait if the reconstruction
1104 * thread has put up a bar for new requests.
1105 * Continue immediately if no resync is active currently.
1106 */
62de608d 1107
3d310eb7
N
1108 md_write_start(mddev, bio); /* wait on superblock update early */
1109
6eef4b21 1110 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1111 ((bio_end_sector(bio) > mddev->suspend_lo &&
1112 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1113 (mddev_is_clustered(mddev) &&
1114 md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1115 /* As the suspend_* range is controlled by
1116 * userspace, we want an interruptible
1117 * wait.
1118 */
1119 DEFINE_WAIT(w);
1120 for (;;) {
1121 flush_signals(current);
1122 prepare_to_wait(&conf->wait_barrier,
1123 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1124 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1125 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1126 (mddev_is_clustered(mddev) &&
1127 !md_cluster_ops->area_resyncing(mddev,
1128 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1129 break;
1130 schedule();
1131 }
1132 finish_wait(&conf->wait_barrier, &w);
1133 }
62de608d 1134
79ef3a8a 1135 start_next_window = wait_barrier(conf, bio);
1da177e4 1136
84255d10
N
1137 bitmap = mddev->bitmap;
1138
1da177e4
LT
1139 /*
1140 * make_request() can abort the operation when READA is being
1141 * used and no empty request is available.
1142 *
1143 */
1144 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1145
1146 r1_bio->master_bio = bio;
aa8b57aa 1147 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1148 r1_bio->state = 0;
1da177e4 1149 r1_bio->mddev = mddev;
4f024f37 1150 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1151
d2eb35ac
N
1152 /* We might need to issue multiple reads to different
1153 * devices if there are bad blocks around, so we keep
1154 * track of the number of reads in bio->bi_phys_segments.
1155 * If this is 0, there is only one r1_bio and no locking
1156 * will be needed when requests complete. If it is
1157 * non-zero, then it is the number of not-completed requests.
1158 */
1159 bio->bi_phys_segments = 0;
1160 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1161
a362357b 1162 if (rw == READ) {
1da177e4
LT
1163 /*
1164 * read balancing logic:
1165 */
d2eb35ac
N
1166 int rdisk;
1167
1168read_again:
1169 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1170
1171 if (rdisk < 0) {
1172 /* couldn't find anywhere to read from */
1173 raid_end_bio_io(r1_bio);
5a7bbad2 1174 return;
1da177e4
LT
1175 }
1176 mirror = conf->mirrors + rdisk;
1177
e555190d
N
1178 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1179 bitmap) {
1180 /* Reading from a write-mostly device must
1181 * take care not to over-take any writes
1182 * that are 'behind'
1183 */
1184 wait_event(bitmap->behind_wait,
1185 atomic_read(&bitmap->behind_writes) == 0);
1186 }
1da177e4 1187 r1_bio->read_disk = rdisk;
f0cc9a05 1188 r1_bio->start_next_window = 0;
1da177e4 1189
a167f663 1190 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1191 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1192 max_sectors);
1da177e4
LT
1193
1194 r1_bio->bios[rdisk] = read_bio;
1195
4f024f37
KO
1196 read_bio->bi_iter.bi_sector = r1_bio->sector +
1197 mirror->rdev->data_offset;
1da177e4
LT
1198 read_bio->bi_bdev = mirror->rdev->bdev;
1199 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1200 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1201 read_bio->bi_private = r1_bio;
1202
d2eb35ac
N
1203 if (max_sectors < r1_bio->sectors) {
1204 /* could not read all from this device, so we will
1205 * need another r1_bio.
1206 */
d2eb35ac
N
1207
1208 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1209 - bio->bi_iter.bi_sector);
d2eb35ac
N
1210 r1_bio->sectors = max_sectors;
1211 spin_lock_irq(&conf->device_lock);
1212 if (bio->bi_phys_segments == 0)
1213 bio->bi_phys_segments = 2;
1214 else
1215 bio->bi_phys_segments++;
1216 spin_unlock_irq(&conf->device_lock);
1217 /* Cannot call generic_make_request directly
1218 * as that will be queued in __make_request
1219 * and subsequent mempool_alloc might block waiting
1220 * for it. So hand bio over to raid1d.
1221 */
1222 reschedule_retry(r1_bio);
1223
1224 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1225
1226 r1_bio->master_bio = bio;
aa8b57aa 1227 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1228 r1_bio->state = 0;
1229 r1_bio->mddev = mddev;
4f024f37
KO
1230 r1_bio->sector = bio->bi_iter.bi_sector +
1231 sectors_handled;
d2eb35ac
N
1232 goto read_again;
1233 } else
1234 generic_make_request(read_bio);
5a7bbad2 1235 return;
1da177e4
LT
1236 }
1237
1238 /*
1239 * WRITE:
1240 */
34db0cd6
N
1241 if (conf->pending_count >= max_queued_requests) {
1242 md_wakeup_thread(mddev->thread);
1243 wait_event(conf->wait_barrier,
1244 conf->pending_count < max_queued_requests);
1245 }
1f68f0c4 1246 /* first select target devices under rcu_lock and
1da177e4
LT
1247 * inc refcount on their rdev. Record them by setting
1248 * bios[x] to bio
1f68f0c4
N
1249 * If there are known/acknowledged bad blocks on any device on
1250 * which we have seen a write error, we want to avoid writing those
1251 * blocks.
1252 * This potentially requires several writes to write around
1253 * the bad blocks. Each set of writes gets it's own r1bio
1254 * with a set of bios attached.
1da177e4 1255 */
c3b328ac 1256
8f19ccb2 1257 disks = conf->raid_disks * 2;
6bfe0b49 1258 retry_write:
79ef3a8a 1259 r1_bio->start_next_window = start_next_window;
6bfe0b49 1260 blocked_rdev = NULL;
1da177e4 1261 rcu_read_lock();
1f68f0c4 1262 max_sectors = r1_bio->sectors;
1da177e4 1263 for (i = 0; i < disks; i++) {
3cb03002 1264 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1265 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266 atomic_inc(&rdev->nr_pending);
1267 blocked_rdev = rdev;
1268 break;
1269 }
1f68f0c4 1270 r1_bio->bios[i] = NULL;
6b740b8d
N
1271 if (!rdev || test_bit(Faulty, &rdev->flags)
1272 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1273 if (i < conf->raid_disks)
1274 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1275 continue;
1276 }
1277
1278 atomic_inc(&rdev->nr_pending);
1279 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280 sector_t first_bad;
1281 int bad_sectors;
1282 int is_bad;
1283
1284 is_bad = is_badblock(rdev, r1_bio->sector,
1285 max_sectors,
1286 &first_bad, &bad_sectors);
1287 if (is_bad < 0) {
1288 /* mustn't write here until the bad block is
1289 * acknowledged*/
1290 set_bit(BlockedBadBlocks, &rdev->flags);
1291 blocked_rdev = rdev;
1292 break;
1293 }
1294 if (is_bad && first_bad <= r1_bio->sector) {
1295 /* Cannot write here at all */
1296 bad_sectors -= (r1_bio->sector - first_bad);
1297 if (bad_sectors < max_sectors)
1298 /* mustn't write more than bad_sectors
1299 * to other devices yet
1300 */
1301 max_sectors = bad_sectors;
03c902e1 1302 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1303 /* We don't set R1BIO_Degraded as that
1304 * only applies if the disk is
1305 * missing, so it might be re-added,
1306 * and we want to know to recover this
1307 * chunk.
1308 * In this case the device is here,
1309 * and the fact that this chunk is not
1310 * in-sync is recorded in the bad
1311 * block log
1312 */
1313 continue;
964147d5 1314 }
1f68f0c4
N
1315 if (is_bad) {
1316 int good_sectors = first_bad - r1_bio->sector;
1317 if (good_sectors < max_sectors)
1318 max_sectors = good_sectors;
1319 }
1320 }
1321 r1_bio->bios[i] = bio;
1da177e4
LT
1322 }
1323 rcu_read_unlock();
1324
6bfe0b49
DW
1325 if (unlikely(blocked_rdev)) {
1326 /* Wait for this device to become unblocked */
1327 int j;
79ef3a8a 1328 sector_t old = start_next_window;
6bfe0b49
DW
1329
1330 for (j = 0; j < i; j++)
1331 if (r1_bio->bios[j])
1332 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1333 r1_bio->state = 0;
4f024f37 1334 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1335 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1336 start_next_window = wait_barrier(conf, bio);
1337 /*
1338 * We must make sure the multi r1bios of bio have
1339 * the same value of bi_phys_segments
1340 */
1341 if (bio->bi_phys_segments && old &&
1342 old != start_next_window)
1343 /* Wait for the former r1bio(s) to complete */
1344 wait_event(conf->wait_barrier,
1345 bio->bi_phys_segments == 1);
6bfe0b49
DW
1346 goto retry_write;
1347 }
1348
1f68f0c4
N
1349 if (max_sectors < r1_bio->sectors) {
1350 /* We are splitting this write into multiple parts, so
1351 * we need to prepare for allocating another r1_bio.
1352 */
1353 r1_bio->sectors = max_sectors;
1354 spin_lock_irq(&conf->device_lock);
1355 if (bio->bi_phys_segments == 0)
1356 bio->bi_phys_segments = 2;
1357 else
1358 bio->bi_phys_segments++;
1359 spin_unlock_irq(&conf->device_lock);
191ea9b2 1360 }
4f024f37 1361 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1362
4e78064f 1363 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1364 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1365
1f68f0c4 1366 first_clone = 1;
1da177e4
LT
1367 for (i = 0; i < disks; i++) {
1368 struct bio *mbio;
1369 if (!r1_bio->bios[i])
1370 continue;
1371
a167f663 1372 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1373 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1374
1375 if (first_clone) {
1376 /* do behind I/O ?
1377 * Not if there are too many, or cannot
1378 * allocate memory, or a reader on WriteMostly
1379 * is waiting for behind writes to flush */
1380 if (bitmap &&
1381 (atomic_read(&bitmap->behind_writes)
1382 < mddev->bitmap_info.max_write_behind) &&
1383 !waitqueue_active(&bitmap->behind_wait))
1384 alloc_behind_pages(mbio, r1_bio);
1385
1386 bitmap_startwrite(bitmap, r1_bio->sector,
1387 r1_bio->sectors,
1388 test_bit(R1BIO_BehindIO,
1389 &r1_bio->state));
1390 first_clone = 0;
1391 }
2ca68f5e 1392 if (r1_bio->behind_bvecs) {
4b6d287f
N
1393 struct bio_vec *bvec;
1394 int j;
1395
cb34e057
KO
1396 /*
1397 * We trimmed the bio, so _all is legit
4b6d287f 1398 */
d74c6d51 1399 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1400 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1401 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402 atomic_inc(&r1_bio->behind_remaining);
1403 }
1404
1f68f0c4
N
1405 r1_bio->bios[i] = mbio;
1406
4f024f37 1407 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1408 conf->mirrors[i].rdev->data_offset);
1409 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1411 mbio->bi_rw =
1412 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1413 mbio->bi_private = r1_bio;
1414
1da177e4 1415 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1416
1417 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418 if (cb)
1419 plug = container_of(cb, struct raid1_plug_cb, cb);
1420 else
1421 plug = NULL;
4e78064f 1422 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1423 if (plug) {
1424 bio_list_add(&plug->pending, mbio);
1425 plug->pending_cnt++;
1426 } else {
1427 bio_list_add(&conf->pending_bio_list, mbio);
1428 conf->pending_count++;
1429 }
4e78064f 1430 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1431 if (!plug)
b357f04a 1432 md_wakeup_thread(mddev->thread);
1da177e4 1433 }
079fa166
N
1434 /* Mustn't call r1_bio_write_done before this next test,
1435 * as it could result in the bio being freed.
1436 */
aa8b57aa 1437 if (sectors_handled < bio_sectors(bio)) {
079fa166 1438 r1_bio_write_done(r1_bio);
1f68f0c4
N
1439 /* We need another r1_bio. It has already been counted
1440 * in bio->bi_phys_segments
1441 */
1442 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443 r1_bio->master_bio = bio;
aa8b57aa 1444 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1445 r1_bio->state = 0;
1446 r1_bio->mddev = mddev;
4f024f37 1447 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1448 goto retry_write;
1449 }
1450
079fa166
N
1451 r1_bio_write_done(r1_bio);
1452
1453 /* In case raid1d snuck in to freeze_array */
1454 wake_up(&conf->wait_barrier);
1da177e4
LT
1455}
1456
fd01b88c 1457static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1458{
e8096360 1459 struct r1conf *conf = mddev->private;
1da177e4
LT
1460 int i;
1461
1462 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1463 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1464 rcu_read_lock();
1465 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1466 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1467 seq_printf(seq, "%s",
ddac7c7e
N
1468 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1469 }
1470 rcu_read_unlock();
1da177e4
LT
1471 seq_printf(seq, "]");
1472}
1473
fd01b88c 1474static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1475{
1476 char b[BDEVNAME_SIZE];
e8096360 1477 struct r1conf *conf = mddev->private;
1da177e4
LT
1478
1479 /*
1480 * If it is not operational, then we have already marked it as dead
1481 * else if it is the last working disks, ignore the error, let the
1482 * next level up know.
1483 * else mark the drive as failed
1484 */
b2d444d7 1485 if (test_bit(In_sync, &rdev->flags)
4044ba58 1486 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1487 /*
1488 * Don't fail the drive, act as though we were just a
4044ba58
N
1489 * normal single drive.
1490 * However don't try a recovery from this drive as
1491 * it is very likely to fail.
1da177e4 1492 */
5389042f 1493 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1494 return;
4044ba58 1495 }
de393cde 1496 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1497 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1498 unsigned long flags;
1499 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1500 mddev->degraded++;
dd00a99e 1501 set_bit(Faulty, &rdev->flags);
c04be0aa 1502 spin_unlock_irqrestore(&conf->device_lock, flags);
dd00a99e
N
1503 } else
1504 set_bit(Faulty, &rdev->flags);
2446dba0
N
1505 /*
1506 * if recovery is running, make sure it aborts.
1507 */
1508 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
850b2b42 1509 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1510 printk(KERN_ALERT
1511 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1512 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1513 mdname(mddev), bdevname(rdev->bdev, b),
1514 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1515}
1516
e8096360 1517static void print_conf(struct r1conf *conf)
1da177e4
LT
1518{
1519 int i;
1da177e4 1520
9dd1e2fa 1521 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1522 if (!conf) {
9dd1e2fa 1523 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1524 return;
1525 }
9dd1e2fa 1526 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1527 conf->raid_disks);
1528
ddac7c7e 1529 rcu_read_lock();
1da177e4
LT
1530 for (i = 0; i < conf->raid_disks; i++) {
1531 char b[BDEVNAME_SIZE];
3cb03002 1532 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1533 if (rdev)
9dd1e2fa 1534 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1535 i, !test_bit(In_sync, &rdev->flags),
1536 !test_bit(Faulty, &rdev->flags),
1537 bdevname(rdev->bdev,b));
1da177e4 1538 }
ddac7c7e 1539 rcu_read_unlock();
1da177e4
LT
1540}
1541
e8096360 1542static void close_sync(struct r1conf *conf)
1da177e4 1543{
79ef3a8a 1544 wait_barrier(conf, NULL);
1545 allow_barrier(conf, 0, 0);
1da177e4
LT
1546
1547 mempool_destroy(conf->r1buf_pool);
1548 conf->r1buf_pool = NULL;
79ef3a8a 1549
669cc7ba 1550 spin_lock_irq(&conf->resync_lock);
79ef3a8a 1551 conf->next_resync = 0;
1552 conf->start_next_window = MaxSector;
669cc7ba
N
1553 conf->current_window_requests +=
1554 conf->next_window_requests;
1555 conf->next_window_requests = 0;
1556 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1557}
1558
fd01b88c 1559static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1560{
1561 int i;
e8096360 1562 struct r1conf *conf = mddev->private;
6b965620
N
1563 int count = 0;
1564 unsigned long flags;
1da177e4
LT
1565
1566 /*
f72ffdd6 1567 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1568 * and mark them readable.
1569 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1570 */
1571 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1572 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1573 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1574 if (repl
1aee41f6 1575 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1576 && repl->recovery_offset == MaxSector
1577 && !test_bit(Faulty, &repl->flags)
1578 && !test_and_set_bit(In_sync, &repl->flags)) {
1579 /* replacement has just become active */
1580 if (!rdev ||
1581 !test_and_clear_bit(In_sync, &rdev->flags))
1582 count++;
1583 if (rdev) {
1584 /* Replaced device not technically
1585 * faulty, but we need to be sure
1586 * it gets removed and never re-added
1587 */
1588 set_bit(Faulty, &rdev->flags);
1589 sysfs_notify_dirent_safe(
1590 rdev->sysfs_state);
1591 }
1592 }
ddac7c7e 1593 if (rdev
61e4947c 1594 && rdev->recovery_offset == MaxSector
ddac7c7e 1595 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1596 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1597 count++;
654e8b5a 1598 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1599 }
1600 }
6b965620
N
1601 spin_lock_irqsave(&conf->device_lock, flags);
1602 mddev->degraded -= count;
1603 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1604
1605 print_conf(conf);
6b965620 1606 return count;
1da177e4
LT
1607}
1608
fd01b88c 1609static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1610{
e8096360 1611 struct r1conf *conf = mddev->private;
199050ea 1612 int err = -EEXIST;
41158c7e 1613 int mirror = 0;
0eaf822c 1614 struct raid1_info *p;
6c2fce2e 1615 int first = 0;
30194636 1616 int last = conf->raid_disks - 1;
6b740b8d 1617 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1618
5389042f
N
1619 if (mddev->recovery_disabled == conf->recovery_disabled)
1620 return -EBUSY;
1621
6c2fce2e
NB
1622 if (rdev->raid_disk >= 0)
1623 first = last = rdev->raid_disk;
1624
6b740b8d
N
1625 if (q->merge_bvec_fn) {
1626 set_bit(Unmerged, &rdev->flags);
1627 mddev->merge_check_needed = 1;
1628 }
1629
7ef449d1
N
1630 for (mirror = first; mirror <= last; mirror++) {
1631 p = conf->mirrors+mirror;
1632 if (!p->rdev) {
1da177e4 1633
9092c02d
JB
1634 if (mddev->gendisk)
1635 disk_stack_limits(mddev->gendisk, rdev->bdev,
1636 rdev->data_offset << 9);
1da177e4
LT
1637
1638 p->head_position = 0;
1639 rdev->raid_disk = mirror;
199050ea 1640 err = 0;
6aea114a
N
1641 /* As all devices are equivalent, we don't need a full recovery
1642 * if this was recently any drive of the array
1643 */
1644 if (rdev->saved_raid_disk < 0)
41158c7e 1645 conf->fullsync = 1;
d6065f7b 1646 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1647 break;
1648 }
7ef449d1
N
1649 if (test_bit(WantReplacement, &p->rdev->flags) &&
1650 p[conf->raid_disks].rdev == NULL) {
1651 /* Add this device as a replacement */
1652 clear_bit(In_sync, &rdev->flags);
1653 set_bit(Replacement, &rdev->flags);
1654 rdev->raid_disk = mirror;
1655 err = 0;
1656 conf->fullsync = 1;
1657 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1658 break;
1659 }
1660 }
6b740b8d
N
1661 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1662 /* Some requests might not have seen this new
1663 * merge_bvec_fn. We must wait for them to complete
1664 * before merging the device fully.
1665 * First we make sure any code which has tested
1666 * our function has submitted the request, then
1667 * we wait for all outstanding requests to complete.
1668 */
1669 synchronize_sched();
e2d59925
N
1670 freeze_array(conf, 0);
1671 unfreeze_array(conf);
6b740b8d
N
1672 clear_bit(Unmerged, &rdev->flags);
1673 }
ac5e7113 1674 md_integrity_add_rdev(rdev, mddev);
9092c02d 1675 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1676 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1677 print_conf(conf);
199050ea 1678 return err;
1da177e4
LT
1679}
1680
b8321b68 1681static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1682{
e8096360 1683 struct r1conf *conf = mddev->private;
1da177e4 1684 int err = 0;
b8321b68 1685 int number = rdev->raid_disk;
0eaf822c 1686 struct raid1_info *p = conf->mirrors + number;
1da177e4 1687
b014f14c
N
1688 if (rdev != p->rdev)
1689 p = conf->mirrors + conf->raid_disks + number;
1690
1da177e4 1691 print_conf(conf);
b8321b68 1692 if (rdev == p->rdev) {
b2d444d7 1693 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1694 atomic_read(&rdev->nr_pending)) {
1695 err = -EBUSY;
1696 goto abort;
1697 }
046abeed 1698 /* Only remove non-faulty devices if recovery
dfc70645
N
1699 * is not possible.
1700 */
1701 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1702 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1703 mddev->degraded < conf->raid_disks) {
1704 err = -EBUSY;
1705 goto abort;
1706 }
1da177e4 1707 p->rdev = NULL;
fbd568a3 1708 synchronize_rcu();
1da177e4
LT
1709 if (atomic_read(&rdev->nr_pending)) {
1710 /* lost the race, try later */
1711 err = -EBUSY;
1712 p->rdev = rdev;
ac5e7113 1713 goto abort;
8c7a2c2b
N
1714 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1715 /* We just removed a device that is being replaced.
1716 * Move down the replacement. We drain all IO before
1717 * doing this to avoid confusion.
1718 */
1719 struct md_rdev *repl =
1720 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1721 freeze_array(conf, 0);
8c7a2c2b
N
1722 clear_bit(Replacement, &repl->flags);
1723 p->rdev = repl;
1724 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1725 unfreeze_array(conf);
8c7a2c2b
N
1726 clear_bit(WantReplacement, &rdev->flags);
1727 } else
b014f14c 1728 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1729 err = md_integrity_register(mddev);
1da177e4
LT
1730 }
1731abort:
1732
1733 print_conf(conf);
1734 return err;
1735}
1736
6712ecf8 1737static void end_sync_read(struct bio *bio, int error)
1da177e4 1738{
9f2c9d12 1739 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1740
0fc280f6 1741 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1742
1da177e4
LT
1743 /*
1744 * we have read a block, now it needs to be re-written,
1745 * or re-read if the read failed.
1746 * We don't do much here, just schedule handling by raid1d
1747 */
69382e85 1748 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1749 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1750
1751 if (atomic_dec_and_test(&r1_bio->remaining))
1752 reschedule_retry(r1_bio);
1da177e4
LT
1753}
1754
6712ecf8 1755static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1756{
1757 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1758 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1759 struct mddev *mddev = r1_bio->mddev;
e8096360 1760 struct r1conf *conf = mddev->private;
1da177e4 1761 int mirror=0;
4367af55
N
1762 sector_t first_bad;
1763 int bad_sectors;
1da177e4 1764
ba3ae3be
NK
1765 mirror = find_bio_disk(r1_bio, bio);
1766
6b1117d5 1767 if (!uptodate) {
57dab0bd 1768 sector_t sync_blocks = 0;
6b1117d5
N
1769 sector_t s = r1_bio->sector;
1770 long sectors_to_go = r1_bio->sectors;
1771 /* make sure these bits doesn't get cleared. */
1772 do {
5e3db645 1773 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1774 &sync_blocks, 1);
1775 s += sync_blocks;
1776 sectors_to_go -= sync_blocks;
1777 } while (sectors_to_go > 0);
d8f05d29
N
1778 set_bit(WriteErrorSeen,
1779 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1780 if (!test_and_set_bit(WantReplacement,
1781 &conf->mirrors[mirror].rdev->flags))
1782 set_bit(MD_RECOVERY_NEEDED, &
1783 mddev->recovery);
d8f05d29 1784 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1785 } else if (is_badblock(conf->mirrors[mirror].rdev,
1786 r1_bio->sector,
1787 r1_bio->sectors,
3a9f28a5
N
1788 &first_bad, &bad_sectors) &&
1789 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1790 r1_bio->sector,
1791 r1_bio->sectors,
1792 &first_bad, &bad_sectors)
1793 )
4367af55 1794 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1795
1da177e4 1796 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1797 int s = r1_bio->sectors;
d8f05d29
N
1798 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1799 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1800 reschedule_retry(r1_bio);
1801 else {
1802 put_buf(r1_bio);
1803 md_done_sync(mddev, s, uptodate);
1804 }
1da177e4 1805 }
1da177e4
LT
1806}
1807
3cb03002 1808static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1809 int sectors, struct page *page, int rw)
1810{
1811 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1812 /* success */
1813 return 1;
19d67169 1814 if (rw == WRITE) {
d8f05d29 1815 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1816 if (!test_and_set_bit(WantReplacement,
1817 &rdev->flags))
1818 set_bit(MD_RECOVERY_NEEDED, &
1819 rdev->mddev->recovery);
1820 }
d8f05d29
N
1821 /* need to record an error - either for the block or the device */
1822 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1823 md_error(rdev->mddev, rdev);
1824 return 0;
1825}
1826
9f2c9d12 1827static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1828{
a68e5870
N
1829 /* Try some synchronous reads of other devices to get
1830 * good data, much like with normal read errors. Only
1831 * read into the pages we already have so we don't
1832 * need to re-issue the read request.
1833 * We don't need to freeze the array, because being in an
1834 * active sync request, there is no normal IO, and
1835 * no overlapping syncs.
06f60385
N
1836 * We don't need to check is_badblock() again as we
1837 * made sure that anything with a bad block in range
1838 * will have bi_end_io clear.
a68e5870 1839 */
fd01b88c 1840 struct mddev *mddev = r1_bio->mddev;
e8096360 1841 struct r1conf *conf = mddev->private;
a68e5870
N
1842 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1843 sector_t sect = r1_bio->sector;
1844 int sectors = r1_bio->sectors;
1845 int idx = 0;
1846
1847 while(sectors) {
1848 int s = sectors;
1849 int d = r1_bio->read_disk;
1850 int success = 0;
3cb03002 1851 struct md_rdev *rdev;
78d7f5f7 1852 int start;
a68e5870
N
1853
1854 if (s > (PAGE_SIZE>>9))
1855 s = PAGE_SIZE >> 9;
1856 do {
1857 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1858 /* No rcu protection needed here devices
1859 * can only be removed when no resync is
1860 * active, and resync is currently active
1861 */
1862 rdev = conf->mirrors[d].rdev;
9d3d8011 1863 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1864 bio->bi_io_vec[idx].bv_page,
1865 READ, false)) {
1866 success = 1;
1867 break;
1868 }
1869 }
1870 d++;
8f19ccb2 1871 if (d == conf->raid_disks * 2)
a68e5870
N
1872 d = 0;
1873 } while (!success && d != r1_bio->read_disk);
1874
78d7f5f7 1875 if (!success) {
a68e5870 1876 char b[BDEVNAME_SIZE];
3a9f28a5
N
1877 int abort = 0;
1878 /* Cannot read from anywhere, this block is lost.
1879 * Record a bad block on each device. If that doesn't
1880 * work just disable and interrupt the recovery.
1881 * Don't fail devices as that won't really help.
1882 */
a68e5870
N
1883 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1884 " for block %llu\n",
1885 mdname(mddev),
1886 bdevname(bio->bi_bdev, b),
1887 (unsigned long long)r1_bio->sector);
8f19ccb2 1888 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1889 rdev = conf->mirrors[d].rdev;
1890 if (!rdev || test_bit(Faulty, &rdev->flags))
1891 continue;
1892 if (!rdev_set_badblocks(rdev, sect, s, 0))
1893 abort = 1;
1894 }
1895 if (abort) {
d890fa2b
N
1896 conf->recovery_disabled =
1897 mddev->recovery_disabled;
3a9f28a5
N
1898 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1899 md_done_sync(mddev, r1_bio->sectors, 0);
1900 put_buf(r1_bio);
1901 return 0;
1902 }
1903 /* Try next page */
1904 sectors -= s;
1905 sect += s;
1906 idx++;
1907 continue;
d11c171e 1908 }
78d7f5f7
N
1909
1910 start = d;
1911 /* write it back and re-read */
1912 while (d != r1_bio->read_disk) {
1913 if (d == 0)
8f19ccb2 1914 d = conf->raid_disks * 2;
78d7f5f7
N
1915 d--;
1916 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1917 continue;
1918 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1919 if (r1_sync_page_io(rdev, sect, s,
1920 bio->bi_io_vec[idx].bv_page,
1921 WRITE) == 0) {
78d7f5f7
N
1922 r1_bio->bios[d]->bi_end_io = NULL;
1923 rdev_dec_pending(rdev, mddev);
9d3d8011 1924 }
78d7f5f7
N
1925 }
1926 d = start;
1927 while (d != r1_bio->read_disk) {
1928 if (d == 0)
8f19ccb2 1929 d = conf->raid_disks * 2;
78d7f5f7
N
1930 d--;
1931 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1932 continue;
1933 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1934 if (r1_sync_page_io(rdev, sect, s,
1935 bio->bi_io_vec[idx].bv_page,
1936 READ) != 0)
9d3d8011 1937 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1938 }
a68e5870
N
1939 sectors -= s;
1940 sect += s;
1941 idx ++;
1942 }
78d7f5f7 1943 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1944 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1945 return 1;
1946}
1947
c95e6385 1948static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1949{
1950 /* We have read all readable devices. If we haven't
1951 * got the block, then there is no hope left.
1952 * If we have, then we want to do a comparison
1953 * and skip the write if everything is the same.
1954 * If any blocks failed to read, then we need to
1955 * attempt an over-write
1956 */
fd01b88c 1957 struct mddev *mddev = r1_bio->mddev;
e8096360 1958 struct r1conf *conf = mddev->private;
a68e5870
N
1959 int primary;
1960 int i;
f4380a91 1961 int vcnt;
a68e5870 1962
30bc9b53
N
1963 /* Fix variable parts of all bios */
1964 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1965 for (i = 0; i < conf->raid_disks * 2; i++) {
1966 int j;
1967 int size;
1877db75 1968 int uptodate;
30bc9b53
N
1969 struct bio *b = r1_bio->bios[i];
1970 if (b->bi_end_io != end_sync_read)
1971 continue;
1877db75
N
1972 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1973 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1974 bio_reset(b);
1877db75
N
1975 if (!uptodate)
1976 clear_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1977 b->bi_vcnt = vcnt;
4f024f37
KO
1978 b->bi_iter.bi_size = r1_bio->sectors << 9;
1979 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1980 conf->mirrors[i].rdev->data_offset;
1981 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1982 b->bi_end_io = end_sync_read;
1983 b->bi_private = r1_bio;
1984
4f024f37 1985 size = b->bi_iter.bi_size;
30bc9b53
N
1986 for (j = 0; j < vcnt ; j++) {
1987 struct bio_vec *bi;
1988 bi = &b->bi_io_vec[j];
1989 bi->bv_offset = 0;
1990 if (size > PAGE_SIZE)
1991 bi->bv_len = PAGE_SIZE;
1992 else
1993 bi->bv_len = size;
1994 size -= PAGE_SIZE;
1995 }
1996 }
8f19ccb2 1997 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1998 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1999 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2000 r1_bio->bios[primary]->bi_end_io = NULL;
2001 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2002 break;
2003 }
2004 r1_bio->read_disk = primary;
8f19ccb2 2005 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2006 int j;
78d7f5f7
N
2007 struct bio *pbio = r1_bio->bios[primary];
2008 struct bio *sbio = r1_bio->bios[i];
1877db75 2009 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
a68e5870 2010
2aabaa65 2011 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2012 continue;
1877db75
N
2013 /* Now we can 'fixup' the BIO_UPTODATE flag */
2014 set_bit(BIO_UPTODATE, &sbio->bi_flags);
78d7f5f7 2015
1877db75 2016 if (uptodate) {
78d7f5f7
N
2017 for (j = vcnt; j-- ; ) {
2018 struct page *p, *s;
2019 p = pbio->bi_io_vec[j].bv_page;
2020 s = sbio->bi_io_vec[j].bv_page;
2021 if (memcmp(page_address(p),
2022 page_address(s),
5020ad7d 2023 sbio->bi_io_vec[j].bv_len))
78d7f5f7 2024 break;
69382e85 2025 }
78d7f5f7
N
2026 } else
2027 j = 0;
2028 if (j >= 0)
7f7583d4 2029 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2030 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1877db75 2031 && uptodate)) {
78d7f5f7
N
2032 /* No need to write to this device. */
2033 sbio->bi_end_io = NULL;
2034 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2035 continue;
2036 }
d3b45c2a
KO
2037
2038 bio_copy_data(sbio, pbio);
78d7f5f7 2039 }
a68e5870
N
2040}
2041
9f2c9d12 2042static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2043{
e8096360 2044 struct r1conf *conf = mddev->private;
a68e5870 2045 int i;
8f19ccb2 2046 int disks = conf->raid_disks * 2;
a68e5870
N
2047 struct bio *bio, *wbio;
2048
2049 bio = r1_bio->bios[r1_bio->read_disk];
2050
a68e5870
N
2051 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2052 /* ouch - failed to read all of that. */
2053 if (!fix_sync_read_error(r1_bio))
2054 return;
7ca78d57
N
2055
2056 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2057 process_checks(r1_bio);
2058
d11c171e
N
2059 /*
2060 * schedule writes
2061 */
1da177e4
LT
2062 atomic_set(&r1_bio->remaining, 1);
2063 for (i = 0; i < disks ; i++) {
2064 wbio = r1_bio->bios[i];
3e198f78
N
2065 if (wbio->bi_end_io == NULL ||
2066 (wbio->bi_end_io == end_sync_read &&
2067 (i == r1_bio->read_disk ||
2068 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2069 continue;
2070
3e198f78
N
2071 wbio->bi_rw = WRITE;
2072 wbio->bi_end_io = end_sync_write;
1da177e4 2073 atomic_inc(&r1_bio->remaining);
aa8b57aa 2074 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2075
1da177e4
LT
2076 generic_make_request(wbio);
2077 }
2078
2079 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2080 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2081 int s = r1_bio->sectors;
2082 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2083 test_bit(R1BIO_WriteError, &r1_bio->state))
2084 reschedule_retry(r1_bio);
2085 else {
2086 put_buf(r1_bio);
2087 md_done_sync(mddev, s, 1);
2088 }
1da177e4
LT
2089 }
2090}
2091
2092/*
2093 * This is a kernel thread which:
2094 *
2095 * 1. Retries failed read operations on working mirrors.
2096 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2097 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2098 */
2099
e8096360 2100static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2101 sector_t sect, int sectors)
2102{
fd01b88c 2103 struct mddev *mddev = conf->mddev;
867868fb
N
2104 while(sectors) {
2105 int s = sectors;
2106 int d = read_disk;
2107 int success = 0;
2108 int start;
3cb03002 2109 struct md_rdev *rdev;
867868fb
N
2110
2111 if (s > (PAGE_SIZE>>9))
2112 s = PAGE_SIZE >> 9;
2113
2114 do {
2115 /* Note: no rcu protection needed here
2116 * as this is synchronous in the raid1d thread
2117 * which is the thread that might remove
2118 * a device. If raid1d ever becomes multi-threaded....
2119 */
d2eb35ac
N
2120 sector_t first_bad;
2121 int bad_sectors;
2122
867868fb
N
2123 rdev = conf->mirrors[d].rdev;
2124 if (rdev &&
da8840a7 2125 (test_bit(In_sync, &rdev->flags) ||
2126 (!test_bit(Faulty, &rdev->flags) &&
2127 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2128 is_badblock(rdev, sect, s,
2129 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2130 sync_page_io(rdev, sect, s<<9,
2131 conf->tmppage, READ, false))
867868fb
N
2132 success = 1;
2133 else {
2134 d++;
8f19ccb2 2135 if (d == conf->raid_disks * 2)
867868fb
N
2136 d = 0;
2137 }
2138 } while (!success && d != read_disk);
2139
2140 if (!success) {
d8f05d29 2141 /* Cannot read from anywhere - mark it bad */
3cb03002 2142 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2143 if (!rdev_set_badblocks(rdev, sect, s, 0))
2144 md_error(mddev, rdev);
867868fb
N
2145 break;
2146 }
2147 /* write it back and re-read */
2148 start = d;
2149 while (d != read_disk) {
2150 if (d==0)
8f19ccb2 2151 d = conf->raid_disks * 2;
867868fb
N
2152 d--;
2153 rdev = conf->mirrors[d].rdev;
2154 if (rdev &&
b8cb6b4c 2155 !test_bit(Faulty, &rdev->flags))
d8f05d29
N
2156 r1_sync_page_io(rdev, sect, s,
2157 conf->tmppage, WRITE);
867868fb
N
2158 }
2159 d = start;
2160 while (d != read_disk) {
2161 char b[BDEVNAME_SIZE];
2162 if (d==0)
8f19ccb2 2163 d = conf->raid_disks * 2;
867868fb
N
2164 d--;
2165 rdev = conf->mirrors[d].rdev;
2166 if (rdev &&
b8cb6b4c 2167 !test_bit(Faulty, &rdev->flags)) {
d8f05d29
N
2168 if (r1_sync_page_io(rdev, sect, s,
2169 conf->tmppage, READ)) {
867868fb
N
2170 atomic_add(s, &rdev->corrected_errors);
2171 printk(KERN_INFO
9dd1e2fa 2172 "md/raid1:%s: read error corrected "
867868fb
N
2173 "(%d sectors at %llu on %s)\n",
2174 mdname(mddev), s,
969b755a
RD
2175 (unsigned long long)(sect +
2176 rdev->data_offset),
867868fb
N
2177 bdevname(rdev->bdev, b));
2178 }
2179 }
2180 }
2181 sectors -= s;
2182 sect += s;
2183 }
2184}
2185
9f2c9d12 2186static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2187{
fd01b88c 2188 struct mddev *mddev = r1_bio->mddev;
e8096360 2189 struct r1conf *conf = mddev->private;
3cb03002 2190 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2191
2192 /* bio has the data to be written to device 'i' where
2193 * we just recently had a write error.
2194 * We repeatedly clone the bio and trim down to one block,
2195 * then try the write. Where the write fails we record
2196 * a bad block.
2197 * It is conceivable that the bio doesn't exactly align with
2198 * blocks. We must handle this somehow.
2199 *
2200 * We currently own a reference on the rdev.
2201 */
2202
2203 int block_sectors;
2204 sector_t sector;
2205 int sectors;
2206 int sect_to_write = r1_bio->sectors;
2207 int ok = 1;
2208
2209 if (rdev->badblocks.shift < 0)
2210 return 0;
2211
ab713cdc
ND
2212 block_sectors = roundup(1 << rdev->badblocks.shift,
2213 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2214 sector = r1_bio->sector;
2215 sectors = ((sector + block_sectors)
2216 & ~(sector_t)(block_sectors - 1))
2217 - sector;
2218
cd5ff9a1
N
2219 while (sect_to_write) {
2220 struct bio *wbio;
2221 if (sectors > sect_to_write)
2222 sectors = sect_to_write;
2223 /* Write at 'sector' for 'sectors'*/
2224
b783863f
KO
2225 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2226 unsigned vcnt = r1_bio->behind_page_count;
2227 struct bio_vec *vec = r1_bio->behind_bvecs;
2228
2229 while (!vec->bv_page) {
2230 vec++;
2231 vcnt--;
2232 }
2233
2234 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2235 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2236
2237 wbio->bi_vcnt = vcnt;
2238 } else {
2239 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2240 }
2241
cd5ff9a1 2242 wbio->bi_rw = WRITE;
4f024f37
KO
2243 wbio->bi_iter.bi_sector = r1_bio->sector;
2244 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2245
6678d83f 2246 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2247 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1
N
2248 wbio->bi_bdev = rdev->bdev;
2249 if (submit_bio_wait(WRITE, wbio) == 0)
2250 /* failure! */
2251 ok = rdev_set_badblocks(rdev, sector,
2252 sectors, 0)
2253 && ok;
2254
2255 bio_put(wbio);
2256 sect_to_write -= sectors;
2257 sector += sectors;
2258 sectors = block_sectors;
2259 }
2260 return ok;
2261}
2262
e8096360 2263static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2264{
2265 int m;
2266 int s = r1_bio->sectors;
8f19ccb2 2267 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2268 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2269 struct bio *bio = r1_bio->bios[m];
2270 if (bio->bi_end_io == NULL)
2271 continue;
2272 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2273 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2274 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2275 }
2276 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2277 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2278 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2279 md_error(conf->mddev, rdev);
2280 }
2281 }
2282 put_buf(r1_bio);
2283 md_done_sync(conf->mddev, s, 1);
2284}
2285
e8096360 2286static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2287{
2288 int m;
8f19ccb2 2289 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2290 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2291 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2292 rdev_clear_badblocks(rdev,
2293 r1_bio->sector,
c6563a8c 2294 r1_bio->sectors, 0);
62096bce
N
2295 rdev_dec_pending(rdev, conf->mddev);
2296 } else if (r1_bio->bios[m] != NULL) {
2297 /* This drive got a write error. We need to
2298 * narrow down and record precise write
2299 * errors.
2300 */
2301 if (!narrow_write_error(r1_bio, m)) {
2302 md_error(conf->mddev,
2303 conf->mirrors[m].rdev);
2304 /* an I/O failed, we can't clear the bitmap */
2305 set_bit(R1BIO_Degraded, &r1_bio->state);
2306 }
2307 rdev_dec_pending(conf->mirrors[m].rdev,
2308 conf->mddev);
2309 }
2310 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2311 close_write(r1_bio);
2312 raid_end_bio_io(r1_bio);
2313}
2314
e8096360 2315static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2316{
2317 int disk;
2318 int max_sectors;
fd01b88c 2319 struct mddev *mddev = conf->mddev;
62096bce
N
2320 struct bio *bio;
2321 char b[BDEVNAME_SIZE];
3cb03002 2322 struct md_rdev *rdev;
62096bce
N
2323
2324 clear_bit(R1BIO_ReadError, &r1_bio->state);
2325 /* we got a read error. Maybe the drive is bad. Maybe just
2326 * the block and we can fix it.
2327 * We freeze all other IO, and try reading the block from
2328 * other devices. When we find one, we re-write
2329 * and check it that fixes the read error.
2330 * This is all done synchronously while the array is
2331 * frozen
2332 */
2333 if (mddev->ro == 0) {
e2d59925 2334 freeze_array(conf, 1);
62096bce
N
2335 fix_read_error(conf, r1_bio->read_disk,
2336 r1_bio->sector, r1_bio->sectors);
2337 unfreeze_array(conf);
2338 } else
2339 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2340 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2341
2342 bio = r1_bio->bios[r1_bio->read_disk];
2343 bdevname(bio->bi_bdev, b);
2344read_more:
2345 disk = read_balance(conf, r1_bio, &max_sectors);
2346 if (disk == -1) {
2347 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2348 " read error for block %llu\n",
2349 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2350 raid_end_bio_io(r1_bio);
2351 } else {
2352 const unsigned long do_sync
2353 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2354 if (bio) {
2355 r1_bio->bios[r1_bio->read_disk] =
2356 mddev->ro ? IO_BLOCKED : NULL;
2357 bio_put(bio);
2358 }
2359 r1_bio->read_disk = disk;
2360 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2361 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2362 max_sectors);
62096bce
N
2363 r1_bio->bios[r1_bio->read_disk] = bio;
2364 rdev = conf->mirrors[disk].rdev;
2365 printk_ratelimited(KERN_ERR
2366 "md/raid1:%s: redirecting sector %llu"
2367 " to other mirror: %s\n",
2368 mdname(mddev),
2369 (unsigned long long)r1_bio->sector,
2370 bdevname(rdev->bdev, b));
4f024f37 2371 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2372 bio->bi_bdev = rdev->bdev;
2373 bio->bi_end_io = raid1_end_read_request;
2374 bio->bi_rw = READ | do_sync;
2375 bio->bi_private = r1_bio;
2376 if (max_sectors < r1_bio->sectors) {
2377 /* Drat - have to split this up more */
2378 struct bio *mbio = r1_bio->master_bio;
2379 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2380 - mbio->bi_iter.bi_sector);
62096bce
N
2381 r1_bio->sectors = max_sectors;
2382 spin_lock_irq(&conf->device_lock);
2383 if (mbio->bi_phys_segments == 0)
2384 mbio->bi_phys_segments = 2;
2385 else
2386 mbio->bi_phys_segments++;
2387 spin_unlock_irq(&conf->device_lock);
2388 generic_make_request(bio);
2389 bio = NULL;
2390
2391 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2392
2393 r1_bio->master_bio = mbio;
aa8b57aa 2394 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2395 r1_bio->state = 0;
2396 set_bit(R1BIO_ReadError, &r1_bio->state);
2397 r1_bio->mddev = mddev;
4f024f37
KO
2398 r1_bio->sector = mbio->bi_iter.bi_sector +
2399 sectors_handled;
62096bce
N
2400
2401 goto read_more;
2402 } else
2403 generic_make_request(bio);
2404 }
2405}
2406
4ed8731d 2407static void raid1d(struct md_thread *thread)
1da177e4 2408{
4ed8731d 2409 struct mddev *mddev = thread->mddev;
9f2c9d12 2410 struct r1bio *r1_bio;
1da177e4 2411 unsigned long flags;
e8096360 2412 struct r1conf *conf = mddev->private;
1da177e4 2413 struct list_head *head = &conf->retry_list;
e1dfa0a2 2414 struct blk_plug plug;
1da177e4
LT
2415
2416 md_check_recovery(mddev);
e1dfa0a2
N
2417
2418 blk_start_plug(&plug);
1da177e4 2419 for (;;) {
191ea9b2 2420
0021b7bc 2421 flush_pending_writes(conf);
191ea9b2 2422
a35e63ef
N
2423 spin_lock_irqsave(&conf->device_lock, flags);
2424 if (list_empty(head)) {
2425 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2426 break;
a35e63ef 2427 }
9f2c9d12 2428 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2429 list_del(head->prev);
ddaf22ab 2430 conf->nr_queued--;
1da177e4
LT
2431 spin_unlock_irqrestore(&conf->device_lock, flags);
2432
2433 mddev = r1_bio->mddev;
070ec55d 2434 conf = mddev->private;
4367af55 2435 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2436 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2437 test_bit(R1BIO_WriteError, &r1_bio->state))
2438 handle_sync_write_finished(conf, r1_bio);
2439 else
4367af55 2440 sync_request_write(mddev, r1_bio);
cd5ff9a1 2441 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2442 test_bit(R1BIO_WriteError, &r1_bio->state))
2443 handle_write_finished(conf, r1_bio);
2444 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2445 handle_read_error(conf, r1_bio);
2446 else
d2eb35ac
N
2447 /* just a partial read to be scheduled from separate
2448 * context
2449 */
2450 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2451
1d9d5241 2452 cond_resched();
de393cde
N
2453 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2454 md_check_recovery(mddev);
1da177e4 2455 }
e1dfa0a2 2456 blk_finish_plug(&plug);
1da177e4
LT
2457}
2458
e8096360 2459static int init_resync(struct r1conf *conf)
1da177e4
LT
2460{
2461 int buffs;
2462
2463 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2464 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2465 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2466 conf->poolinfo);
2467 if (!conf->r1buf_pool)
2468 return -ENOMEM;
2469 conf->next_resync = 0;
2470 return 0;
2471}
2472
2473/*
2474 * perform a "sync" on one "block"
2475 *
2476 * We need to make sure that no normal I/O request - particularly write
2477 * requests - conflict with active sync requests.
2478 *
2479 * This is achieved by tracking pending requests and a 'barrier' concept
2480 * that can be installed to exclude normal IO requests.
2481 */
2482
fd01b88c 2483static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2484{
e8096360 2485 struct r1conf *conf = mddev->private;
9f2c9d12 2486 struct r1bio *r1_bio;
1da177e4
LT
2487 struct bio *bio;
2488 sector_t max_sector, nr_sectors;
3e198f78 2489 int disk = -1;
1da177e4 2490 int i;
3e198f78
N
2491 int wonly = -1;
2492 int write_targets = 0, read_targets = 0;
57dab0bd 2493 sector_t sync_blocks;
e3b9703e 2494 int still_degraded = 0;
06f60385
N
2495 int good_sectors = RESYNC_SECTORS;
2496 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2497
2498 if (!conf->r1buf_pool)
2499 if (init_resync(conf))
57afd89f 2500 return 0;
1da177e4 2501
58c0fed4 2502 max_sector = mddev->dev_sectors;
1da177e4 2503 if (sector_nr >= max_sector) {
191ea9b2
N
2504 /* If we aborted, we need to abort the
2505 * sync on the 'current' bitmap chunk (there will
2506 * only be one in raid1 resync.
2507 * We can find the current addess in mddev->curr_resync
2508 */
6a806c51
N
2509 if (mddev->curr_resync < max_sector) /* aborted */
2510 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2511 &sync_blocks, 1);
6a806c51 2512 else /* completed sync */
191ea9b2 2513 conf->fullsync = 0;
6a806c51
N
2514
2515 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2516 close_sync(conf);
2517 return 0;
2518 }
2519
07d84d10
N
2520 if (mddev->bitmap == NULL &&
2521 mddev->recovery_cp == MaxSector &&
6394cca5 2522 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2523 conf->fullsync == 0) {
2524 *skipped = 1;
2525 return max_sector - sector_nr;
2526 }
6394cca5
N
2527 /* before building a request, check if we can skip these blocks..
2528 * This call the bitmap_start_sync doesn't actually record anything
2529 */
e3b9703e 2530 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2531 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2532 /* We can skip this block, and probably several more */
2533 *skipped = 1;
2534 return sync_blocks;
2535 }
1da177e4 2536 /*
17999be4
N
2537 * If there is non-resync activity waiting for a turn,
2538 * and resync is going fast enough,
2539 * then let it though before starting on this new sync request.
1da177e4 2540 */
17999be4 2541 if (!go_faster && conf->nr_waiting)
1da177e4 2542 msleep_interruptible(1000);
17999be4 2543
b47490c9 2544 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2545 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2546
c2fd4c94 2547 raise_barrier(conf, sector_nr);
1da177e4 2548
3e198f78 2549 rcu_read_lock();
1da177e4 2550 /*
3e198f78
N
2551 * If we get a correctably read error during resync or recovery,
2552 * we might want to read from a different device. So we
2553 * flag all drives that could conceivably be read from for READ,
2554 * and any others (which will be non-In_sync devices) for WRITE.
2555 * If a read fails, we try reading from something else for which READ
2556 * is OK.
1da177e4 2557 */
1da177e4 2558
1da177e4
LT
2559 r1_bio->mddev = mddev;
2560 r1_bio->sector = sector_nr;
191ea9b2 2561 r1_bio->state = 0;
1da177e4 2562 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2563
8f19ccb2 2564 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2565 struct md_rdev *rdev;
1da177e4 2566 bio = r1_bio->bios[i];
2aabaa65 2567 bio_reset(bio);
1da177e4 2568
3e198f78
N
2569 rdev = rcu_dereference(conf->mirrors[i].rdev);
2570 if (rdev == NULL ||
06f60385 2571 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2572 if (i < conf->raid_disks)
2573 still_degraded = 1;
3e198f78 2574 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2575 bio->bi_rw = WRITE;
2576 bio->bi_end_io = end_sync_write;
2577 write_targets ++;
3e198f78
N
2578 } else {
2579 /* may need to read from here */
06f60385
N
2580 sector_t first_bad = MaxSector;
2581 int bad_sectors;
2582
2583 if (is_badblock(rdev, sector_nr, good_sectors,
2584 &first_bad, &bad_sectors)) {
2585 if (first_bad > sector_nr)
2586 good_sectors = first_bad - sector_nr;
2587 else {
2588 bad_sectors -= (sector_nr - first_bad);
2589 if (min_bad == 0 ||
2590 min_bad > bad_sectors)
2591 min_bad = bad_sectors;
2592 }
2593 }
2594 if (sector_nr < first_bad) {
2595 if (test_bit(WriteMostly, &rdev->flags)) {
2596 if (wonly < 0)
2597 wonly = i;
2598 } else {
2599 if (disk < 0)
2600 disk = i;
2601 }
2602 bio->bi_rw = READ;
2603 bio->bi_end_io = end_sync_read;
2604 read_targets++;
d57368af
AL
2605 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2606 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2607 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2608 /*
2609 * The device is suitable for reading (InSync),
2610 * but has bad block(s) here. Let's try to correct them,
2611 * if we are doing resync or repair. Otherwise, leave
2612 * this device alone for this sync request.
2613 */
2614 bio->bi_rw = WRITE;
2615 bio->bi_end_io = end_sync_write;
2616 write_targets++;
3e198f78 2617 }
3e198f78 2618 }
06f60385
N
2619 if (bio->bi_end_io) {
2620 atomic_inc(&rdev->nr_pending);
4f024f37 2621 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2622 bio->bi_bdev = rdev->bdev;
2623 bio->bi_private = r1_bio;
2624 }
1da177e4 2625 }
3e198f78
N
2626 rcu_read_unlock();
2627 if (disk < 0)
2628 disk = wonly;
2629 r1_bio->read_disk = disk;
191ea9b2 2630
06f60385
N
2631 if (read_targets == 0 && min_bad > 0) {
2632 /* These sectors are bad on all InSync devices, so we
2633 * need to mark them bad on all write targets
2634 */
2635 int ok = 1;
8f19ccb2 2636 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2637 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2638 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2639 ok = rdev_set_badblocks(rdev, sector_nr,
2640 min_bad, 0
2641 ) && ok;
2642 }
2643 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2644 *skipped = 1;
2645 put_buf(r1_bio);
2646
2647 if (!ok) {
2648 /* Cannot record the badblocks, so need to
2649 * abort the resync.
2650 * If there are multiple read targets, could just
2651 * fail the really bad ones ???
2652 */
2653 conf->recovery_disabled = mddev->recovery_disabled;
2654 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2655 return 0;
2656 } else
2657 return min_bad;
2658
2659 }
2660 if (min_bad > 0 && min_bad < good_sectors) {
2661 /* only resync enough to reach the next bad->good
2662 * transition */
2663 good_sectors = min_bad;
2664 }
2665
3e198f78
N
2666 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2667 /* extra read targets are also write targets */
2668 write_targets += read_targets-1;
2669
2670 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2671 /* There is nowhere to write, so all non-sync
2672 * drives must be failed - so we are finished
2673 */
b7219ccb
N
2674 sector_t rv;
2675 if (min_bad > 0)
2676 max_sector = sector_nr + min_bad;
2677 rv = max_sector - sector_nr;
57afd89f 2678 *skipped = 1;
1da177e4 2679 put_buf(r1_bio);
1da177e4
LT
2680 return rv;
2681 }
2682
c6207277
N
2683 if (max_sector > mddev->resync_max)
2684 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2685 if (max_sector > sector_nr + good_sectors)
2686 max_sector = sector_nr + good_sectors;
1da177e4 2687 nr_sectors = 0;
289e99e8 2688 sync_blocks = 0;
1da177e4
LT
2689 do {
2690 struct page *page;
2691 int len = PAGE_SIZE;
2692 if (sector_nr + (len>>9) > max_sector)
2693 len = (max_sector - sector_nr) << 9;
2694 if (len == 0)
2695 break;
6a806c51
N
2696 if (sync_blocks == 0) {
2697 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2698 &sync_blocks, still_degraded) &&
2699 !conf->fullsync &&
2700 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2701 break;
9e77c485 2702 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2703 if ((len >> 9) > sync_blocks)
6a806c51 2704 len = sync_blocks<<9;
ab7a30c7 2705 }
191ea9b2 2706
8f19ccb2 2707 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2708 bio = r1_bio->bios[i];
2709 if (bio->bi_end_io) {
d11c171e 2710 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2711 if (bio_add_page(bio, page, len, 0) == 0) {
2712 /* stop here */
d11c171e 2713 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2714 while (i > 0) {
2715 i--;
2716 bio = r1_bio->bios[i];
6a806c51
N
2717 if (bio->bi_end_io==NULL)
2718 continue;
1da177e4
LT
2719 /* remove last page from this bio */
2720 bio->bi_vcnt--;
4f024f37 2721 bio->bi_iter.bi_size -= len;
3fd83717 2722 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1da177e4
LT
2723 }
2724 goto bio_full;
2725 }
2726 }
2727 }
2728 nr_sectors += len>>9;
2729 sector_nr += len>>9;
191ea9b2 2730 sync_blocks -= (len>>9);
1da177e4
LT
2731 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2732 bio_full:
1da177e4
LT
2733 r1_bio->sectors = nr_sectors;
2734
d11c171e
N
2735 /* For a user-requested sync, we read all readable devices and do a
2736 * compare
2737 */
2738 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2739 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2740 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2741 bio = r1_bio->bios[i];
2742 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2743 read_targets--;
ddac7c7e 2744 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2745 generic_make_request(bio);
2746 }
2747 }
2748 } else {
2749 atomic_set(&r1_bio->remaining, 1);
2750 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2751 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2752 generic_make_request(bio);
1da177e4 2753
d11c171e 2754 }
1da177e4
LT
2755 return nr_sectors;
2756}
2757
fd01b88c 2758static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2759{
2760 if (sectors)
2761 return sectors;
2762
2763 return mddev->dev_sectors;
2764}
2765
e8096360 2766static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2767{
e8096360 2768 struct r1conf *conf;
709ae487 2769 int i;
0eaf822c 2770 struct raid1_info *disk;
3cb03002 2771 struct md_rdev *rdev;
709ae487 2772 int err = -ENOMEM;
1da177e4 2773
e8096360 2774 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2775 if (!conf)
709ae487 2776 goto abort;
1da177e4 2777
0eaf822c 2778 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2779 * mddev->raid_disks * 2,
1da177e4
LT
2780 GFP_KERNEL);
2781 if (!conf->mirrors)
709ae487 2782 goto abort;
1da177e4 2783
ddaf22ab
N
2784 conf->tmppage = alloc_page(GFP_KERNEL);
2785 if (!conf->tmppage)
709ae487 2786 goto abort;
ddaf22ab 2787
709ae487 2788 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2789 if (!conf->poolinfo)
709ae487 2790 goto abort;
8f19ccb2 2791 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2792 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2793 r1bio_pool_free,
2794 conf->poolinfo);
2795 if (!conf->r1bio_pool)
709ae487
N
2796 goto abort;
2797
ed9bfdf1 2798 conf->poolinfo->mddev = mddev;
1da177e4 2799
c19d5798 2800 err = -EINVAL;
e7e72bf6 2801 spin_lock_init(&conf->device_lock);
dafb20fa 2802 rdev_for_each(rdev, mddev) {
aba336bd 2803 struct request_queue *q;
709ae487 2804 int disk_idx = rdev->raid_disk;
1da177e4
LT
2805 if (disk_idx >= mddev->raid_disks
2806 || disk_idx < 0)
2807 continue;
c19d5798 2808 if (test_bit(Replacement, &rdev->flags))
02b898f2 2809 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2810 else
2811 disk = conf->mirrors + disk_idx;
1da177e4 2812
c19d5798
N
2813 if (disk->rdev)
2814 goto abort;
1da177e4 2815 disk->rdev = rdev;
aba336bd
N
2816 q = bdev_get_queue(rdev->bdev);
2817 if (q->merge_bvec_fn)
2818 mddev->merge_check_needed = 1;
1da177e4
LT
2819
2820 disk->head_position = 0;
12cee5a8 2821 disk->seq_start = MaxSector;
1da177e4
LT
2822 }
2823 conf->raid_disks = mddev->raid_disks;
2824 conf->mddev = mddev;
1da177e4 2825 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2826
2827 spin_lock_init(&conf->resync_lock);
17999be4 2828 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2829
191ea9b2 2830 bio_list_init(&conf->pending_bio_list);
34db0cd6 2831 conf->pending_count = 0;
d890fa2b 2832 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2833
79ef3a8a 2834 conf->start_next_window = MaxSector;
2835 conf->current_window_requests = conf->next_window_requests = 0;
2836
c19d5798 2837 err = -EIO;
8f19ccb2 2838 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2839
2840 disk = conf->mirrors + i;
2841
c19d5798
N
2842 if (i < conf->raid_disks &&
2843 disk[conf->raid_disks].rdev) {
2844 /* This slot has a replacement. */
2845 if (!disk->rdev) {
2846 /* No original, just make the replacement
2847 * a recovering spare
2848 */
2849 disk->rdev =
2850 disk[conf->raid_disks].rdev;
2851 disk[conf->raid_disks].rdev = NULL;
2852 } else if (!test_bit(In_sync, &disk->rdev->flags))
2853 /* Original is not in_sync - bad */
2854 goto abort;
2855 }
2856
5fd6c1dc
N
2857 if (!disk->rdev ||
2858 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2859 disk->head_position = 0;
4f0a5e01
JB
2860 if (disk->rdev &&
2861 (disk->rdev->saved_raid_disk < 0))
918f0238 2862 conf->fullsync = 1;
be4d3280 2863 }
1da177e4 2864 }
709ae487 2865
709ae487 2866 err = -ENOMEM;
0232605d 2867 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2868 if (!conf->thread) {
2869 printk(KERN_ERR
9dd1e2fa 2870 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2871 mdname(mddev));
2872 goto abort;
11ce99e6 2873 }
1da177e4 2874
709ae487
N
2875 return conf;
2876
2877 abort:
2878 if (conf) {
2879 if (conf->r1bio_pool)
2880 mempool_destroy(conf->r1bio_pool);
2881 kfree(conf->mirrors);
2882 safe_put_page(conf->tmppage);
2883 kfree(conf->poolinfo);
2884 kfree(conf);
2885 }
2886 return ERR_PTR(err);
2887}
2888
afa0f557 2889static void raid1_free(struct mddev *mddev, void *priv);
fd01b88c 2890static int run(struct mddev *mddev)
709ae487 2891{
e8096360 2892 struct r1conf *conf;
709ae487 2893 int i;
3cb03002 2894 struct md_rdev *rdev;
5220ea1e 2895 int ret;
2ff8cc2c 2896 bool discard_supported = false;
709ae487
N
2897
2898 if (mddev->level != 1) {
9dd1e2fa 2899 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2900 mdname(mddev), mddev->level);
2901 return -EIO;
2902 }
2903 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2904 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2905 mdname(mddev));
2906 return -EIO;
2907 }
1da177e4 2908 /*
709ae487
N
2909 * copy the already verified devices into our private RAID1
2910 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2911 * should be freed in raid1_free()]
1da177e4 2912 */
709ae487
N
2913 if (mddev->private == NULL)
2914 conf = setup_conf(mddev);
2915 else
2916 conf = mddev->private;
1da177e4 2917
709ae487
N
2918 if (IS_ERR(conf))
2919 return PTR_ERR(conf);
1da177e4 2920
c8dc9c65 2921 if (mddev->queue)
5026d7a9
PA
2922 blk_queue_max_write_same_sectors(mddev->queue, 0);
2923
dafb20fa 2924 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2925 if (!mddev->gendisk)
2926 continue;
709ae487
N
2927 disk_stack_limits(mddev->gendisk, rdev->bdev,
2928 rdev->data_offset << 9);
2ff8cc2c
SL
2929 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2930 discard_supported = true;
1da177e4 2931 }
191ea9b2 2932
709ae487
N
2933 mddev->degraded = 0;
2934 for (i=0; i < conf->raid_disks; i++)
2935 if (conf->mirrors[i].rdev == NULL ||
2936 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2937 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2938 mddev->degraded++;
2939
2940 if (conf->raid_disks - mddev->degraded == 1)
2941 mddev->recovery_cp = MaxSector;
2942
8c6ac868 2943 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2944 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2945 " -- starting background reconstruction\n",
2946 mdname(mddev));
f72ffdd6 2947 printk(KERN_INFO
9dd1e2fa 2948 "md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2949 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2950 mddev->raid_disks);
709ae487 2951
1da177e4
LT
2952 /*
2953 * Ok, everything is just fine now
2954 */
709ae487
N
2955 mddev->thread = conf->thread;
2956 conf->thread = NULL;
2957 mddev->private = conf;
2958
1f403624 2959 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2960
1ed7242e 2961 if (mddev->queue) {
2ff8cc2c
SL
2962 if (discard_supported)
2963 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2964 mddev->queue);
2965 else
2966 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2967 mddev->queue);
1ed7242e 2968 }
5220ea1e 2969
2970 ret = md_integrity_register(mddev);
5aa61f42
N
2971 if (ret) {
2972 md_unregister_thread(&mddev->thread);
afa0f557 2973 raid1_free(mddev, conf);
5aa61f42 2974 }
5220ea1e 2975 return ret;
1da177e4
LT
2976}
2977
afa0f557 2978static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2979{
afa0f557 2980 struct r1conf *conf = priv;
409c57f3 2981
1da177e4
LT
2982 if (conf->r1bio_pool)
2983 mempool_destroy(conf->r1bio_pool);
990a8baf 2984 kfree(conf->mirrors);
0fea7ed8 2985 safe_put_page(conf->tmppage);
990a8baf 2986 kfree(conf->poolinfo);
1da177e4 2987 kfree(conf);
1da177e4
LT
2988}
2989
fd01b88c 2990static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2991{
2992 /* no resync is happening, and there is enough space
2993 * on all devices, so we can resize.
2994 * We need to make sure resync covers any new space.
2995 * If the array is shrinking we should possibly wait until
2996 * any io in the removed space completes, but it hardly seems
2997 * worth it.
2998 */
a4a6125a
N
2999 sector_t newsize = raid1_size(mddev, sectors, 0);
3000 if (mddev->external_size &&
3001 mddev->array_sectors > newsize)
b522adcd 3002 return -EINVAL;
a4a6125a
N
3003 if (mddev->bitmap) {
3004 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3005 if (ret)
3006 return ret;
3007 }
3008 md_set_array_sectors(mddev, newsize);
f233ea5c 3009 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3010 revalidate_disk(mddev->gendisk);
b522adcd 3011 if (sectors > mddev->dev_sectors &&
b098636c 3012 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3013 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3014 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3015 }
b522adcd 3016 mddev->dev_sectors = sectors;
4b5c7ae8 3017 mddev->resync_max_sectors = sectors;
1da177e4
LT
3018 return 0;
3019}
3020
fd01b88c 3021static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3022{
3023 /* We need to:
3024 * 1/ resize the r1bio_pool
3025 * 2/ resize conf->mirrors
3026 *
3027 * We allocate a new r1bio_pool if we can.
3028 * Then raise a device barrier and wait until all IO stops.
3029 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3030 *
3031 * At the same time, we "pack" the devices so that all the missing
3032 * devices have the higher raid_disk numbers.
1da177e4
LT
3033 */
3034 mempool_t *newpool, *oldpool;
3035 struct pool_info *newpoolinfo;
0eaf822c 3036 struct raid1_info *newmirrors;
e8096360 3037 struct r1conf *conf = mddev->private;
63c70c4f 3038 int cnt, raid_disks;
c04be0aa 3039 unsigned long flags;
b5470dc5 3040 int d, d2, err;
1da177e4 3041
63c70c4f 3042 /* Cannot change chunk_size, layout, or level */
664e7c41 3043 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3044 mddev->layout != mddev->new_layout ||
3045 mddev->level != mddev->new_level) {
664e7c41 3046 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3047 mddev->new_layout = mddev->layout;
3048 mddev->new_level = mddev->level;
3049 return -EINVAL;
3050 }
3051
b5470dc5
DW
3052 err = md_allow_write(mddev);
3053 if (err)
3054 return err;
2a2275d6 3055
63c70c4f
N
3056 raid_disks = mddev->raid_disks + mddev->delta_disks;
3057
6ea9c07c
N
3058 if (raid_disks < conf->raid_disks) {
3059 cnt=0;
3060 for (d= 0; d < conf->raid_disks; d++)
3061 if (conf->mirrors[d].rdev)
3062 cnt++;
3063 if (cnt > raid_disks)
1da177e4 3064 return -EBUSY;
6ea9c07c 3065 }
1da177e4
LT
3066
3067 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3068 if (!newpoolinfo)
3069 return -ENOMEM;
3070 newpoolinfo->mddev = mddev;
8f19ccb2 3071 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3072
3073 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3074 r1bio_pool_free, newpoolinfo);
3075 if (!newpool) {
3076 kfree(newpoolinfo);
3077 return -ENOMEM;
3078 }
0eaf822c 3079 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3080 GFP_KERNEL);
1da177e4
LT
3081 if (!newmirrors) {
3082 kfree(newpoolinfo);
3083 mempool_destroy(newpool);
3084 return -ENOMEM;
3085 }
1da177e4 3086
e2d59925 3087 freeze_array(conf, 0);
1da177e4
LT
3088
3089 /* ok, everything is stopped */
3090 oldpool = conf->r1bio_pool;
3091 conf->r1bio_pool = newpool;
6ea9c07c 3092
a88aa786 3093 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3094 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3095 if (rdev && rdev->raid_disk != d2) {
36fad858 3096 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3097 rdev->raid_disk = d2;
36fad858
NK
3098 sysfs_unlink_rdev(mddev, rdev);
3099 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3100 printk(KERN_WARNING
36fad858
NK
3101 "md/raid1:%s: cannot register rd%d\n",
3102 mdname(mddev), rdev->raid_disk);
6ea9c07c 3103 }
a88aa786
N
3104 if (rdev)
3105 newmirrors[d2++].rdev = rdev;
3106 }
1da177e4
LT
3107 kfree(conf->mirrors);
3108 conf->mirrors = newmirrors;
3109 kfree(conf->poolinfo);
3110 conf->poolinfo = newpoolinfo;
3111
c04be0aa 3112 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3113 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3114 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3115 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3116 mddev->delta_disks = 0;
1da177e4 3117
e2d59925 3118 unfreeze_array(conf);
1da177e4
LT
3119
3120 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3121 md_wakeup_thread(mddev->thread);
3122
3123 mempool_destroy(oldpool);
3124 return 0;
3125}
3126
fd01b88c 3127static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3128{
e8096360 3129 struct r1conf *conf = mddev->private;
36fa3063
N
3130
3131 switch(state) {
6eef4b21
N
3132 case 2: /* wake for suspend */
3133 wake_up(&conf->wait_barrier);
3134 break;
9e6603da 3135 case 1:
07169fd4 3136 freeze_array(conf, 0);
36fa3063 3137 break;
9e6603da 3138 case 0:
07169fd4 3139 unfreeze_array(conf);
36fa3063
N
3140 break;
3141 }
36fa3063
N
3142}
3143
fd01b88c 3144static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3145{
3146 /* raid1 can take over:
3147 * raid5 with 2 devices, any layout or chunk size
3148 */
3149 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3150 struct r1conf *conf;
709ae487
N
3151 mddev->new_level = 1;
3152 mddev->new_layout = 0;
3153 mddev->new_chunk_sectors = 0;
3154 conf = setup_conf(mddev);
3155 if (!IS_ERR(conf))
07169fd4 3156 /* Array must appear to be quiesced */
3157 conf->array_frozen = 1;
709ae487
N
3158 return conf;
3159 }
3160 return ERR_PTR(-EINVAL);
3161}
1da177e4 3162
84fc4b56 3163static struct md_personality raid1_personality =
1da177e4
LT
3164{
3165 .name = "raid1",
2604b703 3166 .level = 1,
1da177e4
LT
3167 .owner = THIS_MODULE,
3168 .make_request = make_request,
3169 .run = run,
afa0f557 3170 .free = raid1_free,
1da177e4
LT
3171 .status = status,
3172 .error_handler = error,
3173 .hot_add_disk = raid1_add_disk,
3174 .hot_remove_disk= raid1_remove_disk,
3175 .spare_active = raid1_spare_active,
3176 .sync_request = sync_request,
3177 .resize = raid1_resize,
80c3a6ce 3178 .size = raid1_size,
63c70c4f 3179 .check_reshape = raid1_reshape,
36fa3063 3180 .quiesce = raid1_quiesce,
709ae487 3181 .takeover = raid1_takeover,
5c675f83 3182 .congested = raid1_congested,
64590f45 3183 .mergeable_bvec = raid1_mergeable_bvec,
1da177e4
LT
3184};
3185
3186static int __init raid_init(void)
3187{
2604b703 3188 return register_md_personality(&raid1_personality);
1da177e4
LT
3189}
3190
3191static void raid_exit(void)
3192{
2604b703 3193 unregister_md_personality(&raid1_personality);
1da177e4
LT
3194}
3195
3196module_init(raid_init);
3197module_exit(raid_exit);
3198MODULE_LICENSE("GPL");
0efb9e61 3199MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3200MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3201MODULE_ALIAS("md-raid1");
2604b703 3202MODULE_ALIAS("md-level-1");
34db0cd6
N
3203
3204module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 1.018818 seconds and 5 git commands to generate.